Merge tag 'iomap-5.14-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT        4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY       0
49
50 #define GENET_Q16_RX_BD_CNT     \
51         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT     \
53         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH           2048
56 #define SKB_ALIGNMENT           32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
63                                 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
66                                 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73         /* MIPS chips strapped for BE will automagically configure the
74          * peripheral registers for CPU-native byte order.
75          */
76         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77                 __raw_writel(value, offset);
78         else
79                 writel_relaxed(value, offset);
80 }
81
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85                 return __raw_readl(offset);
86         else
87                 return readl_relaxed(offset);
88 }
89
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91                                              void __iomem *d, u32 value)
92 {
93         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97                                     void __iomem *d,
98                                     dma_addr_t addr)
99 {
100         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102         /* Register writes to GISB bus can take couple hundred nanoseconds
103          * and are done for each packet, save these expensive writes unless
104          * the platform is explicitly configured for 64-bits/LPAE.
105          */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107         if (priv->hw_params->flags & GENET_HAS_40BITS)
108                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114                                void __iomem *d, dma_addr_t addr, u32 val)
115 {
116         dmadesc_set_addr(priv, d, addr);
117         dmadesc_set_length_status(priv, d, val);
118 }
119
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121                                           void __iomem *d)
122 {
123         dma_addr_t addr;
124
125         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127         /* Register writes to GISB bus can take couple hundred nanoseconds
128          * and are done for each packet, save these expensive writes unless
129          * the platform is explicitly configured for 64-bits/LPAE.
130          */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132         if (priv->hw_params->flags & GENET_HAS_40BITS)
133                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135         return addr;
136 }
137
138 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
139
140 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141                                 NETIF_MSG_LINK)
142
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145         if (GENET_IS_V1(priv))
146                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147         else
148                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153         if (GENET_IS_V1(priv))
154                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155         else
156                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165         if (GENET_IS_V1(priv))
166                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167         else
168                 return bcmgenet_readl(priv->base +
169                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174         if (GENET_IS_V1(priv))
175                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176         else
177                 bcmgenet_writel(val, priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183         if (GENET_IS_V1(priv))
184                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185         else
186                 return bcmgenet_readl(priv->base +
187                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192         if (GENET_IS_V1(priv))
193                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194         else
195                 bcmgenet_writel(val, priv->base +
196                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201         DMA_RING_CFG = 0,
202         DMA_CTRL,
203         DMA_STATUS,
204         DMA_SCB_BURST_SIZE,
205         DMA_ARB_CTRL,
206         DMA_PRIORITY_0,
207         DMA_PRIORITY_1,
208         DMA_PRIORITY_2,
209         DMA_INDEX2RING_0,
210         DMA_INDEX2RING_1,
211         DMA_INDEX2RING_2,
212         DMA_INDEX2RING_3,
213         DMA_INDEX2RING_4,
214         DMA_INDEX2RING_5,
215         DMA_INDEX2RING_6,
216         DMA_INDEX2RING_7,
217         DMA_RING0_TIMEOUT,
218         DMA_RING1_TIMEOUT,
219         DMA_RING2_TIMEOUT,
220         DMA_RING3_TIMEOUT,
221         DMA_RING4_TIMEOUT,
222         DMA_RING5_TIMEOUT,
223         DMA_RING6_TIMEOUT,
224         DMA_RING7_TIMEOUT,
225         DMA_RING8_TIMEOUT,
226         DMA_RING9_TIMEOUT,
227         DMA_RING10_TIMEOUT,
228         DMA_RING11_TIMEOUT,
229         DMA_RING12_TIMEOUT,
230         DMA_RING13_TIMEOUT,
231         DMA_RING14_TIMEOUT,
232         DMA_RING15_TIMEOUT,
233         DMA_RING16_TIMEOUT,
234 };
235
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237         [DMA_RING_CFG]          = 0x00,
238         [DMA_CTRL]              = 0x04,
239         [DMA_STATUS]            = 0x08,
240         [DMA_SCB_BURST_SIZE]    = 0x0C,
241         [DMA_ARB_CTRL]          = 0x2C,
242         [DMA_PRIORITY_0]        = 0x30,
243         [DMA_PRIORITY_1]        = 0x34,
244         [DMA_PRIORITY_2]        = 0x38,
245         [DMA_RING0_TIMEOUT]     = 0x2C,
246         [DMA_RING1_TIMEOUT]     = 0x30,
247         [DMA_RING2_TIMEOUT]     = 0x34,
248         [DMA_RING3_TIMEOUT]     = 0x38,
249         [DMA_RING4_TIMEOUT]     = 0x3c,
250         [DMA_RING5_TIMEOUT]     = 0x40,
251         [DMA_RING6_TIMEOUT]     = 0x44,
252         [DMA_RING7_TIMEOUT]     = 0x48,
253         [DMA_RING8_TIMEOUT]     = 0x4c,
254         [DMA_RING9_TIMEOUT]     = 0x50,
255         [DMA_RING10_TIMEOUT]    = 0x54,
256         [DMA_RING11_TIMEOUT]    = 0x58,
257         [DMA_RING12_TIMEOUT]    = 0x5c,
258         [DMA_RING13_TIMEOUT]    = 0x60,
259         [DMA_RING14_TIMEOUT]    = 0x64,
260         [DMA_RING15_TIMEOUT]    = 0x68,
261         [DMA_RING16_TIMEOUT]    = 0x6C,
262         [DMA_INDEX2RING_0]      = 0x70,
263         [DMA_INDEX2RING_1]      = 0x74,
264         [DMA_INDEX2RING_2]      = 0x78,
265         [DMA_INDEX2RING_3]      = 0x7C,
266         [DMA_INDEX2RING_4]      = 0x80,
267         [DMA_INDEX2RING_5]      = 0x84,
268         [DMA_INDEX2RING_6]      = 0x88,
269         [DMA_INDEX2RING_7]      = 0x8C,
270 };
271
272 static const u8 bcmgenet_dma_regs_v2[] = {
273         [DMA_RING_CFG]          = 0x00,
274         [DMA_CTRL]              = 0x04,
275         [DMA_STATUS]            = 0x08,
276         [DMA_SCB_BURST_SIZE]    = 0x0C,
277         [DMA_ARB_CTRL]          = 0x30,
278         [DMA_PRIORITY_0]        = 0x34,
279         [DMA_PRIORITY_1]        = 0x38,
280         [DMA_PRIORITY_2]        = 0x3C,
281         [DMA_RING0_TIMEOUT]     = 0x2C,
282         [DMA_RING1_TIMEOUT]     = 0x30,
283         [DMA_RING2_TIMEOUT]     = 0x34,
284         [DMA_RING3_TIMEOUT]     = 0x38,
285         [DMA_RING4_TIMEOUT]     = 0x3c,
286         [DMA_RING5_TIMEOUT]     = 0x40,
287         [DMA_RING6_TIMEOUT]     = 0x44,
288         [DMA_RING7_TIMEOUT]     = 0x48,
289         [DMA_RING8_TIMEOUT]     = 0x4c,
290         [DMA_RING9_TIMEOUT]     = 0x50,
291         [DMA_RING10_TIMEOUT]    = 0x54,
292         [DMA_RING11_TIMEOUT]    = 0x58,
293         [DMA_RING12_TIMEOUT]    = 0x5c,
294         [DMA_RING13_TIMEOUT]    = 0x60,
295         [DMA_RING14_TIMEOUT]    = 0x64,
296         [DMA_RING15_TIMEOUT]    = 0x68,
297         [DMA_RING16_TIMEOUT]    = 0x6C,
298 };
299
300 static const u8 bcmgenet_dma_regs_v1[] = {
301         [DMA_CTRL]              = 0x00,
302         [DMA_STATUS]            = 0x04,
303         [DMA_SCB_BURST_SIZE]    = 0x0C,
304         [DMA_ARB_CTRL]          = 0x30,
305         [DMA_PRIORITY_0]        = 0x34,
306         [DMA_PRIORITY_1]        = 0x38,
307         [DMA_PRIORITY_2]        = 0x3C,
308         [DMA_RING0_TIMEOUT]     = 0x2C,
309         [DMA_RING1_TIMEOUT]     = 0x30,
310         [DMA_RING2_TIMEOUT]     = 0x34,
311         [DMA_RING3_TIMEOUT]     = 0x38,
312         [DMA_RING4_TIMEOUT]     = 0x3c,
313         [DMA_RING5_TIMEOUT]     = 0x40,
314         [DMA_RING6_TIMEOUT]     = 0x44,
315         [DMA_RING7_TIMEOUT]     = 0x48,
316         [DMA_RING8_TIMEOUT]     = 0x4c,
317         [DMA_RING9_TIMEOUT]     = 0x50,
318         [DMA_RING10_TIMEOUT]    = 0x54,
319         [DMA_RING11_TIMEOUT]    = 0x58,
320         [DMA_RING12_TIMEOUT]    = 0x5c,
321         [DMA_RING13_TIMEOUT]    = 0x60,
322         [DMA_RING14_TIMEOUT]    = 0x64,
323         [DMA_RING15_TIMEOUT]    = 0x68,
324         [DMA_RING16_TIMEOUT]    = 0x6C,
325 };
326
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332         return netdev_priv(dev_get_drvdata(dev));
333 }
334
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336                                       enum dma_reg r)
337 {
338         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343                                         u32 val, enum dma_reg r)
344 {
345         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350                                       enum dma_reg r)
351 {
352         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357                                         u32 val, enum dma_reg r)
358 {
359         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368         TDMA_READ_PTR = 0,
369         RDMA_WRITE_PTR = TDMA_READ_PTR,
370         TDMA_READ_PTR_HI,
371         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372         TDMA_CONS_INDEX,
373         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374         TDMA_PROD_INDEX,
375         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376         DMA_RING_BUF_SIZE,
377         DMA_START_ADDR,
378         DMA_START_ADDR_HI,
379         DMA_END_ADDR,
380         DMA_END_ADDR_HI,
381         DMA_MBUF_DONE_THRESH,
382         TDMA_FLOW_PERIOD,
383         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384         TDMA_WRITE_PTR,
385         RDMA_READ_PTR = TDMA_WRITE_PTR,
386         TDMA_WRITE_PTR_HI,
387         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396         [TDMA_READ_PTR]                 = 0x00,
397         [TDMA_READ_PTR_HI]              = 0x04,
398         [TDMA_CONS_INDEX]               = 0x08,
399         [TDMA_PROD_INDEX]               = 0x0C,
400         [DMA_RING_BUF_SIZE]             = 0x10,
401         [DMA_START_ADDR]                = 0x14,
402         [DMA_START_ADDR_HI]             = 0x18,
403         [DMA_END_ADDR]                  = 0x1C,
404         [DMA_END_ADDR_HI]               = 0x20,
405         [DMA_MBUF_DONE_THRESH]          = 0x24,
406         [TDMA_FLOW_PERIOD]              = 0x28,
407         [TDMA_WRITE_PTR]                = 0x2C,
408         [TDMA_WRITE_PTR_HI]             = 0x30,
409 };
410
411 static const u8 genet_dma_ring_regs_v123[] = {
412         [TDMA_READ_PTR]                 = 0x00,
413         [TDMA_CONS_INDEX]               = 0x04,
414         [TDMA_PROD_INDEX]               = 0x08,
415         [DMA_RING_BUF_SIZE]             = 0x0C,
416         [DMA_START_ADDR]                = 0x10,
417         [DMA_END_ADDR]                  = 0x14,
418         [DMA_MBUF_DONE_THRESH]          = 0x18,
419         [TDMA_FLOW_PERIOD]              = 0x1C,
420         [TDMA_WRITE_PTR]                = 0x20,
421 };
422
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427                                            unsigned int ring,
428                                            enum dma_ring_reg r)
429 {
430         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431                               (DMA_RING_SIZE * ring) +
432                               genet_dma_ring_regs[r]);
433 }
434
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436                                              unsigned int ring, u32 val,
437                                              enum dma_ring_reg r)
438 {
439         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445                                            unsigned int ring,
446                                            enum dma_ring_reg r)
447 {
448         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449                               (DMA_RING_SIZE * ring) +
450                               genet_dma_ring_regs[r]);
451 }
452
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454                                              unsigned int ring, u32 val,
455                                              enum dma_ring_reg r)
456 {
457         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458                         (DMA_RING_SIZE * ring) +
459                         genet_dma_ring_regs[r]);
460 }
461
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464         u32 offset;
465         u32 reg;
466
467         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468         reg = bcmgenet_hfb_reg_readl(priv, offset);
469         reg |= (1 << (f_index % 32));
470         bcmgenet_hfb_reg_writel(priv, reg, offset);
471         reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472         reg |= RBUF_HFB_EN;
473         bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478         u32 offset, reg, reg1;
479
480         offset = HFB_FLT_ENABLE_V3PLUS;
481         reg = bcmgenet_hfb_reg_readl(priv, offset);
482         reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483         if  (f_index < 32) {
484                 reg1 &= ~(1 << (f_index % 32));
485                 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486         } else {
487                 reg &= ~(1 << (f_index % 32));
488                 bcmgenet_hfb_reg_writel(priv, reg, offset);
489         }
490         if (!reg && !reg1) {
491                 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492                 reg &= ~RBUF_HFB_EN;
493                 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494         }
495 }
496
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498                                                      u32 f_index, u32 rx_queue)
499 {
500         u32 offset;
501         u32 reg;
502
503         offset = f_index / 8;
504         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505         reg &= ~(0xF << (4 * (f_index % 8)));
506         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511                                            u32 f_index, u32 f_length)
512 {
513         u32 offset;
514         u32 reg;
515
516         offset = HFB_FLT_LEN_V3PLUS +
517                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518                  sizeof(u32);
519         reg = bcmgenet_hfb_reg_readl(priv, offset);
520         reg &= ~(0xFF << (8 * (f_index % 4)));
521         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522         bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527         while (size) {
528                 switch (*(unsigned char *)mask++) {
529                 case 0x00:
530                 case 0x0f:
531                 case 0xf0:
532                 case 0xff:
533                         size--;
534                         continue;
535                 default:
536                         return -EINVAL;
537                 }
538         }
539
540         return 0;
541 }
542
543 #define VALIDATE_MASK(x) \
544         bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547                                     u32 offset, void *val, void *mask,
548                                     size_t size)
549 {
550         u32 index, tmp;
551
552         index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553         tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555         while (size--) {
556                 if (offset++ & 1) {
557                         tmp &= ~0x300FF;
558                         tmp |= (*(unsigned char *)val++);
559                         switch ((*(unsigned char *)mask++)) {
560                         case 0xFF:
561                                 tmp |= 0x30000;
562                                 break;
563                         case 0xF0:
564                                 tmp |= 0x20000;
565                                 break;
566                         case 0x0F:
567                                 tmp |= 0x10000;
568                                 break;
569                         }
570                         bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571                         if (size)
572                                 tmp = bcmgenet_hfb_readl(priv,
573                                                          index * sizeof(u32));
574                 } else {
575                         tmp &= ~0xCFF00;
576                         tmp |= (*(unsigned char *)val++) << 8;
577                         switch ((*(unsigned char *)mask++)) {
578                         case 0xFF:
579                                 tmp |= 0xC0000;
580                                 break;
581                         case 0xF0:
582                                 tmp |= 0x80000;
583                                 break;
584                         case 0x0F:
585                                 tmp |= 0x40000;
586                                 break;
587                         }
588                         if (!size)
589                                 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590                 }
591         }
592
593         return 0;
594 }
595
596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597                                              struct bcmgenet_rxnfc_rule *rule)
598 {
599         struct ethtool_rx_flow_spec *fs = &rule->fs;
600         u32 offset = 0, f_length = 0, f;
601         u8 val_8, mask_8;
602         __be16 val_16;
603         u16 mask_16;
604         size_t size;
605
606         f = fs->location;
607         if (fs->flow_type & FLOW_MAC_EXT) {
608                 bcmgenet_hfb_insert_data(priv, f, 0,
609                                          &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610                                          sizeof(fs->h_ext.h_dest));
611         }
612
613         if (fs->flow_type & FLOW_EXT) {
614                 if (fs->m_ext.vlan_etype ||
615                     fs->m_ext.vlan_tci) {
616                         bcmgenet_hfb_insert_data(priv, f, 12,
617                                                  &fs->h_ext.vlan_etype,
618                                                  &fs->m_ext.vlan_etype,
619                                                  sizeof(fs->h_ext.vlan_etype));
620                         bcmgenet_hfb_insert_data(priv, f, 14,
621                                                  &fs->h_ext.vlan_tci,
622                                                  &fs->m_ext.vlan_tci,
623                                                  sizeof(fs->h_ext.vlan_tci));
624                         offset += VLAN_HLEN;
625                         f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626                 }
627         }
628
629         switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630         case ETHER_FLOW:
631                 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632                 bcmgenet_hfb_insert_data(priv, f, 0,
633                                          &fs->h_u.ether_spec.h_dest,
634                                          &fs->m_u.ether_spec.h_dest,
635                                          sizeof(fs->h_u.ether_spec.h_dest));
636                 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637                                          &fs->h_u.ether_spec.h_source,
638                                          &fs->m_u.ether_spec.h_source,
639                                          sizeof(fs->h_u.ether_spec.h_source));
640                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641                                          &fs->h_u.ether_spec.h_proto,
642                                          &fs->m_u.ether_spec.h_proto,
643                                          sizeof(fs->h_u.ether_spec.h_proto));
644                 break;
645         case IP_USER_FLOW:
646                 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647                 /* Specify IP Ether Type */
648                 val_16 = htons(ETH_P_IP);
649                 mask_16 = 0xFFFF;
650                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651                                          &val_16, &mask_16, sizeof(val_16));
652                 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653                                          &fs->h_u.usr_ip4_spec.tos,
654                                          &fs->m_u.usr_ip4_spec.tos,
655                                          sizeof(fs->h_u.usr_ip4_spec.tos));
656                 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657                                          &fs->h_u.usr_ip4_spec.proto,
658                                          &fs->m_u.usr_ip4_spec.proto,
659                                          sizeof(fs->h_u.usr_ip4_spec.proto));
660                 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661                                          &fs->h_u.usr_ip4_spec.ip4src,
662                                          &fs->m_u.usr_ip4_spec.ip4src,
663                                          sizeof(fs->h_u.usr_ip4_spec.ip4src));
664                 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665                                          &fs->h_u.usr_ip4_spec.ip4dst,
666                                          &fs->m_u.usr_ip4_spec.ip4dst,
667                                          sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668                 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669                         break;
670
671                 /* Only supports 20 byte IPv4 header */
672                 val_8 = 0x45;
673                 mask_8 = 0xFF;
674                 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675                                          &val_8, &mask_8,
676                                          sizeof(val_8));
677                 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678                 bcmgenet_hfb_insert_data(priv, f,
679                                          ETH_HLEN + 20 + offset,
680                                          &fs->h_u.usr_ip4_spec.l4_4_bytes,
681                                          &fs->m_u.usr_ip4_spec.l4_4_bytes,
682                                          size);
683                 f_length += DIV_ROUND_UP(size, 2);
684                 break;
685         }
686
687         bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688         if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689                 /* Ring 0 flows can be handled by the default Descriptor Ring
690                  * We'll map them to ring 0, but don't enable the filter
691                  */
692                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693                 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694         } else {
695                 /* Other Rx rings are direct mapped here */
696                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697                                                          fs->ring_cookie);
698                 bcmgenet_hfb_enable_filter(priv, f);
699                 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700         }
701 }
702
703 /* bcmgenet_hfb_clear
704  *
705  * Clear Hardware Filter Block and disable all filtering.
706  */
707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709         u32 base, i;
710
711         base = f_index * priv->hw_params->hfb_filter_size;
712         for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713                 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715
716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718         u32 i;
719
720         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721                 return;
722
723         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728                 bcmgenet_rdma_writel(priv, 0x0, i);
729
730         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731                 bcmgenet_hfb_reg_writel(priv, 0x0,
732                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734         for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735                 bcmgenet_hfb_clear_filter(priv, i);
736 }
737
738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740         int i;
741
742         INIT_LIST_HEAD(&priv->rxnfc_list);
743         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744                 return;
745
746         for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747                 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748                 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749         }
750
751         bcmgenet_hfb_clear(priv);
752 }
753
754 static int bcmgenet_begin(struct net_device *dev)
755 {
756         struct bcmgenet_priv *priv = netdev_priv(dev);
757
758         /* Turn on the clock */
759         return clk_prepare_enable(priv->clk);
760 }
761
762 static void bcmgenet_complete(struct net_device *dev)
763 {
764         struct bcmgenet_priv *priv = netdev_priv(dev);
765
766         /* Turn off the clock */
767         clk_disable_unprepare(priv->clk);
768 }
769
770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771                                        struct ethtool_link_ksettings *cmd)
772 {
773         if (!netif_running(dev))
774                 return -EINVAL;
775
776         if (!dev->phydev)
777                 return -ENODEV;
778
779         phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781         return 0;
782 }
783
784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785                                        const struct ethtool_link_ksettings *cmd)
786 {
787         if (!netif_running(dev))
788                 return -EINVAL;
789
790         if (!dev->phydev)
791                 return -ENODEV;
792
793         return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795
796 static int bcmgenet_set_features(struct net_device *dev,
797                                  netdev_features_t features)
798 {
799         struct bcmgenet_priv *priv = netdev_priv(dev);
800         u32 reg;
801         int ret;
802
803         ret = clk_prepare_enable(priv->clk);
804         if (ret)
805                 return ret;
806
807         /* Make sure we reflect the value of CRC_CMD_FWD */
808         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811         clk_disable_unprepare(priv->clk);
812
813         return ret;
814 }
815
816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818         struct bcmgenet_priv *priv = netdev_priv(dev);
819
820         return priv->msg_enable;
821 }
822
823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825         struct bcmgenet_priv *priv = netdev_priv(dev);
826
827         priv->msg_enable = level;
828 }
829
830 static int bcmgenet_get_coalesce(struct net_device *dev,
831                                  struct ethtool_coalesce *ec)
832 {
833         struct bcmgenet_priv *priv = netdev_priv(dev);
834         struct bcmgenet_rx_ring *ring;
835         unsigned int i;
836
837         ec->tx_max_coalesced_frames =
838                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
839                                          DMA_MBUF_DONE_THRESH);
840         ec->rx_max_coalesced_frames =
841                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
842                                          DMA_MBUF_DONE_THRESH);
843         ec->rx_coalesce_usecs =
844                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
845
846         for (i = 0; i < priv->hw_params->rx_queues; i++) {
847                 ring = &priv->rx_rings[i];
848                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
849         }
850         ring = &priv->rx_rings[DESC_INDEX];
851         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
852
853         return 0;
854 }
855
856 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
857                                      u32 usecs, u32 pkts)
858 {
859         struct bcmgenet_priv *priv = ring->priv;
860         unsigned int i = ring->index;
861         u32 reg;
862
863         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
864
865         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
866         reg &= ~DMA_TIMEOUT_MASK;
867         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
868         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
869 }
870
871 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
872                                           struct ethtool_coalesce *ec)
873 {
874         struct dim_cq_moder moder;
875         u32 usecs, pkts;
876
877         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
878         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
879         usecs = ring->rx_coalesce_usecs;
880         pkts = ring->rx_max_coalesced_frames;
881
882         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
883                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
884                 usecs = moder.usec;
885                 pkts = moder.pkts;
886         }
887
888         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
889         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
890 }
891
892 static int bcmgenet_set_coalesce(struct net_device *dev,
893                                  struct ethtool_coalesce *ec)
894 {
895         struct bcmgenet_priv *priv = netdev_priv(dev);
896         unsigned int i;
897
898         /* Base system clock is 125Mhz, DMA timeout is this reference clock
899          * divided by 1024, which yields roughly 8.192us, our maximum value
900          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
901          */
902         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
903             ec->tx_max_coalesced_frames == 0 ||
904             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
905             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
906                 return -EINVAL;
907
908         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
909                 return -EINVAL;
910
911         /* GENET TDMA hardware does not support a configurable timeout, but will
912          * always generate an interrupt either after MBDONE packets have been
913          * transmitted, or when the ring is empty.
914          */
915
916         /* Program all TX queues with the same values, as there is no
917          * ethtool knob to do coalescing on a per-queue basis
918          */
919         for (i = 0; i < priv->hw_params->tx_queues; i++)
920                 bcmgenet_tdma_ring_writel(priv, i,
921                                           ec->tx_max_coalesced_frames,
922                                           DMA_MBUF_DONE_THRESH);
923         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
924                                   ec->tx_max_coalesced_frames,
925                                   DMA_MBUF_DONE_THRESH);
926
927         for (i = 0; i < priv->hw_params->rx_queues; i++)
928                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
929         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
930
931         return 0;
932 }
933
934 /* standard ethtool support functions. */
935 enum bcmgenet_stat_type {
936         BCMGENET_STAT_NETDEV = -1,
937         BCMGENET_STAT_MIB_RX,
938         BCMGENET_STAT_MIB_TX,
939         BCMGENET_STAT_RUNT,
940         BCMGENET_STAT_MISC,
941         BCMGENET_STAT_SOFT,
942 };
943
944 struct bcmgenet_stats {
945         char stat_string[ETH_GSTRING_LEN];
946         int stat_sizeof;
947         int stat_offset;
948         enum bcmgenet_stat_type type;
949         /* reg offset from UMAC base for misc counters */
950         u16 reg_offset;
951 };
952
953 #define STAT_NETDEV(m) { \
954         .stat_string = __stringify(m), \
955         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
956         .stat_offset = offsetof(struct net_device_stats, m), \
957         .type = BCMGENET_STAT_NETDEV, \
958 }
959
960 #define STAT_GENET_MIB(str, m, _type) { \
961         .stat_string = str, \
962         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
963         .stat_offset = offsetof(struct bcmgenet_priv, m), \
964         .type = _type, \
965 }
966
967 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
968 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
969 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
970 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
971
972 #define STAT_GENET_MISC(str, m, offset) { \
973         .stat_string = str, \
974         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
975         .stat_offset = offsetof(struct bcmgenet_priv, m), \
976         .type = BCMGENET_STAT_MISC, \
977         .reg_offset = offset, \
978 }
979
980 #define STAT_GENET_Q(num) \
981         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
982                         tx_rings[num].packets), \
983         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
984                         tx_rings[num].bytes), \
985         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
986                         rx_rings[num].bytes),    \
987         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
988                         rx_rings[num].packets), \
989         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
990                         rx_rings[num].errors), \
991         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
992                         rx_rings[num].dropped)
993
994 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
995  * between the end of TX stats and the beginning of the RX RUNT
996  */
997 #define BCMGENET_STAT_OFFSET    0xc
998
999 /* Hardware counters must be kept in sync because the order/offset
1000  * is important here (order in structure declaration = order in hardware)
1001  */
1002 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1003         /* general stats */
1004         STAT_NETDEV(rx_packets),
1005         STAT_NETDEV(tx_packets),
1006         STAT_NETDEV(rx_bytes),
1007         STAT_NETDEV(tx_bytes),
1008         STAT_NETDEV(rx_errors),
1009         STAT_NETDEV(tx_errors),
1010         STAT_NETDEV(rx_dropped),
1011         STAT_NETDEV(tx_dropped),
1012         STAT_NETDEV(multicast),
1013         /* UniMAC RSV counters */
1014         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1015         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1016         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1017         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1018         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1019         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1020         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1021         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1022         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1023         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1024         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1025         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1026         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1027         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1028         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1029         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1030         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1031         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1032         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1033         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1034         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1035         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1036         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1037         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1038         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1039         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1040         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1041         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1042         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1043         /* UniMAC TSV counters */
1044         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1045         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1046         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1047         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1048         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1049         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1050         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1051         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1052         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1053         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1054         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1055         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1056         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1057         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1058         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1059         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1060         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1061         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1062         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1063         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1064         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1065         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1066         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1067         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1068         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1069         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1070         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1071         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1072         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1073         /* UniMAC RUNT counters */
1074         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1075         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1076         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1077         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1078         /* Misc UniMAC counters */
1079         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1080                         UMAC_RBUF_OVFL_CNT_V1),
1081         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1082                         UMAC_RBUF_ERR_CNT_V1),
1083         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1084         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1085         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1086         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1087         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1088         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1089                             mib.tx_realloc_tsb_failed),
1090         /* Per TX queues */
1091         STAT_GENET_Q(0),
1092         STAT_GENET_Q(1),
1093         STAT_GENET_Q(2),
1094         STAT_GENET_Q(3),
1095         STAT_GENET_Q(16),
1096 };
1097
1098 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
1099
1100 static void bcmgenet_get_drvinfo(struct net_device *dev,
1101                                  struct ethtool_drvinfo *info)
1102 {
1103         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1104 }
1105
1106 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1107 {
1108         switch (string_set) {
1109         case ETH_SS_STATS:
1110                 return BCMGENET_STATS_LEN;
1111         default:
1112                 return -EOPNOTSUPP;
1113         }
1114 }
1115
1116 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1117                                  u8 *data)
1118 {
1119         int i;
1120
1121         switch (stringset) {
1122         case ETH_SS_STATS:
1123                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1124                         memcpy(data + i * ETH_GSTRING_LEN,
1125                                bcmgenet_gstrings_stats[i].stat_string,
1126                                ETH_GSTRING_LEN);
1127                 }
1128                 break;
1129         }
1130 }
1131
1132 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1133 {
1134         u16 new_offset;
1135         u32 val;
1136
1137         switch (offset) {
1138         case UMAC_RBUF_OVFL_CNT_V1:
1139                 if (GENET_IS_V2(priv))
1140                         new_offset = RBUF_OVFL_CNT_V2;
1141                 else
1142                         new_offset = RBUF_OVFL_CNT_V3PLUS;
1143
1144                 val = bcmgenet_rbuf_readl(priv, new_offset);
1145                 /* clear if overflowed */
1146                 if (val == ~0)
1147                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1148                 break;
1149         case UMAC_RBUF_ERR_CNT_V1:
1150                 if (GENET_IS_V2(priv))
1151                         new_offset = RBUF_ERR_CNT_V2;
1152                 else
1153                         new_offset = RBUF_ERR_CNT_V3PLUS;
1154
1155                 val = bcmgenet_rbuf_readl(priv, new_offset);
1156                 /* clear if overflowed */
1157                 if (val == ~0)
1158                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1159                 break;
1160         default:
1161                 val = bcmgenet_umac_readl(priv, offset);
1162                 /* clear if overflowed */
1163                 if (val == ~0)
1164                         bcmgenet_umac_writel(priv, 0, offset);
1165                 break;
1166         }
1167
1168         return val;
1169 }
1170
1171 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1172 {
1173         int i, j = 0;
1174
1175         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1176                 const struct bcmgenet_stats *s;
1177                 u8 offset = 0;
1178                 u32 val = 0;
1179                 char *p;
1180
1181                 s = &bcmgenet_gstrings_stats[i];
1182                 switch (s->type) {
1183                 case BCMGENET_STAT_NETDEV:
1184                 case BCMGENET_STAT_SOFT:
1185                         continue;
1186                 case BCMGENET_STAT_RUNT:
1187                         offset += BCMGENET_STAT_OFFSET;
1188                         fallthrough;
1189                 case BCMGENET_STAT_MIB_TX:
1190                         offset += BCMGENET_STAT_OFFSET;
1191                         fallthrough;
1192                 case BCMGENET_STAT_MIB_RX:
1193                         val = bcmgenet_umac_readl(priv,
1194                                                   UMAC_MIB_START + j + offset);
1195                         offset = 0;     /* Reset Offset */
1196                         break;
1197                 case BCMGENET_STAT_MISC:
1198                         if (GENET_IS_V1(priv)) {
1199                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
1200                                 /* clear if overflowed */
1201                                 if (val == ~0)
1202                                         bcmgenet_umac_writel(priv, 0,
1203                                                              s->reg_offset);
1204                         } else {
1205                                 val = bcmgenet_update_stat_misc(priv,
1206                                                                 s->reg_offset);
1207                         }
1208                         break;
1209                 }
1210
1211                 j += s->stat_sizeof;
1212                 p = (char *)priv + s->stat_offset;
1213                 *(u32 *)p = val;
1214         }
1215 }
1216
1217 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1218                                        struct ethtool_stats *stats,
1219                                        u64 *data)
1220 {
1221         struct bcmgenet_priv *priv = netdev_priv(dev);
1222         int i;
1223
1224         if (netif_running(dev))
1225                 bcmgenet_update_mib_counters(priv);
1226
1227         dev->netdev_ops->ndo_get_stats(dev);
1228
1229         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1230                 const struct bcmgenet_stats *s;
1231                 char *p;
1232
1233                 s = &bcmgenet_gstrings_stats[i];
1234                 if (s->type == BCMGENET_STAT_NETDEV)
1235                         p = (char *)&dev->stats;
1236                 else
1237                         p = (char *)priv;
1238                 p += s->stat_offset;
1239                 if (sizeof(unsigned long) != sizeof(u32) &&
1240                     s->stat_sizeof == sizeof(unsigned long))
1241                         data[i] = *(unsigned long *)p;
1242                 else
1243                         data[i] = *(u32 *)p;
1244         }
1245 }
1246
1247 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1248 {
1249         struct bcmgenet_priv *priv = netdev_priv(dev);
1250         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1251         u32 reg;
1252
1253         if (enable && !priv->clk_eee_enabled) {
1254                 clk_prepare_enable(priv->clk_eee);
1255                 priv->clk_eee_enabled = true;
1256         }
1257
1258         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1259         if (enable)
1260                 reg |= EEE_EN;
1261         else
1262                 reg &= ~EEE_EN;
1263         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1264
1265         /* Enable EEE and switch to a 27Mhz clock automatically */
1266         reg = bcmgenet_readl(priv->base + off);
1267         if (enable)
1268                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1269         else
1270                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1271         bcmgenet_writel(reg, priv->base + off);
1272
1273         /* Do the same for thing for RBUF */
1274         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1275         if (enable)
1276                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1277         else
1278                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1279         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1280
1281         if (!enable && priv->clk_eee_enabled) {
1282                 clk_disable_unprepare(priv->clk_eee);
1283                 priv->clk_eee_enabled = false;
1284         }
1285
1286         priv->eee.eee_enabled = enable;
1287         priv->eee.eee_active = enable;
1288 }
1289
1290 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1291 {
1292         struct bcmgenet_priv *priv = netdev_priv(dev);
1293         struct ethtool_eee *p = &priv->eee;
1294
1295         if (GENET_IS_V1(priv))
1296                 return -EOPNOTSUPP;
1297
1298         if (!dev->phydev)
1299                 return -ENODEV;
1300
1301         e->eee_enabled = p->eee_enabled;
1302         e->eee_active = p->eee_active;
1303         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1304
1305         return phy_ethtool_get_eee(dev->phydev, e);
1306 }
1307
1308 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1309 {
1310         struct bcmgenet_priv *priv = netdev_priv(dev);
1311         struct ethtool_eee *p = &priv->eee;
1312         int ret = 0;
1313
1314         if (GENET_IS_V1(priv))
1315                 return -EOPNOTSUPP;
1316
1317         if (!dev->phydev)
1318                 return -ENODEV;
1319
1320         p->eee_enabled = e->eee_enabled;
1321
1322         if (!p->eee_enabled) {
1323                 bcmgenet_eee_enable_set(dev, false);
1324         } else {
1325                 ret = phy_init_eee(dev->phydev, 0);
1326                 if (ret) {
1327                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1328                         return ret;
1329                 }
1330
1331                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1332                 bcmgenet_eee_enable_set(dev, true);
1333         }
1334
1335         return phy_ethtool_set_eee(dev->phydev, e);
1336 }
1337
1338 static int bcmgenet_validate_flow(struct net_device *dev,
1339                                   struct ethtool_rxnfc *cmd)
1340 {
1341         struct ethtool_usrip4_spec *l4_mask;
1342         struct ethhdr *eth_mask;
1343
1344         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1345                 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1346                            cmd->fs.location);
1347                 return -EINVAL;
1348         }
1349
1350         switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1351         case IP_USER_FLOW:
1352                 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1353                 /* don't allow mask which isn't valid */
1354                 if (VALIDATE_MASK(l4_mask->ip4src) ||
1355                     VALIDATE_MASK(l4_mask->ip4dst) ||
1356                     VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1357                     VALIDATE_MASK(l4_mask->proto) ||
1358                     VALIDATE_MASK(l4_mask->ip_ver) ||
1359                     VALIDATE_MASK(l4_mask->tos)) {
1360                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1361                         return -EINVAL;
1362                 }
1363                 break;
1364         case ETHER_FLOW:
1365                 eth_mask = &cmd->fs.m_u.ether_spec;
1366                 /* don't allow mask which isn't valid */
1367                 if (VALIDATE_MASK(eth_mask->h_dest) ||
1368                     VALIDATE_MASK(eth_mask->h_source) ||
1369                     VALIDATE_MASK(eth_mask->h_proto)) {
1370                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1371                         return -EINVAL;
1372                 }
1373                 break;
1374         default:
1375                 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1376                            cmd->fs.flow_type);
1377                 return -EINVAL;
1378         }
1379
1380         if ((cmd->fs.flow_type & FLOW_EXT)) {
1381                 /* don't allow mask which isn't valid */
1382                 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1383                     VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1384                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1385                         return -EINVAL;
1386                 }
1387                 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1388                         netdev_err(dev, "rxnfc: user-def not supported\n");
1389                         return -EINVAL;
1390                 }
1391         }
1392
1393         if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1394                 /* don't allow mask which isn't valid */
1395                 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1396                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1397                         return -EINVAL;
1398                 }
1399         }
1400
1401         return 0;
1402 }
1403
1404 static int bcmgenet_insert_flow(struct net_device *dev,
1405                                 struct ethtool_rxnfc *cmd)
1406 {
1407         struct bcmgenet_priv *priv = netdev_priv(dev);
1408         struct bcmgenet_rxnfc_rule *loc_rule;
1409         int err;
1410
1411         if (priv->hw_params->hfb_filter_size < 128) {
1412                 netdev_err(dev, "rxnfc: Not supported by this device\n");
1413                 return -EINVAL;
1414         }
1415
1416         if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1417             cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1418                 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1419                            cmd->fs.ring_cookie);
1420                 return -EINVAL;
1421         }
1422
1423         err = bcmgenet_validate_flow(dev, cmd);
1424         if (err)
1425                 return err;
1426
1427         loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1428         if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1429                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1430         if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1431                 list_del(&loc_rule->list);
1432                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1433         }
1434         loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1435         memcpy(&loc_rule->fs, &cmd->fs,
1436                sizeof(struct ethtool_rx_flow_spec));
1437
1438         bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1439
1440         list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1441
1442         return 0;
1443 }
1444
1445 static int bcmgenet_delete_flow(struct net_device *dev,
1446                                 struct ethtool_rxnfc *cmd)
1447 {
1448         struct bcmgenet_priv *priv = netdev_priv(dev);
1449         struct bcmgenet_rxnfc_rule *rule;
1450         int err = 0;
1451
1452         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1453                 return -EINVAL;
1454
1455         rule = &priv->rxnfc_rules[cmd->fs.location];
1456         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1457                 err =  -ENOENT;
1458                 goto out;
1459         }
1460
1461         if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1462                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1463         if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1464                 list_del(&rule->list);
1465                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1466         }
1467         rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1468         memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1469
1470 out:
1471         return err;
1472 }
1473
1474 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1475 {
1476         struct bcmgenet_priv *priv = netdev_priv(dev);
1477         int err = 0;
1478
1479         switch (cmd->cmd) {
1480         case ETHTOOL_SRXCLSRLINS:
1481                 err = bcmgenet_insert_flow(dev, cmd);
1482                 break;
1483         case ETHTOOL_SRXCLSRLDEL:
1484                 err = bcmgenet_delete_flow(dev, cmd);
1485                 break;
1486         default:
1487                 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1488                             cmd->cmd);
1489                 return -EINVAL;
1490         }
1491
1492         return err;
1493 }
1494
1495 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1496                              int loc)
1497 {
1498         struct bcmgenet_priv *priv = netdev_priv(dev);
1499         struct bcmgenet_rxnfc_rule *rule;
1500         int err = 0;
1501
1502         if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1503                 return -EINVAL;
1504
1505         rule = &priv->rxnfc_rules[loc];
1506         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1507                 err = -ENOENT;
1508         else
1509                 memcpy(&cmd->fs, &rule->fs,
1510                        sizeof(struct ethtool_rx_flow_spec));
1511
1512         return err;
1513 }
1514
1515 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1516 {
1517         struct list_head *pos;
1518         int res = 0;
1519
1520         list_for_each(pos, &priv->rxnfc_list)
1521                 res++;
1522
1523         return res;
1524 }
1525
1526 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1527                               u32 *rule_locs)
1528 {
1529         struct bcmgenet_priv *priv = netdev_priv(dev);
1530         struct bcmgenet_rxnfc_rule *rule;
1531         int err = 0;
1532         int i = 0;
1533
1534         switch (cmd->cmd) {
1535         case ETHTOOL_GRXRINGS:
1536                 cmd->data = priv->hw_params->rx_queues ?: 1;
1537                 break;
1538         case ETHTOOL_GRXCLSRLCNT:
1539                 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1540                 cmd->data = MAX_NUM_OF_FS_RULES;
1541                 break;
1542         case ETHTOOL_GRXCLSRULE:
1543                 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1544                 break;
1545         case ETHTOOL_GRXCLSRLALL:
1546                 list_for_each_entry(rule, &priv->rxnfc_list, list)
1547                         if (i < cmd->rule_cnt)
1548                                 rule_locs[i++] = rule->fs.location;
1549                 cmd->rule_cnt = i;
1550                 cmd->data = MAX_NUM_OF_FS_RULES;
1551                 break;
1552         default:
1553                 err = -EOPNOTSUPP;
1554                 break;
1555         }
1556
1557         return err;
1558 }
1559
1560 /* standard ethtool support functions. */
1561 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1562         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1563                                      ETHTOOL_COALESCE_MAX_FRAMES |
1564                                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1565         .begin                  = bcmgenet_begin,
1566         .complete               = bcmgenet_complete,
1567         .get_strings            = bcmgenet_get_strings,
1568         .get_sset_count         = bcmgenet_get_sset_count,
1569         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1570         .get_drvinfo            = bcmgenet_get_drvinfo,
1571         .get_link               = ethtool_op_get_link,
1572         .get_msglevel           = bcmgenet_get_msglevel,
1573         .set_msglevel           = bcmgenet_set_msglevel,
1574         .get_wol                = bcmgenet_get_wol,
1575         .set_wol                = bcmgenet_set_wol,
1576         .get_eee                = bcmgenet_get_eee,
1577         .set_eee                = bcmgenet_set_eee,
1578         .nway_reset             = phy_ethtool_nway_reset,
1579         .get_coalesce           = bcmgenet_get_coalesce,
1580         .set_coalesce           = bcmgenet_set_coalesce,
1581         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1582         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1583         .get_ts_info            = ethtool_op_get_ts_info,
1584         .get_rxnfc              = bcmgenet_get_rxnfc,
1585         .set_rxnfc              = bcmgenet_set_rxnfc,
1586 };
1587
1588 /* Power down the unimac, based on mode. */
1589 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1590                                 enum bcmgenet_power_mode mode)
1591 {
1592         int ret = 0;
1593         u32 reg;
1594
1595         switch (mode) {
1596         case GENET_POWER_CABLE_SENSE:
1597                 phy_detach(priv->dev->phydev);
1598                 break;
1599
1600         case GENET_POWER_WOL_MAGIC:
1601                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1602                 break;
1603
1604         case GENET_POWER_PASSIVE:
1605                 /* Power down LED */
1606                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1607                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1608                         if (GENET_IS_V5(priv))
1609                                 reg |= EXT_PWR_DOWN_PHY_EN |
1610                                        EXT_PWR_DOWN_PHY_RD |
1611                                        EXT_PWR_DOWN_PHY_SD |
1612                                        EXT_PWR_DOWN_PHY_RX |
1613                                        EXT_PWR_DOWN_PHY_TX |
1614                                        EXT_IDDQ_GLBL_PWR;
1615                         else
1616                                 reg |= EXT_PWR_DOWN_PHY;
1617
1618                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1619                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1620
1621                         bcmgenet_phy_power_set(priv->dev, false);
1622                 }
1623                 break;
1624         default:
1625                 break;
1626         }
1627
1628         return ret;
1629 }
1630
1631 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1632                               enum bcmgenet_power_mode mode)
1633 {
1634         u32 reg;
1635
1636         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1637                 return;
1638
1639         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1640
1641         switch (mode) {
1642         case GENET_POWER_PASSIVE:
1643                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1644                          EXT_ENERGY_DET_MASK);
1645                 if (GENET_IS_V5(priv)) {
1646                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1647                                  EXT_PWR_DOWN_PHY_RD |
1648                                  EXT_PWR_DOWN_PHY_SD |
1649                                  EXT_PWR_DOWN_PHY_RX |
1650                                  EXT_PWR_DOWN_PHY_TX |
1651                                  EXT_IDDQ_GLBL_PWR);
1652                         reg |=   EXT_PHY_RESET;
1653                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1654                         mdelay(1);
1655
1656                         reg &=  ~EXT_PHY_RESET;
1657                 } else {
1658                         reg &= ~EXT_PWR_DOWN_PHY;
1659                         reg |= EXT_PWR_DN_EN_LD;
1660                 }
1661                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1662                 bcmgenet_phy_power_set(priv->dev, true);
1663                 break;
1664
1665         case GENET_POWER_CABLE_SENSE:
1666                 /* enable APD */
1667                 if (!GENET_IS_V5(priv)) {
1668                         reg |= EXT_PWR_DN_EN_LD;
1669                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1670                 }
1671                 break;
1672         case GENET_POWER_WOL_MAGIC:
1673                 bcmgenet_wol_power_up_cfg(priv, mode);
1674                 return;
1675         default:
1676                 break;
1677         }
1678 }
1679
1680 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1681                                          struct bcmgenet_tx_ring *ring)
1682 {
1683         struct enet_cb *tx_cb_ptr;
1684
1685         tx_cb_ptr = ring->cbs;
1686         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1687
1688         /* Advancing local write pointer */
1689         if (ring->write_ptr == ring->end_ptr)
1690                 ring->write_ptr = ring->cb_ptr;
1691         else
1692                 ring->write_ptr++;
1693
1694         return tx_cb_ptr;
1695 }
1696
1697 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1698                                          struct bcmgenet_tx_ring *ring)
1699 {
1700         struct enet_cb *tx_cb_ptr;
1701
1702         tx_cb_ptr = ring->cbs;
1703         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1704
1705         /* Rewinding local write pointer */
1706         if (ring->write_ptr == ring->cb_ptr)
1707                 ring->write_ptr = ring->end_ptr;
1708         else
1709                 ring->write_ptr--;
1710
1711         return tx_cb_ptr;
1712 }
1713
1714 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1715 {
1716         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1717                                  INTRL2_CPU_MASK_SET);
1718 }
1719
1720 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1721 {
1722         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1723                                  INTRL2_CPU_MASK_CLEAR);
1724 }
1725
1726 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1727 {
1728         bcmgenet_intrl2_1_writel(ring->priv,
1729                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1730                                  INTRL2_CPU_MASK_SET);
1731 }
1732
1733 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1734 {
1735         bcmgenet_intrl2_1_writel(ring->priv,
1736                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1737                                  INTRL2_CPU_MASK_CLEAR);
1738 }
1739
1740 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1741 {
1742         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1743                                  INTRL2_CPU_MASK_SET);
1744 }
1745
1746 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1747 {
1748         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1749                                  INTRL2_CPU_MASK_CLEAR);
1750 }
1751
1752 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1753 {
1754         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1755                                  INTRL2_CPU_MASK_CLEAR);
1756 }
1757
1758 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1759 {
1760         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1761                                  INTRL2_CPU_MASK_SET);
1762 }
1763
1764 /* Simple helper to free a transmit control block's resources
1765  * Returns an skb when the last transmit control block associated with the
1766  * skb is freed.  The skb should be freed by the caller if necessary.
1767  */
1768 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1769                                            struct enet_cb *cb)
1770 {
1771         struct sk_buff *skb;
1772
1773         skb = cb->skb;
1774
1775         if (skb) {
1776                 cb->skb = NULL;
1777                 if (cb == GENET_CB(skb)->first_cb)
1778                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1779                                          dma_unmap_len(cb, dma_len),
1780                                          DMA_TO_DEVICE);
1781                 else
1782                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1783                                        dma_unmap_len(cb, dma_len),
1784                                        DMA_TO_DEVICE);
1785                 dma_unmap_addr_set(cb, dma_addr, 0);
1786
1787                 if (cb == GENET_CB(skb)->last_cb)
1788                         return skb;
1789
1790         } else if (dma_unmap_addr(cb, dma_addr)) {
1791                 dma_unmap_page(dev,
1792                                dma_unmap_addr(cb, dma_addr),
1793                                dma_unmap_len(cb, dma_len),
1794                                DMA_TO_DEVICE);
1795                 dma_unmap_addr_set(cb, dma_addr, 0);
1796         }
1797
1798         return NULL;
1799 }
1800
1801 /* Simple helper to free a receive control block's resources */
1802 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1803                                            struct enet_cb *cb)
1804 {
1805         struct sk_buff *skb;
1806
1807         skb = cb->skb;
1808         cb->skb = NULL;
1809
1810         if (dma_unmap_addr(cb, dma_addr)) {
1811                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1812                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1813                 dma_unmap_addr_set(cb, dma_addr, 0);
1814         }
1815
1816         return skb;
1817 }
1818
1819 /* Unlocked version of the reclaim routine */
1820 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1821                                           struct bcmgenet_tx_ring *ring)
1822 {
1823         struct bcmgenet_priv *priv = netdev_priv(dev);
1824         unsigned int txbds_processed = 0;
1825         unsigned int bytes_compl = 0;
1826         unsigned int pkts_compl = 0;
1827         unsigned int txbds_ready;
1828         unsigned int c_index;
1829         struct sk_buff *skb;
1830
1831         /* Clear status before servicing to reduce spurious interrupts */
1832         if (ring->index == DESC_INDEX)
1833                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1834                                          INTRL2_CPU_CLEAR);
1835         else
1836                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1837                                          INTRL2_CPU_CLEAR);
1838
1839         /* Compute how many buffers are transmitted since last xmit call */
1840         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1841                 & DMA_C_INDEX_MASK;
1842         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1843
1844         netif_dbg(priv, tx_done, dev,
1845                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1846                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1847
1848         /* Reclaim transmitted buffers */
1849         while (txbds_processed < txbds_ready) {
1850                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1851                                           &priv->tx_cbs[ring->clean_ptr]);
1852                 if (skb) {
1853                         pkts_compl++;
1854                         bytes_compl += GENET_CB(skb)->bytes_sent;
1855                         dev_consume_skb_any(skb);
1856                 }
1857
1858                 txbds_processed++;
1859                 if (likely(ring->clean_ptr < ring->end_ptr))
1860                         ring->clean_ptr++;
1861                 else
1862                         ring->clean_ptr = ring->cb_ptr;
1863         }
1864
1865         ring->free_bds += txbds_processed;
1866         ring->c_index = c_index;
1867
1868         ring->packets += pkts_compl;
1869         ring->bytes += bytes_compl;
1870
1871         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1872                                   pkts_compl, bytes_compl);
1873
1874         return txbds_processed;
1875 }
1876
1877 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1878                                 struct bcmgenet_tx_ring *ring)
1879 {
1880         unsigned int released;
1881
1882         spin_lock_bh(&ring->lock);
1883         released = __bcmgenet_tx_reclaim(dev, ring);
1884         spin_unlock_bh(&ring->lock);
1885
1886         return released;
1887 }
1888
1889 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1890 {
1891         struct bcmgenet_tx_ring *ring =
1892                 container_of(napi, struct bcmgenet_tx_ring, napi);
1893         unsigned int work_done = 0;
1894         struct netdev_queue *txq;
1895
1896         spin_lock(&ring->lock);
1897         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1898         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1899                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1900                 netif_tx_wake_queue(txq);
1901         }
1902         spin_unlock(&ring->lock);
1903
1904         if (work_done == 0) {
1905                 napi_complete(napi);
1906                 ring->int_enable(ring);
1907
1908                 return 0;
1909         }
1910
1911         return budget;
1912 }
1913
1914 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1915 {
1916         struct bcmgenet_priv *priv = netdev_priv(dev);
1917         int i;
1918
1919         if (netif_is_multiqueue(dev)) {
1920                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1921                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1922         }
1923
1924         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1925 }
1926
1927 /* Reallocate the SKB to put enough headroom in front of it and insert
1928  * the transmit checksum offsets in the descriptors
1929  */
1930 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1931                                         struct sk_buff *skb)
1932 {
1933         struct bcmgenet_priv *priv = netdev_priv(dev);
1934         struct status_64 *status = NULL;
1935         struct sk_buff *new_skb;
1936         u16 offset;
1937         u8 ip_proto;
1938         __be16 ip_ver;
1939         u32 tx_csum_info;
1940
1941         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1942                 /* If 64 byte status block enabled, must make sure skb has
1943                  * enough headroom for us to insert 64B status block.
1944                  */
1945                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1946                 if (!new_skb) {
1947                         dev_kfree_skb_any(skb);
1948                         priv->mib.tx_realloc_tsb_failed++;
1949                         dev->stats.tx_dropped++;
1950                         return NULL;
1951                 }
1952                 dev_consume_skb_any(skb);
1953                 skb = new_skb;
1954                 priv->mib.tx_realloc_tsb++;
1955         }
1956
1957         skb_push(skb, sizeof(*status));
1958         status = (struct status_64 *)skb->data;
1959
1960         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1961                 ip_ver = skb->protocol;
1962                 switch (ip_ver) {
1963                 case htons(ETH_P_IP):
1964                         ip_proto = ip_hdr(skb)->protocol;
1965                         break;
1966                 case htons(ETH_P_IPV6):
1967                         ip_proto = ipv6_hdr(skb)->nexthdr;
1968                         break;
1969                 default:
1970                         /* don't use UDP flag */
1971                         ip_proto = 0;
1972                         break;
1973                 }
1974
1975                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1976                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1977                                 (offset + skb->csum_offset) |
1978                                 STATUS_TX_CSUM_LV;
1979
1980                 /* Set the special UDP flag for UDP */
1981                 if (ip_proto == IPPROTO_UDP)
1982                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1983
1984                 status->tx_csum_info = tx_csum_info;
1985         }
1986
1987         return skb;
1988 }
1989
1990 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1991 {
1992         struct bcmgenet_priv *priv = netdev_priv(dev);
1993         struct device *kdev = &priv->pdev->dev;
1994         struct bcmgenet_tx_ring *ring = NULL;
1995         struct enet_cb *tx_cb_ptr;
1996         struct netdev_queue *txq;
1997         int nr_frags, index;
1998         dma_addr_t mapping;
1999         unsigned int size;
2000         skb_frag_t *frag;
2001         u32 len_stat;
2002         int ret;
2003         int i;
2004
2005         index = skb_get_queue_mapping(skb);
2006         /* Mapping strategy:
2007          * queue_mapping = 0, unclassified, packet xmited through ring16
2008          * queue_mapping = 1, goes to ring 0. (highest priority queue
2009          * queue_mapping = 2, goes to ring 1.
2010          * queue_mapping = 3, goes to ring 2.
2011          * queue_mapping = 4, goes to ring 3.
2012          */
2013         if (index == 0)
2014                 index = DESC_INDEX;
2015         else
2016                 index -= 1;
2017
2018         ring = &priv->tx_rings[index];
2019         txq = netdev_get_tx_queue(dev, ring->queue);
2020
2021         nr_frags = skb_shinfo(skb)->nr_frags;
2022
2023         spin_lock(&ring->lock);
2024         if (ring->free_bds <= (nr_frags + 1)) {
2025                 if (!netif_tx_queue_stopped(txq)) {
2026                         netif_tx_stop_queue(txq);
2027                         netdev_err(dev,
2028                                    "%s: tx ring %d full when queue %d awake\n",
2029                                    __func__, index, ring->queue);
2030                 }
2031                 ret = NETDEV_TX_BUSY;
2032                 goto out;
2033         }
2034
2035         /* Retain how many bytes will be sent on the wire, without TSB inserted
2036          * by transmit checksum offload
2037          */
2038         GENET_CB(skb)->bytes_sent = skb->len;
2039
2040         /* add the Transmit Status Block */
2041         skb = bcmgenet_add_tsb(dev, skb);
2042         if (!skb) {
2043                 ret = NETDEV_TX_OK;
2044                 goto out;
2045         }
2046
2047         for (i = 0; i <= nr_frags; i++) {
2048                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2049
2050                 BUG_ON(!tx_cb_ptr);
2051
2052                 if (!i) {
2053                         /* Transmit single SKB or head of fragment list */
2054                         GENET_CB(skb)->first_cb = tx_cb_ptr;
2055                         size = skb_headlen(skb);
2056                         mapping = dma_map_single(kdev, skb->data, size,
2057                                                  DMA_TO_DEVICE);
2058                 } else {
2059                         /* xmit fragment */
2060                         frag = &skb_shinfo(skb)->frags[i - 1];
2061                         size = skb_frag_size(frag);
2062                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
2063                                                    DMA_TO_DEVICE);
2064                 }
2065
2066                 ret = dma_mapping_error(kdev, mapping);
2067                 if (ret) {
2068                         priv->mib.tx_dma_failed++;
2069                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2070                         ret = NETDEV_TX_OK;
2071                         goto out_unmap_frags;
2072                 }
2073                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2074                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2075
2076                 tx_cb_ptr->skb = skb;
2077
2078                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2079                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2080
2081                 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2082                  * will need to restore software padding of "runt" packets
2083                  */
2084                 if (!i) {
2085                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2086                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2087                                 len_stat |= DMA_TX_DO_CSUM;
2088                 }
2089                 if (i == nr_frags)
2090                         len_stat |= DMA_EOP;
2091
2092                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2093         }
2094
2095         GENET_CB(skb)->last_cb = tx_cb_ptr;
2096         skb_tx_timestamp(skb);
2097
2098         /* Decrement total BD count and advance our write pointer */
2099         ring->free_bds -= nr_frags + 1;
2100         ring->prod_index += nr_frags + 1;
2101         ring->prod_index &= DMA_P_INDEX_MASK;
2102
2103         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2104
2105         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2106                 netif_tx_stop_queue(txq);
2107
2108         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2109                 /* Packets are ready, update producer index */
2110                 bcmgenet_tdma_ring_writel(priv, ring->index,
2111                                           ring->prod_index, TDMA_PROD_INDEX);
2112 out:
2113         spin_unlock(&ring->lock);
2114
2115         return ret;
2116
2117 out_unmap_frags:
2118         /* Back up for failed control block mapping */
2119         bcmgenet_put_txcb(priv, ring);
2120
2121         /* Unmap successfully mapped control blocks */
2122         while (i-- > 0) {
2123                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2124                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2125         }
2126
2127         dev_kfree_skb(skb);
2128         goto out;
2129 }
2130
2131 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2132                                           struct enet_cb *cb)
2133 {
2134         struct device *kdev = &priv->pdev->dev;
2135         struct sk_buff *skb;
2136         struct sk_buff *rx_skb;
2137         dma_addr_t mapping;
2138
2139         /* Allocate a new Rx skb */
2140         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2141                                  GFP_ATOMIC | __GFP_NOWARN);
2142         if (!skb) {
2143                 priv->mib.alloc_rx_buff_failed++;
2144                 netif_err(priv, rx_err, priv->dev,
2145                           "%s: Rx skb allocation failed\n", __func__);
2146                 return NULL;
2147         }
2148
2149         /* DMA-map the new Rx skb */
2150         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2151                                  DMA_FROM_DEVICE);
2152         if (dma_mapping_error(kdev, mapping)) {
2153                 priv->mib.rx_dma_failed++;
2154                 dev_kfree_skb_any(skb);
2155                 netif_err(priv, rx_err, priv->dev,
2156                           "%s: Rx skb DMA mapping failed\n", __func__);
2157                 return NULL;
2158         }
2159
2160         /* Grab the current Rx skb from the ring and DMA-unmap it */
2161         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2162
2163         /* Put the new Rx skb on the ring */
2164         cb->skb = skb;
2165         dma_unmap_addr_set(cb, dma_addr, mapping);
2166         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2167         dmadesc_set_addr(priv, cb->bd_addr, mapping);
2168
2169         /* Return the current Rx skb to caller */
2170         return rx_skb;
2171 }
2172
2173 /* bcmgenet_desc_rx - descriptor based rx process.
2174  * this could be called from bottom half, or from NAPI polling method.
2175  */
2176 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2177                                      unsigned int budget)
2178 {
2179         struct bcmgenet_priv *priv = ring->priv;
2180         struct net_device *dev = priv->dev;
2181         struct enet_cb *cb;
2182         struct sk_buff *skb;
2183         u32 dma_length_status;
2184         unsigned long dma_flag;
2185         int len;
2186         unsigned int rxpktprocessed = 0, rxpkttoprocess;
2187         unsigned int bytes_processed = 0;
2188         unsigned int p_index, mask;
2189         unsigned int discards;
2190
2191         /* Clear status before servicing to reduce spurious interrupts */
2192         if (ring->index == DESC_INDEX) {
2193                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2194                                          INTRL2_CPU_CLEAR);
2195         } else {
2196                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2197                 bcmgenet_intrl2_1_writel(priv,
2198                                          mask,
2199                                          INTRL2_CPU_CLEAR);
2200         }
2201
2202         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2203
2204         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2205                    DMA_P_INDEX_DISCARD_CNT_MASK;
2206         if (discards > ring->old_discards) {
2207                 discards = discards - ring->old_discards;
2208                 ring->errors += discards;
2209                 ring->old_discards += discards;
2210
2211                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2212                 if (ring->old_discards >= 0xC000) {
2213                         ring->old_discards = 0;
2214                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2215                                                   RDMA_PROD_INDEX);
2216                 }
2217         }
2218
2219         p_index &= DMA_P_INDEX_MASK;
2220         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2221
2222         netif_dbg(priv, rx_status, dev,
2223                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2224
2225         while ((rxpktprocessed < rxpkttoprocess) &&
2226                (rxpktprocessed < budget)) {
2227                 struct status_64 *status;
2228                 __be16 rx_csum;
2229
2230                 cb = &priv->rx_cbs[ring->read_ptr];
2231                 skb = bcmgenet_rx_refill(priv, cb);
2232
2233                 if (unlikely(!skb)) {
2234                         ring->dropped++;
2235                         goto next;
2236                 }
2237
2238                 status = (struct status_64 *)skb->data;
2239                 dma_length_status = status->length_status;
2240                 if (dev->features & NETIF_F_RXCSUM) {
2241                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2242                         skb->csum = (__force __wsum)ntohs(rx_csum);
2243                         skb->ip_summed = CHECKSUM_COMPLETE;
2244                 }
2245
2246                 /* DMA flags and length are still valid no matter how
2247                  * we got the Receive Status Vector (64B RSB or register)
2248                  */
2249                 dma_flag = dma_length_status & 0xffff;
2250                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2251
2252                 netif_dbg(priv, rx_status, dev,
2253                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2254                           __func__, p_index, ring->c_index,
2255                           ring->read_ptr, dma_length_status);
2256
2257                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2258                         netif_err(priv, rx_status, dev,
2259                                   "dropping fragmented packet!\n");
2260                         ring->errors++;
2261                         dev_kfree_skb_any(skb);
2262                         goto next;
2263                 }
2264
2265                 /* report errors */
2266                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2267                                                 DMA_RX_OV |
2268                                                 DMA_RX_NO |
2269                                                 DMA_RX_LG |
2270                                                 DMA_RX_RXER))) {
2271                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2272                                   (unsigned int)dma_flag);
2273                         if (dma_flag & DMA_RX_CRC_ERROR)
2274                                 dev->stats.rx_crc_errors++;
2275                         if (dma_flag & DMA_RX_OV)
2276                                 dev->stats.rx_over_errors++;
2277                         if (dma_flag & DMA_RX_NO)
2278                                 dev->stats.rx_frame_errors++;
2279                         if (dma_flag & DMA_RX_LG)
2280                                 dev->stats.rx_length_errors++;
2281                         dev->stats.rx_errors++;
2282                         dev_kfree_skb_any(skb);
2283                         goto next;
2284                 } /* error packet */
2285
2286                 skb_put(skb, len);
2287
2288                 /* remove RSB and hardware 2bytes added for IP alignment */
2289                 skb_pull(skb, 66);
2290                 len -= 66;
2291
2292                 if (priv->crc_fwd_en) {
2293                         skb_trim(skb, len - ETH_FCS_LEN);
2294                         len -= ETH_FCS_LEN;
2295                 }
2296
2297                 bytes_processed += len;
2298
2299                 /*Finish setting up the received SKB and send it to the kernel*/
2300                 skb->protocol = eth_type_trans(skb, priv->dev);
2301                 ring->packets++;
2302                 ring->bytes += len;
2303                 if (dma_flag & DMA_RX_MULT)
2304                         dev->stats.multicast++;
2305
2306                 /* Notify kernel */
2307                 napi_gro_receive(&ring->napi, skb);
2308                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2309
2310 next:
2311                 rxpktprocessed++;
2312                 if (likely(ring->read_ptr < ring->end_ptr))
2313                         ring->read_ptr++;
2314                 else
2315                         ring->read_ptr = ring->cb_ptr;
2316
2317                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2318                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2319         }
2320
2321         ring->dim.bytes = bytes_processed;
2322         ring->dim.packets = rxpktprocessed;
2323
2324         return rxpktprocessed;
2325 }
2326
2327 /* Rx NAPI polling method */
2328 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2329 {
2330         struct bcmgenet_rx_ring *ring = container_of(napi,
2331                         struct bcmgenet_rx_ring, napi);
2332         struct dim_sample dim_sample = {};
2333         unsigned int work_done;
2334
2335         work_done = bcmgenet_desc_rx(ring, budget);
2336
2337         if (work_done < budget) {
2338                 napi_complete_done(napi, work_done);
2339                 ring->int_enable(ring);
2340         }
2341
2342         if (ring->dim.use_dim) {
2343                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2344                                   ring->dim.bytes, &dim_sample);
2345                 net_dim(&ring->dim.dim, dim_sample);
2346         }
2347
2348         return work_done;
2349 }
2350
2351 static void bcmgenet_dim_work(struct work_struct *work)
2352 {
2353         struct dim *dim = container_of(work, struct dim, work);
2354         struct bcmgenet_net_dim *ndim =
2355                         container_of(dim, struct bcmgenet_net_dim, dim);
2356         struct bcmgenet_rx_ring *ring =
2357                         container_of(ndim, struct bcmgenet_rx_ring, dim);
2358         struct dim_cq_moder cur_profile =
2359                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2360
2361         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2362         dim->state = DIM_START_MEASURE;
2363 }
2364
2365 /* Assign skb to RX DMA descriptor. */
2366 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2367                                      struct bcmgenet_rx_ring *ring)
2368 {
2369         struct enet_cb *cb;
2370         struct sk_buff *skb;
2371         int i;
2372
2373         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2374
2375         /* loop here for each buffer needing assign */
2376         for (i = 0; i < ring->size; i++) {
2377                 cb = ring->cbs + i;
2378                 skb = bcmgenet_rx_refill(priv, cb);
2379                 if (skb)
2380                         dev_consume_skb_any(skb);
2381                 if (!cb->skb)
2382                         return -ENOMEM;
2383         }
2384
2385         return 0;
2386 }
2387
2388 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2389 {
2390         struct sk_buff *skb;
2391         struct enet_cb *cb;
2392         int i;
2393
2394         for (i = 0; i < priv->num_rx_bds; i++) {
2395                 cb = &priv->rx_cbs[i];
2396
2397                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2398                 if (skb)
2399                         dev_consume_skb_any(skb);
2400         }
2401 }
2402
2403 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2404 {
2405         u32 reg;
2406
2407         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2408         if (reg & CMD_SW_RESET)
2409                 return;
2410         if (enable)
2411                 reg |= mask;
2412         else
2413                 reg &= ~mask;
2414         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2415
2416         /* UniMAC stops on a packet boundary, wait for a full-size packet
2417          * to be processed
2418          */
2419         if (enable == 0)
2420                 usleep_range(1000, 2000);
2421 }
2422
2423 static void reset_umac(struct bcmgenet_priv *priv)
2424 {
2425         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2426         bcmgenet_rbuf_ctrl_set(priv, 0);
2427         udelay(10);
2428
2429         /* issue soft reset and disable MAC while updating its registers */
2430         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2431         udelay(2);
2432 }
2433
2434 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2435 {
2436         /* Mask all interrupts.*/
2437         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2438         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2439         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2440         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2441 }
2442
2443 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2444 {
2445         u32 int0_enable = 0;
2446
2447         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2448          * and MoCA PHY
2449          */
2450         if (priv->internal_phy) {
2451                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2452                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2453                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2454         } else if (priv->ext_phy) {
2455                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2456         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2457                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2458                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2459         }
2460         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2461 }
2462
2463 static void init_umac(struct bcmgenet_priv *priv)
2464 {
2465         struct device *kdev = &priv->pdev->dev;
2466         u32 reg;
2467         u32 int0_enable = 0;
2468
2469         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2470
2471         reset_umac(priv);
2472
2473         /* clear tx/rx counter */
2474         bcmgenet_umac_writel(priv,
2475                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2476                              UMAC_MIB_CTRL);
2477         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2478
2479         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2480
2481         /* init tx registers, enable TSB */
2482         reg = bcmgenet_tbuf_ctrl_get(priv);
2483         reg |= TBUF_64B_EN;
2484         bcmgenet_tbuf_ctrl_set(priv, reg);
2485
2486         /* init rx registers, enable ip header optimization and RSB */
2487         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2488         reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2489         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2490
2491         /* enable rx checksumming */
2492         reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2493         reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2494         /* If UniMAC forwards CRC, we need to skip over it to get
2495          * a valid CHK bit to be set in the per-packet status word
2496          */
2497         if (priv->crc_fwd_en)
2498                 reg |= RBUF_SKIP_FCS;
2499         else
2500                 reg &= ~RBUF_SKIP_FCS;
2501         bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2502
2503         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2504                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2505
2506         bcmgenet_intr_disable(priv);
2507
2508         /* Configure backpressure vectors for MoCA */
2509         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2510                 reg = bcmgenet_bp_mc_get(priv);
2511                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2512
2513                 /* bp_mask: back pressure mask */
2514                 if (netif_is_multiqueue(priv->dev))
2515                         reg |= priv->hw_params->bp_in_mask;
2516                 else
2517                         reg &= ~priv->hw_params->bp_in_mask;
2518                 bcmgenet_bp_mc_set(priv, reg);
2519         }
2520
2521         /* Enable MDIO interrupts on GENET v3+ */
2522         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2523                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2524
2525         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2526
2527         dev_dbg(kdev, "done init umac\n");
2528 }
2529
2530 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2531                               void (*cb)(struct work_struct *work))
2532 {
2533         struct bcmgenet_net_dim *dim = &ring->dim;
2534
2535         INIT_WORK(&dim->dim.work, cb);
2536         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2537         dim->event_ctr = 0;
2538         dim->packets = 0;
2539         dim->bytes = 0;
2540 }
2541
2542 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2543 {
2544         struct bcmgenet_net_dim *dim = &ring->dim;
2545         struct dim_cq_moder moder;
2546         u32 usecs, pkts;
2547
2548         usecs = ring->rx_coalesce_usecs;
2549         pkts = ring->rx_max_coalesced_frames;
2550
2551         /* If DIM was enabled, re-apply default parameters */
2552         if (dim->use_dim) {
2553                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2554                 usecs = moder.usec;
2555                 pkts = moder.pkts;
2556         }
2557
2558         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2559 }
2560
2561 /* Initialize a Tx ring along with corresponding hardware registers */
2562 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2563                                   unsigned int index, unsigned int size,
2564                                   unsigned int start_ptr, unsigned int end_ptr)
2565 {
2566         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2567         u32 words_per_bd = WORDS_PER_BD(priv);
2568         u32 flow_period_val = 0;
2569
2570         spin_lock_init(&ring->lock);
2571         ring->priv = priv;
2572         ring->index = index;
2573         if (index == DESC_INDEX) {
2574                 ring->queue = 0;
2575                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2576                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2577         } else {
2578                 ring->queue = index + 1;
2579                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2580                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2581         }
2582         ring->cbs = priv->tx_cbs + start_ptr;
2583         ring->size = size;
2584         ring->clean_ptr = start_ptr;
2585         ring->c_index = 0;
2586         ring->free_bds = size;
2587         ring->write_ptr = start_ptr;
2588         ring->cb_ptr = start_ptr;
2589         ring->end_ptr = end_ptr - 1;
2590         ring->prod_index = 0;
2591
2592         /* Set flow period for ring != 16 */
2593         if (index != DESC_INDEX)
2594                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2595
2596         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2597         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2598         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2599         /* Disable rate control for now */
2600         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2601                                   TDMA_FLOW_PERIOD);
2602         bcmgenet_tdma_ring_writel(priv, index,
2603                                   ((size << DMA_RING_SIZE_SHIFT) |
2604                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2605
2606         /* Set start and end address, read and write pointers */
2607         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2608                                   DMA_START_ADDR);
2609         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2610                                   TDMA_READ_PTR);
2611         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2612                                   TDMA_WRITE_PTR);
2613         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2614                                   DMA_END_ADDR);
2615
2616         /* Initialize Tx NAPI */
2617         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2618                           NAPI_POLL_WEIGHT);
2619 }
2620
2621 /* Initialize a RDMA ring */
2622 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2623                                  unsigned int index, unsigned int size,
2624                                  unsigned int start_ptr, unsigned int end_ptr)
2625 {
2626         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2627         u32 words_per_bd = WORDS_PER_BD(priv);
2628         int ret;
2629
2630         ring->priv = priv;
2631         ring->index = index;
2632         if (index == DESC_INDEX) {
2633                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2634                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2635         } else {
2636                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2637                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2638         }
2639         ring->cbs = priv->rx_cbs + start_ptr;
2640         ring->size = size;
2641         ring->c_index = 0;
2642         ring->read_ptr = start_ptr;
2643         ring->cb_ptr = start_ptr;
2644         ring->end_ptr = end_ptr - 1;
2645
2646         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2647         if (ret)
2648                 return ret;
2649
2650         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2651         bcmgenet_init_rx_coalesce(ring);
2652
2653         /* Initialize Rx NAPI */
2654         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2655                        NAPI_POLL_WEIGHT);
2656
2657         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2658         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2659         bcmgenet_rdma_ring_writel(priv, index,
2660                                   ((size << DMA_RING_SIZE_SHIFT) |
2661                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2662         bcmgenet_rdma_ring_writel(priv, index,
2663                                   (DMA_FC_THRESH_LO <<
2664                                    DMA_XOFF_THRESHOLD_SHIFT) |
2665                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2666
2667         /* Set start and end address, read and write pointers */
2668         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2669                                   DMA_START_ADDR);
2670         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2671                                   RDMA_READ_PTR);
2672         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673                                   RDMA_WRITE_PTR);
2674         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2675                                   DMA_END_ADDR);
2676
2677         return ret;
2678 }
2679
2680 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2681 {
2682         unsigned int i;
2683         struct bcmgenet_tx_ring *ring;
2684
2685         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2686                 ring = &priv->tx_rings[i];
2687                 napi_enable(&ring->napi);
2688                 ring->int_enable(ring);
2689         }
2690
2691         ring = &priv->tx_rings[DESC_INDEX];
2692         napi_enable(&ring->napi);
2693         ring->int_enable(ring);
2694 }
2695
2696 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2697 {
2698         unsigned int i;
2699         struct bcmgenet_tx_ring *ring;
2700
2701         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2702                 ring = &priv->tx_rings[i];
2703                 napi_disable(&ring->napi);
2704         }
2705
2706         ring = &priv->tx_rings[DESC_INDEX];
2707         napi_disable(&ring->napi);
2708 }
2709
2710 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2711 {
2712         unsigned int i;
2713         struct bcmgenet_tx_ring *ring;
2714
2715         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2716                 ring = &priv->tx_rings[i];
2717                 netif_napi_del(&ring->napi);
2718         }
2719
2720         ring = &priv->tx_rings[DESC_INDEX];
2721         netif_napi_del(&ring->napi);
2722 }
2723
2724 /* Initialize Tx queues
2725  *
2726  * Queues 0-3 are priority-based, each one has 32 descriptors,
2727  * with queue 0 being the highest priority queue.
2728  *
2729  * Queue 16 is the default Tx queue with
2730  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2731  *
2732  * The transmit control block pool is then partitioned as follows:
2733  * - Tx queue 0 uses tx_cbs[0..31]
2734  * - Tx queue 1 uses tx_cbs[32..63]
2735  * - Tx queue 2 uses tx_cbs[64..95]
2736  * - Tx queue 3 uses tx_cbs[96..127]
2737  * - Tx queue 16 uses tx_cbs[128..255]
2738  */
2739 static void bcmgenet_init_tx_queues(struct net_device *dev)
2740 {
2741         struct bcmgenet_priv *priv = netdev_priv(dev);
2742         u32 i, dma_enable;
2743         u32 dma_ctrl, ring_cfg;
2744         u32 dma_priority[3] = {0, 0, 0};
2745
2746         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2747         dma_enable = dma_ctrl & DMA_EN;
2748         dma_ctrl &= ~DMA_EN;
2749         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2750
2751         dma_ctrl = 0;
2752         ring_cfg = 0;
2753
2754         /* Enable strict priority arbiter mode */
2755         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2756
2757         /* Initialize Tx priority queues */
2758         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2759                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2760                                       i * priv->hw_params->tx_bds_per_q,
2761                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2762                 ring_cfg |= (1 << i);
2763                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2764                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2765                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2766         }
2767
2768         /* Initialize Tx default queue 16 */
2769         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2770                               priv->hw_params->tx_queues *
2771                               priv->hw_params->tx_bds_per_q,
2772                               TOTAL_DESC);
2773         ring_cfg |= (1 << DESC_INDEX);
2774         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2775         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2776                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2777                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2778
2779         /* Set Tx queue priorities */
2780         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2781         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2782         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2783
2784         /* Enable Tx queues */
2785         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2786
2787         /* Enable Tx DMA */
2788         if (dma_enable)
2789                 dma_ctrl |= DMA_EN;
2790         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2791 }
2792
2793 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2794 {
2795         unsigned int i;
2796         struct bcmgenet_rx_ring *ring;
2797
2798         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2799                 ring = &priv->rx_rings[i];
2800                 napi_enable(&ring->napi);
2801                 ring->int_enable(ring);
2802         }
2803
2804         ring = &priv->rx_rings[DESC_INDEX];
2805         napi_enable(&ring->napi);
2806         ring->int_enable(ring);
2807 }
2808
2809 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2810 {
2811         unsigned int i;
2812         struct bcmgenet_rx_ring *ring;
2813
2814         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2815                 ring = &priv->rx_rings[i];
2816                 napi_disable(&ring->napi);
2817                 cancel_work_sync(&ring->dim.dim.work);
2818         }
2819
2820         ring = &priv->rx_rings[DESC_INDEX];
2821         napi_disable(&ring->napi);
2822         cancel_work_sync(&ring->dim.dim.work);
2823 }
2824
2825 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2826 {
2827         unsigned int i;
2828         struct bcmgenet_rx_ring *ring;
2829
2830         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2831                 ring = &priv->rx_rings[i];
2832                 netif_napi_del(&ring->napi);
2833         }
2834
2835         ring = &priv->rx_rings[DESC_INDEX];
2836         netif_napi_del(&ring->napi);
2837 }
2838
2839 /* Initialize Rx queues
2840  *
2841  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2842  * used to direct traffic to these queues.
2843  *
2844  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2845  */
2846 static int bcmgenet_init_rx_queues(struct net_device *dev)
2847 {
2848         struct bcmgenet_priv *priv = netdev_priv(dev);
2849         u32 i;
2850         u32 dma_enable;
2851         u32 dma_ctrl;
2852         u32 ring_cfg;
2853         int ret;
2854
2855         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2856         dma_enable = dma_ctrl & DMA_EN;
2857         dma_ctrl &= ~DMA_EN;
2858         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2859
2860         dma_ctrl = 0;
2861         ring_cfg = 0;
2862
2863         /* Initialize Rx priority queues */
2864         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2865                 ret = bcmgenet_init_rx_ring(priv, i,
2866                                             priv->hw_params->rx_bds_per_q,
2867                                             i * priv->hw_params->rx_bds_per_q,
2868                                             (i + 1) *
2869                                             priv->hw_params->rx_bds_per_q);
2870                 if (ret)
2871                         return ret;
2872
2873                 ring_cfg |= (1 << i);
2874                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2875         }
2876
2877         /* Initialize Rx default queue 16 */
2878         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2879                                     priv->hw_params->rx_queues *
2880                                     priv->hw_params->rx_bds_per_q,
2881                                     TOTAL_DESC);
2882         if (ret)
2883                 return ret;
2884
2885         ring_cfg |= (1 << DESC_INDEX);
2886         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2887
2888         /* Enable rings */
2889         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2890
2891         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2892         if (dma_enable)
2893                 dma_ctrl |= DMA_EN;
2894         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2895
2896         return 0;
2897 }
2898
2899 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2900 {
2901         int ret = 0;
2902         int timeout = 0;
2903         u32 reg;
2904         u32 dma_ctrl;
2905         int i;
2906
2907         /* Disable TDMA to stop add more frames in TX DMA */
2908         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2909         reg &= ~DMA_EN;
2910         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2911
2912         /* Check TDMA status register to confirm TDMA is disabled */
2913         while (timeout++ < DMA_TIMEOUT_VAL) {
2914                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2915                 if (reg & DMA_DISABLED)
2916                         break;
2917
2918                 udelay(1);
2919         }
2920
2921         if (timeout == DMA_TIMEOUT_VAL) {
2922                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2923                 ret = -ETIMEDOUT;
2924         }
2925
2926         /* Wait 10ms for packet drain in both tx and rx dma */
2927         usleep_range(10000, 20000);
2928
2929         /* Disable RDMA */
2930         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2931         reg &= ~DMA_EN;
2932         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2933
2934         timeout = 0;
2935         /* Check RDMA status register to confirm RDMA is disabled */
2936         while (timeout++ < DMA_TIMEOUT_VAL) {
2937                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2938                 if (reg & DMA_DISABLED)
2939                         break;
2940
2941                 udelay(1);
2942         }
2943
2944         if (timeout == DMA_TIMEOUT_VAL) {
2945                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2946                 ret = -ETIMEDOUT;
2947         }
2948
2949         dma_ctrl = 0;
2950         for (i = 0; i < priv->hw_params->rx_queues; i++)
2951                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2952         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2953         reg &= ~dma_ctrl;
2954         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2955
2956         dma_ctrl = 0;
2957         for (i = 0; i < priv->hw_params->tx_queues; i++)
2958                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2959         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2960         reg &= ~dma_ctrl;
2961         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2962
2963         return ret;
2964 }
2965
2966 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2967 {
2968         struct netdev_queue *txq;
2969         int i;
2970
2971         bcmgenet_fini_rx_napi(priv);
2972         bcmgenet_fini_tx_napi(priv);
2973
2974         for (i = 0; i < priv->num_tx_bds; i++)
2975                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2976                                                   priv->tx_cbs + i));
2977
2978         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2979                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2980                 netdev_tx_reset_queue(txq);
2981         }
2982
2983         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2984         netdev_tx_reset_queue(txq);
2985
2986         bcmgenet_free_rx_buffers(priv);
2987         kfree(priv->rx_cbs);
2988         kfree(priv->tx_cbs);
2989 }
2990
2991 /* init_edma: Initialize DMA control register */
2992 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2993 {
2994         int ret;
2995         unsigned int i;
2996         struct enet_cb *cb;
2997
2998         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2999
3000         /* Initialize common Rx ring structures */
3001         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3002         priv->num_rx_bds = TOTAL_DESC;
3003         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3004                                GFP_KERNEL);
3005         if (!priv->rx_cbs)
3006                 return -ENOMEM;
3007
3008         for (i = 0; i < priv->num_rx_bds; i++) {
3009                 cb = priv->rx_cbs + i;
3010                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3011         }
3012
3013         /* Initialize common TX ring structures */
3014         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3015         priv->num_tx_bds = TOTAL_DESC;
3016         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3017                                GFP_KERNEL);
3018         if (!priv->tx_cbs) {
3019                 kfree(priv->rx_cbs);
3020                 return -ENOMEM;
3021         }
3022
3023         for (i = 0; i < priv->num_tx_bds; i++) {
3024                 cb = priv->tx_cbs + i;
3025                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3026         }
3027
3028         /* Init rDma */
3029         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3030                              DMA_SCB_BURST_SIZE);
3031
3032         /* Initialize Rx queues */
3033         ret = bcmgenet_init_rx_queues(priv->dev);
3034         if (ret) {
3035                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3036                 bcmgenet_free_rx_buffers(priv);
3037                 kfree(priv->rx_cbs);
3038                 kfree(priv->tx_cbs);
3039                 return ret;
3040         }
3041
3042         /* Init tDma */
3043         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3044                              DMA_SCB_BURST_SIZE);
3045
3046         /* Initialize Tx queues */
3047         bcmgenet_init_tx_queues(priv->dev);
3048
3049         return 0;
3050 }
3051
3052 /* Interrupt bottom half */
3053 static void bcmgenet_irq_task(struct work_struct *work)
3054 {
3055         unsigned int status;
3056         struct bcmgenet_priv *priv = container_of(
3057                         work, struct bcmgenet_priv, bcmgenet_irq_work);
3058
3059         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3060
3061         spin_lock_irq(&priv->lock);
3062         status = priv->irq0_stat;
3063         priv->irq0_stat = 0;
3064         spin_unlock_irq(&priv->lock);
3065
3066         if (status & UMAC_IRQ_PHY_DET_R &&
3067             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3068                 phy_init_hw(priv->dev->phydev);
3069                 genphy_config_aneg(priv->dev->phydev);
3070         }
3071
3072         /* Link UP/DOWN event */
3073         if (status & UMAC_IRQ_LINK_EVENT)
3074                 phy_mac_interrupt(priv->dev->phydev);
3075
3076 }
3077
3078 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3079 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3080 {
3081         struct bcmgenet_priv *priv = dev_id;
3082         struct bcmgenet_rx_ring *rx_ring;
3083         struct bcmgenet_tx_ring *tx_ring;
3084         unsigned int index, status;
3085
3086         /* Read irq status */
3087         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3088                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3089
3090         /* clear interrupts */
3091         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3092
3093         netif_dbg(priv, intr, priv->dev,
3094                   "%s: IRQ=0x%x\n", __func__, status);
3095
3096         /* Check Rx priority queue interrupts */
3097         for (index = 0; index < priv->hw_params->rx_queues; index++) {
3098                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3099                         continue;
3100
3101                 rx_ring = &priv->rx_rings[index];
3102                 rx_ring->dim.event_ctr++;
3103
3104                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3105                         rx_ring->int_disable(rx_ring);
3106                         __napi_schedule_irqoff(&rx_ring->napi);
3107                 }
3108         }
3109
3110         /* Check Tx priority queue interrupts */
3111         for (index = 0; index < priv->hw_params->tx_queues; index++) {
3112                 if (!(status & BIT(index)))
3113                         continue;
3114
3115                 tx_ring = &priv->tx_rings[index];
3116
3117                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3118                         tx_ring->int_disable(tx_ring);
3119                         __napi_schedule_irqoff(&tx_ring->napi);
3120                 }
3121         }
3122
3123         return IRQ_HANDLED;
3124 }
3125
3126 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3127 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3128 {
3129         struct bcmgenet_priv *priv = dev_id;
3130         struct bcmgenet_rx_ring *rx_ring;
3131         struct bcmgenet_tx_ring *tx_ring;
3132         unsigned int status;
3133         unsigned long flags;
3134
3135         /* Read irq status */
3136         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3137                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3138
3139         /* clear interrupts */
3140         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3141
3142         netif_dbg(priv, intr, priv->dev,
3143                   "IRQ=0x%x\n", status);
3144
3145         if (status & UMAC_IRQ_RXDMA_DONE) {
3146                 rx_ring = &priv->rx_rings[DESC_INDEX];
3147                 rx_ring->dim.event_ctr++;
3148
3149                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3150                         rx_ring->int_disable(rx_ring);
3151                         __napi_schedule_irqoff(&rx_ring->napi);
3152                 }
3153         }
3154
3155         if (status & UMAC_IRQ_TXDMA_DONE) {
3156                 tx_ring = &priv->tx_rings[DESC_INDEX];
3157
3158                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3159                         tx_ring->int_disable(tx_ring);
3160                         __napi_schedule_irqoff(&tx_ring->napi);
3161                 }
3162         }
3163
3164         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3165                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3166                 wake_up(&priv->wq);
3167         }
3168
3169         /* all other interested interrupts handled in bottom half */
3170         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3171         if (status) {
3172                 /* Save irq status for bottom-half processing. */
3173                 spin_lock_irqsave(&priv->lock, flags);
3174                 priv->irq0_stat |= status;
3175                 spin_unlock_irqrestore(&priv->lock, flags);
3176
3177                 schedule_work(&priv->bcmgenet_irq_work);
3178         }
3179
3180         return IRQ_HANDLED;
3181 }
3182
3183 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3184 {
3185         /* Acknowledge the interrupt */
3186         return IRQ_HANDLED;
3187 }
3188
3189 #ifdef CONFIG_NET_POLL_CONTROLLER
3190 static void bcmgenet_poll_controller(struct net_device *dev)
3191 {
3192         struct bcmgenet_priv *priv = netdev_priv(dev);
3193
3194         /* Invoke the main RX/TX interrupt handler */
3195         disable_irq(priv->irq0);
3196         bcmgenet_isr0(priv->irq0, priv);
3197         enable_irq(priv->irq0);
3198
3199         /* And the interrupt handler for RX/TX priority queues */
3200         disable_irq(priv->irq1);
3201         bcmgenet_isr1(priv->irq1, priv);
3202         enable_irq(priv->irq1);
3203 }
3204 #endif
3205
3206 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3207 {
3208         u32 reg;
3209
3210         reg = bcmgenet_rbuf_ctrl_get(priv);
3211         reg |= BIT(1);
3212         bcmgenet_rbuf_ctrl_set(priv, reg);
3213         udelay(10);
3214
3215         reg &= ~BIT(1);
3216         bcmgenet_rbuf_ctrl_set(priv, reg);
3217         udelay(10);
3218 }
3219
3220 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3221                                  unsigned char *addr)
3222 {
3223         bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3224         bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3225 }
3226
3227 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3228                                  unsigned char *addr)
3229 {
3230         u32 addr_tmp;
3231
3232         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3233         put_unaligned_be32(addr_tmp, &addr[0]);
3234         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3235         put_unaligned_be16(addr_tmp, &addr[4]);
3236 }
3237
3238 /* Returns a reusable dma control register value */
3239 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3240 {
3241         unsigned int i;
3242         u32 reg;
3243         u32 dma_ctrl;
3244
3245         /* disable DMA */
3246         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3247         for (i = 0; i < priv->hw_params->tx_queues; i++)
3248                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3249         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3250         reg &= ~dma_ctrl;
3251         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3252
3253         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3254         for (i = 0; i < priv->hw_params->rx_queues; i++)
3255                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3256         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3257         reg &= ~dma_ctrl;
3258         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3259
3260         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3261         udelay(10);
3262         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3263
3264         return dma_ctrl;
3265 }
3266
3267 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3268 {
3269         u32 reg;
3270
3271         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3272         reg |= dma_ctrl;
3273         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3274
3275         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3276         reg |= dma_ctrl;
3277         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3278 }
3279
3280 static void bcmgenet_netif_start(struct net_device *dev)
3281 {
3282         struct bcmgenet_priv *priv = netdev_priv(dev);
3283
3284         /* Start the network engine */
3285         bcmgenet_set_rx_mode(dev);
3286         bcmgenet_enable_rx_napi(priv);
3287
3288         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3289
3290         bcmgenet_enable_tx_napi(priv);
3291
3292         /* Monitor link interrupts now */
3293         bcmgenet_link_intr_enable(priv);
3294
3295         phy_start(dev->phydev);
3296 }
3297
3298 static int bcmgenet_open(struct net_device *dev)
3299 {
3300         struct bcmgenet_priv *priv = netdev_priv(dev);
3301         unsigned long dma_ctrl;
3302         int ret;
3303
3304         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3305
3306         /* Turn on the clock */
3307         clk_prepare_enable(priv->clk);
3308
3309         /* If this is an internal GPHY, power it back on now, before UniMAC is
3310          * brought out of reset as absolutely no UniMAC activity is allowed
3311          */
3312         if (priv->internal_phy)
3313                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3314
3315         /* take MAC out of reset */
3316         bcmgenet_umac_reset(priv);
3317
3318         init_umac(priv);
3319
3320         /* Apply features again in case we changed them while interface was
3321          * down
3322          */
3323         bcmgenet_set_features(dev, dev->features);
3324
3325         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3326
3327         /* Disable RX/TX DMA and flush TX queues */
3328         dma_ctrl = bcmgenet_dma_disable(priv);
3329
3330         /* Reinitialize TDMA and RDMA and SW housekeeping */
3331         ret = bcmgenet_init_dma(priv);
3332         if (ret) {
3333                 netdev_err(dev, "failed to initialize DMA\n");
3334                 goto err_clk_disable;
3335         }
3336
3337         /* Always enable ring 16 - descriptor ring */
3338         bcmgenet_enable_dma(priv, dma_ctrl);
3339
3340         /* HFB init */
3341         bcmgenet_hfb_init(priv);
3342
3343         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3344                           dev->name, priv);
3345         if (ret < 0) {
3346                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3347                 goto err_fini_dma;
3348         }
3349
3350         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3351                           dev->name, priv);
3352         if (ret < 0) {
3353                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3354                 goto err_irq0;
3355         }
3356
3357         ret = bcmgenet_mii_probe(dev);
3358         if (ret) {
3359                 netdev_err(dev, "failed to connect to PHY\n");
3360                 goto err_irq1;
3361         }
3362
3363         bcmgenet_netif_start(dev);
3364
3365         netif_tx_start_all_queues(dev);
3366
3367         return 0;
3368
3369 err_irq1:
3370         free_irq(priv->irq1, priv);
3371 err_irq0:
3372         free_irq(priv->irq0, priv);
3373 err_fini_dma:
3374         bcmgenet_dma_teardown(priv);
3375         bcmgenet_fini_dma(priv);
3376 err_clk_disable:
3377         if (priv->internal_phy)
3378                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3379         clk_disable_unprepare(priv->clk);
3380         return ret;
3381 }
3382
3383 static void bcmgenet_netif_stop(struct net_device *dev)
3384 {
3385         struct bcmgenet_priv *priv = netdev_priv(dev);
3386
3387         bcmgenet_disable_tx_napi(priv);
3388         netif_tx_disable(dev);
3389
3390         /* Disable MAC receive */
3391         umac_enable_set(priv, CMD_RX_EN, false);
3392
3393         bcmgenet_dma_teardown(priv);
3394
3395         /* Disable MAC transmit. TX DMA disabled must be done before this */
3396         umac_enable_set(priv, CMD_TX_EN, false);
3397
3398         phy_stop(dev->phydev);
3399         bcmgenet_disable_rx_napi(priv);
3400         bcmgenet_intr_disable(priv);
3401
3402         /* Wait for pending work items to complete. Since interrupts are
3403          * disabled no new work will be scheduled.
3404          */
3405         cancel_work_sync(&priv->bcmgenet_irq_work);
3406
3407         priv->old_link = -1;
3408         priv->old_speed = -1;
3409         priv->old_duplex = -1;
3410         priv->old_pause = -1;
3411
3412         /* tx reclaim */
3413         bcmgenet_tx_reclaim_all(dev);
3414         bcmgenet_fini_dma(priv);
3415 }
3416
3417 static int bcmgenet_close(struct net_device *dev)
3418 {
3419         struct bcmgenet_priv *priv = netdev_priv(dev);
3420         int ret = 0;
3421
3422         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3423
3424         bcmgenet_netif_stop(dev);
3425
3426         /* Really kill the PHY state machine and disconnect from it */
3427         phy_disconnect(dev->phydev);
3428
3429         free_irq(priv->irq0, priv);
3430         free_irq(priv->irq1, priv);
3431
3432         if (priv->internal_phy)
3433                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3434
3435         clk_disable_unprepare(priv->clk);
3436
3437         return ret;
3438 }
3439
3440 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3441 {
3442         struct bcmgenet_priv *priv = ring->priv;
3443         u32 p_index, c_index, intsts, intmsk;
3444         struct netdev_queue *txq;
3445         unsigned int free_bds;
3446         bool txq_stopped;
3447
3448         if (!netif_msg_tx_err(priv))
3449                 return;
3450
3451         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3452
3453         spin_lock(&ring->lock);
3454         if (ring->index == DESC_INDEX) {
3455                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3456                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3457         } else {
3458                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3459                 intmsk = 1 << ring->index;
3460         }
3461         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3462         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3463         txq_stopped = netif_tx_queue_stopped(txq);
3464         free_bds = ring->free_bds;
3465         spin_unlock(&ring->lock);
3466
3467         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3468                   "TX queue status: %s, interrupts: %s\n"
3469                   "(sw)free_bds: %d (sw)size: %d\n"
3470                   "(sw)p_index: %d (hw)p_index: %d\n"
3471                   "(sw)c_index: %d (hw)c_index: %d\n"
3472                   "(sw)clean_p: %d (sw)write_p: %d\n"
3473                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3474                   ring->index, ring->queue,
3475                   txq_stopped ? "stopped" : "active",
3476                   intsts & intmsk ? "enabled" : "disabled",
3477                   free_bds, ring->size,
3478                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3479                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3480                   ring->clean_ptr, ring->write_ptr,
3481                   ring->cb_ptr, ring->end_ptr);
3482 }
3483
3484 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3485 {
3486         struct bcmgenet_priv *priv = netdev_priv(dev);
3487         u32 int0_enable = 0;
3488         u32 int1_enable = 0;
3489         unsigned int q;
3490
3491         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3492
3493         for (q = 0; q < priv->hw_params->tx_queues; q++)
3494                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3495         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3496
3497         bcmgenet_tx_reclaim_all(dev);
3498
3499         for (q = 0; q < priv->hw_params->tx_queues; q++)
3500                 int1_enable |= (1 << q);
3501
3502         int0_enable = UMAC_IRQ_TXDMA_DONE;
3503
3504         /* Re-enable TX interrupts if disabled */
3505         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3506         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3507
3508         netif_trans_update(dev);
3509
3510         dev->stats.tx_errors++;
3511
3512         netif_tx_wake_all_queues(dev);
3513 }
3514
3515 #define MAX_MDF_FILTER  17
3516
3517 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3518                                          unsigned char *addr,
3519                                          int *i)
3520 {
3521         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3522                              UMAC_MDF_ADDR + (*i * 4));
3523         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3524                              addr[4] << 8 | addr[5],
3525                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3526         *i += 2;
3527 }
3528
3529 static void bcmgenet_set_rx_mode(struct net_device *dev)
3530 {
3531         struct bcmgenet_priv *priv = netdev_priv(dev);
3532         struct netdev_hw_addr *ha;
3533         int i, nfilter;
3534         u32 reg;
3535
3536         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3537
3538         /* Number of filters needed */
3539         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3540
3541         /*
3542          * Turn on promicuous mode for three scenarios
3543          * 1. IFF_PROMISC flag is set
3544          * 2. IFF_ALLMULTI flag is set
3545          * 3. The number of filters needed exceeds the number filters
3546          *    supported by the hardware.
3547         */
3548         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3549         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3550             (nfilter > MAX_MDF_FILTER)) {
3551                 reg |= CMD_PROMISC;
3552                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3553                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3554                 return;
3555         } else {
3556                 reg &= ~CMD_PROMISC;
3557                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3558         }
3559
3560         /* update MDF filter */
3561         i = 0;
3562         /* Broadcast */
3563         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3564         /* my own address.*/
3565         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3566
3567         /* Unicast */
3568         netdev_for_each_uc_addr(ha, dev)
3569                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3570
3571         /* Multicast */
3572         netdev_for_each_mc_addr(ha, dev)
3573                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3574
3575         /* Enable filters */
3576         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3577         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3578 }
3579
3580 /* Set the hardware MAC address. */
3581 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3582 {
3583         struct sockaddr *addr = p;
3584
3585         /* Setting the MAC address at the hardware level is not possible
3586          * without disabling the UniMAC RX/TX enable bits.
3587          */
3588         if (netif_running(dev))
3589                 return -EBUSY;
3590
3591         ether_addr_copy(dev->dev_addr, addr->sa_data);
3592
3593         return 0;
3594 }
3595
3596 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3597 {
3598         struct bcmgenet_priv *priv = netdev_priv(dev);
3599         unsigned long tx_bytes = 0, tx_packets = 0;
3600         unsigned long rx_bytes = 0, rx_packets = 0;
3601         unsigned long rx_errors = 0, rx_dropped = 0;
3602         struct bcmgenet_tx_ring *tx_ring;
3603         struct bcmgenet_rx_ring *rx_ring;
3604         unsigned int q;
3605
3606         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3607                 tx_ring = &priv->tx_rings[q];
3608                 tx_bytes += tx_ring->bytes;
3609                 tx_packets += tx_ring->packets;
3610         }
3611         tx_ring = &priv->tx_rings[DESC_INDEX];
3612         tx_bytes += tx_ring->bytes;
3613         tx_packets += tx_ring->packets;
3614
3615         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3616                 rx_ring = &priv->rx_rings[q];
3617
3618                 rx_bytes += rx_ring->bytes;
3619                 rx_packets += rx_ring->packets;
3620                 rx_errors += rx_ring->errors;
3621                 rx_dropped += rx_ring->dropped;
3622         }
3623         rx_ring = &priv->rx_rings[DESC_INDEX];
3624         rx_bytes += rx_ring->bytes;
3625         rx_packets += rx_ring->packets;
3626         rx_errors += rx_ring->errors;
3627         rx_dropped += rx_ring->dropped;
3628
3629         dev->stats.tx_bytes = tx_bytes;
3630         dev->stats.tx_packets = tx_packets;
3631         dev->stats.rx_bytes = rx_bytes;
3632         dev->stats.rx_packets = rx_packets;
3633         dev->stats.rx_errors = rx_errors;
3634         dev->stats.rx_missed_errors = rx_errors;
3635         dev->stats.rx_dropped = rx_dropped;
3636         return &dev->stats;
3637 }
3638
3639 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3640 {
3641         struct bcmgenet_priv *priv = netdev_priv(dev);
3642
3643         if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3644             priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3645                 return -EOPNOTSUPP;
3646
3647         if (new_carrier)
3648                 netif_carrier_on(dev);
3649         else
3650                 netif_carrier_off(dev);
3651
3652         return 0;
3653 }
3654
3655 static const struct net_device_ops bcmgenet_netdev_ops = {
3656         .ndo_open               = bcmgenet_open,
3657         .ndo_stop               = bcmgenet_close,
3658         .ndo_start_xmit         = bcmgenet_xmit,
3659         .ndo_tx_timeout         = bcmgenet_timeout,
3660         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3661         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3662         .ndo_do_ioctl           = phy_do_ioctl_running,
3663         .ndo_set_features       = bcmgenet_set_features,
3664 #ifdef CONFIG_NET_POLL_CONTROLLER
3665         .ndo_poll_controller    = bcmgenet_poll_controller,
3666 #endif
3667         .ndo_get_stats          = bcmgenet_get_stats,
3668         .ndo_change_carrier     = bcmgenet_change_carrier,
3669 };
3670
3671 /* Array of GENET hardware parameters/characteristics */
3672 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3673         [GENET_V1] = {
3674                 .tx_queues = 0,
3675                 .tx_bds_per_q = 0,
3676                 .rx_queues = 0,
3677                 .rx_bds_per_q = 0,
3678                 .bp_in_en_shift = 16,
3679                 .bp_in_mask = 0xffff,
3680                 .hfb_filter_cnt = 16,
3681                 .qtag_mask = 0x1F,
3682                 .hfb_offset = 0x1000,
3683                 .rdma_offset = 0x2000,
3684                 .tdma_offset = 0x3000,
3685                 .words_per_bd = 2,
3686         },
3687         [GENET_V2] = {
3688                 .tx_queues = 4,
3689                 .tx_bds_per_q = 32,
3690                 .rx_queues = 0,
3691                 .rx_bds_per_q = 0,
3692                 .bp_in_en_shift = 16,
3693                 .bp_in_mask = 0xffff,
3694                 .hfb_filter_cnt = 16,
3695                 .qtag_mask = 0x1F,
3696                 .tbuf_offset = 0x0600,
3697                 .hfb_offset = 0x1000,
3698                 .hfb_reg_offset = 0x2000,
3699                 .rdma_offset = 0x3000,
3700                 .tdma_offset = 0x4000,
3701                 .words_per_bd = 2,
3702                 .flags = GENET_HAS_EXT,
3703         },
3704         [GENET_V3] = {
3705                 .tx_queues = 4,
3706                 .tx_bds_per_q = 32,
3707                 .rx_queues = 0,
3708                 .rx_bds_per_q = 0,
3709                 .bp_in_en_shift = 17,
3710                 .bp_in_mask = 0x1ffff,
3711                 .hfb_filter_cnt = 48,
3712                 .hfb_filter_size = 128,
3713                 .qtag_mask = 0x3F,
3714                 .tbuf_offset = 0x0600,
3715                 .hfb_offset = 0x8000,
3716                 .hfb_reg_offset = 0xfc00,
3717                 .rdma_offset = 0x10000,
3718                 .tdma_offset = 0x11000,
3719                 .words_per_bd = 2,
3720                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3721                          GENET_HAS_MOCA_LINK_DET,
3722         },
3723         [GENET_V4] = {
3724                 .tx_queues = 4,
3725                 .tx_bds_per_q = 32,
3726                 .rx_queues = 0,
3727                 .rx_bds_per_q = 0,
3728                 .bp_in_en_shift = 17,
3729                 .bp_in_mask = 0x1ffff,
3730                 .hfb_filter_cnt = 48,
3731                 .hfb_filter_size = 128,
3732                 .qtag_mask = 0x3F,
3733                 .tbuf_offset = 0x0600,
3734                 .hfb_offset = 0x8000,
3735                 .hfb_reg_offset = 0xfc00,
3736                 .rdma_offset = 0x2000,
3737                 .tdma_offset = 0x4000,
3738                 .words_per_bd = 3,
3739                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3740                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3741         },
3742         [GENET_V5] = {
3743                 .tx_queues = 4,
3744                 .tx_bds_per_q = 32,
3745                 .rx_queues = 0,
3746                 .rx_bds_per_q = 0,
3747                 .bp_in_en_shift = 17,
3748                 .bp_in_mask = 0x1ffff,
3749                 .hfb_filter_cnt = 48,
3750                 .hfb_filter_size = 128,
3751                 .qtag_mask = 0x3F,
3752                 .tbuf_offset = 0x0600,
3753                 .hfb_offset = 0x8000,
3754                 .hfb_reg_offset = 0xfc00,
3755                 .rdma_offset = 0x2000,
3756                 .tdma_offset = 0x4000,
3757                 .words_per_bd = 3,
3758                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3759                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3760         },
3761 };
3762
3763 /* Infer hardware parameters from the detected GENET version */
3764 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3765 {
3766         struct bcmgenet_hw_params *params;
3767         u32 reg;
3768         u8 major;
3769         u16 gphy_rev;
3770
3771         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3772                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3773                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3774         } else if (GENET_IS_V3(priv)) {
3775                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3776                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3777         } else if (GENET_IS_V2(priv)) {
3778                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3779                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3780         } else if (GENET_IS_V1(priv)) {
3781                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3782                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3783         }
3784
3785         /* enum genet_version starts at 1 */
3786         priv->hw_params = &bcmgenet_hw_params[priv->version];
3787         params = priv->hw_params;
3788
3789         /* Read GENET HW version */
3790         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3791         major = (reg >> 24 & 0x0f);
3792         if (major == 6)
3793                 major = 5;
3794         else if (major == 5)
3795                 major = 4;
3796         else if (major == 0)
3797                 major = 1;
3798         if (major != priv->version) {
3799                 dev_err(&priv->pdev->dev,
3800                         "GENET version mismatch, got: %d, configured for: %d\n",
3801                         major, priv->version);
3802         }
3803
3804         /* Print the GENET core version */
3805         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3806                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3807
3808         /* Store the integrated PHY revision for the MDIO probing function
3809          * to pass this information to the PHY driver. The PHY driver expects
3810          * to find the PHY major revision in bits 15:8 while the GENET register
3811          * stores that information in bits 7:0, account for that.
3812          *
3813          * On newer chips, starting with PHY revision G0, a new scheme is
3814          * deployed similar to the Starfighter 2 switch with GPHY major
3815          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3816          * is reserved as well as special value 0x01ff, we have a small
3817          * heuristic to check for the new GPHY revision and re-arrange things
3818          * so the GPHY driver is happy.
3819          */
3820         gphy_rev = reg & 0xffff;
3821
3822         if (GENET_IS_V5(priv)) {
3823                 /* The EPHY revision should come from the MDIO registers of
3824                  * the PHY not from GENET.
3825                  */
3826                 if (gphy_rev != 0) {
3827                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3828                                 gphy_rev);
3829                 }
3830         /* This is reserved so should require special treatment */
3831         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3832                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3833                 return;
3834         /* This is the good old scheme, just GPHY major, no minor nor patch */
3835         } else if ((gphy_rev & 0xf0) != 0) {
3836                 priv->gphy_rev = gphy_rev << 8;
3837         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3838         } else if ((gphy_rev & 0xff00) != 0) {
3839                 priv->gphy_rev = gphy_rev;
3840         }
3841
3842 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3843         if (!(params->flags & GENET_HAS_40BITS))
3844                 pr_warn("GENET does not support 40-bits PA\n");
3845 #endif
3846
3847         pr_debug("Configuration for version: %d\n"
3848                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3849                 "BP << en: %2d, BP msk: 0x%05x\n"
3850                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3851                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3852                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3853                 "Words/BD: %d\n",
3854                 priv->version,
3855                 params->tx_queues, params->tx_bds_per_q,
3856                 params->rx_queues, params->rx_bds_per_q,
3857                 params->bp_in_en_shift, params->bp_in_mask,
3858                 params->hfb_filter_cnt, params->qtag_mask,
3859                 params->tbuf_offset, params->hfb_offset,
3860                 params->hfb_reg_offset,
3861                 params->rdma_offset, params->tdma_offset,
3862                 params->words_per_bd);
3863 }
3864
3865 struct bcmgenet_plat_data {
3866         enum bcmgenet_version version;
3867         u32 dma_max_burst_length;
3868 };
3869
3870 static const struct bcmgenet_plat_data v1_plat_data = {
3871         .version = GENET_V1,
3872         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3873 };
3874
3875 static const struct bcmgenet_plat_data v2_plat_data = {
3876         .version = GENET_V2,
3877         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3878 };
3879
3880 static const struct bcmgenet_plat_data v3_plat_data = {
3881         .version = GENET_V3,
3882         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3883 };
3884
3885 static const struct bcmgenet_plat_data v4_plat_data = {
3886         .version = GENET_V4,
3887         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3888 };
3889
3890 static const struct bcmgenet_plat_data v5_plat_data = {
3891         .version = GENET_V5,
3892         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3893 };
3894
3895 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3896         .version = GENET_V5,
3897         .dma_max_burst_length = 0x08,
3898 };
3899
3900 static const struct of_device_id bcmgenet_match[] = {
3901         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3902         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3903         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3904         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3905         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3906         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3907         { },
3908 };
3909 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3910
3911 static int bcmgenet_probe(struct platform_device *pdev)
3912 {
3913         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3914         const struct bcmgenet_plat_data *pdata;
3915         struct bcmgenet_priv *priv;
3916         struct net_device *dev;
3917         unsigned int i;
3918         int err = -EIO;
3919
3920         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3921         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3922                                  GENET_MAX_MQ_CNT + 1);
3923         if (!dev) {
3924                 dev_err(&pdev->dev, "can't allocate net device\n");
3925                 return -ENOMEM;
3926         }
3927
3928         priv = netdev_priv(dev);
3929         priv->irq0 = platform_get_irq(pdev, 0);
3930         if (priv->irq0 < 0) {
3931                 err = priv->irq0;
3932                 goto err;
3933         }
3934         priv->irq1 = platform_get_irq(pdev, 1);
3935         if (priv->irq1 < 0) {
3936                 err = priv->irq1;
3937                 goto err;
3938         }
3939         priv->wol_irq = platform_get_irq_optional(pdev, 2);
3940
3941         priv->base = devm_platform_ioremap_resource(pdev, 0);
3942         if (IS_ERR(priv->base)) {
3943                 err = PTR_ERR(priv->base);
3944                 goto err;
3945         }
3946
3947         spin_lock_init(&priv->lock);
3948
3949         SET_NETDEV_DEV(dev, &pdev->dev);
3950         dev_set_drvdata(&pdev->dev, dev);
3951         dev->watchdog_timeo = 2 * HZ;
3952         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3953         dev->netdev_ops = &bcmgenet_netdev_ops;
3954
3955         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3956
3957         /* Set default features */
3958         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3959                          NETIF_F_RXCSUM;
3960         dev->hw_features |= dev->features;
3961         dev->vlan_features |= dev->features;
3962
3963         /* Request the WOL interrupt and advertise suspend if available */
3964         priv->wol_irq_disabled = true;
3965         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3966                                dev->name, priv);
3967         if (!err)
3968                 device_set_wakeup_capable(&pdev->dev, 1);
3969
3970         /* Set the needed headroom to account for any possible
3971          * features enabling/disabling at runtime
3972          */
3973         dev->needed_headroom += 64;
3974
3975         netdev_boot_setup_check(dev);
3976
3977         priv->dev = dev;
3978         priv->pdev = pdev;
3979
3980         pdata = device_get_match_data(&pdev->dev);
3981         if (pdata) {
3982                 priv->version = pdata->version;
3983                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
3984         } else {
3985                 priv->version = pd->genet_version;
3986                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3987         }
3988
3989         priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3990         if (IS_ERR(priv->clk)) {
3991                 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3992                 err = PTR_ERR(priv->clk);
3993                 goto err;
3994         }
3995
3996         err = clk_prepare_enable(priv->clk);
3997         if (err)
3998                 goto err;
3999
4000         bcmgenet_set_hw_params(priv);
4001
4002         err = -EIO;
4003         if (priv->hw_params->flags & GENET_HAS_40BITS)
4004                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4005         if (err)
4006                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4007         if (err)
4008                 goto err_clk_disable;
4009
4010         /* Mii wait queue */
4011         init_waitqueue_head(&priv->wq);
4012         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4013         priv->rx_buf_len = RX_BUF_LENGTH;
4014         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4015
4016         priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4017         if (IS_ERR(priv->clk_wol)) {
4018                 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4019                 err = PTR_ERR(priv->clk_wol);
4020                 goto err_clk_disable;
4021         }
4022
4023         priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4024         if (IS_ERR(priv->clk_eee)) {
4025                 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4026                 err = PTR_ERR(priv->clk_eee);
4027                 goto err_clk_disable;
4028         }
4029
4030         /* If this is an internal GPHY, power it on now, before UniMAC is
4031          * brought out of reset as absolutely no UniMAC activity is allowed
4032          */
4033         if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4034                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4035
4036         if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4037                 ether_addr_copy(dev->dev_addr, pd->mac_address);
4038         else
4039                 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4040                         if (has_acpi_companion(&pdev->dev))
4041                                 bcmgenet_get_hw_addr(priv, dev->dev_addr);
4042
4043         if (!is_valid_ether_addr(dev->dev_addr)) {
4044                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4045                 eth_hw_addr_random(dev);
4046         }
4047
4048         reset_umac(priv);
4049
4050         err = bcmgenet_mii_init(dev);
4051         if (err)
4052                 goto err_clk_disable;
4053
4054         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4055          * just the ring 16 descriptor based TX
4056          */
4057         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4058         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4059
4060         /* Set default coalescing parameters */
4061         for (i = 0; i < priv->hw_params->rx_queues; i++)
4062                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4063         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4064
4065         /* libphy will determine the link state */
4066         netif_carrier_off(dev);
4067
4068         /* Turn off the main clock, WOL clock is handled separately */
4069         clk_disable_unprepare(priv->clk);
4070
4071         err = register_netdev(dev);
4072         if (err) {
4073                 bcmgenet_mii_exit(dev);
4074                 goto err;
4075         }
4076
4077         return err;
4078
4079 err_clk_disable:
4080         clk_disable_unprepare(priv->clk);
4081 err:
4082         free_netdev(dev);
4083         return err;
4084 }
4085
4086 static int bcmgenet_remove(struct platform_device *pdev)
4087 {
4088         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4089
4090         dev_set_drvdata(&pdev->dev, NULL);
4091         unregister_netdev(priv->dev);
4092         bcmgenet_mii_exit(priv->dev);
4093         free_netdev(priv->dev);
4094
4095         return 0;
4096 }
4097
4098 static void bcmgenet_shutdown(struct platform_device *pdev)
4099 {
4100         bcmgenet_remove(pdev);
4101 }
4102
4103 #ifdef CONFIG_PM_SLEEP
4104 static int bcmgenet_resume_noirq(struct device *d)
4105 {
4106         struct net_device *dev = dev_get_drvdata(d);
4107         struct bcmgenet_priv *priv = netdev_priv(dev);
4108         int ret;
4109         u32 reg;
4110
4111         if (!netif_running(dev))
4112                 return 0;
4113
4114         /* Turn on the clock */
4115         ret = clk_prepare_enable(priv->clk);
4116         if (ret)
4117                 return ret;
4118
4119         if (device_may_wakeup(d) && priv->wolopts) {
4120                 /* Account for Wake-on-LAN events and clear those events
4121                  * (Some devices need more time between enabling the clocks
4122                  *  and the interrupt register reflecting the wake event so
4123                  *  read the register twice)
4124                  */
4125                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4126                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4127                 if (reg & UMAC_IRQ_WAKE_EVENT)
4128                         pm_wakeup_event(&priv->pdev->dev, 0);
4129         }
4130
4131         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4132
4133         return 0;
4134 }
4135
4136 static int bcmgenet_resume(struct device *d)
4137 {
4138         struct net_device *dev = dev_get_drvdata(d);
4139         struct bcmgenet_priv *priv = netdev_priv(dev);
4140         struct bcmgenet_rxnfc_rule *rule;
4141         unsigned long dma_ctrl;
4142         int ret;
4143
4144         if (!netif_running(dev))
4145                 return 0;
4146
4147         /* From WOL-enabled suspend, switch to regular clock */
4148         if (device_may_wakeup(d) && priv->wolopts)
4149                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4150
4151         /* If this is an internal GPHY, power it back on now, before UniMAC is
4152          * brought out of reset as absolutely no UniMAC activity is allowed
4153          */
4154         if (priv->internal_phy)
4155                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4156
4157         bcmgenet_umac_reset(priv);
4158
4159         init_umac(priv);
4160
4161         phy_init_hw(dev->phydev);
4162
4163         /* Speed settings must be restored */
4164         genphy_config_aneg(dev->phydev);
4165         bcmgenet_mii_config(priv->dev, false);
4166
4167         /* Restore enabled features */
4168         bcmgenet_set_features(dev, dev->features);
4169
4170         bcmgenet_set_hw_addr(priv, dev->dev_addr);
4171
4172         /* Restore hardware filters */
4173         bcmgenet_hfb_clear(priv);
4174         list_for_each_entry(rule, &priv->rxnfc_list, list)
4175                 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4176                         bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4177
4178         /* Disable RX/TX DMA and flush TX queues */
4179         dma_ctrl = bcmgenet_dma_disable(priv);
4180
4181         /* Reinitialize TDMA and RDMA and SW housekeeping */
4182         ret = bcmgenet_init_dma(priv);
4183         if (ret) {
4184                 netdev_err(dev, "failed to initialize DMA\n");
4185                 goto out_clk_disable;
4186         }
4187
4188         /* Always enable ring 16 - descriptor ring */
4189         bcmgenet_enable_dma(priv, dma_ctrl);
4190
4191         if (!device_may_wakeup(d))
4192                 phy_resume(dev->phydev);
4193
4194         if (priv->eee.eee_enabled)
4195                 bcmgenet_eee_enable_set(dev, true);
4196
4197         bcmgenet_netif_start(dev);
4198
4199         netif_device_attach(dev);
4200
4201         return 0;
4202
4203 out_clk_disable:
4204         if (priv->internal_phy)
4205                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4206         clk_disable_unprepare(priv->clk);
4207         return ret;
4208 }
4209
4210 static int bcmgenet_suspend(struct device *d)
4211 {
4212         struct net_device *dev = dev_get_drvdata(d);
4213         struct bcmgenet_priv *priv = netdev_priv(dev);
4214
4215         if (!netif_running(dev))
4216                 return 0;
4217
4218         netif_device_detach(dev);
4219
4220         bcmgenet_netif_stop(dev);
4221
4222         if (!device_may_wakeup(d))
4223                 phy_suspend(dev->phydev);
4224
4225         /* Disable filtering */
4226         bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4227
4228         return 0;
4229 }
4230
4231 static int bcmgenet_suspend_noirq(struct device *d)
4232 {
4233         struct net_device *dev = dev_get_drvdata(d);
4234         struct bcmgenet_priv *priv = netdev_priv(dev);
4235         int ret = 0;
4236
4237         if (!netif_running(dev))
4238                 return 0;
4239
4240         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4241         if (device_may_wakeup(d) && priv->wolopts)
4242                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4243         else if (priv->internal_phy)
4244                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4245
4246         /* Let the framework handle resumption and leave the clocks on */
4247         if (ret)
4248                 return ret;
4249
4250         /* Turn off the clocks */
4251         clk_disable_unprepare(priv->clk);
4252
4253         return 0;
4254 }
4255 #else
4256 #define bcmgenet_suspend        NULL
4257 #define bcmgenet_suspend_noirq  NULL
4258 #define bcmgenet_resume         NULL
4259 #define bcmgenet_resume_noirq   NULL
4260 #endif /* CONFIG_PM_SLEEP */
4261
4262 static const struct dev_pm_ops bcmgenet_pm_ops = {
4263         .suspend        = bcmgenet_suspend,
4264         .suspend_noirq  = bcmgenet_suspend_noirq,
4265         .resume         = bcmgenet_resume,
4266         .resume_noirq   = bcmgenet_resume_noirq,
4267 };
4268
4269 static const struct acpi_device_id genet_acpi_match[] = {
4270         { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4271         { },
4272 };
4273 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4274
4275 static struct platform_driver bcmgenet_driver = {
4276         .probe  = bcmgenet_probe,
4277         .remove = bcmgenet_remove,
4278         .shutdown = bcmgenet_shutdown,
4279         .driver = {
4280                 .name   = "bcmgenet",
4281                 .of_match_table = bcmgenet_match,
4282                 .pm     = &bcmgenet_pm_ops,
4283                 .acpi_match_table = genet_acpi_match,
4284         },
4285 };
4286 module_platform_driver(bcmgenet_driver);
4287
4288 MODULE_AUTHOR("Broadcom Corporation");
4289 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4290 MODULE_ALIAS("platform:bcmgenet");
4291 MODULE_LICENSE("GPL");
4292 MODULE_SOFTDEP("pre: mdio-bcm-unimac");