Merge 5.18-rc5 into tty-next
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT        4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY       0
49
50 #define GENET_Q16_RX_BD_CNT     \
51         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT     \
53         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH           2048
56 #define SKB_ALIGNMENT           32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
63                                 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
66                                 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73         /* MIPS chips strapped for BE will automagically configure the
74          * peripheral registers for CPU-native byte order.
75          */
76         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77                 __raw_writel(value, offset);
78         else
79                 writel_relaxed(value, offset);
80 }
81
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85                 return __raw_readl(offset);
86         else
87                 return readl_relaxed(offset);
88 }
89
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91                                              void __iomem *d, u32 value)
92 {
93         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97                                     void __iomem *d,
98                                     dma_addr_t addr)
99 {
100         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102         /* Register writes to GISB bus can take couple hundred nanoseconds
103          * and are done for each packet, save these expensive writes unless
104          * the platform is explicitly configured for 64-bits/LPAE.
105          */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107         if (priv->hw_params->flags & GENET_HAS_40BITS)
108                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114                                void __iomem *d, dma_addr_t addr, u32 val)
115 {
116         dmadesc_set_addr(priv, d, addr);
117         dmadesc_set_length_status(priv, d, val);
118 }
119
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121                                           void __iomem *d)
122 {
123         dma_addr_t addr;
124
125         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127         /* Register writes to GISB bus can take couple hundred nanoseconds
128          * and are done for each packet, save these expensive writes unless
129          * the platform is explicitly configured for 64-bits/LPAE.
130          */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132         if (priv->hw_params->flags & GENET_HAS_40BITS)
133                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135         return addr;
136 }
137
138 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
139
140 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141                                 NETIF_MSG_LINK)
142
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145         if (GENET_IS_V1(priv))
146                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147         else
148                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153         if (GENET_IS_V1(priv))
154                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155         else
156                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165         if (GENET_IS_V1(priv))
166                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167         else
168                 return bcmgenet_readl(priv->base +
169                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174         if (GENET_IS_V1(priv))
175                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176         else
177                 bcmgenet_writel(val, priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183         if (GENET_IS_V1(priv))
184                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185         else
186                 return bcmgenet_readl(priv->base +
187                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192         if (GENET_IS_V1(priv))
193                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194         else
195                 bcmgenet_writel(val, priv->base +
196                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201         DMA_RING_CFG = 0,
202         DMA_CTRL,
203         DMA_STATUS,
204         DMA_SCB_BURST_SIZE,
205         DMA_ARB_CTRL,
206         DMA_PRIORITY_0,
207         DMA_PRIORITY_1,
208         DMA_PRIORITY_2,
209         DMA_INDEX2RING_0,
210         DMA_INDEX2RING_1,
211         DMA_INDEX2RING_2,
212         DMA_INDEX2RING_3,
213         DMA_INDEX2RING_4,
214         DMA_INDEX2RING_5,
215         DMA_INDEX2RING_6,
216         DMA_INDEX2RING_7,
217         DMA_RING0_TIMEOUT,
218         DMA_RING1_TIMEOUT,
219         DMA_RING2_TIMEOUT,
220         DMA_RING3_TIMEOUT,
221         DMA_RING4_TIMEOUT,
222         DMA_RING5_TIMEOUT,
223         DMA_RING6_TIMEOUT,
224         DMA_RING7_TIMEOUT,
225         DMA_RING8_TIMEOUT,
226         DMA_RING9_TIMEOUT,
227         DMA_RING10_TIMEOUT,
228         DMA_RING11_TIMEOUT,
229         DMA_RING12_TIMEOUT,
230         DMA_RING13_TIMEOUT,
231         DMA_RING14_TIMEOUT,
232         DMA_RING15_TIMEOUT,
233         DMA_RING16_TIMEOUT,
234 };
235
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237         [DMA_RING_CFG]          = 0x00,
238         [DMA_CTRL]              = 0x04,
239         [DMA_STATUS]            = 0x08,
240         [DMA_SCB_BURST_SIZE]    = 0x0C,
241         [DMA_ARB_CTRL]          = 0x2C,
242         [DMA_PRIORITY_0]        = 0x30,
243         [DMA_PRIORITY_1]        = 0x34,
244         [DMA_PRIORITY_2]        = 0x38,
245         [DMA_RING0_TIMEOUT]     = 0x2C,
246         [DMA_RING1_TIMEOUT]     = 0x30,
247         [DMA_RING2_TIMEOUT]     = 0x34,
248         [DMA_RING3_TIMEOUT]     = 0x38,
249         [DMA_RING4_TIMEOUT]     = 0x3c,
250         [DMA_RING5_TIMEOUT]     = 0x40,
251         [DMA_RING6_TIMEOUT]     = 0x44,
252         [DMA_RING7_TIMEOUT]     = 0x48,
253         [DMA_RING8_TIMEOUT]     = 0x4c,
254         [DMA_RING9_TIMEOUT]     = 0x50,
255         [DMA_RING10_TIMEOUT]    = 0x54,
256         [DMA_RING11_TIMEOUT]    = 0x58,
257         [DMA_RING12_TIMEOUT]    = 0x5c,
258         [DMA_RING13_TIMEOUT]    = 0x60,
259         [DMA_RING14_TIMEOUT]    = 0x64,
260         [DMA_RING15_TIMEOUT]    = 0x68,
261         [DMA_RING16_TIMEOUT]    = 0x6C,
262         [DMA_INDEX2RING_0]      = 0x70,
263         [DMA_INDEX2RING_1]      = 0x74,
264         [DMA_INDEX2RING_2]      = 0x78,
265         [DMA_INDEX2RING_3]      = 0x7C,
266         [DMA_INDEX2RING_4]      = 0x80,
267         [DMA_INDEX2RING_5]      = 0x84,
268         [DMA_INDEX2RING_6]      = 0x88,
269         [DMA_INDEX2RING_7]      = 0x8C,
270 };
271
272 static const u8 bcmgenet_dma_regs_v2[] = {
273         [DMA_RING_CFG]          = 0x00,
274         [DMA_CTRL]              = 0x04,
275         [DMA_STATUS]            = 0x08,
276         [DMA_SCB_BURST_SIZE]    = 0x0C,
277         [DMA_ARB_CTRL]          = 0x30,
278         [DMA_PRIORITY_0]        = 0x34,
279         [DMA_PRIORITY_1]        = 0x38,
280         [DMA_PRIORITY_2]        = 0x3C,
281         [DMA_RING0_TIMEOUT]     = 0x2C,
282         [DMA_RING1_TIMEOUT]     = 0x30,
283         [DMA_RING2_TIMEOUT]     = 0x34,
284         [DMA_RING3_TIMEOUT]     = 0x38,
285         [DMA_RING4_TIMEOUT]     = 0x3c,
286         [DMA_RING5_TIMEOUT]     = 0x40,
287         [DMA_RING6_TIMEOUT]     = 0x44,
288         [DMA_RING7_TIMEOUT]     = 0x48,
289         [DMA_RING8_TIMEOUT]     = 0x4c,
290         [DMA_RING9_TIMEOUT]     = 0x50,
291         [DMA_RING10_TIMEOUT]    = 0x54,
292         [DMA_RING11_TIMEOUT]    = 0x58,
293         [DMA_RING12_TIMEOUT]    = 0x5c,
294         [DMA_RING13_TIMEOUT]    = 0x60,
295         [DMA_RING14_TIMEOUT]    = 0x64,
296         [DMA_RING15_TIMEOUT]    = 0x68,
297         [DMA_RING16_TIMEOUT]    = 0x6C,
298 };
299
300 static const u8 bcmgenet_dma_regs_v1[] = {
301         [DMA_CTRL]              = 0x00,
302         [DMA_STATUS]            = 0x04,
303         [DMA_SCB_BURST_SIZE]    = 0x0C,
304         [DMA_ARB_CTRL]          = 0x30,
305         [DMA_PRIORITY_0]        = 0x34,
306         [DMA_PRIORITY_1]        = 0x38,
307         [DMA_PRIORITY_2]        = 0x3C,
308         [DMA_RING0_TIMEOUT]     = 0x2C,
309         [DMA_RING1_TIMEOUT]     = 0x30,
310         [DMA_RING2_TIMEOUT]     = 0x34,
311         [DMA_RING3_TIMEOUT]     = 0x38,
312         [DMA_RING4_TIMEOUT]     = 0x3c,
313         [DMA_RING5_TIMEOUT]     = 0x40,
314         [DMA_RING6_TIMEOUT]     = 0x44,
315         [DMA_RING7_TIMEOUT]     = 0x48,
316         [DMA_RING8_TIMEOUT]     = 0x4c,
317         [DMA_RING9_TIMEOUT]     = 0x50,
318         [DMA_RING10_TIMEOUT]    = 0x54,
319         [DMA_RING11_TIMEOUT]    = 0x58,
320         [DMA_RING12_TIMEOUT]    = 0x5c,
321         [DMA_RING13_TIMEOUT]    = 0x60,
322         [DMA_RING14_TIMEOUT]    = 0x64,
323         [DMA_RING15_TIMEOUT]    = 0x68,
324         [DMA_RING16_TIMEOUT]    = 0x6C,
325 };
326
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332         return netdev_priv(dev_get_drvdata(dev));
333 }
334
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336                                       enum dma_reg r)
337 {
338         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343                                         u32 val, enum dma_reg r)
344 {
345         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350                                       enum dma_reg r)
351 {
352         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357                                         u32 val, enum dma_reg r)
358 {
359         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368         TDMA_READ_PTR = 0,
369         RDMA_WRITE_PTR = TDMA_READ_PTR,
370         TDMA_READ_PTR_HI,
371         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372         TDMA_CONS_INDEX,
373         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374         TDMA_PROD_INDEX,
375         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376         DMA_RING_BUF_SIZE,
377         DMA_START_ADDR,
378         DMA_START_ADDR_HI,
379         DMA_END_ADDR,
380         DMA_END_ADDR_HI,
381         DMA_MBUF_DONE_THRESH,
382         TDMA_FLOW_PERIOD,
383         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384         TDMA_WRITE_PTR,
385         RDMA_READ_PTR = TDMA_WRITE_PTR,
386         TDMA_WRITE_PTR_HI,
387         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396         [TDMA_READ_PTR]                 = 0x00,
397         [TDMA_READ_PTR_HI]              = 0x04,
398         [TDMA_CONS_INDEX]               = 0x08,
399         [TDMA_PROD_INDEX]               = 0x0C,
400         [DMA_RING_BUF_SIZE]             = 0x10,
401         [DMA_START_ADDR]                = 0x14,
402         [DMA_START_ADDR_HI]             = 0x18,
403         [DMA_END_ADDR]                  = 0x1C,
404         [DMA_END_ADDR_HI]               = 0x20,
405         [DMA_MBUF_DONE_THRESH]          = 0x24,
406         [TDMA_FLOW_PERIOD]              = 0x28,
407         [TDMA_WRITE_PTR]                = 0x2C,
408         [TDMA_WRITE_PTR_HI]             = 0x30,
409 };
410
411 static const u8 genet_dma_ring_regs_v123[] = {
412         [TDMA_READ_PTR]                 = 0x00,
413         [TDMA_CONS_INDEX]               = 0x04,
414         [TDMA_PROD_INDEX]               = 0x08,
415         [DMA_RING_BUF_SIZE]             = 0x0C,
416         [DMA_START_ADDR]                = 0x10,
417         [DMA_END_ADDR]                  = 0x14,
418         [DMA_MBUF_DONE_THRESH]          = 0x18,
419         [TDMA_FLOW_PERIOD]              = 0x1C,
420         [TDMA_WRITE_PTR]                = 0x20,
421 };
422
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427                                            unsigned int ring,
428                                            enum dma_ring_reg r)
429 {
430         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431                               (DMA_RING_SIZE * ring) +
432                               genet_dma_ring_regs[r]);
433 }
434
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436                                              unsigned int ring, u32 val,
437                                              enum dma_ring_reg r)
438 {
439         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445                                            unsigned int ring,
446                                            enum dma_ring_reg r)
447 {
448         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449                               (DMA_RING_SIZE * ring) +
450                               genet_dma_ring_regs[r]);
451 }
452
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454                                              unsigned int ring, u32 val,
455                                              enum dma_ring_reg r)
456 {
457         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458                         (DMA_RING_SIZE * ring) +
459                         genet_dma_ring_regs[r]);
460 }
461
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464         u32 offset;
465         u32 reg;
466
467         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468         reg = bcmgenet_hfb_reg_readl(priv, offset);
469         reg |= (1 << (f_index % 32));
470         bcmgenet_hfb_reg_writel(priv, reg, offset);
471         reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472         reg |= RBUF_HFB_EN;
473         bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478         u32 offset, reg, reg1;
479
480         offset = HFB_FLT_ENABLE_V3PLUS;
481         reg = bcmgenet_hfb_reg_readl(priv, offset);
482         reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483         if  (f_index < 32) {
484                 reg1 &= ~(1 << (f_index % 32));
485                 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486         } else {
487                 reg &= ~(1 << (f_index % 32));
488                 bcmgenet_hfb_reg_writel(priv, reg, offset);
489         }
490         if (!reg && !reg1) {
491                 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492                 reg &= ~RBUF_HFB_EN;
493                 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494         }
495 }
496
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498                                                      u32 f_index, u32 rx_queue)
499 {
500         u32 offset;
501         u32 reg;
502
503         offset = f_index / 8;
504         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505         reg &= ~(0xF << (4 * (f_index % 8)));
506         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511                                            u32 f_index, u32 f_length)
512 {
513         u32 offset;
514         u32 reg;
515
516         offset = HFB_FLT_LEN_V3PLUS +
517                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518                  sizeof(u32);
519         reg = bcmgenet_hfb_reg_readl(priv, offset);
520         reg &= ~(0xFF << (8 * (f_index % 4)));
521         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522         bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527         while (size) {
528                 switch (*(unsigned char *)mask++) {
529                 case 0x00:
530                 case 0x0f:
531                 case 0xf0:
532                 case 0xff:
533                         size--;
534                         continue;
535                 default:
536                         return -EINVAL;
537                 }
538         }
539
540         return 0;
541 }
542
543 #define VALIDATE_MASK(x) \
544         bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547                                     u32 offset, void *val, void *mask,
548                                     size_t size)
549 {
550         u32 index, tmp;
551
552         index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553         tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555         while (size--) {
556                 if (offset++ & 1) {
557                         tmp &= ~0x300FF;
558                         tmp |= (*(unsigned char *)val++);
559                         switch ((*(unsigned char *)mask++)) {
560                         case 0xFF:
561                                 tmp |= 0x30000;
562                                 break;
563                         case 0xF0:
564                                 tmp |= 0x20000;
565                                 break;
566                         case 0x0F:
567                                 tmp |= 0x10000;
568                                 break;
569                         }
570                         bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571                         if (size)
572                                 tmp = bcmgenet_hfb_readl(priv,
573                                                          index * sizeof(u32));
574                 } else {
575                         tmp &= ~0xCFF00;
576                         tmp |= (*(unsigned char *)val++) << 8;
577                         switch ((*(unsigned char *)mask++)) {
578                         case 0xFF:
579                                 tmp |= 0xC0000;
580                                 break;
581                         case 0xF0:
582                                 tmp |= 0x80000;
583                                 break;
584                         case 0x0F:
585                                 tmp |= 0x40000;
586                                 break;
587                         }
588                         if (!size)
589                                 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590                 }
591         }
592
593         return 0;
594 }
595
596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597                                              struct bcmgenet_rxnfc_rule *rule)
598 {
599         struct ethtool_rx_flow_spec *fs = &rule->fs;
600         u32 offset = 0, f_length = 0, f;
601         u8 val_8, mask_8;
602         __be16 val_16;
603         u16 mask_16;
604         size_t size;
605
606         f = fs->location;
607         if (fs->flow_type & FLOW_MAC_EXT) {
608                 bcmgenet_hfb_insert_data(priv, f, 0,
609                                          &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610                                          sizeof(fs->h_ext.h_dest));
611         }
612
613         if (fs->flow_type & FLOW_EXT) {
614                 if (fs->m_ext.vlan_etype ||
615                     fs->m_ext.vlan_tci) {
616                         bcmgenet_hfb_insert_data(priv, f, 12,
617                                                  &fs->h_ext.vlan_etype,
618                                                  &fs->m_ext.vlan_etype,
619                                                  sizeof(fs->h_ext.vlan_etype));
620                         bcmgenet_hfb_insert_data(priv, f, 14,
621                                                  &fs->h_ext.vlan_tci,
622                                                  &fs->m_ext.vlan_tci,
623                                                  sizeof(fs->h_ext.vlan_tci));
624                         offset += VLAN_HLEN;
625                         f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626                 }
627         }
628
629         switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630         case ETHER_FLOW:
631                 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632                 bcmgenet_hfb_insert_data(priv, f, 0,
633                                          &fs->h_u.ether_spec.h_dest,
634                                          &fs->m_u.ether_spec.h_dest,
635                                          sizeof(fs->h_u.ether_spec.h_dest));
636                 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637                                          &fs->h_u.ether_spec.h_source,
638                                          &fs->m_u.ether_spec.h_source,
639                                          sizeof(fs->h_u.ether_spec.h_source));
640                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641                                          &fs->h_u.ether_spec.h_proto,
642                                          &fs->m_u.ether_spec.h_proto,
643                                          sizeof(fs->h_u.ether_spec.h_proto));
644                 break;
645         case IP_USER_FLOW:
646                 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647                 /* Specify IP Ether Type */
648                 val_16 = htons(ETH_P_IP);
649                 mask_16 = 0xFFFF;
650                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651                                          &val_16, &mask_16, sizeof(val_16));
652                 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653                                          &fs->h_u.usr_ip4_spec.tos,
654                                          &fs->m_u.usr_ip4_spec.tos,
655                                          sizeof(fs->h_u.usr_ip4_spec.tos));
656                 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657                                          &fs->h_u.usr_ip4_spec.proto,
658                                          &fs->m_u.usr_ip4_spec.proto,
659                                          sizeof(fs->h_u.usr_ip4_spec.proto));
660                 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661                                          &fs->h_u.usr_ip4_spec.ip4src,
662                                          &fs->m_u.usr_ip4_spec.ip4src,
663                                          sizeof(fs->h_u.usr_ip4_spec.ip4src));
664                 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665                                          &fs->h_u.usr_ip4_spec.ip4dst,
666                                          &fs->m_u.usr_ip4_spec.ip4dst,
667                                          sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668                 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669                         break;
670
671                 /* Only supports 20 byte IPv4 header */
672                 val_8 = 0x45;
673                 mask_8 = 0xFF;
674                 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675                                          &val_8, &mask_8,
676                                          sizeof(val_8));
677                 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678                 bcmgenet_hfb_insert_data(priv, f,
679                                          ETH_HLEN + 20 + offset,
680                                          &fs->h_u.usr_ip4_spec.l4_4_bytes,
681                                          &fs->m_u.usr_ip4_spec.l4_4_bytes,
682                                          size);
683                 f_length += DIV_ROUND_UP(size, 2);
684                 break;
685         }
686
687         bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688         if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689                 /* Ring 0 flows can be handled by the default Descriptor Ring
690                  * We'll map them to ring 0, but don't enable the filter
691                  */
692                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693                 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694         } else {
695                 /* Other Rx rings are direct mapped here */
696                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697                                                          fs->ring_cookie);
698                 bcmgenet_hfb_enable_filter(priv, f);
699                 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700         }
701 }
702
703 /* bcmgenet_hfb_clear
704  *
705  * Clear Hardware Filter Block and disable all filtering.
706  */
707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709         u32 base, i;
710
711         base = f_index * priv->hw_params->hfb_filter_size;
712         for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713                 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715
716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718         u32 i;
719
720         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721                 return;
722
723         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728                 bcmgenet_rdma_writel(priv, 0x0, i);
729
730         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731                 bcmgenet_hfb_reg_writel(priv, 0x0,
732                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734         for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735                 bcmgenet_hfb_clear_filter(priv, i);
736 }
737
738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740         int i;
741
742         INIT_LIST_HEAD(&priv->rxnfc_list);
743         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744                 return;
745
746         for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747                 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748                 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749         }
750
751         bcmgenet_hfb_clear(priv);
752 }
753
754 static int bcmgenet_begin(struct net_device *dev)
755 {
756         struct bcmgenet_priv *priv = netdev_priv(dev);
757
758         /* Turn on the clock */
759         return clk_prepare_enable(priv->clk);
760 }
761
762 static void bcmgenet_complete(struct net_device *dev)
763 {
764         struct bcmgenet_priv *priv = netdev_priv(dev);
765
766         /* Turn off the clock */
767         clk_disable_unprepare(priv->clk);
768 }
769
770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771                                        struct ethtool_link_ksettings *cmd)
772 {
773         if (!netif_running(dev))
774                 return -EINVAL;
775
776         if (!dev->phydev)
777                 return -ENODEV;
778
779         phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781         return 0;
782 }
783
784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785                                        const struct ethtool_link_ksettings *cmd)
786 {
787         if (!netif_running(dev))
788                 return -EINVAL;
789
790         if (!dev->phydev)
791                 return -ENODEV;
792
793         return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795
796 static int bcmgenet_set_features(struct net_device *dev,
797                                  netdev_features_t features)
798 {
799         struct bcmgenet_priv *priv = netdev_priv(dev);
800         u32 reg;
801         int ret;
802
803         ret = clk_prepare_enable(priv->clk);
804         if (ret)
805                 return ret;
806
807         /* Make sure we reflect the value of CRC_CMD_FWD */
808         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811         clk_disable_unprepare(priv->clk);
812
813         return ret;
814 }
815
816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818         struct bcmgenet_priv *priv = netdev_priv(dev);
819
820         return priv->msg_enable;
821 }
822
823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825         struct bcmgenet_priv *priv = netdev_priv(dev);
826
827         priv->msg_enable = level;
828 }
829
830 static int bcmgenet_get_coalesce(struct net_device *dev,
831                                  struct ethtool_coalesce *ec,
832                                  struct kernel_ethtool_coalesce *kernel_coal,
833                                  struct netlink_ext_ack *extack)
834 {
835         struct bcmgenet_priv *priv = netdev_priv(dev);
836         struct bcmgenet_rx_ring *ring;
837         unsigned int i;
838
839         ec->tx_max_coalesced_frames =
840                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
841                                          DMA_MBUF_DONE_THRESH);
842         ec->rx_max_coalesced_frames =
843                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
844                                          DMA_MBUF_DONE_THRESH);
845         ec->rx_coalesce_usecs =
846                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
847
848         for (i = 0; i < priv->hw_params->rx_queues; i++) {
849                 ring = &priv->rx_rings[i];
850                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
851         }
852         ring = &priv->rx_rings[DESC_INDEX];
853         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
854
855         return 0;
856 }
857
858 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
859                                      u32 usecs, u32 pkts)
860 {
861         struct bcmgenet_priv *priv = ring->priv;
862         unsigned int i = ring->index;
863         u32 reg;
864
865         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
866
867         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
868         reg &= ~DMA_TIMEOUT_MASK;
869         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
870         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
871 }
872
873 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
874                                           struct ethtool_coalesce *ec)
875 {
876         struct dim_cq_moder moder;
877         u32 usecs, pkts;
878
879         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
880         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
881         usecs = ring->rx_coalesce_usecs;
882         pkts = ring->rx_max_coalesced_frames;
883
884         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
885                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
886                 usecs = moder.usec;
887                 pkts = moder.pkts;
888         }
889
890         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
891         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
892 }
893
894 static int bcmgenet_set_coalesce(struct net_device *dev,
895                                  struct ethtool_coalesce *ec,
896                                  struct kernel_ethtool_coalesce *kernel_coal,
897                                  struct netlink_ext_ack *extack)
898 {
899         struct bcmgenet_priv *priv = netdev_priv(dev);
900         unsigned int i;
901
902         /* Base system clock is 125Mhz, DMA timeout is this reference clock
903          * divided by 1024, which yields roughly 8.192us, our maximum value
904          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
905          */
906         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
907             ec->tx_max_coalesced_frames == 0 ||
908             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
909             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
910                 return -EINVAL;
911
912         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
913                 return -EINVAL;
914
915         /* GENET TDMA hardware does not support a configurable timeout, but will
916          * always generate an interrupt either after MBDONE packets have been
917          * transmitted, or when the ring is empty.
918          */
919
920         /* Program all TX queues with the same values, as there is no
921          * ethtool knob to do coalescing on a per-queue basis
922          */
923         for (i = 0; i < priv->hw_params->tx_queues; i++)
924                 bcmgenet_tdma_ring_writel(priv, i,
925                                           ec->tx_max_coalesced_frames,
926                                           DMA_MBUF_DONE_THRESH);
927         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
928                                   ec->tx_max_coalesced_frames,
929                                   DMA_MBUF_DONE_THRESH);
930
931         for (i = 0; i < priv->hw_params->rx_queues; i++)
932                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
933         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
934
935         return 0;
936 }
937
938 static void bcmgenet_get_pauseparam(struct net_device *dev,
939                                     struct ethtool_pauseparam *epause)
940 {
941         struct bcmgenet_priv *priv;
942         u32 umac_cmd;
943
944         priv = netdev_priv(dev);
945
946         epause->autoneg = priv->autoneg_pause;
947
948         if (netif_carrier_ok(dev)) {
949                 /* report active state when link is up */
950                 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
951                 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
952                 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
953         } else {
954                 /* otherwise report stored settings */
955                 epause->tx_pause = priv->tx_pause;
956                 epause->rx_pause = priv->rx_pause;
957         }
958 }
959
960 static int bcmgenet_set_pauseparam(struct net_device *dev,
961                                    struct ethtool_pauseparam *epause)
962 {
963         struct bcmgenet_priv *priv = netdev_priv(dev);
964
965         if (!dev->phydev)
966                 return -ENODEV;
967
968         if (!phy_validate_pause(dev->phydev, epause))
969                 return -EINVAL;
970
971         priv->autoneg_pause = !!epause->autoneg;
972         priv->tx_pause = !!epause->tx_pause;
973         priv->rx_pause = !!epause->rx_pause;
974
975         bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
976
977         return 0;
978 }
979
980 /* standard ethtool support functions. */
981 enum bcmgenet_stat_type {
982         BCMGENET_STAT_NETDEV = -1,
983         BCMGENET_STAT_MIB_RX,
984         BCMGENET_STAT_MIB_TX,
985         BCMGENET_STAT_RUNT,
986         BCMGENET_STAT_MISC,
987         BCMGENET_STAT_SOFT,
988 };
989
990 struct bcmgenet_stats {
991         char stat_string[ETH_GSTRING_LEN];
992         int stat_sizeof;
993         int stat_offset;
994         enum bcmgenet_stat_type type;
995         /* reg offset from UMAC base for misc counters */
996         u16 reg_offset;
997 };
998
999 #define STAT_NETDEV(m) { \
1000         .stat_string = __stringify(m), \
1001         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
1002         .stat_offset = offsetof(struct net_device_stats, m), \
1003         .type = BCMGENET_STAT_NETDEV, \
1004 }
1005
1006 #define STAT_GENET_MIB(str, m, _type) { \
1007         .stat_string = str, \
1008         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1009         .stat_offset = offsetof(struct bcmgenet_priv, m), \
1010         .type = _type, \
1011 }
1012
1013 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
1014 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
1015 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
1016 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
1017
1018 #define STAT_GENET_MISC(str, m, offset) { \
1019         .stat_string = str, \
1020         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1021         .stat_offset = offsetof(struct bcmgenet_priv, m), \
1022         .type = BCMGENET_STAT_MISC, \
1023         .reg_offset = offset, \
1024 }
1025
1026 #define STAT_GENET_Q(num) \
1027         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1028                         tx_rings[num].packets), \
1029         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1030                         tx_rings[num].bytes), \
1031         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1032                         rx_rings[num].bytes),    \
1033         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1034                         rx_rings[num].packets), \
1035         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1036                         rx_rings[num].errors), \
1037         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1038                         rx_rings[num].dropped)
1039
1040 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1041  * between the end of TX stats and the beginning of the RX RUNT
1042  */
1043 #define BCMGENET_STAT_OFFSET    0xc
1044
1045 /* Hardware counters must be kept in sync because the order/offset
1046  * is important here (order in structure declaration = order in hardware)
1047  */
1048 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1049         /* general stats */
1050         STAT_NETDEV(rx_packets),
1051         STAT_NETDEV(tx_packets),
1052         STAT_NETDEV(rx_bytes),
1053         STAT_NETDEV(tx_bytes),
1054         STAT_NETDEV(rx_errors),
1055         STAT_NETDEV(tx_errors),
1056         STAT_NETDEV(rx_dropped),
1057         STAT_NETDEV(tx_dropped),
1058         STAT_NETDEV(multicast),
1059         /* UniMAC RSV counters */
1060         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1061         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1062         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1063         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1064         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1065         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1066         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1067         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1068         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1069         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1070         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1071         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1072         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1073         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1074         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1075         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1076         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1077         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1078         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1079         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1080         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1081         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1082         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1083         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1084         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1085         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1086         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1087         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1088         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1089         /* UniMAC TSV counters */
1090         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1091         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1092         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1093         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1094         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1095         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1096         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1097         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1098         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1099         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1100         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1101         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1102         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1103         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1104         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1105         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1106         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1107         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1108         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1109         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1110         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1111         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1112         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1113         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1114         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1115         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1116         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1117         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1118         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1119         /* UniMAC RUNT counters */
1120         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1121         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1122         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1123         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1124         /* Misc UniMAC counters */
1125         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1126                         UMAC_RBUF_OVFL_CNT_V1),
1127         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1128                         UMAC_RBUF_ERR_CNT_V1),
1129         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1130         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1131         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1132         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1133         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1134         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1135                             mib.tx_realloc_tsb_failed),
1136         /* Per TX queues */
1137         STAT_GENET_Q(0),
1138         STAT_GENET_Q(1),
1139         STAT_GENET_Q(2),
1140         STAT_GENET_Q(3),
1141         STAT_GENET_Q(16),
1142 };
1143
1144 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
1145
1146 static void bcmgenet_get_drvinfo(struct net_device *dev,
1147                                  struct ethtool_drvinfo *info)
1148 {
1149         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1150 }
1151
1152 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1153 {
1154         switch (string_set) {
1155         case ETH_SS_STATS:
1156                 return BCMGENET_STATS_LEN;
1157         default:
1158                 return -EOPNOTSUPP;
1159         }
1160 }
1161
1162 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1163                                  u8 *data)
1164 {
1165         int i;
1166
1167         switch (stringset) {
1168         case ETH_SS_STATS:
1169                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1170                         memcpy(data + i * ETH_GSTRING_LEN,
1171                                bcmgenet_gstrings_stats[i].stat_string,
1172                                ETH_GSTRING_LEN);
1173                 }
1174                 break;
1175         }
1176 }
1177
1178 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1179 {
1180         u16 new_offset;
1181         u32 val;
1182
1183         switch (offset) {
1184         case UMAC_RBUF_OVFL_CNT_V1:
1185                 if (GENET_IS_V2(priv))
1186                         new_offset = RBUF_OVFL_CNT_V2;
1187                 else
1188                         new_offset = RBUF_OVFL_CNT_V3PLUS;
1189
1190                 val = bcmgenet_rbuf_readl(priv, new_offset);
1191                 /* clear if overflowed */
1192                 if (val == ~0)
1193                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1194                 break;
1195         case UMAC_RBUF_ERR_CNT_V1:
1196                 if (GENET_IS_V2(priv))
1197                         new_offset = RBUF_ERR_CNT_V2;
1198                 else
1199                         new_offset = RBUF_ERR_CNT_V3PLUS;
1200
1201                 val = bcmgenet_rbuf_readl(priv, new_offset);
1202                 /* clear if overflowed */
1203                 if (val == ~0)
1204                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1205                 break;
1206         default:
1207                 val = bcmgenet_umac_readl(priv, offset);
1208                 /* clear if overflowed */
1209                 if (val == ~0)
1210                         bcmgenet_umac_writel(priv, 0, offset);
1211                 break;
1212         }
1213
1214         return val;
1215 }
1216
1217 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1218 {
1219         int i, j = 0;
1220
1221         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1222                 const struct bcmgenet_stats *s;
1223                 u8 offset = 0;
1224                 u32 val = 0;
1225                 char *p;
1226
1227                 s = &bcmgenet_gstrings_stats[i];
1228                 switch (s->type) {
1229                 case BCMGENET_STAT_NETDEV:
1230                 case BCMGENET_STAT_SOFT:
1231                         continue;
1232                 case BCMGENET_STAT_RUNT:
1233                         offset += BCMGENET_STAT_OFFSET;
1234                         fallthrough;
1235                 case BCMGENET_STAT_MIB_TX:
1236                         offset += BCMGENET_STAT_OFFSET;
1237                         fallthrough;
1238                 case BCMGENET_STAT_MIB_RX:
1239                         val = bcmgenet_umac_readl(priv,
1240                                                   UMAC_MIB_START + j + offset);
1241                         offset = 0;     /* Reset Offset */
1242                         break;
1243                 case BCMGENET_STAT_MISC:
1244                         if (GENET_IS_V1(priv)) {
1245                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
1246                                 /* clear if overflowed */
1247                                 if (val == ~0)
1248                                         bcmgenet_umac_writel(priv, 0,
1249                                                              s->reg_offset);
1250                         } else {
1251                                 val = bcmgenet_update_stat_misc(priv,
1252                                                                 s->reg_offset);
1253                         }
1254                         break;
1255                 }
1256
1257                 j += s->stat_sizeof;
1258                 p = (char *)priv + s->stat_offset;
1259                 *(u32 *)p = val;
1260         }
1261 }
1262
1263 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1264                                        struct ethtool_stats *stats,
1265                                        u64 *data)
1266 {
1267         struct bcmgenet_priv *priv = netdev_priv(dev);
1268         int i;
1269
1270         if (netif_running(dev))
1271                 bcmgenet_update_mib_counters(priv);
1272
1273         dev->netdev_ops->ndo_get_stats(dev);
1274
1275         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1276                 const struct bcmgenet_stats *s;
1277                 char *p;
1278
1279                 s = &bcmgenet_gstrings_stats[i];
1280                 if (s->type == BCMGENET_STAT_NETDEV)
1281                         p = (char *)&dev->stats;
1282                 else
1283                         p = (char *)priv;
1284                 p += s->stat_offset;
1285                 if (sizeof(unsigned long) != sizeof(u32) &&
1286                     s->stat_sizeof == sizeof(unsigned long))
1287                         data[i] = *(unsigned long *)p;
1288                 else
1289                         data[i] = *(u32 *)p;
1290         }
1291 }
1292
1293 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1294 {
1295         struct bcmgenet_priv *priv = netdev_priv(dev);
1296         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1297         u32 reg;
1298
1299         if (enable && !priv->clk_eee_enabled) {
1300                 clk_prepare_enable(priv->clk_eee);
1301                 priv->clk_eee_enabled = true;
1302         }
1303
1304         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1305         if (enable)
1306                 reg |= EEE_EN;
1307         else
1308                 reg &= ~EEE_EN;
1309         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1310
1311         /* Enable EEE and switch to a 27Mhz clock automatically */
1312         reg = bcmgenet_readl(priv->base + off);
1313         if (enable)
1314                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1315         else
1316                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1317         bcmgenet_writel(reg, priv->base + off);
1318
1319         /* Do the same for thing for RBUF */
1320         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1321         if (enable)
1322                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1323         else
1324                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1325         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1326
1327         if (!enable && priv->clk_eee_enabled) {
1328                 clk_disable_unprepare(priv->clk_eee);
1329                 priv->clk_eee_enabled = false;
1330         }
1331
1332         priv->eee.eee_enabled = enable;
1333         priv->eee.eee_active = enable;
1334 }
1335
1336 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1337 {
1338         struct bcmgenet_priv *priv = netdev_priv(dev);
1339         struct ethtool_eee *p = &priv->eee;
1340
1341         if (GENET_IS_V1(priv))
1342                 return -EOPNOTSUPP;
1343
1344         if (!dev->phydev)
1345                 return -ENODEV;
1346
1347         e->eee_enabled = p->eee_enabled;
1348         e->eee_active = p->eee_active;
1349         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1350
1351         return phy_ethtool_get_eee(dev->phydev, e);
1352 }
1353
1354 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1355 {
1356         struct bcmgenet_priv *priv = netdev_priv(dev);
1357         struct ethtool_eee *p = &priv->eee;
1358         int ret = 0;
1359
1360         if (GENET_IS_V1(priv))
1361                 return -EOPNOTSUPP;
1362
1363         if (!dev->phydev)
1364                 return -ENODEV;
1365
1366         p->eee_enabled = e->eee_enabled;
1367
1368         if (!p->eee_enabled) {
1369                 bcmgenet_eee_enable_set(dev, false);
1370         } else {
1371                 ret = phy_init_eee(dev->phydev, false);
1372                 if (ret) {
1373                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1374                         return ret;
1375                 }
1376
1377                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1378                 bcmgenet_eee_enable_set(dev, true);
1379         }
1380
1381         return phy_ethtool_set_eee(dev->phydev, e);
1382 }
1383
1384 static int bcmgenet_validate_flow(struct net_device *dev,
1385                                   struct ethtool_rxnfc *cmd)
1386 {
1387         struct ethtool_usrip4_spec *l4_mask;
1388         struct ethhdr *eth_mask;
1389
1390         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1391                 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1392                            cmd->fs.location);
1393                 return -EINVAL;
1394         }
1395
1396         switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1397         case IP_USER_FLOW:
1398                 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1399                 /* don't allow mask which isn't valid */
1400                 if (VALIDATE_MASK(l4_mask->ip4src) ||
1401                     VALIDATE_MASK(l4_mask->ip4dst) ||
1402                     VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1403                     VALIDATE_MASK(l4_mask->proto) ||
1404                     VALIDATE_MASK(l4_mask->ip_ver) ||
1405                     VALIDATE_MASK(l4_mask->tos)) {
1406                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1407                         return -EINVAL;
1408                 }
1409                 break;
1410         case ETHER_FLOW:
1411                 eth_mask = &cmd->fs.m_u.ether_spec;
1412                 /* don't allow mask which isn't valid */
1413                 if (VALIDATE_MASK(eth_mask->h_dest) ||
1414                     VALIDATE_MASK(eth_mask->h_source) ||
1415                     VALIDATE_MASK(eth_mask->h_proto)) {
1416                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1417                         return -EINVAL;
1418                 }
1419                 break;
1420         default:
1421                 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1422                            cmd->fs.flow_type);
1423                 return -EINVAL;
1424         }
1425
1426         if ((cmd->fs.flow_type & FLOW_EXT)) {
1427                 /* don't allow mask which isn't valid */
1428                 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1429                     VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1430                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1431                         return -EINVAL;
1432                 }
1433                 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1434                         netdev_err(dev, "rxnfc: user-def not supported\n");
1435                         return -EINVAL;
1436                 }
1437         }
1438
1439         if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1440                 /* don't allow mask which isn't valid */
1441                 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1442                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1443                         return -EINVAL;
1444                 }
1445         }
1446
1447         return 0;
1448 }
1449
1450 static int bcmgenet_insert_flow(struct net_device *dev,
1451                                 struct ethtool_rxnfc *cmd)
1452 {
1453         struct bcmgenet_priv *priv = netdev_priv(dev);
1454         struct bcmgenet_rxnfc_rule *loc_rule;
1455         int err;
1456
1457         if (priv->hw_params->hfb_filter_size < 128) {
1458                 netdev_err(dev, "rxnfc: Not supported by this device\n");
1459                 return -EINVAL;
1460         }
1461
1462         if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1463             cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1464                 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1465                            cmd->fs.ring_cookie);
1466                 return -EINVAL;
1467         }
1468
1469         err = bcmgenet_validate_flow(dev, cmd);
1470         if (err)
1471                 return err;
1472
1473         loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1474         if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1475                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1476         if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1477                 list_del(&loc_rule->list);
1478                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1479         }
1480         loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1481         memcpy(&loc_rule->fs, &cmd->fs,
1482                sizeof(struct ethtool_rx_flow_spec));
1483
1484         bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1485
1486         list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1487
1488         return 0;
1489 }
1490
1491 static int bcmgenet_delete_flow(struct net_device *dev,
1492                                 struct ethtool_rxnfc *cmd)
1493 {
1494         struct bcmgenet_priv *priv = netdev_priv(dev);
1495         struct bcmgenet_rxnfc_rule *rule;
1496         int err = 0;
1497
1498         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1499                 return -EINVAL;
1500
1501         rule = &priv->rxnfc_rules[cmd->fs.location];
1502         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1503                 err =  -ENOENT;
1504                 goto out;
1505         }
1506
1507         if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1508                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1509         if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1510                 list_del(&rule->list);
1511                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1512         }
1513         rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1514         memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1515
1516 out:
1517         return err;
1518 }
1519
1520 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1521 {
1522         struct bcmgenet_priv *priv = netdev_priv(dev);
1523         int err = 0;
1524
1525         switch (cmd->cmd) {
1526         case ETHTOOL_SRXCLSRLINS:
1527                 err = bcmgenet_insert_flow(dev, cmd);
1528                 break;
1529         case ETHTOOL_SRXCLSRLDEL:
1530                 err = bcmgenet_delete_flow(dev, cmd);
1531                 break;
1532         default:
1533                 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1534                             cmd->cmd);
1535                 return -EINVAL;
1536         }
1537
1538         return err;
1539 }
1540
1541 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1542                              int loc)
1543 {
1544         struct bcmgenet_priv *priv = netdev_priv(dev);
1545         struct bcmgenet_rxnfc_rule *rule;
1546         int err = 0;
1547
1548         if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1549                 return -EINVAL;
1550
1551         rule = &priv->rxnfc_rules[loc];
1552         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1553                 err = -ENOENT;
1554         else
1555                 memcpy(&cmd->fs, &rule->fs,
1556                        sizeof(struct ethtool_rx_flow_spec));
1557
1558         return err;
1559 }
1560
1561 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1562 {
1563         struct list_head *pos;
1564         int res = 0;
1565
1566         list_for_each(pos, &priv->rxnfc_list)
1567                 res++;
1568
1569         return res;
1570 }
1571
1572 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1573                               u32 *rule_locs)
1574 {
1575         struct bcmgenet_priv *priv = netdev_priv(dev);
1576         struct bcmgenet_rxnfc_rule *rule;
1577         int err = 0;
1578         int i = 0;
1579
1580         switch (cmd->cmd) {
1581         case ETHTOOL_GRXRINGS:
1582                 cmd->data = priv->hw_params->rx_queues ?: 1;
1583                 break;
1584         case ETHTOOL_GRXCLSRLCNT:
1585                 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1586                 cmd->data = MAX_NUM_OF_FS_RULES;
1587                 break;
1588         case ETHTOOL_GRXCLSRULE:
1589                 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1590                 break;
1591         case ETHTOOL_GRXCLSRLALL:
1592                 list_for_each_entry(rule, &priv->rxnfc_list, list)
1593                         if (i < cmd->rule_cnt)
1594                                 rule_locs[i++] = rule->fs.location;
1595                 cmd->rule_cnt = i;
1596                 cmd->data = MAX_NUM_OF_FS_RULES;
1597                 break;
1598         default:
1599                 err = -EOPNOTSUPP;
1600                 break;
1601         }
1602
1603         return err;
1604 }
1605
1606 /* standard ethtool support functions. */
1607 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1608         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1609                                      ETHTOOL_COALESCE_MAX_FRAMES |
1610                                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1611         .begin                  = bcmgenet_begin,
1612         .complete               = bcmgenet_complete,
1613         .get_strings            = bcmgenet_get_strings,
1614         .get_sset_count         = bcmgenet_get_sset_count,
1615         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1616         .get_drvinfo            = bcmgenet_get_drvinfo,
1617         .get_link               = ethtool_op_get_link,
1618         .get_msglevel           = bcmgenet_get_msglevel,
1619         .set_msglevel           = bcmgenet_set_msglevel,
1620         .get_wol                = bcmgenet_get_wol,
1621         .set_wol                = bcmgenet_set_wol,
1622         .get_eee                = bcmgenet_get_eee,
1623         .set_eee                = bcmgenet_set_eee,
1624         .nway_reset             = phy_ethtool_nway_reset,
1625         .get_coalesce           = bcmgenet_get_coalesce,
1626         .set_coalesce           = bcmgenet_set_coalesce,
1627         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1628         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1629         .get_ts_info            = ethtool_op_get_ts_info,
1630         .get_rxnfc              = bcmgenet_get_rxnfc,
1631         .set_rxnfc              = bcmgenet_set_rxnfc,
1632         .get_pauseparam         = bcmgenet_get_pauseparam,
1633         .set_pauseparam         = bcmgenet_set_pauseparam,
1634 };
1635
1636 /* Power down the unimac, based on mode. */
1637 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1638                                 enum bcmgenet_power_mode mode)
1639 {
1640         int ret = 0;
1641         u32 reg;
1642
1643         switch (mode) {
1644         case GENET_POWER_CABLE_SENSE:
1645                 phy_detach(priv->dev->phydev);
1646                 break;
1647
1648         case GENET_POWER_WOL_MAGIC:
1649                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1650                 break;
1651
1652         case GENET_POWER_PASSIVE:
1653                 /* Power down LED */
1654                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1655                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1656                         if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1657                                 reg |= EXT_PWR_DOWN_PHY_EN |
1658                                        EXT_PWR_DOWN_PHY_RD |
1659                                        EXT_PWR_DOWN_PHY_SD |
1660                                        EXT_PWR_DOWN_PHY_RX |
1661                                        EXT_PWR_DOWN_PHY_TX |
1662                                        EXT_IDDQ_GLBL_PWR;
1663                         else
1664                                 reg |= EXT_PWR_DOWN_PHY;
1665
1666                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1667                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1668
1669                         bcmgenet_phy_power_set(priv->dev, false);
1670                 }
1671                 break;
1672         default:
1673                 break;
1674         }
1675
1676         return ret;
1677 }
1678
1679 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1680                               enum bcmgenet_power_mode mode)
1681 {
1682         u32 reg;
1683
1684         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1685                 return;
1686
1687         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1688
1689         switch (mode) {
1690         case GENET_POWER_PASSIVE:
1691                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1692                          EXT_ENERGY_DET_MASK);
1693                 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1694                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1695                                  EXT_PWR_DOWN_PHY_RD |
1696                                  EXT_PWR_DOWN_PHY_SD |
1697                                  EXT_PWR_DOWN_PHY_RX |
1698                                  EXT_PWR_DOWN_PHY_TX |
1699                                  EXT_IDDQ_GLBL_PWR);
1700                         reg |=   EXT_PHY_RESET;
1701                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1702                         mdelay(1);
1703
1704                         reg &=  ~EXT_PHY_RESET;
1705                 } else {
1706                         reg &= ~EXT_PWR_DOWN_PHY;
1707                         reg |= EXT_PWR_DN_EN_LD;
1708                 }
1709                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1710                 bcmgenet_phy_power_set(priv->dev, true);
1711                 break;
1712
1713         case GENET_POWER_CABLE_SENSE:
1714                 /* enable APD */
1715                 if (!GENET_IS_V5(priv)) {
1716                         reg |= EXT_PWR_DN_EN_LD;
1717                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1718                 }
1719                 break;
1720         case GENET_POWER_WOL_MAGIC:
1721                 bcmgenet_wol_power_up_cfg(priv, mode);
1722                 return;
1723         default:
1724                 break;
1725         }
1726 }
1727
1728 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1729                                          struct bcmgenet_tx_ring *ring)
1730 {
1731         struct enet_cb *tx_cb_ptr;
1732
1733         tx_cb_ptr = ring->cbs;
1734         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1735
1736         /* Advancing local write pointer */
1737         if (ring->write_ptr == ring->end_ptr)
1738                 ring->write_ptr = ring->cb_ptr;
1739         else
1740                 ring->write_ptr++;
1741
1742         return tx_cb_ptr;
1743 }
1744
1745 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1746                                          struct bcmgenet_tx_ring *ring)
1747 {
1748         struct enet_cb *tx_cb_ptr;
1749
1750         tx_cb_ptr = ring->cbs;
1751         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1752
1753         /* Rewinding local write pointer */
1754         if (ring->write_ptr == ring->cb_ptr)
1755                 ring->write_ptr = ring->end_ptr;
1756         else
1757                 ring->write_ptr--;
1758
1759         return tx_cb_ptr;
1760 }
1761
1762 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1763 {
1764         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1765                                  INTRL2_CPU_MASK_SET);
1766 }
1767
1768 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1769 {
1770         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1771                                  INTRL2_CPU_MASK_CLEAR);
1772 }
1773
1774 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1775 {
1776         bcmgenet_intrl2_1_writel(ring->priv,
1777                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1778                                  INTRL2_CPU_MASK_SET);
1779 }
1780
1781 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1782 {
1783         bcmgenet_intrl2_1_writel(ring->priv,
1784                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1785                                  INTRL2_CPU_MASK_CLEAR);
1786 }
1787
1788 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1789 {
1790         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1791                                  INTRL2_CPU_MASK_SET);
1792 }
1793
1794 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1795 {
1796         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1797                                  INTRL2_CPU_MASK_CLEAR);
1798 }
1799
1800 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1801 {
1802         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1803                                  INTRL2_CPU_MASK_CLEAR);
1804 }
1805
1806 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1807 {
1808         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1809                                  INTRL2_CPU_MASK_SET);
1810 }
1811
1812 /* Simple helper to free a transmit control block's resources
1813  * Returns an skb when the last transmit control block associated with the
1814  * skb is freed.  The skb should be freed by the caller if necessary.
1815  */
1816 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1817                                            struct enet_cb *cb)
1818 {
1819         struct sk_buff *skb;
1820
1821         skb = cb->skb;
1822
1823         if (skb) {
1824                 cb->skb = NULL;
1825                 if (cb == GENET_CB(skb)->first_cb)
1826                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1827                                          dma_unmap_len(cb, dma_len),
1828                                          DMA_TO_DEVICE);
1829                 else
1830                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1831                                        dma_unmap_len(cb, dma_len),
1832                                        DMA_TO_DEVICE);
1833                 dma_unmap_addr_set(cb, dma_addr, 0);
1834
1835                 if (cb == GENET_CB(skb)->last_cb)
1836                         return skb;
1837
1838         } else if (dma_unmap_addr(cb, dma_addr)) {
1839                 dma_unmap_page(dev,
1840                                dma_unmap_addr(cb, dma_addr),
1841                                dma_unmap_len(cb, dma_len),
1842                                DMA_TO_DEVICE);
1843                 dma_unmap_addr_set(cb, dma_addr, 0);
1844         }
1845
1846         return NULL;
1847 }
1848
1849 /* Simple helper to free a receive control block's resources */
1850 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1851                                            struct enet_cb *cb)
1852 {
1853         struct sk_buff *skb;
1854
1855         skb = cb->skb;
1856         cb->skb = NULL;
1857
1858         if (dma_unmap_addr(cb, dma_addr)) {
1859                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1860                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1861                 dma_unmap_addr_set(cb, dma_addr, 0);
1862         }
1863
1864         return skb;
1865 }
1866
1867 /* Unlocked version of the reclaim routine */
1868 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1869                                           struct bcmgenet_tx_ring *ring)
1870 {
1871         struct bcmgenet_priv *priv = netdev_priv(dev);
1872         unsigned int txbds_processed = 0;
1873         unsigned int bytes_compl = 0;
1874         unsigned int pkts_compl = 0;
1875         unsigned int txbds_ready;
1876         unsigned int c_index;
1877         struct sk_buff *skb;
1878
1879         /* Clear status before servicing to reduce spurious interrupts */
1880         if (ring->index == DESC_INDEX)
1881                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1882                                          INTRL2_CPU_CLEAR);
1883         else
1884                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1885                                          INTRL2_CPU_CLEAR);
1886
1887         /* Compute how many buffers are transmitted since last xmit call */
1888         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1889                 & DMA_C_INDEX_MASK;
1890         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1891
1892         netif_dbg(priv, tx_done, dev,
1893                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1894                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1895
1896         /* Reclaim transmitted buffers */
1897         while (txbds_processed < txbds_ready) {
1898                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1899                                           &priv->tx_cbs[ring->clean_ptr]);
1900                 if (skb) {
1901                         pkts_compl++;
1902                         bytes_compl += GENET_CB(skb)->bytes_sent;
1903                         dev_consume_skb_any(skb);
1904                 }
1905
1906                 txbds_processed++;
1907                 if (likely(ring->clean_ptr < ring->end_ptr))
1908                         ring->clean_ptr++;
1909                 else
1910                         ring->clean_ptr = ring->cb_ptr;
1911         }
1912
1913         ring->free_bds += txbds_processed;
1914         ring->c_index = c_index;
1915
1916         ring->packets += pkts_compl;
1917         ring->bytes += bytes_compl;
1918
1919         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1920                                   pkts_compl, bytes_compl);
1921
1922         return txbds_processed;
1923 }
1924
1925 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1926                                 struct bcmgenet_tx_ring *ring)
1927 {
1928         unsigned int released;
1929
1930         spin_lock_bh(&ring->lock);
1931         released = __bcmgenet_tx_reclaim(dev, ring);
1932         spin_unlock_bh(&ring->lock);
1933
1934         return released;
1935 }
1936
1937 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1938 {
1939         struct bcmgenet_tx_ring *ring =
1940                 container_of(napi, struct bcmgenet_tx_ring, napi);
1941         unsigned int work_done = 0;
1942         struct netdev_queue *txq;
1943
1944         spin_lock(&ring->lock);
1945         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1946         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1947                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1948                 netif_tx_wake_queue(txq);
1949         }
1950         spin_unlock(&ring->lock);
1951
1952         if (work_done == 0) {
1953                 napi_complete(napi);
1954                 ring->int_enable(ring);
1955
1956                 return 0;
1957         }
1958
1959         return budget;
1960 }
1961
1962 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1963 {
1964         struct bcmgenet_priv *priv = netdev_priv(dev);
1965         int i;
1966
1967         if (netif_is_multiqueue(dev)) {
1968                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1969                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1970         }
1971
1972         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1973 }
1974
1975 /* Reallocate the SKB to put enough headroom in front of it and insert
1976  * the transmit checksum offsets in the descriptors
1977  */
1978 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1979                                         struct sk_buff *skb)
1980 {
1981         struct bcmgenet_priv *priv = netdev_priv(dev);
1982         struct status_64 *status = NULL;
1983         struct sk_buff *new_skb;
1984         u16 offset;
1985         u8 ip_proto;
1986         __be16 ip_ver;
1987         u32 tx_csum_info;
1988
1989         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1990                 /* If 64 byte status block enabled, must make sure skb has
1991                  * enough headroom for us to insert 64B status block.
1992                  */
1993                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1994                 if (!new_skb) {
1995                         dev_kfree_skb_any(skb);
1996                         priv->mib.tx_realloc_tsb_failed++;
1997                         dev->stats.tx_dropped++;
1998                         return NULL;
1999                 }
2000                 dev_consume_skb_any(skb);
2001                 skb = new_skb;
2002                 priv->mib.tx_realloc_tsb++;
2003         }
2004
2005         skb_push(skb, sizeof(*status));
2006         status = (struct status_64 *)skb->data;
2007
2008         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
2009                 ip_ver = skb->protocol;
2010                 switch (ip_ver) {
2011                 case htons(ETH_P_IP):
2012                         ip_proto = ip_hdr(skb)->protocol;
2013                         break;
2014                 case htons(ETH_P_IPV6):
2015                         ip_proto = ipv6_hdr(skb)->nexthdr;
2016                         break;
2017                 default:
2018                         /* don't use UDP flag */
2019                         ip_proto = 0;
2020                         break;
2021                 }
2022
2023                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2024                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2025                                 (offset + skb->csum_offset) |
2026                                 STATUS_TX_CSUM_LV;
2027
2028                 /* Set the special UDP flag for UDP */
2029                 if (ip_proto == IPPROTO_UDP)
2030                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2031
2032                 status->tx_csum_info = tx_csum_info;
2033         }
2034
2035         return skb;
2036 }
2037
2038 static void bcmgenet_hide_tsb(struct sk_buff *skb)
2039 {
2040         __skb_pull(skb, sizeof(struct status_64));
2041 }
2042
2043 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2044 {
2045         struct bcmgenet_priv *priv = netdev_priv(dev);
2046         struct device *kdev = &priv->pdev->dev;
2047         struct bcmgenet_tx_ring *ring = NULL;
2048         struct enet_cb *tx_cb_ptr;
2049         struct netdev_queue *txq;
2050         int nr_frags, index;
2051         dma_addr_t mapping;
2052         unsigned int size;
2053         skb_frag_t *frag;
2054         u32 len_stat;
2055         int ret;
2056         int i;
2057
2058         index = skb_get_queue_mapping(skb);
2059         /* Mapping strategy:
2060          * queue_mapping = 0, unclassified, packet xmited through ring16
2061          * queue_mapping = 1, goes to ring 0. (highest priority queue
2062          * queue_mapping = 2, goes to ring 1.
2063          * queue_mapping = 3, goes to ring 2.
2064          * queue_mapping = 4, goes to ring 3.
2065          */
2066         if (index == 0)
2067                 index = DESC_INDEX;
2068         else
2069                 index -= 1;
2070
2071         ring = &priv->tx_rings[index];
2072         txq = netdev_get_tx_queue(dev, ring->queue);
2073
2074         nr_frags = skb_shinfo(skb)->nr_frags;
2075
2076         spin_lock(&ring->lock);
2077         if (ring->free_bds <= (nr_frags + 1)) {
2078                 if (!netif_tx_queue_stopped(txq)) {
2079                         netif_tx_stop_queue(txq);
2080                         netdev_err(dev,
2081                                    "%s: tx ring %d full when queue %d awake\n",
2082                                    __func__, index, ring->queue);
2083                 }
2084                 ret = NETDEV_TX_BUSY;
2085                 goto out;
2086         }
2087
2088         /* Retain how many bytes will be sent on the wire, without TSB inserted
2089          * by transmit checksum offload
2090          */
2091         GENET_CB(skb)->bytes_sent = skb->len;
2092
2093         /* add the Transmit Status Block */
2094         skb = bcmgenet_add_tsb(dev, skb);
2095         if (!skb) {
2096                 ret = NETDEV_TX_OK;
2097                 goto out;
2098         }
2099
2100         for (i = 0; i <= nr_frags; i++) {
2101                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2102
2103                 BUG_ON(!tx_cb_ptr);
2104
2105                 if (!i) {
2106                         /* Transmit single SKB or head of fragment list */
2107                         GENET_CB(skb)->first_cb = tx_cb_ptr;
2108                         size = skb_headlen(skb);
2109                         mapping = dma_map_single(kdev, skb->data, size,
2110                                                  DMA_TO_DEVICE);
2111                 } else {
2112                         /* xmit fragment */
2113                         frag = &skb_shinfo(skb)->frags[i - 1];
2114                         size = skb_frag_size(frag);
2115                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
2116                                                    DMA_TO_DEVICE);
2117                 }
2118
2119                 ret = dma_mapping_error(kdev, mapping);
2120                 if (ret) {
2121                         priv->mib.tx_dma_failed++;
2122                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2123                         ret = NETDEV_TX_OK;
2124                         goto out_unmap_frags;
2125                 }
2126                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2127                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2128
2129                 tx_cb_ptr->skb = skb;
2130
2131                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2132                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2133
2134                 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2135                  * will need to restore software padding of "runt" packets
2136                  */
2137                 if (!i) {
2138                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2139                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2140                                 len_stat |= DMA_TX_DO_CSUM;
2141                 }
2142                 if (i == nr_frags)
2143                         len_stat |= DMA_EOP;
2144
2145                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2146         }
2147
2148         GENET_CB(skb)->last_cb = tx_cb_ptr;
2149
2150         bcmgenet_hide_tsb(skb);
2151         skb_tx_timestamp(skb);
2152
2153         /* Decrement total BD count and advance our write pointer */
2154         ring->free_bds -= nr_frags + 1;
2155         ring->prod_index += nr_frags + 1;
2156         ring->prod_index &= DMA_P_INDEX_MASK;
2157
2158         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2159
2160         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2161                 netif_tx_stop_queue(txq);
2162
2163         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2164                 /* Packets are ready, update producer index */
2165                 bcmgenet_tdma_ring_writel(priv, ring->index,
2166                                           ring->prod_index, TDMA_PROD_INDEX);
2167 out:
2168         spin_unlock(&ring->lock);
2169
2170         return ret;
2171
2172 out_unmap_frags:
2173         /* Back up for failed control block mapping */
2174         bcmgenet_put_txcb(priv, ring);
2175
2176         /* Unmap successfully mapped control blocks */
2177         while (i-- > 0) {
2178                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2179                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2180         }
2181
2182         dev_kfree_skb(skb);
2183         goto out;
2184 }
2185
2186 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2187                                           struct enet_cb *cb)
2188 {
2189         struct device *kdev = &priv->pdev->dev;
2190         struct sk_buff *skb;
2191         struct sk_buff *rx_skb;
2192         dma_addr_t mapping;
2193
2194         /* Allocate a new Rx skb */
2195         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2196                                  GFP_ATOMIC | __GFP_NOWARN);
2197         if (!skb) {
2198                 priv->mib.alloc_rx_buff_failed++;
2199                 netif_err(priv, rx_err, priv->dev,
2200                           "%s: Rx skb allocation failed\n", __func__);
2201                 return NULL;
2202         }
2203
2204         /* DMA-map the new Rx skb */
2205         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2206                                  DMA_FROM_DEVICE);
2207         if (dma_mapping_error(kdev, mapping)) {
2208                 priv->mib.rx_dma_failed++;
2209                 dev_kfree_skb_any(skb);
2210                 netif_err(priv, rx_err, priv->dev,
2211                           "%s: Rx skb DMA mapping failed\n", __func__);
2212                 return NULL;
2213         }
2214
2215         /* Grab the current Rx skb from the ring and DMA-unmap it */
2216         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2217
2218         /* Put the new Rx skb on the ring */
2219         cb->skb = skb;
2220         dma_unmap_addr_set(cb, dma_addr, mapping);
2221         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2222         dmadesc_set_addr(priv, cb->bd_addr, mapping);
2223
2224         /* Return the current Rx skb to caller */
2225         return rx_skb;
2226 }
2227
2228 /* bcmgenet_desc_rx - descriptor based rx process.
2229  * this could be called from bottom half, or from NAPI polling method.
2230  */
2231 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2232                                      unsigned int budget)
2233 {
2234         struct bcmgenet_priv *priv = ring->priv;
2235         struct net_device *dev = priv->dev;
2236         struct enet_cb *cb;
2237         struct sk_buff *skb;
2238         u32 dma_length_status;
2239         unsigned long dma_flag;
2240         int len;
2241         unsigned int rxpktprocessed = 0, rxpkttoprocess;
2242         unsigned int bytes_processed = 0;
2243         unsigned int p_index, mask;
2244         unsigned int discards;
2245
2246         /* Clear status before servicing to reduce spurious interrupts */
2247         if (ring->index == DESC_INDEX) {
2248                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2249                                          INTRL2_CPU_CLEAR);
2250         } else {
2251                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2252                 bcmgenet_intrl2_1_writel(priv,
2253                                          mask,
2254                                          INTRL2_CPU_CLEAR);
2255         }
2256
2257         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2258
2259         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2260                    DMA_P_INDEX_DISCARD_CNT_MASK;
2261         if (discards > ring->old_discards) {
2262                 discards = discards - ring->old_discards;
2263                 ring->errors += discards;
2264                 ring->old_discards += discards;
2265
2266                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2267                 if (ring->old_discards >= 0xC000) {
2268                         ring->old_discards = 0;
2269                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2270                                                   RDMA_PROD_INDEX);
2271                 }
2272         }
2273
2274         p_index &= DMA_P_INDEX_MASK;
2275         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2276
2277         netif_dbg(priv, rx_status, dev,
2278                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2279
2280         while ((rxpktprocessed < rxpkttoprocess) &&
2281                (rxpktprocessed < budget)) {
2282                 struct status_64 *status;
2283                 __be16 rx_csum;
2284
2285                 cb = &priv->rx_cbs[ring->read_ptr];
2286                 skb = bcmgenet_rx_refill(priv, cb);
2287
2288                 if (unlikely(!skb)) {
2289                         ring->dropped++;
2290                         goto next;
2291                 }
2292
2293                 status = (struct status_64 *)skb->data;
2294                 dma_length_status = status->length_status;
2295                 if (dev->features & NETIF_F_RXCSUM) {
2296                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2297                         if (rx_csum) {
2298                                 skb->csum = (__force __wsum)ntohs(rx_csum);
2299                                 skb->ip_summed = CHECKSUM_COMPLETE;
2300                         }
2301                 }
2302
2303                 /* DMA flags and length are still valid no matter how
2304                  * we got the Receive Status Vector (64B RSB or register)
2305                  */
2306                 dma_flag = dma_length_status & 0xffff;
2307                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2308
2309                 netif_dbg(priv, rx_status, dev,
2310                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2311                           __func__, p_index, ring->c_index,
2312                           ring->read_ptr, dma_length_status);
2313
2314                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2315                         netif_err(priv, rx_status, dev,
2316                                   "dropping fragmented packet!\n");
2317                         ring->errors++;
2318                         dev_kfree_skb_any(skb);
2319                         goto next;
2320                 }
2321
2322                 /* report errors */
2323                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2324                                                 DMA_RX_OV |
2325                                                 DMA_RX_NO |
2326                                                 DMA_RX_LG |
2327                                                 DMA_RX_RXER))) {
2328                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2329                                   (unsigned int)dma_flag);
2330                         if (dma_flag & DMA_RX_CRC_ERROR)
2331                                 dev->stats.rx_crc_errors++;
2332                         if (dma_flag & DMA_RX_OV)
2333                                 dev->stats.rx_over_errors++;
2334                         if (dma_flag & DMA_RX_NO)
2335                                 dev->stats.rx_frame_errors++;
2336                         if (dma_flag & DMA_RX_LG)
2337                                 dev->stats.rx_length_errors++;
2338                         dev->stats.rx_errors++;
2339                         dev_kfree_skb_any(skb);
2340                         goto next;
2341                 } /* error packet */
2342
2343                 skb_put(skb, len);
2344
2345                 /* remove RSB and hardware 2bytes added for IP alignment */
2346                 skb_pull(skb, 66);
2347                 len -= 66;
2348
2349                 if (priv->crc_fwd_en) {
2350                         skb_trim(skb, len - ETH_FCS_LEN);
2351                         len -= ETH_FCS_LEN;
2352                 }
2353
2354                 bytes_processed += len;
2355
2356                 /*Finish setting up the received SKB and send it to the kernel*/
2357                 skb->protocol = eth_type_trans(skb, priv->dev);
2358                 ring->packets++;
2359                 ring->bytes += len;
2360                 if (dma_flag & DMA_RX_MULT)
2361                         dev->stats.multicast++;
2362
2363                 /* Notify kernel */
2364                 napi_gro_receive(&ring->napi, skb);
2365                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2366
2367 next:
2368                 rxpktprocessed++;
2369                 if (likely(ring->read_ptr < ring->end_ptr))
2370                         ring->read_ptr++;
2371                 else
2372                         ring->read_ptr = ring->cb_ptr;
2373
2374                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2375                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2376         }
2377
2378         ring->dim.bytes = bytes_processed;
2379         ring->dim.packets = rxpktprocessed;
2380
2381         return rxpktprocessed;
2382 }
2383
2384 /* Rx NAPI polling method */
2385 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2386 {
2387         struct bcmgenet_rx_ring *ring = container_of(napi,
2388                         struct bcmgenet_rx_ring, napi);
2389         struct dim_sample dim_sample = {};
2390         unsigned int work_done;
2391
2392         work_done = bcmgenet_desc_rx(ring, budget);
2393
2394         if (work_done < budget) {
2395                 napi_complete_done(napi, work_done);
2396                 ring->int_enable(ring);
2397         }
2398
2399         if (ring->dim.use_dim) {
2400                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2401                                   ring->dim.bytes, &dim_sample);
2402                 net_dim(&ring->dim.dim, dim_sample);
2403         }
2404
2405         return work_done;
2406 }
2407
2408 static void bcmgenet_dim_work(struct work_struct *work)
2409 {
2410         struct dim *dim = container_of(work, struct dim, work);
2411         struct bcmgenet_net_dim *ndim =
2412                         container_of(dim, struct bcmgenet_net_dim, dim);
2413         struct bcmgenet_rx_ring *ring =
2414                         container_of(ndim, struct bcmgenet_rx_ring, dim);
2415         struct dim_cq_moder cur_profile =
2416                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2417
2418         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2419         dim->state = DIM_START_MEASURE;
2420 }
2421
2422 /* Assign skb to RX DMA descriptor. */
2423 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2424                                      struct bcmgenet_rx_ring *ring)
2425 {
2426         struct enet_cb *cb;
2427         struct sk_buff *skb;
2428         int i;
2429
2430         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2431
2432         /* loop here for each buffer needing assign */
2433         for (i = 0; i < ring->size; i++) {
2434                 cb = ring->cbs + i;
2435                 skb = bcmgenet_rx_refill(priv, cb);
2436                 if (skb)
2437                         dev_consume_skb_any(skb);
2438                 if (!cb->skb)
2439                         return -ENOMEM;
2440         }
2441
2442         return 0;
2443 }
2444
2445 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2446 {
2447         struct sk_buff *skb;
2448         struct enet_cb *cb;
2449         int i;
2450
2451         for (i = 0; i < priv->num_rx_bds; i++) {
2452                 cb = &priv->rx_cbs[i];
2453
2454                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2455                 if (skb)
2456                         dev_consume_skb_any(skb);
2457         }
2458 }
2459
2460 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2461 {
2462         u32 reg;
2463
2464         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2465         if (reg & CMD_SW_RESET)
2466                 return;
2467         if (enable)
2468                 reg |= mask;
2469         else
2470                 reg &= ~mask;
2471         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2472
2473         /* UniMAC stops on a packet boundary, wait for a full-size packet
2474          * to be processed
2475          */
2476         if (enable == 0)
2477                 usleep_range(1000, 2000);
2478 }
2479
2480 static void reset_umac(struct bcmgenet_priv *priv)
2481 {
2482         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2483         bcmgenet_rbuf_ctrl_set(priv, 0);
2484         udelay(10);
2485
2486         /* issue soft reset and disable MAC while updating its registers */
2487         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2488         udelay(2);
2489 }
2490
2491 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2492 {
2493         /* Mask all interrupts.*/
2494         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2495         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2496         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2497         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2498 }
2499
2500 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2501 {
2502         u32 int0_enable = 0;
2503
2504         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2505          * and MoCA PHY
2506          */
2507         if (priv->internal_phy) {
2508                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2509                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2510                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2511         } else if (priv->ext_phy) {
2512                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2513         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2514                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2515                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2516         }
2517         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2518 }
2519
2520 static void init_umac(struct bcmgenet_priv *priv)
2521 {
2522         struct device *kdev = &priv->pdev->dev;
2523         u32 reg;
2524         u32 int0_enable = 0;
2525
2526         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2527
2528         reset_umac(priv);
2529
2530         /* clear tx/rx counter */
2531         bcmgenet_umac_writel(priv,
2532                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2533                              UMAC_MIB_CTRL);
2534         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2535
2536         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2537
2538         /* init tx registers, enable TSB */
2539         reg = bcmgenet_tbuf_ctrl_get(priv);
2540         reg |= TBUF_64B_EN;
2541         bcmgenet_tbuf_ctrl_set(priv, reg);
2542
2543         /* init rx registers, enable ip header optimization and RSB */
2544         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2545         reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2546         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2547
2548         /* enable rx checksumming */
2549         reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2550         reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2551         /* If UniMAC forwards CRC, we need to skip over it to get
2552          * a valid CHK bit to be set in the per-packet status word
2553          */
2554         if (priv->crc_fwd_en)
2555                 reg |= RBUF_SKIP_FCS;
2556         else
2557                 reg &= ~RBUF_SKIP_FCS;
2558         bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2559
2560         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2561                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2562
2563         bcmgenet_intr_disable(priv);
2564
2565         /* Configure backpressure vectors for MoCA */
2566         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2567                 reg = bcmgenet_bp_mc_get(priv);
2568                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2569
2570                 /* bp_mask: back pressure mask */
2571                 if (netif_is_multiqueue(priv->dev))
2572                         reg |= priv->hw_params->bp_in_mask;
2573                 else
2574                         reg &= ~priv->hw_params->bp_in_mask;
2575                 bcmgenet_bp_mc_set(priv, reg);
2576         }
2577
2578         /* Enable MDIO interrupts on GENET v3+ */
2579         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2580                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2581
2582         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2583
2584         dev_dbg(kdev, "done init umac\n");
2585 }
2586
2587 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2588                               void (*cb)(struct work_struct *work))
2589 {
2590         struct bcmgenet_net_dim *dim = &ring->dim;
2591
2592         INIT_WORK(&dim->dim.work, cb);
2593         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2594         dim->event_ctr = 0;
2595         dim->packets = 0;
2596         dim->bytes = 0;
2597 }
2598
2599 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2600 {
2601         struct bcmgenet_net_dim *dim = &ring->dim;
2602         struct dim_cq_moder moder;
2603         u32 usecs, pkts;
2604
2605         usecs = ring->rx_coalesce_usecs;
2606         pkts = ring->rx_max_coalesced_frames;
2607
2608         /* If DIM was enabled, re-apply default parameters */
2609         if (dim->use_dim) {
2610                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2611                 usecs = moder.usec;
2612                 pkts = moder.pkts;
2613         }
2614
2615         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2616 }
2617
2618 /* Initialize a Tx ring along with corresponding hardware registers */
2619 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2620                                   unsigned int index, unsigned int size,
2621                                   unsigned int start_ptr, unsigned int end_ptr)
2622 {
2623         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2624         u32 words_per_bd = WORDS_PER_BD(priv);
2625         u32 flow_period_val = 0;
2626
2627         spin_lock_init(&ring->lock);
2628         ring->priv = priv;
2629         ring->index = index;
2630         if (index == DESC_INDEX) {
2631                 ring->queue = 0;
2632                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2633                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2634         } else {
2635                 ring->queue = index + 1;
2636                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2637                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2638         }
2639         ring->cbs = priv->tx_cbs + start_ptr;
2640         ring->size = size;
2641         ring->clean_ptr = start_ptr;
2642         ring->c_index = 0;
2643         ring->free_bds = size;
2644         ring->write_ptr = start_ptr;
2645         ring->cb_ptr = start_ptr;
2646         ring->end_ptr = end_ptr - 1;
2647         ring->prod_index = 0;
2648
2649         /* Set flow period for ring != 16 */
2650         if (index != DESC_INDEX)
2651                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2652
2653         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2654         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2655         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2656         /* Disable rate control for now */
2657         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2658                                   TDMA_FLOW_PERIOD);
2659         bcmgenet_tdma_ring_writel(priv, index,
2660                                   ((size << DMA_RING_SIZE_SHIFT) |
2661                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2662
2663         /* Set start and end address, read and write pointers */
2664         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2665                                   DMA_START_ADDR);
2666         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2667                                   TDMA_READ_PTR);
2668         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2669                                   TDMA_WRITE_PTR);
2670         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2671                                   DMA_END_ADDR);
2672
2673         /* Initialize Tx NAPI */
2674         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2675                           NAPI_POLL_WEIGHT);
2676 }
2677
2678 /* Initialize a RDMA ring */
2679 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2680                                  unsigned int index, unsigned int size,
2681                                  unsigned int start_ptr, unsigned int end_ptr)
2682 {
2683         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2684         u32 words_per_bd = WORDS_PER_BD(priv);
2685         int ret;
2686
2687         ring->priv = priv;
2688         ring->index = index;
2689         if (index == DESC_INDEX) {
2690                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2691                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2692         } else {
2693                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2694                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2695         }
2696         ring->cbs = priv->rx_cbs + start_ptr;
2697         ring->size = size;
2698         ring->c_index = 0;
2699         ring->read_ptr = start_ptr;
2700         ring->cb_ptr = start_ptr;
2701         ring->end_ptr = end_ptr - 1;
2702
2703         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2704         if (ret)
2705                 return ret;
2706
2707         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2708         bcmgenet_init_rx_coalesce(ring);
2709
2710         /* Initialize Rx NAPI */
2711         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2712                        NAPI_POLL_WEIGHT);
2713
2714         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2715         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2716         bcmgenet_rdma_ring_writel(priv, index,
2717                                   ((size << DMA_RING_SIZE_SHIFT) |
2718                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2719         bcmgenet_rdma_ring_writel(priv, index,
2720                                   (DMA_FC_THRESH_LO <<
2721                                    DMA_XOFF_THRESHOLD_SHIFT) |
2722                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2723
2724         /* Set start and end address, read and write pointers */
2725         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2726                                   DMA_START_ADDR);
2727         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2728                                   RDMA_READ_PTR);
2729         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2730                                   RDMA_WRITE_PTR);
2731         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2732                                   DMA_END_ADDR);
2733
2734         return ret;
2735 }
2736
2737 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2738 {
2739         unsigned int i;
2740         struct bcmgenet_tx_ring *ring;
2741
2742         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2743                 ring = &priv->tx_rings[i];
2744                 napi_enable(&ring->napi);
2745                 ring->int_enable(ring);
2746         }
2747
2748         ring = &priv->tx_rings[DESC_INDEX];
2749         napi_enable(&ring->napi);
2750         ring->int_enable(ring);
2751 }
2752
2753 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2754 {
2755         unsigned int i;
2756         struct bcmgenet_tx_ring *ring;
2757
2758         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2759                 ring = &priv->tx_rings[i];
2760                 napi_disable(&ring->napi);
2761         }
2762
2763         ring = &priv->tx_rings[DESC_INDEX];
2764         napi_disable(&ring->napi);
2765 }
2766
2767 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2768 {
2769         unsigned int i;
2770         struct bcmgenet_tx_ring *ring;
2771
2772         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2773                 ring = &priv->tx_rings[i];
2774                 netif_napi_del(&ring->napi);
2775         }
2776
2777         ring = &priv->tx_rings[DESC_INDEX];
2778         netif_napi_del(&ring->napi);
2779 }
2780
2781 /* Initialize Tx queues
2782  *
2783  * Queues 0-3 are priority-based, each one has 32 descriptors,
2784  * with queue 0 being the highest priority queue.
2785  *
2786  * Queue 16 is the default Tx queue with
2787  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2788  *
2789  * The transmit control block pool is then partitioned as follows:
2790  * - Tx queue 0 uses tx_cbs[0..31]
2791  * - Tx queue 1 uses tx_cbs[32..63]
2792  * - Tx queue 2 uses tx_cbs[64..95]
2793  * - Tx queue 3 uses tx_cbs[96..127]
2794  * - Tx queue 16 uses tx_cbs[128..255]
2795  */
2796 static void bcmgenet_init_tx_queues(struct net_device *dev)
2797 {
2798         struct bcmgenet_priv *priv = netdev_priv(dev);
2799         u32 i, dma_enable;
2800         u32 dma_ctrl, ring_cfg;
2801         u32 dma_priority[3] = {0, 0, 0};
2802
2803         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2804         dma_enable = dma_ctrl & DMA_EN;
2805         dma_ctrl &= ~DMA_EN;
2806         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2807
2808         dma_ctrl = 0;
2809         ring_cfg = 0;
2810
2811         /* Enable strict priority arbiter mode */
2812         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2813
2814         /* Initialize Tx priority queues */
2815         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2816                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2817                                       i * priv->hw_params->tx_bds_per_q,
2818                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2819                 ring_cfg |= (1 << i);
2820                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2821                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2822                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2823         }
2824
2825         /* Initialize Tx default queue 16 */
2826         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2827                               priv->hw_params->tx_queues *
2828                               priv->hw_params->tx_bds_per_q,
2829                               TOTAL_DESC);
2830         ring_cfg |= (1 << DESC_INDEX);
2831         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2832         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2833                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2834                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2835
2836         /* Set Tx queue priorities */
2837         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2838         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2839         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2840
2841         /* Enable Tx queues */
2842         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2843
2844         /* Enable Tx DMA */
2845         if (dma_enable)
2846                 dma_ctrl |= DMA_EN;
2847         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2848 }
2849
2850 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2851 {
2852         unsigned int i;
2853         struct bcmgenet_rx_ring *ring;
2854
2855         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2856                 ring = &priv->rx_rings[i];
2857                 napi_enable(&ring->napi);
2858                 ring->int_enable(ring);
2859         }
2860
2861         ring = &priv->rx_rings[DESC_INDEX];
2862         napi_enable(&ring->napi);
2863         ring->int_enable(ring);
2864 }
2865
2866 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2867 {
2868         unsigned int i;
2869         struct bcmgenet_rx_ring *ring;
2870
2871         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2872                 ring = &priv->rx_rings[i];
2873                 napi_disable(&ring->napi);
2874                 cancel_work_sync(&ring->dim.dim.work);
2875         }
2876
2877         ring = &priv->rx_rings[DESC_INDEX];
2878         napi_disable(&ring->napi);
2879         cancel_work_sync(&ring->dim.dim.work);
2880 }
2881
2882 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2883 {
2884         unsigned int i;
2885         struct bcmgenet_rx_ring *ring;
2886
2887         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2888                 ring = &priv->rx_rings[i];
2889                 netif_napi_del(&ring->napi);
2890         }
2891
2892         ring = &priv->rx_rings[DESC_INDEX];
2893         netif_napi_del(&ring->napi);
2894 }
2895
2896 /* Initialize Rx queues
2897  *
2898  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2899  * used to direct traffic to these queues.
2900  *
2901  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2902  */
2903 static int bcmgenet_init_rx_queues(struct net_device *dev)
2904 {
2905         struct bcmgenet_priv *priv = netdev_priv(dev);
2906         u32 i;
2907         u32 dma_enable;
2908         u32 dma_ctrl;
2909         u32 ring_cfg;
2910         int ret;
2911
2912         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2913         dma_enable = dma_ctrl & DMA_EN;
2914         dma_ctrl &= ~DMA_EN;
2915         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2916
2917         dma_ctrl = 0;
2918         ring_cfg = 0;
2919
2920         /* Initialize Rx priority queues */
2921         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2922                 ret = bcmgenet_init_rx_ring(priv, i,
2923                                             priv->hw_params->rx_bds_per_q,
2924                                             i * priv->hw_params->rx_bds_per_q,
2925                                             (i + 1) *
2926                                             priv->hw_params->rx_bds_per_q);
2927                 if (ret)
2928                         return ret;
2929
2930                 ring_cfg |= (1 << i);
2931                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2932         }
2933
2934         /* Initialize Rx default queue 16 */
2935         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2936                                     priv->hw_params->rx_queues *
2937                                     priv->hw_params->rx_bds_per_q,
2938                                     TOTAL_DESC);
2939         if (ret)
2940                 return ret;
2941
2942         ring_cfg |= (1 << DESC_INDEX);
2943         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2944
2945         /* Enable rings */
2946         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2947
2948         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2949         if (dma_enable)
2950                 dma_ctrl |= DMA_EN;
2951         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2952
2953         return 0;
2954 }
2955
2956 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2957 {
2958         int ret = 0;
2959         int timeout = 0;
2960         u32 reg;
2961         u32 dma_ctrl;
2962         int i;
2963
2964         /* Disable TDMA to stop add more frames in TX DMA */
2965         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2966         reg &= ~DMA_EN;
2967         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2968
2969         /* Check TDMA status register to confirm TDMA is disabled */
2970         while (timeout++ < DMA_TIMEOUT_VAL) {
2971                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2972                 if (reg & DMA_DISABLED)
2973                         break;
2974
2975                 udelay(1);
2976         }
2977
2978         if (timeout == DMA_TIMEOUT_VAL) {
2979                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2980                 ret = -ETIMEDOUT;
2981         }
2982
2983         /* Wait 10ms for packet drain in both tx and rx dma */
2984         usleep_range(10000, 20000);
2985
2986         /* Disable RDMA */
2987         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2988         reg &= ~DMA_EN;
2989         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2990
2991         timeout = 0;
2992         /* Check RDMA status register to confirm RDMA is disabled */
2993         while (timeout++ < DMA_TIMEOUT_VAL) {
2994                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2995                 if (reg & DMA_DISABLED)
2996                         break;
2997
2998                 udelay(1);
2999         }
3000
3001         if (timeout == DMA_TIMEOUT_VAL) {
3002                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3003                 ret = -ETIMEDOUT;
3004         }
3005
3006         dma_ctrl = 0;
3007         for (i = 0; i < priv->hw_params->rx_queues; i++)
3008                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3009         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3010         reg &= ~dma_ctrl;
3011         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3012
3013         dma_ctrl = 0;
3014         for (i = 0; i < priv->hw_params->tx_queues; i++)
3015                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3016         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3017         reg &= ~dma_ctrl;
3018         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3019
3020         return ret;
3021 }
3022
3023 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3024 {
3025         struct netdev_queue *txq;
3026         int i;
3027
3028         bcmgenet_fini_rx_napi(priv);
3029         bcmgenet_fini_tx_napi(priv);
3030
3031         for (i = 0; i < priv->num_tx_bds; i++)
3032                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3033                                                   priv->tx_cbs + i));
3034
3035         for (i = 0; i < priv->hw_params->tx_queues; i++) {
3036                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3037                 netdev_tx_reset_queue(txq);
3038         }
3039
3040         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3041         netdev_tx_reset_queue(txq);
3042
3043         bcmgenet_free_rx_buffers(priv);
3044         kfree(priv->rx_cbs);
3045         kfree(priv->tx_cbs);
3046 }
3047
3048 /* init_edma: Initialize DMA control register */
3049 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3050 {
3051         int ret;
3052         unsigned int i;
3053         struct enet_cb *cb;
3054
3055         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3056
3057         /* Initialize common Rx ring structures */
3058         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3059         priv->num_rx_bds = TOTAL_DESC;
3060         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3061                                GFP_KERNEL);
3062         if (!priv->rx_cbs)
3063                 return -ENOMEM;
3064
3065         for (i = 0; i < priv->num_rx_bds; i++) {
3066                 cb = priv->rx_cbs + i;
3067                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3068         }
3069
3070         /* Initialize common TX ring structures */
3071         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3072         priv->num_tx_bds = TOTAL_DESC;
3073         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3074                                GFP_KERNEL);
3075         if (!priv->tx_cbs) {
3076                 kfree(priv->rx_cbs);
3077                 return -ENOMEM;
3078         }
3079
3080         for (i = 0; i < priv->num_tx_bds; i++) {
3081                 cb = priv->tx_cbs + i;
3082                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3083         }
3084
3085         /* Init rDma */
3086         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3087                              DMA_SCB_BURST_SIZE);
3088
3089         /* Initialize Rx queues */
3090         ret = bcmgenet_init_rx_queues(priv->dev);
3091         if (ret) {
3092                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3093                 bcmgenet_free_rx_buffers(priv);
3094                 kfree(priv->rx_cbs);
3095                 kfree(priv->tx_cbs);
3096                 return ret;
3097         }
3098
3099         /* Init tDma */
3100         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3101                              DMA_SCB_BURST_SIZE);
3102
3103         /* Initialize Tx queues */
3104         bcmgenet_init_tx_queues(priv->dev);
3105
3106         return 0;
3107 }
3108
3109 /* Interrupt bottom half */
3110 static void bcmgenet_irq_task(struct work_struct *work)
3111 {
3112         unsigned int status;
3113         struct bcmgenet_priv *priv = container_of(
3114                         work, struct bcmgenet_priv, bcmgenet_irq_work);
3115
3116         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3117
3118         spin_lock_irq(&priv->lock);
3119         status = priv->irq0_stat;
3120         priv->irq0_stat = 0;
3121         spin_unlock_irq(&priv->lock);
3122
3123         if (status & UMAC_IRQ_PHY_DET_R &&
3124             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3125                 phy_init_hw(priv->dev->phydev);
3126                 genphy_config_aneg(priv->dev->phydev);
3127         }
3128
3129         /* Link UP/DOWN event */
3130         if (status & UMAC_IRQ_LINK_EVENT)
3131                 phy_mac_interrupt(priv->dev->phydev);
3132
3133 }
3134
3135 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3136 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3137 {
3138         struct bcmgenet_priv *priv = dev_id;
3139         struct bcmgenet_rx_ring *rx_ring;
3140         struct bcmgenet_tx_ring *tx_ring;
3141         unsigned int index, status;
3142
3143         /* Read irq status */
3144         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3145                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3146
3147         /* clear interrupts */
3148         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3149
3150         netif_dbg(priv, intr, priv->dev,
3151                   "%s: IRQ=0x%x\n", __func__, status);
3152
3153         /* Check Rx priority queue interrupts */
3154         for (index = 0; index < priv->hw_params->rx_queues; index++) {
3155                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3156                         continue;
3157
3158                 rx_ring = &priv->rx_rings[index];
3159                 rx_ring->dim.event_ctr++;
3160
3161                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3162                         rx_ring->int_disable(rx_ring);
3163                         __napi_schedule_irqoff(&rx_ring->napi);
3164                 }
3165         }
3166
3167         /* Check Tx priority queue interrupts */
3168         for (index = 0; index < priv->hw_params->tx_queues; index++) {
3169                 if (!(status & BIT(index)))
3170                         continue;
3171
3172                 tx_ring = &priv->tx_rings[index];
3173
3174                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3175                         tx_ring->int_disable(tx_ring);
3176                         __napi_schedule_irqoff(&tx_ring->napi);
3177                 }
3178         }
3179
3180         return IRQ_HANDLED;
3181 }
3182
3183 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3184 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3185 {
3186         struct bcmgenet_priv *priv = dev_id;
3187         struct bcmgenet_rx_ring *rx_ring;
3188         struct bcmgenet_tx_ring *tx_ring;
3189         unsigned int status;
3190         unsigned long flags;
3191
3192         /* Read irq status */
3193         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3194                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3195
3196         /* clear interrupts */
3197         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3198
3199         netif_dbg(priv, intr, priv->dev,
3200                   "IRQ=0x%x\n", status);
3201
3202         if (status & UMAC_IRQ_RXDMA_DONE) {
3203                 rx_ring = &priv->rx_rings[DESC_INDEX];
3204                 rx_ring->dim.event_ctr++;
3205
3206                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3207                         rx_ring->int_disable(rx_ring);
3208                         __napi_schedule_irqoff(&rx_ring->napi);
3209                 }
3210         }
3211
3212         if (status & UMAC_IRQ_TXDMA_DONE) {
3213                 tx_ring = &priv->tx_rings[DESC_INDEX];
3214
3215                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3216                         tx_ring->int_disable(tx_ring);
3217                         __napi_schedule_irqoff(&tx_ring->napi);
3218                 }
3219         }
3220
3221         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3222                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3223                 wake_up(&priv->wq);
3224         }
3225
3226         /* all other interested interrupts handled in bottom half */
3227         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3228         if (status) {
3229                 /* Save irq status for bottom-half processing. */
3230                 spin_lock_irqsave(&priv->lock, flags);
3231                 priv->irq0_stat |= status;
3232                 spin_unlock_irqrestore(&priv->lock, flags);
3233
3234                 schedule_work(&priv->bcmgenet_irq_work);
3235         }
3236
3237         return IRQ_HANDLED;
3238 }
3239
3240 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3241 {
3242         /* Acknowledge the interrupt */
3243         return IRQ_HANDLED;
3244 }
3245
3246 #ifdef CONFIG_NET_POLL_CONTROLLER
3247 static void bcmgenet_poll_controller(struct net_device *dev)
3248 {
3249         struct bcmgenet_priv *priv = netdev_priv(dev);
3250
3251         /* Invoke the main RX/TX interrupt handler */
3252         disable_irq(priv->irq0);
3253         bcmgenet_isr0(priv->irq0, priv);
3254         enable_irq(priv->irq0);
3255
3256         /* And the interrupt handler for RX/TX priority queues */
3257         disable_irq(priv->irq1);
3258         bcmgenet_isr1(priv->irq1, priv);
3259         enable_irq(priv->irq1);
3260 }
3261 #endif
3262
3263 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3264 {
3265         u32 reg;
3266
3267         reg = bcmgenet_rbuf_ctrl_get(priv);
3268         reg |= BIT(1);
3269         bcmgenet_rbuf_ctrl_set(priv, reg);
3270         udelay(10);
3271
3272         reg &= ~BIT(1);
3273         bcmgenet_rbuf_ctrl_set(priv, reg);
3274         udelay(10);
3275 }
3276
3277 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3278                                  const unsigned char *addr)
3279 {
3280         bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3281         bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3282 }
3283
3284 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3285                                  unsigned char *addr)
3286 {
3287         u32 addr_tmp;
3288
3289         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3290         put_unaligned_be32(addr_tmp, &addr[0]);
3291         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3292         put_unaligned_be16(addr_tmp, &addr[4]);
3293 }
3294
3295 /* Returns a reusable dma control register value */
3296 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3297 {
3298         unsigned int i;
3299         u32 reg;
3300         u32 dma_ctrl;
3301
3302         /* disable DMA */
3303         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3304         for (i = 0; i < priv->hw_params->tx_queues; i++)
3305                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3306         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3307         reg &= ~dma_ctrl;
3308         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3309
3310         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3311         for (i = 0; i < priv->hw_params->rx_queues; i++)
3312                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3313         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3314         reg &= ~dma_ctrl;
3315         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3316
3317         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3318         udelay(10);
3319         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3320
3321         return dma_ctrl;
3322 }
3323
3324 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3325 {
3326         u32 reg;
3327
3328         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3329         reg |= dma_ctrl;
3330         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3331
3332         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3333         reg |= dma_ctrl;
3334         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3335 }
3336
3337 static void bcmgenet_netif_start(struct net_device *dev)
3338 {
3339         struct bcmgenet_priv *priv = netdev_priv(dev);
3340
3341         /* Start the network engine */
3342         bcmgenet_set_rx_mode(dev);
3343         bcmgenet_enable_rx_napi(priv);
3344
3345         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3346
3347         bcmgenet_enable_tx_napi(priv);
3348
3349         /* Monitor link interrupts now */
3350         bcmgenet_link_intr_enable(priv);
3351
3352         phy_start(dev->phydev);
3353 }
3354
3355 static int bcmgenet_open(struct net_device *dev)
3356 {
3357         struct bcmgenet_priv *priv = netdev_priv(dev);
3358         unsigned long dma_ctrl;
3359         int ret;
3360
3361         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3362
3363         /* Turn on the clock */
3364         clk_prepare_enable(priv->clk);
3365
3366         /* If this is an internal GPHY, power it back on now, before UniMAC is
3367          * brought out of reset as absolutely no UniMAC activity is allowed
3368          */
3369         if (priv->internal_phy)
3370                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3371
3372         /* take MAC out of reset */
3373         bcmgenet_umac_reset(priv);
3374
3375         init_umac(priv);
3376
3377         /* Apply features again in case we changed them while interface was
3378          * down
3379          */
3380         bcmgenet_set_features(dev, dev->features);
3381
3382         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3383
3384         /* Disable RX/TX DMA and flush TX queues */
3385         dma_ctrl = bcmgenet_dma_disable(priv);
3386
3387         /* Reinitialize TDMA and RDMA and SW housekeeping */
3388         ret = bcmgenet_init_dma(priv);
3389         if (ret) {
3390                 netdev_err(dev, "failed to initialize DMA\n");
3391                 goto err_clk_disable;
3392         }
3393
3394         /* Always enable ring 16 - descriptor ring */
3395         bcmgenet_enable_dma(priv, dma_ctrl);
3396
3397         /* HFB init */
3398         bcmgenet_hfb_init(priv);
3399
3400         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3401                           dev->name, priv);
3402         if (ret < 0) {
3403                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3404                 goto err_fini_dma;
3405         }
3406
3407         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3408                           dev->name, priv);
3409         if (ret < 0) {
3410                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3411                 goto err_irq0;
3412         }
3413
3414         ret = bcmgenet_mii_probe(dev);
3415         if (ret) {
3416                 netdev_err(dev, "failed to connect to PHY\n");
3417                 goto err_irq1;
3418         }
3419
3420         bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3421
3422         bcmgenet_netif_start(dev);
3423
3424         netif_tx_start_all_queues(dev);
3425
3426         return 0;
3427
3428 err_irq1:
3429         free_irq(priv->irq1, priv);
3430 err_irq0:
3431         free_irq(priv->irq0, priv);
3432 err_fini_dma:
3433         bcmgenet_dma_teardown(priv);
3434         bcmgenet_fini_dma(priv);
3435 err_clk_disable:
3436         if (priv->internal_phy)
3437                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3438         clk_disable_unprepare(priv->clk);
3439         return ret;
3440 }
3441
3442 static void bcmgenet_netif_stop(struct net_device *dev)
3443 {
3444         struct bcmgenet_priv *priv = netdev_priv(dev);
3445
3446         bcmgenet_disable_tx_napi(priv);
3447         netif_tx_disable(dev);
3448
3449         /* Disable MAC receive */
3450         umac_enable_set(priv, CMD_RX_EN, false);
3451
3452         bcmgenet_dma_teardown(priv);
3453
3454         /* Disable MAC transmit. TX DMA disabled must be done before this */
3455         umac_enable_set(priv, CMD_TX_EN, false);
3456
3457         phy_stop(dev->phydev);
3458         bcmgenet_disable_rx_napi(priv);
3459         bcmgenet_intr_disable(priv);
3460
3461         /* Wait for pending work items to complete. Since interrupts are
3462          * disabled no new work will be scheduled.
3463          */
3464         cancel_work_sync(&priv->bcmgenet_irq_work);
3465
3466         /* tx reclaim */
3467         bcmgenet_tx_reclaim_all(dev);
3468         bcmgenet_fini_dma(priv);
3469 }
3470
3471 static int bcmgenet_close(struct net_device *dev)
3472 {
3473         struct bcmgenet_priv *priv = netdev_priv(dev);
3474         int ret = 0;
3475
3476         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3477
3478         bcmgenet_netif_stop(dev);
3479
3480         /* Really kill the PHY state machine and disconnect from it */
3481         phy_disconnect(dev->phydev);
3482
3483         free_irq(priv->irq0, priv);
3484         free_irq(priv->irq1, priv);
3485
3486         if (priv->internal_phy)
3487                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3488
3489         clk_disable_unprepare(priv->clk);
3490
3491         return ret;
3492 }
3493
3494 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3495 {
3496         struct bcmgenet_priv *priv = ring->priv;
3497         u32 p_index, c_index, intsts, intmsk;
3498         struct netdev_queue *txq;
3499         unsigned int free_bds;
3500         bool txq_stopped;
3501
3502         if (!netif_msg_tx_err(priv))
3503                 return;
3504
3505         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3506
3507         spin_lock(&ring->lock);
3508         if (ring->index == DESC_INDEX) {
3509                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3510                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3511         } else {
3512                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3513                 intmsk = 1 << ring->index;
3514         }
3515         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3516         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3517         txq_stopped = netif_tx_queue_stopped(txq);
3518         free_bds = ring->free_bds;
3519         spin_unlock(&ring->lock);
3520
3521         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3522                   "TX queue status: %s, interrupts: %s\n"
3523                   "(sw)free_bds: %d (sw)size: %d\n"
3524                   "(sw)p_index: %d (hw)p_index: %d\n"
3525                   "(sw)c_index: %d (hw)c_index: %d\n"
3526                   "(sw)clean_p: %d (sw)write_p: %d\n"
3527                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3528                   ring->index, ring->queue,
3529                   txq_stopped ? "stopped" : "active",
3530                   intsts & intmsk ? "enabled" : "disabled",
3531                   free_bds, ring->size,
3532                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3533                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3534                   ring->clean_ptr, ring->write_ptr,
3535                   ring->cb_ptr, ring->end_ptr);
3536 }
3537
3538 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3539 {
3540         struct bcmgenet_priv *priv = netdev_priv(dev);
3541         u32 int0_enable = 0;
3542         u32 int1_enable = 0;
3543         unsigned int q;
3544
3545         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3546
3547         for (q = 0; q < priv->hw_params->tx_queues; q++)
3548                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3549         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3550
3551         bcmgenet_tx_reclaim_all(dev);
3552
3553         for (q = 0; q < priv->hw_params->tx_queues; q++)
3554                 int1_enable |= (1 << q);
3555
3556         int0_enable = UMAC_IRQ_TXDMA_DONE;
3557
3558         /* Re-enable TX interrupts if disabled */
3559         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3560         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3561
3562         netif_trans_update(dev);
3563
3564         dev->stats.tx_errors++;
3565
3566         netif_tx_wake_all_queues(dev);
3567 }
3568
3569 #define MAX_MDF_FILTER  17
3570
3571 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3572                                          const unsigned char *addr,
3573                                          int *i)
3574 {
3575         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3576                              UMAC_MDF_ADDR + (*i * 4));
3577         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3578                              addr[4] << 8 | addr[5],
3579                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3580         *i += 2;
3581 }
3582
3583 static void bcmgenet_set_rx_mode(struct net_device *dev)
3584 {
3585         struct bcmgenet_priv *priv = netdev_priv(dev);
3586         struct netdev_hw_addr *ha;
3587         int i, nfilter;
3588         u32 reg;
3589
3590         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3591
3592         /* Number of filters needed */
3593         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3594
3595         /*
3596          * Turn on promicuous mode for three scenarios
3597          * 1. IFF_PROMISC flag is set
3598          * 2. IFF_ALLMULTI flag is set
3599          * 3. The number of filters needed exceeds the number filters
3600          *    supported by the hardware.
3601         */
3602         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3603         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3604             (nfilter > MAX_MDF_FILTER)) {
3605                 reg |= CMD_PROMISC;
3606                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3607                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3608                 return;
3609         } else {
3610                 reg &= ~CMD_PROMISC;
3611                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3612         }
3613
3614         /* update MDF filter */
3615         i = 0;
3616         /* Broadcast */
3617         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3618         /* my own address.*/
3619         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3620
3621         /* Unicast */
3622         netdev_for_each_uc_addr(ha, dev)
3623                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3624
3625         /* Multicast */
3626         netdev_for_each_mc_addr(ha, dev)
3627                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3628
3629         /* Enable filters */
3630         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3631         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3632 }
3633
3634 /* Set the hardware MAC address. */
3635 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3636 {
3637         struct sockaddr *addr = p;
3638
3639         /* Setting the MAC address at the hardware level is not possible
3640          * without disabling the UniMAC RX/TX enable bits.
3641          */
3642         if (netif_running(dev))
3643                 return -EBUSY;
3644
3645         eth_hw_addr_set(dev, addr->sa_data);
3646
3647         return 0;
3648 }
3649
3650 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3651 {
3652         struct bcmgenet_priv *priv = netdev_priv(dev);
3653         unsigned long tx_bytes = 0, tx_packets = 0;
3654         unsigned long rx_bytes = 0, rx_packets = 0;
3655         unsigned long rx_errors = 0, rx_dropped = 0;
3656         struct bcmgenet_tx_ring *tx_ring;
3657         struct bcmgenet_rx_ring *rx_ring;
3658         unsigned int q;
3659
3660         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3661                 tx_ring = &priv->tx_rings[q];
3662                 tx_bytes += tx_ring->bytes;
3663                 tx_packets += tx_ring->packets;
3664         }
3665         tx_ring = &priv->tx_rings[DESC_INDEX];
3666         tx_bytes += tx_ring->bytes;
3667         tx_packets += tx_ring->packets;
3668
3669         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3670                 rx_ring = &priv->rx_rings[q];
3671
3672                 rx_bytes += rx_ring->bytes;
3673                 rx_packets += rx_ring->packets;
3674                 rx_errors += rx_ring->errors;
3675                 rx_dropped += rx_ring->dropped;
3676         }
3677         rx_ring = &priv->rx_rings[DESC_INDEX];
3678         rx_bytes += rx_ring->bytes;
3679         rx_packets += rx_ring->packets;
3680         rx_errors += rx_ring->errors;
3681         rx_dropped += rx_ring->dropped;
3682
3683         dev->stats.tx_bytes = tx_bytes;
3684         dev->stats.tx_packets = tx_packets;
3685         dev->stats.rx_bytes = rx_bytes;
3686         dev->stats.rx_packets = rx_packets;
3687         dev->stats.rx_errors = rx_errors;
3688         dev->stats.rx_missed_errors = rx_errors;
3689         dev->stats.rx_dropped = rx_dropped;
3690         return &dev->stats;
3691 }
3692
3693 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3694 {
3695         struct bcmgenet_priv *priv = netdev_priv(dev);
3696
3697         if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3698             priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3699                 return -EOPNOTSUPP;
3700
3701         if (new_carrier)
3702                 netif_carrier_on(dev);
3703         else
3704                 netif_carrier_off(dev);
3705
3706         return 0;
3707 }
3708
3709 static const struct net_device_ops bcmgenet_netdev_ops = {
3710         .ndo_open               = bcmgenet_open,
3711         .ndo_stop               = bcmgenet_close,
3712         .ndo_start_xmit         = bcmgenet_xmit,
3713         .ndo_tx_timeout         = bcmgenet_timeout,
3714         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3715         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3716         .ndo_eth_ioctl          = phy_do_ioctl_running,
3717         .ndo_set_features       = bcmgenet_set_features,
3718 #ifdef CONFIG_NET_POLL_CONTROLLER
3719         .ndo_poll_controller    = bcmgenet_poll_controller,
3720 #endif
3721         .ndo_get_stats          = bcmgenet_get_stats,
3722         .ndo_change_carrier     = bcmgenet_change_carrier,
3723 };
3724
3725 /* Array of GENET hardware parameters/characteristics */
3726 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3727         [GENET_V1] = {
3728                 .tx_queues = 0,
3729                 .tx_bds_per_q = 0,
3730                 .rx_queues = 0,
3731                 .rx_bds_per_q = 0,
3732                 .bp_in_en_shift = 16,
3733                 .bp_in_mask = 0xffff,
3734                 .hfb_filter_cnt = 16,
3735                 .qtag_mask = 0x1F,
3736                 .hfb_offset = 0x1000,
3737                 .rdma_offset = 0x2000,
3738                 .tdma_offset = 0x3000,
3739                 .words_per_bd = 2,
3740         },
3741         [GENET_V2] = {
3742                 .tx_queues = 4,
3743                 .tx_bds_per_q = 32,
3744                 .rx_queues = 0,
3745                 .rx_bds_per_q = 0,
3746                 .bp_in_en_shift = 16,
3747                 .bp_in_mask = 0xffff,
3748                 .hfb_filter_cnt = 16,
3749                 .qtag_mask = 0x1F,
3750                 .tbuf_offset = 0x0600,
3751                 .hfb_offset = 0x1000,
3752                 .hfb_reg_offset = 0x2000,
3753                 .rdma_offset = 0x3000,
3754                 .tdma_offset = 0x4000,
3755                 .words_per_bd = 2,
3756                 .flags = GENET_HAS_EXT,
3757         },
3758         [GENET_V3] = {
3759                 .tx_queues = 4,
3760                 .tx_bds_per_q = 32,
3761                 .rx_queues = 0,
3762                 .rx_bds_per_q = 0,
3763                 .bp_in_en_shift = 17,
3764                 .bp_in_mask = 0x1ffff,
3765                 .hfb_filter_cnt = 48,
3766                 .hfb_filter_size = 128,
3767                 .qtag_mask = 0x3F,
3768                 .tbuf_offset = 0x0600,
3769                 .hfb_offset = 0x8000,
3770                 .hfb_reg_offset = 0xfc00,
3771                 .rdma_offset = 0x10000,
3772                 .tdma_offset = 0x11000,
3773                 .words_per_bd = 2,
3774                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3775                          GENET_HAS_MOCA_LINK_DET,
3776         },
3777         [GENET_V4] = {
3778                 .tx_queues = 4,
3779                 .tx_bds_per_q = 32,
3780                 .rx_queues = 0,
3781                 .rx_bds_per_q = 0,
3782                 .bp_in_en_shift = 17,
3783                 .bp_in_mask = 0x1ffff,
3784                 .hfb_filter_cnt = 48,
3785                 .hfb_filter_size = 128,
3786                 .qtag_mask = 0x3F,
3787                 .tbuf_offset = 0x0600,
3788                 .hfb_offset = 0x8000,
3789                 .hfb_reg_offset = 0xfc00,
3790                 .rdma_offset = 0x2000,
3791                 .tdma_offset = 0x4000,
3792                 .words_per_bd = 3,
3793                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3794                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3795         },
3796         [GENET_V5] = {
3797                 .tx_queues = 4,
3798                 .tx_bds_per_q = 32,
3799                 .rx_queues = 0,
3800                 .rx_bds_per_q = 0,
3801                 .bp_in_en_shift = 17,
3802                 .bp_in_mask = 0x1ffff,
3803                 .hfb_filter_cnt = 48,
3804                 .hfb_filter_size = 128,
3805                 .qtag_mask = 0x3F,
3806                 .tbuf_offset = 0x0600,
3807                 .hfb_offset = 0x8000,
3808                 .hfb_reg_offset = 0xfc00,
3809                 .rdma_offset = 0x2000,
3810                 .tdma_offset = 0x4000,
3811                 .words_per_bd = 3,
3812                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3813                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3814         },
3815 };
3816
3817 /* Infer hardware parameters from the detected GENET version */
3818 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3819 {
3820         struct bcmgenet_hw_params *params;
3821         u32 reg;
3822         u8 major;
3823         u16 gphy_rev;
3824
3825         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3826                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3827                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3828         } else if (GENET_IS_V3(priv)) {
3829                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3830                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3831         } else if (GENET_IS_V2(priv)) {
3832                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3833                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3834         } else if (GENET_IS_V1(priv)) {
3835                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3836                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3837         }
3838
3839         /* enum genet_version starts at 1 */
3840         priv->hw_params = &bcmgenet_hw_params[priv->version];
3841         params = priv->hw_params;
3842
3843         /* Read GENET HW version */
3844         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3845         major = (reg >> 24 & 0x0f);
3846         if (major == 6)
3847                 major = 5;
3848         else if (major == 5)
3849                 major = 4;
3850         else if (major == 0)
3851                 major = 1;
3852         if (major != priv->version) {
3853                 dev_err(&priv->pdev->dev,
3854                         "GENET version mismatch, got: %d, configured for: %d\n",
3855                         major, priv->version);
3856         }
3857
3858         /* Print the GENET core version */
3859         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3860                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3861
3862         /* Store the integrated PHY revision for the MDIO probing function
3863          * to pass this information to the PHY driver. The PHY driver expects
3864          * to find the PHY major revision in bits 15:8 while the GENET register
3865          * stores that information in bits 7:0, account for that.
3866          *
3867          * On newer chips, starting with PHY revision G0, a new scheme is
3868          * deployed similar to the Starfighter 2 switch with GPHY major
3869          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3870          * is reserved as well as special value 0x01ff, we have a small
3871          * heuristic to check for the new GPHY revision and re-arrange things
3872          * so the GPHY driver is happy.
3873          */
3874         gphy_rev = reg & 0xffff;
3875
3876         if (GENET_IS_V5(priv)) {
3877                 /* The EPHY revision should come from the MDIO registers of
3878                  * the PHY not from GENET.
3879                  */
3880                 if (gphy_rev != 0) {
3881                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3882                                 gphy_rev);
3883                 }
3884         /* This is reserved so should require special treatment */
3885         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3886                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3887                 return;
3888         /* This is the good old scheme, just GPHY major, no minor nor patch */
3889         } else if ((gphy_rev & 0xf0) != 0) {
3890                 priv->gphy_rev = gphy_rev << 8;
3891         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3892         } else if ((gphy_rev & 0xff00) != 0) {
3893                 priv->gphy_rev = gphy_rev;
3894         }
3895
3896 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3897         if (!(params->flags & GENET_HAS_40BITS))
3898                 pr_warn("GENET does not support 40-bits PA\n");
3899 #endif
3900
3901         pr_debug("Configuration for version: %d\n"
3902                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3903                 "BP << en: %2d, BP msk: 0x%05x\n"
3904                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3905                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3906                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3907                 "Words/BD: %d\n",
3908                 priv->version,
3909                 params->tx_queues, params->tx_bds_per_q,
3910                 params->rx_queues, params->rx_bds_per_q,
3911                 params->bp_in_en_shift, params->bp_in_mask,
3912                 params->hfb_filter_cnt, params->qtag_mask,
3913                 params->tbuf_offset, params->hfb_offset,
3914                 params->hfb_reg_offset,
3915                 params->rdma_offset, params->tdma_offset,
3916                 params->words_per_bd);
3917 }
3918
3919 struct bcmgenet_plat_data {
3920         enum bcmgenet_version version;
3921         u32 dma_max_burst_length;
3922         bool ephy_16nm;
3923 };
3924
3925 static const struct bcmgenet_plat_data v1_plat_data = {
3926         .version = GENET_V1,
3927         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3928 };
3929
3930 static const struct bcmgenet_plat_data v2_plat_data = {
3931         .version = GENET_V2,
3932         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3933 };
3934
3935 static const struct bcmgenet_plat_data v3_plat_data = {
3936         .version = GENET_V3,
3937         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3938 };
3939
3940 static const struct bcmgenet_plat_data v4_plat_data = {
3941         .version = GENET_V4,
3942         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3943 };
3944
3945 static const struct bcmgenet_plat_data v5_plat_data = {
3946         .version = GENET_V5,
3947         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3948 };
3949
3950 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3951         .version = GENET_V5,
3952         .dma_max_burst_length = 0x08,
3953 };
3954
3955 static const struct bcmgenet_plat_data bcm7712_plat_data = {
3956         .version = GENET_V5,
3957         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3958         .ephy_16nm = true,
3959 };
3960
3961 static const struct of_device_id bcmgenet_match[] = {
3962         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3963         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3964         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3965         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3966         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3967         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3968         { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3969         { },
3970 };
3971 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3972
3973 static int bcmgenet_probe(struct platform_device *pdev)
3974 {
3975         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3976         const struct bcmgenet_plat_data *pdata;
3977         struct bcmgenet_priv *priv;
3978         struct net_device *dev;
3979         unsigned int i;
3980         int err = -EIO;
3981
3982         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3983         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3984                                  GENET_MAX_MQ_CNT + 1);
3985         if (!dev) {
3986                 dev_err(&pdev->dev, "can't allocate net device\n");
3987                 return -ENOMEM;
3988         }
3989
3990         priv = netdev_priv(dev);
3991         priv->irq0 = platform_get_irq(pdev, 0);
3992         if (priv->irq0 < 0) {
3993                 err = priv->irq0;
3994                 goto err;
3995         }
3996         priv->irq1 = platform_get_irq(pdev, 1);
3997         if (priv->irq1 < 0) {
3998                 err = priv->irq1;
3999                 goto err;
4000         }
4001         priv->wol_irq = platform_get_irq_optional(pdev, 2);
4002
4003         priv->base = devm_platform_ioremap_resource(pdev, 0);
4004         if (IS_ERR(priv->base)) {
4005                 err = PTR_ERR(priv->base);
4006                 goto err;
4007         }
4008
4009         spin_lock_init(&priv->lock);
4010
4011         /* Set default pause parameters */
4012         priv->autoneg_pause = 1;
4013         priv->tx_pause = 1;
4014         priv->rx_pause = 1;
4015
4016         SET_NETDEV_DEV(dev, &pdev->dev);
4017         dev_set_drvdata(&pdev->dev, dev);
4018         dev->watchdog_timeo = 2 * HZ;
4019         dev->ethtool_ops = &bcmgenet_ethtool_ops;
4020         dev->netdev_ops = &bcmgenet_netdev_ops;
4021
4022         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4023
4024         /* Set default features */
4025         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4026                          NETIF_F_RXCSUM;
4027         dev->hw_features |= dev->features;
4028         dev->vlan_features |= dev->features;
4029
4030         /* Request the WOL interrupt and advertise suspend if available */
4031         priv->wol_irq_disabled = true;
4032         if (priv->wol_irq > 0) {
4033                 err = devm_request_irq(&pdev->dev, priv->wol_irq,
4034                                        bcmgenet_wol_isr, 0, dev->name, priv);
4035                 if (!err)
4036                         device_set_wakeup_capable(&pdev->dev, 1);
4037         }
4038
4039         /* Set the needed headroom to account for any possible
4040          * features enabling/disabling at runtime
4041          */
4042         dev->needed_headroom += 64;
4043
4044         priv->dev = dev;
4045         priv->pdev = pdev;
4046
4047         pdata = device_get_match_data(&pdev->dev);
4048         if (pdata) {
4049                 priv->version = pdata->version;
4050                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4051                 priv->ephy_16nm = pdata->ephy_16nm;
4052         } else {
4053                 priv->version = pd->genet_version;
4054                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4055         }
4056
4057         priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4058         if (IS_ERR(priv->clk)) {
4059                 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4060                 err = PTR_ERR(priv->clk);
4061                 goto err;
4062         }
4063
4064         err = clk_prepare_enable(priv->clk);
4065         if (err)
4066                 goto err;
4067
4068         bcmgenet_set_hw_params(priv);
4069
4070         err = -EIO;
4071         if (priv->hw_params->flags & GENET_HAS_40BITS)
4072                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4073         if (err)
4074                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4075         if (err)
4076                 goto err_clk_disable;
4077
4078         /* Mii wait queue */
4079         init_waitqueue_head(&priv->wq);
4080         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4081         priv->rx_buf_len = RX_BUF_LENGTH;
4082         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4083
4084         priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4085         if (IS_ERR(priv->clk_wol)) {
4086                 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4087                 err = PTR_ERR(priv->clk_wol);
4088                 goto err_clk_disable;
4089         }
4090
4091         priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4092         if (IS_ERR(priv->clk_eee)) {
4093                 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4094                 err = PTR_ERR(priv->clk_eee);
4095                 goto err_clk_disable;
4096         }
4097
4098         /* If this is an internal GPHY, power it on now, before UniMAC is
4099          * brought out of reset as absolutely no UniMAC activity is allowed
4100          */
4101         if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4102                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4103
4104         if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4105                 eth_hw_addr_set(dev, pd->mac_address);
4106         else
4107                 if (device_get_ethdev_address(&pdev->dev, dev))
4108                         if (has_acpi_companion(&pdev->dev)) {
4109                                 u8 addr[ETH_ALEN];
4110
4111                                 bcmgenet_get_hw_addr(priv, addr);
4112                                 eth_hw_addr_set(dev, addr);
4113                         }
4114
4115         if (!is_valid_ether_addr(dev->dev_addr)) {
4116                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4117                 eth_hw_addr_random(dev);
4118         }
4119
4120         reset_umac(priv);
4121
4122         err = bcmgenet_mii_init(dev);
4123         if (err)
4124                 goto err_clk_disable;
4125
4126         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4127          * just the ring 16 descriptor based TX
4128          */
4129         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4130         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4131
4132         /* Set default coalescing parameters */
4133         for (i = 0; i < priv->hw_params->rx_queues; i++)
4134                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4135         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4136
4137         /* libphy will determine the link state */
4138         netif_carrier_off(dev);
4139
4140         /* Turn off the main clock, WOL clock is handled separately */
4141         clk_disable_unprepare(priv->clk);
4142
4143         err = register_netdev(dev);
4144         if (err) {
4145                 bcmgenet_mii_exit(dev);
4146                 goto err;
4147         }
4148
4149         return err;
4150
4151 err_clk_disable:
4152         clk_disable_unprepare(priv->clk);
4153 err:
4154         free_netdev(dev);
4155         return err;
4156 }
4157
4158 static int bcmgenet_remove(struct platform_device *pdev)
4159 {
4160         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4161
4162         dev_set_drvdata(&pdev->dev, NULL);
4163         unregister_netdev(priv->dev);
4164         bcmgenet_mii_exit(priv->dev);
4165         free_netdev(priv->dev);
4166
4167         return 0;
4168 }
4169
4170 static void bcmgenet_shutdown(struct platform_device *pdev)
4171 {
4172         bcmgenet_remove(pdev);
4173 }
4174
4175 #ifdef CONFIG_PM_SLEEP
4176 static int bcmgenet_resume_noirq(struct device *d)
4177 {
4178         struct net_device *dev = dev_get_drvdata(d);
4179         struct bcmgenet_priv *priv = netdev_priv(dev);
4180         int ret;
4181         u32 reg;
4182
4183         if (!netif_running(dev))
4184                 return 0;
4185
4186         /* Turn on the clock */
4187         ret = clk_prepare_enable(priv->clk);
4188         if (ret)
4189                 return ret;
4190
4191         if (device_may_wakeup(d) && priv->wolopts) {
4192                 /* Account for Wake-on-LAN events and clear those events
4193                  * (Some devices need more time between enabling the clocks
4194                  *  and the interrupt register reflecting the wake event so
4195                  *  read the register twice)
4196                  */
4197                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4198                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4199                 if (reg & UMAC_IRQ_WAKE_EVENT)
4200                         pm_wakeup_event(&priv->pdev->dev, 0);
4201         }
4202
4203         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4204
4205         return 0;
4206 }
4207
4208 static int bcmgenet_resume(struct device *d)
4209 {
4210         struct net_device *dev = dev_get_drvdata(d);
4211         struct bcmgenet_priv *priv = netdev_priv(dev);
4212         struct bcmgenet_rxnfc_rule *rule;
4213         unsigned long dma_ctrl;
4214         int ret;
4215
4216         if (!netif_running(dev))
4217                 return 0;
4218
4219         /* From WOL-enabled suspend, switch to regular clock */
4220         if (device_may_wakeup(d) && priv->wolopts)
4221                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4222
4223         /* If this is an internal GPHY, power it back on now, before UniMAC is
4224          * brought out of reset as absolutely no UniMAC activity is allowed
4225          */
4226         if (priv->internal_phy)
4227                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4228
4229         bcmgenet_umac_reset(priv);
4230
4231         init_umac(priv);
4232
4233         phy_init_hw(dev->phydev);
4234
4235         /* Speed settings must be restored */
4236         genphy_config_aneg(dev->phydev);
4237         bcmgenet_mii_config(priv->dev, false);
4238
4239         /* Restore enabled features */
4240         bcmgenet_set_features(dev, dev->features);
4241
4242         bcmgenet_set_hw_addr(priv, dev->dev_addr);
4243
4244         /* Restore hardware filters */
4245         bcmgenet_hfb_clear(priv);
4246         list_for_each_entry(rule, &priv->rxnfc_list, list)
4247                 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4248                         bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4249
4250         /* Disable RX/TX DMA and flush TX queues */
4251         dma_ctrl = bcmgenet_dma_disable(priv);
4252
4253         /* Reinitialize TDMA and RDMA and SW housekeeping */
4254         ret = bcmgenet_init_dma(priv);
4255         if (ret) {
4256                 netdev_err(dev, "failed to initialize DMA\n");
4257                 goto out_clk_disable;
4258         }
4259
4260         /* Always enable ring 16 - descriptor ring */
4261         bcmgenet_enable_dma(priv, dma_ctrl);
4262
4263         if (!device_may_wakeup(d))
4264                 phy_resume(dev->phydev);
4265
4266         if (priv->eee.eee_enabled)
4267                 bcmgenet_eee_enable_set(dev, true);
4268
4269         bcmgenet_netif_start(dev);
4270
4271         netif_device_attach(dev);
4272
4273         return 0;
4274
4275 out_clk_disable:
4276         if (priv->internal_phy)
4277                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4278         clk_disable_unprepare(priv->clk);
4279         return ret;
4280 }
4281
4282 static int bcmgenet_suspend(struct device *d)
4283 {
4284         struct net_device *dev = dev_get_drvdata(d);
4285         struct bcmgenet_priv *priv = netdev_priv(dev);
4286
4287         if (!netif_running(dev))
4288                 return 0;
4289
4290         netif_device_detach(dev);
4291
4292         bcmgenet_netif_stop(dev);
4293
4294         if (!device_may_wakeup(d))
4295                 phy_suspend(dev->phydev);
4296
4297         /* Disable filtering */
4298         bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4299
4300         return 0;
4301 }
4302
4303 static int bcmgenet_suspend_noirq(struct device *d)
4304 {
4305         struct net_device *dev = dev_get_drvdata(d);
4306         struct bcmgenet_priv *priv = netdev_priv(dev);
4307         int ret = 0;
4308
4309         if (!netif_running(dev))
4310                 return 0;
4311
4312         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4313         if (device_may_wakeup(d) && priv->wolopts)
4314                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4315         else if (priv->internal_phy)
4316                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4317
4318         /* Let the framework handle resumption and leave the clocks on */
4319         if (ret)
4320                 return ret;
4321
4322         /* Turn off the clocks */
4323         clk_disable_unprepare(priv->clk);
4324
4325         return 0;
4326 }
4327 #else
4328 #define bcmgenet_suspend        NULL
4329 #define bcmgenet_suspend_noirq  NULL
4330 #define bcmgenet_resume         NULL
4331 #define bcmgenet_resume_noirq   NULL
4332 #endif /* CONFIG_PM_SLEEP */
4333
4334 static const struct dev_pm_ops bcmgenet_pm_ops = {
4335         .suspend        = bcmgenet_suspend,
4336         .suspend_noirq  = bcmgenet_suspend_noirq,
4337         .resume         = bcmgenet_resume,
4338         .resume_noirq   = bcmgenet_resume_noirq,
4339 };
4340
4341 static const struct acpi_device_id genet_acpi_match[] = {
4342         { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4343         { },
4344 };
4345 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4346
4347 static struct platform_driver bcmgenet_driver = {
4348         .probe  = bcmgenet_probe,
4349         .remove = bcmgenet_remove,
4350         .shutdown = bcmgenet_shutdown,
4351         .driver = {
4352                 .name   = "bcmgenet",
4353                 .of_match_table = bcmgenet_match,
4354                 .pm     = &bcmgenet_pm_ops,
4355                 .acpi_match_table = genet_acpi_match,
4356         },
4357 };
4358 module_platform_driver(bcmgenet_driver);
4359
4360 MODULE_AUTHOR("Broadcom Corporation");
4361 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4362 MODULE_ALIAS("platform:bcmgenet");
4363 MODULE_LICENSE("GPL");
4364 MODULE_SOFTDEP("pre: mdio-bcm-unimac");