dt-bindings: clock: drop useless consumer example
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / sb1250-mac.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
4  * Copyright (c) 2006, 2007  Maciej W. Rozycki
5  *
6  * This driver is designed for the Broadcom SiByte SOC built-in
7  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
8  *
9  * Updated to the driver model and the PHY abstraction layer
10  * by Maciej W. Rozycki.
11  */
12
13 #include <linux/bug.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/interrupt.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/bitops.h>
26 #include <linux/err.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/phy.h>
30 #include <linux/platform_device.h>
31 #include <linux/prefetch.h>
32
33 #include <asm/cache.h>
34 #include <asm/io.h>
35 #include <asm/processor.h>      /* Processor type for cache alignment. */
36
37 /* Operational parameters that usually are not changed. */
38
39 #define CONFIG_SBMAC_COALESCE
40
41 /* Time in jiffies before concluding the transmitter is hung. */
42 #define TX_TIMEOUT  (2*HZ)
43
44
45 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
46 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
47
48 /* A few user-configurable values which may be modified when a driver
49    module is loaded. */
50
51 /* 1 normal messages, 0 quiet .. 7 verbose. */
52 static int debug = 1;
53 module_param(debug, int, 0444);
54 MODULE_PARM_DESC(debug, "Debug messages");
55
56 #ifdef CONFIG_SBMAC_COALESCE
57 static int int_pktcnt_tx = 255;
58 module_param(int_pktcnt_tx, int, 0444);
59 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
60
61 static int int_timeout_tx = 255;
62 module_param(int_timeout_tx, int, 0444);
63 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
64
65 static int int_pktcnt_rx = 64;
66 module_param(int_pktcnt_rx, int, 0444);
67 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
68
69 static int int_timeout_rx = 64;
70 module_param(int_timeout_rx, int, 0444);
71 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
72 #endif
73
74 #include <asm/sibyte/board.h>
75 #include <asm/sibyte/sb1250.h>
76 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
77 #include <asm/sibyte/bcm1480_regs.h>
78 #include <asm/sibyte/bcm1480_int.h>
79 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
80 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
81 #include <asm/sibyte/sb1250_regs.h>
82 #include <asm/sibyte/sb1250_int.h>
83 #else
84 #error invalid SiByte MAC configuration
85 #endif
86 #include <asm/sibyte/sb1250_scd.h>
87 #include <asm/sibyte/sb1250_mac.h>
88 #include <asm/sibyte/sb1250_dma.h>
89
90 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
91 #define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
92 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
93 #define UNIT_INT(n)             (K_INT_MAC_0 + (n))
94 #else
95 #error invalid SiByte MAC configuration
96 #endif
97
98 #ifdef K_INT_PHY
99 #define SBMAC_PHY_INT                   K_INT_PHY
100 #else
101 #define SBMAC_PHY_INT                   PHY_POLL
102 #endif
103
104 /**********************************************************************
105  *  Simple types
106  ********************************************************************* */
107
108 enum sbmac_speed {
109         sbmac_speed_none = 0,
110         sbmac_speed_10 = SPEED_10,
111         sbmac_speed_100 = SPEED_100,
112         sbmac_speed_1000 = SPEED_1000,
113 };
114
115 enum sbmac_duplex {
116         sbmac_duplex_none = -1,
117         sbmac_duplex_half = DUPLEX_HALF,
118         sbmac_duplex_full = DUPLEX_FULL,
119 };
120
121 enum sbmac_fc {
122         sbmac_fc_none,
123         sbmac_fc_disabled,
124         sbmac_fc_frame,
125         sbmac_fc_collision,
126         sbmac_fc_carrier,
127 };
128
129 enum sbmac_state {
130         sbmac_state_uninit,
131         sbmac_state_off,
132         sbmac_state_on,
133         sbmac_state_broken,
134 };
135
136
137 /**********************************************************************
138  *  Macros
139  ********************************************************************* */
140
141
142 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
143                           (d)->sbdma_dscrtable : (d)->f+1)
144
145
146 #define NUMCACHEBLKS(x) DIV_ROUND_UP(x, SMP_CACHE_BYTES)
147
148 #define SBMAC_MAX_TXDESCR       256
149 #define SBMAC_MAX_RXDESCR       256
150
151 #define ENET_PACKET_SIZE        1518
152 /*#define ENET_PACKET_SIZE      9216 */
153
154 /**********************************************************************
155  *  DMA Descriptor structure
156  ********************************************************************* */
157
158 struct sbdmadscr {
159         uint64_t  dscr_a;
160         uint64_t  dscr_b;
161 };
162
163 /**********************************************************************
164  *  DMA Controller structure
165  ********************************************************************* */
166
167 struct sbmacdma {
168
169         /*
170          * This stuff is used to identify the channel and the registers
171          * associated with it.
172          */
173         struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
174                                                    MAC */
175         int                     sbdma_channel;  /* channel number */
176         int                     sbdma_txdir;    /* direction (1=transmit) */
177         int                     sbdma_maxdescr; /* total # of descriptors
178                                                    in ring */
179 #ifdef CONFIG_SBMAC_COALESCE
180         int                     sbdma_int_pktcnt;
181                                                 /* # descriptors rx/tx
182                                                    before interrupt */
183         int                     sbdma_int_timeout;
184                                                 /* # usec rx/tx interrupt */
185 #endif
186         void __iomem            *sbdma_config0; /* DMA config register 0 */
187         void __iomem            *sbdma_config1; /* DMA config register 1 */
188         void __iomem            *sbdma_dscrbase;
189                                                 /* descriptor base address */
190         void __iomem            *sbdma_dscrcnt; /* descriptor count register */
191         void __iomem            *sbdma_curdscr; /* current descriptor
192                                                    address */
193         void __iomem            *sbdma_oodpktlost;
194                                                 /* pkt drop (rx only) */
195
196         /*
197          * This stuff is for maintenance of the ring
198          */
199         void                    *sbdma_dscrtable_unaligned;
200         struct sbdmadscr        *sbdma_dscrtable;
201                                                 /* base of descriptor table */
202         struct sbdmadscr        *sbdma_dscrtable_end;
203                                                 /* end of descriptor table */
204         struct sk_buff          **sbdma_ctxtable;
205                                                 /* context table, one
206                                                    per descr */
207         dma_addr_t              sbdma_dscrtable_phys;
208                                                 /* and also the phys addr */
209         struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
210         struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
211                                                    to remove */
212 };
213
214
215 /**********************************************************************
216  *  Ethernet softc structure
217  ********************************************************************* */
218
219 struct sbmac_softc {
220
221         /*
222          * Linux-specific things
223          */
224         struct net_device       *sbm_dev;       /* pointer to linux device */
225         struct napi_struct      napi;
226         struct phy_device       *phy_dev;       /* the associated PHY device */
227         struct mii_bus          *mii_bus;       /* the MII bus */
228         spinlock_t              sbm_lock;       /* spin lock */
229         int                     sbm_devflags;   /* current device flags */
230
231         /*
232          * Controller-specific things
233          */
234         void __iomem            *sbm_base;      /* MAC's base address */
235         enum sbmac_state        sbm_state;      /* current state */
236
237         void __iomem            *sbm_macenable; /* MAC Enable Register */
238         void __iomem            *sbm_maccfg;    /* MAC Config Register */
239         void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
240         void __iomem            *sbm_framecfg;  /* Frame Config Register */
241         void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
242         void __iomem            *sbm_isr;       /* Interrupt Status Register */
243         void __iomem            *sbm_imr;       /* Interrupt Mask Register */
244         void __iomem            *sbm_mdio;      /* MDIO Register */
245
246         enum sbmac_speed        sbm_speed;      /* current speed */
247         enum sbmac_duplex       sbm_duplex;     /* current duplex */
248         enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
249         int                     sbm_pause;      /* current pause setting */
250         int                     sbm_link;       /* current link state */
251
252         unsigned char           sbm_hwaddr[ETH_ALEN];
253
254         struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
255         struct sbmacdma         sbm_rxdma;
256         int                     rx_hw_checksum;
257         int                     sbe_idx;
258 };
259
260
261 /**********************************************************************
262  *  Externs
263  ********************************************************************* */
264
265 /**********************************************************************
266  *  Prototypes
267  ********************************************************************* */
268
269 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
270                           int txrx, int maxdescr);
271 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
272 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
273                                struct sk_buff *m);
274 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
275 static void sbdma_emptyring(struct sbmacdma *d);
276 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
277 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
278                             int work_to_do, int poll);
279 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
280                              int poll);
281 static int sbmac_initctx(struct sbmac_softc *s);
282 static void sbmac_channel_start(struct sbmac_softc *s);
283 static void sbmac_channel_stop(struct sbmac_softc *s);
284 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
285                                                 enum sbmac_state);
286 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
287 static uint64_t sbmac_addr2reg(unsigned char *ptr);
288 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
289 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
290 static void sbmac_setmulti(struct sbmac_softc *sc);
291 static int sbmac_init(struct platform_device *pldev, long long base);
292 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
293 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
294                             enum sbmac_fc fc);
295
296 static int sbmac_open(struct net_device *dev);
297 static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue);
298 static void sbmac_set_rx_mode(struct net_device *dev);
299 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
300 static int sbmac_close(struct net_device *dev);
301 static int sbmac_poll(struct napi_struct *napi, int budget);
302
303 static void sbmac_mii_poll(struct net_device *dev);
304 static int sbmac_mii_probe(struct net_device *dev);
305
306 static void sbmac_mii_sync(void __iomem *sbm_mdio);
307 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
308                                int bitcnt);
309 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
310 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
311                            u16 val);
312
313
314 /**********************************************************************
315  *  Globals
316  ********************************************************************* */
317
318 static char sbmac_string[] = "sb1250-mac";
319
320 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
321
322
323 /**********************************************************************
324  *  MDIO constants
325  ********************************************************************* */
326
327 #define MII_COMMAND_START       0x01
328 #define MII_COMMAND_READ        0x02
329 #define MII_COMMAND_WRITE       0x01
330 #define MII_COMMAND_ACK         0x02
331
332 #define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
333
334 #define ENABLE          1
335 #define DISABLE         0
336
337 /**********************************************************************
338  *  SBMAC_MII_SYNC(sbm_mdio)
339  *
340  *  Synchronize with the MII - send a pattern of bits to the MII
341  *  that will guarantee that it is ready to accept a command.
342  *
343  *  Input parameters:
344  *         sbm_mdio - address of the MAC's MDIO register
345  *
346  *  Return value:
347  *         nothing
348  ********************************************************************* */
349
350 static void sbmac_mii_sync(void __iomem *sbm_mdio)
351 {
352         int cnt;
353         uint64_t bits;
354         int mac_mdio_genc;
355
356         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
357
358         bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
359
360         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
361
362         for (cnt = 0; cnt < 32; cnt++) {
363                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
364                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
365         }
366 }
367
368 /**********************************************************************
369  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
370  *
371  *  Send some bits to the MII.  The bits to be sent are right-
372  *  justified in the 'data' parameter.
373  *
374  *  Input parameters:
375  *         sbm_mdio - address of the MAC's MDIO register
376  *         data     - data to send
377  *         bitcnt   - number of bits to send
378  ********************************************************************* */
379
380 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
381                                int bitcnt)
382 {
383         int i;
384         uint64_t bits;
385         unsigned int curmask;
386         int mac_mdio_genc;
387
388         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
389
390         bits = M_MAC_MDIO_DIR_OUTPUT;
391         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
392
393         curmask = 1 << (bitcnt - 1);
394
395         for (i = 0; i < bitcnt; i++) {
396                 if (data & curmask)
397                         bits |= M_MAC_MDIO_OUT;
398                 else bits &= ~M_MAC_MDIO_OUT;
399                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
400                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
401                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
402                 curmask >>= 1;
403         }
404 }
405
406
407
408 /**********************************************************************
409  *  SBMAC_MII_READ(bus, phyaddr, regidx)
410  *  Read a PHY register.
411  *
412  *  Input parameters:
413  *         bus     - MDIO bus handle
414  *         phyaddr - PHY's address
415  *         regnum  - index of register to read
416  *
417  *  Return value:
418  *         value read, or 0xffff if an error occurred.
419  ********************************************************************* */
420
421 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
422 {
423         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
424         void __iomem *sbm_mdio = sc->sbm_mdio;
425         int idx;
426         int error;
427         int regval;
428         int mac_mdio_genc;
429
430         /*
431          * Synchronize ourselves so that the PHY knows the next
432          * thing coming down is a command
433          */
434         sbmac_mii_sync(sbm_mdio);
435
436         /*
437          * Send the data to the PHY.  The sequence is
438          * a "start" command (2 bits)
439          * a "read" command (2 bits)
440          * the PHY addr (5 bits)
441          * the register index (5 bits)
442          */
443         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
444         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
445         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
446         sbmac_mii_senddata(sbm_mdio, regidx, 5);
447
448         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
449
450         /*
451          * Switch the port around without a clock transition.
452          */
453         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
454
455         /*
456          * Send out a clock pulse to signal we want the status
457          */
458         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
459                      sbm_mdio);
460         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
461
462         /*
463          * If an error occurred, the PHY will signal '1' back
464          */
465         error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
466
467         /*
468          * Issue an 'idle' clock pulse, but keep the direction
469          * the same.
470          */
471         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
472                      sbm_mdio);
473         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
474
475         regval = 0;
476
477         for (idx = 0; idx < 16; idx++) {
478                 regval <<= 1;
479
480                 if (error == 0) {
481                         if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
482                                 regval |= 1;
483                 }
484
485                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
486                              sbm_mdio);
487                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
488         }
489
490         /* Switch back to output */
491         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
492
493         if (error == 0)
494                 return regval;
495         return 0xffff;
496 }
497
498
499 /**********************************************************************
500  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
501  *
502  *  Write a value to a PHY register.
503  *
504  *  Input parameters:
505  *         bus     - MDIO bus handle
506  *         phyaddr - PHY to use
507  *         regidx  - register within the PHY
508  *         regval  - data to write to register
509  *
510  *  Return value:
511  *         0 for success
512  ********************************************************************* */
513
514 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
515                            u16 regval)
516 {
517         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
518         void __iomem *sbm_mdio = sc->sbm_mdio;
519         int mac_mdio_genc;
520
521         sbmac_mii_sync(sbm_mdio);
522
523         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
524         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
525         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
526         sbmac_mii_senddata(sbm_mdio, regidx, 5);
527         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
528         sbmac_mii_senddata(sbm_mdio, regval, 16);
529
530         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
531
532         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
533
534         return 0;
535 }
536
537
538
539 /**********************************************************************
540  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
541  *
542  *  Initialize a DMA channel context.  Since there are potentially
543  *  eight DMA channels per MAC, it's nice to do this in a standard
544  *  way.
545  *
546  *  Input parameters:
547  *         d - struct sbmacdma (DMA channel context)
548  *         s - struct sbmac_softc (pointer to a MAC)
549  *         chan - channel number (0..1 right now)
550  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
551  *      maxdescr - number of descriptors
552  *
553  *  Return value:
554  *         nothing
555  ********************************************************************* */
556
557 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
558                           int txrx, int maxdescr)
559 {
560 #ifdef CONFIG_SBMAC_COALESCE
561         int int_pktcnt, int_timeout;
562 #endif
563
564         /*
565          * Save away interesting stuff in the structure
566          */
567
568         d->sbdma_eth       = s;
569         d->sbdma_channel   = chan;
570         d->sbdma_txdir     = txrx;
571
572 #if 0
573         /* RMON clearing */
574         s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
575 #endif
576
577         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
578         __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
579         __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
580         __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
581         __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
582         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
583         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
584         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
585         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
586         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
587         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
588         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
589         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
590         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
591         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
592         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
593         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
594         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
595         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
596         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
597         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
598
599         /*
600          * initialize register pointers
601          */
602
603         d->sbdma_config0 =
604                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
605         d->sbdma_config1 =
606                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
607         d->sbdma_dscrbase =
608                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
609         d->sbdma_dscrcnt =
610                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
611         d->sbdma_curdscr =
612                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
613         if (d->sbdma_txdir)
614                 d->sbdma_oodpktlost = NULL;
615         else
616                 d->sbdma_oodpktlost =
617                         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
618
619         /*
620          * Allocate memory for the ring
621          */
622
623         d->sbdma_maxdescr = maxdescr;
624
625         d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
626                                                sizeof(*d->sbdma_dscrtable),
627                                                GFP_KERNEL);
628
629         /*
630          * The descriptor table must be aligned to at least 16 bytes or the
631          * MAC will corrupt it.
632          */
633         d->sbdma_dscrtable = (struct sbdmadscr *)
634                              ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
635                                    sizeof(*d->sbdma_dscrtable));
636
637         d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
638
639         d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
640
641         /*
642          * And context table
643          */
644
645         d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
646                                     sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
647
648 #ifdef CONFIG_SBMAC_COALESCE
649         /*
650          * Setup Rx/Tx DMA coalescing defaults
651          */
652
653         int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
654         if ( int_pktcnt ) {
655                 d->sbdma_int_pktcnt = int_pktcnt;
656         } else {
657                 d->sbdma_int_pktcnt = 1;
658         }
659
660         int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
661         if ( int_timeout ) {
662                 d->sbdma_int_timeout = int_timeout;
663         } else {
664                 d->sbdma_int_timeout = 0;
665         }
666 #endif
667
668 }
669
670 /**********************************************************************
671  *  SBDMA_CHANNEL_START(d)
672  *
673  *  Initialize the hardware registers for a DMA channel.
674  *
675  *  Input parameters:
676  *         d - DMA channel to init (context must be previously init'd
677  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
678  *
679  *  Return value:
680  *         nothing
681  ********************************************************************* */
682
683 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
684 {
685         /*
686          * Turn on the DMA channel
687          */
688
689 #ifdef CONFIG_SBMAC_COALESCE
690         __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
691                        0, d->sbdma_config1);
692         __raw_writeq(M_DMA_EOP_INT_EN |
693                        V_DMA_RINGSZ(d->sbdma_maxdescr) |
694                        V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
695                        0, d->sbdma_config0);
696 #else
697         __raw_writeq(0, d->sbdma_config1);
698         __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
699                        0, d->sbdma_config0);
700 #endif
701
702         __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
703
704         /*
705          * Initialize ring pointers
706          */
707
708         d->sbdma_addptr = d->sbdma_dscrtable;
709         d->sbdma_remptr = d->sbdma_dscrtable;
710 }
711
712 /**********************************************************************
713  *  SBDMA_CHANNEL_STOP(d)
714  *
715  *  Initialize the hardware registers for a DMA channel.
716  *
717  *  Input parameters:
718  *         d - DMA channel to init (context must be previously init'd
719  *
720  *  Return value:
721  *         nothing
722  ********************************************************************* */
723
724 static void sbdma_channel_stop(struct sbmacdma *d)
725 {
726         /*
727          * Turn off the DMA channel
728          */
729
730         __raw_writeq(0, d->sbdma_config1);
731
732         __raw_writeq(0, d->sbdma_dscrbase);
733
734         __raw_writeq(0, d->sbdma_config0);
735
736         /*
737          * Zero ring pointers
738          */
739
740         d->sbdma_addptr = NULL;
741         d->sbdma_remptr = NULL;
742 }
743
744 static inline void sbdma_align_skb(struct sk_buff *skb,
745                                    unsigned int power2, unsigned int offset)
746 {
747         unsigned char *addr = skb->data;
748         unsigned char *newaddr = PTR_ALIGN(addr, power2);
749
750         skb_reserve(skb, newaddr - addr + offset);
751 }
752
753
754 /**********************************************************************
755  *  SBDMA_ADD_RCVBUFFER(d,sb)
756  *
757  *  Add a buffer to the specified DMA channel.   For receive channels,
758  *  this queues a buffer for inbound packets.
759  *
760  *  Input parameters:
761  *         sc - softc structure
762  *          d - DMA channel descriptor
763  *         sb - sk_buff to add, or NULL if we should allocate one
764  *
765  *  Return value:
766  *         0 if buffer could not be added (ring is full)
767  *         1 if buffer added successfully
768  ********************************************************************* */
769
770
771 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
772                                struct sk_buff *sb)
773 {
774         struct net_device *dev = sc->sbm_dev;
775         struct sbdmadscr *dsc;
776         struct sbdmadscr *nextdsc;
777         struct sk_buff *sb_new = NULL;
778         int pktsize = ENET_PACKET_SIZE;
779
780         /* get pointer to our current place in the ring */
781
782         dsc = d->sbdma_addptr;
783         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
784
785         /*
786          * figure out if the ring is full - if the next descriptor
787          * is the same as the one that we're going to remove from
788          * the ring, the ring is full
789          */
790
791         if (nextdsc == d->sbdma_remptr) {
792                 return -ENOSPC;
793         }
794
795         /*
796          * Allocate a sk_buff if we don't already have one.
797          * If we do have an sk_buff, reset it so that it's empty.
798          *
799          * Note: sk_buffs don't seem to be guaranteed to have any sort
800          * of alignment when they are allocated.  Therefore, allocate enough
801          * extra space to make sure that:
802          *
803          *    1. the data does not start in the middle of a cache line.
804          *    2. The data does not end in the middle of a cache line
805          *    3. The buffer can be aligned such that the IP addresses are
806          *       naturally aligned.
807          *
808          *  Remember, the SOCs MAC writes whole cache lines at a time,
809          *  without reading the old contents first.  So, if the sk_buff's
810          *  data portion starts in the middle of a cache line, the SOC
811          *  DMA will trash the beginning (and ending) portions.
812          */
813
814         if (sb == NULL) {
815                 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
816                                                SMP_CACHE_BYTES * 2 +
817                                                NET_IP_ALIGN);
818                 if (sb_new == NULL)
819                         return -ENOBUFS;
820
821                 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
822         }
823         else {
824                 sb_new = sb;
825                 /*
826                  * nothing special to reinit buffer, it's already aligned
827                  * and sb->data already points to a good place.
828                  */
829         }
830
831         /*
832          * fill in the descriptor
833          */
834
835 #ifdef CONFIG_SBMAC_COALESCE
836         /*
837          * Do not interrupt per DMA transfer.
838          */
839         dsc->dscr_a = virt_to_phys(sb_new->data) |
840                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
841 #else
842         dsc->dscr_a = virt_to_phys(sb_new->data) |
843                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
844                 M_DMA_DSCRA_INTERRUPT;
845 #endif
846
847         /* receiving: no options */
848         dsc->dscr_b = 0;
849
850         /*
851          * fill in the context
852          */
853
854         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
855
856         /*
857          * point at next packet
858          */
859
860         d->sbdma_addptr = nextdsc;
861
862         /*
863          * Give the buffer to the DMA engine.
864          */
865
866         __raw_writeq(1, d->sbdma_dscrcnt);
867
868         return 0;                                       /* we did it */
869 }
870
871 /**********************************************************************
872  *  SBDMA_ADD_TXBUFFER(d,sb)
873  *
874  *  Add a transmit buffer to the specified DMA channel, causing a
875  *  transmit to start.
876  *
877  *  Input parameters:
878  *         d - DMA channel descriptor
879  *         sb - sk_buff to add
880  *
881  *  Return value:
882  *         0 transmit queued successfully
883  *         otherwise error code
884  ********************************************************************* */
885
886
887 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
888 {
889         struct sbdmadscr *dsc;
890         struct sbdmadscr *nextdsc;
891         uint64_t phys;
892         uint64_t ncb;
893         int length;
894
895         /* get pointer to our current place in the ring */
896
897         dsc = d->sbdma_addptr;
898         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
899
900         /*
901          * figure out if the ring is full - if the next descriptor
902          * is the same as the one that we're going to remove from
903          * the ring, the ring is full
904          */
905
906         if (nextdsc == d->sbdma_remptr) {
907                 return -ENOSPC;
908         }
909
910         /*
911          * Under Linux, it's not necessary to copy/coalesce buffers
912          * like it is on NetBSD.  We think they're all contiguous,
913          * but that may not be true for GBE.
914          */
915
916         length = sb->len;
917
918         /*
919          * fill in the descriptor.  Note that the number of cache
920          * blocks in the descriptor is the number of blocks
921          * *spanned*, so we need to add in the offset (if any)
922          * while doing the calculation.
923          */
924
925         phys = virt_to_phys(sb->data);
926         ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
927
928         dsc->dscr_a = phys |
929                 V_DMA_DSCRA_A_SIZE(ncb) |
930 #ifndef CONFIG_SBMAC_COALESCE
931                 M_DMA_DSCRA_INTERRUPT |
932 #endif
933                 M_DMA_ETHTX_SOP;
934
935         /* transmitting: set outbound options and length */
936
937         dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
938                 V_DMA_DSCRB_PKT_SIZE(length);
939
940         /*
941          * fill in the context
942          */
943
944         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
945
946         /*
947          * point at next packet
948          */
949
950         d->sbdma_addptr = nextdsc;
951
952         /*
953          * Give the buffer to the DMA engine.
954          */
955
956         __raw_writeq(1, d->sbdma_dscrcnt);
957
958         return 0;                                       /* we did it */
959 }
960
961
962
963
964 /**********************************************************************
965  *  SBDMA_EMPTYRING(d)
966  *
967  *  Free all allocated sk_buffs on the specified DMA channel;
968  *
969  *  Input parameters:
970  *         d  - DMA channel
971  *
972  *  Return value:
973  *         nothing
974  ********************************************************************* */
975
976 static void sbdma_emptyring(struct sbmacdma *d)
977 {
978         int idx;
979         struct sk_buff *sb;
980
981         for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
982                 sb = d->sbdma_ctxtable[idx];
983                 if (sb) {
984                         dev_kfree_skb(sb);
985                         d->sbdma_ctxtable[idx] = NULL;
986                 }
987         }
988 }
989
990
991 /**********************************************************************
992  *  SBDMA_FILLRING(d)
993  *
994  *  Fill the specified DMA channel (must be receive channel)
995  *  with sk_buffs
996  *
997  *  Input parameters:
998  *         sc - softc structure
999  *          d - DMA channel
1000  *
1001  *  Return value:
1002  *         nothing
1003  ********************************************************************* */
1004
1005 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1006 {
1007         int idx;
1008
1009         for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1010                 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1011                         break;
1012         }
1013 }
1014
1015 #ifdef CONFIG_NET_POLL_CONTROLLER
1016 static void sbmac_netpoll(struct net_device *netdev)
1017 {
1018         struct sbmac_softc *sc = netdev_priv(netdev);
1019         int irq = sc->sbm_dev->irq;
1020
1021         __raw_writeq(0, sc->sbm_imr);
1022
1023         sbmac_intr(irq, netdev);
1024
1025 #ifdef CONFIG_SBMAC_COALESCE
1026         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1027         ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1028         sc->sbm_imr);
1029 #else
1030         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1031         (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1032 #endif
1033 }
1034 #endif
1035
1036 /**********************************************************************
1037  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1038  *
1039  *  Process "completed" receive buffers on the specified DMA channel.
1040  *
1041  *  Input parameters:
1042  *            sc - softc structure
1043  *             d - DMA channel context
1044  *    work_to_do - no. of packets to process before enabling interrupt
1045  *                 again (for NAPI)
1046  *          poll - 1: using polling (for NAPI)
1047  *
1048  *  Return value:
1049  *         nothing
1050  ********************************************************************* */
1051
1052 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1053                             int work_to_do, int poll)
1054 {
1055         struct net_device *dev = sc->sbm_dev;
1056         int curidx;
1057         int hwidx;
1058         struct sbdmadscr *dsc;
1059         struct sk_buff *sb;
1060         int len;
1061         int work_done = 0;
1062         int dropped = 0;
1063
1064         prefetch(d);
1065
1066 again:
1067         /* Check if the HW dropped any frames */
1068         dev->stats.rx_fifo_errors
1069             += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1070         __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1071
1072         while (work_to_do-- > 0) {
1073                 /*
1074                  * figure out where we are (as an index) and where
1075                  * the hardware is (also as an index)
1076                  *
1077                  * This could be done faster if (for example) the
1078                  * descriptor table was page-aligned and contiguous in
1079                  * both virtual and physical memory -- you could then
1080                  * just compare the low-order bits of the virtual address
1081                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1082                  */
1083
1084                 dsc = d->sbdma_remptr;
1085                 curidx = dsc - d->sbdma_dscrtable;
1086
1087                 prefetch(dsc);
1088                 prefetch(&d->sbdma_ctxtable[curidx]);
1089
1090                 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1091                          d->sbdma_dscrtable_phys) /
1092                         sizeof(*d->sbdma_dscrtable);
1093
1094                 /*
1095                  * If they're the same, that means we've processed all
1096                  * of the descriptors up to (but not including) the one that
1097                  * the hardware is working on right now.
1098                  */
1099
1100                 if (curidx == hwidx)
1101                         goto done;
1102
1103                 /*
1104                  * Otherwise, get the packet's sk_buff ptr back
1105                  */
1106
1107                 sb = d->sbdma_ctxtable[curidx];
1108                 d->sbdma_ctxtable[curidx] = NULL;
1109
1110                 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1111
1112                 /*
1113                  * Check packet status.  If good, process it.
1114                  * If not, silently drop it and put it back on the
1115                  * receive ring.
1116                  */
1117
1118                 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1119
1120                         /*
1121                          * Add a new buffer to replace the old one.  If we fail
1122                          * to allocate a buffer, we're going to drop this
1123                          * packet and put it right back on the receive ring.
1124                          */
1125
1126                         if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1127                                      -ENOBUFS)) {
1128                                 dev->stats.rx_dropped++;
1129                                 /* Re-add old buffer */
1130                                 sbdma_add_rcvbuffer(sc, d, sb);
1131                                 /* No point in continuing at the moment */
1132                                 printk(KERN_ERR "dropped packet (1)\n");
1133                                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1134                                 goto done;
1135                         } else {
1136                                 /*
1137                                  * Set length into the packet
1138                                  */
1139                                 skb_put(sb,len);
1140
1141                                 /*
1142                                  * Buffer has been replaced on the
1143                                  * receive ring.  Pass the buffer to
1144                                  * the kernel
1145                                  */
1146                                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1147                                 /* Check hw IPv4/TCP checksum if supported */
1148                                 if (sc->rx_hw_checksum == ENABLE) {
1149                                         if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1150                                             !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1151                                                 sb->ip_summed = CHECKSUM_UNNECESSARY;
1152                                                 /* don't need to set sb->csum */
1153                                         } else {
1154                                                 skb_checksum_none_assert(sb);
1155                                         }
1156                                 }
1157                                 prefetch(sb->data);
1158                                 prefetch((const void *)(((char *)sb->data)+32));
1159                                 if (poll)
1160                                         dropped = netif_receive_skb(sb);
1161                                 else
1162                                         dropped = netif_rx(sb);
1163
1164                                 if (dropped == NET_RX_DROP) {
1165                                         dev->stats.rx_dropped++;
1166                                         d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1167                                         goto done;
1168                                 }
1169                                 else {
1170                                         dev->stats.rx_bytes += len;
1171                                         dev->stats.rx_packets++;
1172                                 }
1173                         }
1174                 } else {
1175                         /*
1176                          * Packet was mangled somehow.  Just drop it and
1177                          * put it back on the receive ring.
1178                          */
1179                         dev->stats.rx_errors++;
1180                         sbdma_add_rcvbuffer(sc, d, sb);
1181                 }
1182
1183
1184                 /*
1185                  * .. and advance to the next buffer.
1186                  */
1187
1188                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1189                 work_done++;
1190         }
1191         if (!poll) {
1192                 work_to_do = 32;
1193                 goto again; /* collect fifo drop statistics again */
1194         }
1195 done:
1196         return work_done;
1197 }
1198
1199 /**********************************************************************
1200  *  SBDMA_TX_PROCESS(sc,d)
1201  *
1202  *  Process "completed" transmit buffers on the specified DMA channel.
1203  *  This is normally called within the interrupt service routine.
1204  *  Note that this isn't really ideal for priority channels, since
1205  *  it processes all of the packets on a given channel before
1206  *  returning.
1207  *
1208  *  Input parameters:
1209  *      sc - softc structure
1210  *       d - DMA channel context
1211  *    poll - 1: using polling (for NAPI)
1212  *
1213  *  Return value:
1214  *         nothing
1215  ********************************************************************* */
1216
1217 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1218                              int poll)
1219 {
1220         struct net_device *dev = sc->sbm_dev;
1221         int curidx;
1222         int hwidx;
1223         struct sbdmadscr *dsc;
1224         struct sk_buff *sb;
1225         unsigned long flags;
1226         int packets_handled = 0;
1227
1228         spin_lock_irqsave(&(sc->sbm_lock), flags);
1229
1230         if (d->sbdma_remptr == d->sbdma_addptr)
1231           goto end_unlock;
1232
1233         hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1234                  d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1235
1236         for (;;) {
1237                 /*
1238                  * figure out where we are (as an index) and where
1239                  * the hardware is (also as an index)
1240                  *
1241                  * This could be done faster if (for example) the
1242                  * descriptor table was page-aligned and contiguous in
1243                  * both virtual and physical memory -- you could then
1244                  * just compare the low-order bits of the virtual address
1245                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1246                  */
1247
1248                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1249
1250                 /*
1251                  * If they're the same, that means we've processed all
1252                  * of the descriptors up to (but not including) the one that
1253                  * the hardware is working on right now.
1254                  */
1255
1256                 if (curidx == hwidx)
1257                         break;
1258
1259                 /*
1260                  * Otherwise, get the packet's sk_buff ptr back
1261                  */
1262
1263                 dsc = &(d->sbdma_dscrtable[curidx]);
1264                 sb = d->sbdma_ctxtable[curidx];
1265                 d->sbdma_ctxtable[curidx] = NULL;
1266
1267                 /*
1268                  * Stats
1269                  */
1270
1271                 dev->stats.tx_bytes += sb->len;
1272                 dev->stats.tx_packets++;
1273
1274                 /*
1275                  * for transmits, we just free buffers.
1276                  */
1277
1278                 dev_consume_skb_irq(sb);
1279
1280                 /*
1281                  * .. and advance to the next buffer.
1282                  */
1283
1284                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1285
1286                 packets_handled++;
1287
1288         }
1289
1290         /*
1291          * Decide if we should wake up the protocol or not.
1292          * Other drivers seem to do this when we reach a low
1293          * watermark on the transmit queue.
1294          */
1295
1296         if (packets_handled)
1297                 netif_wake_queue(d->sbdma_eth->sbm_dev);
1298
1299 end_unlock:
1300         spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1301
1302 }
1303
1304
1305
1306 /**********************************************************************
1307  *  SBMAC_INITCTX(s)
1308  *
1309  *  Initialize an Ethernet context structure - this is called
1310  *  once per MAC on the 1250.  Memory is allocated here, so don't
1311  *  call it again from inside the ioctl routines that bring the
1312  *  interface up/down
1313  *
1314  *  Input parameters:
1315  *         s - sbmac context structure
1316  *
1317  *  Return value:
1318  *         0
1319  ********************************************************************* */
1320
1321 static int sbmac_initctx(struct sbmac_softc *s)
1322 {
1323
1324         /*
1325          * figure out the addresses of some ports
1326          */
1327
1328         s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1329         s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1330         s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1331         s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1332         s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1333         s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1334         s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1335         s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1336
1337         /*
1338          * Initialize the DMA channels.  Right now, only one per MAC is used
1339          * Note: Only do this _once_, as it allocates memory from the kernel!
1340          */
1341
1342         sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1343         sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1344
1345         /*
1346          * initial state is OFF
1347          */
1348
1349         s->sbm_state = sbmac_state_off;
1350
1351         return 0;
1352 }
1353
1354
1355 static void sbdma_uninitctx(struct sbmacdma *d)
1356 {
1357         kfree(d->sbdma_dscrtable_unaligned);
1358         d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1359
1360         kfree(d->sbdma_ctxtable);
1361         d->sbdma_ctxtable = NULL;
1362 }
1363
1364
1365 static void sbmac_uninitctx(struct sbmac_softc *sc)
1366 {
1367         sbdma_uninitctx(&(sc->sbm_txdma));
1368         sbdma_uninitctx(&(sc->sbm_rxdma));
1369 }
1370
1371
1372 /**********************************************************************
1373  *  SBMAC_CHANNEL_START(s)
1374  *
1375  *  Start packet processing on this MAC.
1376  *
1377  *  Input parameters:
1378  *         s - sbmac structure
1379  *
1380  *  Return value:
1381  *         nothing
1382  ********************************************************************* */
1383
1384 static void sbmac_channel_start(struct sbmac_softc *s)
1385 {
1386         uint64_t reg;
1387         void __iomem *port;
1388         uint64_t cfg,fifo,framecfg;
1389         int idx, th_value;
1390
1391         /*
1392          * Don't do this if running
1393          */
1394
1395         if (s->sbm_state == sbmac_state_on)
1396                 return;
1397
1398         /*
1399          * Bring the controller out of reset, but leave it off.
1400          */
1401
1402         __raw_writeq(0, s->sbm_macenable);
1403
1404         /*
1405          * Ignore all received packets
1406          */
1407
1408         __raw_writeq(0, s->sbm_rxfilter);
1409
1410         /*
1411          * Calculate values for various control registers.
1412          */
1413
1414         cfg = M_MAC_RETRY_EN |
1415                 M_MAC_TX_HOLD_SOP_EN |
1416                 V_MAC_TX_PAUSE_CNT_16K |
1417                 M_MAC_AP_STAT_EN |
1418                 M_MAC_FAST_SYNC |
1419                 M_MAC_SS_EN |
1420                 0;
1421
1422         /*
1423          * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1424          * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1425          * Use a larger RD_THRSH for gigabit
1426          */
1427         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1428                 th_value = 28;
1429         else
1430                 th_value = 64;
1431
1432         fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1433                 ((s->sbm_speed == sbmac_speed_1000)
1434                  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1435                 V_MAC_TX_RL_THRSH(4) |
1436                 V_MAC_RX_PL_THRSH(4) |
1437                 V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1438                 V_MAC_RX_RL_THRSH(8) |
1439                 0;
1440
1441         framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1442                 V_MAC_MAX_FRAMESZ_DEFAULT |
1443                 V_MAC_BACKOFF_SEL(1);
1444
1445         /*
1446          * Clear out the hash address map
1447          */
1448
1449         port = s->sbm_base + R_MAC_HASH_BASE;
1450         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1451                 __raw_writeq(0, port);
1452                 port += sizeof(uint64_t);
1453         }
1454
1455         /*
1456          * Clear out the exact-match table
1457          */
1458
1459         port = s->sbm_base + R_MAC_ADDR_BASE;
1460         for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1461                 __raw_writeq(0, port);
1462                 port += sizeof(uint64_t);
1463         }
1464
1465         /*
1466          * Clear out the DMA Channel mapping table registers
1467          */
1468
1469         port = s->sbm_base + R_MAC_CHUP0_BASE;
1470         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1471                 __raw_writeq(0, port);
1472                 port += sizeof(uint64_t);
1473         }
1474
1475
1476         port = s->sbm_base + R_MAC_CHLO0_BASE;
1477         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1478                 __raw_writeq(0, port);
1479                 port += sizeof(uint64_t);
1480         }
1481
1482         /*
1483          * Program the hardware address.  It goes into the hardware-address
1484          * register as well as the first filter register.
1485          */
1486
1487         reg = sbmac_addr2reg(s->sbm_hwaddr);
1488
1489         port = s->sbm_base + R_MAC_ADDR_BASE;
1490         __raw_writeq(reg, port);
1491         port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1492
1493         __raw_writeq(reg, port);
1494
1495         /*
1496          * Set the receive filter for no packets, and write values
1497          * to the various config registers
1498          */
1499
1500         __raw_writeq(0, s->sbm_rxfilter);
1501         __raw_writeq(0, s->sbm_imr);
1502         __raw_writeq(framecfg, s->sbm_framecfg);
1503         __raw_writeq(fifo, s->sbm_fifocfg);
1504         __raw_writeq(cfg, s->sbm_maccfg);
1505
1506         /*
1507          * Initialize DMA channels (rings should be ok now)
1508          */
1509
1510         sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1511         sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1512
1513         /*
1514          * Configure the speed, duplex, and flow control
1515          */
1516
1517         sbmac_set_speed(s,s->sbm_speed);
1518         sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1519
1520         /*
1521          * Fill the receive ring
1522          */
1523
1524         sbdma_fillring(s, &(s->sbm_rxdma));
1525
1526         /*
1527          * Turn on the rest of the bits in the enable register
1528          */
1529
1530 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1531         __raw_writeq(M_MAC_RXDMA_EN0 |
1532                        M_MAC_TXDMA_EN0, s->sbm_macenable);
1533 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1534         __raw_writeq(M_MAC_RXDMA_EN0 |
1535                        M_MAC_TXDMA_EN0 |
1536                        M_MAC_RX_ENABLE |
1537                        M_MAC_TX_ENABLE, s->sbm_macenable);
1538 #else
1539 #error invalid SiByte MAC configuration
1540 #endif
1541
1542 #ifdef CONFIG_SBMAC_COALESCE
1543         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1544                        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1545 #else
1546         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1547                        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1548 #endif
1549
1550         /*
1551          * Enable receiving unicasts and broadcasts
1552          */
1553
1554         __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1555
1556         /*
1557          * we're running now.
1558          */
1559
1560         s->sbm_state = sbmac_state_on;
1561
1562         /*
1563          * Program multicast addresses
1564          */
1565
1566         sbmac_setmulti(s);
1567
1568         /*
1569          * If channel was in promiscuous mode before, turn that on
1570          */
1571
1572         if (s->sbm_devflags & IFF_PROMISC) {
1573                 sbmac_promiscuous_mode(s,1);
1574         }
1575
1576 }
1577
1578
1579 /**********************************************************************
1580  *  SBMAC_CHANNEL_STOP(s)
1581  *
1582  *  Stop packet processing on this MAC.
1583  *
1584  *  Input parameters:
1585  *         s - sbmac structure
1586  *
1587  *  Return value:
1588  *         nothing
1589  ********************************************************************* */
1590
1591 static void sbmac_channel_stop(struct sbmac_softc *s)
1592 {
1593         /* don't do this if already stopped */
1594
1595         if (s->sbm_state == sbmac_state_off)
1596                 return;
1597
1598         /* don't accept any packets, disable all interrupts */
1599
1600         __raw_writeq(0, s->sbm_rxfilter);
1601         __raw_writeq(0, s->sbm_imr);
1602
1603         /* Turn off ticker */
1604
1605         /* XXX */
1606
1607         /* turn off receiver and transmitter */
1608
1609         __raw_writeq(0, s->sbm_macenable);
1610
1611         /* We're stopped now. */
1612
1613         s->sbm_state = sbmac_state_off;
1614
1615         /*
1616          * Stop DMA channels (rings should be ok now)
1617          */
1618
1619         sbdma_channel_stop(&(s->sbm_rxdma));
1620         sbdma_channel_stop(&(s->sbm_txdma));
1621
1622         /* Empty the receive and transmit rings */
1623
1624         sbdma_emptyring(&(s->sbm_rxdma));
1625         sbdma_emptyring(&(s->sbm_txdma));
1626
1627 }
1628
1629 /**********************************************************************
1630  *  SBMAC_SET_CHANNEL_STATE(state)
1631  *
1632  *  Set the channel's state ON or OFF
1633  *
1634  *  Input parameters:
1635  *         state - new state
1636  *
1637  *  Return value:
1638  *         old state
1639  ********************************************************************* */
1640 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1641                                                 enum sbmac_state state)
1642 {
1643         enum sbmac_state oldstate = sc->sbm_state;
1644
1645         /*
1646          * If same as previous state, return
1647          */
1648
1649         if (state == oldstate) {
1650                 return oldstate;
1651         }
1652
1653         /*
1654          * If new state is ON, turn channel on
1655          */
1656
1657         if (state == sbmac_state_on) {
1658                 sbmac_channel_start(sc);
1659         }
1660         else {
1661                 sbmac_channel_stop(sc);
1662         }
1663
1664         /*
1665          * Return previous state
1666          */
1667
1668         return oldstate;
1669 }
1670
1671
1672 /**********************************************************************
1673  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1674  *
1675  *  Turn on or off promiscuous mode
1676  *
1677  *  Input parameters:
1678  *         sc - softc
1679  *      onoff - 1 to turn on, 0 to turn off
1680  *
1681  *  Return value:
1682  *         nothing
1683  ********************************************************************* */
1684
1685 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1686 {
1687         uint64_t reg;
1688
1689         if (sc->sbm_state != sbmac_state_on)
1690                 return;
1691
1692         if (onoff) {
1693                 reg = __raw_readq(sc->sbm_rxfilter);
1694                 reg |= M_MAC_ALLPKT_EN;
1695                 __raw_writeq(reg, sc->sbm_rxfilter);
1696         }
1697         else {
1698                 reg = __raw_readq(sc->sbm_rxfilter);
1699                 reg &= ~M_MAC_ALLPKT_EN;
1700                 __raw_writeq(reg, sc->sbm_rxfilter);
1701         }
1702 }
1703
1704 /**********************************************************************
1705  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1706  *
1707  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1708  *
1709  *  Input parameters:
1710  *         sc - softc
1711  *
1712  *  Return value:
1713  *         nothing
1714  ********************************************************************* */
1715
1716 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1717 {
1718         uint64_t reg;
1719
1720         /* Hard code the off set to 15 for now */
1721         reg = __raw_readq(sc->sbm_rxfilter);
1722         reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1723         __raw_writeq(reg, sc->sbm_rxfilter);
1724
1725         /* BCM1250 pass1 didn't have hardware checksum.  Everything
1726            later does.  */
1727         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1728                 sc->rx_hw_checksum = DISABLE;
1729         } else {
1730                 sc->rx_hw_checksum = ENABLE;
1731         }
1732 }
1733
1734
1735 /**********************************************************************
1736  *  SBMAC_ADDR2REG(ptr)
1737  *
1738  *  Convert six bytes into the 64-bit register value that
1739  *  we typically write into the SBMAC's address/mcast registers
1740  *
1741  *  Input parameters:
1742  *         ptr - pointer to 6 bytes
1743  *
1744  *  Return value:
1745  *         register value
1746  ********************************************************************* */
1747
1748 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1749 {
1750         uint64_t reg = 0;
1751
1752         ptr += 6;
1753
1754         reg |= (uint64_t) *(--ptr);
1755         reg <<= 8;
1756         reg |= (uint64_t) *(--ptr);
1757         reg <<= 8;
1758         reg |= (uint64_t) *(--ptr);
1759         reg <<= 8;
1760         reg |= (uint64_t) *(--ptr);
1761         reg <<= 8;
1762         reg |= (uint64_t) *(--ptr);
1763         reg <<= 8;
1764         reg |= (uint64_t) *(--ptr);
1765
1766         return reg;
1767 }
1768
1769
1770 /**********************************************************************
1771  *  SBMAC_SET_SPEED(s,speed)
1772  *
1773  *  Configure LAN speed for the specified MAC.
1774  *  Warning: must be called when MAC is off!
1775  *
1776  *  Input parameters:
1777  *         s - sbmac structure
1778  *         speed - speed to set MAC to (see enum sbmac_speed)
1779  *
1780  *  Return value:
1781  *         1 if successful
1782  *      0 indicates invalid parameters
1783  ********************************************************************* */
1784
1785 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1786 {
1787         uint64_t cfg;
1788         uint64_t framecfg;
1789
1790         /*
1791          * Save new current values
1792          */
1793
1794         s->sbm_speed = speed;
1795
1796         if (s->sbm_state == sbmac_state_on)
1797                 return 0;       /* save for next restart */
1798
1799         /*
1800          * Read current register values
1801          */
1802
1803         cfg = __raw_readq(s->sbm_maccfg);
1804         framecfg = __raw_readq(s->sbm_framecfg);
1805
1806         /*
1807          * Mask out the stuff we want to change
1808          */
1809
1810         cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1811         framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1812                       M_MAC_SLOT_SIZE);
1813
1814         /*
1815          * Now add in the new bits
1816          */
1817
1818         switch (speed) {
1819         case sbmac_speed_10:
1820                 framecfg |= V_MAC_IFG_RX_10 |
1821                         V_MAC_IFG_TX_10 |
1822                         K_MAC_IFG_THRSH_10 |
1823                         V_MAC_SLOT_SIZE_10;
1824                 cfg |= V_MAC_SPEED_SEL_10MBPS;
1825                 break;
1826
1827         case sbmac_speed_100:
1828                 framecfg |= V_MAC_IFG_RX_100 |
1829                         V_MAC_IFG_TX_100 |
1830                         V_MAC_IFG_THRSH_100 |
1831                         V_MAC_SLOT_SIZE_100;
1832                 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1833                 break;
1834
1835         case sbmac_speed_1000:
1836                 framecfg |= V_MAC_IFG_RX_1000 |
1837                         V_MAC_IFG_TX_1000 |
1838                         V_MAC_IFG_THRSH_1000 |
1839                         V_MAC_SLOT_SIZE_1000;
1840                 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1841                 break;
1842
1843         default:
1844                 return 0;
1845         }
1846
1847         /*
1848          * Send the bits back to the hardware
1849          */
1850
1851         __raw_writeq(framecfg, s->sbm_framecfg);
1852         __raw_writeq(cfg, s->sbm_maccfg);
1853
1854         return 1;
1855 }
1856
1857 /**********************************************************************
1858  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1859  *
1860  *  Set Ethernet duplex and flow control options for this MAC
1861  *  Warning: must be called when MAC is off!
1862  *
1863  *  Input parameters:
1864  *         s - sbmac structure
1865  *         duplex - duplex setting (see enum sbmac_duplex)
1866  *         fc - flow control setting (see enum sbmac_fc)
1867  *
1868  *  Return value:
1869  *         1 if ok
1870  *         0 if an invalid parameter combination was specified
1871  ********************************************************************* */
1872
1873 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1874                             enum sbmac_fc fc)
1875 {
1876         uint64_t cfg;
1877
1878         /*
1879          * Save new current values
1880          */
1881
1882         s->sbm_duplex = duplex;
1883         s->sbm_fc = fc;
1884
1885         if (s->sbm_state == sbmac_state_on)
1886                 return 0;       /* save for next restart */
1887
1888         /*
1889          * Read current register values
1890          */
1891
1892         cfg = __raw_readq(s->sbm_maccfg);
1893
1894         /*
1895          * Mask off the stuff we're about to change
1896          */
1897
1898         cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1899
1900
1901         switch (duplex) {
1902         case sbmac_duplex_half:
1903                 switch (fc) {
1904                 case sbmac_fc_disabled:
1905                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1906                         break;
1907
1908                 case sbmac_fc_collision:
1909                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1910                         break;
1911
1912                 case sbmac_fc_carrier:
1913                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1914                         break;
1915
1916                 case sbmac_fc_frame:            /* not valid in half duplex */
1917                 default:                        /* invalid selection */
1918                         return 0;
1919                 }
1920                 break;
1921
1922         case sbmac_duplex_full:
1923                 switch (fc) {
1924                 case sbmac_fc_disabled:
1925                         cfg |= V_MAC_FC_CMD_DISABLED;
1926                         break;
1927
1928                 case sbmac_fc_frame:
1929                         cfg |= V_MAC_FC_CMD_ENABLED;
1930                         break;
1931
1932                 case sbmac_fc_collision:        /* not valid in full duplex */
1933                 case sbmac_fc_carrier:          /* not valid in full duplex */
1934                 default:
1935                         return 0;
1936                 }
1937                 break;
1938         default:
1939                 return 0;
1940         }
1941
1942         /*
1943          * Send the bits back to the hardware
1944          */
1945
1946         __raw_writeq(cfg, s->sbm_maccfg);
1947
1948         return 1;
1949 }
1950
1951
1952
1953
1954 /**********************************************************************
1955  *  SBMAC_INTR()
1956  *
1957  *  Interrupt handler for MAC interrupts
1958  *
1959  *  Input parameters:
1960  *         MAC structure
1961  *
1962  *  Return value:
1963  *         nothing
1964  ********************************************************************* */
1965 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1966 {
1967         struct net_device *dev = (struct net_device *) dev_instance;
1968         struct sbmac_softc *sc = netdev_priv(dev);
1969         uint64_t isr;
1970         int handled = 0;
1971
1972         /*
1973          * Read the ISR (this clears the bits in the real
1974          * register, except for counter addr)
1975          */
1976
1977         isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1978
1979         if (isr == 0)
1980                 return IRQ_RETVAL(0);
1981         handled = 1;
1982
1983         /*
1984          * Transmits on channel 0
1985          */
1986
1987         if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
1988                 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
1989
1990         if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1991                 if (napi_schedule_prep(&sc->napi)) {
1992                         __raw_writeq(0, sc->sbm_imr);
1993                         __napi_schedule(&sc->napi);
1994                         /* Depend on the exit from poll to reenable intr */
1995                 }
1996                 else {
1997                         /* may leave some packets behind */
1998                         sbdma_rx_process(sc,&(sc->sbm_rxdma),
1999                                          SBMAC_MAX_RXDESCR * 2, 0);
2000                 }
2001         }
2002         return IRQ_RETVAL(handled);
2003 }
2004
2005 /**********************************************************************
2006  *  SBMAC_START_TX(skb,dev)
2007  *
2008  *  Start output on the specified interface.  Basically, we
2009  *  queue as many buffers as we can until the ring fills up, or
2010  *  we run off the end of the queue, whichever comes first.
2011  *
2012  *  Input parameters:
2013  *
2014  *
2015  *  Return value:
2016  *         nothing
2017  ********************************************************************* */
2018 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2019 {
2020         struct sbmac_softc *sc = netdev_priv(dev);
2021         unsigned long flags;
2022
2023         /* lock eth irq */
2024         spin_lock_irqsave(&sc->sbm_lock, flags);
2025
2026         /*
2027          * Put the buffer on the transmit ring.  If we
2028          * don't have room, stop the queue.
2029          */
2030
2031         if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2032                 /* XXX save skb that we could not send */
2033                 netif_stop_queue(dev);
2034                 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2035
2036                 return NETDEV_TX_BUSY;
2037         }
2038
2039         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2040
2041         return NETDEV_TX_OK;
2042 }
2043
2044 /**********************************************************************
2045  *  SBMAC_SETMULTI(sc)
2046  *
2047  *  Reprogram the multicast table into the hardware, given
2048  *  the list of multicasts associated with the interface
2049  *  structure.
2050  *
2051  *  Input parameters:
2052  *         sc - softc
2053  *
2054  *  Return value:
2055  *         nothing
2056  ********************************************************************* */
2057
2058 static void sbmac_setmulti(struct sbmac_softc *sc)
2059 {
2060         uint64_t reg;
2061         void __iomem *port;
2062         int idx;
2063         struct netdev_hw_addr *ha;
2064         struct net_device *dev = sc->sbm_dev;
2065
2066         /*
2067          * Clear out entire multicast table.  We do this by nuking
2068          * the entire hash table and all the direct matches except
2069          * the first one, which is used for our station address
2070          */
2071
2072         for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2073                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2074                 __raw_writeq(0, port);
2075         }
2076
2077         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2078                 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2079                 __raw_writeq(0, port);
2080         }
2081
2082         /*
2083          * Clear the filter to say we don't want any multicasts.
2084          */
2085
2086         reg = __raw_readq(sc->sbm_rxfilter);
2087         reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2088         __raw_writeq(reg, sc->sbm_rxfilter);
2089
2090         if (dev->flags & IFF_ALLMULTI) {
2091                 /*
2092                  * Enable ALL multicasts.  Do this by inverting the
2093                  * multicast enable bit.
2094                  */
2095                 reg = __raw_readq(sc->sbm_rxfilter);
2096                 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2097                 __raw_writeq(reg, sc->sbm_rxfilter);
2098                 return;
2099         }
2100
2101
2102         /*
2103          * Progam new multicast entries.  For now, only use the
2104          * perfect filter.  In the future we'll need to use the
2105          * hash filter if the perfect filter overflows
2106          */
2107
2108         /* XXX only using perfect filter for now, need to use hash
2109          * XXX if the table overflows */
2110
2111         idx = 1;                /* skip station address */
2112         netdev_for_each_mc_addr(ha, dev) {
2113                 if (idx == MAC_ADDR_COUNT)
2114                         break;
2115                 reg = sbmac_addr2reg(ha->addr);
2116                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2117                 __raw_writeq(reg, port);
2118                 idx++;
2119         }
2120
2121         /*
2122          * Enable the "accept multicast bits" if we programmed at least one
2123          * multicast.
2124          */
2125
2126         if (idx > 1) {
2127                 reg = __raw_readq(sc->sbm_rxfilter);
2128                 reg |= M_MAC_MCAST_EN;
2129                 __raw_writeq(reg, sc->sbm_rxfilter);
2130         }
2131 }
2132
2133 static const struct net_device_ops sbmac_netdev_ops = {
2134         .ndo_open               = sbmac_open,
2135         .ndo_stop               = sbmac_close,
2136         .ndo_start_xmit         = sbmac_start_tx,
2137         .ndo_set_rx_mode        = sbmac_set_rx_mode,
2138         .ndo_tx_timeout         = sbmac_tx_timeout,
2139         .ndo_eth_ioctl          = sbmac_mii_ioctl,
2140         .ndo_validate_addr      = eth_validate_addr,
2141         .ndo_set_mac_address    = eth_mac_addr,
2142 #ifdef CONFIG_NET_POLL_CONTROLLER
2143         .ndo_poll_controller    = sbmac_netpoll,
2144 #endif
2145 };
2146
2147 /**********************************************************************
2148  *  SBMAC_INIT(dev)
2149  *
2150  *  Attach routine - init hardware and hook ourselves into linux
2151  *
2152  *  Input parameters:
2153  *         dev - net_device structure
2154  *
2155  *  Return value:
2156  *         status
2157  ********************************************************************* */
2158
2159 static int sbmac_init(struct platform_device *pldev, long long base)
2160 {
2161         struct net_device *dev = platform_get_drvdata(pldev);
2162         int idx = pldev->id;
2163         struct sbmac_softc *sc = netdev_priv(dev);
2164         unsigned char *eaddr;
2165         uint64_t ea_reg;
2166         int i;
2167         int err;
2168
2169         sc->sbm_dev = dev;
2170         sc->sbe_idx = idx;
2171
2172         eaddr = sc->sbm_hwaddr;
2173
2174         /*
2175          * Read the ethernet address.  The firmware left this programmed
2176          * for us in the ethernet address register for each mac.
2177          */
2178
2179         ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2180         __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2181         for (i = 0; i < 6; i++) {
2182                 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2183                 ea_reg >>= 8;
2184         }
2185
2186         for (i = 0; i < 6; i++) {
2187                 dev->dev_addr[i] = eaddr[i];
2188         }
2189
2190         /*
2191          * Initialize context (get pointers to registers and stuff), then
2192          * allocate the memory for the descriptor tables.
2193          */
2194
2195         sbmac_initctx(sc);
2196
2197         /*
2198          * Set up Linux device callins
2199          */
2200
2201         spin_lock_init(&(sc->sbm_lock));
2202
2203         dev->netdev_ops = &sbmac_netdev_ops;
2204         dev->watchdog_timeo = TX_TIMEOUT;
2205         dev->min_mtu = 0;
2206         dev->max_mtu = ENET_PACKET_SIZE;
2207
2208         netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2209
2210         dev->irq                = UNIT_INT(idx);
2211
2212         /* This is needed for PASS2 for Rx H/W checksum feature */
2213         sbmac_set_iphdr_offset(sc);
2214
2215         sc->mii_bus = mdiobus_alloc();
2216         if (sc->mii_bus == NULL) {
2217                 err = -ENOMEM;
2218                 goto uninit_ctx;
2219         }
2220
2221         sc->mii_bus->name = sbmac_mdio_string;
2222         snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2223                 pldev->name, idx);
2224         sc->mii_bus->priv = sc;
2225         sc->mii_bus->read = sbmac_mii_read;
2226         sc->mii_bus->write = sbmac_mii_write;
2227
2228         sc->mii_bus->parent = &pldev->dev;
2229         /*
2230          * Probe PHY address
2231          */
2232         err = mdiobus_register(sc->mii_bus);
2233         if (err) {
2234                 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2235                        dev->name);
2236                 goto free_mdio;
2237         }
2238         platform_set_drvdata(pldev, sc->mii_bus);
2239
2240         err = register_netdev(dev);
2241         if (err) {
2242                 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2243                        sbmac_string, idx);
2244                 goto unreg_mdio;
2245         }
2246
2247         pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2248
2249         if (sc->rx_hw_checksum == ENABLE)
2250                 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2251
2252         /*
2253          * Display Ethernet address (this is called during the config
2254          * process so we need to finish off the config message that
2255          * was being displayed)
2256          */
2257         pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2258                dev->name, base, eaddr);
2259
2260         return 0;
2261 unreg_mdio:
2262         mdiobus_unregister(sc->mii_bus);
2263 free_mdio:
2264         mdiobus_free(sc->mii_bus);
2265 uninit_ctx:
2266         sbmac_uninitctx(sc);
2267         return err;
2268 }
2269
2270
2271 static int sbmac_open(struct net_device *dev)
2272 {
2273         struct sbmac_softc *sc = netdev_priv(dev);
2274         int err;
2275
2276         if (debug > 1)
2277                 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2278
2279         /*
2280          * map/route interrupt (clear status first, in case something
2281          * weird is pending; we haven't initialized the mac registers
2282          * yet)
2283          */
2284
2285         __raw_readq(sc->sbm_isr);
2286         err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2287         if (err) {
2288                 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2289                        dev->irq);
2290                 goto out_err;
2291         }
2292
2293         sc->sbm_speed = sbmac_speed_none;
2294         sc->sbm_duplex = sbmac_duplex_none;
2295         sc->sbm_fc = sbmac_fc_none;
2296         sc->sbm_pause = -1;
2297         sc->sbm_link = 0;
2298
2299         /*
2300          * Attach to the PHY
2301          */
2302         err = sbmac_mii_probe(dev);
2303         if (err)
2304                 goto out_unregister;
2305
2306         /*
2307          * Turn on the channel
2308          */
2309
2310         sbmac_set_channel_state(sc,sbmac_state_on);
2311
2312         netif_start_queue(dev);
2313
2314         sbmac_set_rx_mode(dev);
2315
2316         phy_start(sc->phy_dev);
2317
2318         napi_enable(&sc->napi);
2319
2320         return 0;
2321
2322 out_unregister:
2323         free_irq(dev->irq, dev);
2324 out_err:
2325         return err;
2326 }
2327
2328 static int sbmac_mii_probe(struct net_device *dev)
2329 {
2330         struct sbmac_softc *sc = netdev_priv(dev);
2331         struct phy_device *phy_dev;
2332
2333         phy_dev = phy_find_first(sc->mii_bus);
2334         if (!phy_dev) {
2335                 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2336                 return -ENXIO;
2337         }
2338
2339         phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2340                               &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2341         if (IS_ERR(phy_dev)) {
2342                 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2343                 return PTR_ERR(phy_dev);
2344         }
2345
2346         /* Remove any features not supported by the controller */
2347         phy_set_max_speed(phy_dev, SPEED_1000);
2348         phy_support_asym_pause(phy_dev);
2349
2350         phy_attached_info(phy_dev);
2351
2352         sc->phy_dev = phy_dev;
2353
2354         return 0;
2355 }
2356
2357
2358 static void sbmac_mii_poll(struct net_device *dev)
2359 {
2360         struct sbmac_softc *sc = netdev_priv(dev);
2361         struct phy_device *phy_dev = sc->phy_dev;
2362         unsigned long flags;
2363         enum sbmac_fc fc;
2364         int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2365
2366         link_chg = (sc->sbm_link != phy_dev->link);
2367         speed_chg = (sc->sbm_speed != phy_dev->speed);
2368         duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2369         pause_chg = (sc->sbm_pause != phy_dev->pause);
2370
2371         if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2372                 return;                                 /* Hmmm... */
2373
2374         if (!phy_dev->link) {
2375                 if (link_chg) {
2376                         sc->sbm_link = phy_dev->link;
2377                         sc->sbm_speed = sbmac_speed_none;
2378                         sc->sbm_duplex = sbmac_duplex_none;
2379                         sc->sbm_fc = sbmac_fc_disabled;
2380                         sc->sbm_pause = -1;
2381                         pr_info("%s: link unavailable\n", dev->name);
2382                 }
2383                 return;
2384         }
2385
2386         if (phy_dev->duplex == DUPLEX_FULL) {
2387                 if (phy_dev->pause)
2388                         fc = sbmac_fc_frame;
2389                 else
2390                         fc = sbmac_fc_disabled;
2391         } else
2392                 fc = sbmac_fc_collision;
2393         fc_chg = (sc->sbm_fc != fc);
2394
2395         pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2396                 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2397
2398         spin_lock_irqsave(&sc->sbm_lock, flags);
2399
2400         sc->sbm_speed = phy_dev->speed;
2401         sc->sbm_duplex = phy_dev->duplex;
2402         sc->sbm_fc = fc;
2403         sc->sbm_pause = phy_dev->pause;
2404         sc->sbm_link = phy_dev->link;
2405
2406         if ((speed_chg || duplex_chg || fc_chg) &&
2407             sc->sbm_state != sbmac_state_off) {
2408                 /*
2409                  * something changed, restart the channel
2410                  */
2411                 if (debug > 1)
2412                         pr_debug("%s: restarting channel "
2413                                  "because PHY state changed\n", dev->name);
2414                 sbmac_channel_stop(sc);
2415                 sbmac_channel_start(sc);
2416         }
2417
2418         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2419 }
2420
2421
2422 static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue)
2423 {
2424         struct sbmac_softc *sc = netdev_priv(dev);
2425         unsigned long flags;
2426
2427         spin_lock_irqsave(&sc->sbm_lock, flags);
2428
2429
2430         netif_trans_update(dev); /* prevent tx timeout */
2431         dev->stats.tx_errors++;
2432
2433         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2434
2435         printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2436 }
2437
2438
2439
2440
2441 static void sbmac_set_rx_mode(struct net_device *dev)
2442 {
2443         unsigned long flags;
2444         struct sbmac_softc *sc = netdev_priv(dev);
2445
2446         spin_lock_irqsave(&sc->sbm_lock, flags);
2447         if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2448                 /*
2449                  * Promiscuous changed.
2450                  */
2451
2452                 if (dev->flags & IFF_PROMISC) {
2453                         sbmac_promiscuous_mode(sc,1);
2454                 }
2455                 else {
2456                         sbmac_promiscuous_mode(sc,0);
2457                 }
2458         }
2459         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2460
2461         /*
2462          * Program the multicasts.  Do this every time.
2463          */
2464
2465         sbmac_setmulti(sc);
2466
2467 }
2468
2469 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2470 {
2471         struct sbmac_softc *sc = netdev_priv(dev);
2472
2473         if (!netif_running(dev) || !sc->phy_dev)
2474                 return -EINVAL;
2475
2476         return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2477 }
2478
2479 static int sbmac_close(struct net_device *dev)
2480 {
2481         struct sbmac_softc *sc = netdev_priv(dev);
2482
2483         napi_disable(&sc->napi);
2484
2485         phy_stop(sc->phy_dev);
2486
2487         sbmac_set_channel_state(sc, sbmac_state_off);
2488
2489         netif_stop_queue(dev);
2490
2491         if (debug > 1)
2492                 pr_debug("%s: Shutting down ethercard\n", dev->name);
2493
2494         phy_disconnect(sc->phy_dev);
2495         sc->phy_dev = NULL;
2496         free_irq(dev->irq, dev);
2497
2498         sbdma_emptyring(&(sc->sbm_txdma));
2499         sbdma_emptyring(&(sc->sbm_rxdma));
2500
2501         return 0;
2502 }
2503
2504 static int sbmac_poll(struct napi_struct *napi, int budget)
2505 {
2506         struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2507         int work_done;
2508
2509         work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2510         sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2511
2512         if (work_done < budget) {
2513                 napi_complete_done(napi, work_done);
2514
2515 #ifdef CONFIG_SBMAC_COALESCE
2516                 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2517                              ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2518                              sc->sbm_imr);
2519 #else
2520                 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2521                              (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2522 #endif
2523         }
2524
2525         return work_done;
2526 }
2527
2528
2529 static int sbmac_probe(struct platform_device *pldev)
2530 {
2531         struct net_device *dev;
2532         struct sbmac_softc *sc;
2533         void __iomem *sbm_base;
2534         struct resource *res;
2535         u64 sbmac_orig_hwaddr;
2536         int err;
2537
2538         res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2539         BUG_ON(!res);
2540         sbm_base = ioremap(res->start, resource_size(res));
2541         if (!sbm_base) {
2542                 printk(KERN_ERR "%s: unable to map device registers\n",
2543                        dev_name(&pldev->dev));
2544                 err = -ENOMEM;
2545                 goto out_out;
2546         }
2547
2548         /*
2549          * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2550          * value for us by the firmware if we're going to use this MAC.
2551          * If we find a zero, skip this MAC.
2552          */
2553         sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2554         pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2555                  sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2556         if (sbmac_orig_hwaddr == 0) {
2557                 err = 0;
2558                 goto out_unmap;
2559         }
2560
2561         /*
2562          * Okay, cool.  Initialize this MAC.
2563          */
2564         dev = alloc_etherdev(sizeof(struct sbmac_softc));
2565         if (!dev) {
2566                 err = -ENOMEM;
2567                 goto out_unmap;
2568         }
2569
2570         platform_set_drvdata(pldev, dev);
2571         SET_NETDEV_DEV(dev, &pldev->dev);
2572
2573         sc = netdev_priv(dev);
2574         sc->sbm_base = sbm_base;
2575
2576         err = sbmac_init(pldev, res->start);
2577         if (err)
2578                 goto out_kfree;
2579
2580         return 0;
2581
2582 out_kfree:
2583         free_netdev(dev);
2584         __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2585
2586 out_unmap:
2587         iounmap(sbm_base);
2588
2589 out_out:
2590         return err;
2591 }
2592
2593 static int sbmac_remove(struct platform_device *pldev)
2594 {
2595         struct net_device *dev = platform_get_drvdata(pldev);
2596         struct sbmac_softc *sc = netdev_priv(dev);
2597
2598         unregister_netdev(dev);
2599         sbmac_uninitctx(sc);
2600         mdiobus_unregister(sc->mii_bus);
2601         mdiobus_free(sc->mii_bus);
2602         iounmap(sc->sbm_base);
2603         free_netdev(dev);
2604
2605         return 0;
2606 }
2607
2608 static struct platform_driver sbmac_driver = {
2609         .probe = sbmac_probe,
2610         .remove = sbmac_remove,
2611         .driver = {
2612                 .name = sbmac_string,
2613         },
2614 };
2615
2616 module_platform_driver(sbmac_driver);
2617 MODULE_LICENSE("GPL");