usb: dwc3: dwc3-qcom: Fix typo in the dwc3 vbus override API
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT        4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY       0
49
50 #define GENET_Q16_RX_BD_CNT     \
51         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT     \
53         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH           2048
56 #define SKB_ALIGNMENT           32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
63                                 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
66                                 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73         /* MIPS chips strapped for BE will automagically configure the
74          * peripheral registers for CPU-native byte order.
75          */
76         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77                 __raw_writel(value, offset);
78         else
79                 writel_relaxed(value, offset);
80 }
81
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85                 return __raw_readl(offset);
86         else
87                 return readl_relaxed(offset);
88 }
89
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91                                              void __iomem *d, u32 value)
92 {
93         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97                                     void __iomem *d,
98                                     dma_addr_t addr)
99 {
100         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102         /* Register writes to GISB bus can take couple hundred nanoseconds
103          * and are done for each packet, save these expensive writes unless
104          * the platform is explicitly configured for 64-bits/LPAE.
105          */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107         if (priv->hw_params->flags & GENET_HAS_40BITS)
108                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114                                void __iomem *d, dma_addr_t addr, u32 val)
115 {
116         dmadesc_set_addr(priv, d, addr);
117         dmadesc_set_length_status(priv, d, val);
118 }
119
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121                                           void __iomem *d)
122 {
123         dma_addr_t addr;
124
125         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127         /* Register writes to GISB bus can take couple hundred nanoseconds
128          * and are done for each packet, save these expensive writes unless
129          * the platform is explicitly configured for 64-bits/LPAE.
130          */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132         if (priv->hw_params->flags & GENET_HAS_40BITS)
133                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135         return addr;
136 }
137
138 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
139
140 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141                                 NETIF_MSG_LINK)
142
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145         if (GENET_IS_V1(priv))
146                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147         else
148                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153         if (GENET_IS_V1(priv))
154                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155         else
156                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165         if (GENET_IS_V1(priv))
166                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167         else
168                 return bcmgenet_readl(priv->base +
169                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174         if (GENET_IS_V1(priv))
175                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176         else
177                 bcmgenet_writel(val, priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183         if (GENET_IS_V1(priv))
184                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185         else
186                 return bcmgenet_readl(priv->base +
187                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192         if (GENET_IS_V1(priv))
193                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194         else
195                 bcmgenet_writel(val, priv->base +
196                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201         DMA_RING_CFG = 0,
202         DMA_CTRL,
203         DMA_STATUS,
204         DMA_SCB_BURST_SIZE,
205         DMA_ARB_CTRL,
206         DMA_PRIORITY_0,
207         DMA_PRIORITY_1,
208         DMA_PRIORITY_2,
209         DMA_INDEX2RING_0,
210         DMA_INDEX2RING_1,
211         DMA_INDEX2RING_2,
212         DMA_INDEX2RING_3,
213         DMA_INDEX2RING_4,
214         DMA_INDEX2RING_5,
215         DMA_INDEX2RING_6,
216         DMA_INDEX2RING_7,
217         DMA_RING0_TIMEOUT,
218         DMA_RING1_TIMEOUT,
219         DMA_RING2_TIMEOUT,
220         DMA_RING3_TIMEOUT,
221         DMA_RING4_TIMEOUT,
222         DMA_RING5_TIMEOUT,
223         DMA_RING6_TIMEOUT,
224         DMA_RING7_TIMEOUT,
225         DMA_RING8_TIMEOUT,
226         DMA_RING9_TIMEOUT,
227         DMA_RING10_TIMEOUT,
228         DMA_RING11_TIMEOUT,
229         DMA_RING12_TIMEOUT,
230         DMA_RING13_TIMEOUT,
231         DMA_RING14_TIMEOUT,
232         DMA_RING15_TIMEOUT,
233         DMA_RING16_TIMEOUT,
234 };
235
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237         [DMA_RING_CFG]          = 0x00,
238         [DMA_CTRL]              = 0x04,
239         [DMA_STATUS]            = 0x08,
240         [DMA_SCB_BURST_SIZE]    = 0x0C,
241         [DMA_ARB_CTRL]          = 0x2C,
242         [DMA_PRIORITY_0]        = 0x30,
243         [DMA_PRIORITY_1]        = 0x34,
244         [DMA_PRIORITY_2]        = 0x38,
245         [DMA_RING0_TIMEOUT]     = 0x2C,
246         [DMA_RING1_TIMEOUT]     = 0x30,
247         [DMA_RING2_TIMEOUT]     = 0x34,
248         [DMA_RING3_TIMEOUT]     = 0x38,
249         [DMA_RING4_TIMEOUT]     = 0x3c,
250         [DMA_RING5_TIMEOUT]     = 0x40,
251         [DMA_RING6_TIMEOUT]     = 0x44,
252         [DMA_RING7_TIMEOUT]     = 0x48,
253         [DMA_RING8_TIMEOUT]     = 0x4c,
254         [DMA_RING9_TIMEOUT]     = 0x50,
255         [DMA_RING10_TIMEOUT]    = 0x54,
256         [DMA_RING11_TIMEOUT]    = 0x58,
257         [DMA_RING12_TIMEOUT]    = 0x5c,
258         [DMA_RING13_TIMEOUT]    = 0x60,
259         [DMA_RING14_TIMEOUT]    = 0x64,
260         [DMA_RING15_TIMEOUT]    = 0x68,
261         [DMA_RING16_TIMEOUT]    = 0x6C,
262         [DMA_INDEX2RING_0]      = 0x70,
263         [DMA_INDEX2RING_1]      = 0x74,
264         [DMA_INDEX2RING_2]      = 0x78,
265         [DMA_INDEX2RING_3]      = 0x7C,
266         [DMA_INDEX2RING_4]      = 0x80,
267         [DMA_INDEX2RING_5]      = 0x84,
268         [DMA_INDEX2RING_6]      = 0x88,
269         [DMA_INDEX2RING_7]      = 0x8C,
270 };
271
272 static const u8 bcmgenet_dma_regs_v2[] = {
273         [DMA_RING_CFG]          = 0x00,
274         [DMA_CTRL]              = 0x04,
275         [DMA_STATUS]            = 0x08,
276         [DMA_SCB_BURST_SIZE]    = 0x0C,
277         [DMA_ARB_CTRL]          = 0x30,
278         [DMA_PRIORITY_0]        = 0x34,
279         [DMA_PRIORITY_1]        = 0x38,
280         [DMA_PRIORITY_2]        = 0x3C,
281         [DMA_RING0_TIMEOUT]     = 0x2C,
282         [DMA_RING1_TIMEOUT]     = 0x30,
283         [DMA_RING2_TIMEOUT]     = 0x34,
284         [DMA_RING3_TIMEOUT]     = 0x38,
285         [DMA_RING4_TIMEOUT]     = 0x3c,
286         [DMA_RING5_TIMEOUT]     = 0x40,
287         [DMA_RING6_TIMEOUT]     = 0x44,
288         [DMA_RING7_TIMEOUT]     = 0x48,
289         [DMA_RING8_TIMEOUT]     = 0x4c,
290         [DMA_RING9_TIMEOUT]     = 0x50,
291         [DMA_RING10_TIMEOUT]    = 0x54,
292         [DMA_RING11_TIMEOUT]    = 0x58,
293         [DMA_RING12_TIMEOUT]    = 0x5c,
294         [DMA_RING13_TIMEOUT]    = 0x60,
295         [DMA_RING14_TIMEOUT]    = 0x64,
296         [DMA_RING15_TIMEOUT]    = 0x68,
297         [DMA_RING16_TIMEOUT]    = 0x6C,
298 };
299
300 static const u8 bcmgenet_dma_regs_v1[] = {
301         [DMA_CTRL]              = 0x00,
302         [DMA_STATUS]            = 0x04,
303         [DMA_SCB_BURST_SIZE]    = 0x0C,
304         [DMA_ARB_CTRL]          = 0x30,
305         [DMA_PRIORITY_0]        = 0x34,
306         [DMA_PRIORITY_1]        = 0x38,
307         [DMA_PRIORITY_2]        = 0x3C,
308         [DMA_RING0_TIMEOUT]     = 0x2C,
309         [DMA_RING1_TIMEOUT]     = 0x30,
310         [DMA_RING2_TIMEOUT]     = 0x34,
311         [DMA_RING3_TIMEOUT]     = 0x38,
312         [DMA_RING4_TIMEOUT]     = 0x3c,
313         [DMA_RING5_TIMEOUT]     = 0x40,
314         [DMA_RING6_TIMEOUT]     = 0x44,
315         [DMA_RING7_TIMEOUT]     = 0x48,
316         [DMA_RING8_TIMEOUT]     = 0x4c,
317         [DMA_RING9_TIMEOUT]     = 0x50,
318         [DMA_RING10_TIMEOUT]    = 0x54,
319         [DMA_RING11_TIMEOUT]    = 0x58,
320         [DMA_RING12_TIMEOUT]    = 0x5c,
321         [DMA_RING13_TIMEOUT]    = 0x60,
322         [DMA_RING14_TIMEOUT]    = 0x64,
323         [DMA_RING15_TIMEOUT]    = 0x68,
324         [DMA_RING16_TIMEOUT]    = 0x6C,
325 };
326
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332         return netdev_priv(dev_get_drvdata(dev));
333 }
334
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336                                       enum dma_reg r)
337 {
338         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343                                         u32 val, enum dma_reg r)
344 {
345         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350                                       enum dma_reg r)
351 {
352         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357                                         u32 val, enum dma_reg r)
358 {
359         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368         TDMA_READ_PTR = 0,
369         RDMA_WRITE_PTR = TDMA_READ_PTR,
370         TDMA_READ_PTR_HI,
371         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372         TDMA_CONS_INDEX,
373         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374         TDMA_PROD_INDEX,
375         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376         DMA_RING_BUF_SIZE,
377         DMA_START_ADDR,
378         DMA_START_ADDR_HI,
379         DMA_END_ADDR,
380         DMA_END_ADDR_HI,
381         DMA_MBUF_DONE_THRESH,
382         TDMA_FLOW_PERIOD,
383         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384         TDMA_WRITE_PTR,
385         RDMA_READ_PTR = TDMA_WRITE_PTR,
386         TDMA_WRITE_PTR_HI,
387         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396         [TDMA_READ_PTR]                 = 0x00,
397         [TDMA_READ_PTR_HI]              = 0x04,
398         [TDMA_CONS_INDEX]               = 0x08,
399         [TDMA_PROD_INDEX]               = 0x0C,
400         [DMA_RING_BUF_SIZE]             = 0x10,
401         [DMA_START_ADDR]                = 0x14,
402         [DMA_START_ADDR_HI]             = 0x18,
403         [DMA_END_ADDR]                  = 0x1C,
404         [DMA_END_ADDR_HI]               = 0x20,
405         [DMA_MBUF_DONE_THRESH]          = 0x24,
406         [TDMA_FLOW_PERIOD]              = 0x28,
407         [TDMA_WRITE_PTR]                = 0x2C,
408         [TDMA_WRITE_PTR_HI]             = 0x30,
409 };
410
411 static const u8 genet_dma_ring_regs_v123[] = {
412         [TDMA_READ_PTR]                 = 0x00,
413         [TDMA_CONS_INDEX]               = 0x04,
414         [TDMA_PROD_INDEX]               = 0x08,
415         [DMA_RING_BUF_SIZE]             = 0x0C,
416         [DMA_START_ADDR]                = 0x10,
417         [DMA_END_ADDR]                  = 0x14,
418         [DMA_MBUF_DONE_THRESH]          = 0x18,
419         [TDMA_FLOW_PERIOD]              = 0x1C,
420         [TDMA_WRITE_PTR]                = 0x20,
421 };
422
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427                                            unsigned int ring,
428                                            enum dma_ring_reg r)
429 {
430         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431                               (DMA_RING_SIZE * ring) +
432                               genet_dma_ring_regs[r]);
433 }
434
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436                                              unsigned int ring, u32 val,
437                                              enum dma_ring_reg r)
438 {
439         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445                                            unsigned int ring,
446                                            enum dma_ring_reg r)
447 {
448         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449                               (DMA_RING_SIZE * ring) +
450                               genet_dma_ring_regs[r]);
451 }
452
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454                                              unsigned int ring, u32 val,
455                                              enum dma_ring_reg r)
456 {
457         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458                         (DMA_RING_SIZE * ring) +
459                         genet_dma_ring_regs[r]);
460 }
461
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464         u32 offset;
465         u32 reg;
466
467         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468         reg = bcmgenet_hfb_reg_readl(priv, offset);
469         reg |= (1 << (f_index % 32));
470         bcmgenet_hfb_reg_writel(priv, reg, offset);
471         reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472         reg |= RBUF_HFB_EN;
473         bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478         u32 offset, reg, reg1;
479
480         offset = HFB_FLT_ENABLE_V3PLUS;
481         reg = bcmgenet_hfb_reg_readl(priv, offset);
482         reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483         if  (f_index < 32) {
484                 reg1 &= ~(1 << (f_index % 32));
485                 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486         } else {
487                 reg &= ~(1 << (f_index % 32));
488                 bcmgenet_hfb_reg_writel(priv, reg, offset);
489         }
490         if (!reg && !reg1) {
491                 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492                 reg &= ~RBUF_HFB_EN;
493                 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494         }
495 }
496
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498                                                      u32 f_index, u32 rx_queue)
499 {
500         u32 offset;
501         u32 reg;
502
503         offset = f_index / 8;
504         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505         reg &= ~(0xF << (4 * (f_index % 8)));
506         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511                                            u32 f_index, u32 f_length)
512 {
513         u32 offset;
514         u32 reg;
515
516         offset = HFB_FLT_LEN_V3PLUS +
517                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518                  sizeof(u32);
519         reg = bcmgenet_hfb_reg_readl(priv, offset);
520         reg &= ~(0xFF << (8 * (f_index % 4)));
521         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522         bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527         while (size) {
528                 switch (*(unsigned char *)mask++) {
529                 case 0x00:
530                 case 0x0f:
531                 case 0xf0:
532                 case 0xff:
533                         size--;
534                         continue;
535                 default:
536                         return -EINVAL;
537                 }
538         }
539
540         return 0;
541 }
542
543 #define VALIDATE_MASK(x) \
544         bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547                                     u32 offset, void *val, void *mask,
548                                     size_t size)
549 {
550         u32 index, tmp;
551
552         index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553         tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555         while (size--) {
556                 if (offset++ & 1) {
557                         tmp &= ~0x300FF;
558                         tmp |= (*(unsigned char *)val++);
559                         switch ((*(unsigned char *)mask++)) {
560                         case 0xFF:
561                                 tmp |= 0x30000;
562                                 break;
563                         case 0xF0:
564                                 tmp |= 0x20000;
565                                 break;
566                         case 0x0F:
567                                 tmp |= 0x10000;
568                                 break;
569                         }
570                         bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571                         if (size)
572                                 tmp = bcmgenet_hfb_readl(priv,
573                                                          index * sizeof(u32));
574                 } else {
575                         tmp &= ~0xCFF00;
576                         tmp |= (*(unsigned char *)val++) << 8;
577                         switch ((*(unsigned char *)mask++)) {
578                         case 0xFF:
579                                 tmp |= 0xC0000;
580                                 break;
581                         case 0xF0:
582                                 tmp |= 0x80000;
583                                 break;
584                         case 0x0F:
585                                 tmp |= 0x40000;
586                                 break;
587                         }
588                         if (!size)
589                                 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590                 }
591         }
592
593         return 0;
594 }
595
596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597                                              struct bcmgenet_rxnfc_rule *rule)
598 {
599         struct ethtool_rx_flow_spec *fs = &rule->fs;
600         u32 offset = 0, f_length = 0, f;
601         u8 val_8, mask_8;
602         __be16 val_16;
603         u16 mask_16;
604         size_t size;
605
606         f = fs->location;
607         if (fs->flow_type & FLOW_MAC_EXT) {
608                 bcmgenet_hfb_insert_data(priv, f, 0,
609                                          &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610                                          sizeof(fs->h_ext.h_dest));
611         }
612
613         if (fs->flow_type & FLOW_EXT) {
614                 if (fs->m_ext.vlan_etype ||
615                     fs->m_ext.vlan_tci) {
616                         bcmgenet_hfb_insert_data(priv, f, 12,
617                                                  &fs->h_ext.vlan_etype,
618                                                  &fs->m_ext.vlan_etype,
619                                                  sizeof(fs->h_ext.vlan_etype));
620                         bcmgenet_hfb_insert_data(priv, f, 14,
621                                                  &fs->h_ext.vlan_tci,
622                                                  &fs->m_ext.vlan_tci,
623                                                  sizeof(fs->h_ext.vlan_tci));
624                         offset += VLAN_HLEN;
625                         f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626                 }
627         }
628
629         switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630         case ETHER_FLOW:
631                 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632                 bcmgenet_hfb_insert_data(priv, f, 0,
633                                          &fs->h_u.ether_spec.h_dest,
634                                          &fs->m_u.ether_spec.h_dest,
635                                          sizeof(fs->h_u.ether_spec.h_dest));
636                 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637                                          &fs->h_u.ether_spec.h_source,
638                                          &fs->m_u.ether_spec.h_source,
639                                          sizeof(fs->h_u.ether_spec.h_source));
640                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641                                          &fs->h_u.ether_spec.h_proto,
642                                          &fs->m_u.ether_spec.h_proto,
643                                          sizeof(fs->h_u.ether_spec.h_proto));
644                 break;
645         case IP_USER_FLOW:
646                 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647                 /* Specify IP Ether Type */
648                 val_16 = htons(ETH_P_IP);
649                 mask_16 = 0xFFFF;
650                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651                                          &val_16, &mask_16, sizeof(val_16));
652                 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653                                          &fs->h_u.usr_ip4_spec.tos,
654                                          &fs->m_u.usr_ip4_spec.tos,
655                                          sizeof(fs->h_u.usr_ip4_spec.tos));
656                 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657                                          &fs->h_u.usr_ip4_spec.proto,
658                                          &fs->m_u.usr_ip4_spec.proto,
659                                          sizeof(fs->h_u.usr_ip4_spec.proto));
660                 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661                                          &fs->h_u.usr_ip4_spec.ip4src,
662                                          &fs->m_u.usr_ip4_spec.ip4src,
663                                          sizeof(fs->h_u.usr_ip4_spec.ip4src));
664                 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665                                          &fs->h_u.usr_ip4_spec.ip4dst,
666                                          &fs->m_u.usr_ip4_spec.ip4dst,
667                                          sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668                 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669                         break;
670
671                 /* Only supports 20 byte IPv4 header */
672                 val_8 = 0x45;
673                 mask_8 = 0xFF;
674                 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675                                          &val_8, &mask_8,
676                                          sizeof(val_8));
677                 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678                 bcmgenet_hfb_insert_data(priv, f,
679                                          ETH_HLEN + 20 + offset,
680                                          &fs->h_u.usr_ip4_spec.l4_4_bytes,
681                                          &fs->m_u.usr_ip4_spec.l4_4_bytes,
682                                          size);
683                 f_length += DIV_ROUND_UP(size, 2);
684                 break;
685         }
686
687         bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688         if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689                 /* Ring 0 flows can be handled by the default Descriptor Ring
690                  * We'll map them to ring 0, but don't enable the filter
691                  */
692                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693                 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694         } else {
695                 /* Other Rx rings are direct mapped here */
696                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697                                                          fs->ring_cookie);
698                 bcmgenet_hfb_enable_filter(priv, f);
699                 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700         }
701 }
702
703 /* bcmgenet_hfb_clear
704  *
705  * Clear Hardware Filter Block and disable all filtering.
706  */
707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709         u32 base, i;
710
711         base = f_index * priv->hw_params->hfb_filter_size;
712         for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713                 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715
716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718         u32 i;
719
720         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721                 return;
722
723         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728                 bcmgenet_rdma_writel(priv, 0x0, i);
729
730         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731                 bcmgenet_hfb_reg_writel(priv, 0x0,
732                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734         for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735                 bcmgenet_hfb_clear_filter(priv, i);
736 }
737
738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740         int i;
741
742         INIT_LIST_HEAD(&priv->rxnfc_list);
743         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744                 return;
745
746         for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747                 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748                 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749         }
750
751         bcmgenet_hfb_clear(priv);
752 }
753
754 static int bcmgenet_begin(struct net_device *dev)
755 {
756         struct bcmgenet_priv *priv = netdev_priv(dev);
757
758         /* Turn on the clock */
759         return clk_prepare_enable(priv->clk);
760 }
761
762 static void bcmgenet_complete(struct net_device *dev)
763 {
764         struct bcmgenet_priv *priv = netdev_priv(dev);
765
766         /* Turn off the clock */
767         clk_disable_unprepare(priv->clk);
768 }
769
770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771                                        struct ethtool_link_ksettings *cmd)
772 {
773         if (!netif_running(dev))
774                 return -EINVAL;
775
776         if (!dev->phydev)
777                 return -ENODEV;
778
779         phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781         return 0;
782 }
783
784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785                                        const struct ethtool_link_ksettings *cmd)
786 {
787         if (!netif_running(dev))
788                 return -EINVAL;
789
790         if (!dev->phydev)
791                 return -ENODEV;
792
793         return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795
796 static int bcmgenet_set_features(struct net_device *dev,
797                                  netdev_features_t features)
798 {
799         struct bcmgenet_priv *priv = netdev_priv(dev);
800         u32 reg;
801         int ret;
802
803         ret = clk_prepare_enable(priv->clk);
804         if (ret)
805                 return ret;
806
807         /* Make sure we reflect the value of CRC_CMD_FWD */
808         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811         clk_disable_unprepare(priv->clk);
812
813         return ret;
814 }
815
816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818         struct bcmgenet_priv *priv = netdev_priv(dev);
819
820         return priv->msg_enable;
821 }
822
823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825         struct bcmgenet_priv *priv = netdev_priv(dev);
826
827         priv->msg_enable = level;
828 }
829
830 static int bcmgenet_get_coalesce(struct net_device *dev,
831                                  struct ethtool_coalesce *ec)
832 {
833         struct bcmgenet_priv *priv = netdev_priv(dev);
834         struct bcmgenet_rx_ring *ring;
835         unsigned int i;
836
837         ec->tx_max_coalesced_frames =
838                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
839                                          DMA_MBUF_DONE_THRESH);
840         ec->rx_max_coalesced_frames =
841                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
842                                          DMA_MBUF_DONE_THRESH);
843         ec->rx_coalesce_usecs =
844                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
845
846         for (i = 0; i < priv->hw_params->rx_queues; i++) {
847                 ring = &priv->rx_rings[i];
848                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
849         }
850         ring = &priv->rx_rings[DESC_INDEX];
851         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
852
853         return 0;
854 }
855
856 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
857                                      u32 usecs, u32 pkts)
858 {
859         struct bcmgenet_priv *priv = ring->priv;
860         unsigned int i = ring->index;
861         u32 reg;
862
863         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
864
865         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
866         reg &= ~DMA_TIMEOUT_MASK;
867         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
868         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
869 }
870
871 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
872                                           struct ethtool_coalesce *ec)
873 {
874         struct dim_cq_moder moder;
875         u32 usecs, pkts;
876
877         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
878         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
879         usecs = ring->rx_coalesce_usecs;
880         pkts = ring->rx_max_coalesced_frames;
881
882         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
883                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
884                 usecs = moder.usec;
885                 pkts = moder.pkts;
886         }
887
888         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
889         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
890 }
891
892 static int bcmgenet_set_coalesce(struct net_device *dev,
893                                  struct ethtool_coalesce *ec)
894 {
895         struct bcmgenet_priv *priv = netdev_priv(dev);
896         unsigned int i;
897
898         /* Base system clock is 125Mhz, DMA timeout is this reference clock
899          * divided by 1024, which yields roughly 8.192us, our maximum value
900          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
901          */
902         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
903             ec->tx_max_coalesced_frames == 0 ||
904             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
905             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
906                 return -EINVAL;
907
908         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
909                 return -EINVAL;
910
911         /* GENET TDMA hardware does not support a configurable timeout, but will
912          * always generate an interrupt either after MBDONE packets have been
913          * transmitted, or when the ring is empty.
914          */
915
916         /* Program all TX queues with the same values, as there is no
917          * ethtool knob to do coalescing on a per-queue basis
918          */
919         for (i = 0; i < priv->hw_params->tx_queues; i++)
920                 bcmgenet_tdma_ring_writel(priv, i,
921                                           ec->tx_max_coalesced_frames,
922                                           DMA_MBUF_DONE_THRESH);
923         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
924                                   ec->tx_max_coalesced_frames,
925                                   DMA_MBUF_DONE_THRESH);
926
927         for (i = 0; i < priv->hw_params->rx_queues; i++)
928                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
929         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
930
931         return 0;
932 }
933
934 /* standard ethtool support functions. */
935 enum bcmgenet_stat_type {
936         BCMGENET_STAT_NETDEV = -1,
937         BCMGENET_STAT_MIB_RX,
938         BCMGENET_STAT_MIB_TX,
939         BCMGENET_STAT_RUNT,
940         BCMGENET_STAT_MISC,
941         BCMGENET_STAT_SOFT,
942 };
943
944 struct bcmgenet_stats {
945         char stat_string[ETH_GSTRING_LEN];
946         int stat_sizeof;
947         int stat_offset;
948         enum bcmgenet_stat_type type;
949         /* reg offset from UMAC base for misc counters */
950         u16 reg_offset;
951 };
952
953 #define STAT_NETDEV(m) { \
954         .stat_string = __stringify(m), \
955         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
956         .stat_offset = offsetof(struct net_device_stats, m), \
957         .type = BCMGENET_STAT_NETDEV, \
958 }
959
960 #define STAT_GENET_MIB(str, m, _type) { \
961         .stat_string = str, \
962         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
963         .stat_offset = offsetof(struct bcmgenet_priv, m), \
964         .type = _type, \
965 }
966
967 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
968 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
969 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
970 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
971
972 #define STAT_GENET_MISC(str, m, offset) { \
973         .stat_string = str, \
974         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
975         .stat_offset = offsetof(struct bcmgenet_priv, m), \
976         .type = BCMGENET_STAT_MISC, \
977         .reg_offset = offset, \
978 }
979
980 #define STAT_GENET_Q(num) \
981         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
982                         tx_rings[num].packets), \
983         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
984                         tx_rings[num].bytes), \
985         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
986                         rx_rings[num].bytes),    \
987         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
988                         rx_rings[num].packets), \
989         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
990                         rx_rings[num].errors), \
991         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
992                         rx_rings[num].dropped)
993
994 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
995  * between the end of TX stats and the beginning of the RX RUNT
996  */
997 #define BCMGENET_STAT_OFFSET    0xc
998
999 /* Hardware counters must be kept in sync because the order/offset
1000  * is important here (order in structure declaration = order in hardware)
1001  */
1002 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1003         /* general stats */
1004         STAT_NETDEV(rx_packets),
1005         STAT_NETDEV(tx_packets),
1006         STAT_NETDEV(rx_bytes),
1007         STAT_NETDEV(tx_bytes),
1008         STAT_NETDEV(rx_errors),
1009         STAT_NETDEV(tx_errors),
1010         STAT_NETDEV(rx_dropped),
1011         STAT_NETDEV(tx_dropped),
1012         STAT_NETDEV(multicast),
1013         /* UniMAC RSV counters */
1014         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1015         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1016         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1017         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1018         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1019         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1020         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1021         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1022         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1023         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1024         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1025         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1026         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1027         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1028         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1029         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1030         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1031         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1032         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1033         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1034         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1035         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1036         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1037         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1038         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1039         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1040         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1041         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1042         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1043         /* UniMAC TSV counters */
1044         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1045         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1046         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1047         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1048         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1049         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1050         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1051         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1052         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1053         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1054         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1055         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1056         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1057         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1058         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1059         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1060         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1061         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1062         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1063         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1064         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1065         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1066         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1067         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1068         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1069         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1070         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1071         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1072         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1073         /* UniMAC RUNT counters */
1074         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1075         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1076         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1077         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1078         /* Misc UniMAC counters */
1079         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1080                         UMAC_RBUF_OVFL_CNT_V1),
1081         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1082                         UMAC_RBUF_ERR_CNT_V1),
1083         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1084         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1085         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1086         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1087         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1088         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1089                             mib.tx_realloc_tsb_failed),
1090         /* Per TX queues */
1091         STAT_GENET_Q(0),
1092         STAT_GENET_Q(1),
1093         STAT_GENET_Q(2),
1094         STAT_GENET_Q(3),
1095         STAT_GENET_Q(16),
1096 };
1097
1098 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
1099
1100 static void bcmgenet_get_drvinfo(struct net_device *dev,
1101                                  struct ethtool_drvinfo *info)
1102 {
1103         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1104 }
1105
1106 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1107 {
1108         switch (string_set) {
1109         case ETH_SS_STATS:
1110                 return BCMGENET_STATS_LEN;
1111         default:
1112                 return -EOPNOTSUPP;
1113         }
1114 }
1115
1116 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1117                                  u8 *data)
1118 {
1119         int i;
1120
1121         switch (stringset) {
1122         case ETH_SS_STATS:
1123                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1124                         memcpy(data + i * ETH_GSTRING_LEN,
1125                                bcmgenet_gstrings_stats[i].stat_string,
1126                                ETH_GSTRING_LEN);
1127                 }
1128                 break;
1129         }
1130 }
1131
1132 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1133 {
1134         u16 new_offset;
1135         u32 val;
1136
1137         switch (offset) {
1138         case UMAC_RBUF_OVFL_CNT_V1:
1139                 if (GENET_IS_V2(priv))
1140                         new_offset = RBUF_OVFL_CNT_V2;
1141                 else
1142                         new_offset = RBUF_OVFL_CNT_V3PLUS;
1143
1144                 val = bcmgenet_rbuf_readl(priv, new_offset);
1145                 /* clear if overflowed */
1146                 if (val == ~0)
1147                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1148                 break;
1149         case UMAC_RBUF_ERR_CNT_V1:
1150                 if (GENET_IS_V2(priv))
1151                         new_offset = RBUF_ERR_CNT_V2;
1152                 else
1153                         new_offset = RBUF_ERR_CNT_V3PLUS;
1154
1155                 val = bcmgenet_rbuf_readl(priv, new_offset);
1156                 /* clear if overflowed */
1157                 if (val == ~0)
1158                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1159                 break;
1160         default:
1161                 val = bcmgenet_umac_readl(priv, offset);
1162                 /* clear if overflowed */
1163                 if (val == ~0)
1164                         bcmgenet_umac_writel(priv, 0, offset);
1165                 break;
1166         }
1167
1168         return val;
1169 }
1170
1171 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1172 {
1173         int i, j = 0;
1174
1175         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1176                 const struct bcmgenet_stats *s;
1177                 u8 offset = 0;
1178                 u32 val = 0;
1179                 char *p;
1180
1181                 s = &bcmgenet_gstrings_stats[i];
1182                 switch (s->type) {
1183                 case BCMGENET_STAT_NETDEV:
1184                 case BCMGENET_STAT_SOFT:
1185                         continue;
1186                 case BCMGENET_STAT_RUNT:
1187                         offset += BCMGENET_STAT_OFFSET;
1188                         fallthrough;
1189                 case BCMGENET_STAT_MIB_TX:
1190                         offset += BCMGENET_STAT_OFFSET;
1191                         fallthrough;
1192                 case BCMGENET_STAT_MIB_RX:
1193                         val = bcmgenet_umac_readl(priv,
1194                                                   UMAC_MIB_START + j + offset);
1195                         offset = 0;     /* Reset Offset */
1196                         break;
1197                 case BCMGENET_STAT_MISC:
1198                         if (GENET_IS_V1(priv)) {
1199                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
1200                                 /* clear if overflowed */
1201                                 if (val == ~0)
1202                                         bcmgenet_umac_writel(priv, 0,
1203                                                              s->reg_offset);
1204                         } else {
1205                                 val = bcmgenet_update_stat_misc(priv,
1206                                                                 s->reg_offset);
1207                         }
1208                         break;
1209                 }
1210
1211                 j += s->stat_sizeof;
1212                 p = (char *)priv + s->stat_offset;
1213                 *(u32 *)p = val;
1214         }
1215 }
1216
1217 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1218                                        struct ethtool_stats *stats,
1219                                        u64 *data)
1220 {
1221         struct bcmgenet_priv *priv = netdev_priv(dev);
1222         int i;
1223
1224         if (netif_running(dev))
1225                 bcmgenet_update_mib_counters(priv);
1226
1227         dev->netdev_ops->ndo_get_stats(dev);
1228
1229         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1230                 const struct bcmgenet_stats *s;
1231                 char *p;
1232
1233                 s = &bcmgenet_gstrings_stats[i];
1234                 if (s->type == BCMGENET_STAT_NETDEV)
1235                         p = (char *)&dev->stats;
1236                 else
1237                         p = (char *)priv;
1238                 p += s->stat_offset;
1239                 if (sizeof(unsigned long) != sizeof(u32) &&
1240                     s->stat_sizeof == sizeof(unsigned long))
1241                         data[i] = *(unsigned long *)p;
1242                 else
1243                         data[i] = *(u32 *)p;
1244         }
1245 }
1246
1247 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1248 {
1249         struct bcmgenet_priv *priv = netdev_priv(dev);
1250         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1251         u32 reg;
1252
1253         if (enable && !priv->clk_eee_enabled) {
1254                 clk_prepare_enable(priv->clk_eee);
1255                 priv->clk_eee_enabled = true;
1256         }
1257
1258         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1259         if (enable)
1260                 reg |= EEE_EN;
1261         else
1262                 reg &= ~EEE_EN;
1263         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1264
1265         /* Enable EEE and switch to a 27Mhz clock automatically */
1266         reg = bcmgenet_readl(priv->base + off);
1267         if (enable)
1268                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1269         else
1270                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1271         bcmgenet_writel(reg, priv->base + off);
1272
1273         /* Do the same for thing for RBUF */
1274         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1275         if (enable)
1276                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1277         else
1278                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1279         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1280
1281         if (!enable && priv->clk_eee_enabled) {
1282                 clk_disable_unprepare(priv->clk_eee);
1283                 priv->clk_eee_enabled = false;
1284         }
1285
1286         priv->eee.eee_enabled = enable;
1287         priv->eee.eee_active = enable;
1288 }
1289
1290 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1291 {
1292         struct bcmgenet_priv *priv = netdev_priv(dev);
1293         struct ethtool_eee *p = &priv->eee;
1294
1295         if (GENET_IS_V1(priv))
1296                 return -EOPNOTSUPP;
1297
1298         if (!dev->phydev)
1299                 return -ENODEV;
1300
1301         e->eee_enabled = p->eee_enabled;
1302         e->eee_active = p->eee_active;
1303         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1304
1305         return phy_ethtool_get_eee(dev->phydev, e);
1306 }
1307
1308 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1309 {
1310         struct bcmgenet_priv *priv = netdev_priv(dev);
1311         struct ethtool_eee *p = &priv->eee;
1312         int ret = 0;
1313
1314         if (GENET_IS_V1(priv))
1315                 return -EOPNOTSUPP;
1316
1317         if (!dev->phydev)
1318                 return -ENODEV;
1319
1320         p->eee_enabled = e->eee_enabled;
1321
1322         if (!p->eee_enabled) {
1323                 bcmgenet_eee_enable_set(dev, false);
1324         } else {
1325                 ret = phy_init_eee(dev->phydev, 0);
1326                 if (ret) {
1327                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1328                         return ret;
1329                 }
1330
1331                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1332                 bcmgenet_eee_enable_set(dev, true);
1333         }
1334
1335         return phy_ethtool_set_eee(dev->phydev, e);
1336 }
1337
1338 static int bcmgenet_validate_flow(struct net_device *dev,
1339                                   struct ethtool_rxnfc *cmd)
1340 {
1341         struct ethtool_usrip4_spec *l4_mask;
1342         struct ethhdr *eth_mask;
1343
1344         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1345                 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1346                            cmd->fs.location);
1347                 return -EINVAL;
1348         }
1349
1350         switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1351         case IP_USER_FLOW:
1352                 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1353                 /* don't allow mask which isn't valid */
1354                 if (VALIDATE_MASK(l4_mask->ip4src) ||
1355                     VALIDATE_MASK(l4_mask->ip4dst) ||
1356                     VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1357                     VALIDATE_MASK(l4_mask->proto) ||
1358                     VALIDATE_MASK(l4_mask->ip_ver) ||
1359                     VALIDATE_MASK(l4_mask->tos)) {
1360                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1361                         return -EINVAL;
1362                 }
1363                 break;
1364         case ETHER_FLOW:
1365                 eth_mask = &cmd->fs.m_u.ether_spec;
1366                 /* don't allow mask which isn't valid */
1367                 if (VALIDATE_MASK(eth_mask->h_dest) ||
1368                     VALIDATE_MASK(eth_mask->h_source) ||
1369                     VALIDATE_MASK(eth_mask->h_proto)) {
1370                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1371                         return -EINVAL;
1372                 }
1373                 break;
1374         default:
1375                 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1376                            cmd->fs.flow_type);
1377                 return -EINVAL;
1378         }
1379
1380         if ((cmd->fs.flow_type & FLOW_EXT)) {
1381                 /* don't allow mask which isn't valid */
1382                 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1383                     VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1384                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1385                         return -EINVAL;
1386                 }
1387                 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1388                         netdev_err(dev, "rxnfc: user-def not supported\n");
1389                         return -EINVAL;
1390                 }
1391         }
1392
1393         if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1394                 /* don't allow mask which isn't valid */
1395                 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1396                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1397                         return -EINVAL;
1398                 }
1399         }
1400
1401         return 0;
1402 }
1403
1404 static int bcmgenet_insert_flow(struct net_device *dev,
1405                                 struct ethtool_rxnfc *cmd)
1406 {
1407         struct bcmgenet_priv *priv = netdev_priv(dev);
1408         struct bcmgenet_rxnfc_rule *loc_rule;
1409         int err;
1410
1411         if (priv->hw_params->hfb_filter_size < 128) {
1412                 netdev_err(dev, "rxnfc: Not supported by this device\n");
1413                 return -EINVAL;
1414         }
1415
1416         if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1417             cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1418                 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1419                            cmd->fs.ring_cookie);
1420                 return -EINVAL;
1421         }
1422
1423         err = bcmgenet_validate_flow(dev, cmd);
1424         if (err)
1425                 return err;
1426
1427         loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1428         if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1429                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1430         if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1431                 list_del(&loc_rule->list);
1432                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1433         }
1434         loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1435         memcpy(&loc_rule->fs, &cmd->fs,
1436                sizeof(struct ethtool_rx_flow_spec));
1437
1438         bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1439
1440         list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1441
1442         return 0;
1443 }
1444
1445 static int bcmgenet_delete_flow(struct net_device *dev,
1446                                 struct ethtool_rxnfc *cmd)
1447 {
1448         struct bcmgenet_priv *priv = netdev_priv(dev);
1449         struct bcmgenet_rxnfc_rule *rule;
1450         int err = 0;
1451
1452         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1453                 return -EINVAL;
1454
1455         rule = &priv->rxnfc_rules[cmd->fs.location];
1456         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1457                 err =  -ENOENT;
1458                 goto out;
1459         }
1460
1461         if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1462                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1463         if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1464                 list_del(&rule->list);
1465                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1466         }
1467         rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1468         memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1469
1470 out:
1471         return err;
1472 }
1473
1474 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1475 {
1476         struct bcmgenet_priv *priv = netdev_priv(dev);
1477         int err = 0;
1478
1479         switch (cmd->cmd) {
1480         case ETHTOOL_SRXCLSRLINS:
1481                 err = bcmgenet_insert_flow(dev, cmd);
1482                 break;
1483         case ETHTOOL_SRXCLSRLDEL:
1484                 err = bcmgenet_delete_flow(dev, cmd);
1485                 break;
1486         default:
1487                 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1488                             cmd->cmd);
1489                 return -EINVAL;
1490         }
1491
1492         return err;
1493 }
1494
1495 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1496                              int loc)
1497 {
1498         struct bcmgenet_priv *priv = netdev_priv(dev);
1499         struct bcmgenet_rxnfc_rule *rule;
1500         int err = 0;
1501
1502         if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1503                 return -EINVAL;
1504
1505         rule = &priv->rxnfc_rules[loc];
1506         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1507                 err = -ENOENT;
1508         else
1509                 memcpy(&cmd->fs, &rule->fs,
1510                        sizeof(struct ethtool_rx_flow_spec));
1511
1512         return err;
1513 }
1514
1515 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1516 {
1517         struct list_head *pos;
1518         int res = 0;
1519
1520         list_for_each(pos, &priv->rxnfc_list)
1521                 res++;
1522
1523         return res;
1524 }
1525
1526 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1527                               u32 *rule_locs)
1528 {
1529         struct bcmgenet_priv *priv = netdev_priv(dev);
1530         struct bcmgenet_rxnfc_rule *rule;
1531         int err = 0;
1532         int i = 0;
1533
1534         switch (cmd->cmd) {
1535         case ETHTOOL_GRXRINGS:
1536                 cmd->data = priv->hw_params->rx_queues ?: 1;
1537                 break;
1538         case ETHTOOL_GRXCLSRLCNT:
1539                 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1540                 cmd->data = MAX_NUM_OF_FS_RULES;
1541                 break;
1542         case ETHTOOL_GRXCLSRULE:
1543                 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1544                 break;
1545         case ETHTOOL_GRXCLSRLALL:
1546                 list_for_each_entry(rule, &priv->rxnfc_list, list)
1547                         if (i < cmd->rule_cnt)
1548                                 rule_locs[i++] = rule->fs.location;
1549                 cmd->rule_cnt = i;
1550                 cmd->data = MAX_NUM_OF_FS_RULES;
1551                 break;
1552         default:
1553                 err = -EOPNOTSUPP;
1554                 break;
1555         }
1556
1557         return err;
1558 }
1559
1560 /* standard ethtool support functions. */
1561 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1562         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1563                                      ETHTOOL_COALESCE_MAX_FRAMES |
1564                                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1565         .begin                  = bcmgenet_begin,
1566         .complete               = bcmgenet_complete,
1567         .get_strings            = bcmgenet_get_strings,
1568         .get_sset_count         = bcmgenet_get_sset_count,
1569         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1570         .get_drvinfo            = bcmgenet_get_drvinfo,
1571         .get_link               = ethtool_op_get_link,
1572         .get_msglevel           = bcmgenet_get_msglevel,
1573         .set_msglevel           = bcmgenet_set_msglevel,
1574         .get_wol                = bcmgenet_get_wol,
1575         .set_wol                = bcmgenet_set_wol,
1576         .get_eee                = bcmgenet_get_eee,
1577         .set_eee                = bcmgenet_set_eee,
1578         .nway_reset             = phy_ethtool_nway_reset,
1579         .get_coalesce           = bcmgenet_get_coalesce,
1580         .set_coalesce           = bcmgenet_set_coalesce,
1581         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1582         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1583         .get_ts_info            = ethtool_op_get_ts_info,
1584         .get_rxnfc              = bcmgenet_get_rxnfc,
1585         .set_rxnfc              = bcmgenet_set_rxnfc,
1586 };
1587
1588 /* Power down the unimac, based on mode. */
1589 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1590                                 enum bcmgenet_power_mode mode)
1591 {
1592         int ret = 0;
1593         u32 reg;
1594
1595         switch (mode) {
1596         case GENET_POWER_CABLE_SENSE:
1597                 phy_detach(priv->dev->phydev);
1598                 break;
1599
1600         case GENET_POWER_WOL_MAGIC:
1601                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1602                 break;
1603
1604         case GENET_POWER_PASSIVE:
1605                 /* Power down LED */
1606                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1607                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1608                         if (GENET_IS_V5(priv))
1609                                 reg |= EXT_PWR_DOWN_PHY_EN |
1610                                        EXT_PWR_DOWN_PHY_RD |
1611                                        EXT_PWR_DOWN_PHY_SD |
1612                                        EXT_PWR_DOWN_PHY_RX |
1613                                        EXT_PWR_DOWN_PHY_TX |
1614                                        EXT_IDDQ_GLBL_PWR;
1615                         else
1616                                 reg |= EXT_PWR_DOWN_PHY;
1617
1618                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1619                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1620
1621                         bcmgenet_phy_power_set(priv->dev, false);
1622                 }
1623                 break;
1624         default:
1625                 break;
1626         }
1627
1628         return ret;
1629 }
1630
1631 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1632                               enum bcmgenet_power_mode mode)
1633 {
1634         u32 reg;
1635
1636         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1637                 return;
1638
1639         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1640
1641         switch (mode) {
1642         case GENET_POWER_PASSIVE:
1643                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1644                 if (GENET_IS_V5(priv)) {
1645                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1646                                  EXT_PWR_DOWN_PHY_RD |
1647                                  EXT_PWR_DOWN_PHY_SD |
1648                                  EXT_PWR_DOWN_PHY_RX |
1649                                  EXT_PWR_DOWN_PHY_TX |
1650                                  EXT_IDDQ_GLBL_PWR);
1651                         reg |=   EXT_PHY_RESET;
1652                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1653                         mdelay(1);
1654
1655                         reg &=  ~EXT_PHY_RESET;
1656                 } else {
1657                         reg &= ~EXT_PWR_DOWN_PHY;
1658                         reg |= EXT_PWR_DN_EN_LD;
1659                 }
1660                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1661                 bcmgenet_phy_power_set(priv->dev, true);
1662                 break;
1663
1664         case GENET_POWER_CABLE_SENSE:
1665                 /* enable APD */
1666                 if (!GENET_IS_V5(priv)) {
1667                         reg |= EXT_PWR_DN_EN_LD;
1668                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1669                 }
1670                 break;
1671         case GENET_POWER_WOL_MAGIC:
1672                 bcmgenet_wol_power_up_cfg(priv, mode);
1673                 return;
1674         default:
1675                 break;
1676         }
1677 }
1678
1679 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1680                                          struct bcmgenet_tx_ring *ring)
1681 {
1682         struct enet_cb *tx_cb_ptr;
1683
1684         tx_cb_ptr = ring->cbs;
1685         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1686
1687         /* Advancing local write pointer */
1688         if (ring->write_ptr == ring->end_ptr)
1689                 ring->write_ptr = ring->cb_ptr;
1690         else
1691                 ring->write_ptr++;
1692
1693         return tx_cb_ptr;
1694 }
1695
1696 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1697                                          struct bcmgenet_tx_ring *ring)
1698 {
1699         struct enet_cb *tx_cb_ptr;
1700
1701         tx_cb_ptr = ring->cbs;
1702         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1703
1704         /* Rewinding local write pointer */
1705         if (ring->write_ptr == ring->cb_ptr)
1706                 ring->write_ptr = ring->end_ptr;
1707         else
1708                 ring->write_ptr--;
1709
1710         return tx_cb_ptr;
1711 }
1712
1713 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1714 {
1715         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1716                                  INTRL2_CPU_MASK_SET);
1717 }
1718
1719 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1720 {
1721         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1722                                  INTRL2_CPU_MASK_CLEAR);
1723 }
1724
1725 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1726 {
1727         bcmgenet_intrl2_1_writel(ring->priv,
1728                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1729                                  INTRL2_CPU_MASK_SET);
1730 }
1731
1732 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1733 {
1734         bcmgenet_intrl2_1_writel(ring->priv,
1735                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1736                                  INTRL2_CPU_MASK_CLEAR);
1737 }
1738
1739 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1740 {
1741         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1742                                  INTRL2_CPU_MASK_SET);
1743 }
1744
1745 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1746 {
1747         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1748                                  INTRL2_CPU_MASK_CLEAR);
1749 }
1750
1751 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1752 {
1753         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1754                                  INTRL2_CPU_MASK_CLEAR);
1755 }
1756
1757 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1758 {
1759         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1760                                  INTRL2_CPU_MASK_SET);
1761 }
1762
1763 /* Simple helper to free a transmit control block's resources
1764  * Returns an skb when the last transmit control block associated with the
1765  * skb is freed.  The skb should be freed by the caller if necessary.
1766  */
1767 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1768                                            struct enet_cb *cb)
1769 {
1770         struct sk_buff *skb;
1771
1772         skb = cb->skb;
1773
1774         if (skb) {
1775                 cb->skb = NULL;
1776                 if (cb == GENET_CB(skb)->first_cb)
1777                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1778                                          dma_unmap_len(cb, dma_len),
1779                                          DMA_TO_DEVICE);
1780                 else
1781                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1782                                        dma_unmap_len(cb, dma_len),
1783                                        DMA_TO_DEVICE);
1784                 dma_unmap_addr_set(cb, dma_addr, 0);
1785
1786                 if (cb == GENET_CB(skb)->last_cb)
1787                         return skb;
1788
1789         } else if (dma_unmap_addr(cb, dma_addr)) {
1790                 dma_unmap_page(dev,
1791                                dma_unmap_addr(cb, dma_addr),
1792                                dma_unmap_len(cb, dma_len),
1793                                DMA_TO_DEVICE);
1794                 dma_unmap_addr_set(cb, dma_addr, 0);
1795         }
1796
1797         return NULL;
1798 }
1799
1800 /* Simple helper to free a receive control block's resources */
1801 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1802                                            struct enet_cb *cb)
1803 {
1804         struct sk_buff *skb;
1805
1806         skb = cb->skb;
1807         cb->skb = NULL;
1808
1809         if (dma_unmap_addr(cb, dma_addr)) {
1810                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1811                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1812                 dma_unmap_addr_set(cb, dma_addr, 0);
1813         }
1814
1815         return skb;
1816 }
1817
1818 /* Unlocked version of the reclaim routine */
1819 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1820                                           struct bcmgenet_tx_ring *ring)
1821 {
1822         struct bcmgenet_priv *priv = netdev_priv(dev);
1823         unsigned int txbds_processed = 0;
1824         unsigned int bytes_compl = 0;
1825         unsigned int pkts_compl = 0;
1826         unsigned int txbds_ready;
1827         unsigned int c_index;
1828         struct sk_buff *skb;
1829
1830         /* Clear status before servicing to reduce spurious interrupts */
1831         if (ring->index == DESC_INDEX)
1832                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1833                                          INTRL2_CPU_CLEAR);
1834         else
1835                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1836                                          INTRL2_CPU_CLEAR);
1837
1838         /* Compute how many buffers are transmitted since last xmit call */
1839         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1840                 & DMA_C_INDEX_MASK;
1841         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1842
1843         netif_dbg(priv, tx_done, dev,
1844                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1845                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1846
1847         /* Reclaim transmitted buffers */
1848         while (txbds_processed < txbds_ready) {
1849                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1850                                           &priv->tx_cbs[ring->clean_ptr]);
1851                 if (skb) {
1852                         pkts_compl++;
1853                         bytes_compl += GENET_CB(skb)->bytes_sent;
1854                         dev_consume_skb_any(skb);
1855                 }
1856
1857                 txbds_processed++;
1858                 if (likely(ring->clean_ptr < ring->end_ptr))
1859                         ring->clean_ptr++;
1860                 else
1861                         ring->clean_ptr = ring->cb_ptr;
1862         }
1863
1864         ring->free_bds += txbds_processed;
1865         ring->c_index = c_index;
1866
1867         ring->packets += pkts_compl;
1868         ring->bytes += bytes_compl;
1869
1870         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1871                                   pkts_compl, bytes_compl);
1872
1873         return txbds_processed;
1874 }
1875
1876 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1877                                 struct bcmgenet_tx_ring *ring)
1878 {
1879         unsigned int released;
1880
1881         spin_lock_bh(&ring->lock);
1882         released = __bcmgenet_tx_reclaim(dev, ring);
1883         spin_unlock_bh(&ring->lock);
1884
1885         return released;
1886 }
1887
1888 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1889 {
1890         struct bcmgenet_tx_ring *ring =
1891                 container_of(napi, struct bcmgenet_tx_ring, napi);
1892         unsigned int work_done = 0;
1893         struct netdev_queue *txq;
1894
1895         spin_lock(&ring->lock);
1896         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1897         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1898                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1899                 netif_tx_wake_queue(txq);
1900         }
1901         spin_unlock(&ring->lock);
1902
1903         if (work_done == 0) {
1904                 napi_complete(napi);
1905                 ring->int_enable(ring);
1906
1907                 return 0;
1908         }
1909
1910         return budget;
1911 }
1912
1913 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1914 {
1915         struct bcmgenet_priv *priv = netdev_priv(dev);
1916         int i;
1917
1918         if (netif_is_multiqueue(dev)) {
1919                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1920                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1921         }
1922
1923         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1924 }
1925
1926 /* Reallocate the SKB to put enough headroom in front of it and insert
1927  * the transmit checksum offsets in the descriptors
1928  */
1929 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1930                                         struct sk_buff *skb)
1931 {
1932         struct bcmgenet_priv *priv = netdev_priv(dev);
1933         struct status_64 *status = NULL;
1934         struct sk_buff *new_skb;
1935         u16 offset;
1936         u8 ip_proto;
1937         __be16 ip_ver;
1938         u32 tx_csum_info;
1939
1940         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1941                 /* If 64 byte status block enabled, must make sure skb has
1942                  * enough headroom for us to insert 64B status block.
1943                  */
1944                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1945                 if (!new_skb) {
1946                         dev_kfree_skb_any(skb);
1947                         priv->mib.tx_realloc_tsb_failed++;
1948                         dev->stats.tx_dropped++;
1949                         return NULL;
1950                 }
1951                 dev_consume_skb_any(skb);
1952                 skb = new_skb;
1953                 priv->mib.tx_realloc_tsb++;
1954         }
1955
1956         skb_push(skb, sizeof(*status));
1957         status = (struct status_64 *)skb->data;
1958
1959         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1960                 ip_ver = skb->protocol;
1961                 switch (ip_ver) {
1962                 case htons(ETH_P_IP):
1963                         ip_proto = ip_hdr(skb)->protocol;
1964                         break;
1965                 case htons(ETH_P_IPV6):
1966                         ip_proto = ipv6_hdr(skb)->nexthdr;
1967                         break;
1968                 default:
1969                         /* don't use UDP flag */
1970                         ip_proto = 0;
1971                         break;
1972                 }
1973
1974                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1975                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1976                                 (offset + skb->csum_offset) |
1977                                 STATUS_TX_CSUM_LV;
1978
1979                 /* Set the special UDP flag for UDP */
1980                 if (ip_proto == IPPROTO_UDP)
1981                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1982
1983                 status->tx_csum_info = tx_csum_info;
1984         }
1985
1986         return skb;
1987 }
1988
1989 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1990 {
1991         struct bcmgenet_priv *priv = netdev_priv(dev);
1992         struct device *kdev = &priv->pdev->dev;
1993         struct bcmgenet_tx_ring *ring = NULL;
1994         struct enet_cb *tx_cb_ptr;
1995         struct netdev_queue *txq;
1996         int nr_frags, index;
1997         dma_addr_t mapping;
1998         unsigned int size;
1999         skb_frag_t *frag;
2000         u32 len_stat;
2001         int ret;
2002         int i;
2003
2004         index = skb_get_queue_mapping(skb);
2005         /* Mapping strategy:
2006          * queue_mapping = 0, unclassified, packet xmited through ring16
2007          * queue_mapping = 1, goes to ring 0. (highest priority queue
2008          * queue_mapping = 2, goes to ring 1.
2009          * queue_mapping = 3, goes to ring 2.
2010          * queue_mapping = 4, goes to ring 3.
2011          */
2012         if (index == 0)
2013                 index = DESC_INDEX;
2014         else
2015                 index -= 1;
2016
2017         ring = &priv->tx_rings[index];
2018         txq = netdev_get_tx_queue(dev, ring->queue);
2019
2020         nr_frags = skb_shinfo(skb)->nr_frags;
2021
2022         spin_lock(&ring->lock);
2023         if (ring->free_bds <= (nr_frags + 1)) {
2024                 if (!netif_tx_queue_stopped(txq)) {
2025                         netif_tx_stop_queue(txq);
2026                         netdev_err(dev,
2027                                    "%s: tx ring %d full when queue %d awake\n",
2028                                    __func__, index, ring->queue);
2029                 }
2030                 ret = NETDEV_TX_BUSY;
2031                 goto out;
2032         }
2033
2034         /* Retain how many bytes will be sent on the wire, without TSB inserted
2035          * by transmit checksum offload
2036          */
2037         GENET_CB(skb)->bytes_sent = skb->len;
2038
2039         /* add the Transmit Status Block */
2040         skb = bcmgenet_add_tsb(dev, skb);
2041         if (!skb) {
2042                 ret = NETDEV_TX_OK;
2043                 goto out;
2044         }
2045
2046         for (i = 0; i <= nr_frags; i++) {
2047                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2048
2049                 BUG_ON(!tx_cb_ptr);
2050
2051                 if (!i) {
2052                         /* Transmit single SKB or head of fragment list */
2053                         GENET_CB(skb)->first_cb = tx_cb_ptr;
2054                         size = skb_headlen(skb);
2055                         mapping = dma_map_single(kdev, skb->data, size,
2056                                                  DMA_TO_DEVICE);
2057                 } else {
2058                         /* xmit fragment */
2059                         frag = &skb_shinfo(skb)->frags[i - 1];
2060                         size = skb_frag_size(frag);
2061                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
2062                                                    DMA_TO_DEVICE);
2063                 }
2064
2065                 ret = dma_mapping_error(kdev, mapping);
2066                 if (ret) {
2067                         priv->mib.tx_dma_failed++;
2068                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2069                         ret = NETDEV_TX_OK;
2070                         goto out_unmap_frags;
2071                 }
2072                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2073                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2074
2075                 tx_cb_ptr->skb = skb;
2076
2077                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2078                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2079
2080                 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2081                  * will need to restore software padding of "runt" packets
2082                  */
2083                 if (!i) {
2084                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2085                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2086                                 len_stat |= DMA_TX_DO_CSUM;
2087                 }
2088                 if (i == nr_frags)
2089                         len_stat |= DMA_EOP;
2090
2091                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2092         }
2093
2094         GENET_CB(skb)->last_cb = tx_cb_ptr;
2095         skb_tx_timestamp(skb);
2096
2097         /* Decrement total BD count and advance our write pointer */
2098         ring->free_bds -= nr_frags + 1;
2099         ring->prod_index += nr_frags + 1;
2100         ring->prod_index &= DMA_P_INDEX_MASK;
2101
2102         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2103
2104         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2105                 netif_tx_stop_queue(txq);
2106
2107         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2108                 /* Packets are ready, update producer index */
2109                 bcmgenet_tdma_ring_writel(priv, ring->index,
2110                                           ring->prod_index, TDMA_PROD_INDEX);
2111 out:
2112         spin_unlock(&ring->lock);
2113
2114         return ret;
2115
2116 out_unmap_frags:
2117         /* Back up for failed control block mapping */
2118         bcmgenet_put_txcb(priv, ring);
2119
2120         /* Unmap successfully mapped control blocks */
2121         while (i-- > 0) {
2122                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2123                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2124         }
2125
2126         dev_kfree_skb(skb);
2127         goto out;
2128 }
2129
2130 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2131                                           struct enet_cb *cb)
2132 {
2133         struct device *kdev = &priv->pdev->dev;
2134         struct sk_buff *skb;
2135         struct sk_buff *rx_skb;
2136         dma_addr_t mapping;
2137
2138         /* Allocate a new Rx skb */
2139         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2140                                  GFP_ATOMIC | __GFP_NOWARN);
2141         if (!skb) {
2142                 priv->mib.alloc_rx_buff_failed++;
2143                 netif_err(priv, rx_err, priv->dev,
2144                           "%s: Rx skb allocation failed\n", __func__);
2145                 return NULL;
2146         }
2147
2148         /* DMA-map the new Rx skb */
2149         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2150                                  DMA_FROM_DEVICE);
2151         if (dma_mapping_error(kdev, mapping)) {
2152                 priv->mib.rx_dma_failed++;
2153                 dev_kfree_skb_any(skb);
2154                 netif_err(priv, rx_err, priv->dev,
2155                           "%s: Rx skb DMA mapping failed\n", __func__);
2156                 return NULL;
2157         }
2158
2159         /* Grab the current Rx skb from the ring and DMA-unmap it */
2160         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2161
2162         /* Put the new Rx skb on the ring */
2163         cb->skb = skb;
2164         dma_unmap_addr_set(cb, dma_addr, mapping);
2165         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2166         dmadesc_set_addr(priv, cb->bd_addr, mapping);
2167
2168         /* Return the current Rx skb to caller */
2169         return rx_skb;
2170 }
2171
2172 /* bcmgenet_desc_rx - descriptor based rx process.
2173  * this could be called from bottom half, or from NAPI polling method.
2174  */
2175 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2176                                      unsigned int budget)
2177 {
2178         struct bcmgenet_priv *priv = ring->priv;
2179         struct net_device *dev = priv->dev;
2180         struct enet_cb *cb;
2181         struct sk_buff *skb;
2182         u32 dma_length_status;
2183         unsigned long dma_flag;
2184         int len;
2185         unsigned int rxpktprocessed = 0, rxpkttoprocess;
2186         unsigned int bytes_processed = 0;
2187         unsigned int p_index, mask;
2188         unsigned int discards;
2189
2190         /* Clear status before servicing to reduce spurious interrupts */
2191         if (ring->index == DESC_INDEX) {
2192                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2193                                          INTRL2_CPU_CLEAR);
2194         } else {
2195                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2196                 bcmgenet_intrl2_1_writel(priv,
2197                                          mask,
2198                                          INTRL2_CPU_CLEAR);
2199         }
2200
2201         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2202
2203         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2204                    DMA_P_INDEX_DISCARD_CNT_MASK;
2205         if (discards > ring->old_discards) {
2206                 discards = discards - ring->old_discards;
2207                 ring->errors += discards;
2208                 ring->old_discards += discards;
2209
2210                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2211                 if (ring->old_discards >= 0xC000) {
2212                         ring->old_discards = 0;
2213                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2214                                                   RDMA_PROD_INDEX);
2215                 }
2216         }
2217
2218         p_index &= DMA_P_INDEX_MASK;
2219         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2220
2221         netif_dbg(priv, rx_status, dev,
2222                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2223
2224         while ((rxpktprocessed < rxpkttoprocess) &&
2225                (rxpktprocessed < budget)) {
2226                 struct status_64 *status;
2227                 __be16 rx_csum;
2228
2229                 cb = &priv->rx_cbs[ring->read_ptr];
2230                 skb = bcmgenet_rx_refill(priv, cb);
2231
2232                 if (unlikely(!skb)) {
2233                         ring->dropped++;
2234                         goto next;
2235                 }
2236
2237                 status = (struct status_64 *)skb->data;
2238                 dma_length_status = status->length_status;
2239                 if (dev->features & NETIF_F_RXCSUM) {
2240                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2241                         skb->csum = (__force __wsum)ntohs(rx_csum);
2242                         skb->ip_summed = CHECKSUM_COMPLETE;
2243                 }
2244
2245                 /* DMA flags and length are still valid no matter how
2246                  * we got the Receive Status Vector (64B RSB or register)
2247                  */
2248                 dma_flag = dma_length_status & 0xffff;
2249                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2250
2251                 netif_dbg(priv, rx_status, dev,
2252                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2253                           __func__, p_index, ring->c_index,
2254                           ring->read_ptr, dma_length_status);
2255
2256                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2257                         netif_err(priv, rx_status, dev,
2258                                   "dropping fragmented packet!\n");
2259                         ring->errors++;
2260                         dev_kfree_skb_any(skb);
2261                         goto next;
2262                 }
2263
2264                 /* report errors */
2265                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2266                                                 DMA_RX_OV |
2267                                                 DMA_RX_NO |
2268                                                 DMA_RX_LG |
2269                                                 DMA_RX_RXER))) {
2270                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2271                                   (unsigned int)dma_flag);
2272                         if (dma_flag & DMA_RX_CRC_ERROR)
2273                                 dev->stats.rx_crc_errors++;
2274                         if (dma_flag & DMA_RX_OV)
2275                                 dev->stats.rx_over_errors++;
2276                         if (dma_flag & DMA_RX_NO)
2277                                 dev->stats.rx_frame_errors++;
2278                         if (dma_flag & DMA_RX_LG)
2279                                 dev->stats.rx_length_errors++;
2280                         dev->stats.rx_errors++;
2281                         dev_kfree_skb_any(skb);
2282                         goto next;
2283                 } /* error packet */
2284
2285                 skb_put(skb, len);
2286
2287                 /* remove RSB and hardware 2bytes added for IP alignment */
2288                 skb_pull(skb, 66);
2289                 len -= 66;
2290
2291                 if (priv->crc_fwd_en) {
2292                         skb_trim(skb, len - ETH_FCS_LEN);
2293                         len -= ETH_FCS_LEN;
2294                 }
2295
2296                 bytes_processed += len;
2297
2298                 /*Finish setting up the received SKB and send it to the kernel*/
2299                 skb->protocol = eth_type_trans(skb, priv->dev);
2300                 ring->packets++;
2301                 ring->bytes += len;
2302                 if (dma_flag & DMA_RX_MULT)
2303                         dev->stats.multicast++;
2304
2305                 /* Notify kernel */
2306                 napi_gro_receive(&ring->napi, skb);
2307                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2308
2309 next:
2310                 rxpktprocessed++;
2311                 if (likely(ring->read_ptr < ring->end_ptr))
2312                         ring->read_ptr++;
2313                 else
2314                         ring->read_ptr = ring->cb_ptr;
2315
2316                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2317                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2318         }
2319
2320         ring->dim.bytes = bytes_processed;
2321         ring->dim.packets = rxpktprocessed;
2322
2323         return rxpktprocessed;
2324 }
2325
2326 /* Rx NAPI polling method */
2327 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2328 {
2329         struct bcmgenet_rx_ring *ring = container_of(napi,
2330                         struct bcmgenet_rx_ring, napi);
2331         struct dim_sample dim_sample = {};
2332         unsigned int work_done;
2333
2334         work_done = bcmgenet_desc_rx(ring, budget);
2335
2336         if (work_done < budget) {
2337                 napi_complete_done(napi, work_done);
2338                 ring->int_enable(ring);
2339         }
2340
2341         if (ring->dim.use_dim) {
2342                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2343                                   ring->dim.bytes, &dim_sample);
2344                 net_dim(&ring->dim.dim, dim_sample);
2345         }
2346
2347         return work_done;
2348 }
2349
2350 static void bcmgenet_dim_work(struct work_struct *work)
2351 {
2352         struct dim *dim = container_of(work, struct dim, work);
2353         struct bcmgenet_net_dim *ndim =
2354                         container_of(dim, struct bcmgenet_net_dim, dim);
2355         struct bcmgenet_rx_ring *ring =
2356                         container_of(ndim, struct bcmgenet_rx_ring, dim);
2357         struct dim_cq_moder cur_profile =
2358                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2359
2360         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2361         dim->state = DIM_START_MEASURE;
2362 }
2363
2364 /* Assign skb to RX DMA descriptor. */
2365 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2366                                      struct bcmgenet_rx_ring *ring)
2367 {
2368         struct enet_cb *cb;
2369         struct sk_buff *skb;
2370         int i;
2371
2372         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2373
2374         /* loop here for each buffer needing assign */
2375         for (i = 0; i < ring->size; i++) {
2376                 cb = ring->cbs + i;
2377                 skb = bcmgenet_rx_refill(priv, cb);
2378                 if (skb)
2379                         dev_consume_skb_any(skb);
2380                 if (!cb->skb)
2381                         return -ENOMEM;
2382         }
2383
2384         return 0;
2385 }
2386
2387 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2388 {
2389         struct sk_buff *skb;
2390         struct enet_cb *cb;
2391         int i;
2392
2393         for (i = 0; i < priv->num_rx_bds; i++) {
2394                 cb = &priv->rx_cbs[i];
2395
2396                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2397                 if (skb)
2398                         dev_consume_skb_any(skb);
2399         }
2400 }
2401
2402 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2403 {
2404         u32 reg;
2405
2406         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2407         if (reg & CMD_SW_RESET)
2408                 return;
2409         if (enable)
2410                 reg |= mask;
2411         else
2412                 reg &= ~mask;
2413         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2414
2415         /* UniMAC stops on a packet boundary, wait for a full-size packet
2416          * to be processed
2417          */
2418         if (enable == 0)
2419                 usleep_range(1000, 2000);
2420 }
2421
2422 static void reset_umac(struct bcmgenet_priv *priv)
2423 {
2424         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2425         bcmgenet_rbuf_ctrl_set(priv, 0);
2426         udelay(10);
2427
2428         /* issue soft reset and disable MAC while updating its registers */
2429         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2430         udelay(2);
2431 }
2432
2433 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2434 {
2435         /* Mask all interrupts.*/
2436         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2437         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2438         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2439         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2440 }
2441
2442 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2443 {
2444         u32 int0_enable = 0;
2445
2446         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2447          * and MoCA PHY
2448          */
2449         if (priv->internal_phy) {
2450                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2451                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2452                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2453         } else if (priv->ext_phy) {
2454                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2455         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2456                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2457                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2458         }
2459         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2460 }
2461
2462 static void init_umac(struct bcmgenet_priv *priv)
2463 {
2464         struct device *kdev = &priv->pdev->dev;
2465         u32 reg;
2466         u32 int0_enable = 0;
2467
2468         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2469
2470         reset_umac(priv);
2471
2472         /* clear tx/rx counter */
2473         bcmgenet_umac_writel(priv,
2474                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2475                              UMAC_MIB_CTRL);
2476         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2477
2478         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2479
2480         /* init tx registers, enable TSB */
2481         reg = bcmgenet_tbuf_ctrl_get(priv);
2482         reg |= TBUF_64B_EN;
2483         bcmgenet_tbuf_ctrl_set(priv, reg);
2484
2485         /* init rx registers, enable ip header optimization and RSB */
2486         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2487         reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2488         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2489
2490         /* enable rx checksumming */
2491         reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2492         reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2493         /* If UniMAC forwards CRC, we need to skip over it to get
2494          * a valid CHK bit to be set in the per-packet status word
2495          */
2496         if (priv->crc_fwd_en)
2497                 reg |= RBUF_SKIP_FCS;
2498         else
2499                 reg &= ~RBUF_SKIP_FCS;
2500         bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2501
2502         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2503                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2504
2505         bcmgenet_intr_disable(priv);
2506
2507         /* Configure backpressure vectors for MoCA */
2508         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2509                 reg = bcmgenet_bp_mc_get(priv);
2510                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2511
2512                 /* bp_mask: back pressure mask */
2513                 if (netif_is_multiqueue(priv->dev))
2514                         reg |= priv->hw_params->bp_in_mask;
2515                 else
2516                         reg &= ~priv->hw_params->bp_in_mask;
2517                 bcmgenet_bp_mc_set(priv, reg);
2518         }
2519
2520         /* Enable MDIO interrupts on GENET v3+ */
2521         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2522                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2523
2524         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2525
2526         dev_dbg(kdev, "done init umac\n");
2527 }
2528
2529 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2530                               void (*cb)(struct work_struct *work))
2531 {
2532         struct bcmgenet_net_dim *dim = &ring->dim;
2533
2534         INIT_WORK(&dim->dim.work, cb);
2535         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2536         dim->event_ctr = 0;
2537         dim->packets = 0;
2538         dim->bytes = 0;
2539 }
2540
2541 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2542 {
2543         struct bcmgenet_net_dim *dim = &ring->dim;
2544         struct dim_cq_moder moder;
2545         u32 usecs, pkts;
2546
2547         usecs = ring->rx_coalesce_usecs;
2548         pkts = ring->rx_max_coalesced_frames;
2549
2550         /* If DIM was enabled, re-apply default parameters */
2551         if (dim->use_dim) {
2552                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2553                 usecs = moder.usec;
2554                 pkts = moder.pkts;
2555         }
2556
2557         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2558 }
2559
2560 /* Initialize a Tx ring along with corresponding hardware registers */
2561 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2562                                   unsigned int index, unsigned int size,
2563                                   unsigned int start_ptr, unsigned int end_ptr)
2564 {
2565         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2566         u32 words_per_bd = WORDS_PER_BD(priv);
2567         u32 flow_period_val = 0;
2568
2569         spin_lock_init(&ring->lock);
2570         ring->priv = priv;
2571         ring->index = index;
2572         if (index == DESC_INDEX) {
2573                 ring->queue = 0;
2574                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2575                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2576         } else {
2577                 ring->queue = index + 1;
2578                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2579                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2580         }
2581         ring->cbs = priv->tx_cbs + start_ptr;
2582         ring->size = size;
2583         ring->clean_ptr = start_ptr;
2584         ring->c_index = 0;
2585         ring->free_bds = size;
2586         ring->write_ptr = start_ptr;
2587         ring->cb_ptr = start_ptr;
2588         ring->end_ptr = end_ptr - 1;
2589         ring->prod_index = 0;
2590
2591         /* Set flow period for ring != 16 */
2592         if (index != DESC_INDEX)
2593                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2594
2595         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2596         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2597         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2598         /* Disable rate control for now */
2599         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2600                                   TDMA_FLOW_PERIOD);
2601         bcmgenet_tdma_ring_writel(priv, index,
2602                                   ((size << DMA_RING_SIZE_SHIFT) |
2603                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2604
2605         /* Set start and end address, read and write pointers */
2606         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2607                                   DMA_START_ADDR);
2608         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2609                                   TDMA_READ_PTR);
2610         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2611                                   TDMA_WRITE_PTR);
2612         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2613                                   DMA_END_ADDR);
2614
2615         /* Initialize Tx NAPI */
2616         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2617                           NAPI_POLL_WEIGHT);
2618 }
2619
2620 /* Initialize a RDMA ring */
2621 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2622                                  unsigned int index, unsigned int size,
2623                                  unsigned int start_ptr, unsigned int end_ptr)
2624 {
2625         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2626         u32 words_per_bd = WORDS_PER_BD(priv);
2627         int ret;
2628
2629         ring->priv = priv;
2630         ring->index = index;
2631         if (index == DESC_INDEX) {
2632                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2633                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2634         } else {
2635                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2636                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2637         }
2638         ring->cbs = priv->rx_cbs + start_ptr;
2639         ring->size = size;
2640         ring->c_index = 0;
2641         ring->read_ptr = start_ptr;
2642         ring->cb_ptr = start_ptr;
2643         ring->end_ptr = end_ptr - 1;
2644
2645         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2646         if (ret)
2647                 return ret;
2648
2649         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2650         bcmgenet_init_rx_coalesce(ring);
2651
2652         /* Initialize Rx NAPI */
2653         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2654                        NAPI_POLL_WEIGHT);
2655
2656         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2657         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2658         bcmgenet_rdma_ring_writel(priv, index,
2659                                   ((size << DMA_RING_SIZE_SHIFT) |
2660                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2661         bcmgenet_rdma_ring_writel(priv, index,
2662                                   (DMA_FC_THRESH_LO <<
2663                                    DMA_XOFF_THRESHOLD_SHIFT) |
2664                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2665
2666         /* Set start and end address, read and write pointers */
2667         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2668                                   DMA_START_ADDR);
2669         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2670                                   RDMA_READ_PTR);
2671         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2672                                   RDMA_WRITE_PTR);
2673         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2674                                   DMA_END_ADDR);
2675
2676         return ret;
2677 }
2678
2679 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2680 {
2681         unsigned int i;
2682         struct bcmgenet_tx_ring *ring;
2683
2684         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2685                 ring = &priv->tx_rings[i];
2686                 napi_enable(&ring->napi);
2687                 ring->int_enable(ring);
2688         }
2689
2690         ring = &priv->tx_rings[DESC_INDEX];
2691         napi_enable(&ring->napi);
2692         ring->int_enable(ring);
2693 }
2694
2695 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2696 {
2697         unsigned int i;
2698         struct bcmgenet_tx_ring *ring;
2699
2700         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2701                 ring = &priv->tx_rings[i];
2702                 napi_disable(&ring->napi);
2703         }
2704
2705         ring = &priv->tx_rings[DESC_INDEX];
2706         napi_disable(&ring->napi);
2707 }
2708
2709 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2710 {
2711         unsigned int i;
2712         struct bcmgenet_tx_ring *ring;
2713
2714         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2715                 ring = &priv->tx_rings[i];
2716                 netif_napi_del(&ring->napi);
2717         }
2718
2719         ring = &priv->tx_rings[DESC_INDEX];
2720         netif_napi_del(&ring->napi);
2721 }
2722
2723 /* Initialize Tx queues
2724  *
2725  * Queues 0-3 are priority-based, each one has 32 descriptors,
2726  * with queue 0 being the highest priority queue.
2727  *
2728  * Queue 16 is the default Tx queue with
2729  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2730  *
2731  * The transmit control block pool is then partitioned as follows:
2732  * - Tx queue 0 uses tx_cbs[0..31]
2733  * - Tx queue 1 uses tx_cbs[32..63]
2734  * - Tx queue 2 uses tx_cbs[64..95]
2735  * - Tx queue 3 uses tx_cbs[96..127]
2736  * - Tx queue 16 uses tx_cbs[128..255]
2737  */
2738 static void bcmgenet_init_tx_queues(struct net_device *dev)
2739 {
2740         struct bcmgenet_priv *priv = netdev_priv(dev);
2741         u32 i, dma_enable;
2742         u32 dma_ctrl, ring_cfg;
2743         u32 dma_priority[3] = {0, 0, 0};
2744
2745         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2746         dma_enable = dma_ctrl & DMA_EN;
2747         dma_ctrl &= ~DMA_EN;
2748         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2749
2750         dma_ctrl = 0;
2751         ring_cfg = 0;
2752
2753         /* Enable strict priority arbiter mode */
2754         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2755
2756         /* Initialize Tx priority queues */
2757         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2758                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2759                                       i * priv->hw_params->tx_bds_per_q,
2760                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2761                 ring_cfg |= (1 << i);
2762                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2763                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2764                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2765         }
2766
2767         /* Initialize Tx default queue 16 */
2768         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2769                               priv->hw_params->tx_queues *
2770                               priv->hw_params->tx_bds_per_q,
2771                               TOTAL_DESC);
2772         ring_cfg |= (1 << DESC_INDEX);
2773         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2774         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2775                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2776                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2777
2778         /* Set Tx queue priorities */
2779         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2780         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2781         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2782
2783         /* Enable Tx queues */
2784         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2785
2786         /* Enable Tx DMA */
2787         if (dma_enable)
2788                 dma_ctrl |= DMA_EN;
2789         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2790 }
2791
2792 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2793 {
2794         unsigned int i;
2795         struct bcmgenet_rx_ring *ring;
2796
2797         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2798                 ring = &priv->rx_rings[i];
2799                 napi_enable(&ring->napi);
2800                 ring->int_enable(ring);
2801         }
2802
2803         ring = &priv->rx_rings[DESC_INDEX];
2804         napi_enable(&ring->napi);
2805         ring->int_enable(ring);
2806 }
2807
2808 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2809 {
2810         unsigned int i;
2811         struct bcmgenet_rx_ring *ring;
2812
2813         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2814                 ring = &priv->rx_rings[i];
2815                 napi_disable(&ring->napi);
2816                 cancel_work_sync(&ring->dim.dim.work);
2817         }
2818
2819         ring = &priv->rx_rings[DESC_INDEX];
2820         napi_disable(&ring->napi);
2821         cancel_work_sync(&ring->dim.dim.work);
2822 }
2823
2824 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2825 {
2826         unsigned int i;
2827         struct bcmgenet_rx_ring *ring;
2828
2829         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2830                 ring = &priv->rx_rings[i];
2831                 netif_napi_del(&ring->napi);
2832         }
2833
2834         ring = &priv->rx_rings[DESC_INDEX];
2835         netif_napi_del(&ring->napi);
2836 }
2837
2838 /* Initialize Rx queues
2839  *
2840  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2841  * used to direct traffic to these queues.
2842  *
2843  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2844  */
2845 static int bcmgenet_init_rx_queues(struct net_device *dev)
2846 {
2847         struct bcmgenet_priv *priv = netdev_priv(dev);
2848         u32 i;
2849         u32 dma_enable;
2850         u32 dma_ctrl;
2851         u32 ring_cfg;
2852         int ret;
2853
2854         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2855         dma_enable = dma_ctrl & DMA_EN;
2856         dma_ctrl &= ~DMA_EN;
2857         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2858
2859         dma_ctrl = 0;
2860         ring_cfg = 0;
2861
2862         /* Initialize Rx priority queues */
2863         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2864                 ret = bcmgenet_init_rx_ring(priv, i,
2865                                             priv->hw_params->rx_bds_per_q,
2866                                             i * priv->hw_params->rx_bds_per_q,
2867                                             (i + 1) *
2868                                             priv->hw_params->rx_bds_per_q);
2869                 if (ret)
2870                         return ret;
2871
2872                 ring_cfg |= (1 << i);
2873                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2874         }
2875
2876         /* Initialize Rx default queue 16 */
2877         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2878                                     priv->hw_params->rx_queues *
2879                                     priv->hw_params->rx_bds_per_q,
2880                                     TOTAL_DESC);
2881         if (ret)
2882                 return ret;
2883
2884         ring_cfg |= (1 << DESC_INDEX);
2885         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2886
2887         /* Enable rings */
2888         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2889
2890         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2891         if (dma_enable)
2892                 dma_ctrl |= DMA_EN;
2893         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2894
2895         return 0;
2896 }
2897
2898 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2899 {
2900         int ret = 0;
2901         int timeout = 0;
2902         u32 reg;
2903         u32 dma_ctrl;
2904         int i;
2905
2906         /* Disable TDMA to stop add more frames in TX DMA */
2907         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2908         reg &= ~DMA_EN;
2909         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2910
2911         /* Check TDMA status register to confirm TDMA is disabled */
2912         while (timeout++ < DMA_TIMEOUT_VAL) {
2913                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2914                 if (reg & DMA_DISABLED)
2915                         break;
2916
2917                 udelay(1);
2918         }
2919
2920         if (timeout == DMA_TIMEOUT_VAL) {
2921                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2922                 ret = -ETIMEDOUT;
2923         }
2924
2925         /* Wait 10ms for packet drain in both tx and rx dma */
2926         usleep_range(10000, 20000);
2927
2928         /* Disable RDMA */
2929         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2930         reg &= ~DMA_EN;
2931         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2932
2933         timeout = 0;
2934         /* Check RDMA status register to confirm RDMA is disabled */
2935         while (timeout++ < DMA_TIMEOUT_VAL) {
2936                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2937                 if (reg & DMA_DISABLED)
2938                         break;
2939
2940                 udelay(1);
2941         }
2942
2943         if (timeout == DMA_TIMEOUT_VAL) {
2944                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2945                 ret = -ETIMEDOUT;
2946         }
2947
2948         dma_ctrl = 0;
2949         for (i = 0; i < priv->hw_params->rx_queues; i++)
2950                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2951         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2952         reg &= ~dma_ctrl;
2953         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2954
2955         dma_ctrl = 0;
2956         for (i = 0; i < priv->hw_params->tx_queues; i++)
2957                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2958         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2959         reg &= ~dma_ctrl;
2960         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2961
2962         return ret;
2963 }
2964
2965 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2966 {
2967         struct netdev_queue *txq;
2968         int i;
2969
2970         bcmgenet_fini_rx_napi(priv);
2971         bcmgenet_fini_tx_napi(priv);
2972
2973         for (i = 0; i < priv->num_tx_bds; i++)
2974                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2975                                                   priv->tx_cbs + i));
2976
2977         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2978                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2979                 netdev_tx_reset_queue(txq);
2980         }
2981
2982         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2983         netdev_tx_reset_queue(txq);
2984
2985         bcmgenet_free_rx_buffers(priv);
2986         kfree(priv->rx_cbs);
2987         kfree(priv->tx_cbs);
2988 }
2989
2990 /* init_edma: Initialize DMA control register */
2991 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2992 {
2993         int ret;
2994         unsigned int i;
2995         struct enet_cb *cb;
2996
2997         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2998
2999         /* Initialize common Rx ring structures */
3000         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3001         priv->num_rx_bds = TOTAL_DESC;
3002         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3003                                GFP_KERNEL);
3004         if (!priv->rx_cbs)
3005                 return -ENOMEM;
3006
3007         for (i = 0; i < priv->num_rx_bds; i++) {
3008                 cb = priv->rx_cbs + i;
3009                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3010         }
3011
3012         /* Initialize common TX ring structures */
3013         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3014         priv->num_tx_bds = TOTAL_DESC;
3015         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3016                                GFP_KERNEL);
3017         if (!priv->tx_cbs) {
3018                 kfree(priv->rx_cbs);
3019                 return -ENOMEM;
3020         }
3021
3022         for (i = 0; i < priv->num_tx_bds; i++) {
3023                 cb = priv->tx_cbs + i;
3024                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3025         }
3026
3027         /* Init rDma */
3028         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3029                              DMA_SCB_BURST_SIZE);
3030
3031         /* Initialize Rx queues */
3032         ret = bcmgenet_init_rx_queues(priv->dev);
3033         if (ret) {
3034                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3035                 bcmgenet_free_rx_buffers(priv);
3036                 kfree(priv->rx_cbs);
3037                 kfree(priv->tx_cbs);
3038                 return ret;
3039         }
3040
3041         /* Init tDma */
3042         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3043                              DMA_SCB_BURST_SIZE);
3044
3045         /* Initialize Tx queues */
3046         bcmgenet_init_tx_queues(priv->dev);
3047
3048         return 0;
3049 }
3050
3051 /* Interrupt bottom half */
3052 static void bcmgenet_irq_task(struct work_struct *work)
3053 {
3054         unsigned int status;
3055         struct bcmgenet_priv *priv = container_of(
3056                         work, struct bcmgenet_priv, bcmgenet_irq_work);
3057
3058         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3059
3060         spin_lock_irq(&priv->lock);
3061         status = priv->irq0_stat;
3062         priv->irq0_stat = 0;
3063         spin_unlock_irq(&priv->lock);
3064
3065         if (status & UMAC_IRQ_PHY_DET_R &&
3066             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3067                 phy_init_hw(priv->dev->phydev);
3068                 genphy_config_aneg(priv->dev->phydev);
3069         }
3070
3071         /* Link UP/DOWN event */
3072         if (status & UMAC_IRQ_LINK_EVENT)
3073                 phy_mac_interrupt(priv->dev->phydev);
3074
3075 }
3076
3077 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3078 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3079 {
3080         struct bcmgenet_priv *priv = dev_id;
3081         struct bcmgenet_rx_ring *rx_ring;
3082         struct bcmgenet_tx_ring *tx_ring;
3083         unsigned int index, status;
3084
3085         /* Read irq status */
3086         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3087                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3088
3089         /* clear interrupts */
3090         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3091
3092         netif_dbg(priv, intr, priv->dev,
3093                   "%s: IRQ=0x%x\n", __func__, status);
3094
3095         /* Check Rx priority queue interrupts */
3096         for (index = 0; index < priv->hw_params->rx_queues; index++) {
3097                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3098                         continue;
3099
3100                 rx_ring = &priv->rx_rings[index];
3101                 rx_ring->dim.event_ctr++;
3102
3103                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3104                         rx_ring->int_disable(rx_ring);
3105                         __napi_schedule_irqoff(&rx_ring->napi);
3106                 }
3107         }
3108
3109         /* Check Tx priority queue interrupts */
3110         for (index = 0; index < priv->hw_params->tx_queues; index++) {
3111                 if (!(status & BIT(index)))
3112                         continue;
3113
3114                 tx_ring = &priv->tx_rings[index];
3115
3116                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3117                         tx_ring->int_disable(tx_ring);
3118                         __napi_schedule_irqoff(&tx_ring->napi);
3119                 }
3120         }
3121
3122         return IRQ_HANDLED;
3123 }
3124
3125 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3126 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3127 {
3128         struct bcmgenet_priv *priv = dev_id;
3129         struct bcmgenet_rx_ring *rx_ring;
3130         struct bcmgenet_tx_ring *tx_ring;
3131         unsigned int status;
3132         unsigned long flags;
3133
3134         /* Read irq status */
3135         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3136                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3137
3138         /* clear interrupts */
3139         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3140
3141         netif_dbg(priv, intr, priv->dev,
3142                   "IRQ=0x%x\n", status);
3143
3144         if (status & UMAC_IRQ_RXDMA_DONE) {
3145                 rx_ring = &priv->rx_rings[DESC_INDEX];
3146                 rx_ring->dim.event_ctr++;
3147
3148                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3149                         rx_ring->int_disable(rx_ring);
3150                         __napi_schedule_irqoff(&rx_ring->napi);
3151                 }
3152         }
3153
3154         if (status & UMAC_IRQ_TXDMA_DONE) {
3155                 tx_ring = &priv->tx_rings[DESC_INDEX];
3156
3157                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3158                         tx_ring->int_disable(tx_ring);
3159                         __napi_schedule_irqoff(&tx_ring->napi);
3160                 }
3161         }
3162
3163         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3164                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3165                 wake_up(&priv->wq);
3166         }
3167
3168         /* all other interested interrupts handled in bottom half */
3169         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3170         if (status) {
3171                 /* Save irq status for bottom-half processing. */
3172                 spin_lock_irqsave(&priv->lock, flags);
3173                 priv->irq0_stat |= status;
3174                 spin_unlock_irqrestore(&priv->lock, flags);
3175
3176                 schedule_work(&priv->bcmgenet_irq_work);
3177         }
3178
3179         return IRQ_HANDLED;
3180 }
3181
3182 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3183 {
3184         /* Acknowledge the interrupt */
3185         return IRQ_HANDLED;
3186 }
3187
3188 #ifdef CONFIG_NET_POLL_CONTROLLER
3189 static void bcmgenet_poll_controller(struct net_device *dev)
3190 {
3191         struct bcmgenet_priv *priv = netdev_priv(dev);
3192
3193         /* Invoke the main RX/TX interrupt handler */
3194         disable_irq(priv->irq0);
3195         bcmgenet_isr0(priv->irq0, priv);
3196         enable_irq(priv->irq0);
3197
3198         /* And the interrupt handler for RX/TX priority queues */
3199         disable_irq(priv->irq1);
3200         bcmgenet_isr1(priv->irq1, priv);
3201         enable_irq(priv->irq1);
3202 }
3203 #endif
3204
3205 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3206 {
3207         u32 reg;
3208
3209         reg = bcmgenet_rbuf_ctrl_get(priv);
3210         reg |= BIT(1);
3211         bcmgenet_rbuf_ctrl_set(priv, reg);
3212         udelay(10);
3213
3214         reg &= ~BIT(1);
3215         bcmgenet_rbuf_ctrl_set(priv, reg);
3216         udelay(10);
3217 }
3218
3219 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3220                                  unsigned char *addr)
3221 {
3222         bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3223         bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3224 }
3225
3226 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3227                                  unsigned char *addr)
3228 {
3229         u32 addr_tmp;
3230
3231         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3232         put_unaligned_be32(addr_tmp, &addr[0]);
3233         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3234         put_unaligned_be16(addr_tmp, &addr[4]);
3235 }
3236
3237 /* Returns a reusable dma control register value */
3238 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3239 {
3240         u32 reg;
3241         u32 dma_ctrl;
3242
3243         /* disable DMA */
3244         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3245         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3246         reg &= ~dma_ctrl;
3247         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3248
3249         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3250         reg &= ~dma_ctrl;
3251         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3252
3253         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3254         udelay(10);
3255         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3256
3257         return dma_ctrl;
3258 }
3259
3260 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3261 {
3262         u32 reg;
3263
3264         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3265         reg |= dma_ctrl;
3266         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3267
3268         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3269         reg |= dma_ctrl;
3270         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3271 }
3272
3273 static void bcmgenet_netif_start(struct net_device *dev)
3274 {
3275         struct bcmgenet_priv *priv = netdev_priv(dev);
3276
3277         /* Start the network engine */
3278         bcmgenet_set_rx_mode(dev);
3279         bcmgenet_enable_rx_napi(priv);
3280
3281         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3282
3283         bcmgenet_enable_tx_napi(priv);
3284
3285         /* Monitor link interrupts now */
3286         bcmgenet_link_intr_enable(priv);
3287
3288         phy_start(dev->phydev);
3289 }
3290
3291 static int bcmgenet_open(struct net_device *dev)
3292 {
3293         struct bcmgenet_priv *priv = netdev_priv(dev);
3294         unsigned long dma_ctrl;
3295         u32 reg;
3296         int ret;
3297
3298         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3299
3300         /* Turn on the clock */
3301         clk_prepare_enable(priv->clk);
3302
3303         /* If this is an internal GPHY, power it back on now, before UniMAC is
3304          * brought out of reset as absolutely no UniMAC activity is allowed
3305          */
3306         if (priv->internal_phy)
3307                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3308
3309         /* take MAC out of reset */
3310         bcmgenet_umac_reset(priv);
3311
3312         init_umac(priv);
3313
3314         /* Apply features again in case we changed them while interface was
3315          * down
3316          */
3317         bcmgenet_set_features(dev, dev->features);
3318
3319         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3320
3321         if (priv->internal_phy) {
3322                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3323                 reg |= EXT_ENERGY_DET_MASK;
3324                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3325         }
3326
3327         /* Disable RX/TX DMA and flush TX queues */
3328         dma_ctrl = bcmgenet_dma_disable(priv);
3329
3330         /* Reinitialize TDMA and RDMA and SW housekeeping */
3331         ret = bcmgenet_init_dma(priv);
3332         if (ret) {
3333                 netdev_err(dev, "failed to initialize DMA\n");
3334                 goto err_clk_disable;
3335         }
3336
3337         /* Always enable ring 16 - descriptor ring */
3338         bcmgenet_enable_dma(priv, dma_ctrl);
3339
3340         /* HFB init */
3341         bcmgenet_hfb_init(priv);
3342
3343         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3344                           dev->name, priv);
3345         if (ret < 0) {
3346                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3347                 goto err_fini_dma;
3348         }
3349
3350         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3351                           dev->name, priv);
3352         if (ret < 0) {
3353                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3354                 goto err_irq0;
3355         }
3356
3357         ret = bcmgenet_mii_probe(dev);
3358         if (ret) {
3359                 netdev_err(dev, "failed to connect to PHY\n");
3360                 goto err_irq1;
3361         }
3362
3363         bcmgenet_netif_start(dev);
3364
3365         netif_tx_start_all_queues(dev);
3366
3367         return 0;
3368
3369 err_irq1:
3370         free_irq(priv->irq1, priv);
3371 err_irq0:
3372         free_irq(priv->irq0, priv);
3373 err_fini_dma:
3374         bcmgenet_dma_teardown(priv);
3375         bcmgenet_fini_dma(priv);
3376 err_clk_disable:
3377         if (priv->internal_phy)
3378                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3379         clk_disable_unprepare(priv->clk);
3380         return ret;
3381 }
3382
3383 static void bcmgenet_netif_stop(struct net_device *dev)
3384 {
3385         struct bcmgenet_priv *priv = netdev_priv(dev);
3386
3387         bcmgenet_disable_tx_napi(priv);
3388         netif_tx_disable(dev);
3389
3390         /* Disable MAC receive */
3391         umac_enable_set(priv, CMD_RX_EN, false);
3392
3393         bcmgenet_dma_teardown(priv);
3394
3395         /* Disable MAC transmit. TX DMA disabled must be done before this */
3396         umac_enable_set(priv, CMD_TX_EN, false);
3397
3398         phy_stop(dev->phydev);
3399         bcmgenet_disable_rx_napi(priv);
3400         bcmgenet_intr_disable(priv);
3401
3402         /* Wait for pending work items to complete. Since interrupts are
3403          * disabled no new work will be scheduled.
3404          */
3405         cancel_work_sync(&priv->bcmgenet_irq_work);
3406
3407         priv->old_link = -1;
3408         priv->old_speed = -1;
3409         priv->old_duplex = -1;
3410         priv->old_pause = -1;
3411
3412         /* tx reclaim */
3413         bcmgenet_tx_reclaim_all(dev);
3414         bcmgenet_fini_dma(priv);
3415 }
3416
3417 static int bcmgenet_close(struct net_device *dev)
3418 {
3419         struct bcmgenet_priv *priv = netdev_priv(dev);
3420         int ret = 0;
3421
3422         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3423
3424         bcmgenet_netif_stop(dev);
3425
3426         /* Really kill the PHY state machine and disconnect from it */
3427         phy_disconnect(dev->phydev);
3428
3429         free_irq(priv->irq0, priv);
3430         free_irq(priv->irq1, priv);
3431
3432         if (priv->internal_phy)
3433                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3434
3435         clk_disable_unprepare(priv->clk);
3436
3437         return ret;
3438 }
3439
3440 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3441 {
3442         struct bcmgenet_priv *priv = ring->priv;
3443         u32 p_index, c_index, intsts, intmsk;
3444         struct netdev_queue *txq;
3445         unsigned int free_bds;
3446         bool txq_stopped;
3447
3448         if (!netif_msg_tx_err(priv))
3449                 return;
3450
3451         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3452
3453         spin_lock(&ring->lock);
3454         if (ring->index == DESC_INDEX) {
3455                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3456                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3457         } else {
3458                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3459                 intmsk = 1 << ring->index;
3460         }
3461         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3462         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3463         txq_stopped = netif_tx_queue_stopped(txq);
3464         free_bds = ring->free_bds;
3465         spin_unlock(&ring->lock);
3466
3467         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3468                   "TX queue status: %s, interrupts: %s\n"
3469                   "(sw)free_bds: %d (sw)size: %d\n"
3470                   "(sw)p_index: %d (hw)p_index: %d\n"
3471                   "(sw)c_index: %d (hw)c_index: %d\n"
3472                   "(sw)clean_p: %d (sw)write_p: %d\n"
3473                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3474                   ring->index, ring->queue,
3475                   txq_stopped ? "stopped" : "active",
3476                   intsts & intmsk ? "enabled" : "disabled",
3477                   free_bds, ring->size,
3478                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3479                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3480                   ring->clean_ptr, ring->write_ptr,
3481                   ring->cb_ptr, ring->end_ptr);
3482 }
3483
3484 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3485 {
3486         struct bcmgenet_priv *priv = netdev_priv(dev);
3487         u32 int0_enable = 0;
3488         u32 int1_enable = 0;
3489         unsigned int q;
3490
3491         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3492
3493         for (q = 0; q < priv->hw_params->tx_queues; q++)
3494                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3495         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3496
3497         bcmgenet_tx_reclaim_all(dev);
3498
3499         for (q = 0; q < priv->hw_params->tx_queues; q++)
3500                 int1_enable |= (1 << q);
3501
3502         int0_enable = UMAC_IRQ_TXDMA_DONE;
3503
3504         /* Re-enable TX interrupts if disabled */
3505         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3506         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3507
3508         netif_trans_update(dev);
3509
3510         dev->stats.tx_errors++;
3511
3512         netif_tx_wake_all_queues(dev);
3513 }
3514
3515 #define MAX_MDF_FILTER  17
3516
3517 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3518                                          unsigned char *addr,
3519                                          int *i)
3520 {
3521         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3522                              UMAC_MDF_ADDR + (*i * 4));
3523         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3524                              addr[4] << 8 | addr[5],
3525                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3526         *i += 2;
3527 }
3528
3529 static void bcmgenet_set_rx_mode(struct net_device *dev)
3530 {
3531         struct bcmgenet_priv *priv = netdev_priv(dev);
3532         struct netdev_hw_addr *ha;
3533         int i, nfilter;
3534         u32 reg;
3535
3536         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3537
3538         /* Number of filters needed */
3539         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3540
3541         /*
3542          * Turn on promicuous mode for three scenarios
3543          * 1. IFF_PROMISC flag is set
3544          * 2. IFF_ALLMULTI flag is set
3545          * 3. The number of filters needed exceeds the number filters
3546          *    supported by the hardware.
3547         */
3548         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3549         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3550             (nfilter > MAX_MDF_FILTER)) {
3551                 reg |= CMD_PROMISC;
3552                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3553                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3554                 return;
3555         } else {
3556                 reg &= ~CMD_PROMISC;
3557                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3558         }
3559
3560         /* update MDF filter */
3561         i = 0;
3562         /* Broadcast */
3563         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3564         /* my own address.*/
3565         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3566
3567         /* Unicast */
3568         netdev_for_each_uc_addr(ha, dev)
3569                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3570
3571         /* Multicast */
3572         netdev_for_each_mc_addr(ha, dev)
3573                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3574
3575         /* Enable filters */
3576         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3577         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3578 }
3579
3580 /* Set the hardware MAC address. */
3581 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3582 {
3583         struct sockaddr *addr = p;
3584
3585         /* Setting the MAC address at the hardware level is not possible
3586          * without disabling the UniMAC RX/TX enable bits.
3587          */
3588         if (netif_running(dev))
3589                 return -EBUSY;
3590
3591         ether_addr_copy(dev->dev_addr, addr->sa_data);
3592
3593         return 0;
3594 }
3595
3596 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3597 {
3598         struct bcmgenet_priv *priv = netdev_priv(dev);
3599         unsigned long tx_bytes = 0, tx_packets = 0;
3600         unsigned long rx_bytes = 0, rx_packets = 0;
3601         unsigned long rx_errors = 0, rx_dropped = 0;
3602         struct bcmgenet_tx_ring *tx_ring;
3603         struct bcmgenet_rx_ring *rx_ring;
3604         unsigned int q;
3605
3606         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3607                 tx_ring = &priv->tx_rings[q];
3608                 tx_bytes += tx_ring->bytes;
3609                 tx_packets += tx_ring->packets;
3610         }
3611         tx_ring = &priv->tx_rings[DESC_INDEX];
3612         tx_bytes += tx_ring->bytes;
3613         tx_packets += tx_ring->packets;
3614
3615         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3616                 rx_ring = &priv->rx_rings[q];
3617
3618                 rx_bytes += rx_ring->bytes;
3619                 rx_packets += rx_ring->packets;
3620                 rx_errors += rx_ring->errors;
3621                 rx_dropped += rx_ring->dropped;
3622         }
3623         rx_ring = &priv->rx_rings[DESC_INDEX];
3624         rx_bytes += rx_ring->bytes;
3625         rx_packets += rx_ring->packets;
3626         rx_errors += rx_ring->errors;
3627         rx_dropped += rx_ring->dropped;
3628
3629         dev->stats.tx_bytes = tx_bytes;
3630         dev->stats.tx_packets = tx_packets;
3631         dev->stats.rx_bytes = rx_bytes;
3632         dev->stats.rx_packets = rx_packets;
3633         dev->stats.rx_errors = rx_errors;
3634         dev->stats.rx_missed_errors = rx_errors;
3635         dev->stats.rx_dropped = rx_dropped;
3636         return &dev->stats;
3637 }
3638
3639 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3640 {
3641         struct bcmgenet_priv *priv = netdev_priv(dev);
3642
3643         if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3644             priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3645                 return -EOPNOTSUPP;
3646
3647         if (new_carrier)
3648                 netif_carrier_on(dev);
3649         else
3650                 netif_carrier_off(dev);
3651
3652         return 0;
3653 }
3654
3655 static const struct net_device_ops bcmgenet_netdev_ops = {
3656         .ndo_open               = bcmgenet_open,
3657         .ndo_stop               = bcmgenet_close,
3658         .ndo_start_xmit         = bcmgenet_xmit,
3659         .ndo_tx_timeout         = bcmgenet_timeout,
3660         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3661         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3662         .ndo_do_ioctl           = phy_do_ioctl_running,
3663         .ndo_set_features       = bcmgenet_set_features,
3664 #ifdef CONFIG_NET_POLL_CONTROLLER
3665         .ndo_poll_controller    = bcmgenet_poll_controller,
3666 #endif
3667         .ndo_get_stats          = bcmgenet_get_stats,
3668         .ndo_change_carrier     = bcmgenet_change_carrier,
3669 };
3670
3671 /* Array of GENET hardware parameters/characteristics */
3672 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3673         [GENET_V1] = {
3674                 .tx_queues = 0,
3675                 .tx_bds_per_q = 0,
3676                 .rx_queues = 0,
3677                 .rx_bds_per_q = 0,
3678                 .bp_in_en_shift = 16,
3679                 .bp_in_mask = 0xffff,
3680                 .hfb_filter_cnt = 16,
3681                 .qtag_mask = 0x1F,
3682                 .hfb_offset = 0x1000,
3683                 .rdma_offset = 0x2000,
3684                 .tdma_offset = 0x3000,
3685                 .words_per_bd = 2,
3686         },
3687         [GENET_V2] = {
3688                 .tx_queues = 4,
3689                 .tx_bds_per_q = 32,
3690                 .rx_queues = 0,
3691                 .rx_bds_per_q = 0,
3692                 .bp_in_en_shift = 16,
3693                 .bp_in_mask = 0xffff,
3694                 .hfb_filter_cnt = 16,
3695                 .qtag_mask = 0x1F,
3696                 .tbuf_offset = 0x0600,
3697                 .hfb_offset = 0x1000,
3698                 .hfb_reg_offset = 0x2000,
3699                 .rdma_offset = 0x3000,
3700                 .tdma_offset = 0x4000,
3701                 .words_per_bd = 2,
3702                 .flags = GENET_HAS_EXT,
3703         },
3704         [GENET_V3] = {
3705                 .tx_queues = 4,
3706                 .tx_bds_per_q = 32,
3707                 .rx_queues = 0,
3708                 .rx_bds_per_q = 0,
3709                 .bp_in_en_shift = 17,
3710                 .bp_in_mask = 0x1ffff,
3711                 .hfb_filter_cnt = 48,
3712                 .hfb_filter_size = 128,
3713                 .qtag_mask = 0x3F,
3714                 .tbuf_offset = 0x0600,
3715                 .hfb_offset = 0x8000,
3716                 .hfb_reg_offset = 0xfc00,
3717                 .rdma_offset = 0x10000,
3718                 .tdma_offset = 0x11000,
3719                 .words_per_bd = 2,
3720                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3721                          GENET_HAS_MOCA_LINK_DET,
3722         },
3723         [GENET_V4] = {
3724                 .tx_queues = 4,
3725                 .tx_bds_per_q = 32,
3726                 .rx_queues = 0,
3727                 .rx_bds_per_q = 0,
3728                 .bp_in_en_shift = 17,
3729                 .bp_in_mask = 0x1ffff,
3730                 .hfb_filter_cnt = 48,
3731                 .hfb_filter_size = 128,
3732                 .qtag_mask = 0x3F,
3733                 .tbuf_offset = 0x0600,
3734                 .hfb_offset = 0x8000,
3735                 .hfb_reg_offset = 0xfc00,
3736                 .rdma_offset = 0x2000,
3737                 .tdma_offset = 0x4000,
3738                 .words_per_bd = 3,
3739                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3740                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3741         },
3742         [GENET_V5] = {
3743                 .tx_queues = 4,
3744                 .tx_bds_per_q = 32,
3745                 .rx_queues = 0,
3746                 .rx_bds_per_q = 0,
3747                 .bp_in_en_shift = 17,
3748                 .bp_in_mask = 0x1ffff,
3749                 .hfb_filter_cnt = 48,
3750                 .hfb_filter_size = 128,
3751                 .qtag_mask = 0x3F,
3752                 .tbuf_offset = 0x0600,
3753                 .hfb_offset = 0x8000,
3754                 .hfb_reg_offset = 0xfc00,
3755                 .rdma_offset = 0x2000,
3756                 .tdma_offset = 0x4000,
3757                 .words_per_bd = 3,
3758                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3759                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3760         },
3761 };
3762
3763 /* Infer hardware parameters from the detected GENET version */
3764 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3765 {
3766         struct bcmgenet_hw_params *params;
3767         u32 reg;
3768         u8 major;
3769         u16 gphy_rev;
3770
3771         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3772                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3773                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3774         } else if (GENET_IS_V3(priv)) {
3775                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3776                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3777         } else if (GENET_IS_V2(priv)) {
3778                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3779                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3780         } else if (GENET_IS_V1(priv)) {
3781                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3782                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3783         }
3784
3785         /* enum genet_version starts at 1 */
3786         priv->hw_params = &bcmgenet_hw_params[priv->version];
3787         params = priv->hw_params;
3788
3789         /* Read GENET HW version */
3790         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3791         major = (reg >> 24 & 0x0f);
3792         if (major == 6)
3793                 major = 5;
3794         else if (major == 5)
3795                 major = 4;
3796         else if (major == 0)
3797                 major = 1;
3798         if (major != priv->version) {
3799                 dev_err(&priv->pdev->dev,
3800                         "GENET version mismatch, got: %d, configured for: %d\n",
3801                         major, priv->version);
3802         }
3803
3804         /* Print the GENET core version */
3805         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3806                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3807
3808         /* Store the integrated PHY revision for the MDIO probing function
3809          * to pass this information to the PHY driver. The PHY driver expects
3810          * to find the PHY major revision in bits 15:8 while the GENET register
3811          * stores that information in bits 7:0, account for that.
3812          *
3813          * On newer chips, starting with PHY revision G0, a new scheme is
3814          * deployed similar to the Starfighter 2 switch with GPHY major
3815          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3816          * is reserved as well as special value 0x01ff, we have a small
3817          * heuristic to check for the new GPHY revision and re-arrange things
3818          * so the GPHY driver is happy.
3819          */
3820         gphy_rev = reg & 0xffff;
3821
3822         if (GENET_IS_V5(priv)) {
3823                 /* The EPHY revision should come from the MDIO registers of
3824                  * the PHY not from GENET.
3825                  */
3826                 if (gphy_rev != 0) {
3827                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3828                                 gphy_rev);
3829                 }
3830         /* This is reserved so should require special treatment */
3831         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3832                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3833                 return;
3834         /* This is the good old scheme, just GPHY major, no minor nor patch */
3835         } else if ((gphy_rev & 0xf0) != 0) {
3836                 priv->gphy_rev = gphy_rev << 8;
3837         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3838         } else if ((gphy_rev & 0xff00) != 0) {
3839                 priv->gphy_rev = gphy_rev;
3840         }
3841
3842 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3843         if (!(params->flags & GENET_HAS_40BITS))
3844                 pr_warn("GENET does not support 40-bits PA\n");
3845 #endif
3846
3847         pr_debug("Configuration for version: %d\n"
3848                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3849                 "BP << en: %2d, BP msk: 0x%05x\n"
3850                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3851                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3852                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3853                 "Words/BD: %d\n",
3854                 priv->version,
3855                 params->tx_queues, params->tx_bds_per_q,
3856                 params->rx_queues, params->rx_bds_per_q,
3857                 params->bp_in_en_shift, params->bp_in_mask,
3858                 params->hfb_filter_cnt, params->qtag_mask,
3859                 params->tbuf_offset, params->hfb_offset,
3860                 params->hfb_reg_offset,
3861                 params->rdma_offset, params->tdma_offset,
3862                 params->words_per_bd);
3863 }
3864
3865 struct bcmgenet_plat_data {
3866         enum bcmgenet_version version;
3867         u32 dma_max_burst_length;
3868 };
3869
3870 static const struct bcmgenet_plat_data v1_plat_data = {
3871         .version = GENET_V1,
3872         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3873 };
3874
3875 static const struct bcmgenet_plat_data v2_plat_data = {
3876         .version = GENET_V2,
3877         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3878 };
3879
3880 static const struct bcmgenet_plat_data v3_plat_data = {
3881         .version = GENET_V3,
3882         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3883 };
3884
3885 static const struct bcmgenet_plat_data v4_plat_data = {
3886         .version = GENET_V4,
3887         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3888 };
3889
3890 static const struct bcmgenet_plat_data v5_plat_data = {
3891         .version = GENET_V5,
3892         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3893 };
3894
3895 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3896         .version = GENET_V5,
3897         .dma_max_burst_length = 0x08,
3898 };
3899
3900 static const struct of_device_id bcmgenet_match[] = {
3901         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3902         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3903         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3904         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3905         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3906         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3907         { },
3908 };
3909 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3910
3911 static int bcmgenet_probe(struct platform_device *pdev)
3912 {
3913         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3914         const struct bcmgenet_plat_data *pdata;
3915         struct bcmgenet_priv *priv;
3916         struct net_device *dev;
3917         unsigned int i;
3918         int err = -EIO;
3919
3920         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3921         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3922                                  GENET_MAX_MQ_CNT + 1);
3923         if (!dev) {
3924                 dev_err(&pdev->dev, "can't allocate net device\n");
3925                 return -ENOMEM;
3926         }
3927
3928         priv = netdev_priv(dev);
3929         priv->irq0 = platform_get_irq(pdev, 0);
3930         if (priv->irq0 < 0) {
3931                 err = priv->irq0;
3932                 goto err;
3933         }
3934         priv->irq1 = platform_get_irq(pdev, 1);
3935         if (priv->irq1 < 0) {
3936                 err = priv->irq1;
3937                 goto err;
3938         }
3939         priv->wol_irq = platform_get_irq_optional(pdev, 2);
3940
3941         priv->base = devm_platform_ioremap_resource(pdev, 0);
3942         if (IS_ERR(priv->base)) {
3943                 err = PTR_ERR(priv->base);
3944                 goto err;
3945         }
3946
3947         spin_lock_init(&priv->lock);
3948
3949         SET_NETDEV_DEV(dev, &pdev->dev);
3950         dev_set_drvdata(&pdev->dev, dev);
3951         dev->watchdog_timeo = 2 * HZ;
3952         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3953         dev->netdev_ops = &bcmgenet_netdev_ops;
3954
3955         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3956
3957         /* Set default features */
3958         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3959                          NETIF_F_RXCSUM;
3960         dev->hw_features |= dev->features;
3961         dev->vlan_features |= dev->features;
3962
3963         /* Request the WOL interrupt and advertise suspend if available */
3964         priv->wol_irq_disabled = true;
3965         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3966                                dev->name, priv);
3967         if (!err)
3968                 device_set_wakeup_capable(&pdev->dev, 1);
3969
3970         /* Set the needed headroom to account for any possible
3971          * features enabling/disabling at runtime
3972          */
3973         dev->needed_headroom += 64;
3974
3975         netdev_boot_setup_check(dev);
3976
3977         priv->dev = dev;
3978         priv->pdev = pdev;
3979
3980         pdata = device_get_match_data(&pdev->dev);
3981         if (pdata) {
3982                 priv->version = pdata->version;
3983                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
3984         } else {
3985                 priv->version = pd->genet_version;
3986                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3987         }
3988
3989         priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3990         if (IS_ERR(priv->clk)) {
3991                 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3992                 err = PTR_ERR(priv->clk);
3993                 goto err;
3994         }
3995
3996         err = clk_prepare_enable(priv->clk);
3997         if (err)
3998                 goto err;
3999
4000         bcmgenet_set_hw_params(priv);
4001
4002         err = -EIO;
4003         if (priv->hw_params->flags & GENET_HAS_40BITS)
4004                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4005         if (err)
4006                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4007         if (err)
4008                 goto err_clk_disable;
4009
4010         /* Mii wait queue */
4011         init_waitqueue_head(&priv->wq);
4012         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4013         priv->rx_buf_len = RX_BUF_LENGTH;
4014         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4015
4016         priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4017         if (IS_ERR(priv->clk_wol)) {
4018                 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4019                 err = PTR_ERR(priv->clk_wol);
4020                 goto err_clk_disable;
4021         }
4022
4023         priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4024         if (IS_ERR(priv->clk_eee)) {
4025                 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4026                 err = PTR_ERR(priv->clk_eee);
4027                 goto err_clk_disable;
4028         }
4029
4030         /* If this is an internal GPHY, power it on now, before UniMAC is
4031          * brought out of reset as absolutely no UniMAC activity is allowed
4032          */
4033         if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4034                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4035
4036         if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4037                 ether_addr_copy(dev->dev_addr, pd->mac_address);
4038         else
4039                 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4040                         if (has_acpi_companion(&pdev->dev))
4041                                 bcmgenet_get_hw_addr(priv, dev->dev_addr);
4042
4043         if (!is_valid_ether_addr(dev->dev_addr)) {
4044                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4045                 eth_hw_addr_random(dev);
4046         }
4047
4048         reset_umac(priv);
4049
4050         err = bcmgenet_mii_init(dev);
4051         if (err)
4052                 goto err_clk_disable;
4053
4054         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4055          * just the ring 16 descriptor based TX
4056          */
4057         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4058         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4059
4060         /* Set default coalescing parameters */
4061         for (i = 0; i < priv->hw_params->rx_queues; i++)
4062                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4063         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4064
4065         /* libphy will determine the link state */
4066         netif_carrier_off(dev);
4067
4068         /* Turn off the main clock, WOL clock is handled separately */
4069         clk_disable_unprepare(priv->clk);
4070
4071         err = register_netdev(dev);
4072         if (err) {
4073                 bcmgenet_mii_exit(dev);
4074                 goto err;
4075         }
4076
4077         return err;
4078
4079 err_clk_disable:
4080         clk_disable_unprepare(priv->clk);
4081 err:
4082         free_netdev(dev);
4083         return err;
4084 }
4085
4086 static int bcmgenet_remove(struct platform_device *pdev)
4087 {
4088         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4089
4090         dev_set_drvdata(&pdev->dev, NULL);
4091         unregister_netdev(priv->dev);
4092         bcmgenet_mii_exit(priv->dev);
4093         free_netdev(priv->dev);
4094
4095         return 0;
4096 }
4097
4098 static void bcmgenet_shutdown(struct platform_device *pdev)
4099 {
4100         bcmgenet_remove(pdev);
4101 }
4102
4103 #ifdef CONFIG_PM_SLEEP
4104 static int bcmgenet_resume_noirq(struct device *d)
4105 {
4106         struct net_device *dev = dev_get_drvdata(d);
4107         struct bcmgenet_priv *priv = netdev_priv(dev);
4108         int ret;
4109         u32 reg;
4110
4111         if (!netif_running(dev))
4112                 return 0;
4113
4114         /* Turn on the clock */
4115         ret = clk_prepare_enable(priv->clk);
4116         if (ret)
4117                 return ret;
4118
4119         if (device_may_wakeup(d) && priv->wolopts) {
4120                 /* Account for Wake-on-LAN events and clear those events
4121                  * (Some devices need more time between enabling the clocks
4122                  *  and the interrupt register reflecting the wake event so
4123                  *  read the register twice)
4124                  */
4125                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4126                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4127                 if (reg & UMAC_IRQ_WAKE_EVENT)
4128                         pm_wakeup_event(&priv->pdev->dev, 0);
4129         }
4130
4131         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4132
4133         return 0;
4134 }
4135
4136 static int bcmgenet_resume(struct device *d)
4137 {
4138         struct net_device *dev = dev_get_drvdata(d);
4139         struct bcmgenet_priv *priv = netdev_priv(dev);
4140         struct bcmgenet_rxnfc_rule *rule;
4141         unsigned long dma_ctrl;
4142         u32 reg;
4143         int ret;
4144
4145         if (!netif_running(dev))
4146                 return 0;
4147
4148         /* From WOL-enabled suspend, switch to regular clock */
4149         if (device_may_wakeup(d) && priv->wolopts)
4150                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4151
4152         /* If this is an internal GPHY, power it back on now, before UniMAC is
4153          * brought out of reset as absolutely no UniMAC activity is allowed
4154          */
4155         if (priv->internal_phy)
4156                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4157
4158         bcmgenet_umac_reset(priv);
4159
4160         init_umac(priv);
4161
4162         phy_init_hw(dev->phydev);
4163
4164         /* Speed settings must be restored */
4165         genphy_config_aneg(dev->phydev);
4166         bcmgenet_mii_config(priv->dev, false);
4167
4168         /* Restore enabled features */
4169         bcmgenet_set_features(dev, dev->features);
4170
4171         bcmgenet_set_hw_addr(priv, dev->dev_addr);
4172
4173         /* Restore hardware filters */
4174         bcmgenet_hfb_clear(priv);
4175         list_for_each_entry(rule, &priv->rxnfc_list, list)
4176                 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4177                         bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4178
4179         if (priv->internal_phy) {
4180                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
4181                 reg |= EXT_ENERGY_DET_MASK;
4182                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
4183         }
4184
4185         /* Disable RX/TX DMA and flush TX queues */
4186         dma_ctrl = bcmgenet_dma_disable(priv);
4187
4188         /* Reinitialize TDMA and RDMA and SW housekeeping */
4189         ret = bcmgenet_init_dma(priv);
4190         if (ret) {
4191                 netdev_err(dev, "failed to initialize DMA\n");
4192                 goto out_clk_disable;
4193         }
4194
4195         /* Always enable ring 16 - descriptor ring */
4196         bcmgenet_enable_dma(priv, dma_ctrl);
4197
4198         if (!device_may_wakeup(d))
4199                 phy_resume(dev->phydev);
4200
4201         if (priv->eee.eee_enabled)
4202                 bcmgenet_eee_enable_set(dev, true);
4203
4204         bcmgenet_netif_start(dev);
4205
4206         netif_device_attach(dev);
4207
4208         return 0;
4209
4210 out_clk_disable:
4211         if (priv->internal_phy)
4212                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4213         clk_disable_unprepare(priv->clk);
4214         return ret;
4215 }
4216
4217 static int bcmgenet_suspend(struct device *d)
4218 {
4219         struct net_device *dev = dev_get_drvdata(d);
4220         struct bcmgenet_priv *priv = netdev_priv(dev);
4221
4222         if (!netif_running(dev))
4223                 return 0;
4224
4225         netif_device_detach(dev);
4226
4227         bcmgenet_netif_stop(dev);
4228
4229         if (!device_may_wakeup(d))
4230                 phy_suspend(dev->phydev);
4231
4232         /* Disable filtering */
4233         bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4234
4235         return 0;
4236 }
4237
4238 static int bcmgenet_suspend_noirq(struct device *d)
4239 {
4240         struct net_device *dev = dev_get_drvdata(d);
4241         struct bcmgenet_priv *priv = netdev_priv(dev);
4242         int ret = 0;
4243
4244         if (!netif_running(dev))
4245                 return 0;
4246
4247         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4248         if (device_may_wakeup(d) && priv->wolopts)
4249                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4250         else if (priv->internal_phy)
4251                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4252
4253         /* Let the framework handle resumption and leave the clocks on */
4254         if (ret)
4255                 return ret;
4256
4257         /* Turn off the clocks */
4258         clk_disable_unprepare(priv->clk);
4259
4260         return 0;
4261 }
4262 #else
4263 #define bcmgenet_suspend        NULL
4264 #define bcmgenet_suspend_noirq  NULL
4265 #define bcmgenet_resume         NULL
4266 #define bcmgenet_resume_noirq   NULL
4267 #endif /* CONFIG_PM_SLEEP */
4268
4269 static const struct dev_pm_ops bcmgenet_pm_ops = {
4270         .suspend        = bcmgenet_suspend,
4271         .suspend_noirq  = bcmgenet_suspend_noirq,
4272         .resume         = bcmgenet_resume,
4273         .resume_noirq   = bcmgenet_resume_noirq,
4274 };
4275
4276 static const struct acpi_device_id genet_acpi_match[] = {
4277         { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4278         { },
4279 };
4280 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4281
4282 static struct platform_driver bcmgenet_driver = {
4283         .probe  = bcmgenet_probe,
4284         .remove = bcmgenet_remove,
4285         .shutdown = bcmgenet_shutdown,
4286         .driver = {
4287                 .name   = "bcmgenet",
4288                 .of_match_table = bcmgenet_match,
4289                 .pm     = &bcmgenet_pm_ops,
4290                 .acpi_match_table = genet_acpi_match,
4291         },
4292 };
4293 module_platform_driver(bcmgenet_driver);
4294
4295 MODULE_AUTHOR("Broadcom Corporation");
4296 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4297 MODULE_ALIAS("platform:bcmgenet");
4298 MODULE_LICENSE("GPL");
4299 MODULE_SOFTDEP("pre: mdio-bcm-unimac");