Merge tag 'v5.7-rc7' into perf/core, to pick up fixes
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70
71 #define BNXT_TX_TIMEOUT         (5 * HZ)
72
73 MODULE_LICENSE("GPL");
74 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
75
76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
78 #define BNXT_RX_COPY_THRESH 256
79
80 #define BNXT_TX_PUSH_THRESH 164
81
82 enum board_idx {
83         BCM57301,
84         BCM57302,
85         BCM57304,
86         BCM57417_NPAR,
87         BCM58700,
88         BCM57311,
89         BCM57312,
90         BCM57402,
91         BCM57404,
92         BCM57406,
93         BCM57402_NPAR,
94         BCM57407,
95         BCM57412,
96         BCM57414,
97         BCM57416,
98         BCM57417,
99         BCM57412_NPAR,
100         BCM57314,
101         BCM57417_SFP,
102         BCM57416_SFP,
103         BCM57404_NPAR,
104         BCM57406_NPAR,
105         BCM57407_SFP,
106         BCM57407_NPAR,
107         BCM57414_NPAR,
108         BCM57416_NPAR,
109         BCM57452,
110         BCM57454,
111         BCM5745x_NPAR,
112         BCM57508,
113         BCM57504,
114         BCM57502,
115         BCM57508_NPAR,
116         BCM57504_NPAR,
117         BCM57502_NPAR,
118         BCM58802,
119         BCM58804,
120         BCM58808,
121         NETXTREME_E_VF,
122         NETXTREME_C_VF,
123         NETXTREME_S_VF,
124         NETXTREME_E_P5_VF,
125 };
126
127 /* indexed by enum above */
128 static const struct {
129         char *name;
130 } board_info[] = {
131         [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
132         [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
133         [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
134         [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
135         [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
136         [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
137         [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
138         [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
139         [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
140         [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
141         [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
142         [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
143         [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
144         [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
145         [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
146         [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
147         [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
148         [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
149         [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
150         [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
151         [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
152         [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
153         [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
154         [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
155         [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
156         [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
157         [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
158         [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
159         [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
160         [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
161         [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162         [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
163         [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
164         [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
165         [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
166         [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
167         [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
168         [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
169         [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
170         [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
171         [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
172         [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
173 };
174
175 static const struct pci_device_id bnxt_pci_tbl[] = {
176         { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
177         { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
178         { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
179         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
180         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
181         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
182         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
183         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
184         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
185         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
186         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
187         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
188         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
189         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
190         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
191         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
192         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
193         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
194         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
195         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
196         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
197         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
198         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
199         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
200         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
201         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
202         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
203         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
204         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
205         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
206         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
207         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
208         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
209         { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
210         { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
211         { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
212         { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
213         { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
214         { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
215         { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
216         { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
217         { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
218         { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
219         { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
220         { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
221         { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
222 #ifdef CONFIG_BNXT_SRIOV
223         { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
224         { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
225         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
226         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
227         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
228         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
229         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
230         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
231         { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
232         { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
233         { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
234 #endif
235         { 0 }
236 };
237
238 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
239
240 static const u16 bnxt_vf_req_snif[] = {
241         HWRM_FUNC_CFG,
242         HWRM_FUNC_VF_CFG,
243         HWRM_PORT_PHY_QCFG,
244         HWRM_CFA_L2_FILTER_ALLOC,
245 };
246
247 static const u16 bnxt_async_events_arr[] = {
248         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
249         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
250         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
251         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
252         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
253         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
254         ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
255         ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
256         ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
257 };
258
259 static struct workqueue_struct *bnxt_pf_wq;
260
261 static bool bnxt_vf_pciid(enum board_idx idx)
262 {
263         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
264                 idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
265 }
266
267 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
268 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
269 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
270
271 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
272                 writel(DB_CP_IRQ_DIS_FLAGS, db)
273
274 #define BNXT_DB_CQ(db, idx)                                             \
275         writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
276
277 #define BNXT_DB_NQ_P5(db, idx)                                          \
278         writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
279
280 #define BNXT_DB_CQ_ARM(db, idx)                                         \
281         writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
282
283 #define BNXT_DB_NQ_ARM_P5(db, idx)                                      \
284         writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
285
286 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
287 {
288         if (bp->flags & BNXT_FLAG_CHIP_P5)
289                 BNXT_DB_NQ_P5(db, idx);
290         else
291                 BNXT_DB_CQ(db, idx);
292 }
293
294 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
295 {
296         if (bp->flags & BNXT_FLAG_CHIP_P5)
297                 BNXT_DB_NQ_ARM_P5(db, idx);
298         else
299                 BNXT_DB_CQ_ARM(db, idx);
300 }
301
302 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
303 {
304         if (bp->flags & BNXT_FLAG_CHIP_P5)
305                 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
306                        db->doorbell);
307         else
308                 BNXT_DB_CQ(db, idx);
309 }
310
311 const u16 bnxt_lhint_arr[] = {
312         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
313         TX_BD_FLAGS_LHINT_512_TO_1023,
314         TX_BD_FLAGS_LHINT_1024_TO_2047,
315         TX_BD_FLAGS_LHINT_1024_TO_2047,
316         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
317         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
318         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
320         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
321         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
322         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
323         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
324         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
325         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
326         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
327         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
328         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
329         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
330         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
331 };
332
333 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
334 {
335         struct metadata_dst *md_dst = skb_metadata_dst(skb);
336
337         if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
338                 return 0;
339
340         return md_dst->u.port_info.port_id;
341 }
342
343 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
344 {
345         struct bnxt *bp = netdev_priv(dev);
346         struct tx_bd *txbd;
347         struct tx_bd_ext *txbd1;
348         struct netdev_queue *txq;
349         int i;
350         dma_addr_t mapping;
351         unsigned int length, pad = 0;
352         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
353         u16 prod, last_frag;
354         struct pci_dev *pdev = bp->pdev;
355         struct bnxt_tx_ring_info *txr;
356         struct bnxt_sw_tx_bd *tx_buf;
357
358         i = skb_get_queue_mapping(skb);
359         if (unlikely(i >= bp->tx_nr_rings)) {
360                 dev_kfree_skb_any(skb);
361                 return NETDEV_TX_OK;
362         }
363
364         txq = netdev_get_tx_queue(dev, i);
365         txr = &bp->tx_ring[bp->tx_ring_map[i]];
366         prod = txr->tx_prod;
367
368         free_size = bnxt_tx_avail(bp, txr);
369         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
370                 netif_tx_stop_queue(txq);
371                 return NETDEV_TX_BUSY;
372         }
373
374         length = skb->len;
375         len = skb_headlen(skb);
376         last_frag = skb_shinfo(skb)->nr_frags;
377
378         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
379
380         txbd->tx_bd_opaque = prod;
381
382         tx_buf = &txr->tx_buf_ring[prod];
383         tx_buf->skb = skb;
384         tx_buf->nr_frags = last_frag;
385
386         vlan_tag_flags = 0;
387         cfa_action = bnxt_xmit_get_cfa_action(skb);
388         if (skb_vlan_tag_present(skb)) {
389                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
390                                  skb_vlan_tag_get(skb);
391                 /* Currently supports 8021Q, 8021AD vlan offloads
392                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
393                  */
394                 if (skb->vlan_proto == htons(ETH_P_8021Q))
395                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
396         }
397
398         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
399                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
400                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
401                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
402                 void __iomem *db = txr->tx_db.doorbell;
403                 void *pdata = tx_push_buf->data;
404                 u64 *end;
405                 int j, push_len;
406
407                 /* Set COAL_NOW to be ready quickly for the next push */
408                 tx_push->tx_bd_len_flags_type =
409                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
410                                         TX_BD_TYPE_LONG_TX_BD |
411                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
412                                         TX_BD_FLAGS_COAL_NOW |
413                                         TX_BD_FLAGS_PACKET_END |
414                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
415
416                 if (skb->ip_summed == CHECKSUM_PARTIAL)
417                         tx_push1->tx_bd_hsize_lflags =
418                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
419                 else
420                         tx_push1->tx_bd_hsize_lflags = 0;
421
422                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
423                 tx_push1->tx_bd_cfa_action =
424                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
425
426                 end = pdata + length;
427                 end = PTR_ALIGN(end, 8) - 1;
428                 *end = 0;
429
430                 skb_copy_from_linear_data(skb, pdata, len);
431                 pdata += len;
432                 for (j = 0; j < last_frag; j++) {
433                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
434                         void *fptr;
435
436                         fptr = skb_frag_address_safe(frag);
437                         if (!fptr)
438                                 goto normal_tx;
439
440                         memcpy(pdata, fptr, skb_frag_size(frag));
441                         pdata += skb_frag_size(frag);
442                 }
443
444                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
445                 txbd->tx_bd_haddr = txr->data_mapping;
446                 prod = NEXT_TX(prod);
447                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
448                 memcpy(txbd, tx_push1, sizeof(*txbd));
449                 prod = NEXT_TX(prod);
450                 tx_push->doorbell =
451                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
452                 txr->tx_prod = prod;
453
454                 tx_buf->is_push = 1;
455                 netdev_tx_sent_queue(txq, skb->len);
456                 wmb();  /* Sync is_push and byte queue before pushing data */
457
458                 push_len = (length + sizeof(*tx_push) + 7) / 8;
459                 if (push_len > 16) {
460                         __iowrite64_copy(db, tx_push_buf, 16);
461                         __iowrite32_copy(db + 4, tx_push_buf + 1,
462                                          (push_len - 16) << 1);
463                 } else {
464                         __iowrite64_copy(db, tx_push_buf, push_len);
465                 }
466
467                 goto tx_done;
468         }
469
470 normal_tx:
471         if (length < BNXT_MIN_PKT_SIZE) {
472                 pad = BNXT_MIN_PKT_SIZE - length;
473                 if (skb_pad(skb, pad)) {
474                         /* SKB already freed. */
475                         tx_buf->skb = NULL;
476                         return NETDEV_TX_OK;
477                 }
478                 length = BNXT_MIN_PKT_SIZE;
479         }
480
481         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
482
483         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
484                 dev_kfree_skb_any(skb);
485                 tx_buf->skb = NULL;
486                 return NETDEV_TX_OK;
487         }
488
489         dma_unmap_addr_set(tx_buf, mapping, mapping);
490         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
491                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
492
493         txbd->tx_bd_haddr = cpu_to_le64(mapping);
494
495         prod = NEXT_TX(prod);
496         txbd1 = (struct tx_bd_ext *)
497                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
498
499         txbd1->tx_bd_hsize_lflags = 0;
500         if (skb_is_gso(skb)) {
501                 u32 hdr_len;
502
503                 if (skb->encapsulation)
504                         hdr_len = skb_inner_network_offset(skb) +
505                                 skb_inner_network_header_len(skb) +
506                                 inner_tcp_hdrlen(skb);
507                 else
508                         hdr_len = skb_transport_offset(skb) +
509                                 tcp_hdrlen(skb);
510
511                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
512                                         TX_BD_FLAGS_T_IPID |
513                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
514                 length = skb_shinfo(skb)->gso_size;
515                 txbd1->tx_bd_mss = cpu_to_le32(length);
516                 length += hdr_len;
517         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
518                 txbd1->tx_bd_hsize_lflags =
519                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
520                 txbd1->tx_bd_mss = 0;
521         }
522
523         length >>= 9;
524         if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
525                 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
526                                      skb->len);
527                 i = 0;
528                 goto tx_dma_error;
529         }
530         flags |= bnxt_lhint_arr[length];
531         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
532
533         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
534         txbd1->tx_bd_cfa_action =
535                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
536         for (i = 0; i < last_frag; i++) {
537                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
538
539                 prod = NEXT_TX(prod);
540                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
541
542                 len = skb_frag_size(frag);
543                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
544                                            DMA_TO_DEVICE);
545
546                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
547                         goto tx_dma_error;
548
549                 tx_buf = &txr->tx_buf_ring[prod];
550                 dma_unmap_addr_set(tx_buf, mapping, mapping);
551
552                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
553
554                 flags = len << TX_BD_LEN_SHIFT;
555                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
556         }
557
558         flags &= ~TX_BD_LEN;
559         txbd->tx_bd_len_flags_type =
560                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
561                             TX_BD_FLAGS_PACKET_END);
562
563         netdev_tx_sent_queue(txq, skb->len);
564
565         /* Sync BD data before updating doorbell */
566         wmb();
567
568         prod = NEXT_TX(prod);
569         txr->tx_prod = prod;
570
571         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
572                 bnxt_db_write(bp, &txr->tx_db, prod);
573
574 tx_done:
575
576         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
577                 if (netdev_xmit_more() && !tx_buf->is_push)
578                         bnxt_db_write(bp, &txr->tx_db, prod);
579
580                 netif_tx_stop_queue(txq);
581
582                 /* netif_tx_stop_queue() must be done before checking
583                  * tx index in bnxt_tx_avail() below, because in
584                  * bnxt_tx_int(), we update tx index before checking for
585                  * netif_tx_queue_stopped().
586                  */
587                 smp_mb();
588                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
589                         netif_tx_wake_queue(txq);
590         }
591         return NETDEV_TX_OK;
592
593 tx_dma_error:
594         last_frag = i;
595
596         /* start back at beginning and unmap skb */
597         prod = txr->tx_prod;
598         tx_buf = &txr->tx_buf_ring[prod];
599         tx_buf->skb = NULL;
600         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
601                          skb_headlen(skb), PCI_DMA_TODEVICE);
602         prod = NEXT_TX(prod);
603
604         /* unmap remaining mapped pages */
605         for (i = 0; i < last_frag; i++) {
606                 prod = NEXT_TX(prod);
607                 tx_buf = &txr->tx_buf_ring[prod];
608                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
609                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
610                                PCI_DMA_TODEVICE);
611         }
612
613         dev_kfree_skb_any(skb);
614         return NETDEV_TX_OK;
615 }
616
617 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
618 {
619         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
620         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
621         u16 cons = txr->tx_cons;
622         struct pci_dev *pdev = bp->pdev;
623         int i;
624         unsigned int tx_bytes = 0;
625
626         for (i = 0; i < nr_pkts; i++) {
627                 struct bnxt_sw_tx_bd *tx_buf;
628                 struct sk_buff *skb;
629                 int j, last;
630
631                 tx_buf = &txr->tx_buf_ring[cons];
632                 cons = NEXT_TX(cons);
633                 skb = tx_buf->skb;
634                 tx_buf->skb = NULL;
635
636                 if (tx_buf->is_push) {
637                         tx_buf->is_push = 0;
638                         goto next_tx_int;
639                 }
640
641                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
642                                  skb_headlen(skb), PCI_DMA_TODEVICE);
643                 last = tx_buf->nr_frags;
644
645                 for (j = 0; j < last; j++) {
646                         cons = NEXT_TX(cons);
647                         tx_buf = &txr->tx_buf_ring[cons];
648                         dma_unmap_page(
649                                 &pdev->dev,
650                                 dma_unmap_addr(tx_buf, mapping),
651                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
652                                 PCI_DMA_TODEVICE);
653                 }
654
655 next_tx_int:
656                 cons = NEXT_TX(cons);
657
658                 tx_bytes += skb->len;
659                 dev_kfree_skb_any(skb);
660         }
661
662         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
663         txr->tx_cons = cons;
664
665         /* Need to make the tx_cons update visible to bnxt_start_xmit()
666          * before checking for netif_tx_queue_stopped().  Without the
667          * memory barrier, there is a small possibility that bnxt_start_xmit()
668          * will miss it and cause the queue to be stopped forever.
669          */
670         smp_mb();
671
672         if (unlikely(netif_tx_queue_stopped(txq)) &&
673             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
674                 __netif_tx_lock(txq, smp_processor_id());
675                 if (netif_tx_queue_stopped(txq) &&
676                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
677                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
678                         netif_tx_wake_queue(txq);
679                 __netif_tx_unlock(txq);
680         }
681 }
682
683 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
684                                          struct bnxt_rx_ring_info *rxr,
685                                          gfp_t gfp)
686 {
687         struct device *dev = &bp->pdev->dev;
688         struct page *page;
689
690         page = page_pool_dev_alloc_pages(rxr->page_pool);
691         if (!page)
692                 return NULL;
693
694         *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
695                                       DMA_ATTR_WEAK_ORDERING);
696         if (dma_mapping_error(dev, *mapping)) {
697                 page_pool_recycle_direct(rxr->page_pool, page);
698                 return NULL;
699         }
700         *mapping += bp->rx_dma_offset;
701         return page;
702 }
703
704 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
705                                        gfp_t gfp)
706 {
707         u8 *data;
708         struct pci_dev *pdev = bp->pdev;
709
710         data = kmalloc(bp->rx_buf_size, gfp);
711         if (!data)
712                 return NULL;
713
714         *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
715                                         bp->rx_buf_use_size, bp->rx_dir,
716                                         DMA_ATTR_WEAK_ORDERING);
717
718         if (dma_mapping_error(&pdev->dev, *mapping)) {
719                 kfree(data);
720                 data = NULL;
721         }
722         return data;
723 }
724
725 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
726                        u16 prod, gfp_t gfp)
727 {
728         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
729         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
730         dma_addr_t mapping;
731
732         if (BNXT_RX_PAGE_MODE(bp)) {
733                 struct page *page =
734                         __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
735
736                 if (!page)
737                         return -ENOMEM;
738
739                 rx_buf->data = page;
740                 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
741         } else {
742                 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
743
744                 if (!data)
745                         return -ENOMEM;
746
747                 rx_buf->data = data;
748                 rx_buf->data_ptr = data + bp->rx_offset;
749         }
750         rx_buf->mapping = mapping;
751
752         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
753         return 0;
754 }
755
756 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
757 {
758         u16 prod = rxr->rx_prod;
759         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
760         struct rx_bd *cons_bd, *prod_bd;
761
762         prod_rx_buf = &rxr->rx_buf_ring[prod];
763         cons_rx_buf = &rxr->rx_buf_ring[cons];
764
765         prod_rx_buf->data = data;
766         prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
767
768         prod_rx_buf->mapping = cons_rx_buf->mapping;
769
770         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
771         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
772
773         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
774 }
775
776 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
777 {
778         u16 next, max = rxr->rx_agg_bmap_size;
779
780         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
781         if (next >= max)
782                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
783         return next;
784 }
785
786 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
787                                      struct bnxt_rx_ring_info *rxr,
788                                      u16 prod, gfp_t gfp)
789 {
790         struct rx_bd *rxbd =
791                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
792         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
793         struct pci_dev *pdev = bp->pdev;
794         struct page *page;
795         dma_addr_t mapping;
796         u16 sw_prod = rxr->rx_sw_agg_prod;
797         unsigned int offset = 0;
798
799         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
800                 page = rxr->rx_page;
801                 if (!page) {
802                         page = alloc_page(gfp);
803                         if (!page)
804                                 return -ENOMEM;
805                         rxr->rx_page = page;
806                         rxr->rx_page_offset = 0;
807                 }
808                 offset = rxr->rx_page_offset;
809                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
810                 if (rxr->rx_page_offset == PAGE_SIZE)
811                         rxr->rx_page = NULL;
812                 else
813                         get_page(page);
814         } else {
815                 page = alloc_page(gfp);
816                 if (!page)
817                         return -ENOMEM;
818         }
819
820         mapping = dma_map_page_attrs(&pdev->dev, page, offset,
821                                      BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
822                                      DMA_ATTR_WEAK_ORDERING);
823         if (dma_mapping_error(&pdev->dev, mapping)) {
824                 __free_page(page);
825                 return -EIO;
826         }
827
828         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
829                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
830
831         __set_bit(sw_prod, rxr->rx_agg_bmap);
832         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
833         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
834
835         rx_agg_buf->page = page;
836         rx_agg_buf->offset = offset;
837         rx_agg_buf->mapping = mapping;
838         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
839         rxbd->rx_bd_opaque = sw_prod;
840         return 0;
841 }
842
843 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
844                                        struct bnxt_cp_ring_info *cpr,
845                                        u16 cp_cons, u16 curr)
846 {
847         struct rx_agg_cmp *agg;
848
849         cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
850         agg = (struct rx_agg_cmp *)
851                 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
852         return agg;
853 }
854
855 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
856                                               struct bnxt_rx_ring_info *rxr,
857                                               u16 agg_id, u16 curr)
858 {
859         struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
860
861         return &tpa_info->agg_arr[curr];
862 }
863
864 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
865                                    u16 start, u32 agg_bufs, bool tpa)
866 {
867         struct bnxt_napi *bnapi = cpr->bnapi;
868         struct bnxt *bp = bnapi->bp;
869         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
870         u16 prod = rxr->rx_agg_prod;
871         u16 sw_prod = rxr->rx_sw_agg_prod;
872         bool p5_tpa = false;
873         u32 i;
874
875         if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
876                 p5_tpa = true;
877
878         for (i = 0; i < agg_bufs; i++) {
879                 u16 cons;
880                 struct rx_agg_cmp *agg;
881                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
882                 struct rx_bd *prod_bd;
883                 struct page *page;
884
885                 if (p5_tpa)
886                         agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
887                 else
888                         agg = bnxt_get_agg(bp, cpr, idx, start + i);
889                 cons = agg->rx_agg_cmp_opaque;
890                 __clear_bit(cons, rxr->rx_agg_bmap);
891
892                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
893                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
894
895                 __set_bit(sw_prod, rxr->rx_agg_bmap);
896                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
897                 cons_rx_buf = &rxr->rx_agg_ring[cons];
898
899                 /* It is possible for sw_prod to be equal to cons, so
900                  * set cons_rx_buf->page to NULL first.
901                  */
902                 page = cons_rx_buf->page;
903                 cons_rx_buf->page = NULL;
904                 prod_rx_buf->page = page;
905                 prod_rx_buf->offset = cons_rx_buf->offset;
906
907                 prod_rx_buf->mapping = cons_rx_buf->mapping;
908
909                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
910
911                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
912                 prod_bd->rx_bd_opaque = sw_prod;
913
914                 prod = NEXT_RX_AGG(prod);
915                 sw_prod = NEXT_RX_AGG(sw_prod);
916         }
917         rxr->rx_agg_prod = prod;
918         rxr->rx_sw_agg_prod = sw_prod;
919 }
920
921 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
922                                         struct bnxt_rx_ring_info *rxr,
923                                         u16 cons, void *data, u8 *data_ptr,
924                                         dma_addr_t dma_addr,
925                                         unsigned int offset_and_len)
926 {
927         unsigned int payload = offset_and_len >> 16;
928         unsigned int len = offset_and_len & 0xffff;
929         skb_frag_t *frag;
930         struct page *page = data;
931         u16 prod = rxr->rx_prod;
932         struct sk_buff *skb;
933         int off, err;
934
935         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
936         if (unlikely(err)) {
937                 bnxt_reuse_rx_data(rxr, cons, data);
938                 return NULL;
939         }
940         dma_addr -= bp->rx_dma_offset;
941         dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
942                              DMA_ATTR_WEAK_ORDERING);
943         page_pool_release_page(rxr->page_pool, page);
944
945         if (unlikely(!payload))
946                 payload = eth_get_headlen(bp->dev, data_ptr, len);
947
948         skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
949         if (!skb) {
950                 __free_page(page);
951                 return NULL;
952         }
953
954         off = (void *)data_ptr - page_address(page);
955         skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
956         memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
957                payload + NET_IP_ALIGN);
958
959         frag = &skb_shinfo(skb)->frags[0];
960         skb_frag_size_sub(frag, payload);
961         skb_frag_off_add(frag, payload);
962         skb->data_len -= payload;
963         skb->tail += payload;
964
965         return skb;
966 }
967
968 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
969                                    struct bnxt_rx_ring_info *rxr, u16 cons,
970                                    void *data, u8 *data_ptr,
971                                    dma_addr_t dma_addr,
972                                    unsigned int offset_and_len)
973 {
974         u16 prod = rxr->rx_prod;
975         struct sk_buff *skb;
976         int err;
977
978         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
979         if (unlikely(err)) {
980                 bnxt_reuse_rx_data(rxr, cons, data);
981                 return NULL;
982         }
983
984         skb = build_skb(data, 0);
985         dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
986                                bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
987         if (!skb) {
988                 kfree(data);
989                 return NULL;
990         }
991
992         skb_reserve(skb, bp->rx_offset);
993         skb_put(skb, offset_and_len & 0xffff);
994         return skb;
995 }
996
997 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
998                                      struct bnxt_cp_ring_info *cpr,
999                                      struct sk_buff *skb, u16 idx,
1000                                      u32 agg_bufs, bool tpa)
1001 {
1002         struct bnxt_napi *bnapi = cpr->bnapi;
1003         struct pci_dev *pdev = bp->pdev;
1004         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1005         u16 prod = rxr->rx_agg_prod;
1006         bool p5_tpa = false;
1007         u32 i;
1008
1009         if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1010                 p5_tpa = true;
1011
1012         for (i = 0; i < agg_bufs; i++) {
1013                 u16 cons, frag_len;
1014                 struct rx_agg_cmp *agg;
1015                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1016                 struct page *page;
1017                 dma_addr_t mapping;
1018
1019                 if (p5_tpa)
1020                         agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1021                 else
1022                         agg = bnxt_get_agg(bp, cpr, idx, i);
1023                 cons = agg->rx_agg_cmp_opaque;
1024                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1025                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1026
1027                 cons_rx_buf = &rxr->rx_agg_ring[cons];
1028                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
1029                                    cons_rx_buf->offset, frag_len);
1030                 __clear_bit(cons, rxr->rx_agg_bmap);
1031
1032                 /* It is possible for bnxt_alloc_rx_page() to allocate
1033                  * a sw_prod index that equals the cons index, so we
1034                  * need to clear the cons entry now.
1035                  */
1036                 mapping = cons_rx_buf->mapping;
1037                 page = cons_rx_buf->page;
1038                 cons_rx_buf->page = NULL;
1039
1040                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1041                         struct skb_shared_info *shinfo;
1042                         unsigned int nr_frags;
1043
1044                         shinfo = skb_shinfo(skb);
1045                         nr_frags = --shinfo->nr_frags;
1046                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1047
1048                         dev_kfree_skb(skb);
1049
1050                         cons_rx_buf->page = page;
1051
1052                         /* Update prod since possibly some pages have been
1053                          * allocated already.
1054                          */
1055                         rxr->rx_agg_prod = prod;
1056                         bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1057                         return NULL;
1058                 }
1059
1060                 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1061                                      PCI_DMA_FROMDEVICE,
1062                                      DMA_ATTR_WEAK_ORDERING);
1063
1064                 skb->data_len += frag_len;
1065                 skb->len += frag_len;
1066                 skb->truesize += PAGE_SIZE;
1067
1068                 prod = NEXT_RX_AGG(prod);
1069         }
1070         rxr->rx_agg_prod = prod;
1071         return skb;
1072 }
1073
1074 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1075                                u8 agg_bufs, u32 *raw_cons)
1076 {
1077         u16 last;
1078         struct rx_agg_cmp *agg;
1079
1080         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1081         last = RING_CMP(*raw_cons);
1082         agg = (struct rx_agg_cmp *)
1083                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1084         return RX_AGG_CMP_VALID(agg, *raw_cons);
1085 }
1086
1087 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1088                                             unsigned int len,
1089                                             dma_addr_t mapping)
1090 {
1091         struct bnxt *bp = bnapi->bp;
1092         struct pci_dev *pdev = bp->pdev;
1093         struct sk_buff *skb;
1094
1095         skb = napi_alloc_skb(&bnapi->napi, len);
1096         if (!skb)
1097                 return NULL;
1098
1099         dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1100                                 bp->rx_dir);
1101
1102         memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1103                len + NET_IP_ALIGN);
1104
1105         dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1106                                    bp->rx_dir);
1107
1108         skb_put(skb, len);
1109         return skb;
1110 }
1111
1112 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1113                            u32 *raw_cons, void *cmp)
1114 {
1115         struct rx_cmp *rxcmp = cmp;
1116         u32 tmp_raw_cons = *raw_cons;
1117         u8 cmp_type, agg_bufs = 0;
1118
1119         cmp_type = RX_CMP_TYPE(rxcmp);
1120
1121         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1122                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1123                             RX_CMP_AGG_BUFS) >>
1124                            RX_CMP_AGG_BUFS_SHIFT;
1125         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1126                 struct rx_tpa_end_cmp *tpa_end = cmp;
1127
1128                 if (bp->flags & BNXT_FLAG_CHIP_P5)
1129                         return 0;
1130
1131                 agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1132         }
1133
1134         if (agg_bufs) {
1135                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1136                         return -EBUSY;
1137         }
1138         *raw_cons = tmp_raw_cons;
1139         return 0;
1140 }
1141
1142 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1143 {
1144         if (BNXT_PF(bp))
1145                 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1146         else
1147                 schedule_delayed_work(&bp->fw_reset_task, delay);
1148 }
1149
1150 static void bnxt_queue_sp_work(struct bnxt *bp)
1151 {
1152         if (BNXT_PF(bp))
1153                 queue_work(bnxt_pf_wq, &bp->sp_task);
1154         else
1155                 schedule_work(&bp->sp_task);
1156 }
1157
1158 static void bnxt_cancel_sp_work(struct bnxt *bp)
1159 {
1160         if (BNXT_PF(bp))
1161                 flush_workqueue(bnxt_pf_wq);
1162         else
1163                 cancel_work_sync(&bp->sp_task);
1164 }
1165
1166 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1167 {
1168         if (!rxr->bnapi->in_reset) {
1169                 rxr->bnapi->in_reset = true;
1170                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1171                 bnxt_queue_sp_work(bp);
1172         }
1173         rxr->rx_next_cons = 0xffff;
1174 }
1175
1176 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1177 {
1178         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1179         u16 idx = agg_id & MAX_TPA_P5_MASK;
1180
1181         if (test_bit(idx, map->agg_idx_bmap))
1182                 idx = find_first_zero_bit(map->agg_idx_bmap,
1183                                           BNXT_AGG_IDX_BMAP_SIZE);
1184         __set_bit(idx, map->agg_idx_bmap);
1185         map->agg_id_tbl[agg_id] = idx;
1186         return idx;
1187 }
1188
1189 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1190 {
1191         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1192
1193         __clear_bit(idx, map->agg_idx_bmap);
1194 }
1195
1196 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1197 {
1198         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1199
1200         return map->agg_id_tbl[agg_id];
1201 }
1202
1203 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1204                            struct rx_tpa_start_cmp *tpa_start,
1205                            struct rx_tpa_start_cmp_ext *tpa_start1)
1206 {
1207         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1208         struct bnxt_tpa_info *tpa_info;
1209         u16 cons, prod, agg_id;
1210         struct rx_bd *prod_bd;
1211         dma_addr_t mapping;
1212
1213         if (bp->flags & BNXT_FLAG_CHIP_P5) {
1214                 agg_id = TPA_START_AGG_ID_P5(tpa_start);
1215                 agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1216         } else {
1217                 agg_id = TPA_START_AGG_ID(tpa_start);
1218         }
1219         cons = tpa_start->rx_tpa_start_cmp_opaque;
1220         prod = rxr->rx_prod;
1221         cons_rx_buf = &rxr->rx_buf_ring[cons];
1222         prod_rx_buf = &rxr->rx_buf_ring[prod];
1223         tpa_info = &rxr->rx_tpa[agg_id];
1224
1225         if (unlikely(cons != rxr->rx_next_cons ||
1226                      TPA_START_ERROR(tpa_start))) {
1227                 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1228                             cons, rxr->rx_next_cons,
1229                             TPA_START_ERROR_CODE(tpa_start1));
1230                 bnxt_sched_reset(bp, rxr);
1231                 return;
1232         }
1233         /* Store cfa_code in tpa_info to use in tpa_end
1234          * completion processing.
1235          */
1236         tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1237         prod_rx_buf->data = tpa_info->data;
1238         prod_rx_buf->data_ptr = tpa_info->data_ptr;
1239
1240         mapping = tpa_info->mapping;
1241         prod_rx_buf->mapping = mapping;
1242
1243         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1244
1245         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1246
1247         tpa_info->data = cons_rx_buf->data;
1248         tpa_info->data_ptr = cons_rx_buf->data_ptr;
1249         cons_rx_buf->data = NULL;
1250         tpa_info->mapping = cons_rx_buf->mapping;
1251
1252         tpa_info->len =
1253                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1254                                 RX_TPA_START_CMP_LEN_SHIFT;
1255         if (likely(TPA_START_HASH_VALID(tpa_start))) {
1256                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1257
1258                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1259                 tpa_info->gso_type = SKB_GSO_TCPV4;
1260                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1261                 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1262                         tpa_info->gso_type = SKB_GSO_TCPV6;
1263                 tpa_info->rss_hash =
1264                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1265         } else {
1266                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1267                 tpa_info->gso_type = 0;
1268                 if (netif_msg_rx_err(bp))
1269                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
1270         }
1271         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1272         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1273         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1274         tpa_info->agg_count = 0;
1275
1276         rxr->rx_prod = NEXT_RX(prod);
1277         cons = NEXT_RX(cons);
1278         rxr->rx_next_cons = NEXT_RX(cons);
1279         cons_rx_buf = &rxr->rx_buf_ring[cons];
1280
1281         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1282         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1283         cons_rx_buf->data = NULL;
1284 }
1285
1286 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1287 {
1288         if (agg_bufs)
1289                 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1290 }
1291
1292 #ifdef CONFIG_INET
1293 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1294 {
1295         struct udphdr *uh = NULL;
1296
1297         if (ip_proto == htons(ETH_P_IP)) {
1298                 struct iphdr *iph = (struct iphdr *)skb->data;
1299
1300                 if (iph->protocol == IPPROTO_UDP)
1301                         uh = (struct udphdr *)(iph + 1);
1302         } else {
1303                 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1304
1305                 if (iph->nexthdr == IPPROTO_UDP)
1306                         uh = (struct udphdr *)(iph + 1);
1307         }
1308         if (uh) {
1309                 if (uh->check)
1310                         skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1311                 else
1312                         skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1313         }
1314 }
1315 #endif
1316
1317 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1318                                            int payload_off, int tcp_ts,
1319                                            struct sk_buff *skb)
1320 {
1321 #ifdef CONFIG_INET
1322         struct tcphdr *th;
1323         int len, nw_off;
1324         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1325         u32 hdr_info = tpa_info->hdr_info;
1326         bool loopback = false;
1327
1328         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1329         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1330         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1331
1332         /* If the packet is an internal loopback packet, the offsets will
1333          * have an extra 4 bytes.
1334          */
1335         if (inner_mac_off == 4) {
1336                 loopback = true;
1337         } else if (inner_mac_off > 4) {
1338                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1339                                             ETH_HLEN - 2));
1340
1341                 /* We only support inner iPv4/ipv6.  If we don't see the
1342                  * correct protocol ID, it must be a loopback packet where
1343                  * the offsets are off by 4.
1344                  */
1345                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1346                         loopback = true;
1347         }
1348         if (loopback) {
1349                 /* internal loopback packet, subtract all offsets by 4 */
1350                 inner_ip_off -= 4;
1351                 inner_mac_off -= 4;
1352                 outer_ip_off -= 4;
1353         }
1354
1355         nw_off = inner_ip_off - ETH_HLEN;
1356         skb_set_network_header(skb, nw_off);
1357         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1358                 struct ipv6hdr *iph = ipv6_hdr(skb);
1359
1360                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1361                 len = skb->len - skb_transport_offset(skb);
1362                 th = tcp_hdr(skb);
1363                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1364         } else {
1365                 struct iphdr *iph = ip_hdr(skb);
1366
1367                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1368                 len = skb->len - skb_transport_offset(skb);
1369                 th = tcp_hdr(skb);
1370                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1371         }
1372
1373         if (inner_mac_off) { /* tunnel */
1374                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1375                                             ETH_HLEN - 2));
1376
1377                 bnxt_gro_tunnel(skb, proto);
1378         }
1379 #endif
1380         return skb;
1381 }
1382
1383 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1384                                            int payload_off, int tcp_ts,
1385                                            struct sk_buff *skb)
1386 {
1387 #ifdef CONFIG_INET
1388         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1389         u32 hdr_info = tpa_info->hdr_info;
1390         int iphdr_len, nw_off;
1391
1392         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1393         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1394         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1395
1396         nw_off = inner_ip_off - ETH_HLEN;
1397         skb_set_network_header(skb, nw_off);
1398         iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1399                      sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1400         skb_set_transport_header(skb, nw_off + iphdr_len);
1401
1402         if (inner_mac_off) { /* tunnel */
1403                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1404                                             ETH_HLEN - 2));
1405
1406                 bnxt_gro_tunnel(skb, proto);
1407         }
1408 #endif
1409         return skb;
1410 }
1411
1412 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1413 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1414
1415 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1416                                            int payload_off, int tcp_ts,
1417                                            struct sk_buff *skb)
1418 {
1419 #ifdef CONFIG_INET
1420         struct tcphdr *th;
1421         int len, nw_off, tcp_opt_len = 0;
1422
1423         if (tcp_ts)
1424                 tcp_opt_len = 12;
1425
1426         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1427                 struct iphdr *iph;
1428
1429                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1430                          ETH_HLEN;
1431                 skb_set_network_header(skb, nw_off);
1432                 iph = ip_hdr(skb);
1433                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1434                 len = skb->len - skb_transport_offset(skb);
1435                 th = tcp_hdr(skb);
1436                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1437         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1438                 struct ipv6hdr *iph;
1439
1440                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1441                          ETH_HLEN;
1442                 skb_set_network_header(skb, nw_off);
1443                 iph = ipv6_hdr(skb);
1444                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1445                 len = skb->len - skb_transport_offset(skb);
1446                 th = tcp_hdr(skb);
1447                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1448         } else {
1449                 dev_kfree_skb_any(skb);
1450                 return NULL;
1451         }
1452
1453         if (nw_off) /* tunnel */
1454                 bnxt_gro_tunnel(skb, skb->protocol);
1455 #endif
1456         return skb;
1457 }
1458
1459 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1460                                            struct bnxt_tpa_info *tpa_info,
1461                                            struct rx_tpa_end_cmp *tpa_end,
1462                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1463                                            struct sk_buff *skb)
1464 {
1465 #ifdef CONFIG_INET
1466         int payload_off;
1467         u16 segs;
1468
1469         segs = TPA_END_TPA_SEGS(tpa_end);
1470         if (segs == 1)
1471                 return skb;
1472
1473         NAPI_GRO_CB(skb)->count = segs;
1474         skb_shinfo(skb)->gso_size =
1475                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1476         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1477         if (bp->flags & BNXT_FLAG_CHIP_P5)
1478                 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1479         else
1480                 payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1481         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1482         if (likely(skb))
1483                 tcp_gro_complete(skb);
1484 #endif
1485         return skb;
1486 }
1487
1488 /* Given the cfa_code of a received packet determine which
1489  * netdev (vf-rep or PF) the packet is destined to.
1490  */
1491 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1492 {
1493         struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1494
1495         /* if vf-rep dev is NULL, the must belongs to the PF */
1496         return dev ? dev : bp->dev;
1497 }
1498
1499 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1500                                            struct bnxt_cp_ring_info *cpr,
1501                                            u32 *raw_cons,
1502                                            struct rx_tpa_end_cmp *tpa_end,
1503                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1504                                            u8 *event)
1505 {
1506         struct bnxt_napi *bnapi = cpr->bnapi;
1507         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1508         u8 *data_ptr, agg_bufs;
1509         unsigned int len;
1510         struct bnxt_tpa_info *tpa_info;
1511         dma_addr_t mapping;
1512         struct sk_buff *skb;
1513         u16 idx = 0, agg_id;
1514         void *data;
1515         bool gro;
1516
1517         if (unlikely(bnapi->in_reset)) {
1518                 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1519
1520                 if (rc < 0)
1521                         return ERR_PTR(-EBUSY);
1522                 return NULL;
1523         }
1524
1525         if (bp->flags & BNXT_FLAG_CHIP_P5) {
1526                 agg_id = TPA_END_AGG_ID_P5(tpa_end);
1527                 agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1528                 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1529                 tpa_info = &rxr->rx_tpa[agg_id];
1530                 if (unlikely(agg_bufs != tpa_info->agg_count)) {
1531                         netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1532                                     agg_bufs, tpa_info->agg_count);
1533                         agg_bufs = tpa_info->agg_count;
1534                 }
1535                 tpa_info->agg_count = 0;
1536                 *event |= BNXT_AGG_EVENT;
1537                 bnxt_free_agg_idx(rxr, agg_id);
1538                 idx = agg_id;
1539                 gro = !!(bp->flags & BNXT_FLAG_GRO);
1540         } else {
1541                 agg_id = TPA_END_AGG_ID(tpa_end);
1542                 agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1543                 tpa_info = &rxr->rx_tpa[agg_id];
1544                 idx = RING_CMP(*raw_cons);
1545                 if (agg_bufs) {
1546                         if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1547                                 return ERR_PTR(-EBUSY);
1548
1549                         *event |= BNXT_AGG_EVENT;
1550                         idx = NEXT_CMP(idx);
1551                 }
1552                 gro = !!TPA_END_GRO(tpa_end);
1553         }
1554         data = tpa_info->data;
1555         data_ptr = tpa_info->data_ptr;
1556         prefetch(data_ptr);
1557         len = tpa_info->len;
1558         mapping = tpa_info->mapping;
1559
1560         if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1561                 bnxt_abort_tpa(cpr, idx, agg_bufs);
1562                 if (agg_bufs > MAX_SKB_FRAGS)
1563                         netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1564                                     agg_bufs, (int)MAX_SKB_FRAGS);
1565                 return NULL;
1566         }
1567
1568         if (len <= bp->rx_copy_thresh) {
1569                 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1570                 if (!skb) {
1571                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1572                         return NULL;
1573                 }
1574         } else {
1575                 u8 *new_data;
1576                 dma_addr_t new_mapping;
1577
1578                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1579                 if (!new_data) {
1580                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1581                         return NULL;
1582                 }
1583
1584                 tpa_info->data = new_data;
1585                 tpa_info->data_ptr = new_data + bp->rx_offset;
1586                 tpa_info->mapping = new_mapping;
1587
1588                 skb = build_skb(data, 0);
1589                 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1590                                        bp->rx_buf_use_size, bp->rx_dir,
1591                                        DMA_ATTR_WEAK_ORDERING);
1592
1593                 if (!skb) {
1594                         kfree(data);
1595                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1596                         return NULL;
1597                 }
1598                 skb_reserve(skb, bp->rx_offset);
1599                 skb_put(skb, len);
1600         }
1601
1602         if (agg_bufs) {
1603                 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1604                 if (!skb) {
1605                         /* Page reuse already handled by bnxt_rx_pages(). */
1606                         return NULL;
1607                 }
1608         }
1609
1610         skb->protocol =
1611                 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1612
1613         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1614                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1615
1616         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1617             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1618                 u16 vlan_proto = tpa_info->metadata >>
1619                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1620                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1621
1622                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1623         }
1624
1625         skb_checksum_none_assert(skb);
1626         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1627                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1628                 skb->csum_level =
1629                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1630         }
1631
1632         if (gro)
1633                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1634
1635         return skb;
1636 }
1637
1638 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1639                          struct rx_agg_cmp *rx_agg)
1640 {
1641         u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1642         struct bnxt_tpa_info *tpa_info;
1643
1644         agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1645         tpa_info = &rxr->rx_tpa[agg_id];
1646         BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1647         tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1648 }
1649
1650 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1651                              struct sk_buff *skb)
1652 {
1653         if (skb->dev != bp->dev) {
1654                 /* this packet belongs to a vf-rep */
1655                 bnxt_vf_rep_rx(bp, skb);
1656                 return;
1657         }
1658         skb_record_rx_queue(skb, bnapi->index);
1659         napi_gro_receive(&bnapi->napi, skb);
1660 }
1661
1662 /* returns the following:
1663  * 1       - 1 packet successfully received
1664  * 0       - successful TPA_START, packet not completed yet
1665  * -EBUSY  - completion ring does not have all the agg buffers yet
1666  * -ENOMEM - packet aborted due to out of memory
1667  * -EIO    - packet aborted due to hw error indicated in BD
1668  */
1669 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1670                        u32 *raw_cons, u8 *event)
1671 {
1672         struct bnxt_napi *bnapi = cpr->bnapi;
1673         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1674         struct net_device *dev = bp->dev;
1675         struct rx_cmp *rxcmp;
1676         struct rx_cmp_ext *rxcmp1;
1677         u32 tmp_raw_cons = *raw_cons;
1678         u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1679         struct bnxt_sw_rx_bd *rx_buf;
1680         unsigned int len;
1681         u8 *data_ptr, agg_bufs, cmp_type;
1682         dma_addr_t dma_addr;
1683         struct sk_buff *skb;
1684         void *data;
1685         int rc = 0;
1686         u32 misc;
1687
1688         rxcmp = (struct rx_cmp *)
1689                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1690
1691         cmp_type = RX_CMP_TYPE(rxcmp);
1692
1693         if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1694                 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1695                 goto next_rx_no_prod_no_len;
1696         }
1697
1698         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1699         cp_cons = RING_CMP(tmp_raw_cons);
1700         rxcmp1 = (struct rx_cmp_ext *)
1701                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1702
1703         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1704                 return -EBUSY;
1705
1706         prod = rxr->rx_prod;
1707
1708         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1709                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1710                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1711
1712                 *event |= BNXT_RX_EVENT;
1713                 goto next_rx_no_prod_no_len;
1714
1715         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1716                 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1717                                    (struct rx_tpa_end_cmp *)rxcmp,
1718                                    (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1719
1720                 if (IS_ERR(skb))
1721                         return -EBUSY;
1722
1723                 rc = -ENOMEM;
1724                 if (likely(skb)) {
1725                         bnxt_deliver_skb(bp, bnapi, skb);
1726                         rc = 1;
1727                 }
1728                 *event |= BNXT_RX_EVENT;
1729                 goto next_rx_no_prod_no_len;
1730         }
1731
1732         cons = rxcmp->rx_cmp_opaque;
1733         if (unlikely(cons != rxr->rx_next_cons)) {
1734                 int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1735
1736                 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1737                             cons, rxr->rx_next_cons);
1738                 bnxt_sched_reset(bp, rxr);
1739                 return rc1;
1740         }
1741         rx_buf = &rxr->rx_buf_ring[cons];
1742         data = rx_buf->data;
1743         data_ptr = rx_buf->data_ptr;
1744         prefetch(data_ptr);
1745
1746         misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1747         agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1748
1749         if (agg_bufs) {
1750                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1751                         return -EBUSY;
1752
1753                 cp_cons = NEXT_CMP(cp_cons);
1754                 *event |= BNXT_AGG_EVENT;
1755         }
1756         *event |= BNXT_RX_EVENT;
1757
1758         rx_buf->data = NULL;
1759         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1760                 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1761
1762                 bnxt_reuse_rx_data(rxr, cons, data);
1763                 if (agg_bufs)
1764                         bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1765                                                false);
1766
1767                 rc = -EIO;
1768                 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1769                         bnapi->cp_ring.rx_buf_errors++;
1770                         if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
1771                                 netdev_warn(bp->dev, "RX buffer error %x\n",
1772                                             rx_err);
1773                                 bnxt_sched_reset(bp, rxr);
1774                         }
1775                 }
1776                 goto next_rx_no_len;
1777         }
1778
1779         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1780         dma_addr = rx_buf->mapping;
1781
1782         if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1783                 rc = 1;
1784                 goto next_rx;
1785         }
1786
1787         if (len <= bp->rx_copy_thresh) {
1788                 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1789                 bnxt_reuse_rx_data(rxr, cons, data);
1790                 if (!skb) {
1791                         if (agg_bufs)
1792                                 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1793                                                        agg_bufs, false);
1794                         rc = -ENOMEM;
1795                         goto next_rx;
1796                 }
1797         } else {
1798                 u32 payload;
1799
1800                 if (rx_buf->data_ptr == data_ptr)
1801                         payload = misc & RX_CMP_PAYLOAD_OFFSET;
1802                 else
1803                         payload = 0;
1804                 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1805                                       payload | len);
1806                 if (!skb) {
1807                         rc = -ENOMEM;
1808                         goto next_rx;
1809                 }
1810         }
1811
1812         if (agg_bufs) {
1813                 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1814                 if (!skb) {
1815                         rc = -ENOMEM;
1816                         goto next_rx;
1817                 }
1818         }
1819
1820         if (RX_CMP_HASH_VALID(rxcmp)) {
1821                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1822                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1823
1824                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1825                 if (hash_type != 1 && hash_type != 3)
1826                         type = PKT_HASH_TYPE_L3;
1827                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1828         }
1829
1830         cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1831         skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1832
1833         if ((rxcmp1->rx_cmp_flags2 &
1834              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1835             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1836                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1837                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1838                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1839
1840                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1841         }
1842
1843         skb_checksum_none_assert(skb);
1844         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1845                 if (dev->features & NETIF_F_RXCSUM) {
1846                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1847                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1848                 }
1849         } else {
1850                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1851                         if (dev->features & NETIF_F_RXCSUM)
1852                                 bnapi->cp_ring.rx_l4_csum_errors++;
1853                 }
1854         }
1855
1856         bnxt_deliver_skb(bp, bnapi, skb);
1857         rc = 1;
1858
1859 next_rx:
1860         cpr->rx_packets += 1;
1861         cpr->rx_bytes += len;
1862
1863 next_rx_no_len:
1864         rxr->rx_prod = NEXT_RX(prod);
1865         rxr->rx_next_cons = NEXT_RX(cons);
1866
1867 next_rx_no_prod_no_len:
1868         *raw_cons = tmp_raw_cons;
1869
1870         return rc;
1871 }
1872
1873 /* In netpoll mode, if we are using a combined completion ring, we need to
1874  * discard the rx packets and recycle the buffers.
1875  */
1876 static int bnxt_force_rx_discard(struct bnxt *bp,
1877                                  struct bnxt_cp_ring_info *cpr,
1878                                  u32 *raw_cons, u8 *event)
1879 {
1880         u32 tmp_raw_cons = *raw_cons;
1881         struct rx_cmp_ext *rxcmp1;
1882         struct rx_cmp *rxcmp;
1883         u16 cp_cons;
1884         u8 cmp_type;
1885
1886         cp_cons = RING_CMP(tmp_raw_cons);
1887         rxcmp = (struct rx_cmp *)
1888                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1889
1890         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1891         cp_cons = RING_CMP(tmp_raw_cons);
1892         rxcmp1 = (struct rx_cmp_ext *)
1893                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1894
1895         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1896                 return -EBUSY;
1897
1898         cmp_type = RX_CMP_TYPE(rxcmp);
1899         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1900                 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1901                         cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1902         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1903                 struct rx_tpa_end_cmp_ext *tpa_end1;
1904
1905                 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1906                 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1907                         cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1908         }
1909         return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1910 }
1911
1912 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1913 {
1914         struct bnxt_fw_health *fw_health = bp->fw_health;
1915         u32 reg = fw_health->regs[reg_idx];
1916         u32 reg_type, reg_off, val = 0;
1917
1918         reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1919         reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1920         switch (reg_type) {
1921         case BNXT_FW_HEALTH_REG_TYPE_CFG:
1922                 pci_read_config_dword(bp->pdev, reg_off, &val);
1923                 break;
1924         case BNXT_FW_HEALTH_REG_TYPE_GRC:
1925                 reg_off = fw_health->mapped_regs[reg_idx];
1926                 /* fall through */
1927         case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1928                 val = readl(bp->bar0 + reg_off);
1929                 break;
1930         case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1931                 val = readl(bp->bar1 + reg_off);
1932                 break;
1933         }
1934         if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1935                 val &= fw_health->fw_reset_inprog_reg_mask;
1936         return val;
1937 }
1938
1939 #define BNXT_GET_EVENT_PORT(data)       \
1940         ((data) &                       \
1941          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1942
1943 static int bnxt_async_event_process(struct bnxt *bp,
1944                                     struct hwrm_async_event_cmpl *cmpl)
1945 {
1946         u16 event_id = le16_to_cpu(cmpl->event_id);
1947
1948         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1949         switch (event_id) {
1950         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1951                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1952                 struct bnxt_link_info *link_info = &bp->link_info;
1953
1954                 if (BNXT_VF(bp))
1955                         goto async_event_process_exit;
1956
1957                 /* print unsupported speed warning in forced speed mode only */
1958                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1959                     (data1 & 0x20000)) {
1960                         u16 fw_speed = link_info->force_link_speed;
1961                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1962
1963                         if (speed != SPEED_UNKNOWN)
1964                                 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1965                                             speed);
1966                 }
1967                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1968         }
1969         /* fall through */
1970         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
1971         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
1972                 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
1973                 /* fall through */
1974         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1975                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1976                 break;
1977         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1978                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1979                 break;
1980         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1981                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1982                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1983
1984                 if (BNXT_VF(bp))
1985                         break;
1986
1987                 if (bp->pf.port_id != port_id)
1988                         break;
1989
1990                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1991                 break;
1992         }
1993         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1994                 if (BNXT_PF(bp))
1995                         goto async_event_process_exit;
1996                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1997                 break;
1998         case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
1999                 u32 data1 = le32_to_cpu(cmpl->event_data1);
2000
2001                 if (!bp->fw_health)
2002                         goto async_event_process_exit;
2003
2004                 bp->fw_reset_timestamp = jiffies;
2005                 bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2006                 if (!bp->fw_reset_min_dsecs)
2007                         bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2008                 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2009                 if (!bp->fw_reset_max_dsecs)
2010                         bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2011                 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2012                         netdev_warn(bp->dev, "Firmware fatal reset event received\n");
2013                         set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2014                 } else {
2015                         netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n",
2016                                     bp->fw_reset_max_dsecs * 100);
2017                 }
2018                 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2019                 break;
2020         }
2021         case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2022                 struct bnxt_fw_health *fw_health = bp->fw_health;
2023                 u32 data1 = le32_to_cpu(cmpl->event_data1);
2024
2025                 if (!fw_health)
2026                         goto async_event_process_exit;
2027
2028                 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2029                 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2030                 if (!fw_health->enabled)
2031                         break;
2032
2033                 if (netif_msg_drv(bp))
2034                         netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n",
2035                                     fw_health->enabled, fw_health->master,
2036                                     bnxt_fw_health_readl(bp,
2037                                                          BNXT_FW_RESET_CNT_REG),
2038                                     bnxt_fw_health_readl(bp,
2039                                                          BNXT_FW_HEALTH_REG));
2040                 fw_health->tmr_multiplier =
2041                         DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2042                                      bp->current_interval * 10);
2043                 fw_health->tmr_counter = fw_health->tmr_multiplier;
2044                 fw_health->last_fw_heartbeat =
2045                         bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2046                 fw_health->last_fw_reset_cnt =
2047                         bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2048                 goto async_event_process_exit;
2049         }
2050         default:
2051                 goto async_event_process_exit;
2052         }
2053         bnxt_queue_sp_work(bp);
2054 async_event_process_exit:
2055         bnxt_ulp_async_events(bp, cmpl);
2056         return 0;
2057 }
2058
2059 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2060 {
2061         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2062         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2063         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2064                                 (struct hwrm_fwd_req_cmpl *)txcmp;
2065
2066         switch (cmpl_type) {
2067         case CMPL_BASE_TYPE_HWRM_DONE:
2068                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
2069                 if (seq_id == bp->hwrm_intr_seq_id)
2070                         bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2071                 else
2072                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2073                 break;
2074
2075         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2076                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2077
2078                 if ((vf_id < bp->pf.first_vf_id) ||
2079                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2080                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2081                                    vf_id);
2082                         return -EINVAL;
2083                 }
2084
2085                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2086                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2087                 bnxt_queue_sp_work(bp);
2088                 break;
2089
2090         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2091                 bnxt_async_event_process(bp,
2092                                          (struct hwrm_async_event_cmpl *)txcmp);
2093
2094         default:
2095                 break;
2096         }
2097
2098         return 0;
2099 }
2100
2101 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2102 {
2103         struct bnxt_napi *bnapi = dev_instance;
2104         struct bnxt *bp = bnapi->bp;
2105         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2106         u32 cons = RING_CMP(cpr->cp_raw_cons);
2107
2108         cpr->event_ctr++;
2109         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2110         napi_schedule(&bnapi->napi);
2111         return IRQ_HANDLED;
2112 }
2113
2114 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2115 {
2116         u32 raw_cons = cpr->cp_raw_cons;
2117         u16 cons = RING_CMP(raw_cons);
2118         struct tx_cmp *txcmp;
2119
2120         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2121
2122         return TX_CMP_VALID(txcmp, raw_cons);
2123 }
2124
2125 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2126 {
2127         struct bnxt_napi *bnapi = dev_instance;
2128         struct bnxt *bp = bnapi->bp;
2129         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2130         u32 cons = RING_CMP(cpr->cp_raw_cons);
2131         u32 int_status;
2132
2133         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2134
2135         if (!bnxt_has_work(bp, cpr)) {
2136                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2137                 /* return if erroneous interrupt */
2138                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2139                         return IRQ_NONE;
2140         }
2141
2142         /* disable ring IRQ */
2143         BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2144
2145         /* Return here if interrupt is shared and is disabled. */
2146         if (unlikely(atomic_read(&bp->intr_sem) != 0))
2147                 return IRQ_HANDLED;
2148
2149         napi_schedule(&bnapi->napi);
2150         return IRQ_HANDLED;
2151 }
2152
2153 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2154                             int budget)
2155 {
2156         struct bnxt_napi *bnapi = cpr->bnapi;
2157         u32 raw_cons = cpr->cp_raw_cons;
2158         u32 cons;
2159         int tx_pkts = 0;
2160         int rx_pkts = 0;
2161         u8 event = 0;
2162         struct tx_cmp *txcmp;
2163
2164         cpr->has_more_work = 0;
2165         cpr->had_work_done = 1;
2166         while (1) {
2167                 int rc;
2168
2169                 cons = RING_CMP(raw_cons);
2170                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2171
2172                 if (!TX_CMP_VALID(txcmp, raw_cons))
2173                         break;
2174
2175                 /* The valid test of the entry must be done first before
2176                  * reading any further.
2177                  */
2178                 dma_rmb();
2179                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2180                         tx_pkts++;
2181                         /* return full budget so NAPI will complete. */
2182                         if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2183                                 rx_pkts = budget;
2184                                 raw_cons = NEXT_RAW_CMP(raw_cons);
2185                                 if (budget)
2186                                         cpr->has_more_work = 1;
2187                                 break;
2188                         }
2189                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2190                         if (likely(budget))
2191                                 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2192                         else
2193                                 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2194                                                            &event);
2195                         if (likely(rc >= 0))
2196                                 rx_pkts += rc;
2197                         /* Increment rx_pkts when rc is -ENOMEM to count towards
2198                          * the NAPI budget.  Otherwise, we may potentially loop
2199                          * here forever if we consistently cannot allocate
2200                          * buffers.
2201                          */
2202                         else if (rc == -ENOMEM && budget)
2203                                 rx_pkts++;
2204                         else if (rc == -EBUSY)  /* partial completion */
2205                                 break;
2206                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
2207                                      CMPL_BASE_TYPE_HWRM_DONE) ||
2208                                     (TX_CMP_TYPE(txcmp) ==
2209                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2210                                     (TX_CMP_TYPE(txcmp) ==
2211                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2212                         bnxt_hwrm_handler(bp, txcmp);
2213                 }
2214                 raw_cons = NEXT_RAW_CMP(raw_cons);
2215
2216                 if (rx_pkts && rx_pkts == budget) {
2217                         cpr->has_more_work = 1;
2218                         break;
2219                 }
2220         }
2221
2222         if (event & BNXT_REDIRECT_EVENT)
2223                 xdp_do_flush_map();
2224
2225         if (event & BNXT_TX_EVENT) {
2226                 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2227                 u16 prod = txr->tx_prod;
2228
2229                 /* Sync BD data before updating doorbell */
2230                 wmb();
2231
2232                 bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2233         }
2234
2235         cpr->cp_raw_cons = raw_cons;
2236         bnapi->tx_pkts += tx_pkts;
2237         bnapi->events |= event;
2238         return rx_pkts;
2239 }
2240
2241 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2242 {
2243         if (bnapi->tx_pkts) {
2244                 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2245                 bnapi->tx_pkts = 0;
2246         }
2247
2248         if (bnapi->events & BNXT_RX_EVENT) {
2249                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2250
2251                 if (bnapi->events & BNXT_AGG_EVENT)
2252                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2253                 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2254         }
2255         bnapi->events = 0;
2256 }
2257
2258 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2259                           int budget)
2260 {
2261         struct bnxt_napi *bnapi = cpr->bnapi;
2262         int rx_pkts;
2263
2264         rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2265
2266         /* ACK completion ring before freeing tx ring and producing new
2267          * buffers in rx/agg rings to prevent overflowing the completion
2268          * ring.
2269          */
2270         bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2271
2272         __bnxt_poll_work_done(bp, bnapi);
2273         return rx_pkts;
2274 }
2275
2276 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2277 {
2278         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2279         struct bnxt *bp = bnapi->bp;
2280         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2281         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2282         struct tx_cmp *txcmp;
2283         struct rx_cmp_ext *rxcmp1;
2284         u32 cp_cons, tmp_raw_cons;
2285         u32 raw_cons = cpr->cp_raw_cons;
2286         u32 rx_pkts = 0;
2287         u8 event = 0;
2288
2289         while (1) {
2290                 int rc;
2291
2292                 cp_cons = RING_CMP(raw_cons);
2293                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2294
2295                 if (!TX_CMP_VALID(txcmp, raw_cons))
2296                         break;
2297
2298                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2299                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2300                         cp_cons = RING_CMP(tmp_raw_cons);
2301                         rxcmp1 = (struct rx_cmp_ext *)
2302                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2303
2304                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2305                                 break;
2306
2307                         /* force an error to recycle the buffer */
2308                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2309                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2310
2311                         rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2312                         if (likely(rc == -EIO) && budget)
2313                                 rx_pkts++;
2314                         else if (rc == -EBUSY)  /* partial completion */
2315                                 break;
2316                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
2317                                     CMPL_BASE_TYPE_HWRM_DONE)) {
2318                         bnxt_hwrm_handler(bp, txcmp);
2319                 } else {
2320                         netdev_err(bp->dev,
2321                                    "Invalid completion received on special ring\n");
2322                 }
2323                 raw_cons = NEXT_RAW_CMP(raw_cons);
2324
2325                 if (rx_pkts == budget)
2326                         break;
2327         }
2328
2329         cpr->cp_raw_cons = raw_cons;
2330         BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2331         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2332
2333         if (event & BNXT_AGG_EVENT)
2334                 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2335
2336         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2337                 napi_complete_done(napi, rx_pkts);
2338                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2339         }
2340         return rx_pkts;
2341 }
2342
2343 static int bnxt_poll(struct napi_struct *napi, int budget)
2344 {
2345         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2346         struct bnxt *bp = bnapi->bp;
2347         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2348         int work_done = 0;
2349
2350         while (1) {
2351                 work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2352
2353                 if (work_done >= budget) {
2354                         if (!budget)
2355                                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2356                         break;
2357                 }
2358
2359                 if (!bnxt_has_work(bp, cpr)) {
2360                         if (napi_complete_done(napi, work_done))
2361                                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2362                         break;
2363                 }
2364         }
2365         if (bp->flags & BNXT_FLAG_DIM) {
2366                 struct dim_sample dim_sample = {};
2367
2368                 dim_update_sample(cpr->event_ctr,
2369                                   cpr->rx_packets,
2370                                   cpr->rx_bytes,
2371                                   &dim_sample);
2372                 net_dim(&cpr->dim, dim_sample);
2373         }
2374         return work_done;
2375 }
2376
2377 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2378 {
2379         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2380         int i, work_done = 0;
2381
2382         for (i = 0; i < 2; i++) {
2383                 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2384
2385                 if (cpr2) {
2386                         work_done += __bnxt_poll_work(bp, cpr2,
2387                                                       budget - work_done);
2388                         cpr->has_more_work |= cpr2->has_more_work;
2389                 }
2390         }
2391         return work_done;
2392 }
2393
2394 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2395                                  u64 dbr_type)
2396 {
2397         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2398         int i;
2399
2400         for (i = 0; i < 2; i++) {
2401                 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2402                 struct bnxt_db_info *db;
2403
2404                 if (cpr2 && cpr2->had_work_done) {
2405                         db = &cpr2->cp_db;
2406                         writeq(db->db_key64 | dbr_type |
2407                                RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2408                         cpr2->had_work_done = 0;
2409                 }
2410         }
2411         __bnxt_poll_work_done(bp, bnapi);
2412 }
2413
2414 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2415 {
2416         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2417         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2418         u32 raw_cons = cpr->cp_raw_cons;
2419         struct bnxt *bp = bnapi->bp;
2420         struct nqe_cn *nqcmp;
2421         int work_done = 0;
2422         u32 cons;
2423
2424         if (cpr->has_more_work) {
2425                 cpr->has_more_work = 0;
2426                 work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2427         }
2428         while (1) {
2429                 cons = RING_CMP(raw_cons);
2430                 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2431
2432                 if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2433                         if (cpr->has_more_work)
2434                                 break;
2435
2436                         __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2437                         cpr->cp_raw_cons = raw_cons;
2438                         if (napi_complete_done(napi, work_done))
2439                                 BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2440                                                   cpr->cp_raw_cons);
2441                         return work_done;
2442                 }
2443
2444                 /* The valid test of the entry must be done first before
2445                  * reading any further.
2446                  */
2447                 dma_rmb();
2448
2449                 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2450                         u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2451                         struct bnxt_cp_ring_info *cpr2;
2452
2453                         cpr2 = cpr->cp_ring_arr[idx];
2454                         work_done += __bnxt_poll_work(bp, cpr2,
2455                                                       budget - work_done);
2456                         cpr->has_more_work |= cpr2->has_more_work;
2457                 } else {
2458                         bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2459                 }
2460                 raw_cons = NEXT_RAW_CMP(raw_cons);
2461         }
2462         __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2463         if (raw_cons != cpr->cp_raw_cons) {
2464                 cpr->cp_raw_cons = raw_cons;
2465                 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2466         }
2467         return work_done;
2468 }
2469
2470 static void bnxt_free_tx_skbs(struct bnxt *bp)
2471 {
2472         int i, max_idx;
2473         struct pci_dev *pdev = bp->pdev;
2474
2475         if (!bp->tx_ring)
2476                 return;
2477
2478         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2479         for (i = 0; i < bp->tx_nr_rings; i++) {
2480                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2481                 int j;
2482
2483                 for (j = 0; j < max_idx;) {
2484                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2485                         struct sk_buff *skb;
2486                         int k, last;
2487
2488                         if (i < bp->tx_nr_rings_xdp &&
2489                             tx_buf->action == XDP_REDIRECT) {
2490                                 dma_unmap_single(&pdev->dev,
2491                                         dma_unmap_addr(tx_buf, mapping),
2492                                         dma_unmap_len(tx_buf, len),
2493                                         PCI_DMA_TODEVICE);
2494                                 xdp_return_frame(tx_buf->xdpf);
2495                                 tx_buf->action = 0;
2496                                 tx_buf->xdpf = NULL;
2497                                 j++;
2498                                 continue;
2499                         }
2500
2501                         skb = tx_buf->skb;
2502                         if (!skb) {
2503                                 j++;
2504                                 continue;
2505                         }
2506
2507                         tx_buf->skb = NULL;
2508
2509                         if (tx_buf->is_push) {
2510                                 dev_kfree_skb(skb);
2511                                 j += 2;
2512                                 continue;
2513                         }
2514
2515                         dma_unmap_single(&pdev->dev,
2516                                          dma_unmap_addr(tx_buf, mapping),
2517                                          skb_headlen(skb),
2518                                          PCI_DMA_TODEVICE);
2519
2520                         last = tx_buf->nr_frags;
2521                         j += 2;
2522                         for (k = 0; k < last; k++, j++) {
2523                                 int ring_idx = j & bp->tx_ring_mask;
2524                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2525
2526                                 tx_buf = &txr->tx_buf_ring[ring_idx];
2527                                 dma_unmap_page(
2528                                         &pdev->dev,
2529                                         dma_unmap_addr(tx_buf, mapping),
2530                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
2531                         }
2532                         dev_kfree_skb(skb);
2533                 }
2534                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2535         }
2536 }
2537
2538 static void bnxt_free_rx_skbs(struct bnxt *bp)
2539 {
2540         int i, max_idx, max_agg_idx;
2541         struct pci_dev *pdev = bp->pdev;
2542
2543         if (!bp->rx_ring)
2544                 return;
2545
2546         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2547         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2548         for (i = 0; i < bp->rx_nr_rings; i++) {
2549                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2550                 struct bnxt_tpa_idx_map *map;
2551                 int j;
2552
2553                 if (rxr->rx_tpa) {
2554                         for (j = 0; j < bp->max_tpa; j++) {
2555                                 struct bnxt_tpa_info *tpa_info =
2556                                                         &rxr->rx_tpa[j];
2557                                 u8 *data = tpa_info->data;
2558
2559                                 if (!data)
2560                                         continue;
2561
2562                                 dma_unmap_single_attrs(&pdev->dev,
2563                                                        tpa_info->mapping,
2564                                                        bp->rx_buf_use_size,
2565                                                        bp->rx_dir,
2566                                                        DMA_ATTR_WEAK_ORDERING);
2567
2568                                 tpa_info->data = NULL;
2569
2570                                 kfree(data);
2571                         }
2572                 }
2573
2574                 for (j = 0; j < max_idx; j++) {
2575                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2576                         dma_addr_t mapping = rx_buf->mapping;
2577                         void *data = rx_buf->data;
2578
2579                         if (!data)
2580                                 continue;
2581
2582                         rx_buf->data = NULL;
2583
2584                         if (BNXT_RX_PAGE_MODE(bp)) {
2585                                 mapping -= bp->rx_dma_offset;
2586                                 dma_unmap_page_attrs(&pdev->dev, mapping,
2587                                                      PAGE_SIZE, bp->rx_dir,
2588                                                      DMA_ATTR_WEAK_ORDERING);
2589                                 page_pool_recycle_direct(rxr->page_pool, data);
2590                         } else {
2591                                 dma_unmap_single_attrs(&pdev->dev, mapping,
2592                                                        bp->rx_buf_use_size,
2593                                                        bp->rx_dir,
2594                                                        DMA_ATTR_WEAK_ORDERING);
2595                                 kfree(data);
2596                         }
2597                 }
2598
2599                 for (j = 0; j < max_agg_idx; j++) {
2600                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2601                                 &rxr->rx_agg_ring[j];
2602                         struct page *page = rx_agg_buf->page;
2603
2604                         if (!page)
2605                                 continue;
2606
2607                         dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2608                                              BNXT_RX_PAGE_SIZE,
2609                                              PCI_DMA_FROMDEVICE,
2610                                              DMA_ATTR_WEAK_ORDERING);
2611
2612                         rx_agg_buf->page = NULL;
2613                         __clear_bit(j, rxr->rx_agg_bmap);
2614
2615                         __free_page(page);
2616                 }
2617                 if (rxr->rx_page) {
2618                         __free_page(rxr->rx_page);
2619                         rxr->rx_page = NULL;
2620                 }
2621                 map = rxr->rx_tpa_idx_map;
2622                 if (map)
2623                         memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2624         }
2625 }
2626
2627 static void bnxt_free_skbs(struct bnxt *bp)
2628 {
2629         bnxt_free_tx_skbs(bp);
2630         bnxt_free_rx_skbs(bp);
2631 }
2632
2633 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2634 {
2635         struct pci_dev *pdev = bp->pdev;
2636         int i;
2637
2638         for (i = 0; i < rmem->nr_pages; i++) {
2639                 if (!rmem->pg_arr[i])
2640                         continue;
2641
2642                 dma_free_coherent(&pdev->dev, rmem->page_size,
2643                                   rmem->pg_arr[i], rmem->dma_arr[i]);
2644
2645                 rmem->pg_arr[i] = NULL;
2646         }
2647         if (rmem->pg_tbl) {
2648                 size_t pg_tbl_size = rmem->nr_pages * 8;
2649
2650                 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2651                         pg_tbl_size = rmem->page_size;
2652                 dma_free_coherent(&pdev->dev, pg_tbl_size,
2653                                   rmem->pg_tbl, rmem->pg_tbl_map);
2654                 rmem->pg_tbl = NULL;
2655         }
2656         if (rmem->vmem_size && *rmem->vmem) {
2657                 vfree(*rmem->vmem);
2658                 *rmem->vmem = NULL;
2659         }
2660 }
2661
2662 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2663 {
2664         struct pci_dev *pdev = bp->pdev;
2665         u64 valid_bit = 0;
2666         int i;
2667
2668         if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2669                 valid_bit = PTU_PTE_VALID;
2670         if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2671                 size_t pg_tbl_size = rmem->nr_pages * 8;
2672
2673                 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2674                         pg_tbl_size = rmem->page_size;
2675                 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2676                                                   &rmem->pg_tbl_map,
2677                                                   GFP_KERNEL);
2678                 if (!rmem->pg_tbl)
2679                         return -ENOMEM;
2680         }
2681
2682         for (i = 0; i < rmem->nr_pages; i++) {
2683                 u64 extra_bits = valid_bit;
2684
2685                 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2686                                                      rmem->page_size,
2687                                                      &rmem->dma_arr[i],
2688                                                      GFP_KERNEL);
2689                 if (!rmem->pg_arr[i])
2690                         return -ENOMEM;
2691
2692                 if (rmem->init_val)
2693                         memset(rmem->pg_arr[i], rmem->init_val,
2694                                rmem->page_size);
2695                 if (rmem->nr_pages > 1 || rmem->depth > 0) {
2696                         if (i == rmem->nr_pages - 2 &&
2697                             (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2698                                 extra_bits |= PTU_PTE_NEXT_TO_LAST;
2699                         else if (i == rmem->nr_pages - 1 &&
2700                                  (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2701                                 extra_bits |= PTU_PTE_LAST;
2702                         rmem->pg_tbl[i] =
2703                                 cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2704                 }
2705         }
2706
2707         if (rmem->vmem_size) {
2708                 *rmem->vmem = vzalloc(rmem->vmem_size);
2709                 if (!(*rmem->vmem))
2710                         return -ENOMEM;
2711         }
2712         return 0;
2713 }
2714
2715 static void bnxt_free_tpa_info(struct bnxt *bp)
2716 {
2717         int i;
2718
2719         for (i = 0; i < bp->rx_nr_rings; i++) {
2720                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2721
2722                 kfree(rxr->rx_tpa_idx_map);
2723                 rxr->rx_tpa_idx_map = NULL;
2724                 if (rxr->rx_tpa) {
2725                         kfree(rxr->rx_tpa[0].agg_arr);
2726                         rxr->rx_tpa[0].agg_arr = NULL;
2727                 }
2728                 kfree(rxr->rx_tpa);
2729                 rxr->rx_tpa = NULL;
2730         }
2731 }
2732
2733 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2734 {
2735         int i, j, total_aggs = 0;
2736
2737         bp->max_tpa = MAX_TPA;
2738         if (bp->flags & BNXT_FLAG_CHIP_P5) {
2739                 if (!bp->max_tpa_v2)
2740                         return 0;
2741                 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2742                 total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2743         }
2744
2745         for (i = 0; i < bp->rx_nr_rings; i++) {
2746                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2747                 struct rx_agg_cmp *agg;
2748
2749                 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2750                                       GFP_KERNEL);
2751                 if (!rxr->rx_tpa)
2752                         return -ENOMEM;
2753
2754                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2755                         continue;
2756                 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2757                 rxr->rx_tpa[0].agg_arr = agg;
2758                 if (!agg)
2759                         return -ENOMEM;
2760                 for (j = 1; j < bp->max_tpa; j++)
2761                         rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2762                 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2763                                               GFP_KERNEL);
2764                 if (!rxr->rx_tpa_idx_map)
2765                         return -ENOMEM;
2766         }
2767         return 0;
2768 }
2769
2770 static void bnxt_free_rx_rings(struct bnxt *bp)
2771 {
2772         int i;
2773
2774         if (!bp->rx_ring)
2775                 return;
2776
2777         bnxt_free_tpa_info(bp);
2778         for (i = 0; i < bp->rx_nr_rings; i++) {
2779                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2780                 struct bnxt_ring_struct *ring;
2781
2782                 if (rxr->xdp_prog)
2783                         bpf_prog_put(rxr->xdp_prog);
2784
2785                 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2786                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
2787
2788                 page_pool_destroy(rxr->page_pool);
2789                 rxr->page_pool = NULL;
2790
2791                 kfree(rxr->rx_agg_bmap);
2792                 rxr->rx_agg_bmap = NULL;
2793
2794                 ring = &rxr->rx_ring_struct;
2795                 bnxt_free_ring(bp, &ring->ring_mem);
2796
2797                 ring = &rxr->rx_agg_ring_struct;
2798                 bnxt_free_ring(bp, &ring->ring_mem);
2799         }
2800 }
2801
2802 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2803                                    struct bnxt_rx_ring_info *rxr)
2804 {
2805         struct page_pool_params pp = { 0 };
2806
2807         pp.pool_size = bp->rx_ring_size;
2808         pp.nid = dev_to_node(&bp->pdev->dev);
2809         pp.dev = &bp->pdev->dev;
2810         pp.dma_dir = DMA_BIDIRECTIONAL;
2811
2812         rxr->page_pool = page_pool_create(&pp);
2813         if (IS_ERR(rxr->page_pool)) {
2814                 int err = PTR_ERR(rxr->page_pool);
2815
2816                 rxr->page_pool = NULL;
2817                 return err;
2818         }
2819         return 0;
2820 }
2821
2822 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2823 {
2824         int i, rc = 0, agg_rings = 0;
2825
2826         if (!bp->rx_ring)
2827                 return -ENOMEM;
2828
2829         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2830                 agg_rings = 1;
2831
2832         for (i = 0; i < bp->rx_nr_rings; i++) {
2833                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2834                 struct bnxt_ring_struct *ring;
2835
2836                 ring = &rxr->rx_ring_struct;
2837
2838                 rc = bnxt_alloc_rx_page_pool(bp, rxr);
2839                 if (rc)
2840                         return rc;
2841
2842                 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2843                 if (rc < 0)
2844                         return rc;
2845
2846                 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2847                                                 MEM_TYPE_PAGE_POOL,
2848                                                 rxr->page_pool);
2849                 if (rc) {
2850                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
2851                         return rc;
2852                 }
2853
2854                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2855                 if (rc)
2856                         return rc;
2857
2858                 ring->grp_idx = i;
2859                 if (agg_rings) {
2860                         u16 mem_size;
2861
2862                         ring = &rxr->rx_agg_ring_struct;
2863                         rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2864                         if (rc)
2865                                 return rc;
2866
2867                         ring->grp_idx = i;
2868                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2869                         mem_size = rxr->rx_agg_bmap_size / 8;
2870                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2871                         if (!rxr->rx_agg_bmap)
2872                                 return -ENOMEM;
2873                 }
2874         }
2875         if (bp->flags & BNXT_FLAG_TPA)
2876                 rc = bnxt_alloc_tpa_info(bp);
2877         return rc;
2878 }
2879
2880 static void bnxt_free_tx_rings(struct bnxt *bp)
2881 {
2882         int i;
2883         struct pci_dev *pdev = bp->pdev;
2884
2885         if (!bp->tx_ring)
2886                 return;
2887
2888         for (i = 0; i < bp->tx_nr_rings; i++) {
2889                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2890                 struct bnxt_ring_struct *ring;
2891
2892                 if (txr->tx_push) {
2893                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2894                                           txr->tx_push, txr->tx_push_mapping);
2895                         txr->tx_push = NULL;
2896                 }
2897
2898                 ring = &txr->tx_ring_struct;
2899
2900                 bnxt_free_ring(bp, &ring->ring_mem);
2901         }
2902 }
2903
2904 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2905 {
2906         int i, j, rc;
2907         struct pci_dev *pdev = bp->pdev;
2908
2909         bp->tx_push_size = 0;
2910         if (bp->tx_push_thresh) {
2911                 int push_size;
2912
2913                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2914                                         bp->tx_push_thresh);
2915
2916                 if (push_size > 256) {
2917                         push_size = 0;
2918                         bp->tx_push_thresh = 0;
2919                 }
2920
2921                 bp->tx_push_size = push_size;
2922         }
2923
2924         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2925                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2926                 struct bnxt_ring_struct *ring;
2927                 u8 qidx;
2928
2929                 ring = &txr->tx_ring_struct;
2930
2931                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2932                 if (rc)
2933                         return rc;
2934
2935                 ring->grp_idx = txr->bnapi->index;
2936                 if (bp->tx_push_size) {
2937                         dma_addr_t mapping;
2938
2939                         /* One pre-allocated DMA buffer to backup
2940                          * TX push operation
2941                          */
2942                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2943                                                 bp->tx_push_size,
2944                                                 &txr->tx_push_mapping,
2945                                                 GFP_KERNEL);
2946
2947                         if (!txr->tx_push)
2948                                 return -ENOMEM;
2949
2950                         mapping = txr->tx_push_mapping +
2951                                 sizeof(struct tx_push_bd);
2952                         txr->data_mapping = cpu_to_le64(mapping);
2953                 }
2954                 qidx = bp->tc_to_qidx[j];
2955                 ring->queue_id = bp->q_info[qidx].queue_id;
2956                 if (i < bp->tx_nr_rings_xdp)
2957                         continue;
2958                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2959                         j++;
2960         }
2961         return 0;
2962 }
2963
2964 static void bnxt_free_cp_rings(struct bnxt *bp)
2965 {
2966         int i;
2967
2968         if (!bp->bnapi)
2969                 return;
2970
2971         for (i = 0; i < bp->cp_nr_rings; i++) {
2972                 struct bnxt_napi *bnapi = bp->bnapi[i];
2973                 struct bnxt_cp_ring_info *cpr;
2974                 struct bnxt_ring_struct *ring;
2975                 int j;
2976
2977                 if (!bnapi)
2978                         continue;
2979
2980                 cpr = &bnapi->cp_ring;
2981                 ring = &cpr->cp_ring_struct;
2982
2983                 bnxt_free_ring(bp, &ring->ring_mem);
2984
2985                 for (j = 0; j < 2; j++) {
2986                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2987
2988                         if (cpr2) {
2989                                 ring = &cpr2->cp_ring_struct;
2990                                 bnxt_free_ring(bp, &ring->ring_mem);
2991                                 kfree(cpr2);
2992                                 cpr->cp_ring_arr[j] = NULL;
2993                         }
2994                 }
2995         }
2996 }
2997
2998 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2999 {
3000         struct bnxt_ring_mem_info *rmem;
3001         struct bnxt_ring_struct *ring;
3002         struct bnxt_cp_ring_info *cpr;
3003         int rc;
3004
3005         cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3006         if (!cpr)
3007                 return NULL;
3008
3009         ring = &cpr->cp_ring_struct;
3010         rmem = &ring->ring_mem;
3011         rmem->nr_pages = bp->cp_nr_pages;
3012         rmem->page_size = HW_CMPD_RING_SIZE;
3013         rmem->pg_arr = (void **)cpr->cp_desc_ring;
3014         rmem->dma_arr = cpr->cp_desc_mapping;
3015         rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3016         rc = bnxt_alloc_ring(bp, rmem);
3017         if (rc) {
3018                 bnxt_free_ring(bp, rmem);
3019                 kfree(cpr);
3020                 cpr = NULL;
3021         }
3022         return cpr;
3023 }
3024
3025 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3026 {
3027         bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3028         int i, rc, ulp_base_vec, ulp_msix;
3029
3030         ulp_msix = bnxt_get_ulp_msix_num(bp);
3031         ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3032         for (i = 0; i < bp->cp_nr_rings; i++) {
3033                 struct bnxt_napi *bnapi = bp->bnapi[i];
3034                 struct bnxt_cp_ring_info *cpr;
3035                 struct bnxt_ring_struct *ring;
3036
3037                 if (!bnapi)
3038                         continue;
3039
3040                 cpr = &bnapi->cp_ring;
3041                 cpr->bnapi = bnapi;
3042                 ring = &cpr->cp_ring_struct;
3043
3044                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3045                 if (rc)
3046                         return rc;
3047
3048                 if (ulp_msix && i >= ulp_base_vec)
3049                         ring->map_idx = i + ulp_msix;
3050                 else
3051                         ring->map_idx = i;
3052
3053                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3054                         continue;
3055
3056                 if (i < bp->rx_nr_rings) {
3057                         struct bnxt_cp_ring_info *cpr2 =
3058                                 bnxt_alloc_cp_sub_ring(bp);
3059
3060                         cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3061                         if (!cpr2)
3062                                 return -ENOMEM;
3063                         cpr2->bnapi = bnapi;
3064                 }
3065                 if ((sh && i < bp->tx_nr_rings) ||
3066                     (!sh && i >= bp->rx_nr_rings)) {
3067                         struct bnxt_cp_ring_info *cpr2 =
3068                                 bnxt_alloc_cp_sub_ring(bp);
3069
3070                         cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3071                         if (!cpr2)
3072                                 return -ENOMEM;
3073                         cpr2->bnapi = bnapi;
3074                 }
3075         }
3076         return 0;
3077 }
3078
3079 static void bnxt_init_ring_struct(struct bnxt *bp)
3080 {
3081         int i;
3082
3083         for (i = 0; i < bp->cp_nr_rings; i++) {
3084                 struct bnxt_napi *bnapi = bp->bnapi[i];
3085                 struct bnxt_ring_mem_info *rmem;
3086                 struct bnxt_cp_ring_info *cpr;
3087                 struct bnxt_rx_ring_info *rxr;
3088                 struct bnxt_tx_ring_info *txr;
3089                 struct bnxt_ring_struct *ring;
3090
3091                 if (!bnapi)
3092                         continue;
3093
3094                 cpr = &bnapi->cp_ring;
3095                 ring = &cpr->cp_ring_struct;
3096                 rmem = &ring->ring_mem;
3097                 rmem->nr_pages = bp->cp_nr_pages;
3098                 rmem->page_size = HW_CMPD_RING_SIZE;
3099                 rmem->pg_arr = (void **)cpr->cp_desc_ring;
3100                 rmem->dma_arr = cpr->cp_desc_mapping;
3101                 rmem->vmem_size = 0;
3102
3103                 rxr = bnapi->rx_ring;
3104                 if (!rxr)
3105                         goto skip_rx;
3106
3107                 ring = &rxr->rx_ring_struct;
3108                 rmem = &ring->ring_mem;
3109                 rmem->nr_pages = bp->rx_nr_pages;
3110                 rmem->page_size = HW_RXBD_RING_SIZE;
3111                 rmem->pg_arr = (void **)rxr->rx_desc_ring;
3112                 rmem->dma_arr = rxr->rx_desc_mapping;
3113                 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3114                 rmem->vmem = (void **)&rxr->rx_buf_ring;
3115
3116                 ring = &rxr->rx_agg_ring_struct;
3117                 rmem = &ring->ring_mem;
3118                 rmem->nr_pages = bp->rx_agg_nr_pages;
3119                 rmem->page_size = HW_RXBD_RING_SIZE;
3120                 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3121                 rmem->dma_arr = rxr->rx_agg_desc_mapping;
3122                 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3123                 rmem->vmem = (void **)&rxr->rx_agg_ring;
3124
3125 skip_rx:
3126                 txr = bnapi->tx_ring;
3127                 if (!txr)
3128                         continue;
3129
3130                 ring = &txr->tx_ring_struct;
3131                 rmem = &ring->ring_mem;
3132                 rmem->nr_pages = bp->tx_nr_pages;
3133                 rmem->page_size = HW_RXBD_RING_SIZE;
3134                 rmem->pg_arr = (void **)txr->tx_desc_ring;
3135                 rmem->dma_arr = txr->tx_desc_mapping;
3136                 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3137                 rmem->vmem = (void **)&txr->tx_buf_ring;
3138         }
3139 }
3140
3141 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3142 {
3143         int i;
3144         u32 prod;
3145         struct rx_bd **rx_buf_ring;
3146
3147         rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3148         for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3149                 int j;
3150                 struct rx_bd *rxbd;
3151
3152                 rxbd = rx_buf_ring[i];
3153                 if (!rxbd)
3154                         continue;
3155
3156                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3157                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3158                         rxbd->rx_bd_opaque = prod;
3159                 }
3160         }
3161 }
3162
3163 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3164 {
3165         struct net_device *dev = bp->dev;
3166         struct bnxt_rx_ring_info *rxr;
3167         struct bnxt_ring_struct *ring;
3168         u32 prod, type;
3169         int i;
3170
3171         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3172                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3173
3174         if (NET_IP_ALIGN == 2)
3175                 type |= RX_BD_FLAGS_SOP;
3176
3177         rxr = &bp->rx_ring[ring_nr];
3178         ring = &rxr->rx_ring_struct;
3179         bnxt_init_rxbd_pages(ring, type);
3180
3181         if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3182                 bpf_prog_add(bp->xdp_prog, 1);
3183                 rxr->xdp_prog = bp->xdp_prog;
3184         }
3185         prod = rxr->rx_prod;
3186         for (i = 0; i < bp->rx_ring_size; i++) {
3187                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
3188                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3189                                     ring_nr, i, bp->rx_ring_size);
3190                         break;
3191                 }
3192                 prod = NEXT_RX(prod);
3193         }
3194         rxr->rx_prod = prod;
3195         ring->fw_ring_id = INVALID_HW_RING_ID;
3196
3197         ring = &rxr->rx_agg_ring_struct;
3198         ring->fw_ring_id = INVALID_HW_RING_ID;
3199
3200         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3201                 return 0;
3202
3203         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3204                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3205
3206         bnxt_init_rxbd_pages(ring, type);
3207
3208         prod = rxr->rx_agg_prod;
3209         for (i = 0; i < bp->rx_agg_ring_size; i++) {
3210                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
3211                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3212                                     ring_nr, i, bp->rx_ring_size);
3213                         break;
3214                 }
3215                 prod = NEXT_RX_AGG(prod);
3216         }
3217         rxr->rx_agg_prod = prod;
3218
3219         if (bp->flags & BNXT_FLAG_TPA) {
3220                 if (rxr->rx_tpa) {
3221                         u8 *data;
3222                         dma_addr_t mapping;
3223
3224                         for (i = 0; i < bp->max_tpa; i++) {
3225                                 data = __bnxt_alloc_rx_data(bp, &mapping,
3226                                                             GFP_KERNEL);
3227                                 if (!data)
3228                                         return -ENOMEM;
3229
3230                                 rxr->rx_tpa[i].data = data;
3231                                 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3232                                 rxr->rx_tpa[i].mapping = mapping;
3233                         }
3234                 } else {
3235                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
3236                         return -ENOMEM;
3237                 }
3238         }
3239
3240         return 0;
3241 }
3242
3243 static void bnxt_init_cp_rings(struct bnxt *bp)
3244 {
3245         int i, j;
3246
3247         for (i = 0; i < bp->cp_nr_rings; i++) {
3248                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3249                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3250
3251                 ring->fw_ring_id = INVALID_HW_RING_ID;
3252                 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3253                 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3254                 for (j = 0; j < 2; j++) {
3255                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3256
3257                         if (!cpr2)
3258                                 continue;
3259
3260                         ring = &cpr2->cp_ring_struct;
3261                         ring->fw_ring_id = INVALID_HW_RING_ID;
3262                         cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3263                         cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3264                 }
3265         }
3266 }
3267
3268 static int bnxt_init_rx_rings(struct bnxt *bp)
3269 {
3270         int i, rc = 0;
3271
3272         if (BNXT_RX_PAGE_MODE(bp)) {
3273                 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3274                 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3275         } else {
3276                 bp->rx_offset = BNXT_RX_OFFSET;
3277                 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3278         }
3279
3280         for (i = 0; i < bp->rx_nr_rings; i++) {
3281                 rc = bnxt_init_one_rx_ring(bp, i);
3282                 if (rc)
3283                         break;
3284         }
3285
3286         return rc;
3287 }
3288
3289 static int bnxt_init_tx_rings(struct bnxt *bp)
3290 {
3291         u16 i;
3292
3293         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3294                                    MAX_SKB_FRAGS + 1);
3295
3296         for (i = 0; i < bp->tx_nr_rings; i++) {
3297                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3298                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3299
3300                 ring->fw_ring_id = INVALID_HW_RING_ID;
3301         }
3302
3303         return 0;
3304 }
3305
3306 static void bnxt_free_ring_grps(struct bnxt *bp)
3307 {
3308         kfree(bp->grp_info);
3309         bp->grp_info = NULL;
3310 }
3311
3312 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3313 {
3314         int i;
3315
3316         if (irq_re_init) {
3317                 bp->grp_info = kcalloc(bp->cp_nr_rings,
3318                                        sizeof(struct bnxt_ring_grp_info),
3319                                        GFP_KERNEL);
3320                 if (!bp->grp_info)
3321                         return -ENOMEM;
3322         }
3323         for (i = 0; i < bp->cp_nr_rings; i++) {
3324                 if (irq_re_init)
3325                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3326                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3327                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3328                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3329                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3330         }
3331         return 0;
3332 }
3333
3334 static void bnxt_free_vnics(struct bnxt *bp)
3335 {
3336         kfree(bp->vnic_info);
3337         bp->vnic_info = NULL;
3338         bp->nr_vnics = 0;
3339 }
3340
3341 static int bnxt_alloc_vnics(struct bnxt *bp)
3342 {
3343         int num_vnics = 1;
3344
3345 #ifdef CONFIG_RFS_ACCEL
3346         if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3347                 num_vnics += bp->rx_nr_rings;
3348 #endif
3349
3350         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3351                 num_vnics++;
3352
3353         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3354                                 GFP_KERNEL);
3355         if (!bp->vnic_info)
3356                 return -ENOMEM;
3357
3358         bp->nr_vnics = num_vnics;
3359         return 0;
3360 }
3361
3362 static void bnxt_init_vnics(struct bnxt *bp)
3363 {
3364         int i;
3365
3366         for (i = 0; i < bp->nr_vnics; i++) {
3367                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3368                 int j;
3369
3370                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
3371                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3372                         vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3373
3374                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3375
3376                 if (bp->vnic_info[i].rss_hash_key) {
3377                         if (i == 0)
3378                                 prandom_bytes(vnic->rss_hash_key,
3379                                               HW_HASH_KEY_SIZE);
3380                         else
3381                                 memcpy(vnic->rss_hash_key,
3382                                        bp->vnic_info[0].rss_hash_key,
3383                                        HW_HASH_KEY_SIZE);
3384                 }
3385         }
3386 }
3387
3388 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3389 {
3390         int pages;
3391
3392         pages = ring_size / desc_per_pg;
3393
3394         if (!pages)
3395                 return 1;
3396
3397         pages++;
3398
3399         while (pages & (pages - 1))
3400                 pages++;
3401
3402         return pages;
3403 }
3404
3405 void bnxt_set_tpa_flags(struct bnxt *bp)
3406 {
3407         bp->flags &= ~BNXT_FLAG_TPA;
3408         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3409                 return;
3410         if (bp->dev->features & NETIF_F_LRO)
3411                 bp->flags |= BNXT_FLAG_LRO;
3412         else if (bp->dev->features & NETIF_F_GRO_HW)
3413                 bp->flags |= BNXT_FLAG_GRO;
3414 }
3415
3416 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3417  * be set on entry.
3418  */
3419 void bnxt_set_ring_params(struct bnxt *bp)
3420 {
3421         u32 ring_size, rx_size, rx_space;
3422         u32 agg_factor = 0, agg_ring_size = 0;
3423
3424         /* 8 for CRC and VLAN */
3425         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3426
3427         rx_space = rx_size + NET_SKB_PAD +
3428                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3429
3430         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3431         ring_size = bp->rx_ring_size;
3432         bp->rx_agg_ring_size = 0;
3433         bp->rx_agg_nr_pages = 0;
3434
3435         if (bp->flags & BNXT_FLAG_TPA)
3436                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3437
3438         bp->flags &= ~BNXT_FLAG_JUMBO;
3439         if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3440                 u32 jumbo_factor;
3441
3442                 bp->flags |= BNXT_FLAG_JUMBO;
3443                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3444                 if (jumbo_factor > agg_factor)
3445                         agg_factor = jumbo_factor;
3446         }
3447         agg_ring_size = ring_size * agg_factor;
3448
3449         if (agg_ring_size) {
3450                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3451                                                         RX_DESC_CNT);
3452                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3453                         u32 tmp = agg_ring_size;
3454
3455                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3456                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3457                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3458                                     tmp, agg_ring_size);
3459                 }
3460                 bp->rx_agg_ring_size = agg_ring_size;
3461                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3462                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3463                 rx_space = rx_size + NET_SKB_PAD +
3464                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3465         }
3466
3467         bp->rx_buf_use_size = rx_size;
3468         bp->rx_buf_size = rx_space;
3469
3470         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3471         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3472
3473         ring_size = bp->tx_ring_size;
3474         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3475         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3476
3477         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
3478         bp->cp_ring_size = ring_size;
3479
3480         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3481         if (bp->cp_nr_pages > MAX_CP_PAGES) {
3482                 bp->cp_nr_pages = MAX_CP_PAGES;
3483                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3484                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3485                             ring_size, bp->cp_ring_size);
3486         }
3487         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3488         bp->cp_ring_mask = bp->cp_bit - 1;
3489 }
3490
3491 /* Changing allocation mode of RX rings.
3492  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3493  */
3494 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3495 {
3496         if (page_mode) {
3497                 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3498                         return -EOPNOTSUPP;
3499                 bp->dev->max_mtu =
3500                         min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3501                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3502                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3503                 bp->rx_dir = DMA_BIDIRECTIONAL;
3504                 bp->rx_skb_func = bnxt_rx_page_skb;
3505                 /* Disable LRO or GRO_HW */
3506                 netdev_update_features(bp->dev);
3507         } else {
3508                 bp->dev->max_mtu = bp->max_mtu;
3509                 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3510                 bp->rx_dir = DMA_FROM_DEVICE;
3511                 bp->rx_skb_func = bnxt_rx_skb;
3512         }
3513         return 0;
3514 }
3515
3516 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3517 {
3518         int i;
3519         struct bnxt_vnic_info *vnic;
3520         struct pci_dev *pdev = bp->pdev;
3521
3522         if (!bp->vnic_info)
3523                 return;
3524
3525         for (i = 0; i < bp->nr_vnics; i++) {
3526                 vnic = &bp->vnic_info[i];
3527
3528                 kfree(vnic->fw_grp_ids);
3529                 vnic->fw_grp_ids = NULL;
3530
3531                 kfree(vnic->uc_list);
3532                 vnic->uc_list = NULL;
3533
3534                 if (vnic->mc_list) {
3535                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3536                                           vnic->mc_list, vnic->mc_list_mapping);
3537                         vnic->mc_list = NULL;
3538                 }
3539
3540                 if (vnic->rss_table) {
3541                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
3542                                           vnic->rss_table,
3543                                           vnic->rss_table_dma_addr);
3544                         vnic->rss_table = NULL;
3545                 }
3546
3547                 vnic->rss_hash_key = NULL;
3548                 vnic->flags = 0;
3549         }
3550 }
3551
3552 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3553 {
3554         int i, rc = 0, size;
3555         struct bnxt_vnic_info *vnic;
3556         struct pci_dev *pdev = bp->pdev;
3557         int max_rings;
3558
3559         for (i = 0; i < bp->nr_vnics; i++) {
3560                 vnic = &bp->vnic_info[i];
3561
3562                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3563                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3564
3565                         if (mem_size > 0) {
3566                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3567                                 if (!vnic->uc_list) {
3568                                         rc = -ENOMEM;
3569                                         goto out;
3570                                 }
3571                         }
3572                 }
3573
3574                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3575                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3576                         vnic->mc_list =
3577                                 dma_alloc_coherent(&pdev->dev,
3578                                                    vnic->mc_list_size,
3579                                                    &vnic->mc_list_mapping,
3580                                                    GFP_KERNEL);
3581                         if (!vnic->mc_list) {
3582                                 rc = -ENOMEM;
3583                                 goto out;
3584                         }
3585                 }
3586
3587                 if (bp->flags & BNXT_FLAG_CHIP_P5)
3588                         goto vnic_skip_grps;
3589
3590                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3591                         max_rings = bp->rx_nr_rings;
3592                 else
3593                         max_rings = 1;
3594
3595                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3596                 if (!vnic->fw_grp_ids) {
3597                         rc = -ENOMEM;
3598                         goto out;
3599                 }
3600 vnic_skip_grps:
3601                 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3602                     !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3603                         continue;
3604
3605                 /* Allocate rss table and hash key */
3606                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3607                                                      &vnic->rss_table_dma_addr,
3608                                                      GFP_KERNEL);
3609                 if (!vnic->rss_table) {
3610                         rc = -ENOMEM;
3611                         goto out;
3612                 }
3613
3614                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3615
3616                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3617                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3618         }
3619         return 0;
3620
3621 out:
3622         return rc;
3623 }
3624
3625 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3626 {
3627         struct pci_dev *pdev = bp->pdev;
3628
3629         if (bp->hwrm_cmd_resp_addr) {
3630                 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3631                                   bp->hwrm_cmd_resp_dma_addr);
3632                 bp->hwrm_cmd_resp_addr = NULL;
3633         }
3634
3635         if (bp->hwrm_cmd_kong_resp_addr) {
3636                 dma_free_coherent(&pdev->dev, PAGE_SIZE,
3637                                   bp->hwrm_cmd_kong_resp_addr,
3638                                   bp->hwrm_cmd_kong_resp_dma_addr);
3639                 bp->hwrm_cmd_kong_resp_addr = NULL;
3640         }
3641 }
3642
3643 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3644 {
3645         struct pci_dev *pdev = bp->pdev;
3646
3647         if (bp->hwrm_cmd_kong_resp_addr)
3648                 return 0;
3649
3650         bp->hwrm_cmd_kong_resp_addr =
3651                 dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3652                                    &bp->hwrm_cmd_kong_resp_dma_addr,
3653                                    GFP_KERNEL);
3654         if (!bp->hwrm_cmd_kong_resp_addr)
3655                 return -ENOMEM;
3656
3657         return 0;
3658 }
3659
3660 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3661 {
3662         struct pci_dev *pdev = bp->pdev;
3663
3664         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3665                                                    &bp->hwrm_cmd_resp_dma_addr,
3666                                                    GFP_KERNEL);
3667         if (!bp->hwrm_cmd_resp_addr)
3668                 return -ENOMEM;
3669
3670         return 0;
3671 }
3672
3673 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3674 {
3675         if (bp->hwrm_short_cmd_req_addr) {
3676                 struct pci_dev *pdev = bp->pdev;
3677
3678                 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3679                                   bp->hwrm_short_cmd_req_addr,
3680                                   bp->hwrm_short_cmd_req_dma_addr);
3681                 bp->hwrm_short_cmd_req_addr = NULL;
3682         }
3683 }
3684
3685 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3686 {
3687         struct pci_dev *pdev = bp->pdev;
3688
3689         if (bp->hwrm_short_cmd_req_addr)
3690                 return 0;
3691
3692         bp->hwrm_short_cmd_req_addr =
3693                 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3694                                    &bp->hwrm_short_cmd_req_dma_addr,
3695                                    GFP_KERNEL);
3696         if (!bp->hwrm_short_cmd_req_addr)
3697                 return -ENOMEM;
3698
3699         return 0;
3700 }
3701
3702 static void bnxt_free_port_stats(struct bnxt *bp)
3703 {
3704         struct pci_dev *pdev = bp->pdev;
3705
3706         bp->flags &= ~BNXT_FLAG_PORT_STATS;
3707         bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3708
3709         if (bp->hw_rx_port_stats) {
3710                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3711                                   bp->hw_rx_port_stats,
3712                                   bp->hw_rx_port_stats_map);
3713                 bp->hw_rx_port_stats = NULL;
3714         }
3715
3716         if (bp->hw_tx_port_stats_ext) {
3717                 dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3718                                   bp->hw_tx_port_stats_ext,
3719                                   bp->hw_tx_port_stats_ext_map);
3720                 bp->hw_tx_port_stats_ext = NULL;
3721         }
3722
3723         if (bp->hw_rx_port_stats_ext) {
3724                 dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3725                                   bp->hw_rx_port_stats_ext,
3726                                   bp->hw_rx_port_stats_ext_map);
3727                 bp->hw_rx_port_stats_ext = NULL;
3728         }
3729
3730         if (bp->hw_pcie_stats) {
3731                 dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3732                                   bp->hw_pcie_stats, bp->hw_pcie_stats_map);
3733                 bp->hw_pcie_stats = NULL;
3734         }
3735 }
3736
3737 static void bnxt_free_ring_stats(struct bnxt *bp)
3738 {
3739         struct pci_dev *pdev = bp->pdev;
3740         int size, i;
3741
3742         if (!bp->bnapi)
3743                 return;
3744
3745         size = bp->hw_ring_stats_size;
3746
3747         for (i = 0; i < bp->cp_nr_rings; i++) {
3748                 struct bnxt_napi *bnapi = bp->bnapi[i];
3749                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3750
3751                 if (cpr->hw_stats) {
3752                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3753                                           cpr->hw_stats_map);
3754                         cpr->hw_stats = NULL;
3755                 }
3756         }
3757 }
3758
3759 static int bnxt_alloc_stats(struct bnxt *bp)
3760 {
3761         u32 size, i;
3762         struct pci_dev *pdev = bp->pdev;
3763
3764         size = bp->hw_ring_stats_size;
3765
3766         for (i = 0; i < bp->cp_nr_rings; i++) {
3767                 struct bnxt_napi *bnapi = bp->bnapi[i];
3768                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3769
3770                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3771                                                    &cpr->hw_stats_map,
3772                                                    GFP_KERNEL);
3773                 if (!cpr->hw_stats)
3774                         return -ENOMEM;
3775
3776                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3777         }
3778
3779         if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3780                 return 0;
3781
3782         if (bp->hw_rx_port_stats)
3783                 goto alloc_ext_stats;
3784
3785         bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3786                                  sizeof(struct tx_port_stats) + 1024;
3787
3788         bp->hw_rx_port_stats =
3789                 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3790                                    &bp->hw_rx_port_stats_map,
3791                                    GFP_KERNEL);
3792         if (!bp->hw_rx_port_stats)
3793                 return -ENOMEM;
3794
3795         bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512;
3796         bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3797                                    sizeof(struct rx_port_stats) + 512;
3798         bp->flags |= BNXT_FLAG_PORT_STATS;
3799
3800 alloc_ext_stats:
3801         /* Display extended statistics only if FW supports it */
3802         if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3803                 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3804                         return 0;
3805
3806         if (bp->hw_rx_port_stats_ext)
3807                 goto alloc_tx_ext_stats;
3808
3809         bp->hw_rx_port_stats_ext =
3810                 dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3811                                    &bp->hw_rx_port_stats_ext_map, GFP_KERNEL);
3812         if (!bp->hw_rx_port_stats_ext)
3813                 return 0;
3814
3815 alloc_tx_ext_stats:
3816         if (bp->hw_tx_port_stats_ext)
3817                 goto alloc_pcie_stats;
3818
3819         if (bp->hwrm_spec_code >= 0x10902 ||
3820             (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3821                 bp->hw_tx_port_stats_ext =
3822                         dma_alloc_coherent(&pdev->dev,
3823                                            sizeof(struct tx_port_stats_ext),
3824                                            &bp->hw_tx_port_stats_ext_map,
3825                                            GFP_KERNEL);
3826         }
3827         bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3828
3829 alloc_pcie_stats:
3830         if (bp->hw_pcie_stats ||
3831             !(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED))
3832                 return 0;
3833
3834         bp->hw_pcie_stats =
3835                 dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3836                                    &bp->hw_pcie_stats_map, GFP_KERNEL);
3837         if (!bp->hw_pcie_stats)
3838                 return 0;
3839
3840         bp->flags |= BNXT_FLAG_PCIE_STATS;
3841         return 0;
3842 }
3843
3844 static void bnxt_clear_ring_indices(struct bnxt *bp)
3845 {
3846         int i;
3847
3848         if (!bp->bnapi)
3849                 return;
3850
3851         for (i = 0; i < bp->cp_nr_rings; i++) {
3852                 struct bnxt_napi *bnapi = bp->bnapi[i];
3853                 struct bnxt_cp_ring_info *cpr;
3854                 struct bnxt_rx_ring_info *rxr;
3855                 struct bnxt_tx_ring_info *txr;
3856
3857                 if (!bnapi)
3858                         continue;
3859
3860                 cpr = &bnapi->cp_ring;
3861                 cpr->cp_raw_cons = 0;
3862
3863                 txr = bnapi->tx_ring;
3864                 if (txr) {
3865                         txr->tx_prod = 0;
3866                         txr->tx_cons = 0;
3867                 }
3868
3869                 rxr = bnapi->rx_ring;
3870                 if (rxr) {
3871                         rxr->rx_prod = 0;
3872                         rxr->rx_agg_prod = 0;
3873                         rxr->rx_sw_agg_prod = 0;
3874                         rxr->rx_next_cons = 0;
3875                 }
3876         }
3877 }
3878
3879 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3880 {
3881 #ifdef CONFIG_RFS_ACCEL
3882         int i;
3883
3884         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
3885          * safe to delete the hash table.
3886          */
3887         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3888                 struct hlist_head *head;
3889                 struct hlist_node *tmp;
3890                 struct bnxt_ntuple_filter *fltr;
3891
3892                 head = &bp->ntp_fltr_hash_tbl[i];
3893                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3894                         hlist_del(&fltr->hash);
3895                         kfree(fltr);
3896                 }
3897         }
3898         if (irq_reinit) {
3899                 kfree(bp->ntp_fltr_bmap);
3900                 bp->ntp_fltr_bmap = NULL;
3901         }
3902         bp->ntp_fltr_count = 0;
3903 #endif
3904 }
3905
3906 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3907 {
3908 #ifdef CONFIG_RFS_ACCEL
3909         int i, rc = 0;
3910
3911         if (!(bp->flags & BNXT_FLAG_RFS))
3912                 return 0;
3913
3914         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3915                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3916
3917         bp->ntp_fltr_count = 0;
3918         bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3919                                     sizeof(long),
3920                                     GFP_KERNEL);
3921
3922         if (!bp->ntp_fltr_bmap)
3923                 rc = -ENOMEM;
3924
3925         return rc;
3926 #else
3927         return 0;
3928 #endif
3929 }
3930
3931 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3932 {
3933         bnxt_free_vnic_attributes(bp);
3934         bnxt_free_tx_rings(bp);
3935         bnxt_free_rx_rings(bp);
3936         bnxt_free_cp_rings(bp);
3937         bnxt_free_ntp_fltrs(bp, irq_re_init);
3938         if (irq_re_init) {
3939                 bnxt_free_ring_stats(bp);
3940                 bnxt_free_ring_grps(bp);
3941                 bnxt_free_vnics(bp);
3942                 kfree(bp->tx_ring_map);
3943                 bp->tx_ring_map = NULL;
3944                 kfree(bp->tx_ring);
3945                 bp->tx_ring = NULL;
3946                 kfree(bp->rx_ring);
3947                 bp->rx_ring = NULL;
3948                 kfree(bp->bnapi);
3949                 bp->bnapi = NULL;
3950         } else {
3951                 bnxt_clear_ring_indices(bp);
3952         }
3953 }
3954
3955 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3956 {
3957         int i, j, rc, size, arr_size;
3958         void *bnapi;
3959
3960         if (irq_re_init) {
3961                 /* Allocate bnapi mem pointer array and mem block for
3962                  * all queues
3963                  */
3964                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3965                                 bp->cp_nr_rings);
3966                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3967                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3968                 if (!bnapi)
3969                         return -ENOMEM;
3970
3971                 bp->bnapi = bnapi;
3972                 bnapi += arr_size;
3973                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3974                         bp->bnapi[i] = bnapi;
3975                         bp->bnapi[i]->index = i;
3976                         bp->bnapi[i]->bp = bp;
3977                         if (bp->flags & BNXT_FLAG_CHIP_P5) {
3978                                 struct bnxt_cp_ring_info *cpr =
3979                                         &bp->bnapi[i]->cp_ring;
3980
3981                                 cpr->cp_ring_struct.ring_mem.flags =
3982                                         BNXT_RMEM_RING_PTE_FLAG;
3983                         }
3984                 }
3985
3986                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3987                                       sizeof(struct bnxt_rx_ring_info),
3988                                       GFP_KERNEL);
3989                 if (!bp->rx_ring)
3990                         return -ENOMEM;
3991
3992                 for (i = 0; i < bp->rx_nr_rings; i++) {
3993                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3994
3995                         if (bp->flags & BNXT_FLAG_CHIP_P5) {
3996                                 rxr->rx_ring_struct.ring_mem.flags =
3997                                         BNXT_RMEM_RING_PTE_FLAG;
3998                                 rxr->rx_agg_ring_struct.ring_mem.flags =
3999                                         BNXT_RMEM_RING_PTE_FLAG;
4000                         }
4001                         rxr->bnapi = bp->bnapi[i];
4002                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4003                 }
4004
4005                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
4006                                       sizeof(struct bnxt_tx_ring_info),
4007                                       GFP_KERNEL);
4008                 if (!bp->tx_ring)
4009                         return -ENOMEM;
4010
4011                 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4012                                           GFP_KERNEL);
4013
4014                 if (!bp->tx_ring_map)
4015                         return -ENOMEM;
4016
4017                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4018                         j = 0;
4019                 else
4020                         j = bp->rx_nr_rings;
4021
4022                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4023                         struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4024
4025                         if (bp->flags & BNXT_FLAG_CHIP_P5)
4026                                 txr->tx_ring_struct.ring_mem.flags =
4027                                         BNXT_RMEM_RING_PTE_FLAG;
4028                         txr->bnapi = bp->bnapi[j];
4029                         bp->bnapi[j]->tx_ring = txr;
4030                         bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4031                         if (i >= bp->tx_nr_rings_xdp) {
4032                                 txr->txq_index = i - bp->tx_nr_rings_xdp;
4033                                 bp->bnapi[j]->tx_int = bnxt_tx_int;
4034                         } else {
4035                                 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4036                                 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4037                         }
4038                 }
4039
4040                 rc = bnxt_alloc_stats(bp);
4041                 if (rc)
4042                         goto alloc_mem_err;
4043
4044                 rc = bnxt_alloc_ntp_fltrs(bp);
4045                 if (rc)
4046                         goto alloc_mem_err;
4047
4048                 rc = bnxt_alloc_vnics(bp);
4049                 if (rc)
4050                         goto alloc_mem_err;
4051         }
4052
4053         bnxt_init_ring_struct(bp);
4054
4055         rc = bnxt_alloc_rx_rings(bp);
4056         if (rc)
4057                 goto alloc_mem_err;
4058
4059         rc = bnxt_alloc_tx_rings(bp);
4060         if (rc)
4061                 goto alloc_mem_err;
4062
4063         rc = bnxt_alloc_cp_rings(bp);
4064         if (rc)
4065                 goto alloc_mem_err;
4066
4067         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4068                                   BNXT_VNIC_UCAST_FLAG;
4069         rc = bnxt_alloc_vnic_attributes(bp);
4070         if (rc)
4071                 goto alloc_mem_err;
4072         return 0;
4073
4074 alloc_mem_err:
4075         bnxt_free_mem(bp, true);
4076         return rc;
4077 }
4078
4079 static void bnxt_disable_int(struct bnxt *bp)
4080 {
4081         int i;
4082
4083         if (!bp->bnapi)
4084                 return;
4085
4086         for (i = 0; i < bp->cp_nr_rings; i++) {
4087                 struct bnxt_napi *bnapi = bp->bnapi[i];
4088                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4089                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4090
4091                 if (ring->fw_ring_id != INVALID_HW_RING_ID)
4092                         bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4093         }
4094 }
4095
4096 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4097 {
4098         struct bnxt_napi *bnapi = bp->bnapi[n];
4099         struct bnxt_cp_ring_info *cpr;
4100
4101         cpr = &bnapi->cp_ring;
4102         return cpr->cp_ring_struct.map_idx;
4103 }
4104
4105 static void bnxt_disable_int_sync(struct bnxt *bp)
4106 {
4107         int i;
4108
4109         atomic_inc(&bp->intr_sem);
4110
4111         bnxt_disable_int(bp);
4112         for (i = 0; i < bp->cp_nr_rings; i++) {
4113                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4114
4115                 synchronize_irq(bp->irq_tbl[map_idx].vector);
4116         }
4117 }
4118
4119 static void bnxt_enable_int(struct bnxt *bp)
4120 {
4121         int i;
4122
4123         atomic_set(&bp->intr_sem, 0);
4124         for (i = 0; i < bp->cp_nr_rings; i++) {
4125                 struct bnxt_napi *bnapi = bp->bnapi[i];
4126                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4127
4128                 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4129         }
4130 }
4131
4132 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4133                             u16 cmpl_ring, u16 target_id)
4134 {
4135         struct input *req = request;
4136
4137         req->req_type = cpu_to_le16(req_type);
4138         req->cmpl_ring = cpu_to_le16(cmpl_ring);
4139         req->target_id = cpu_to_le16(target_id);
4140         if (bnxt_kong_hwrm_message(bp, req))
4141                 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4142         else
4143                 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4144 }
4145
4146 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4147 {
4148         switch (hwrm_err) {
4149         case HWRM_ERR_CODE_SUCCESS:
4150                 return 0;
4151         case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4152                 return -EACCES;
4153         case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4154                 return -ENOSPC;
4155         case HWRM_ERR_CODE_INVALID_PARAMS:
4156         case HWRM_ERR_CODE_INVALID_FLAGS:
4157         case HWRM_ERR_CODE_INVALID_ENABLES:
4158         case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4159         case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4160                 return -EINVAL;
4161         case HWRM_ERR_CODE_NO_BUFFER:
4162                 return -ENOMEM;
4163         case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4164         case HWRM_ERR_CODE_BUSY:
4165                 return -EAGAIN;
4166         case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4167                 return -EOPNOTSUPP;
4168         default:
4169                 return -EIO;
4170         }
4171 }
4172
4173 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4174                                  int timeout, bool silent)
4175 {
4176         int i, intr_process, rc, tmo_count;
4177         struct input *req = msg;
4178         u32 *data = msg;
4179         __le32 *resp_len;
4180         u8 *valid;
4181         u16 cp_ring_id, len = 0;
4182         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4183         u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4184         struct hwrm_short_input short_input = {0};
4185         u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4186         u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
4187         u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4188         u16 dst = BNXT_HWRM_CHNL_CHIMP;
4189
4190         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4191                 return -EBUSY;
4192
4193         if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4194                 if (msg_len > bp->hwrm_max_ext_req_len ||
4195                     !bp->hwrm_short_cmd_req_addr)
4196                         return -EINVAL;
4197         }
4198
4199         if (bnxt_hwrm_kong_chnl(bp, req)) {
4200                 dst = BNXT_HWRM_CHNL_KONG;
4201                 bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4202                 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4203                 resp = bp->hwrm_cmd_kong_resp_addr;
4204                 resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
4205         }
4206
4207         memset(resp, 0, PAGE_SIZE);
4208         cp_ring_id = le16_to_cpu(req->cmpl_ring);
4209         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4210
4211         req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4212         /* currently supports only one outstanding message */
4213         if (intr_process)
4214                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4215
4216         if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4217             msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4218                 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4219                 u16 max_msg_len;
4220
4221                 /* Set boundary for maximum extended request length for short
4222                  * cmd format. If passed up from device use the max supported
4223                  * internal req length.
4224                  */
4225                 max_msg_len = bp->hwrm_max_ext_req_len;
4226
4227                 memcpy(short_cmd_req, req, msg_len);
4228                 if (msg_len < max_msg_len)
4229                         memset(short_cmd_req + msg_len, 0,
4230                                max_msg_len - msg_len);
4231
4232                 short_input.req_type = req->req_type;
4233                 short_input.signature =
4234                                 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4235                 short_input.size = cpu_to_le16(msg_len);
4236                 short_input.req_addr =
4237                         cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4238
4239                 data = (u32 *)&short_input;
4240                 msg_len = sizeof(short_input);
4241
4242                 /* Sync memory write before updating doorbell */
4243                 wmb();
4244
4245                 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4246         }
4247
4248         /* Write request msg to hwrm channel */
4249         __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4250
4251         for (i = msg_len; i < max_req_len; i += 4)
4252                 writel(0, bp->bar0 + bar_offset + i);
4253
4254         /* Ring channel doorbell */
4255         writel(1, bp->bar0 + doorbell_offset);
4256
4257         if (!pci_is_enabled(bp->pdev))
4258                 return 0;
4259
4260         if (!timeout)
4261                 timeout = DFLT_HWRM_CMD_TIMEOUT;
4262         /* convert timeout to usec */
4263         timeout *= 1000;
4264
4265         i = 0;
4266         /* Short timeout for the first few iterations:
4267          * number of loops = number of loops for short timeout +
4268          * number of loops for standard timeout.
4269          */
4270         tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4271         timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4272         tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4273         resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
4274
4275         if (intr_process) {
4276                 u16 seq_id = bp->hwrm_intr_seq_id;
4277
4278                 /* Wait until hwrm response cmpl interrupt is processed */
4279                 while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4280                        i++ < tmo_count) {
4281                         /* Abort the wait for completion if the FW health
4282                          * check has failed.
4283                          */
4284                         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4285                                 return -EBUSY;
4286                         /* on first few passes, just barely sleep */
4287                         if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4288                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4289                                              HWRM_SHORT_MAX_TIMEOUT);
4290                         else
4291                                 usleep_range(HWRM_MIN_TIMEOUT,
4292                                              HWRM_MAX_TIMEOUT);
4293                 }
4294
4295                 if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4296                         if (!silent)
4297                                 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4298                                            le16_to_cpu(req->req_type));
4299                         return -EBUSY;
4300                 }
4301                 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
4302                       HWRM_RESP_LEN_SFT;
4303                 valid = resp_addr + len - 1;
4304         } else {
4305                 int j;
4306
4307                 /* Check if response len is updated */
4308                 for (i = 0; i < tmo_count; i++) {
4309                         /* Abort the wait for completion if the FW health
4310                          * check has failed.
4311                          */
4312                         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4313                                 return -EBUSY;
4314                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
4315                               HWRM_RESP_LEN_SFT;
4316                         if (len)
4317                                 break;
4318                         /* on first few passes, just barely sleep */
4319                         if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4320                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4321                                              HWRM_SHORT_MAX_TIMEOUT);
4322                         else
4323                                 usleep_range(HWRM_MIN_TIMEOUT,
4324                                              HWRM_MAX_TIMEOUT);
4325                 }
4326
4327                 if (i >= tmo_count) {
4328                         if (!silent)
4329                                 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4330                                            HWRM_TOTAL_TIMEOUT(i),
4331                                            le16_to_cpu(req->req_type),
4332                                            le16_to_cpu(req->seq_id), len);
4333                         return -EBUSY;
4334                 }
4335
4336                 /* Last byte of resp contains valid bit */
4337                 valid = resp_addr + len - 1;
4338                 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4339                         /* make sure we read from updated DMA memory */
4340                         dma_rmb();
4341                         if (*valid)
4342                                 break;
4343                         usleep_range(1, 5);
4344                 }
4345
4346                 if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4347                         if (!silent)
4348                                 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4349                                            HWRM_TOTAL_TIMEOUT(i),
4350                                            le16_to_cpu(req->req_type),
4351                                            le16_to_cpu(req->seq_id), len,
4352                                            *valid);
4353                         return -EBUSY;
4354                 }
4355         }
4356
4357         /* Zero valid bit for compatibility.  Valid bit in an older spec
4358          * may become a new field in a newer spec.  We must make sure that
4359          * a new field not implemented by old spec will read zero.
4360          */
4361         *valid = 0;
4362         rc = le16_to_cpu(resp->error_code);
4363         if (rc && !silent)
4364                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4365                            le16_to_cpu(resp->req_type),
4366                            le16_to_cpu(resp->seq_id), rc);
4367         return bnxt_hwrm_to_stderr(rc);
4368 }
4369
4370 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4371 {
4372         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4373 }
4374
4375 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4376                               int timeout)
4377 {
4378         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4379 }
4380
4381 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4382 {
4383         int rc;
4384
4385         mutex_lock(&bp->hwrm_cmd_lock);
4386         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4387         mutex_unlock(&bp->hwrm_cmd_lock);
4388         return rc;
4389 }
4390
4391 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4392                              int timeout)
4393 {
4394         int rc;
4395
4396         mutex_lock(&bp->hwrm_cmd_lock);
4397         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4398         mutex_unlock(&bp->hwrm_cmd_lock);
4399         return rc;
4400 }
4401
4402 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4403                             bool async_only)
4404 {
4405         struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4406         struct hwrm_func_drv_rgtr_input req = {0};
4407         DECLARE_BITMAP(async_events_bmap, 256);
4408         u32 *events = (u32 *)async_events_bmap;
4409         u32 flags;
4410         int rc, i;
4411
4412         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4413
4414         req.enables =
4415                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4416                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
4417                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4418
4419         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4420         flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4421         if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4422                 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4423         if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4424                 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4425                          FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4426         req.flags = cpu_to_le32(flags);
4427         req.ver_maj_8b = DRV_VER_MAJ;
4428         req.ver_min_8b = DRV_VER_MIN;
4429         req.ver_upd_8b = DRV_VER_UPD;
4430         req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4431         req.ver_min = cpu_to_le16(DRV_VER_MIN);
4432         req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4433
4434         if (BNXT_PF(bp)) {
4435                 u32 data[8];
4436                 int i;
4437
4438                 memset(data, 0, sizeof(data));
4439                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4440                         u16 cmd = bnxt_vf_req_snif[i];
4441                         unsigned int bit, idx;
4442
4443                         idx = cmd / 32;
4444                         bit = cmd % 32;
4445                         data[idx] |= 1 << bit;
4446                 }
4447
4448                 for (i = 0; i < 8; i++)
4449                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4450
4451                 req.enables |=
4452                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4453         }
4454
4455         if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4456                 req.flags |= cpu_to_le32(
4457                         FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4458
4459         memset(async_events_bmap, 0, sizeof(async_events_bmap));
4460         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4461                 u16 event_id = bnxt_async_events_arr[i];
4462
4463                 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4464                     !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4465                         continue;
4466                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
4467         }
4468         if (bmap && bmap_size) {
4469                 for (i = 0; i < bmap_size; i++) {
4470                         if (test_bit(i, bmap))
4471                                 __set_bit(i, async_events_bmap);
4472                 }
4473         }
4474         for (i = 0; i < 8; i++)
4475                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4476
4477         if (async_only)
4478                 req.enables =
4479                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4480
4481         mutex_lock(&bp->hwrm_cmd_lock);
4482         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4483         if (!rc) {
4484                 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4485                 if (resp->flags &
4486                     cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4487                         bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4488         }
4489         mutex_unlock(&bp->hwrm_cmd_lock);
4490         return rc;
4491 }
4492
4493 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4494 {
4495         struct hwrm_func_drv_unrgtr_input req = {0};
4496
4497         if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4498                 return 0;
4499
4500         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4501         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4502 }
4503
4504 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4505 {
4506         u32 rc = 0;
4507         struct hwrm_tunnel_dst_port_free_input req = {0};
4508
4509         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4510         req.tunnel_type = tunnel_type;
4511
4512         switch (tunnel_type) {
4513         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4514                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4515                 break;
4516         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4517                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4518                 break;
4519         default:
4520                 break;
4521         }
4522
4523         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4524         if (rc)
4525                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4526                            rc);
4527         return rc;
4528 }
4529
4530 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4531                                            u8 tunnel_type)
4532 {
4533         u32 rc = 0;
4534         struct hwrm_tunnel_dst_port_alloc_input req = {0};
4535         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4536
4537         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4538
4539         req.tunnel_type = tunnel_type;
4540         req.tunnel_dst_port_val = port;
4541
4542         mutex_lock(&bp->hwrm_cmd_lock);
4543         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4544         if (rc) {
4545                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4546                            rc);
4547                 goto err_out;
4548         }
4549
4550         switch (tunnel_type) {
4551         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4552                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4553                 break;
4554         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4555                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4556                 break;
4557         default:
4558                 break;
4559         }
4560
4561 err_out:
4562         mutex_unlock(&bp->hwrm_cmd_lock);
4563         return rc;
4564 }
4565
4566 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4567 {
4568         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4569         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4570
4571         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4572         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4573
4574         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4575         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4576         req.mask = cpu_to_le32(vnic->rx_mask);
4577         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4578 }
4579
4580 #ifdef CONFIG_RFS_ACCEL
4581 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4582                                             struct bnxt_ntuple_filter *fltr)
4583 {
4584         struct hwrm_cfa_ntuple_filter_free_input req = {0};
4585
4586         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4587         req.ntuple_filter_id = fltr->filter_id;
4588         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4589 }
4590
4591 #define BNXT_NTP_FLTR_FLAGS                                     \
4592         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
4593          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
4594          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
4595          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
4596          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
4597          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
4598          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
4599          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
4600          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
4601          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
4602          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
4603          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
4604          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
4605          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4606
4607 #define BNXT_NTP_TUNNEL_FLTR_FLAG                               \
4608                 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4609
4610 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4611                                              struct bnxt_ntuple_filter *fltr)
4612 {
4613         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4614         struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4615         struct flow_keys *keys = &fltr->fkeys;
4616         struct bnxt_vnic_info *vnic;
4617         u32 flags = 0;
4618         int rc = 0;
4619
4620         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4621         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4622
4623         if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4624                 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4625                 req.dst_id = cpu_to_le16(fltr->rxq);
4626         } else {
4627                 vnic = &bp->vnic_info[fltr->rxq + 1];
4628                 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4629         }
4630         req.flags = cpu_to_le32(flags);
4631         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4632
4633         req.ethertype = htons(ETH_P_IP);
4634         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4635         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4636         req.ip_protocol = keys->basic.ip_proto;
4637
4638         if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4639                 int i;
4640
4641                 req.ethertype = htons(ETH_P_IPV6);
4642                 req.ip_addr_type =
4643                         CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4644                 *(struct in6_addr *)&req.src_ipaddr[0] =
4645                         keys->addrs.v6addrs.src;
4646                 *(struct in6_addr *)&req.dst_ipaddr[0] =
4647                         keys->addrs.v6addrs.dst;
4648                 for (i = 0; i < 4; i++) {
4649                         req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4650                         req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4651                 }
4652         } else {
4653                 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4654                 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4655                 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4656                 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4657         }
4658         if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4659                 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4660                 req.tunnel_type =
4661                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4662         }
4663
4664         req.src_port = keys->ports.src;
4665         req.src_port_mask = cpu_to_be16(0xffff);
4666         req.dst_port = keys->ports.dst;
4667         req.dst_port_mask = cpu_to_be16(0xffff);
4668
4669         mutex_lock(&bp->hwrm_cmd_lock);
4670         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4671         if (!rc) {
4672                 resp = bnxt_get_hwrm_resp_addr(bp, &req);
4673                 fltr->filter_id = resp->ntuple_filter_id;
4674         }
4675         mutex_unlock(&bp->hwrm_cmd_lock);
4676         return rc;
4677 }
4678 #endif
4679
4680 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4681                                      u8 *mac_addr)
4682 {
4683         u32 rc = 0;
4684         struct hwrm_cfa_l2_filter_alloc_input req = {0};
4685         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4686
4687         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4688         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4689         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4690                 req.flags |=
4691                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4692         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4693         req.enables =
4694                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4695                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4696                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4697         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4698         req.l2_addr_mask[0] = 0xff;
4699         req.l2_addr_mask[1] = 0xff;
4700         req.l2_addr_mask[2] = 0xff;
4701         req.l2_addr_mask[3] = 0xff;
4702         req.l2_addr_mask[4] = 0xff;
4703         req.l2_addr_mask[5] = 0xff;
4704
4705         mutex_lock(&bp->hwrm_cmd_lock);
4706         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4707         if (!rc)
4708                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4709                                                         resp->l2_filter_id;
4710         mutex_unlock(&bp->hwrm_cmd_lock);
4711         return rc;
4712 }
4713
4714 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4715 {
4716         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4717         int rc = 0;
4718
4719         /* Any associated ntuple filters will also be cleared by firmware. */
4720         mutex_lock(&bp->hwrm_cmd_lock);
4721         for (i = 0; i < num_of_vnics; i++) {
4722                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4723
4724                 for (j = 0; j < vnic->uc_filter_count; j++) {
4725                         struct hwrm_cfa_l2_filter_free_input req = {0};
4726
4727                         bnxt_hwrm_cmd_hdr_init(bp, &req,
4728                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
4729
4730                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
4731
4732                         rc = _hwrm_send_message(bp, &req, sizeof(req),
4733                                                 HWRM_CMD_TIMEOUT);
4734                 }
4735                 vnic->uc_filter_count = 0;
4736         }
4737         mutex_unlock(&bp->hwrm_cmd_lock);
4738
4739         return rc;
4740 }
4741
4742 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4743 {
4744         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4745         u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4746         struct hwrm_vnic_tpa_cfg_input req = {0};
4747
4748         if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4749                 return 0;
4750
4751         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4752
4753         if (tpa_flags) {
4754                 u16 mss = bp->dev->mtu - 40;
4755                 u32 nsegs, n, segs = 0, flags;
4756
4757                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4758                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4759                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4760                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4761                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4762                 if (tpa_flags & BNXT_FLAG_GRO)
4763                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4764
4765                 req.flags = cpu_to_le32(flags);
4766
4767                 req.enables =
4768                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4769                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4770                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4771
4772                 /* Number of segs are log2 units, and first packet is not
4773                  * included as part of this units.
4774                  */
4775                 if (mss <= BNXT_RX_PAGE_SIZE) {
4776                         n = BNXT_RX_PAGE_SIZE / mss;
4777                         nsegs = (MAX_SKB_FRAGS - 1) * n;
4778                 } else {
4779                         n = mss / BNXT_RX_PAGE_SIZE;
4780                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
4781                                 n++;
4782                         nsegs = (MAX_SKB_FRAGS - n) / n;
4783                 }
4784
4785                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
4786                         segs = MAX_TPA_SEGS_P5;
4787                         max_aggs = bp->max_tpa;
4788                 } else {
4789                         segs = ilog2(nsegs);
4790                 }
4791                 req.max_agg_segs = cpu_to_le16(segs);
4792                 req.max_aggs = cpu_to_le16(max_aggs);
4793
4794                 req.min_agg_len = cpu_to_le32(512);
4795         }
4796         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4797
4798         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4799 }
4800
4801 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4802 {
4803         struct bnxt_ring_grp_info *grp_info;
4804
4805         grp_info = &bp->grp_info[ring->grp_idx];
4806         return grp_info->cp_fw_ring_id;
4807 }
4808
4809 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4810 {
4811         if (bp->flags & BNXT_FLAG_CHIP_P5) {
4812                 struct bnxt_napi *bnapi = rxr->bnapi;
4813                 struct bnxt_cp_ring_info *cpr;
4814
4815                 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4816                 return cpr->cp_ring_struct.fw_ring_id;
4817         } else {
4818                 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4819         }
4820 }
4821
4822 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4823 {
4824         if (bp->flags & BNXT_FLAG_CHIP_P5) {
4825                 struct bnxt_napi *bnapi = txr->bnapi;
4826                 struct bnxt_cp_ring_info *cpr;
4827
4828                 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4829                 return cpr->cp_ring_struct.fw_ring_id;
4830         } else {
4831                 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4832         }
4833 }
4834
4835 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4836 {
4837         u32 i, j, max_rings;
4838         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4839         struct hwrm_vnic_rss_cfg_input req = {0};
4840
4841         if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4842             vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4843                 return 0;
4844
4845         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4846         if (set_rss) {
4847                 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4848                 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4849                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4850                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4851                                 max_rings = bp->rx_nr_rings - 1;
4852                         else
4853                                 max_rings = bp->rx_nr_rings;
4854                 } else {
4855                         max_rings = 1;
4856                 }
4857
4858                 /* Fill the RSS indirection table with ring group ids */
4859                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4860                         if (j == max_rings)
4861                                 j = 0;
4862                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4863                 }
4864
4865                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4866                 req.hash_key_tbl_addr =
4867                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
4868         }
4869         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4870         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4871 }
4872
4873 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4874 {
4875         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4876         u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4877         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4878         struct hwrm_vnic_rss_cfg_input req = {0};
4879
4880         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4881         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4882         if (!set_rss) {
4883                 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4884                 return 0;
4885         }
4886         req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4887         req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4888         req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4889         req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4890         nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4891         for (i = 0, k = 0; i < nr_ctxs; i++) {
4892                 __le16 *ring_tbl = vnic->rss_table;
4893                 int rc;
4894
4895                 req.ring_table_pair_index = i;
4896                 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4897                 for (j = 0; j < 64; j++) {
4898                         u16 ring_id;
4899
4900                         ring_id = rxr->rx_ring_struct.fw_ring_id;
4901                         *ring_tbl++ = cpu_to_le16(ring_id);
4902                         ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4903                         *ring_tbl++ = cpu_to_le16(ring_id);
4904                         rxr++;
4905                         k++;
4906                         if (k == max_rings) {
4907                                 k = 0;
4908                                 rxr = &bp->rx_ring[0];
4909                         }
4910                 }
4911                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4912                 if (rc)
4913                         return rc;
4914         }
4915         return 0;
4916 }
4917
4918 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4919 {
4920         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4921         struct hwrm_vnic_plcmodes_cfg_input req = {0};
4922
4923         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4924         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4925                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4926                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4927         req.enables =
4928                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4929                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4930         /* thresholds not implemented in firmware yet */
4931         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4932         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4933         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4934         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4935 }
4936
4937 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4938                                         u16 ctx_idx)
4939 {
4940         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4941
4942         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4943         req.rss_cos_lb_ctx_id =
4944                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4945
4946         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4947         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4948 }
4949
4950 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4951 {
4952         int i, j;
4953
4954         for (i = 0; i < bp->nr_vnics; i++) {
4955                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4956
4957                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4958                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4959                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4960                 }
4961         }
4962         bp->rsscos_nr_ctxs = 0;
4963 }
4964
4965 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4966 {
4967         int rc;
4968         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4969         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4970                                                 bp->hwrm_cmd_resp_addr;
4971
4972         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4973                                -1);
4974
4975         mutex_lock(&bp->hwrm_cmd_lock);
4976         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4977         if (!rc)
4978                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4979                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
4980         mutex_unlock(&bp->hwrm_cmd_lock);
4981
4982         return rc;
4983 }
4984
4985 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4986 {
4987         if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4988                 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4989         return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4990 }
4991
4992 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4993 {
4994         unsigned int ring = 0, grp_idx;
4995         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4996         struct hwrm_vnic_cfg_input req = {0};
4997         u16 def_vlan = 0;
4998
4999         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5000
5001         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5002                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5003
5004                 req.default_rx_ring_id =
5005                         cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5006                 req.default_cmpl_ring_id =
5007                         cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5008                 req.enables =
5009                         cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5010                                     VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5011                 goto vnic_mru;
5012         }
5013         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5014         /* Only RSS support for now TBD: COS & LB */
5015         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5016                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5017                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5018                                            VNIC_CFG_REQ_ENABLES_MRU);
5019         } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5020                 req.rss_rule =
5021                         cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5022                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5023                                            VNIC_CFG_REQ_ENABLES_MRU);
5024                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5025         } else {
5026                 req.rss_rule = cpu_to_le16(0xffff);
5027         }
5028
5029         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5030             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5031                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5032                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5033         } else {
5034                 req.cos_rule = cpu_to_le16(0xffff);
5035         }
5036
5037         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5038                 ring = 0;
5039         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5040                 ring = vnic_id - 1;
5041         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5042                 ring = bp->rx_nr_rings - 1;
5043
5044         grp_idx = bp->rx_ring[ring].bnapi->index;
5045         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5046         req.lb_rule = cpu_to_le16(0xffff);
5047 vnic_mru:
5048         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
5049                               VLAN_HLEN);
5050
5051         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5052 #ifdef CONFIG_BNXT_SRIOV
5053         if (BNXT_VF(bp))
5054                 def_vlan = bp->vf.vlan;
5055 #endif
5056         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5057                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5058         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5059                 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5060
5061         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5062 }
5063
5064 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5065 {
5066         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5067                 struct hwrm_vnic_free_input req = {0};
5068
5069                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5070                 req.vnic_id =
5071                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5072
5073                 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5074                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5075         }
5076 }
5077
5078 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5079 {
5080         u16 i;
5081
5082         for (i = 0; i < bp->nr_vnics; i++)
5083                 bnxt_hwrm_vnic_free_one(bp, i);
5084 }
5085
5086 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5087                                 unsigned int start_rx_ring_idx,
5088                                 unsigned int nr_rings)
5089 {
5090         int rc = 0;
5091         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5092         struct hwrm_vnic_alloc_input req = {0};
5093         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5094         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5095
5096         if (bp->flags & BNXT_FLAG_CHIP_P5)
5097                 goto vnic_no_ring_grps;
5098
5099         /* map ring groups to this vnic */
5100         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5101                 grp_idx = bp->rx_ring[i].bnapi->index;
5102                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5103                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5104                                    j, nr_rings);
5105                         break;
5106                 }
5107                 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5108         }
5109
5110 vnic_no_ring_grps:
5111         for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5112                 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5113         if (vnic_id == 0)
5114                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5115
5116         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5117
5118         mutex_lock(&bp->hwrm_cmd_lock);
5119         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5120         if (!rc)
5121                 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5122         mutex_unlock(&bp->hwrm_cmd_lock);
5123         return rc;
5124 }
5125
5126 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5127 {
5128         struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5129         struct hwrm_vnic_qcaps_input req = {0};
5130         int rc;
5131
5132         bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5133         bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5134         if (bp->hwrm_spec_code < 0x10600)
5135                 return 0;
5136
5137         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5138         mutex_lock(&bp->hwrm_cmd_lock);
5139         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5140         if (!rc) {
5141                 u32 flags = le32_to_cpu(resp->flags);
5142
5143                 if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5144                     (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5145                         bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5146                 if (flags &
5147                     VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5148                         bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5149                 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5150                 if (bp->max_tpa_v2)
5151                         bp->hw_ring_stats_size =
5152                                 sizeof(struct ctx_hw_stats_ext);
5153         }
5154         mutex_unlock(&bp->hwrm_cmd_lock);
5155         return rc;
5156 }
5157
5158 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5159 {
5160         u16 i;
5161         u32 rc = 0;
5162
5163         if (bp->flags & BNXT_FLAG_CHIP_P5)
5164                 return 0;
5165
5166         mutex_lock(&bp->hwrm_cmd_lock);
5167         for (i = 0; i < bp->rx_nr_rings; i++) {
5168                 struct hwrm_ring_grp_alloc_input req = {0};
5169                 struct hwrm_ring_grp_alloc_output *resp =
5170                                         bp->hwrm_cmd_resp_addr;
5171                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5172
5173                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5174
5175                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5176                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5177                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5178                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5179
5180                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5181                                         HWRM_CMD_TIMEOUT);
5182                 if (rc)
5183                         break;
5184
5185                 bp->grp_info[grp_idx].fw_grp_id =
5186                         le32_to_cpu(resp->ring_group_id);
5187         }
5188         mutex_unlock(&bp->hwrm_cmd_lock);
5189         return rc;
5190 }
5191
5192 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5193 {
5194         u16 i;
5195         struct hwrm_ring_grp_free_input req = {0};
5196
5197         if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5198                 return;
5199
5200         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5201
5202         mutex_lock(&bp->hwrm_cmd_lock);
5203         for (i = 0; i < bp->cp_nr_rings; i++) {
5204                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5205                         continue;
5206                 req.ring_group_id =
5207                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
5208
5209                 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5210                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5211         }
5212         mutex_unlock(&bp->hwrm_cmd_lock);
5213 }
5214
5215 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5216                                     struct bnxt_ring_struct *ring,
5217                                     u32 ring_type, u32 map_index)
5218 {
5219         int rc = 0, err = 0;
5220         struct hwrm_ring_alloc_input req = {0};
5221         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5222         struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5223         struct bnxt_ring_grp_info *grp_info;
5224         u16 ring_id;
5225
5226         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5227
5228         req.enables = 0;
5229         if (rmem->nr_pages > 1) {
5230                 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5231                 /* Page size is in log2 units */
5232                 req.page_size = BNXT_PAGE_SHIFT;
5233                 req.page_tbl_depth = 1;
5234         } else {
5235                 req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5236         }
5237         req.fbo = 0;
5238         /* Association of ring index with doorbell index and MSIX number */
5239         req.logical_id = cpu_to_le16(map_index);
5240
5241         switch (ring_type) {
5242         case HWRM_RING_ALLOC_TX: {
5243                 struct bnxt_tx_ring_info *txr;
5244
5245                 txr = container_of(ring, struct bnxt_tx_ring_info,
5246                                    tx_ring_struct);
5247                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5248                 /* Association of transmit ring with completion ring */
5249                 grp_info = &bp->grp_info[ring->grp_idx];
5250                 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5251                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5252                 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5253                 req.queue_id = cpu_to_le16(ring->queue_id);
5254                 break;
5255         }
5256         case HWRM_RING_ALLOC_RX:
5257                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5258                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5259                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5260                         u16 flags = 0;
5261
5262                         /* Association of rx ring with stats context */
5263                         grp_info = &bp->grp_info[ring->grp_idx];
5264                         req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5265                         req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5266                         req.enables |= cpu_to_le32(
5267                                 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5268                         if (NET_IP_ALIGN == 2)
5269                                 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5270                         req.flags = cpu_to_le16(flags);
5271                 }
5272                 break;
5273         case HWRM_RING_ALLOC_AGG:
5274                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5275                         req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5276                         /* Association of agg ring with rx ring */
5277                         grp_info = &bp->grp_info[ring->grp_idx];
5278                         req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5279                         req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5280                         req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5281                         req.enables |= cpu_to_le32(
5282                                 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5283                                 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5284                 } else {
5285                         req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5286                 }
5287                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5288                 break;
5289         case HWRM_RING_ALLOC_CMPL:
5290                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5291                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5292                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5293                         /* Association of cp ring with nq */
5294                         grp_info = &bp->grp_info[map_index];
5295                         req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5296                         req.cq_handle = cpu_to_le64(ring->handle);
5297                         req.enables |= cpu_to_le32(
5298                                 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5299                 } else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5300                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5301                 }
5302                 break;
5303         case HWRM_RING_ALLOC_NQ:
5304                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5305                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5306                 if (bp->flags & BNXT_FLAG_USING_MSIX)
5307                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5308                 break;
5309         default:
5310                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5311                            ring_type);
5312                 return -1;
5313         }
5314
5315         mutex_lock(&bp->hwrm_cmd_lock);
5316         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5317         err = le16_to_cpu(resp->error_code);
5318         ring_id = le16_to_cpu(resp->ring_id);
5319         mutex_unlock(&bp->hwrm_cmd_lock);
5320
5321         if (rc || err) {
5322                 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5323                            ring_type, rc, err);
5324                 return -EIO;
5325         }
5326         ring->fw_ring_id = ring_id;
5327         return rc;
5328 }
5329
5330 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5331 {
5332         int rc;
5333
5334         if (BNXT_PF(bp)) {
5335                 struct hwrm_func_cfg_input req = {0};
5336
5337                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5338                 req.fid = cpu_to_le16(0xffff);
5339                 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5340                 req.async_event_cr = cpu_to_le16(idx);
5341                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5342         } else {
5343                 struct hwrm_func_vf_cfg_input req = {0};
5344
5345                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5346                 req.enables =
5347                         cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5348                 req.async_event_cr = cpu_to_le16(idx);
5349                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5350         }
5351         return rc;
5352 }
5353
5354 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5355                         u32 map_idx, u32 xid)
5356 {
5357         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5358                 if (BNXT_PF(bp))
5359                         db->doorbell = bp->bar1 + 0x10000;
5360                 else
5361                         db->doorbell = bp->bar1 + 0x4000;
5362                 switch (ring_type) {
5363                 case HWRM_RING_ALLOC_TX:
5364                         db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5365                         break;
5366                 case HWRM_RING_ALLOC_RX:
5367                 case HWRM_RING_ALLOC_AGG:
5368                         db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5369                         break;
5370                 case HWRM_RING_ALLOC_CMPL:
5371                         db->db_key64 = DBR_PATH_L2;
5372                         break;
5373                 case HWRM_RING_ALLOC_NQ:
5374                         db->db_key64 = DBR_PATH_L2;
5375                         break;
5376                 }
5377                 db->db_key64 |= (u64)xid << DBR_XID_SFT;
5378         } else {
5379                 db->doorbell = bp->bar1 + map_idx * 0x80;
5380                 switch (ring_type) {
5381                 case HWRM_RING_ALLOC_TX:
5382                         db->db_key32 = DB_KEY_TX;
5383                         break;
5384                 case HWRM_RING_ALLOC_RX:
5385                 case HWRM_RING_ALLOC_AGG:
5386                         db->db_key32 = DB_KEY_RX;
5387                         break;
5388                 case HWRM_RING_ALLOC_CMPL:
5389                         db->db_key32 = DB_KEY_CP;
5390                         break;
5391                 }
5392         }
5393 }
5394
5395 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5396 {
5397         bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5398         int i, rc = 0;
5399         u32 type;
5400
5401         if (bp->flags & BNXT_FLAG_CHIP_P5)
5402                 type = HWRM_RING_ALLOC_NQ;
5403         else
5404                 type = HWRM_RING_ALLOC_CMPL;
5405         for (i = 0; i < bp->cp_nr_rings; i++) {
5406                 struct bnxt_napi *bnapi = bp->bnapi[i];
5407                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5408                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5409                 u32 map_idx = ring->map_idx;
5410                 unsigned int vector;
5411
5412                 vector = bp->irq_tbl[map_idx].vector;
5413                 disable_irq_nosync(vector);
5414                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5415                 if (rc) {
5416                         enable_irq(vector);
5417                         goto err_out;
5418                 }
5419                 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5420                 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5421                 enable_irq(vector);
5422                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5423
5424                 if (!i) {
5425                         rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5426                         if (rc)
5427                                 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5428                 }
5429         }
5430
5431         type = HWRM_RING_ALLOC_TX;
5432         for (i = 0; i < bp->tx_nr_rings; i++) {
5433                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5434                 struct bnxt_ring_struct *ring;
5435                 u32 map_idx;
5436
5437                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5438                         struct bnxt_napi *bnapi = txr->bnapi;
5439                         struct bnxt_cp_ring_info *cpr, *cpr2;
5440                         u32 type2 = HWRM_RING_ALLOC_CMPL;
5441
5442                         cpr = &bnapi->cp_ring;
5443                         cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5444                         ring = &cpr2->cp_ring_struct;
5445                         ring->handle = BNXT_TX_HDL;
5446                         map_idx = bnapi->index;
5447                         rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5448                         if (rc)
5449                                 goto err_out;
5450                         bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5451                                     ring->fw_ring_id);
5452                         bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5453                 }
5454                 ring = &txr->tx_ring_struct;
5455                 map_idx = i;
5456                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5457                 if (rc)
5458                         goto err_out;
5459                 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5460         }
5461
5462         type = HWRM_RING_ALLOC_RX;
5463         for (i = 0; i < bp->rx_nr_rings; i++) {
5464                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5465                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5466                 struct bnxt_napi *bnapi = rxr->bnapi;
5467                 u32 map_idx = bnapi->index;
5468
5469                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5470                 if (rc)
5471                         goto err_out;
5472                 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5473                 /* If we have agg rings, post agg buffers first. */
5474                 if (!agg_rings)
5475                         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5476                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5477                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5478                         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5479                         u32 type2 = HWRM_RING_ALLOC_CMPL;
5480                         struct bnxt_cp_ring_info *cpr2;
5481
5482                         cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5483                         ring = &cpr2->cp_ring_struct;
5484                         ring->handle = BNXT_RX_HDL;
5485                         rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5486                         if (rc)
5487                                 goto err_out;
5488                         bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5489                                     ring->fw_ring_id);
5490                         bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5491                 }
5492         }
5493
5494         if (agg_rings) {
5495                 type = HWRM_RING_ALLOC_AGG;
5496                 for (i = 0; i < bp->rx_nr_rings; i++) {
5497                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5498                         struct bnxt_ring_struct *ring =
5499                                                 &rxr->rx_agg_ring_struct;
5500                         u32 grp_idx = ring->grp_idx;
5501                         u32 map_idx = grp_idx + bp->rx_nr_rings;
5502
5503                         rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5504                         if (rc)
5505                                 goto err_out;
5506
5507                         bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5508                                     ring->fw_ring_id);
5509                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5510                         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5511                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5512                 }
5513         }
5514 err_out:
5515         return rc;
5516 }
5517
5518 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5519                                    struct bnxt_ring_struct *ring,
5520                                    u32 ring_type, int cmpl_ring_id)
5521 {
5522         int rc;
5523         struct hwrm_ring_free_input req = {0};
5524         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5525         u16 error_code;
5526
5527         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
5528                 return 0;
5529
5530         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5531         req.ring_type = ring_type;
5532         req.ring_id = cpu_to_le16(ring->fw_ring_id);
5533
5534         mutex_lock(&bp->hwrm_cmd_lock);
5535         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5536         error_code = le16_to_cpu(resp->error_code);
5537         mutex_unlock(&bp->hwrm_cmd_lock);
5538
5539         if (rc || error_code) {
5540                 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5541                            ring_type, rc, error_code);
5542                 return -EIO;
5543         }
5544         return 0;
5545 }
5546
5547 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5548 {
5549         u32 type;
5550         int i;
5551
5552         if (!bp->bnapi)
5553                 return;
5554
5555         for (i = 0; i < bp->tx_nr_rings; i++) {
5556                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5557                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5558
5559                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5560                         u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5561
5562                         hwrm_ring_free_send_msg(bp, ring,
5563                                                 RING_FREE_REQ_RING_TYPE_TX,
5564                                                 close_path ? cmpl_ring_id :
5565                                                 INVALID_HW_RING_ID);
5566                         ring->fw_ring_id = INVALID_HW_RING_ID;
5567                 }
5568         }
5569
5570         for (i = 0; i < bp->rx_nr_rings; i++) {
5571                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5572                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5573                 u32 grp_idx = rxr->bnapi->index;
5574
5575                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5576                         u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5577
5578                         hwrm_ring_free_send_msg(bp, ring,
5579                                                 RING_FREE_REQ_RING_TYPE_RX,
5580                                                 close_path ? cmpl_ring_id :
5581                                                 INVALID_HW_RING_ID);
5582                         ring->fw_ring_id = INVALID_HW_RING_ID;
5583                         bp->grp_info[grp_idx].rx_fw_ring_id =
5584                                 INVALID_HW_RING_ID;
5585                 }
5586         }
5587
5588         if (bp->flags & BNXT_FLAG_CHIP_P5)
5589                 type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5590         else
5591                 type = RING_FREE_REQ_RING_TYPE_RX;
5592         for (i = 0; i < bp->rx_nr_rings; i++) {
5593                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5594                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5595                 u32 grp_idx = rxr->bnapi->index;
5596
5597                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5598                         u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5599
5600                         hwrm_ring_free_send_msg(bp, ring, type,
5601                                                 close_path ? cmpl_ring_id :
5602                                                 INVALID_HW_RING_ID);
5603                         ring->fw_ring_id = INVALID_HW_RING_ID;
5604                         bp->grp_info[grp_idx].agg_fw_ring_id =
5605                                 INVALID_HW_RING_ID;
5606                 }
5607         }
5608
5609         /* The completion rings are about to be freed.  After that the
5610          * IRQ doorbell will not work anymore.  So we need to disable
5611          * IRQ here.
5612          */
5613         bnxt_disable_int_sync(bp);
5614
5615         if (bp->flags & BNXT_FLAG_CHIP_P5)
5616                 type = RING_FREE_REQ_RING_TYPE_NQ;
5617         else
5618                 type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5619         for (i = 0; i < bp->cp_nr_rings; i++) {
5620                 struct bnxt_napi *bnapi = bp->bnapi[i];
5621                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5622                 struct bnxt_ring_struct *ring;
5623                 int j;
5624
5625                 for (j = 0; j < 2; j++) {
5626                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5627
5628                         if (cpr2) {
5629                                 ring = &cpr2->cp_ring_struct;
5630                                 if (ring->fw_ring_id == INVALID_HW_RING_ID)
5631                                         continue;
5632                                 hwrm_ring_free_send_msg(bp, ring,
5633                                         RING_FREE_REQ_RING_TYPE_L2_CMPL,
5634                                         INVALID_HW_RING_ID);
5635                                 ring->fw_ring_id = INVALID_HW_RING_ID;
5636                         }
5637                 }
5638                 ring = &cpr->cp_ring_struct;
5639                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5640                         hwrm_ring_free_send_msg(bp, ring, type,
5641                                                 INVALID_HW_RING_ID);
5642                         ring->fw_ring_id = INVALID_HW_RING_ID;
5643                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5644                 }
5645         }
5646 }
5647
5648 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5649                            bool shared);
5650
5651 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5652 {
5653         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5654         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5655         struct hwrm_func_qcfg_input req = {0};
5656         int rc;
5657
5658         if (bp->hwrm_spec_code < 0x10601)
5659                 return 0;
5660
5661         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5662         req.fid = cpu_to_le16(0xffff);
5663         mutex_lock(&bp->hwrm_cmd_lock);
5664         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5665         if (rc) {
5666                 mutex_unlock(&bp->hwrm_cmd_lock);
5667                 return rc;
5668         }
5669
5670         hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5671         if (BNXT_NEW_RM(bp)) {
5672                 u16 cp, stats;
5673
5674                 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5675                 hw_resc->resv_hw_ring_grps =
5676                         le32_to_cpu(resp->alloc_hw_ring_grps);
5677                 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5678                 cp = le16_to_cpu(resp->alloc_cmpl_rings);
5679                 stats = le16_to_cpu(resp->alloc_stat_ctx);
5680                 hw_resc->resv_irqs = cp;
5681                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5682                         int rx = hw_resc->resv_rx_rings;
5683                         int tx = hw_resc->resv_tx_rings;
5684
5685                         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5686                                 rx >>= 1;
5687                         if (cp < (rx + tx)) {
5688                                 bnxt_trim_rings(bp, &rx, &tx, cp, false);
5689                                 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5690                                         rx <<= 1;
5691                                 hw_resc->resv_rx_rings = rx;
5692                                 hw_resc->resv_tx_rings = tx;
5693                         }
5694                         hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5695                         hw_resc->resv_hw_ring_grps = rx;
5696                 }
5697                 hw_resc->resv_cp_rings = cp;
5698                 hw_resc->resv_stat_ctxs = stats;
5699         }
5700         mutex_unlock(&bp->hwrm_cmd_lock);
5701         return 0;
5702 }
5703
5704 /* Caller must hold bp->hwrm_cmd_lock */
5705 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5706 {
5707         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5708         struct hwrm_func_qcfg_input req = {0};
5709         int rc;
5710
5711         if (bp->hwrm_spec_code < 0x10601)
5712                 return 0;
5713
5714         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5715         req.fid = cpu_to_le16(fid);
5716         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5717         if (!rc)
5718                 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5719
5720         return rc;
5721 }
5722
5723 static bool bnxt_rfs_supported(struct bnxt *bp);
5724
5725 static void
5726 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5727                              int tx_rings, int rx_rings, int ring_grps,
5728                              int cp_rings, int stats, int vnics)
5729 {
5730         u32 enables = 0;
5731
5732         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5733         req->fid = cpu_to_le16(0xffff);
5734         enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5735         req->num_tx_rings = cpu_to_le16(tx_rings);
5736         if (BNXT_NEW_RM(bp)) {
5737                 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5738                 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5739                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5740                         enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5741                         enables |= tx_rings + ring_grps ?
5742                                    FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5743                         enables |= rx_rings ?
5744                                 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5745                 } else {
5746                         enables |= cp_rings ?
5747                                    FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5748                         enables |= ring_grps ?
5749                                    FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5750                                    FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5751                 }
5752                 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5753
5754                 req->num_rx_rings = cpu_to_le16(rx_rings);
5755                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5756                         req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5757                         req->num_msix = cpu_to_le16(cp_rings);
5758                         req->num_rsscos_ctxs =
5759                                 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5760                 } else {
5761                         req->num_cmpl_rings = cpu_to_le16(cp_rings);
5762                         req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5763                         req->num_rsscos_ctxs = cpu_to_le16(1);
5764                         if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5765                             bnxt_rfs_supported(bp))
5766                                 req->num_rsscos_ctxs =
5767                                         cpu_to_le16(ring_grps + 1);
5768                 }
5769                 req->num_stat_ctxs = cpu_to_le16(stats);
5770                 req->num_vnics = cpu_to_le16(vnics);
5771         }
5772         req->enables = cpu_to_le32(enables);
5773 }
5774
5775 static void
5776 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5777                              struct hwrm_func_vf_cfg_input *req, int tx_rings,
5778                              int rx_rings, int ring_grps, int cp_rings,
5779                              int stats, int vnics)
5780 {
5781         u32 enables = 0;
5782
5783         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5784         enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5785         enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5786                               FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5787         enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5788         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5789                 enables |= tx_rings + ring_grps ?
5790                            FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5791         } else {
5792                 enables |= cp_rings ?
5793                            FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5794                 enables |= ring_grps ?
5795                            FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5796         }
5797         enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5798         enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5799
5800         req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5801         req->num_tx_rings = cpu_to_le16(tx_rings);
5802         req->num_rx_rings = cpu_to_le16(rx_rings);
5803         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5804                 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5805                 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5806         } else {
5807                 req->num_cmpl_rings = cpu_to_le16(cp_rings);
5808                 req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5809                 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5810         }
5811         req->num_stat_ctxs = cpu_to_le16(stats);
5812         req->num_vnics = cpu_to_le16(vnics);
5813
5814         req->enables = cpu_to_le32(enables);
5815 }
5816
5817 static int
5818 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5819                            int ring_grps, int cp_rings, int stats, int vnics)
5820 {
5821         struct hwrm_func_cfg_input req = {0};
5822         int rc;
5823
5824         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5825                                      cp_rings, stats, vnics);
5826         if (!req.enables)
5827                 return 0;
5828
5829         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5830         if (rc)
5831                 return rc;
5832
5833         if (bp->hwrm_spec_code < 0x10601)
5834                 bp->hw_resc.resv_tx_rings = tx_rings;
5835
5836         return bnxt_hwrm_get_rings(bp);
5837 }
5838
5839 static int
5840 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5841                            int ring_grps, int cp_rings, int stats, int vnics)
5842 {
5843         struct hwrm_func_vf_cfg_input req = {0};
5844         int rc;
5845
5846         if (!BNXT_NEW_RM(bp)) {
5847                 bp->hw_resc.resv_tx_rings = tx_rings;
5848                 return 0;
5849         }
5850
5851         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5852                                      cp_rings, stats, vnics);
5853         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5854         if (rc)
5855                 return rc;
5856
5857         return bnxt_hwrm_get_rings(bp);
5858 }
5859
5860 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5861                                    int cp, int stat, int vnic)
5862 {
5863         if (BNXT_PF(bp))
5864                 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5865                                                   vnic);
5866         else
5867                 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5868                                                   vnic);
5869 }
5870
5871 int bnxt_nq_rings_in_use(struct bnxt *bp)
5872 {
5873         int cp = bp->cp_nr_rings;
5874         int ulp_msix, ulp_base;
5875
5876         ulp_msix = bnxt_get_ulp_msix_num(bp);
5877         if (ulp_msix) {
5878                 ulp_base = bnxt_get_ulp_msix_base(bp);
5879                 cp += ulp_msix;
5880                 if ((ulp_base + ulp_msix) > cp)
5881                         cp = ulp_base + ulp_msix;
5882         }
5883         return cp;
5884 }
5885
5886 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5887 {
5888         int cp;
5889
5890         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5891                 return bnxt_nq_rings_in_use(bp);
5892
5893         cp = bp->tx_nr_rings + bp->rx_nr_rings;
5894         return cp;
5895 }
5896
5897 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5898 {
5899         int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
5900         int cp = bp->cp_nr_rings;
5901
5902         if (!ulp_stat)
5903                 return cp;
5904
5905         if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
5906                 return bnxt_get_ulp_msix_base(bp) + ulp_stat;
5907
5908         return cp + ulp_stat;
5909 }
5910
5911 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5912 {
5913         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5914         int cp = bnxt_cp_rings_in_use(bp);
5915         int nq = bnxt_nq_rings_in_use(bp);
5916         int rx = bp->rx_nr_rings, stat;
5917         int vnic = 1, grp = rx;
5918
5919         if (bp->hwrm_spec_code < 0x10601)
5920                 return false;
5921
5922         if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5923                 return true;
5924
5925         if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5926                 vnic = rx + 1;
5927         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5928                 rx <<= 1;
5929         stat = bnxt_get_func_stat_ctxs(bp);
5930         if (BNXT_NEW_RM(bp) &&
5931             (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5932              hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
5933              (hw_resc->resv_hw_ring_grps != grp &&
5934               !(bp->flags & BNXT_FLAG_CHIP_P5))))
5935                 return true;
5936         if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
5937             hw_resc->resv_irqs != nq)
5938                 return true;
5939         return false;
5940 }
5941
5942 static int __bnxt_reserve_rings(struct bnxt *bp)
5943 {
5944         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5945         int cp = bnxt_nq_rings_in_use(bp);
5946         int tx = bp->tx_nr_rings;
5947         int rx = bp->rx_nr_rings;
5948         int grp, rx_rings, rc;
5949         int vnic = 1, stat;
5950         bool sh = false;
5951
5952         if (!bnxt_need_reserve_rings(bp))
5953                 return 0;
5954
5955         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5956                 sh = true;
5957         if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5958                 vnic = rx + 1;
5959         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5960                 rx <<= 1;
5961         grp = bp->rx_nr_rings;
5962         stat = bnxt_get_func_stat_ctxs(bp);
5963
5964         rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5965         if (rc)
5966                 return rc;
5967
5968         tx = hw_resc->resv_tx_rings;
5969         if (BNXT_NEW_RM(bp)) {
5970                 rx = hw_resc->resv_rx_rings;
5971                 cp = hw_resc->resv_irqs;
5972                 grp = hw_resc->resv_hw_ring_grps;
5973                 vnic = hw_resc->resv_vnics;
5974                 stat = hw_resc->resv_stat_ctxs;
5975         }
5976
5977         rx_rings = rx;
5978         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5979                 if (rx >= 2) {
5980                         rx_rings = rx >> 1;
5981                 } else {
5982                         if (netif_running(bp->dev))
5983                                 return -ENOMEM;
5984
5985                         bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5986                         bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5987                         bp->dev->hw_features &= ~NETIF_F_LRO;
5988                         bp->dev->features &= ~NETIF_F_LRO;
5989                         bnxt_set_ring_params(bp);
5990                 }
5991         }
5992         rx_rings = min_t(int, rx_rings, grp);
5993         cp = min_t(int, cp, bp->cp_nr_rings);
5994         if (stat > bnxt_get_ulp_stat_ctxs(bp))
5995                 stat -= bnxt_get_ulp_stat_ctxs(bp);
5996         cp = min_t(int, cp, stat);
5997         rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5998         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5999                 rx = rx_rings << 1;
6000         cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6001         bp->tx_nr_rings = tx;
6002         bp->rx_nr_rings = rx_rings;
6003         bp->cp_nr_rings = cp;
6004
6005         if (!tx || !rx || !cp || !grp || !vnic || !stat)
6006                 return -ENOMEM;
6007
6008         return rc;
6009 }
6010
6011 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6012                                     int ring_grps, int cp_rings, int stats,
6013                                     int vnics)
6014 {
6015         struct hwrm_func_vf_cfg_input req = {0};
6016         u32 flags;
6017
6018         if (!BNXT_NEW_RM(bp))
6019                 return 0;
6020
6021         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6022                                      cp_rings, stats, vnics);
6023         flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6024                 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6025                 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6026                 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6027                 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6028                 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6029         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6030                 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6031
6032         req.flags = cpu_to_le32(flags);
6033         return hwrm_send_message_silent(bp, &req, sizeof(req),
6034                                         HWRM_CMD_TIMEOUT);
6035 }
6036
6037 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6038                                     int ring_grps, int cp_rings, int stats,
6039                                     int vnics)
6040 {
6041         struct hwrm_func_cfg_input req = {0};
6042         u32 flags;
6043
6044         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6045                                      cp_rings, stats, vnics);
6046         flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6047         if (BNXT_NEW_RM(bp)) {
6048                 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6049                          FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6050                          FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6051                          FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6052                 if (bp->flags & BNXT_FLAG_CHIP_P5)
6053                         flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6054                                  FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6055                 else
6056                         flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6057         }
6058
6059         req.flags = cpu_to_le32(flags);
6060         return hwrm_send_message_silent(bp, &req, sizeof(req),
6061                                         HWRM_CMD_TIMEOUT);
6062 }
6063
6064 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6065                                  int ring_grps, int cp_rings, int stats,
6066                                  int vnics)
6067 {
6068         if (bp->hwrm_spec_code < 0x10801)
6069                 return 0;
6070
6071         if (BNXT_PF(bp))
6072                 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6073                                                 ring_grps, cp_rings, stats,
6074                                                 vnics);
6075
6076         return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6077                                         cp_rings, stats, vnics);
6078 }
6079
6080 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6081 {
6082         struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6083         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6084         struct hwrm_ring_aggint_qcaps_input req = {0};
6085         int rc;
6086
6087         coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6088         coal_cap->num_cmpl_dma_aggr_max = 63;
6089         coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6090         coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6091         coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6092         coal_cap->int_lat_tmr_min_max = 65535;
6093         coal_cap->int_lat_tmr_max_max = 65535;
6094         coal_cap->num_cmpl_aggr_int_max = 65535;
6095         coal_cap->timer_units = 80;
6096
6097         if (bp->hwrm_spec_code < 0x10902)
6098                 return;
6099
6100         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6101         mutex_lock(&bp->hwrm_cmd_lock);
6102         rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6103         if (!rc) {
6104                 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6105                 coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6106                 coal_cap->num_cmpl_dma_aggr_max =
6107                         le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6108                 coal_cap->num_cmpl_dma_aggr_during_int_max =
6109                         le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6110                 coal_cap->cmpl_aggr_dma_tmr_max =
6111                         le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6112                 coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6113                         le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6114                 coal_cap->int_lat_tmr_min_max =
6115                         le16_to_cpu(resp->int_lat_tmr_min_max);
6116                 coal_cap->int_lat_tmr_max_max =
6117                         le16_to_cpu(resp->int_lat_tmr_max_max);
6118                 coal_cap->num_cmpl_aggr_int_max =
6119                         le16_to_cpu(resp->num_cmpl_aggr_int_max);
6120                 coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6121         }
6122         mutex_unlock(&bp->hwrm_cmd_lock);
6123 }
6124
6125 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6126 {
6127         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6128
6129         return usec * 1000 / coal_cap->timer_units;
6130 }
6131
6132 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6133         struct bnxt_coal *hw_coal,
6134         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6135 {
6136         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6137         u32 cmpl_params = coal_cap->cmpl_params;
6138         u16 val, tmr, max, flags = 0;
6139
6140         max = hw_coal->bufs_per_record * 128;
6141         if (hw_coal->budget)
6142                 max = hw_coal->bufs_per_record * hw_coal->budget;
6143         max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6144
6145         val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6146         req->num_cmpl_aggr_int = cpu_to_le16(val);
6147
6148         val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6149         req->num_cmpl_dma_aggr = cpu_to_le16(val);
6150
6151         val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6152                       coal_cap->num_cmpl_dma_aggr_during_int_max);
6153         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6154
6155         tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6156         tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6157         req->int_lat_tmr_max = cpu_to_le16(tmr);
6158
6159         /* min timer set to 1/2 of interrupt timer */
6160         if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6161                 val = tmr / 2;
6162                 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6163                 req->int_lat_tmr_min = cpu_to_le16(val);
6164                 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6165         }
6166
6167         /* buf timer set to 1/4 of interrupt timer */
6168         val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6169         req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6170
6171         if (cmpl_params &
6172             RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6173                 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6174                 val = clamp_t(u16, tmr, 1,
6175                               coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6176                 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6177                 req->enables |=
6178                         cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6179         }
6180
6181         if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6182                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6183         if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6184             hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6185                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6186         req->flags = cpu_to_le16(flags);
6187         req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6188 }
6189
6190 /* Caller holds bp->hwrm_cmd_lock */
6191 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6192                                    struct bnxt_coal *hw_coal)
6193 {
6194         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6195         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6196         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6197         u32 nq_params = coal_cap->nq_params;
6198         u16 tmr;
6199
6200         if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6201                 return 0;
6202
6203         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6204                                -1, -1);
6205         req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6206         req.flags =
6207                 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6208
6209         tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6210         tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6211         req.int_lat_tmr_min = cpu_to_le16(tmr);
6212         req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6213         return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6214 }
6215
6216 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6217 {
6218         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6219         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6220         struct bnxt_coal coal;
6221
6222         /* Tick values in micro seconds.
6223          * 1 coal_buf x bufs_per_record = 1 completion record.
6224          */
6225         memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6226
6227         coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6228         coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6229
6230         if (!bnapi->rx_ring)
6231                 return -ENODEV;
6232
6233         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6234                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6235
6236         bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6237
6238         req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6239
6240         return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6241                                  HWRM_CMD_TIMEOUT);
6242 }
6243
6244 int bnxt_hwrm_set_coal(struct bnxt *bp)
6245 {
6246         int i, rc = 0;
6247         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6248                                                            req_tx = {0}, *req;
6249
6250         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6251                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6252         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6253                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6254
6255         bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6256         bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6257
6258         mutex_lock(&bp->hwrm_cmd_lock);
6259         for (i = 0; i < bp->cp_nr_rings; i++) {
6260                 struct bnxt_napi *bnapi = bp->bnapi[i];
6261                 struct bnxt_coal *hw_coal;
6262                 u16 ring_id;
6263
6264                 req = &req_rx;
6265                 if (!bnapi->rx_ring) {
6266                         ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6267                         req = &req_tx;
6268                 } else {
6269                         ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6270                 }
6271                 req->ring_id = cpu_to_le16(ring_id);
6272
6273                 rc = _hwrm_send_message(bp, req, sizeof(*req),
6274                                         HWRM_CMD_TIMEOUT);
6275                 if (rc)
6276                         break;
6277
6278                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6279                         continue;
6280
6281                 if (bnapi->rx_ring && bnapi->tx_ring) {
6282                         req = &req_tx;
6283                         ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6284                         req->ring_id = cpu_to_le16(ring_id);
6285                         rc = _hwrm_send_message(bp, req, sizeof(*req),
6286                                                 HWRM_CMD_TIMEOUT);
6287                         if (rc)
6288                                 break;
6289                 }
6290                 if (bnapi->rx_ring)
6291                         hw_coal = &bp->rx_coal;
6292                 else
6293                         hw_coal = &bp->tx_coal;
6294                 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6295         }
6296         mutex_unlock(&bp->hwrm_cmd_lock);
6297         return rc;
6298 }
6299
6300 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6301 {
6302         struct hwrm_stat_ctx_free_input req = {0};
6303         int i;
6304
6305         if (!bp->bnapi)
6306                 return;
6307
6308         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6309                 return;
6310
6311         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6312
6313         mutex_lock(&bp->hwrm_cmd_lock);
6314         for (i = 0; i < bp->cp_nr_rings; i++) {
6315                 struct bnxt_napi *bnapi = bp->bnapi[i];
6316                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6317
6318                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6319                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6320
6321                         _hwrm_send_message(bp, &req, sizeof(req),
6322                                            HWRM_CMD_TIMEOUT);
6323
6324                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6325                 }
6326         }
6327         mutex_unlock(&bp->hwrm_cmd_lock);
6328 }
6329
6330 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6331 {
6332         int rc = 0, i;
6333         struct hwrm_stat_ctx_alloc_input req = {0};
6334         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6335
6336         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6337                 return 0;
6338
6339         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6340
6341         req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6342         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6343
6344         mutex_lock(&bp->hwrm_cmd_lock);
6345         for (i = 0; i < bp->cp_nr_rings; i++) {
6346                 struct bnxt_napi *bnapi = bp->bnapi[i];
6347                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6348
6349                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
6350
6351                 rc = _hwrm_send_message(bp, &req, sizeof(req),
6352                                         HWRM_CMD_TIMEOUT);
6353                 if (rc)
6354                         break;
6355
6356                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6357
6358                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6359         }
6360         mutex_unlock(&bp->hwrm_cmd_lock);
6361         return rc;
6362 }
6363
6364 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6365 {
6366         struct hwrm_func_qcfg_input req = {0};
6367         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6368         u16 flags;
6369         int rc;
6370
6371         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6372         req.fid = cpu_to_le16(0xffff);
6373         mutex_lock(&bp->hwrm_cmd_lock);
6374         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6375         if (rc)
6376                 goto func_qcfg_exit;
6377
6378 #ifdef CONFIG_BNXT_SRIOV
6379         if (BNXT_VF(bp)) {
6380                 struct bnxt_vf_info *vf = &bp->vf;
6381
6382                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6383         } else {
6384                 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6385         }
6386 #endif
6387         flags = le16_to_cpu(resp->flags);
6388         if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6389                      FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6390                 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6391                 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6392                         bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6393         }
6394         if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6395                 bp->flags |= BNXT_FLAG_MULTI_HOST;
6396
6397         switch (resp->port_partition_type) {
6398         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6399         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6400         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6401                 bp->port_partition_type = resp->port_partition_type;
6402                 break;
6403         }
6404         if (bp->hwrm_spec_code < 0x10707 ||
6405             resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6406                 bp->br_mode = BRIDGE_MODE_VEB;
6407         else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6408                 bp->br_mode = BRIDGE_MODE_VEPA;
6409         else
6410                 bp->br_mode = BRIDGE_MODE_UNDEF;
6411
6412         bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6413         if (!bp->max_mtu)
6414                 bp->max_mtu = BNXT_MAX_MTU;
6415
6416 func_qcfg_exit:
6417         mutex_unlock(&bp->hwrm_cmd_lock);
6418         return rc;
6419 }
6420
6421 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6422 {
6423         struct hwrm_func_backing_store_qcaps_input req = {0};
6424         struct hwrm_func_backing_store_qcaps_output *resp =
6425                 bp->hwrm_cmd_resp_addr;
6426         int rc;
6427
6428         if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6429                 return 0;
6430
6431         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6432         mutex_lock(&bp->hwrm_cmd_lock);
6433         rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6434         if (!rc) {
6435                 struct bnxt_ctx_pg_info *ctx_pg;
6436                 struct bnxt_ctx_mem_info *ctx;
6437                 int i;
6438
6439                 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6440                 if (!ctx) {
6441                         rc = -ENOMEM;
6442                         goto ctx_err;
6443                 }
6444                 ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
6445                 if (!ctx_pg) {
6446                         kfree(ctx);
6447                         rc = -ENOMEM;
6448                         goto ctx_err;
6449                 }
6450                 for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
6451                         ctx->tqm_mem[i] = ctx_pg;
6452
6453                 bp->ctx = ctx;
6454                 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6455                 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6456                 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6457                 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6458                 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6459                 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6460                 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6461                 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6462                 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6463                 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6464                 ctx->vnic_max_vnic_entries =
6465                         le16_to_cpu(resp->vnic_max_vnic_entries);
6466                 ctx->vnic_max_ring_table_entries =
6467                         le16_to_cpu(resp->vnic_max_ring_table_entries);
6468                 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6469                 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6470                 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6471                 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6472                 ctx->tqm_min_entries_per_ring =
6473                         le32_to_cpu(resp->tqm_min_entries_per_ring);
6474                 ctx->tqm_max_entries_per_ring =
6475                         le32_to_cpu(resp->tqm_max_entries_per_ring);
6476                 ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6477                 if (!ctx->tqm_entries_multiple)
6478                         ctx->tqm_entries_multiple = 1;
6479                 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6480                 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6481                 ctx->mrav_num_entries_units =
6482                         le16_to_cpu(resp->mrav_num_entries_units);
6483                 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6484                 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6485                 ctx->ctx_kind_initializer = resp->ctx_kind_initializer;
6486         } else {
6487                 rc = 0;
6488         }
6489 ctx_err:
6490         mutex_unlock(&bp->hwrm_cmd_lock);
6491         return rc;
6492 }
6493
6494 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6495                                   __le64 *pg_dir)
6496 {
6497         u8 pg_size = 0;
6498
6499         if (BNXT_PAGE_SHIFT == 13)
6500                 pg_size = 1 << 4;
6501         else if (BNXT_PAGE_SIZE == 16)
6502                 pg_size = 2 << 4;
6503
6504         *pg_attr = pg_size;
6505         if (rmem->depth >= 1) {
6506                 if (rmem->depth == 2)
6507                         *pg_attr |= 2;
6508                 else
6509                         *pg_attr |= 1;
6510                 *pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6511         } else {
6512                 *pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6513         }
6514 }
6515
6516 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES                 \
6517         (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |                \
6518          FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |               \
6519          FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |                \
6520          FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |              \
6521          FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6522
6523 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6524 {
6525         struct hwrm_func_backing_store_cfg_input req = {0};
6526         struct bnxt_ctx_mem_info *ctx = bp->ctx;
6527         struct bnxt_ctx_pg_info *ctx_pg;
6528         __le32 *num_entries;
6529         __le64 *pg_dir;
6530         u32 flags = 0;
6531         u8 *pg_attr;
6532         u32 ena;
6533         int i;
6534
6535         if (!ctx)
6536                 return 0;
6537
6538         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6539         req.enables = cpu_to_le32(enables);
6540
6541         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6542                 ctx_pg = &ctx->qp_mem;
6543                 req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6544                 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6545                 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6546                 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6547                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6548                                       &req.qpc_pg_size_qpc_lvl,
6549                                       &req.qpc_page_dir);
6550         }
6551         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6552                 ctx_pg = &ctx->srq_mem;
6553                 req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6554                 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6555                 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6556                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6557                                       &req.srq_pg_size_srq_lvl,
6558                                       &req.srq_page_dir);
6559         }
6560         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6561                 ctx_pg = &ctx->cq_mem;
6562                 req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6563                 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6564                 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6565                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6566                                       &req.cq_page_dir);
6567         }
6568         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6569                 ctx_pg = &ctx->vnic_mem;
6570                 req.vnic_num_vnic_entries =
6571                         cpu_to_le16(ctx->vnic_max_vnic_entries);
6572                 req.vnic_num_ring_table_entries =
6573                         cpu_to_le16(ctx->vnic_max_ring_table_entries);
6574                 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6575                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6576                                       &req.vnic_pg_size_vnic_lvl,
6577                                       &req.vnic_page_dir);
6578         }
6579         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6580                 ctx_pg = &ctx->stat_mem;
6581                 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6582                 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6583                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6584                                       &req.stat_pg_size_stat_lvl,
6585                                       &req.stat_page_dir);
6586         }
6587         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6588                 ctx_pg = &ctx->mrav_mem;
6589                 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6590                 if (ctx->mrav_num_entries_units)
6591                         flags |=
6592                         FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6593                 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6594                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6595                                       &req.mrav_pg_size_mrav_lvl,
6596                                       &req.mrav_page_dir);
6597         }
6598         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6599                 ctx_pg = &ctx->tim_mem;
6600                 req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6601                 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6602                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6603                                       &req.tim_pg_size_tim_lvl,
6604                                       &req.tim_page_dir);
6605         }
6606         for (i = 0, num_entries = &req.tqm_sp_num_entries,
6607              pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6608              pg_dir = &req.tqm_sp_page_dir,
6609              ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6610              i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6611                 if (!(enables & ena))
6612                         continue;
6613
6614                 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6615                 ctx_pg = ctx->tqm_mem[i];
6616                 *num_entries = cpu_to_le32(ctx_pg->entries);
6617                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6618         }
6619         req.flags = cpu_to_le32(flags);
6620         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6621 }
6622
6623 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6624                                   struct bnxt_ctx_pg_info *ctx_pg)
6625 {
6626         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6627
6628         rmem->page_size = BNXT_PAGE_SIZE;
6629         rmem->pg_arr = ctx_pg->ctx_pg_arr;
6630         rmem->dma_arr = ctx_pg->ctx_dma_arr;
6631         rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6632         if (rmem->depth >= 1)
6633                 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6634         return bnxt_alloc_ring(bp, rmem);
6635 }
6636
6637 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6638                                   struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6639                                   u8 depth, bool use_init_val)
6640 {
6641         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6642         int rc;
6643
6644         if (!mem_size)
6645                 return -EINVAL;
6646
6647         ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6648         if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6649                 ctx_pg->nr_pages = 0;
6650                 return -EINVAL;
6651         }
6652         if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6653                 int nr_tbls, i;
6654
6655                 rmem->depth = 2;
6656                 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6657                                              GFP_KERNEL);
6658                 if (!ctx_pg->ctx_pg_tbl)
6659                         return -ENOMEM;
6660                 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6661                 rmem->nr_pages = nr_tbls;
6662                 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6663                 if (rc)
6664                         return rc;
6665                 for (i = 0; i < nr_tbls; i++) {
6666                         struct bnxt_ctx_pg_info *pg_tbl;
6667
6668                         pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6669                         if (!pg_tbl)
6670                                 return -ENOMEM;
6671                         ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6672                         rmem = &pg_tbl->ring_mem;
6673                         rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6674                         rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6675                         rmem->depth = 1;
6676                         rmem->nr_pages = MAX_CTX_PAGES;
6677                         if (use_init_val)
6678                                 rmem->init_val = bp->ctx->ctx_kind_initializer;
6679                         if (i == (nr_tbls - 1)) {
6680                                 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6681
6682                                 if (rem)
6683                                         rmem->nr_pages = rem;
6684                         }
6685                         rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6686                         if (rc)
6687                                 break;
6688                 }
6689         } else {
6690                 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6691                 if (rmem->nr_pages > 1 || depth)
6692                         rmem->depth = 1;
6693                 if (use_init_val)
6694                         rmem->init_val = bp->ctx->ctx_kind_initializer;
6695                 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6696         }
6697         return rc;
6698 }
6699
6700 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6701                                   struct bnxt_ctx_pg_info *ctx_pg)
6702 {
6703         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6704
6705         if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6706             ctx_pg->ctx_pg_tbl) {
6707                 int i, nr_tbls = rmem->nr_pages;
6708
6709                 for (i = 0; i < nr_tbls; i++) {
6710                         struct bnxt_ctx_pg_info *pg_tbl;
6711                         struct bnxt_ring_mem_info *rmem2;
6712
6713                         pg_tbl = ctx_pg->ctx_pg_tbl[i];
6714                         if (!pg_tbl)
6715                                 continue;
6716                         rmem2 = &pg_tbl->ring_mem;
6717                         bnxt_free_ring(bp, rmem2);
6718                         ctx_pg->ctx_pg_arr[i] = NULL;
6719                         kfree(pg_tbl);
6720                         ctx_pg->ctx_pg_tbl[i] = NULL;
6721                 }
6722                 kfree(ctx_pg->ctx_pg_tbl);
6723                 ctx_pg->ctx_pg_tbl = NULL;
6724         }
6725         bnxt_free_ring(bp, rmem);
6726         ctx_pg->nr_pages = 0;
6727 }
6728
6729 static void bnxt_free_ctx_mem(struct bnxt *bp)
6730 {
6731         struct bnxt_ctx_mem_info *ctx = bp->ctx;
6732         int i;
6733
6734         if (!ctx)
6735                 return;
6736
6737         if (ctx->tqm_mem[0]) {
6738                 for (i = 0; i < bp->max_q + 1; i++)
6739                         bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6740                 kfree(ctx->tqm_mem[0]);
6741                 ctx->tqm_mem[0] = NULL;
6742         }
6743
6744         bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6745         bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6746         bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6747         bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6748         bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6749         bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6750         bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6751         ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6752 }
6753
6754 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6755 {
6756         struct bnxt_ctx_pg_info *ctx_pg;
6757         struct bnxt_ctx_mem_info *ctx;
6758         u32 mem_size, ena, entries;
6759         u32 num_mr, num_ah;
6760         u32 extra_srqs = 0;
6761         u32 extra_qps = 0;
6762         u8 pg_lvl = 1;
6763         int i, rc;
6764
6765         rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6766         if (rc) {
6767                 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6768                            rc);
6769                 return rc;
6770         }
6771         ctx = bp->ctx;
6772         if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6773                 return 0;
6774
6775         if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
6776                 pg_lvl = 2;
6777                 extra_qps = 65536;
6778                 extra_srqs = 8192;
6779         }
6780
6781         ctx_pg = &ctx->qp_mem;
6782         ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6783                           extra_qps;
6784         mem_size = ctx->qp_entry_size * ctx_pg->entries;
6785         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
6786         if (rc)
6787                 return rc;
6788
6789         ctx_pg = &ctx->srq_mem;
6790         ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6791         mem_size = ctx->srq_entry_size * ctx_pg->entries;
6792         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
6793         if (rc)
6794                 return rc;
6795
6796         ctx_pg = &ctx->cq_mem;
6797         ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6798         mem_size = ctx->cq_entry_size * ctx_pg->entries;
6799         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
6800         if (rc)
6801                 return rc;
6802
6803         ctx_pg = &ctx->vnic_mem;
6804         ctx_pg->entries = ctx->vnic_max_vnic_entries +
6805                           ctx->vnic_max_ring_table_entries;
6806         mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6807         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
6808         if (rc)
6809                 return rc;
6810
6811         ctx_pg = &ctx->stat_mem;
6812         ctx_pg->entries = ctx->stat_max_entries;
6813         mem_size = ctx->stat_entry_size * ctx_pg->entries;
6814         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
6815         if (rc)
6816                 return rc;
6817
6818         ena = 0;
6819         if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6820                 goto skip_rdma;
6821
6822         ctx_pg = &ctx->mrav_mem;
6823         /* 128K extra is needed to accommodate static AH context
6824          * allocation by f/w.
6825          */
6826         num_mr = 1024 * 256;
6827         num_ah = 1024 * 128;
6828         ctx_pg->entries = num_mr + num_ah;
6829         mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6830         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, true);
6831         if (rc)
6832                 return rc;
6833         ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6834         if (ctx->mrav_num_entries_units)
6835                 ctx_pg->entries =
6836                         ((num_mr / ctx->mrav_num_entries_units) << 16) |
6837                          (num_ah / ctx->mrav_num_entries_units);
6838
6839         ctx_pg = &ctx->tim_mem;
6840         ctx_pg->entries = ctx->qp_mem.entries;
6841         mem_size = ctx->tim_entry_size * ctx_pg->entries;
6842         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
6843         if (rc)
6844                 return rc;
6845         ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6846
6847 skip_rdma:
6848         entries = ctx->qp_max_l2_entries + extra_qps;
6849         entries = roundup(entries, ctx->tqm_entries_multiple);
6850         entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
6851                           ctx->tqm_max_entries_per_ring);
6852         for (i = 0; i < bp->max_q + 1; i++) {
6853                 ctx_pg = ctx->tqm_mem[i];
6854                 ctx_pg->entries = entries;
6855                 mem_size = ctx->tqm_entry_size * entries;
6856                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
6857                 if (rc)
6858                         return rc;
6859                 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6860         }
6861         ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6862         rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6863         if (rc) {
6864                 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6865                            rc);
6866                 return rc;
6867         }
6868         ctx->flags |= BNXT_CTX_FLAG_INITED;
6869         return 0;
6870 }
6871
6872 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6873 {
6874         struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6875         struct hwrm_func_resource_qcaps_input req = {0};
6876         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6877         int rc;
6878
6879         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6880         req.fid = cpu_to_le16(0xffff);
6881
6882         mutex_lock(&bp->hwrm_cmd_lock);
6883         rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6884                                        HWRM_CMD_TIMEOUT);
6885         if (rc)
6886                 goto hwrm_func_resc_qcaps_exit;
6887
6888         hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6889         if (!all)
6890                 goto hwrm_func_resc_qcaps_exit;
6891
6892         hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6893         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6894         hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6895         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6896         hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6897         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6898         hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6899         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6900         hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6901         hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6902         hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6903         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6904         hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6905         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6906         hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6907         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6908
6909         if (bp->flags & BNXT_FLAG_CHIP_P5) {
6910                 u16 max_msix = le16_to_cpu(resp->max_msix);
6911
6912                 hw_resc->max_nqs = max_msix;
6913                 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6914         }
6915
6916         if (BNXT_PF(bp)) {
6917                 struct bnxt_pf_info *pf = &bp->pf;
6918
6919                 pf->vf_resv_strategy =
6920                         le16_to_cpu(resp->vf_reservation_strategy);
6921                 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6922                         pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6923         }
6924 hwrm_func_resc_qcaps_exit:
6925         mutex_unlock(&bp->hwrm_cmd_lock);
6926         return rc;
6927 }
6928
6929 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6930 {
6931         int rc = 0;
6932         struct hwrm_func_qcaps_input req = {0};
6933         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6934         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6935         u32 flags;
6936
6937         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6938         req.fid = cpu_to_le16(0xffff);
6939
6940         mutex_lock(&bp->hwrm_cmd_lock);
6941         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6942         if (rc)
6943                 goto hwrm_func_qcaps_exit;
6944
6945         flags = le32_to_cpu(resp->flags);
6946         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6947                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6948         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6949                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6950         if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
6951                 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
6952         if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
6953                 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
6954         if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
6955                 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
6956         if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
6957                 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
6958         if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
6959                 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
6960
6961         bp->tx_push_thresh = 0;
6962         if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
6963                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6964
6965         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6966         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6967         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6968         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6969         hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
6970         if (!hw_resc->max_hw_ring_grps)
6971                 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
6972         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6973         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6974         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6975
6976         if (BNXT_PF(bp)) {
6977                 struct bnxt_pf_info *pf = &bp->pf;
6978
6979                 pf->fw_fid = le16_to_cpu(resp->fid);
6980                 pf->port_id = le16_to_cpu(resp->port_id);
6981                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
6982                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
6983                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
6984                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
6985                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
6986                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
6987                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
6988                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
6989                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
6990                 bp->flags &= ~BNXT_FLAG_WOL_CAP;
6991                 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
6992                         bp->flags |= BNXT_FLAG_WOL_CAP;
6993         } else {
6994 #ifdef CONFIG_BNXT_SRIOV
6995                 struct bnxt_vf_info *vf = &bp->vf;
6996
6997                 vf->fw_fid = le16_to_cpu(resp->fid);
6998                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
6999 #endif
7000         }
7001
7002 hwrm_func_qcaps_exit:
7003         mutex_unlock(&bp->hwrm_cmd_lock);
7004         return rc;
7005 }
7006
7007 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7008
7009 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7010 {
7011         int rc;
7012
7013         rc = __bnxt_hwrm_func_qcaps(bp);
7014         if (rc)
7015                 return rc;
7016         rc = bnxt_hwrm_queue_qportcfg(bp);
7017         if (rc) {
7018                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7019                 return rc;
7020         }
7021         if (bp->hwrm_spec_code >= 0x10803) {
7022                 rc = bnxt_alloc_ctx_mem(bp);
7023                 if (rc)
7024                         return rc;
7025                 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7026                 if (!rc)
7027                         bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7028         }
7029         return 0;
7030 }
7031
7032 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7033 {
7034         struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7035         struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7036         int rc = 0;
7037         u32 flags;
7038
7039         if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7040                 return 0;
7041
7042         resp = bp->hwrm_cmd_resp_addr;
7043         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7044
7045         mutex_lock(&bp->hwrm_cmd_lock);
7046         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7047         if (rc)
7048                 goto hwrm_cfa_adv_qcaps_exit;
7049
7050         flags = le32_to_cpu(resp->flags);
7051         if (flags &
7052             CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7053                 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7054
7055 hwrm_cfa_adv_qcaps_exit:
7056         mutex_unlock(&bp->hwrm_cmd_lock);
7057         return rc;
7058 }
7059
7060 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7061 {
7062         struct bnxt_fw_health *fw_health = bp->fw_health;
7063         u32 reg_base = 0xffffffff;
7064         int i;
7065
7066         /* Only pre-map the monitoring GRC registers using window 3 */
7067         for (i = 0; i < 4; i++) {
7068                 u32 reg = fw_health->regs[i];
7069
7070                 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7071                         continue;
7072                 if (reg_base == 0xffffffff)
7073                         reg_base = reg & BNXT_GRC_BASE_MASK;
7074                 if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7075                         return -ERANGE;
7076                 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_BASE +
7077                                             (reg & BNXT_GRC_OFFSET_MASK);
7078         }
7079         if (reg_base == 0xffffffff)
7080                 return 0;
7081
7082         writel(reg_base, bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7083                          BNXT_FW_HEALTH_WIN_MAP_OFF);
7084         return 0;
7085 }
7086
7087 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7088 {
7089         struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7090         struct bnxt_fw_health *fw_health = bp->fw_health;
7091         struct hwrm_error_recovery_qcfg_input req = {0};
7092         int rc, i;
7093
7094         if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7095                 return 0;
7096
7097         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7098         mutex_lock(&bp->hwrm_cmd_lock);
7099         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7100         if (rc)
7101                 goto err_recovery_out;
7102         fw_health->flags = le32_to_cpu(resp->flags);
7103         if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7104             !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7105                 rc = -EINVAL;
7106                 goto err_recovery_out;
7107         }
7108         fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7109         fw_health->master_func_wait_dsecs =
7110                 le32_to_cpu(resp->master_func_wait_period);
7111         fw_health->normal_func_wait_dsecs =
7112                 le32_to_cpu(resp->normal_func_wait_period);
7113         fw_health->post_reset_wait_dsecs =
7114                 le32_to_cpu(resp->master_func_wait_period_after_reset);
7115         fw_health->post_reset_max_wait_dsecs =
7116                 le32_to_cpu(resp->max_bailout_time_after_reset);
7117         fw_health->regs[BNXT_FW_HEALTH_REG] =
7118                 le32_to_cpu(resp->fw_health_status_reg);
7119         fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7120                 le32_to_cpu(resp->fw_heartbeat_reg);
7121         fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7122                 le32_to_cpu(resp->fw_reset_cnt_reg);
7123         fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7124                 le32_to_cpu(resp->reset_inprogress_reg);
7125         fw_health->fw_reset_inprog_reg_mask =
7126                 le32_to_cpu(resp->reset_inprogress_reg_mask);
7127         fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7128         if (fw_health->fw_reset_seq_cnt >= 16) {
7129                 rc = -EINVAL;
7130                 goto err_recovery_out;
7131         }
7132         for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7133                 fw_health->fw_reset_seq_regs[i] =
7134                         le32_to_cpu(resp->reset_reg[i]);
7135                 fw_health->fw_reset_seq_vals[i] =
7136                         le32_to_cpu(resp->reset_reg_val[i]);
7137                 fw_health->fw_reset_seq_delay_msec[i] =
7138                         resp->delay_after_reset[i];
7139         }
7140 err_recovery_out:
7141         mutex_unlock(&bp->hwrm_cmd_lock);
7142         if (!rc)
7143                 rc = bnxt_map_fw_health_regs(bp);
7144         if (rc)
7145                 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7146         return rc;
7147 }
7148
7149 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7150 {
7151         struct hwrm_func_reset_input req = {0};
7152
7153         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7154         req.enables = 0;
7155
7156         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7157 }
7158
7159 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7160 {
7161         int rc = 0;
7162         struct hwrm_queue_qportcfg_input req = {0};
7163         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7164         u8 i, j, *qptr;
7165         bool no_rdma;
7166
7167         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7168
7169         mutex_lock(&bp->hwrm_cmd_lock);
7170         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7171         if (rc)
7172                 goto qportcfg_exit;
7173
7174         if (!resp->max_configurable_queues) {
7175                 rc = -EINVAL;
7176                 goto qportcfg_exit;
7177         }
7178         bp->max_tc = resp->max_configurable_queues;
7179         bp->max_lltc = resp->max_configurable_lossless_queues;
7180         if (bp->max_tc > BNXT_MAX_QUEUE)
7181                 bp->max_tc = BNXT_MAX_QUEUE;
7182
7183         no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7184         qptr = &resp->queue_id0;
7185         for (i = 0, j = 0; i < bp->max_tc; i++) {
7186                 bp->q_info[j].queue_id = *qptr;
7187                 bp->q_ids[i] = *qptr++;
7188                 bp->q_info[j].queue_profile = *qptr++;
7189                 bp->tc_to_qidx[j] = j;
7190                 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7191                     (no_rdma && BNXT_PF(bp)))
7192                         j++;
7193         }
7194         bp->max_q = bp->max_tc;
7195         bp->max_tc = max_t(u8, j, 1);
7196
7197         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7198                 bp->max_tc = 1;
7199
7200         if (bp->max_lltc > bp->max_tc)
7201                 bp->max_lltc = bp->max_tc;
7202
7203 qportcfg_exit:
7204         mutex_unlock(&bp->hwrm_cmd_lock);
7205         return rc;
7206 }
7207
7208 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7209 {
7210         struct hwrm_ver_get_input req = {0};
7211         int rc;
7212
7213         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7214         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7215         req.hwrm_intf_min = HWRM_VERSION_MINOR;
7216         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7217
7218         rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7219                                    silent);
7220         return rc;
7221 }
7222
7223 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7224 {
7225         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7226         u32 dev_caps_cfg, hwrm_ver;
7227         int rc;
7228
7229         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7230         mutex_lock(&bp->hwrm_cmd_lock);
7231         rc = __bnxt_hwrm_ver_get(bp, false);
7232         if (rc)
7233                 goto hwrm_ver_get_exit;
7234
7235         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7236
7237         bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7238                              resp->hwrm_intf_min_8b << 8 |
7239                              resp->hwrm_intf_upd_8b;
7240         if (resp->hwrm_intf_maj_8b < 1) {
7241                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7242                             resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7243                             resp->hwrm_intf_upd_8b);
7244                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7245         }
7246
7247         hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7248                         HWRM_VERSION_UPDATE;
7249
7250         if (bp->hwrm_spec_code > hwrm_ver)
7251                 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7252                          HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7253                          HWRM_VERSION_UPDATE);
7254         else
7255                 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7256                          resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7257                          resp->hwrm_intf_upd_8b);
7258
7259         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
7260                  resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
7261                  resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
7262
7263         if (strlen(resp->active_pkg_name)) {
7264                 int fw_ver_len = strlen(bp->fw_ver_str);
7265
7266                 snprintf(bp->fw_ver_str + fw_ver_len,
7267                          FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7268                          resp->active_pkg_name);
7269                 bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7270         }
7271
7272         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7273         if (!bp->hwrm_cmd_timeout)
7274                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7275
7276         if (resp->hwrm_intf_maj_8b >= 1) {
7277                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7278                 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7279         }
7280         if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7281                 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7282
7283         bp->chip_num = le16_to_cpu(resp->chip_num);
7284         bp->chip_rev = resp->chip_rev;
7285         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7286             !resp->chip_metal)
7287                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7288
7289         dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7290         if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7291             (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7292                 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7293
7294         if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7295                 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7296
7297         if (dev_caps_cfg &
7298             VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7299                 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7300
7301         if (dev_caps_cfg &
7302             VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7303                 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7304
7305         if (dev_caps_cfg &
7306             VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7307                 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7308
7309 hwrm_ver_get_exit:
7310         mutex_unlock(&bp->hwrm_cmd_lock);
7311         return rc;
7312 }
7313
7314 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7315 {
7316         struct hwrm_fw_set_time_input req = {0};
7317         struct tm tm;
7318         time64_t now = ktime_get_real_seconds();
7319
7320         if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7321             bp->hwrm_spec_code < 0x10400)
7322                 return -EOPNOTSUPP;
7323
7324         time64_to_tm(now, 0, &tm);
7325         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7326         req.year = cpu_to_le16(1900 + tm.tm_year);
7327         req.month = 1 + tm.tm_mon;
7328         req.day = tm.tm_mday;
7329         req.hour = tm.tm_hour;
7330         req.minute = tm.tm_min;
7331         req.second = tm.tm_sec;
7332         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7333 }
7334
7335 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
7336 {
7337         struct bnxt_pf_info *pf = &bp->pf;
7338         struct hwrm_port_qstats_input req = {0};
7339
7340         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
7341                 return 0;
7342
7343         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
7344         req.port_id = cpu_to_le16(pf->port_id);
7345         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
7346         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
7347         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7348 }
7349
7350 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
7351 {
7352         struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
7353         struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
7354         struct hwrm_port_qstats_ext_input req = {0};
7355         struct bnxt_pf_info *pf = &bp->pf;
7356         u32 tx_stat_size;
7357         int rc;
7358
7359         if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
7360                 return 0;
7361
7362         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
7363         req.port_id = cpu_to_le16(pf->port_id);
7364         req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
7365         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
7366         tx_stat_size = bp->hw_tx_port_stats_ext ?
7367                        sizeof(*bp->hw_tx_port_stats_ext) : 0;
7368         req.tx_stat_size = cpu_to_le16(tx_stat_size);
7369         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
7370         mutex_lock(&bp->hwrm_cmd_lock);
7371         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7372         if (!rc) {
7373                 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
7374                 bp->fw_tx_stats_ext_size = tx_stat_size ?
7375                         le16_to_cpu(resp->tx_stat_size) / 8 : 0;
7376         } else {
7377                 bp->fw_rx_stats_ext_size = 0;
7378                 bp->fw_tx_stats_ext_size = 0;
7379         }
7380         if (bp->fw_tx_stats_ext_size <=
7381             offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
7382                 mutex_unlock(&bp->hwrm_cmd_lock);
7383                 bp->pri2cos_valid = 0;
7384                 return rc;
7385         }
7386
7387         bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
7388         req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
7389
7390         rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
7391         if (!rc) {
7392                 struct hwrm_queue_pri2cos_qcfg_output *resp2;
7393                 u8 *pri2cos;
7394                 int i, j;
7395
7396                 resp2 = bp->hwrm_cmd_resp_addr;
7397                 pri2cos = &resp2->pri0_cos_queue_id;
7398                 for (i = 0; i < 8; i++) {
7399                         u8 queue_id = pri2cos[i];
7400                         u8 queue_idx;
7401
7402                         /* Per port queue IDs start from 0, 10, 20, etc */
7403                         queue_idx = queue_id % 10;
7404                         if (queue_idx > BNXT_MAX_QUEUE) {
7405                                 bp->pri2cos_valid = false;
7406                                 goto qstats_done;
7407                         }
7408                         for (j = 0; j < bp->max_q; j++) {
7409                                 if (bp->q_ids[j] == queue_id)
7410                                         bp->pri2cos_idx[i] = queue_idx;
7411                         }
7412                 }
7413                 bp->pri2cos_valid = 1;
7414         }
7415 qstats_done:
7416         mutex_unlock(&bp->hwrm_cmd_lock);
7417         return rc;
7418 }
7419
7420 static int bnxt_hwrm_pcie_qstats(struct bnxt *bp)
7421 {
7422         struct hwrm_pcie_qstats_input req = {0};
7423
7424         if (!(bp->flags & BNXT_FLAG_PCIE_STATS))
7425                 return 0;
7426
7427         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1);
7428         req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats));
7429         req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map);
7430         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7431 }
7432
7433 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
7434 {
7435         if (bp->vxlan_port_cnt) {
7436                 bnxt_hwrm_tunnel_dst_port_free(
7437                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7438         }
7439         bp->vxlan_port_cnt = 0;
7440         if (bp->nge_port_cnt) {
7441                 bnxt_hwrm_tunnel_dst_port_free(
7442                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7443         }
7444         bp->nge_port_cnt = 0;
7445 }
7446
7447 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
7448 {
7449         int rc, i;
7450         u32 tpa_flags = 0;
7451
7452         if (set_tpa)
7453                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
7454         else if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
7455                 return 0;
7456         for (i = 0; i < bp->nr_vnics; i++) {
7457                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7458                 if (rc) {
7459                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7460                                    i, rc);
7461                         return rc;
7462                 }
7463         }
7464         return 0;
7465 }
7466
7467 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7468 {
7469         int i;
7470
7471         for (i = 0; i < bp->nr_vnics; i++)
7472                 bnxt_hwrm_vnic_set_rss(bp, i, false);
7473 }
7474
7475 static void bnxt_clear_vnic(struct bnxt *bp)
7476 {
7477         if (!bp->vnic_info)
7478                 return;
7479
7480         bnxt_hwrm_clear_vnic_filter(bp);
7481         if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
7482                 /* clear all RSS setting before free vnic ctx */
7483                 bnxt_hwrm_clear_vnic_rss(bp);
7484                 bnxt_hwrm_vnic_ctx_free(bp);
7485         }
7486         /* before free the vnic, undo the vnic tpa settings */
7487         if (bp->flags & BNXT_FLAG_TPA)
7488                 bnxt_set_tpa(bp, false);
7489         bnxt_hwrm_vnic_free(bp);
7490         if (bp->flags & BNXT_FLAG_CHIP_P5)
7491                 bnxt_hwrm_vnic_ctx_free(bp);
7492 }
7493
7494 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7495                                     bool irq_re_init)
7496 {
7497         bnxt_clear_vnic(bp);
7498         bnxt_hwrm_ring_free(bp, close_path);
7499         bnxt_hwrm_ring_grp_free(bp);
7500         if (irq_re_init) {
7501                 bnxt_hwrm_stat_ctx_free(bp);
7502                 bnxt_hwrm_free_tunnel_ports(bp);
7503         }
7504 }
7505
7506 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
7507 {
7508         struct hwrm_func_cfg_input req = {0};
7509
7510         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7511         req.fid = cpu_to_le16(0xffff);
7512         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
7513         if (br_mode == BRIDGE_MODE_VEB)
7514                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
7515         else if (br_mode == BRIDGE_MODE_VEPA)
7516                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
7517         else
7518                 return -EINVAL;
7519         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7520 }
7521
7522 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
7523 {
7524         struct hwrm_func_cfg_input req = {0};
7525
7526         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7527                 return 0;
7528
7529         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7530         req.fid = cpu_to_le16(0xffff);
7531         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7532         req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7533         if (size == 128)
7534                 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7535
7536         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7537 }
7538
7539 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7540 {
7541         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7542         int rc;
7543
7544         if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7545                 goto skip_rss_ctx;
7546
7547         /* allocate context for vnic */
7548         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7549         if (rc) {
7550                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7551                            vnic_id, rc);
7552                 goto vnic_setup_err;
7553         }
7554         bp->rsscos_nr_ctxs++;
7555
7556         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7557                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7558                 if (rc) {
7559                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7560                                    vnic_id, rc);
7561                         goto vnic_setup_err;
7562                 }
7563                 bp->rsscos_nr_ctxs++;
7564         }
7565
7566 skip_rss_ctx:
7567         /* configure default vnic, ring grp */
7568         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7569         if (rc) {
7570                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7571                            vnic_id, rc);
7572                 goto vnic_setup_err;
7573         }
7574
7575         /* Enable RSS hashing on vnic */
7576         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7577         if (rc) {
7578                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7579                            vnic_id, rc);
7580                 goto vnic_setup_err;
7581         }
7582
7583         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7584                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7585                 if (rc) {
7586                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7587                                    vnic_id, rc);
7588                 }
7589         }
7590
7591 vnic_setup_err:
7592         return rc;
7593 }
7594
7595 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7596 {
7597         int rc, i, nr_ctxs;
7598
7599         nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
7600         for (i = 0; i < nr_ctxs; i++) {
7601                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7602                 if (rc) {
7603                         netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7604                                    vnic_id, i, rc);
7605                         break;
7606                 }
7607                 bp->rsscos_nr_ctxs++;
7608         }
7609         if (i < nr_ctxs)
7610                 return -ENOMEM;
7611
7612         rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7613         if (rc) {
7614                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7615                            vnic_id, rc);
7616                 return rc;
7617         }
7618         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7619         if (rc) {
7620                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7621                            vnic_id, rc);
7622                 return rc;
7623         }
7624         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7625                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7626                 if (rc) {
7627                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7628                                    vnic_id, rc);
7629                 }
7630         }
7631         return rc;
7632 }
7633
7634 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7635 {
7636         if (bp->flags & BNXT_FLAG_CHIP_P5)
7637                 return __bnxt_setup_vnic_p5(bp, vnic_id);
7638         else
7639                 return __bnxt_setup_vnic(bp, vnic_id);
7640 }
7641
7642 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7643 {
7644 #ifdef CONFIG_RFS_ACCEL
7645         int i, rc = 0;
7646
7647         if (bp->flags & BNXT_FLAG_CHIP_P5)
7648                 return 0;
7649
7650         for (i = 0; i < bp->rx_nr_rings; i++) {
7651                 struct bnxt_vnic_info *vnic;
7652                 u16 vnic_id = i + 1;
7653                 u16 ring_id = i;
7654
7655                 if (vnic_id >= bp->nr_vnics)
7656                         break;
7657
7658                 vnic = &bp->vnic_info[vnic_id];
7659                 vnic->flags |= BNXT_VNIC_RFS_FLAG;
7660                 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7661                         vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7662                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7663                 if (rc) {
7664                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7665                                    vnic_id, rc);
7666                         break;
7667                 }
7668                 rc = bnxt_setup_vnic(bp, vnic_id);
7669                 if (rc)
7670                         break;
7671         }
7672         return rc;
7673 #else
7674         return 0;
7675 #endif
7676 }
7677
7678 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7679 static bool bnxt_promisc_ok(struct bnxt *bp)
7680 {
7681 #ifdef CONFIG_BNXT_SRIOV
7682         if (BNXT_VF(bp) && !bp->vf.vlan)
7683                 return false;
7684 #endif
7685         return true;
7686 }
7687
7688 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7689 {
7690         unsigned int rc = 0;
7691
7692         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7693         if (rc) {
7694                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7695                            rc);
7696                 return rc;
7697         }
7698
7699         rc = bnxt_hwrm_vnic_cfg(bp, 1);
7700         if (rc) {
7701                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7702                            rc);
7703                 return rc;
7704         }
7705         return rc;
7706 }
7707
7708 static int bnxt_cfg_rx_mode(struct bnxt *);
7709 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7710
7711 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7712 {
7713         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7714         int rc = 0;
7715         unsigned int rx_nr_rings = bp->rx_nr_rings;
7716
7717         if (irq_re_init) {
7718                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
7719                 if (rc) {
7720                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7721                                    rc);
7722                         goto err_out;
7723                 }
7724         }
7725
7726         rc = bnxt_hwrm_ring_alloc(bp);
7727         if (rc) {
7728                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7729                 goto err_out;
7730         }
7731
7732         rc = bnxt_hwrm_ring_grp_alloc(bp);
7733         if (rc) {
7734                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7735                 goto err_out;
7736         }
7737
7738         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7739                 rx_nr_rings--;
7740
7741         /* default vnic 0 */
7742         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7743         if (rc) {
7744                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7745                 goto err_out;
7746         }
7747
7748         rc = bnxt_setup_vnic(bp, 0);
7749         if (rc)
7750                 goto err_out;
7751
7752         if (bp->flags & BNXT_FLAG_RFS) {
7753                 rc = bnxt_alloc_rfs_vnics(bp);
7754                 if (rc)
7755                         goto err_out;
7756         }
7757
7758         if (bp->flags & BNXT_FLAG_TPA) {
7759                 rc = bnxt_set_tpa(bp, true);
7760                 if (rc)
7761                         goto err_out;
7762         }
7763
7764         if (BNXT_VF(bp))
7765                 bnxt_update_vf_mac(bp);
7766
7767         /* Filter for default vnic 0 */
7768         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7769         if (rc) {
7770                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7771                 goto err_out;
7772         }
7773         vnic->uc_filter_count = 1;
7774
7775         vnic->rx_mask = 0;
7776         if (bp->dev->flags & IFF_BROADCAST)
7777                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7778
7779         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7780                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7781
7782         if (bp->dev->flags & IFF_ALLMULTI) {
7783                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7784                 vnic->mc_list_count = 0;
7785         } else {
7786                 u32 mask = 0;
7787
7788                 bnxt_mc_list_updated(bp, &mask);
7789                 vnic->rx_mask |= mask;
7790         }
7791
7792         rc = bnxt_cfg_rx_mode(bp);
7793         if (rc)
7794                 goto err_out;
7795
7796         rc = bnxt_hwrm_set_coal(bp);
7797         if (rc)
7798                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7799                                 rc);
7800
7801         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7802                 rc = bnxt_setup_nitroa0_vnic(bp);
7803                 if (rc)
7804                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7805                                    rc);
7806         }
7807
7808         if (BNXT_VF(bp)) {
7809                 bnxt_hwrm_func_qcfg(bp);
7810                 netdev_update_features(bp->dev);
7811         }
7812
7813         return 0;
7814
7815 err_out:
7816         bnxt_hwrm_resource_free(bp, 0, true);
7817
7818         return rc;
7819 }
7820
7821 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7822 {
7823         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7824         return 0;
7825 }
7826
7827 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7828 {
7829         bnxt_init_cp_rings(bp);
7830         bnxt_init_rx_rings(bp);
7831         bnxt_init_tx_rings(bp);
7832         bnxt_init_ring_grps(bp, irq_re_init);
7833         bnxt_init_vnics(bp);
7834
7835         return bnxt_init_chip(bp, irq_re_init);
7836 }
7837
7838 static int bnxt_set_real_num_queues(struct bnxt *bp)
7839 {
7840         int rc;
7841         struct net_device *dev = bp->dev;
7842
7843         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7844                                           bp->tx_nr_rings_xdp);
7845         if (rc)
7846                 return rc;
7847
7848         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7849         if (rc)
7850                 return rc;
7851
7852 #ifdef CONFIG_RFS_ACCEL
7853         if (bp->flags & BNXT_FLAG_RFS)
7854                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7855 #endif
7856
7857         return rc;
7858 }
7859
7860 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7861                            bool shared)
7862 {
7863         int _rx = *rx, _tx = *tx;
7864
7865         if (shared) {
7866                 *rx = min_t(int, _rx, max);
7867                 *tx = min_t(int, _tx, max);
7868         } else {
7869                 if (max < 2)
7870                         return -ENOMEM;
7871
7872                 while (_rx + _tx > max) {
7873                         if (_rx > _tx && _rx > 1)
7874                                 _rx--;
7875                         else if (_tx > 1)
7876                                 _tx--;
7877                 }
7878                 *rx = _rx;
7879                 *tx = _tx;
7880         }
7881         return 0;
7882 }
7883
7884 static void bnxt_setup_msix(struct bnxt *bp)
7885 {
7886         const int len = sizeof(bp->irq_tbl[0].name);
7887         struct net_device *dev = bp->dev;
7888         int tcs, i;
7889
7890         tcs = netdev_get_num_tc(dev);
7891         if (tcs) {
7892                 int i, off, count;
7893
7894                 for (i = 0; i < tcs; i++) {
7895                         count = bp->tx_nr_rings_per_tc;
7896                         off = i * count;
7897                         netdev_set_tc_queue(dev, i, count, off);
7898                 }
7899         }
7900
7901         for (i = 0; i < bp->cp_nr_rings; i++) {
7902                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7903                 char *attr;
7904
7905                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7906                         attr = "TxRx";
7907                 else if (i < bp->rx_nr_rings)
7908                         attr = "rx";
7909                 else
7910                         attr = "tx";
7911
7912                 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7913                          attr, i);
7914                 bp->irq_tbl[map_idx].handler = bnxt_msix;
7915         }
7916 }
7917
7918 static void bnxt_setup_inta(struct bnxt *bp)
7919 {
7920         const int len = sizeof(bp->irq_tbl[0].name);
7921
7922         if (netdev_get_num_tc(bp->dev))
7923                 netdev_reset_tc(bp->dev);
7924
7925         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7926                  0);
7927         bp->irq_tbl[0].handler = bnxt_inta;
7928 }
7929
7930 static int bnxt_setup_int_mode(struct bnxt *bp)
7931 {
7932         int rc;
7933
7934         if (bp->flags & BNXT_FLAG_USING_MSIX)
7935                 bnxt_setup_msix(bp);
7936         else
7937                 bnxt_setup_inta(bp);
7938
7939         rc = bnxt_set_real_num_queues(bp);
7940         return rc;
7941 }
7942
7943 #ifdef CONFIG_RFS_ACCEL
7944 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7945 {
7946         return bp->hw_resc.max_rsscos_ctxs;
7947 }
7948
7949 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7950 {
7951         return bp->hw_resc.max_vnics;
7952 }
7953 #endif
7954
7955 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
7956 {
7957         return bp->hw_resc.max_stat_ctxs;
7958 }
7959
7960 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
7961 {
7962         return bp->hw_resc.max_cp_rings;
7963 }
7964
7965 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
7966 {
7967         unsigned int cp = bp->hw_resc.max_cp_rings;
7968
7969         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7970                 cp -= bnxt_get_ulp_msix_num(bp);
7971
7972         return cp;
7973 }
7974
7975 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
7976 {
7977         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7978
7979         if (bp->flags & BNXT_FLAG_CHIP_P5)
7980                 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
7981
7982         return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
7983 }
7984
7985 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
7986 {
7987         bp->hw_resc.max_irqs = max_irqs;
7988 }
7989
7990 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
7991 {
7992         unsigned int cp;
7993
7994         cp = bnxt_get_max_func_cp_rings_for_en(bp);
7995         if (bp->flags & BNXT_FLAG_CHIP_P5)
7996                 return cp - bp->rx_nr_rings - bp->tx_nr_rings;
7997         else
7998                 return cp - bp->cp_nr_rings;
7999 }
8000
8001 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8002 {
8003         return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8004 }
8005
8006 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8007 {
8008         int max_cp = bnxt_get_max_func_cp_rings(bp);
8009         int max_irq = bnxt_get_max_func_irqs(bp);
8010         int total_req = bp->cp_nr_rings + num;
8011         int max_idx, avail_msix;
8012
8013         max_idx = bp->total_irqs;
8014         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8015                 max_idx = min_t(int, bp->total_irqs, max_cp);
8016         avail_msix = max_idx - bp->cp_nr_rings;
8017         if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8018                 return avail_msix;
8019
8020         if (max_irq < total_req) {
8021                 num = max_irq - bp->cp_nr_rings;
8022                 if (num <= 0)
8023                         return 0;
8024         }
8025         return num;
8026 }
8027
8028 static int bnxt_get_num_msix(struct bnxt *bp)
8029 {
8030         if (!BNXT_NEW_RM(bp))
8031                 return bnxt_get_max_func_irqs(bp);
8032
8033         return bnxt_nq_rings_in_use(bp);
8034 }
8035
8036 static int bnxt_init_msix(struct bnxt *bp)
8037 {
8038         int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8039         struct msix_entry *msix_ent;
8040
8041         total_vecs = bnxt_get_num_msix(bp);
8042         max = bnxt_get_max_func_irqs(bp);
8043         if (total_vecs > max)
8044                 total_vecs = max;
8045
8046         if (!total_vecs)
8047                 return 0;
8048
8049         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8050         if (!msix_ent)
8051                 return -ENOMEM;
8052
8053         for (i = 0; i < total_vecs; i++) {
8054                 msix_ent[i].entry = i;
8055                 msix_ent[i].vector = 0;
8056         }
8057
8058         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8059                 min = 2;
8060
8061         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8062         ulp_msix = bnxt_get_ulp_msix_num(bp);
8063         if (total_vecs < 0 || total_vecs < ulp_msix) {
8064                 rc = -ENODEV;
8065                 goto msix_setup_exit;
8066         }
8067
8068         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8069         if (bp->irq_tbl) {
8070                 for (i = 0; i < total_vecs; i++)
8071                         bp->irq_tbl[i].vector = msix_ent[i].vector;
8072
8073                 bp->total_irqs = total_vecs;
8074                 /* Trim rings based upon num of vectors allocated */
8075                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8076                                      total_vecs - ulp_msix, min == 1);
8077                 if (rc)
8078                         goto msix_setup_exit;
8079
8080                 bp->cp_nr_rings = (min == 1) ?
8081                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8082                                   bp->tx_nr_rings + bp->rx_nr_rings;
8083
8084         } else {
8085                 rc = -ENOMEM;
8086                 goto msix_setup_exit;
8087         }
8088         bp->flags |= BNXT_FLAG_USING_MSIX;
8089         kfree(msix_ent);
8090         return 0;
8091
8092 msix_setup_exit:
8093         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8094         kfree(bp->irq_tbl);
8095         bp->irq_tbl = NULL;
8096         pci_disable_msix(bp->pdev);
8097         kfree(msix_ent);
8098         return rc;
8099 }
8100
8101 static int bnxt_init_inta(struct bnxt *bp)
8102 {
8103         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
8104         if (!bp->irq_tbl)
8105                 return -ENOMEM;
8106
8107         bp->total_irqs = 1;
8108         bp->rx_nr_rings = 1;
8109         bp->tx_nr_rings = 1;
8110         bp->cp_nr_rings = 1;
8111         bp->flags |= BNXT_FLAG_SHARED_RINGS;
8112         bp->irq_tbl[0].vector = bp->pdev->irq;
8113         return 0;
8114 }
8115
8116 static int bnxt_init_int_mode(struct bnxt *bp)
8117 {
8118         int rc = 0;
8119
8120         if (bp->flags & BNXT_FLAG_MSIX_CAP)
8121                 rc = bnxt_init_msix(bp);
8122
8123         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8124                 /* fallback to INTA */
8125                 rc = bnxt_init_inta(bp);
8126         }
8127         return rc;
8128 }
8129
8130 static void bnxt_clear_int_mode(struct bnxt *bp)
8131 {
8132         if (bp->flags & BNXT_FLAG_USING_MSIX)
8133                 pci_disable_msix(bp->pdev);
8134
8135         kfree(bp->irq_tbl);
8136         bp->irq_tbl = NULL;
8137         bp->flags &= ~BNXT_FLAG_USING_MSIX;
8138 }
8139
8140 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8141 {
8142         int tcs = netdev_get_num_tc(bp->dev);
8143         bool irq_cleared = false;
8144         int rc;
8145
8146         if (!bnxt_need_reserve_rings(bp))
8147                 return 0;
8148
8149         if (irq_re_init && BNXT_NEW_RM(bp) &&
8150             bnxt_get_num_msix(bp) != bp->total_irqs) {
8151                 bnxt_ulp_irq_stop(bp);
8152                 bnxt_clear_int_mode(bp);
8153                 irq_cleared = true;
8154         }
8155         rc = __bnxt_reserve_rings(bp);
8156         if (irq_cleared) {
8157                 if (!rc)
8158                         rc = bnxt_init_int_mode(bp);
8159                 bnxt_ulp_irq_restart(bp, rc);
8160         }
8161         if (rc) {
8162                 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8163                 return rc;
8164         }
8165         if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8166                 netdev_err(bp->dev, "tx ring reservation failure\n");
8167                 netdev_reset_tc(bp->dev);
8168                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8169                 return -ENOMEM;
8170         }
8171         return 0;
8172 }
8173
8174 static void bnxt_free_irq(struct bnxt *bp)
8175 {
8176         struct bnxt_irq *irq;
8177         int i;
8178
8179 #ifdef CONFIG_RFS_ACCEL
8180         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8181         bp->dev->rx_cpu_rmap = NULL;
8182 #endif
8183         if (!bp->irq_tbl || !bp->bnapi)
8184                 return;
8185
8186         for (i = 0; i < bp->cp_nr_rings; i++) {
8187                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8188
8189                 irq = &bp->irq_tbl[map_idx];
8190                 if (irq->requested) {
8191                         if (irq->have_cpumask) {
8192                                 irq_set_affinity_hint(irq->vector, NULL);
8193                                 free_cpumask_var(irq->cpu_mask);
8194                                 irq->have_cpumask = 0;
8195                         }
8196                         free_irq(irq->vector, bp->bnapi[i]);
8197                 }
8198
8199                 irq->requested = 0;
8200         }
8201 }
8202
8203 static int bnxt_request_irq(struct bnxt *bp)
8204 {
8205         int i, j, rc = 0;
8206         unsigned long flags = 0;
8207 #ifdef CONFIG_RFS_ACCEL
8208         struct cpu_rmap *rmap;
8209 #endif
8210
8211         rc = bnxt_setup_int_mode(bp);
8212         if (rc) {
8213                 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8214                            rc);
8215                 return rc;
8216         }
8217 #ifdef CONFIG_RFS_ACCEL
8218         rmap = bp->dev->rx_cpu_rmap;
8219 #endif
8220         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8221                 flags = IRQF_SHARED;
8222
8223         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8224                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8225                 struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8226
8227 #ifdef CONFIG_RFS_ACCEL
8228                 if (rmap && bp->bnapi[i]->rx_ring) {
8229                         rc = irq_cpu_rmap_add(rmap, irq->vector);
8230                         if (rc)
8231                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8232                                             j);
8233                         j++;
8234                 }
8235 #endif
8236                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8237                                  bp->bnapi[i]);
8238                 if (rc)
8239                         break;
8240
8241                 irq->requested = 1;
8242
8243                 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8244                         int numa_node = dev_to_node(&bp->pdev->dev);
8245
8246                         irq->have_cpumask = 1;
8247                         cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8248                                         irq->cpu_mask);
8249                         rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8250                         if (rc) {
8251                                 netdev_warn(bp->dev,
8252                                             "Set affinity failed, IRQ = %d\n",
8253                                             irq->vector);
8254                                 break;
8255                         }
8256                 }
8257         }
8258         return rc;
8259 }
8260
8261 static void bnxt_del_napi(struct bnxt *bp)
8262 {
8263         int i;
8264
8265         if (!bp->bnapi)
8266                 return;
8267
8268         for (i = 0; i < bp->cp_nr_rings; i++) {
8269                 struct bnxt_napi *bnapi = bp->bnapi[i];
8270
8271                 napi_hash_del(&bnapi->napi);
8272                 netif_napi_del(&bnapi->napi);
8273         }
8274         /* We called napi_hash_del() before netif_napi_del(), we need
8275          * to respect an RCU grace period before freeing napi structures.
8276          */
8277         synchronize_net();
8278 }
8279
8280 static void bnxt_init_napi(struct bnxt *bp)
8281 {
8282         int i;
8283         unsigned int cp_nr_rings = bp->cp_nr_rings;
8284         struct bnxt_napi *bnapi;
8285
8286         if (bp->flags & BNXT_FLAG_USING_MSIX) {
8287                 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8288
8289                 if (bp->flags & BNXT_FLAG_CHIP_P5)
8290                         poll_fn = bnxt_poll_p5;
8291                 else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8292                         cp_nr_rings--;
8293                 for (i = 0; i < cp_nr_rings; i++) {
8294                         bnapi = bp->bnapi[i];
8295                         netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8296                 }
8297                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8298                         bnapi = bp->bnapi[cp_nr_rings];
8299                         netif_napi_add(bp->dev, &bnapi->napi,
8300                                        bnxt_poll_nitroa0, 64);
8301                 }
8302         } else {
8303                 bnapi = bp->bnapi[0];
8304                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8305         }
8306 }
8307
8308 static void bnxt_disable_napi(struct bnxt *bp)
8309 {
8310         int i;
8311
8312         if (!bp->bnapi)
8313                 return;
8314
8315         for (i = 0; i < bp->cp_nr_rings; i++) {
8316                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8317
8318                 if (bp->bnapi[i]->rx_ring)
8319                         cancel_work_sync(&cpr->dim.work);
8320
8321                 napi_disable(&bp->bnapi[i]->napi);
8322         }
8323 }
8324
8325 static void bnxt_enable_napi(struct bnxt *bp)
8326 {
8327         int i;
8328
8329         for (i = 0; i < bp->cp_nr_rings; i++) {
8330                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8331                 bp->bnapi[i]->in_reset = false;
8332
8333                 if (bp->bnapi[i]->rx_ring) {
8334                         INIT_WORK(&cpr->dim.work, bnxt_dim_work);
8335                         cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
8336                 }
8337                 napi_enable(&bp->bnapi[i]->napi);
8338         }
8339 }
8340
8341 void bnxt_tx_disable(struct bnxt *bp)
8342 {
8343         int i;
8344         struct bnxt_tx_ring_info *txr;
8345
8346         if (bp->tx_ring) {
8347                 for (i = 0; i < bp->tx_nr_rings; i++) {
8348                         txr = &bp->tx_ring[i];
8349                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
8350                 }
8351         }
8352         /* Stop all TX queues */
8353         netif_tx_disable(bp->dev);
8354         netif_carrier_off(bp->dev);
8355 }
8356
8357 void bnxt_tx_enable(struct bnxt *bp)
8358 {
8359         int i;
8360         struct bnxt_tx_ring_info *txr;
8361
8362         for (i = 0; i < bp->tx_nr_rings; i++) {
8363                 txr = &bp->tx_ring[i];
8364                 txr->dev_state = 0;
8365         }
8366         netif_tx_wake_all_queues(bp->dev);
8367         if (bp->link_info.link_up)
8368                 netif_carrier_on(bp->dev);
8369 }
8370
8371 static void bnxt_report_link(struct bnxt *bp)
8372 {
8373         if (bp->link_info.link_up) {
8374                 const char *duplex;
8375                 const char *flow_ctrl;
8376                 u32 speed;
8377                 u16 fec;
8378
8379                 netif_carrier_on(bp->dev);
8380                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
8381                         duplex = "full";
8382                 else
8383                         duplex = "half";
8384                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
8385                         flow_ctrl = "ON - receive & transmit";
8386                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
8387                         flow_ctrl = "ON - transmit";
8388                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
8389                         flow_ctrl = "ON - receive";
8390                 else
8391                         flow_ctrl = "none";
8392                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
8393                 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
8394                             speed, duplex, flow_ctrl);
8395                 if (bp->flags & BNXT_FLAG_EEE_CAP)
8396                         netdev_info(bp->dev, "EEE is %s\n",
8397                                     bp->eee.eee_active ? "active" :
8398                                                          "not active");
8399                 fec = bp->link_info.fec_cfg;
8400                 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
8401                         netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
8402                                     (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
8403                                     (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
8404                                      (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
8405         } else {
8406                 netif_carrier_off(bp->dev);
8407                 netdev_err(bp->dev, "NIC Link is Down\n");
8408         }
8409 }
8410
8411 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
8412 {
8413         int rc = 0;
8414         struct hwrm_port_phy_qcaps_input req = {0};
8415         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8416         struct bnxt_link_info *link_info = &bp->link_info;
8417
8418         bp->flags &= ~BNXT_FLAG_EEE_CAP;
8419         if (bp->test_info)
8420                 bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK |
8421                                           BNXT_TEST_FL_AN_PHY_LPBK);
8422         if (bp->hwrm_spec_code < 0x10201)
8423                 return 0;
8424
8425         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
8426
8427         mutex_lock(&bp->hwrm_cmd_lock);
8428         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8429         if (rc)
8430                 goto hwrm_phy_qcaps_exit;
8431
8432         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
8433                 struct ethtool_eee *eee = &bp->eee;
8434                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
8435
8436                 bp->flags |= BNXT_FLAG_EEE_CAP;
8437                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8438                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
8439                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
8440                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
8441                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
8442         }
8443         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
8444                 if (bp->test_info)
8445                         bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
8446         }
8447         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) {
8448                 if (bp->test_info)
8449                         bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK;
8450         }
8451         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) {
8452                 if (BNXT_PF(bp))
8453                         bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG;
8454         }
8455         if (resp->supported_speeds_auto_mode)
8456                 link_info->support_auto_speeds =
8457                         le16_to_cpu(resp->supported_speeds_auto_mode);
8458
8459         bp->port_count = resp->port_cnt;
8460
8461 hwrm_phy_qcaps_exit:
8462         mutex_unlock(&bp->hwrm_cmd_lock);
8463         return rc;
8464 }
8465
8466 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
8467 {
8468         int rc = 0;
8469         struct bnxt_link_info *link_info = &bp->link_info;
8470         struct hwrm_port_phy_qcfg_input req = {0};
8471         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8472         u8 link_up = link_info->link_up;
8473         u16 diff;
8474
8475         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
8476
8477         mutex_lock(&bp->hwrm_cmd_lock);
8478         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8479         if (rc) {
8480                 mutex_unlock(&bp->hwrm_cmd_lock);
8481                 return rc;
8482         }
8483
8484         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
8485         link_info->phy_link_status = resp->link;
8486         link_info->duplex = resp->duplex_cfg;
8487         if (bp->hwrm_spec_code >= 0x10800)
8488                 link_info->duplex = resp->duplex_state;
8489         link_info->pause = resp->pause;
8490         link_info->auto_mode = resp->auto_mode;
8491         link_info->auto_pause_setting = resp->auto_pause;
8492         link_info->lp_pause = resp->link_partner_adv_pause;
8493         link_info->force_pause_setting = resp->force_pause;
8494         link_info->duplex_setting = resp->duplex_cfg;
8495         if (link_info->phy_link_status == BNXT_LINK_LINK)
8496                 link_info->link_speed = le16_to_cpu(resp->link_speed);
8497         else
8498                 link_info->link_speed = 0;
8499         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
8500         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
8501         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
8502         link_info->lp_auto_link_speeds =
8503                 le16_to_cpu(resp->link_partner_adv_speeds);
8504         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
8505         link_info->phy_ver[0] = resp->phy_maj;
8506         link_info->phy_ver[1] = resp->phy_min;
8507         link_info->phy_ver[2] = resp->phy_bld;
8508         link_info->media_type = resp->media_type;
8509         link_info->phy_type = resp->phy_type;
8510         link_info->transceiver = resp->xcvr_pkg_type;
8511         link_info->phy_addr = resp->eee_config_phy_addr &
8512                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
8513         link_info->module_status = resp->module_status;
8514
8515         if (bp->flags & BNXT_FLAG_EEE_CAP) {
8516                 struct ethtool_eee *eee = &bp->eee;
8517                 u16 fw_speeds;
8518
8519                 eee->eee_active = 0;
8520                 if (resp->eee_config_phy_addr &
8521                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
8522                         eee->eee_active = 1;
8523                         fw_speeds = le16_to_cpu(
8524                                 resp->link_partner_adv_eee_link_speed_mask);
8525                         eee->lp_advertised =
8526                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8527                 }
8528
8529                 /* Pull initial EEE config */
8530                 if (!chng_link_state) {
8531                         if (resp->eee_config_phy_addr &
8532                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
8533                                 eee->eee_enabled = 1;
8534
8535                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8536                         eee->advertised =
8537                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8538
8539                         if (resp->eee_config_phy_addr &
8540                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8541                                 __le32 tmr;
8542
8543                                 eee->tx_lpi_enabled = 1;
8544                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8545                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
8546                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8547                         }
8548                 }
8549         }
8550
8551         link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8552         if (bp->hwrm_spec_code >= 0x10504)
8553                 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8554
8555         /* TODO: need to add more logic to report VF link */
8556         if (chng_link_state) {
8557                 if (link_info->phy_link_status == BNXT_LINK_LINK)
8558                         link_info->link_up = 1;
8559                 else
8560                         link_info->link_up = 0;
8561                 if (link_up != link_info->link_up)
8562                         bnxt_report_link(bp);
8563         } else {
8564                 /* alwasy link down if not require to update link state */
8565                 link_info->link_up = 0;
8566         }
8567         mutex_unlock(&bp->hwrm_cmd_lock);
8568
8569         if (!BNXT_PHY_CFG_ABLE(bp))
8570                 return 0;
8571
8572         diff = link_info->support_auto_speeds ^ link_info->advertising;
8573         if ((link_info->support_auto_speeds | diff) !=
8574             link_info->support_auto_speeds) {
8575                 /* An advertised speed is no longer supported, so we need to
8576                  * update the advertisement settings.  Caller holds RTNL
8577                  * so we can modify link settings.
8578                  */
8579                 link_info->advertising = link_info->support_auto_speeds;
8580                 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8581                         bnxt_hwrm_set_link_setting(bp, true, false);
8582         }
8583         return 0;
8584 }
8585
8586 static void bnxt_get_port_module_status(struct bnxt *bp)
8587 {
8588         struct bnxt_link_info *link_info = &bp->link_info;
8589         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8590         u8 module_status;
8591
8592         if (bnxt_update_link(bp, true))
8593                 return;
8594
8595         module_status = link_info->module_status;
8596         switch (module_status) {
8597         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8598         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8599         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8600                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8601                             bp->pf.port_id);
8602                 if (bp->hwrm_spec_code >= 0x10201) {
8603                         netdev_warn(bp->dev, "Module part number %s\n",
8604                                     resp->phy_vendor_partnumber);
8605                 }
8606                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8607                         netdev_warn(bp->dev, "TX is disabled\n");
8608                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8609                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8610         }
8611 }
8612
8613 static void
8614 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8615 {
8616         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8617                 if (bp->hwrm_spec_code >= 0x10201)
8618                         req->auto_pause =
8619                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8620                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8621                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8622                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8623                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8624                 req->enables |=
8625                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8626         } else {
8627                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8628                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8629                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8630                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
8631                 req->enables |=
8632                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
8633                 if (bp->hwrm_spec_code >= 0x10201) {
8634                         req->auto_pause = req->force_pause;
8635                         req->enables |= cpu_to_le32(
8636                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8637                 }
8638         }
8639 }
8640
8641 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8642                                       struct hwrm_port_phy_cfg_input *req)
8643 {
8644         u8 autoneg = bp->link_info.autoneg;
8645         u16 fw_link_speed = bp->link_info.req_link_speed;
8646         u16 advertising = bp->link_info.advertising;
8647
8648         if (autoneg & BNXT_AUTONEG_SPEED) {
8649                 req->auto_mode |=
8650                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8651
8652                 req->enables |= cpu_to_le32(
8653                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8654                 req->auto_link_speed_mask = cpu_to_le16(advertising);
8655
8656                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8657                 req->flags |=
8658                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8659         } else {
8660                 req->force_link_speed = cpu_to_le16(fw_link_speed);
8661                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8662         }
8663
8664         /* tell chimp that the setting takes effect immediately */
8665         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8666 }
8667
8668 int bnxt_hwrm_set_pause(struct bnxt *bp)
8669 {
8670         struct hwrm_port_phy_cfg_input req = {0};
8671         int rc;
8672
8673         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8674         bnxt_hwrm_set_pause_common(bp, &req);
8675
8676         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8677             bp->link_info.force_link_chng)
8678                 bnxt_hwrm_set_link_common(bp, &req);
8679
8680         mutex_lock(&bp->hwrm_cmd_lock);
8681         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8682         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8683                 /* since changing of pause setting doesn't trigger any link
8684                  * change event, the driver needs to update the current pause
8685                  * result upon successfully return of the phy_cfg command
8686                  */
8687                 bp->link_info.pause =
8688                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8689                 bp->link_info.auto_pause_setting = 0;
8690                 if (!bp->link_info.force_link_chng)
8691                         bnxt_report_link(bp);
8692         }
8693         bp->link_info.force_link_chng = false;
8694         mutex_unlock(&bp->hwrm_cmd_lock);
8695         return rc;
8696 }
8697
8698 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8699                               struct hwrm_port_phy_cfg_input *req)
8700 {
8701         struct ethtool_eee *eee = &bp->eee;
8702
8703         if (eee->eee_enabled) {
8704                 u16 eee_speeds;
8705                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8706
8707                 if (eee->tx_lpi_enabled)
8708                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8709                 else
8710                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8711
8712                 req->flags |= cpu_to_le32(flags);
8713                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8714                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8715                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8716         } else {
8717                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8718         }
8719 }
8720
8721 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8722 {
8723         struct hwrm_port_phy_cfg_input req = {0};
8724
8725         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8726         if (set_pause)
8727                 bnxt_hwrm_set_pause_common(bp, &req);
8728
8729         bnxt_hwrm_set_link_common(bp, &req);
8730
8731         if (set_eee)
8732                 bnxt_hwrm_set_eee(bp, &req);
8733         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8734 }
8735
8736 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8737 {
8738         struct hwrm_port_phy_cfg_input req = {0};
8739
8740         if (!BNXT_SINGLE_PF(bp))
8741                 return 0;
8742
8743         if (pci_num_vf(bp->pdev))
8744                 return 0;
8745
8746         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8747         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8748         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8749 }
8750
8751 static int bnxt_fw_init_one(struct bnxt *bp);
8752
8753 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8754 {
8755         struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8756         struct hwrm_func_drv_if_change_input req = {0};
8757         bool resc_reinit = false, fw_reset = false;
8758         u32 flags = 0;
8759         int rc;
8760
8761         if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8762                 return 0;
8763
8764         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8765         if (up)
8766                 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8767         mutex_lock(&bp->hwrm_cmd_lock);
8768         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8769         if (!rc)
8770                 flags = le32_to_cpu(resp->flags);
8771         mutex_unlock(&bp->hwrm_cmd_lock);
8772         if (rc)
8773                 return rc;
8774
8775         if (!up)
8776                 return 0;
8777
8778         if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
8779                 resc_reinit = true;
8780         if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
8781                 fw_reset = true;
8782
8783         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
8784                 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
8785                 return -ENODEV;
8786         }
8787         if (resc_reinit || fw_reset) {
8788                 if (fw_reset) {
8789                         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
8790                                 bnxt_ulp_stop(bp);
8791                         bnxt_free_ctx_mem(bp);
8792                         kfree(bp->ctx);
8793                         bp->ctx = NULL;
8794                         bnxt_dcb_free(bp);
8795                         rc = bnxt_fw_init_one(bp);
8796                         if (rc) {
8797                                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
8798                                 return rc;
8799                         }
8800                         bnxt_clear_int_mode(bp);
8801                         rc = bnxt_init_int_mode(bp);
8802                         if (rc) {
8803                                 netdev_err(bp->dev, "init int mode failed\n");
8804                                 return rc;
8805                         }
8806                         set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
8807                 }
8808                 if (BNXT_NEW_RM(bp)) {
8809                         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8810
8811                         rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8812                         hw_resc->resv_cp_rings = 0;
8813                         hw_resc->resv_stat_ctxs = 0;
8814                         hw_resc->resv_irqs = 0;
8815                         hw_resc->resv_tx_rings = 0;
8816                         hw_resc->resv_rx_rings = 0;
8817                         hw_resc->resv_hw_ring_grps = 0;
8818                         hw_resc->resv_vnics = 0;
8819                         if (!fw_reset) {
8820                                 bp->tx_nr_rings = 0;
8821                                 bp->rx_nr_rings = 0;
8822                         }
8823                 }
8824         }
8825         return 0;
8826 }
8827
8828 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8829 {
8830         struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8831         struct hwrm_port_led_qcaps_input req = {0};
8832         struct bnxt_pf_info *pf = &bp->pf;
8833         int rc;
8834
8835         bp->num_leds = 0;
8836         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8837                 return 0;
8838
8839         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8840         req.port_id = cpu_to_le16(pf->port_id);
8841         mutex_lock(&bp->hwrm_cmd_lock);
8842         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8843         if (rc) {
8844                 mutex_unlock(&bp->hwrm_cmd_lock);
8845                 return rc;
8846         }
8847         if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8848                 int i;
8849
8850                 bp->num_leds = resp->num_leds;
8851                 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8852                                                  bp->num_leds);
8853                 for (i = 0; i < bp->num_leds; i++) {
8854                         struct bnxt_led_info *led = &bp->leds[i];
8855                         __le16 caps = led->led_state_caps;
8856
8857                         if (!led->led_group_id ||
8858                             !BNXT_LED_ALT_BLINK_CAP(caps)) {
8859                                 bp->num_leds = 0;
8860                                 break;
8861                         }
8862                 }
8863         }
8864         mutex_unlock(&bp->hwrm_cmd_lock);
8865         return 0;
8866 }
8867
8868 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8869 {
8870         struct hwrm_wol_filter_alloc_input req = {0};
8871         struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8872         int rc;
8873
8874         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8875         req.port_id = cpu_to_le16(bp->pf.port_id);
8876         req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8877         req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8878         memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8879         mutex_lock(&bp->hwrm_cmd_lock);
8880         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8881         if (!rc)
8882                 bp->wol_filter_id = resp->wol_filter_id;
8883         mutex_unlock(&bp->hwrm_cmd_lock);
8884         return rc;
8885 }
8886
8887 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8888 {
8889         struct hwrm_wol_filter_free_input req = {0};
8890
8891         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8892         req.port_id = cpu_to_le16(bp->pf.port_id);
8893         req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8894         req.wol_filter_id = bp->wol_filter_id;
8895         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8896 }
8897
8898 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8899 {
8900         struct hwrm_wol_filter_qcfg_input req = {0};
8901         struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8902         u16 next_handle = 0;
8903         int rc;
8904
8905         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8906         req.port_id = cpu_to_le16(bp->pf.port_id);
8907         req.handle = cpu_to_le16(handle);
8908         mutex_lock(&bp->hwrm_cmd_lock);
8909         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8910         if (!rc) {
8911                 next_handle = le16_to_cpu(resp->next_handle);
8912                 if (next_handle != 0) {
8913                         if (resp->wol_type ==
8914                             WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8915                                 bp->wol = 1;
8916                                 bp->wol_filter_id = resp->wol_filter_id;
8917                         }
8918                 }
8919         }
8920         mutex_unlock(&bp->hwrm_cmd_lock);
8921         return next_handle;
8922 }
8923
8924 static void bnxt_get_wol_settings(struct bnxt *bp)
8925 {
8926         u16 handle = 0;
8927
8928         bp->wol = 0;
8929         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8930                 return;
8931
8932         do {
8933                 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8934         } while (handle && handle != 0xffff);
8935 }
8936
8937 #ifdef CONFIG_BNXT_HWMON
8938 static ssize_t bnxt_show_temp(struct device *dev,
8939                               struct device_attribute *devattr, char *buf)
8940 {
8941         struct hwrm_temp_monitor_query_input req = {0};
8942         struct hwrm_temp_monitor_query_output *resp;
8943         struct bnxt *bp = dev_get_drvdata(dev);
8944         u32 temp = 0;
8945
8946         resp = bp->hwrm_cmd_resp_addr;
8947         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8948         mutex_lock(&bp->hwrm_cmd_lock);
8949         if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8950                 temp = resp->temp * 1000; /* display millidegree */
8951         mutex_unlock(&bp->hwrm_cmd_lock);
8952
8953         return sprintf(buf, "%u\n", temp);
8954 }
8955 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
8956
8957 static struct attribute *bnxt_attrs[] = {
8958         &sensor_dev_attr_temp1_input.dev_attr.attr,
8959         NULL
8960 };
8961 ATTRIBUTE_GROUPS(bnxt);
8962
8963 static void bnxt_hwmon_close(struct bnxt *bp)
8964 {
8965         if (bp->hwmon_dev) {
8966                 hwmon_device_unregister(bp->hwmon_dev);
8967                 bp->hwmon_dev = NULL;
8968         }
8969 }
8970
8971 static void bnxt_hwmon_open(struct bnxt *bp)
8972 {
8973         struct pci_dev *pdev = bp->pdev;
8974
8975         if (bp->hwmon_dev)
8976                 return;
8977
8978         bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
8979                                                           DRV_MODULE_NAME, bp,
8980                                                           bnxt_groups);
8981         if (IS_ERR(bp->hwmon_dev)) {
8982                 bp->hwmon_dev = NULL;
8983                 dev_warn(&pdev->dev, "Cannot register hwmon device\n");
8984         }
8985 }
8986 #else
8987 static void bnxt_hwmon_close(struct bnxt *bp)
8988 {
8989 }
8990
8991 static void bnxt_hwmon_open(struct bnxt *bp)
8992 {
8993 }
8994 #endif
8995
8996 static bool bnxt_eee_config_ok(struct bnxt *bp)
8997 {
8998         struct ethtool_eee *eee = &bp->eee;
8999         struct bnxt_link_info *link_info = &bp->link_info;
9000
9001         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
9002                 return true;
9003
9004         if (eee->eee_enabled) {
9005                 u32 advertising =
9006                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
9007
9008                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9009                         eee->eee_enabled = 0;
9010                         return false;
9011                 }
9012                 if (eee->advertised & ~advertising) {
9013                         eee->advertised = advertising & eee->supported;
9014                         return false;
9015                 }
9016         }
9017         return true;
9018 }
9019
9020 static int bnxt_update_phy_setting(struct bnxt *bp)
9021 {
9022         int rc;
9023         bool update_link = false;
9024         bool update_pause = false;
9025         bool update_eee = false;
9026         struct bnxt_link_info *link_info = &bp->link_info;
9027
9028         rc = bnxt_update_link(bp, true);
9029         if (rc) {
9030                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9031                            rc);
9032                 return rc;
9033         }
9034         if (!BNXT_SINGLE_PF(bp))
9035                 return 0;
9036
9037         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9038             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9039             link_info->req_flow_ctrl)
9040                 update_pause = true;
9041         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9042             link_info->force_pause_setting != link_info->req_flow_ctrl)
9043                 update_pause = true;
9044         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9045                 if (BNXT_AUTO_MODE(link_info->auto_mode))
9046                         update_link = true;
9047                 if (link_info->req_link_speed != link_info->force_link_speed)
9048                         update_link = true;
9049                 if (link_info->req_duplex != link_info->duplex_setting)
9050                         update_link = true;
9051         } else {
9052                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9053                         update_link = true;
9054                 if (link_info->advertising != link_info->auto_link_speeds)
9055                         update_link = true;
9056         }
9057
9058         /* The last close may have shutdown the link, so need to call
9059          * PHY_CFG to bring it back up.
9060          */
9061         if (!bp->link_info.link_up)
9062                 update_link = true;
9063
9064         if (!bnxt_eee_config_ok(bp))
9065                 update_eee = true;
9066
9067         if (update_link)
9068                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9069         else if (update_pause)
9070                 rc = bnxt_hwrm_set_pause(bp);
9071         if (rc) {
9072                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9073                            rc);
9074                 return rc;
9075         }
9076
9077         return rc;
9078 }
9079
9080 /* Common routine to pre-map certain register block to different GRC window.
9081  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9082  * in PF and 3 windows in VF that can be customized to map in different
9083  * register blocks.
9084  */
9085 static void bnxt_preset_reg_win(struct bnxt *bp)
9086 {
9087         if (BNXT_PF(bp)) {
9088                 /* CAG registers map to GRC window #4 */
9089                 writel(BNXT_CAG_REG_BASE,
9090                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9091         }
9092 }
9093
9094 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9095
9096 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9097 {
9098         int rc = 0;
9099
9100         bnxt_preset_reg_win(bp);
9101         netif_carrier_off(bp->dev);
9102         if (irq_re_init) {
9103                 /* Reserve rings now if none were reserved at driver probe. */
9104                 rc = bnxt_init_dflt_ring_mode(bp);
9105                 if (rc) {
9106                         netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9107                         return rc;
9108                 }
9109         }
9110         rc = bnxt_reserve_rings(bp, irq_re_init);
9111         if (rc)
9112                 return rc;
9113         if ((bp->flags & BNXT_FLAG_RFS) &&
9114             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
9115                 /* disable RFS if falling back to INTA */
9116                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
9117                 bp->flags &= ~BNXT_FLAG_RFS;
9118         }
9119
9120         rc = bnxt_alloc_mem(bp, irq_re_init);
9121         if (rc) {
9122                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9123                 goto open_err_free_mem;
9124         }
9125
9126         if (irq_re_init) {
9127                 bnxt_init_napi(bp);
9128                 rc = bnxt_request_irq(bp);
9129                 if (rc) {
9130                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
9131                         goto open_err_irq;
9132                 }
9133         }
9134
9135         bnxt_enable_napi(bp);
9136         bnxt_debug_dev_init(bp);
9137
9138         rc = bnxt_init_nic(bp, irq_re_init);
9139         if (rc) {
9140                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9141                 goto open_err;
9142         }
9143
9144         if (link_re_init) {
9145                 mutex_lock(&bp->link_lock);
9146                 rc = bnxt_update_phy_setting(bp);
9147                 mutex_unlock(&bp->link_lock);
9148                 if (rc) {
9149                         netdev_warn(bp->dev, "failed to update phy settings\n");
9150                         if (BNXT_SINGLE_PF(bp)) {
9151                                 bp->link_info.phy_retry = true;
9152                                 bp->link_info.phy_retry_expires =
9153                                         jiffies + 5 * HZ;
9154                         }
9155                 }
9156         }
9157
9158         if (irq_re_init)
9159                 udp_tunnel_get_rx_info(bp->dev);
9160
9161         set_bit(BNXT_STATE_OPEN, &bp->state);
9162         bnxt_enable_int(bp);
9163         /* Enable TX queues */
9164         bnxt_tx_enable(bp);
9165         mod_timer(&bp->timer, jiffies + bp->current_interval);
9166         /* Poll link status and check for SFP+ module status */
9167         bnxt_get_port_module_status(bp);
9168
9169         /* VF-reps may need to be re-opened after the PF is re-opened */
9170         if (BNXT_PF(bp))
9171                 bnxt_vf_reps_open(bp);
9172         return 0;
9173
9174 open_err:
9175         bnxt_debug_dev_exit(bp);
9176         bnxt_disable_napi(bp);
9177
9178 open_err_irq:
9179         bnxt_del_napi(bp);
9180
9181 open_err_free_mem:
9182         bnxt_free_skbs(bp);
9183         bnxt_free_irq(bp);
9184         bnxt_free_mem(bp, true);
9185         return rc;
9186 }
9187
9188 /* rtnl_lock held */
9189 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9190 {
9191         int rc = 0;
9192
9193         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
9194         if (rc) {
9195                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
9196                 dev_close(bp->dev);
9197         }
9198         return rc;
9199 }
9200
9201 /* rtnl_lock held, open the NIC half way by allocating all resources, but
9202  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
9203  * self tests.
9204  */
9205 int bnxt_half_open_nic(struct bnxt *bp)
9206 {
9207         int rc = 0;
9208
9209         rc = bnxt_alloc_mem(bp, false);
9210         if (rc) {
9211                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9212                 goto half_open_err;
9213         }
9214         rc = bnxt_init_nic(bp, false);
9215         if (rc) {
9216                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9217                 goto half_open_err;
9218         }
9219         return 0;
9220
9221 half_open_err:
9222         bnxt_free_skbs(bp);
9223         bnxt_free_mem(bp, false);
9224         dev_close(bp->dev);
9225         return rc;
9226 }
9227
9228 /* rtnl_lock held, this call can only be made after a previous successful
9229  * call to bnxt_half_open_nic().
9230  */
9231 void bnxt_half_close_nic(struct bnxt *bp)
9232 {
9233         bnxt_hwrm_resource_free(bp, false, false);
9234         bnxt_free_skbs(bp);
9235         bnxt_free_mem(bp, false);
9236 }
9237
9238 static void bnxt_reenable_sriov(struct bnxt *bp)
9239 {
9240         if (BNXT_PF(bp)) {
9241                 struct bnxt_pf_info *pf = &bp->pf;
9242                 int n = pf->active_vfs;
9243
9244                 if (n)
9245                         bnxt_cfg_hw_sriov(bp, &n, true);
9246         }
9247 }
9248
9249 static int bnxt_open(struct net_device *dev)
9250 {
9251         struct bnxt *bp = netdev_priv(dev);
9252         int rc;
9253
9254         if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
9255                 netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n");
9256                 return -ENODEV;
9257         }
9258
9259         rc = bnxt_hwrm_if_change(bp, true);
9260         if (rc)
9261                 return rc;
9262         rc = __bnxt_open_nic(bp, true, true);
9263         if (rc) {
9264                 bnxt_hwrm_if_change(bp, false);
9265         } else {
9266                 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
9267                         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9268                                 bnxt_ulp_start(bp, 0);
9269                                 bnxt_reenable_sriov(bp);
9270                         }
9271                 }
9272                 bnxt_hwmon_open(bp);
9273         }
9274
9275         return rc;
9276 }
9277
9278 static bool bnxt_drv_busy(struct bnxt *bp)
9279 {
9280         return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
9281                 test_bit(BNXT_STATE_READ_STATS, &bp->state));
9282 }
9283
9284 static void bnxt_get_ring_stats(struct bnxt *bp,
9285                                 struct rtnl_link_stats64 *stats);
9286
9287 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
9288                              bool link_re_init)
9289 {
9290         /* Close the VF-reps before closing PF */
9291         if (BNXT_PF(bp))
9292                 bnxt_vf_reps_close(bp);
9293
9294         /* Change device state to avoid TX queue wake up's */
9295         bnxt_tx_disable(bp);
9296
9297         clear_bit(BNXT_STATE_OPEN, &bp->state);
9298         smp_mb__after_atomic();
9299         while (bnxt_drv_busy(bp))
9300                 msleep(20);
9301
9302         /* Flush rings and and disable interrupts */
9303         bnxt_shutdown_nic(bp, irq_re_init);
9304
9305         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
9306
9307         bnxt_debug_dev_exit(bp);
9308         bnxt_disable_napi(bp);
9309         del_timer_sync(&bp->timer);
9310         bnxt_free_skbs(bp);
9311
9312         /* Save ring stats before shutdown */
9313         if (bp->bnapi)
9314                 bnxt_get_ring_stats(bp, &bp->net_stats_prev);
9315         if (irq_re_init) {
9316                 bnxt_free_irq(bp);
9317                 bnxt_del_napi(bp);
9318         }
9319         bnxt_free_mem(bp, irq_re_init);
9320 }
9321
9322 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9323 {
9324         int rc = 0;
9325
9326         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9327                 /* If we get here, it means firmware reset is in progress
9328                  * while we are trying to close.  We can safely proceed with
9329                  * the close because we are holding rtnl_lock().  Some firmware
9330                  * messages may fail as we proceed to close.  We set the
9331                  * ABORT_ERR flag here so that the FW reset thread will later
9332                  * abort when it gets the rtnl_lock() and sees the flag.
9333                  */
9334                 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
9335                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9336         }
9337
9338 #ifdef CONFIG_BNXT_SRIOV
9339         if (bp->sriov_cfg) {
9340                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
9341                                                       !bp->sriov_cfg,
9342                                                       BNXT_SRIOV_CFG_WAIT_TMO);
9343                 if (rc)
9344                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
9345         }
9346 #endif
9347         __bnxt_close_nic(bp, irq_re_init, link_re_init);
9348         return rc;
9349 }
9350
9351 static int bnxt_close(struct net_device *dev)
9352 {
9353         struct bnxt *bp = netdev_priv(dev);
9354
9355         bnxt_hwmon_close(bp);
9356         bnxt_close_nic(bp, true, true);
9357         bnxt_hwrm_shutdown_link(bp);
9358         bnxt_hwrm_if_change(bp, false);
9359         return 0;
9360 }
9361
9362 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
9363                                    u16 *val)
9364 {
9365         struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
9366         struct hwrm_port_phy_mdio_read_input req = {0};
9367         int rc;
9368
9369         if (bp->hwrm_spec_code < 0x10a00)
9370                 return -EOPNOTSUPP;
9371
9372         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
9373         req.port_id = cpu_to_le16(bp->pf.port_id);
9374         req.phy_addr = phy_addr;
9375         req.reg_addr = cpu_to_le16(reg & 0x1f);
9376         if (mdio_phy_id_is_c45(phy_addr)) {
9377                 req.cl45_mdio = 1;
9378                 req.phy_addr = mdio_phy_id_prtad(phy_addr);
9379                 req.dev_addr = mdio_phy_id_devad(phy_addr);
9380                 req.reg_addr = cpu_to_le16(reg);
9381         }
9382
9383         mutex_lock(&bp->hwrm_cmd_lock);
9384         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9385         if (!rc)
9386                 *val = le16_to_cpu(resp->reg_data);
9387         mutex_unlock(&bp->hwrm_cmd_lock);
9388         return rc;
9389 }
9390
9391 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
9392                                     u16 val)
9393 {
9394         struct hwrm_port_phy_mdio_write_input req = {0};
9395
9396         if (bp->hwrm_spec_code < 0x10a00)
9397                 return -EOPNOTSUPP;
9398
9399         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
9400         req.port_id = cpu_to_le16(bp->pf.port_id);
9401         req.phy_addr = phy_addr;
9402         req.reg_addr = cpu_to_le16(reg & 0x1f);
9403         if (mdio_phy_id_is_c45(phy_addr)) {
9404                 req.cl45_mdio = 1;
9405                 req.phy_addr = mdio_phy_id_prtad(phy_addr);
9406                 req.dev_addr = mdio_phy_id_devad(phy_addr);
9407                 req.reg_addr = cpu_to_le16(reg);
9408         }
9409         req.reg_data = cpu_to_le16(val);
9410
9411         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9412 }
9413
9414 /* rtnl_lock held */
9415 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
9416 {
9417         struct mii_ioctl_data *mdio = if_mii(ifr);
9418         struct bnxt *bp = netdev_priv(dev);
9419         int rc;
9420
9421         switch (cmd) {
9422         case SIOCGMIIPHY:
9423                 mdio->phy_id = bp->link_info.phy_addr;
9424
9425                 /* fallthru */
9426         case SIOCGMIIREG: {
9427                 u16 mii_regval = 0;
9428
9429                 if (!netif_running(dev))
9430                         return -EAGAIN;
9431
9432                 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
9433                                              &mii_regval);
9434                 mdio->val_out = mii_regval;
9435                 return rc;
9436         }
9437
9438         case SIOCSMIIREG:
9439                 if (!netif_running(dev))
9440                         return -EAGAIN;
9441
9442                 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
9443                                                 mdio->val_in);
9444
9445         default:
9446                 /* do nothing */
9447                 break;
9448         }
9449         return -EOPNOTSUPP;
9450 }
9451
9452 static void bnxt_get_ring_stats(struct bnxt *bp,
9453                                 struct rtnl_link_stats64 *stats)
9454 {
9455         int i;
9456
9457
9458         for (i = 0; i < bp->cp_nr_rings; i++) {
9459                 struct bnxt_napi *bnapi = bp->bnapi[i];
9460                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9461                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
9462
9463                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
9464                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
9465                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
9466
9467                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
9468                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
9469                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
9470
9471                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
9472                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
9473                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
9474
9475                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
9476                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
9477                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
9478
9479                 stats->rx_missed_errors +=
9480                         le64_to_cpu(hw_stats->rx_discard_pkts);
9481
9482                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
9483
9484                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
9485         }
9486 }
9487
9488 static void bnxt_add_prev_stats(struct bnxt *bp,
9489                                 struct rtnl_link_stats64 *stats)
9490 {
9491         struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
9492
9493         stats->rx_packets += prev_stats->rx_packets;
9494         stats->tx_packets += prev_stats->tx_packets;
9495         stats->rx_bytes += prev_stats->rx_bytes;
9496         stats->tx_bytes += prev_stats->tx_bytes;
9497         stats->rx_missed_errors += prev_stats->rx_missed_errors;
9498         stats->multicast += prev_stats->multicast;
9499         stats->tx_dropped += prev_stats->tx_dropped;
9500 }
9501
9502 static void
9503 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
9504 {
9505         struct bnxt *bp = netdev_priv(dev);
9506
9507         set_bit(BNXT_STATE_READ_STATS, &bp->state);
9508         /* Make sure bnxt_close_nic() sees that we are reading stats before
9509          * we check the BNXT_STATE_OPEN flag.
9510          */
9511         smp_mb__after_atomic();
9512         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9513                 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9514                 *stats = bp->net_stats_prev;
9515                 return;
9516         }
9517
9518         bnxt_get_ring_stats(bp, stats);
9519         bnxt_add_prev_stats(bp, stats);
9520
9521         if (bp->flags & BNXT_FLAG_PORT_STATS) {
9522                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
9523                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
9524
9525                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
9526                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
9527                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
9528                                           le64_to_cpu(rx->rx_ovrsz_frames) +
9529                                           le64_to_cpu(rx->rx_runt_frames);
9530                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
9531                                    le64_to_cpu(rx->rx_jbr_frames);
9532                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
9533                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
9534                 stats->tx_errors = le64_to_cpu(tx->tx_err);
9535         }
9536         clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9537 }
9538
9539 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
9540 {
9541         struct net_device *dev = bp->dev;
9542         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9543         struct netdev_hw_addr *ha;
9544         u8 *haddr;
9545         int mc_count = 0;
9546         bool update = false;
9547         int off = 0;
9548
9549         netdev_for_each_mc_addr(ha, dev) {
9550                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
9551                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9552                         vnic->mc_list_count = 0;
9553                         return false;
9554                 }
9555                 haddr = ha->addr;
9556                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
9557                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
9558                         update = true;
9559                 }
9560                 off += ETH_ALEN;
9561                 mc_count++;
9562         }
9563         if (mc_count)
9564                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
9565
9566         if (mc_count != vnic->mc_list_count) {
9567                 vnic->mc_list_count = mc_count;
9568                 update = true;
9569         }
9570         return update;
9571 }
9572
9573 static bool bnxt_uc_list_updated(struct bnxt *bp)
9574 {
9575         struct net_device *dev = bp->dev;
9576         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9577         struct netdev_hw_addr *ha;
9578         int off = 0;
9579
9580         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
9581                 return true;
9582
9583         netdev_for_each_uc_addr(ha, dev) {
9584                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
9585                         return true;
9586
9587                 off += ETH_ALEN;
9588         }
9589         return false;
9590 }
9591
9592 static void bnxt_set_rx_mode(struct net_device *dev)
9593 {
9594         struct bnxt *bp = netdev_priv(dev);
9595         struct bnxt_vnic_info *vnic;
9596         bool mc_update = false;
9597         bool uc_update;
9598         u32 mask;
9599
9600         if (!test_bit(BNXT_STATE_OPEN, &bp->state))
9601                 return;
9602
9603         vnic = &bp->vnic_info[0];
9604         mask = vnic->rx_mask;
9605         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
9606                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
9607                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
9608                   CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
9609
9610         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
9611                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9612
9613         uc_update = bnxt_uc_list_updated(bp);
9614
9615         if (dev->flags & IFF_BROADCAST)
9616                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9617         if (dev->flags & IFF_ALLMULTI) {
9618                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9619                 vnic->mc_list_count = 0;
9620         } else {
9621                 mc_update = bnxt_mc_list_updated(bp, &mask);
9622         }
9623
9624         if (mask != vnic->rx_mask || uc_update || mc_update) {
9625                 vnic->rx_mask = mask;
9626
9627                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
9628                 bnxt_queue_sp_work(bp);
9629         }
9630 }
9631
9632 static int bnxt_cfg_rx_mode(struct bnxt *bp)
9633 {
9634         struct net_device *dev = bp->dev;
9635         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9636         struct netdev_hw_addr *ha;
9637         int i, off = 0, rc;
9638         bool uc_update;
9639
9640         netif_addr_lock_bh(dev);
9641         uc_update = bnxt_uc_list_updated(bp);
9642         netif_addr_unlock_bh(dev);
9643
9644         if (!uc_update)
9645                 goto skip_uc;
9646
9647         mutex_lock(&bp->hwrm_cmd_lock);
9648         for (i = 1; i < vnic->uc_filter_count; i++) {
9649                 struct hwrm_cfa_l2_filter_free_input req = {0};
9650
9651                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
9652                                        -1);
9653
9654                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
9655
9656                 rc = _hwrm_send_message(bp, &req, sizeof(req),
9657                                         HWRM_CMD_TIMEOUT);
9658         }
9659         mutex_unlock(&bp->hwrm_cmd_lock);
9660
9661         vnic->uc_filter_count = 1;
9662
9663         netif_addr_lock_bh(dev);
9664         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
9665                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9666         } else {
9667                 netdev_for_each_uc_addr(ha, dev) {
9668                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
9669                         off += ETH_ALEN;
9670                         vnic->uc_filter_count++;
9671                 }
9672         }
9673         netif_addr_unlock_bh(dev);
9674
9675         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
9676                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
9677                 if (rc) {
9678                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
9679                                    rc);
9680                         vnic->uc_filter_count = i;
9681                         return rc;
9682                 }
9683         }
9684
9685 skip_uc:
9686         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9687         if (rc && vnic->mc_list_count) {
9688                 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
9689                             rc);
9690                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9691                 vnic->mc_list_count = 0;
9692                 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9693         }
9694         if (rc)
9695                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
9696                            rc);
9697
9698         return rc;
9699 }
9700
9701 static bool bnxt_can_reserve_rings(struct bnxt *bp)
9702 {
9703 #ifdef CONFIG_BNXT_SRIOV
9704         if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
9705                 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9706
9707                 /* No minimum rings were provisioned by the PF.  Don't
9708                  * reserve rings by default when device is down.
9709                  */
9710                 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
9711                         return true;
9712
9713                 if (!netif_running(bp->dev))
9714                         return false;
9715         }
9716 #endif
9717         return true;
9718 }
9719
9720 /* If the chip and firmware supports RFS */
9721 static bool bnxt_rfs_supported(struct bnxt *bp)
9722 {
9723         if (bp->flags & BNXT_FLAG_CHIP_P5) {
9724                 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
9725                         return true;
9726                 return false;
9727         }
9728         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
9729                 return true;
9730         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9731                 return true;
9732         return false;
9733 }
9734
9735 /* If runtime conditions support RFS */
9736 static bool bnxt_rfs_capable(struct bnxt *bp)
9737 {
9738 #ifdef CONFIG_RFS_ACCEL
9739         int vnics, max_vnics, max_rss_ctxs;
9740
9741         if (bp->flags & BNXT_FLAG_CHIP_P5)
9742                 return bnxt_rfs_supported(bp);
9743         if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9744                 return false;
9745
9746         vnics = 1 + bp->rx_nr_rings;
9747         max_vnics = bnxt_get_max_func_vnics(bp);
9748         max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9749
9750         /* RSS contexts not a limiting factor */
9751         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9752                 max_rss_ctxs = max_vnics;
9753         if (vnics > max_vnics || vnics > max_rss_ctxs) {
9754                 if (bp->rx_nr_rings > 1)
9755                         netdev_warn(bp->dev,
9756                                     "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9757                                     min(max_rss_ctxs - 1, max_vnics - 1));
9758                 return false;
9759         }
9760
9761         if (!BNXT_NEW_RM(bp))
9762                 return true;
9763
9764         if (vnics == bp->hw_resc.resv_vnics)
9765                 return true;
9766
9767         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9768         if (vnics <= bp->hw_resc.resv_vnics)
9769                 return true;
9770
9771         netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9772         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9773         return false;
9774 #else
9775         return false;
9776 #endif
9777 }
9778
9779 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9780                                            netdev_features_t features)
9781 {
9782         struct bnxt *bp = netdev_priv(dev);
9783         netdev_features_t vlan_features;
9784
9785         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9786                 features &= ~NETIF_F_NTUPLE;
9787
9788         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9789                 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9790
9791         if (!(features & NETIF_F_GRO))
9792                 features &= ~NETIF_F_GRO_HW;
9793
9794         if (features & NETIF_F_GRO_HW)
9795                 features &= ~NETIF_F_LRO;
9796
9797         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
9798          * turned on or off together.
9799          */
9800         vlan_features = features & (NETIF_F_HW_VLAN_CTAG_RX |
9801                                     NETIF_F_HW_VLAN_STAG_RX);
9802         if (vlan_features != (NETIF_F_HW_VLAN_CTAG_RX |
9803                               NETIF_F_HW_VLAN_STAG_RX)) {
9804                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9805                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9806                                       NETIF_F_HW_VLAN_STAG_RX);
9807                 else if (vlan_features)
9808                         features |= NETIF_F_HW_VLAN_CTAG_RX |
9809                                     NETIF_F_HW_VLAN_STAG_RX;
9810         }
9811 #ifdef CONFIG_BNXT_SRIOV
9812         if (BNXT_VF(bp)) {
9813                 if (bp->vf.vlan) {
9814                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9815                                       NETIF_F_HW_VLAN_STAG_RX);
9816                 }
9817         }
9818 #endif
9819         return features;
9820 }
9821
9822 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9823 {
9824         struct bnxt *bp = netdev_priv(dev);
9825         u32 flags = bp->flags;
9826         u32 changes;
9827         int rc = 0;
9828         bool re_init = false;
9829         bool update_tpa = false;
9830
9831         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9832         if (features & NETIF_F_GRO_HW)
9833                 flags |= BNXT_FLAG_GRO;
9834         else if (features & NETIF_F_LRO)
9835                 flags |= BNXT_FLAG_LRO;
9836
9837         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9838                 flags &= ~BNXT_FLAG_TPA;
9839
9840         if (features & NETIF_F_HW_VLAN_CTAG_RX)
9841                 flags |= BNXT_FLAG_STRIP_VLAN;
9842
9843         if (features & NETIF_F_NTUPLE)
9844                 flags |= BNXT_FLAG_RFS;
9845
9846         changes = flags ^ bp->flags;
9847         if (changes & BNXT_FLAG_TPA) {
9848                 update_tpa = true;
9849                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9850                     (flags & BNXT_FLAG_TPA) == 0 ||
9851                     (bp->flags & BNXT_FLAG_CHIP_P5))
9852                         re_init = true;
9853         }
9854
9855         if (changes & ~BNXT_FLAG_TPA)
9856                 re_init = true;
9857
9858         if (flags != bp->flags) {
9859                 u32 old_flags = bp->flags;
9860
9861                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9862                         bp->flags = flags;
9863                         if (update_tpa)
9864                                 bnxt_set_ring_params(bp);
9865                         return rc;
9866                 }
9867
9868                 if (re_init) {
9869                         bnxt_close_nic(bp, false, false);
9870                         bp->flags = flags;
9871                         if (update_tpa)
9872                                 bnxt_set_ring_params(bp);
9873
9874                         return bnxt_open_nic(bp, false, false);
9875                 }
9876                 if (update_tpa) {
9877                         bp->flags = flags;
9878                         rc = bnxt_set_tpa(bp,
9879                                           (flags & BNXT_FLAG_TPA) ?
9880                                           true : false);
9881                         if (rc)
9882                                 bp->flags = old_flags;
9883                 }
9884         }
9885         return rc;
9886 }
9887
9888 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9889                                        u32 ring_id, u32 *prod, u32 *cons)
9890 {
9891         struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9892         struct hwrm_dbg_ring_info_get_input req = {0};
9893         int rc;
9894
9895         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9896         req.ring_type = ring_type;
9897         req.fw_ring_id = cpu_to_le32(ring_id);
9898         mutex_lock(&bp->hwrm_cmd_lock);
9899         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9900         if (!rc) {
9901                 *prod = le32_to_cpu(resp->producer_index);
9902                 *cons = le32_to_cpu(resp->consumer_index);
9903         }
9904         mutex_unlock(&bp->hwrm_cmd_lock);
9905         return rc;
9906 }
9907
9908 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9909 {
9910         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9911         int i = bnapi->index;
9912
9913         if (!txr)
9914                 return;
9915
9916         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9917                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9918                     txr->tx_cons);
9919 }
9920
9921 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9922 {
9923         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9924         int i = bnapi->index;
9925
9926         if (!rxr)
9927                 return;
9928
9929         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9930                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9931                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9932                     rxr->rx_sw_agg_prod);
9933 }
9934
9935 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9936 {
9937         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9938         int i = bnapi->index;
9939
9940         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9941                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9942 }
9943
9944 static void bnxt_dbg_dump_states(struct bnxt *bp)
9945 {
9946         int i;
9947         struct bnxt_napi *bnapi;
9948
9949         for (i = 0; i < bp->cp_nr_rings; i++) {
9950                 bnapi = bp->bnapi[i];
9951                 if (netif_msg_drv(bp)) {
9952                         bnxt_dump_tx_sw_state(bnapi);
9953                         bnxt_dump_rx_sw_state(bnapi);
9954                         bnxt_dump_cp_sw_state(bnapi);
9955                 }
9956         }
9957 }
9958
9959 static void bnxt_reset_task(struct bnxt *bp, bool silent)
9960 {
9961         if (!silent)
9962                 bnxt_dbg_dump_states(bp);
9963         if (netif_running(bp->dev)) {
9964                 int rc;
9965
9966                 if (silent) {
9967                         bnxt_close_nic(bp, false, false);
9968                         bnxt_open_nic(bp, false, false);
9969                 } else {
9970                         bnxt_ulp_stop(bp);
9971                         bnxt_close_nic(bp, true, false);
9972                         rc = bnxt_open_nic(bp, true, false);
9973                         bnxt_ulp_start(bp, rc);
9974                 }
9975         }
9976 }
9977
9978 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
9979 {
9980         struct bnxt *bp = netdev_priv(dev);
9981
9982         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
9983         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
9984         bnxt_queue_sp_work(bp);
9985 }
9986
9987 static void bnxt_fw_health_check(struct bnxt *bp)
9988 {
9989         struct bnxt_fw_health *fw_health = bp->fw_health;
9990         u32 val;
9991
9992         if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9993                 return;
9994
9995         if (fw_health->tmr_counter) {
9996                 fw_health->tmr_counter--;
9997                 return;
9998         }
9999
10000         val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10001         if (val == fw_health->last_fw_heartbeat)
10002                 goto fw_reset;
10003
10004         fw_health->last_fw_heartbeat = val;
10005
10006         val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10007         if (val != fw_health->last_fw_reset_cnt)
10008                 goto fw_reset;
10009
10010         fw_health->tmr_counter = fw_health->tmr_multiplier;
10011         return;
10012
10013 fw_reset:
10014         set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
10015         bnxt_queue_sp_work(bp);
10016 }
10017
10018 static void bnxt_timer(struct timer_list *t)
10019 {
10020         struct bnxt *bp = from_timer(bp, t, timer);
10021         struct net_device *dev = bp->dev;
10022
10023         if (!netif_running(dev))
10024                 return;
10025
10026         if (atomic_read(&bp->intr_sem) != 0)
10027                 goto bnxt_restart_timer;
10028
10029         if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
10030                 bnxt_fw_health_check(bp);
10031
10032         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
10033             bp->stats_coal_ticks) {
10034                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
10035                 bnxt_queue_sp_work(bp);
10036         }
10037
10038         if (bnxt_tc_flower_enabled(bp)) {
10039                 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
10040                 bnxt_queue_sp_work(bp);
10041         }
10042
10043 #ifdef CONFIG_RFS_ACCEL
10044         if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
10045                 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10046                 bnxt_queue_sp_work(bp);
10047         }
10048 #endif /*CONFIG_RFS_ACCEL*/
10049
10050         if (bp->link_info.phy_retry) {
10051                 if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
10052                         bp->link_info.phy_retry = false;
10053                         netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
10054                 } else {
10055                         set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
10056                         bnxt_queue_sp_work(bp);
10057                 }
10058         }
10059
10060         if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
10061             netif_carrier_ok(dev)) {
10062                 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
10063                 bnxt_queue_sp_work(bp);
10064         }
10065 bnxt_restart_timer:
10066         mod_timer(&bp->timer, jiffies + bp->current_interval);
10067 }
10068
10069 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
10070 {
10071         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
10072          * set.  If the device is being closed, bnxt_close() may be holding
10073          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
10074          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
10075          */
10076         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10077         rtnl_lock();
10078 }
10079
10080 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
10081 {
10082         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10083         rtnl_unlock();
10084 }
10085
10086 /* Only called from bnxt_sp_task() */
10087 static void bnxt_reset(struct bnxt *bp, bool silent)
10088 {
10089         bnxt_rtnl_lock_sp(bp);
10090         if (test_bit(BNXT_STATE_OPEN, &bp->state))
10091                 bnxt_reset_task(bp, silent);
10092         bnxt_rtnl_unlock_sp(bp);
10093 }
10094
10095 static void bnxt_fw_reset_close(struct bnxt *bp)
10096 {
10097         bnxt_ulp_stop(bp);
10098         /* When firmware is fatal state, disable PCI device to prevent
10099          * any potential bad DMAs before freeing kernel memory.
10100          */
10101         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10102                 pci_disable_device(bp->pdev);
10103         __bnxt_close_nic(bp, true, false);
10104         bnxt_clear_int_mode(bp);
10105         bnxt_hwrm_func_drv_unrgtr(bp);
10106         if (pci_is_enabled(bp->pdev))
10107                 pci_disable_device(bp->pdev);
10108         bnxt_free_ctx_mem(bp);
10109         kfree(bp->ctx);
10110         bp->ctx = NULL;
10111 }
10112
10113 static bool is_bnxt_fw_ok(struct bnxt *bp)
10114 {
10115         struct bnxt_fw_health *fw_health = bp->fw_health;
10116         bool no_heartbeat = false, has_reset = false;
10117         u32 val;
10118
10119         val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10120         if (val == fw_health->last_fw_heartbeat)
10121                 no_heartbeat = true;
10122
10123         val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10124         if (val != fw_health->last_fw_reset_cnt)
10125                 has_reset = true;
10126
10127         if (!no_heartbeat && has_reset)
10128                 return true;
10129
10130         return false;
10131 }
10132
10133 /* rtnl_lock is acquired before calling this function */
10134 static void bnxt_force_fw_reset(struct bnxt *bp)
10135 {
10136         struct bnxt_fw_health *fw_health = bp->fw_health;
10137         u32 wait_dsecs;
10138
10139         if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
10140             test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10141                 return;
10142
10143         set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10144         bnxt_fw_reset_close(bp);
10145         wait_dsecs = fw_health->master_func_wait_dsecs;
10146         if (fw_health->master) {
10147                 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
10148                         wait_dsecs = 0;
10149                 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10150         } else {
10151                 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
10152                 wait_dsecs = fw_health->normal_func_wait_dsecs;
10153                 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10154         }
10155
10156         bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
10157         bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
10158         bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10159 }
10160
10161 void bnxt_fw_exception(struct bnxt *bp)
10162 {
10163         netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
10164         set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10165         bnxt_rtnl_lock_sp(bp);
10166         bnxt_force_fw_reset(bp);
10167         bnxt_rtnl_unlock_sp(bp);
10168 }
10169
10170 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
10171  * < 0 on error.
10172  */
10173 static int bnxt_get_registered_vfs(struct bnxt *bp)
10174 {
10175 #ifdef CONFIG_BNXT_SRIOV
10176         int rc;
10177
10178         if (!BNXT_PF(bp))
10179                 return 0;
10180
10181         rc = bnxt_hwrm_func_qcfg(bp);
10182         if (rc) {
10183                 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
10184                 return rc;
10185         }
10186         if (bp->pf.registered_vfs)
10187                 return bp->pf.registered_vfs;
10188         if (bp->sriov_cfg)
10189                 return 1;
10190 #endif
10191         return 0;
10192 }
10193
10194 void bnxt_fw_reset(struct bnxt *bp)
10195 {
10196         bnxt_rtnl_lock_sp(bp);
10197         if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
10198             !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10199                 int n = 0, tmo;
10200
10201                 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10202                 if (bp->pf.active_vfs &&
10203                     !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10204                         n = bnxt_get_registered_vfs(bp);
10205                 if (n < 0) {
10206                         netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
10207                                    n);
10208                         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10209                         dev_close(bp->dev);
10210                         goto fw_reset_exit;
10211                 } else if (n > 0) {
10212                         u16 vf_tmo_dsecs = n * 10;
10213
10214                         if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
10215                                 bp->fw_reset_max_dsecs = vf_tmo_dsecs;
10216                         bp->fw_reset_state =
10217                                 BNXT_FW_RESET_STATE_POLL_VF;
10218                         bnxt_queue_fw_reset_work(bp, HZ / 10);
10219                         goto fw_reset_exit;
10220                 }
10221                 bnxt_fw_reset_close(bp);
10222                 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10223                         bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10224                         tmo = HZ / 10;
10225                 } else {
10226                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10227                         tmo = bp->fw_reset_min_dsecs * HZ / 10;
10228                 }
10229                 bnxt_queue_fw_reset_work(bp, tmo);
10230         }
10231 fw_reset_exit:
10232         bnxt_rtnl_unlock_sp(bp);
10233 }
10234
10235 static void bnxt_chk_missed_irq(struct bnxt *bp)
10236 {
10237         int i;
10238
10239         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10240                 return;
10241
10242         for (i = 0; i < bp->cp_nr_rings; i++) {
10243                 struct bnxt_napi *bnapi = bp->bnapi[i];
10244                 struct bnxt_cp_ring_info *cpr;
10245                 u32 fw_ring_id;
10246                 int j;
10247
10248                 if (!bnapi)
10249                         continue;
10250
10251                 cpr = &bnapi->cp_ring;
10252                 for (j = 0; j < 2; j++) {
10253                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
10254                         u32 val[2];
10255
10256                         if (!cpr2 || cpr2->has_more_work ||
10257                             !bnxt_has_work(bp, cpr2))
10258                                 continue;
10259
10260                         if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
10261                                 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
10262                                 continue;
10263                         }
10264                         fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
10265                         bnxt_dbg_hwrm_ring_info_get(bp,
10266                                 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
10267                                 fw_ring_id, &val[0], &val[1]);
10268                         cpr->missed_irqs++;
10269                 }
10270         }
10271 }
10272
10273 static void bnxt_cfg_ntp_filters(struct bnxt *);
10274
10275 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
10276 {
10277         struct bnxt_link_info *link_info = &bp->link_info;
10278
10279         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10280                 link_info->autoneg = BNXT_AUTONEG_SPEED;
10281                 if (bp->hwrm_spec_code >= 0x10201) {
10282                         if (link_info->auto_pause_setting &
10283                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10284                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10285                 } else {
10286                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10287                 }
10288                 link_info->advertising = link_info->auto_link_speeds;
10289         } else {
10290                 link_info->req_link_speed = link_info->force_link_speed;
10291                 link_info->req_duplex = link_info->duplex_setting;
10292         }
10293         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10294                 link_info->req_flow_ctrl =
10295                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10296         else
10297                 link_info->req_flow_ctrl = link_info->force_pause_setting;
10298 }
10299
10300 static void bnxt_sp_task(struct work_struct *work)
10301 {
10302         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
10303
10304         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10305         smp_mb__after_atomic();
10306         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10307                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10308                 return;
10309         }
10310
10311         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
10312                 bnxt_cfg_rx_mode(bp);
10313
10314         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
10315                 bnxt_cfg_ntp_filters(bp);
10316         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
10317                 bnxt_hwrm_exec_fwd_req(bp);
10318         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
10319                 bnxt_hwrm_tunnel_dst_port_alloc(
10320                         bp, bp->vxlan_port,
10321                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
10322         }
10323         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
10324                 bnxt_hwrm_tunnel_dst_port_free(
10325                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
10326         }
10327         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
10328                 bnxt_hwrm_tunnel_dst_port_alloc(
10329                         bp, bp->nge_port,
10330                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
10331         }
10332         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
10333                 bnxt_hwrm_tunnel_dst_port_free(
10334                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
10335         }
10336         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
10337                 bnxt_hwrm_port_qstats(bp);
10338                 bnxt_hwrm_port_qstats_ext(bp);
10339                 bnxt_hwrm_pcie_qstats(bp);
10340         }
10341
10342         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
10343                 int rc;
10344
10345                 mutex_lock(&bp->link_lock);
10346                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
10347                                        &bp->sp_event))
10348                         bnxt_hwrm_phy_qcaps(bp);
10349
10350                 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
10351                                        &bp->sp_event))
10352                         bnxt_init_ethtool_link_settings(bp);
10353
10354                 rc = bnxt_update_link(bp, true);
10355                 mutex_unlock(&bp->link_lock);
10356                 if (rc)
10357                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
10358                                    rc);
10359         }
10360         if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
10361                 int rc;
10362
10363                 mutex_lock(&bp->link_lock);
10364                 rc = bnxt_update_phy_setting(bp);
10365                 mutex_unlock(&bp->link_lock);
10366                 if (rc) {
10367                         netdev_warn(bp->dev, "update phy settings retry failed\n");
10368                 } else {
10369                         bp->link_info.phy_retry = false;
10370                         netdev_info(bp->dev, "update phy settings retry succeeded\n");
10371                 }
10372         }
10373         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
10374                 mutex_lock(&bp->link_lock);
10375                 bnxt_get_port_module_status(bp);
10376                 mutex_unlock(&bp->link_lock);
10377         }
10378
10379         if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
10380                 bnxt_tc_flow_stats_work(bp);
10381
10382         if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
10383                 bnxt_chk_missed_irq(bp);
10384
10385         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
10386          * must be the last functions to be called before exiting.
10387          */
10388         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
10389                 bnxt_reset(bp, false);
10390
10391         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
10392                 bnxt_reset(bp, true);
10393
10394         if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
10395                 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
10396
10397         if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
10398                 if (!is_bnxt_fw_ok(bp))
10399                         bnxt_devlink_health_report(bp,
10400                                                    BNXT_FW_EXCEPTION_SP_EVENT);
10401         }
10402
10403         smp_mb__before_atomic();
10404         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10405 }
10406
10407 /* Under rtnl_lock */
10408 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
10409                      int tx_xdp)
10410 {
10411         int max_rx, max_tx, tx_sets = 1;
10412         int tx_rings_needed, stats;
10413         int rx_rings = rx;
10414         int cp, vnics, rc;
10415
10416         if (tcs)
10417                 tx_sets = tcs;
10418
10419         rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
10420         if (rc)
10421                 return rc;
10422
10423         if (max_rx < rx)
10424                 return -ENOMEM;
10425
10426         tx_rings_needed = tx * tx_sets + tx_xdp;
10427         if (max_tx < tx_rings_needed)
10428                 return -ENOMEM;
10429
10430         vnics = 1;
10431         if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
10432                 vnics += rx_rings;
10433
10434         if (bp->flags & BNXT_FLAG_AGG_RINGS)
10435                 rx_rings <<= 1;
10436         cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
10437         stats = cp;
10438         if (BNXT_NEW_RM(bp)) {
10439                 cp += bnxt_get_ulp_msix_num(bp);
10440                 stats += bnxt_get_ulp_stat_ctxs(bp);
10441         }
10442         return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
10443                                      stats, vnics);
10444 }
10445
10446 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
10447 {
10448         if (bp->bar2) {
10449                 pci_iounmap(pdev, bp->bar2);
10450                 bp->bar2 = NULL;
10451         }
10452
10453         if (bp->bar1) {
10454                 pci_iounmap(pdev, bp->bar1);
10455                 bp->bar1 = NULL;
10456         }
10457
10458         if (bp->bar0) {
10459                 pci_iounmap(pdev, bp->bar0);
10460                 bp->bar0 = NULL;
10461         }
10462 }
10463
10464 static void bnxt_cleanup_pci(struct bnxt *bp)
10465 {
10466         bnxt_unmap_bars(bp, bp->pdev);
10467         pci_release_regions(bp->pdev);
10468         if (pci_is_enabled(bp->pdev))
10469                 pci_disable_device(bp->pdev);
10470 }
10471
10472 static void bnxt_init_dflt_coal(struct bnxt *bp)
10473 {
10474         struct bnxt_coal *coal;
10475
10476         /* Tick values in micro seconds.
10477          * 1 coal_buf x bufs_per_record = 1 completion record.
10478          */
10479         coal = &bp->rx_coal;
10480         coal->coal_ticks = 10;
10481         coal->coal_bufs = 30;
10482         coal->coal_ticks_irq = 1;
10483         coal->coal_bufs_irq = 2;
10484         coal->idle_thresh = 50;
10485         coal->bufs_per_record = 2;
10486         coal->budget = 64;              /* NAPI budget */
10487
10488         coal = &bp->tx_coal;
10489         coal->coal_ticks = 28;
10490         coal->coal_bufs = 30;
10491         coal->coal_ticks_irq = 2;
10492         coal->coal_bufs_irq = 2;
10493         coal->bufs_per_record = 1;
10494
10495         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
10496 }
10497
10498 static void bnxt_alloc_fw_health(struct bnxt *bp)
10499 {
10500         if (bp->fw_health)
10501                 return;
10502
10503         if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
10504             !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
10505                 return;
10506
10507         bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
10508         if (!bp->fw_health) {
10509                 netdev_warn(bp->dev, "Failed to allocate fw_health\n");
10510                 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
10511                 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
10512         }
10513 }
10514
10515 static int bnxt_fw_init_one_p1(struct bnxt *bp)
10516 {
10517         int rc;
10518
10519         bp->fw_cap = 0;
10520         rc = bnxt_hwrm_ver_get(bp);
10521         if (rc)
10522                 return rc;
10523
10524         if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10525                 rc = bnxt_alloc_kong_hwrm_resources(bp);
10526                 if (rc)
10527                         bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10528         }
10529
10530         if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10531             bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10532                 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10533                 if (rc)
10534                         return rc;
10535         }
10536         rc = bnxt_hwrm_func_reset(bp);
10537         if (rc)
10538                 return -ENODEV;
10539
10540         bnxt_hwrm_fw_set_time(bp);
10541         return 0;
10542 }
10543
10544 static int bnxt_fw_init_one_p2(struct bnxt *bp)
10545 {
10546         int rc;
10547
10548         /* Get the MAX capabilities for this function */
10549         rc = bnxt_hwrm_func_qcaps(bp);
10550         if (rc) {
10551                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10552                            rc);
10553                 return -ENODEV;
10554         }
10555
10556         rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10557         if (rc)
10558                 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10559                             rc);
10560
10561         bnxt_alloc_fw_health(bp);
10562         rc = bnxt_hwrm_error_recovery_qcfg(bp);
10563         if (rc)
10564                 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
10565                             rc);
10566
10567         rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
10568         if (rc)
10569                 return -ENODEV;
10570
10571         bnxt_hwrm_func_qcfg(bp);
10572         bnxt_hwrm_vnic_qcaps(bp);
10573         bnxt_hwrm_port_led_qcaps(bp);
10574         bnxt_ethtool_init(bp);
10575         bnxt_dcb_init(bp);
10576         return 0;
10577 }
10578
10579 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
10580 {
10581         bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
10582         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10583                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10584                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10585                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10586         if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
10587                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10588                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10589                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10590         }
10591 }
10592
10593 static void bnxt_set_dflt_rfs(struct bnxt *bp)
10594 {
10595         struct net_device *dev = bp->dev;
10596
10597         dev->hw_features &= ~NETIF_F_NTUPLE;
10598         dev->features &= ~NETIF_F_NTUPLE;
10599         bp->flags &= ~BNXT_FLAG_RFS;
10600         if (bnxt_rfs_supported(bp)) {
10601                 dev->hw_features |= NETIF_F_NTUPLE;
10602                 if (bnxt_rfs_capable(bp)) {
10603                         bp->flags |= BNXT_FLAG_RFS;
10604                         dev->features |= NETIF_F_NTUPLE;
10605                 }
10606         }
10607 }
10608
10609 static void bnxt_fw_init_one_p3(struct bnxt *bp)
10610 {
10611         struct pci_dev *pdev = bp->pdev;
10612
10613         bnxt_set_dflt_rss_hash_type(bp);
10614         bnxt_set_dflt_rfs(bp);
10615
10616         bnxt_get_wol_settings(bp);
10617         if (bp->flags & BNXT_FLAG_WOL_CAP)
10618                 device_set_wakeup_enable(&pdev->dev, bp->wol);
10619         else
10620                 device_set_wakeup_capable(&pdev->dev, false);
10621
10622         bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10623         bnxt_hwrm_coal_params_qcaps(bp);
10624 }
10625
10626 static int bnxt_fw_init_one(struct bnxt *bp)
10627 {
10628         int rc;
10629
10630         rc = bnxt_fw_init_one_p1(bp);
10631         if (rc) {
10632                 netdev_err(bp->dev, "Firmware init phase 1 failed\n");
10633                 return rc;
10634         }
10635         rc = bnxt_fw_init_one_p2(bp);
10636         if (rc) {
10637                 netdev_err(bp->dev, "Firmware init phase 2 failed\n");
10638                 return rc;
10639         }
10640         rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
10641         if (rc)
10642                 return rc;
10643
10644         /* In case fw capabilities have changed, destroy the unneeded
10645          * reporters and create newly capable ones.
10646          */
10647         bnxt_dl_fw_reporters_destroy(bp, false);
10648         bnxt_dl_fw_reporters_create(bp);
10649         bnxt_fw_init_one_p3(bp);
10650         return 0;
10651 }
10652
10653 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
10654 {
10655         struct bnxt_fw_health *fw_health = bp->fw_health;
10656         u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
10657         u32 val = fw_health->fw_reset_seq_vals[reg_idx];
10658         u32 reg_type, reg_off, delay_msecs;
10659
10660         delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
10661         reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
10662         reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
10663         switch (reg_type) {
10664         case BNXT_FW_HEALTH_REG_TYPE_CFG:
10665                 pci_write_config_dword(bp->pdev, reg_off, val);
10666                 break;
10667         case BNXT_FW_HEALTH_REG_TYPE_GRC:
10668                 writel(reg_off & BNXT_GRC_BASE_MASK,
10669                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
10670                 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
10671                 /* fall through */
10672         case BNXT_FW_HEALTH_REG_TYPE_BAR0:
10673                 writel(val, bp->bar0 + reg_off);
10674                 break;
10675         case BNXT_FW_HEALTH_REG_TYPE_BAR1:
10676                 writel(val, bp->bar1 + reg_off);
10677                 break;
10678         }
10679         if (delay_msecs) {
10680                 pci_read_config_dword(bp->pdev, 0, &val);
10681                 msleep(delay_msecs);
10682         }
10683 }
10684
10685 static void bnxt_reset_all(struct bnxt *bp)
10686 {
10687         struct bnxt_fw_health *fw_health = bp->fw_health;
10688         int i, rc;
10689
10690         if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10691 #ifdef CONFIG_TEE_BNXT_FW
10692                 rc = tee_bnxt_fw_load();
10693                 if (rc)
10694                         netdev_err(bp->dev, "Unable to reset FW rc=%d\n", rc);
10695                 bp->fw_reset_timestamp = jiffies;
10696 #endif
10697                 return;
10698         }
10699
10700         if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
10701                 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
10702                         bnxt_fw_reset_writel(bp, i);
10703         } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
10704                 struct hwrm_fw_reset_input req = {0};
10705
10706                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
10707                 req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
10708                 req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
10709                 req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
10710                 req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
10711                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10712                 if (rc)
10713                         netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
10714         }
10715         bp->fw_reset_timestamp = jiffies;
10716 }
10717
10718 static void bnxt_fw_reset_task(struct work_struct *work)
10719 {
10720         struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
10721         int rc;
10722
10723         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10724                 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
10725                 return;
10726         }
10727
10728         switch (bp->fw_reset_state) {
10729         case BNXT_FW_RESET_STATE_POLL_VF: {
10730                 int n = bnxt_get_registered_vfs(bp);
10731                 int tmo;
10732
10733                 if (n < 0) {
10734                         netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
10735                                    n, jiffies_to_msecs(jiffies -
10736                                    bp->fw_reset_timestamp));
10737                         goto fw_reset_abort;
10738                 } else if (n > 0) {
10739                         if (time_after(jiffies, bp->fw_reset_timestamp +
10740                                        (bp->fw_reset_max_dsecs * HZ / 10))) {
10741                                 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10742                                 bp->fw_reset_state = 0;
10743                                 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
10744                                            n);
10745                                 return;
10746                         }
10747                         bnxt_queue_fw_reset_work(bp, HZ / 10);
10748                         return;
10749                 }
10750                 bp->fw_reset_timestamp = jiffies;
10751                 rtnl_lock();
10752                 bnxt_fw_reset_close(bp);
10753                 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10754                         bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10755                         tmo = HZ / 10;
10756                 } else {
10757                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10758                         tmo = bp->fw_reset_min_dsecs * HZ / 10;
10759                 }
10760                 rtnl_unlock();
10761                 bnxt_queue_fw_reset_work(bp, tmo);
10762                 return;
10763         }
10764         case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
10765                 u32 val;
10766
10767                 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
10768                 if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
10769                     !time_after(jiffies, bp->fw_reset_timestamp +
10770                     (bp->fw_reset_max_dsecs * HZ / 10))) {
10771                         bnxt_queue_fw_reset_work(bp, HZ / 5);
10772                         return;
10773                 }
10774
10775                 if (!bp->fw_health->master) {
10776                         u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
10777
10778                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10779                         bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10780                         return;
10781                 }
10782                 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10783         }
10784         /* fall through */
10785         case BNXT_FW_RESET_STATE_RESET_FW:
10786                 bnxt_reset_all(bp);
10787                 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10788                 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
10789                 return;
10790         case BNXT_FW_RESET_STATE_ENABLE_DEV:
10791                 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
10792                         u32 val;
10793
10794                         val = bnxt_fw_health_readl(bp,
10795                                                    BNXT_FW_RESET_INPROG_REG);
10796                         if (val)
10797                                 netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n",
10798                                             val);
10799                 }
10800                 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10801                 if (pci_enable_device(bp->pdev)) {
10802                         netdev_err(bp->dev, "Cannot re-enable PCI device\n");
10803                         goto fw_reset_abort;
10804                 }
10805                 pci_set_master(bp->pdev);
10806                 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
10807                 /* fall through */
10808         case BNXT_FW_RESET_STATE_POLL_FW:
10809                 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
10810                 rc = __bnxt_hwrm_ver_get(bp, true);
10811                 if (rc) {
10812                         if (time_after(jiffies, bp->fw_reset_timestamp +
10813                                        (bp->fw_reset_max_dsecs * HZ / 10))) {
10814                                 netdev_err(bp->dev, "Firmware reset aborted\n");
10815                                 goto fw_reset_abort;
10816                         }
10817                         bnxt_queue_fw_reset_work(bp, HZ / 5);
10818                         return;
10819                 }
10820                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
10821                 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
10822                 /* fall through */
10823         case BNXT_FW_RESET_STATE_OPENING:
10824                 while (!rtnl_trylock()) {
10825                         bnxt_queue_fw_reset_work(bp, HZ / 10);
10826                         return;
10827                 }
10828                 rc = bnxt_open(bp->dev);
10829                 if (rc) {
10830                         netdev_err(bp->dev, "bnxt_open_nic() failed\n");
10831                         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10832                         dev_close(bp->dev);
10833                 }
10834
10835                 bp->fw_reset_state = 0;
10836                 /* Make sure fw_reset_state is 0 before clearing the flag */
10837                 smp_mb__before_atomic();
10838                 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10839                 bnxt_ulp_start(bp, rc);
10840                 if (!rc)
10841                         bnxt_reenable_sriov(bp);
10842                 bnxt_dl_health_recovery_done(bp);
10843                 bnxt_dl_health_status_update(bp, true);
10844                 rtnl_unlock();
10845                 break;
10846         }
10847         return;
10848
10849 fw_reset_abort:
10850         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10851         if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
10852                 bnxt_dl_health_status_update(bp, false);
10853         bp->fw_reset_state = 0;
10854         rtnl_lock();
10855         dev_close(bp->dev);
10856         rtnl_unlock();
10857 }
10858
10859 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
10860 {
10861         int rc;
10862         struct bnxt *bp = netdev_priv(dev);
10863
10864         SET_NETDEV_DEV(dev, &pdev->dev);
10865
10866         /* enable device (incl. PCI PM wakeup), and bus-mastering */
10867         rc = pci_enable_device(pdev);
10868         if (rc) {
10869                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
10870                 goto init_err;
10871         }
10872
10873         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10874                 dev_err(&pdev->dev,
10875                         "Cannot find PCI device base address, aborting\n");
10876                 rc = -ENODEV;
10877                 goto init_err_disable;
10878         }
10879
10880         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10881         if (rc) {
10882                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
10883                 goto init_err_disable;
10884         }
10885
10886         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
10887             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
10888                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
10889                 goto init_err_disable;
10890         }
10891
10892         pci_set_master(pdev);
10893
10894         bp->dev = dev;
10895         bp->pdev = pdev;
10896
10897         bp->bar0 = pci_ioremap_bar(pdev, 0);
10898         if (!bp->bar0) {
10899                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
10900                 rc = -ENOMEM;
10901                 goto init_err_release;
10902         }
10903
10904         bp->bar1 = pci_ioremap_bar(pdev, 2);
10905         if (!bp->bar1) {
10906                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
10907                 rc = -ENOMEM;
10908                 goto init_err_release;
10909         }
10910
10911         bp->bar2 = pci_ioremap_bar(pdev, 4);
10912         if (!bp->bar2) {
10913                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
10914                 rc = -ENOMEM;
10915                 goto init_err_release;
10916         }
10917
10918         pci_enable_pcie_error_reporting(pdev);
10919
10920         INIT_WORK(&bp->sp_task, bnxt_sp_task);
10921         INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
10922
10923         spin_lock_init(&bp->ntp_fltr_lock);
10924 #if BITS_PER_LONG == 32
10925         spin_lock_init(&bp->db_lock);
10926 #endif
10927
10928         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
10929         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
10930
10931         bnxt_init_dflt_coal(bp);
10932
10933         timer_setup(&bp->timer, bnxt_timer, 0);
10934         bp->current_interval = BNXT_TIMER_INTERVAL;
10935
10936         clear_bit(BNXT_STATE_OPEN, &bp->state);
10937         return 0;
10938
10939 init_err_release:
10940         bnxt_unmap_bars(bp, pdev);
10941         pci_release_regions(pdev);
10942
10943 init_err_disable:
10944         pci_disable_device(pdev);
10945
10946 init_err:
10947         return rc;
10948 }
10949
10950 /* rtnl_lock held */
10951 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
10952 {
10953         struct sockaddr *addr = p;
10954         struct bnxt *bp = netdev_priv(dev);
10955         int rc = 0;
10956
10957         if (!is_valid_ether_addr(addr->sa_data))
10958                 return -EADDRNOTAVAIL;
10959
10960         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
10961                 return 0;
10962
10963         rc = bnxt_approve_mac(bp, addr->sa_data, true);
10964         if (rc)
10965                 return rc;
10966
10967         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
10968         if (netif_running(dev)) {
10969                 bnxt_close_nic(bp, false, false);
10970                 rc = bnxt_open_nic(bp, false, false);
10971         }
10972
10973         return rc;
10974 }
10975
10976 /* rtnl_lock held */
10977 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
10978 {
10979         struct bnxt *bp = netdev_priv(dev);
10980
10981         if (netif_running(dev))
10982                 bnxt_close_nic(bp, true, false);
10983
10984         dev->mtu = new_mtu;
10985         bnxt_set_ring_params(bp);
10986
10987         if (netif_running(dev))
10988                 return bnxt_open_nic(bp, true, false);
10989
10990         return 0;
10991 }
10992
10993 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
10994 {
10995         struct bnxt *bp = netdev_priv(dev);
10996         bool sh = false;
10997         int rc;
10998
10999         if (tc > bp->max_tc) {
11000                 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
11001                            tc, bp->max_tc);
11002                 return -EINVAL;
11003         }
11004
11005         if (netdev_get_num_tc(dev) == tc)
11006                 return 0;
11007
11008         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
11009                 sh = true;
11010
11011         rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
11012                               sh, tc, bp->tx_nr_rings_xdp);
11013         if (rc)
11014                 return rc;
11015
11016         /* Needs to close the device and do hw resource re-allocations */
11017         if (netif_running(bp->dev))
11018                 bnxt_close_nic(bp, true, false);
11019
11020         if (tc) {
11021                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
11022                 netdev_set_num_tc(dev, tc);
11023         } else {
11024                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11025                 netdev_reset_tc(dev);
11026         }
11027         bp->tx_nr_rings += bp->tx_nr_rings_xdp;
11028         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
11029                                bp->tx_nr_rings + bp->rx_nr_rings;
11030
11031         if (netif_running(bp->dev))
11032                 return bnxt_open_nic(bp, true, false);
11033
11034         return 0;
11035 }
11036
11037 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
11038                                   void *cb_priv)
11039 {
11040         struct bnxt *bp = cb_priv;
11041
11042         if (!bnxt_tc_flower_enabled(bp) ||
11043             !tc_cls_can_offload_and_chain0(bp->dev, type_data))
11044                 return -EOPNOTSUPP;
11045
11046         switch (type) {
11047         case TC_SETUP_CLSFLOWER:
11048                 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
11049         default:
11050                 return -EOPNOTSUPP;
11051         }
11052 }
11053
11054 LIST_HEAD(bnxt_block_cb_list);
11055
11056 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
11057                          void *type_data)
11058 {
11059         struct bnxt *bp = netdev_priv(dev);
11060
11061         switch (type) {
11062         case TC_SETUP_BLOCK:
11063                 return flow_block_cb_setup_simple(type_data,
11064                                                   &bnxt_block_cb_list,
11065                                                   bnxt_setup_tc_block_cb,
11066                                                   bp, bp, true);
11067         case TC_SETUP_QDISC_MQPRIO: {
11068                 struct tc_mqprio_qopt *mqprio = type_data;
11069
11070                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
11071
11072                 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
11073         }
11074         default:
11075                 return -EOPNOTSUPP;
11076         }
11077 }
11078
11079 #ifdef CONFIG_RFS_ACCEL
11080 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
11081                             struct bnxt_ntuple_filter *f2)
11082 {
11083         struct flow_keys *keys1 = &f1->fkeys;
11084         struct flow_keys *keys2 = &f2->fkeys;
11085
11086         if (keys1->basic.n_proto != keys2->basic.n_proto ||
11087             keys1->basic.ip_proto != keys2->basic.ip_proto)
11088                 return false;
11089
11090         if (keys1->basic.n_proto == htons(ETH_P_IP)) {
11091                 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
11092                     keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
11093                         return false;
11094         } else {
11095                 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
11096                            sizeof(keys1->addrs.v6addrs.src)) ||
11097                     memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
11098                            sizeof(keys1->addrs.v6addrs.dst)))
11099                         return false;
11100         }
11101
11102         if (keys1->ports.ports == keys2->ports.ports &&
11103             keys1->control.flags == keys2->control.flags &&
11104             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
11105             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
11106                 return true;
11107
11108         return false;
11109 }
11110
11111 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
11112                               u16 rxq_index, u32 flow_id)
11113 {
11114         struct bnxt *bp = netdev_priv(dev);
11115         struct bnxt_ntuple_filter *fltr, *new_fltr;
11116         struct flow_keys *fkeys;
11117         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
11118         int rc = 0, idx, bit_id, l2_idx = 0;
11119         struct hlist_head *head;
11120         u32 flags;
11121
11122         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
11123                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11124                 int off = 0, j;
11125
11126                 netif_addr_lock_bh(dev);
11127                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
11128                         if (ether_addr_equal(eth->h_dest,
11129                                              vnic->uc_list + off)) {
11130                                 l2_idx = j + 1;
11131                                 break;
11132                         }
11133                 }
11134                 netif_addr_unlock_bh(dev);
11135                 if (!l2_idx)
11136                         return -EINVAL;
11137         }
11138         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
11139         if (!new_fltr)
11140                 return -ENOMEM;
11141
11142         fkeys = &new_fltr->fkeys;
11143         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
11144                 rc = -EPROTONOSUPPORT;
11145                 goto err_free;
11146         }
11147
11148         if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
11149              fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
11150             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
11151              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
11152                 rc = -EPROTONOSUPPORT;
11153                 goto err_free;
11154         }
11155         if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
11156             bp->hwrm_spec_code < 0x10601) {
11157                 rc = -EPROTONOSUPPORT;
11158                 goto err_free;
11159         }
11160         flags = fkeys->control.flags;
11161         if (((flags & FLOW_DIS_ENCAPSULATION) &&
11162              bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
11163                 rc = -EPROTONOSUPPORT;
11164                 goto err_free;
11165         }
11166
11167         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
11168         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
11169
11170         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
11171         head = &bp->ntp_fltr_hash_tbl[idx];
11172         rcu_read_lock();
11173         hlist_for_each_entry_rcu(fltr, head, hash) {
11174                 if (bnxt_fltr_match(fltr, new_fltr)) {
11175                         rcu_read_unlock();
11176                         rc = 0;
11177                         goto err_free;
11178                 }
11179         }
11180         rcu_read_unlock();
11181
11182         spin_lock_bh(&bp->ntp_fltr_lock);
11183         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
11184                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
11185         if (bit_id < 0) {
11186                 spin_unlock_bh(&bp->ntp_fltr_lock);
11187                 rc = -ENOMEM;
11188                 goto err_free;
11189         }
11190
11191         new_fltr->sw_id = (u16)bit_id;
11192         new_fltr->flow_id = flow_id;
11193         new_fltr->l2_fltr_idx = l2_idx;
11194         new_fltr->rxq = rxq_index;
11195         hlist_add_head_rcu(&new_fltr->hash, head);
11196         bp->ntp_fltr_count++;
11197         spin_unlock_bh(&bp->ntp_fltr_lock);
11198
11199         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11200         bnxt_queue_sp_work(bp);
11201
11202         return new_fltr->sw_id;
11203
11204 err_free:
11205         kfree(new_fltr);
11206         return rc;
11207 }
11208
11209 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11210 {
11211         int i;
11212
11213         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
11214                 struct hlist_head *head;
11215                 struct hlist_node *tmp;
11216                 struct bnxt_ntuple_filter *fltr;
11217                 int rc;
11218
11219                 head = &bp->ntp_fltr_hash_tbl[i];
11220                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
11221                         bool del = false;
11222
11223                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
11224                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
11225                                                         fltr->flow_id,
11226                                                         fltr->sw_id)) {
11227                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
11228                                                                          fltr);
11229                                         del = true;
11230                                 }
11231                         } else {
11232                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
11233                                                                        fltr);
11234                                 if (rc)
11235                                         del = true;
11236                                 else
11237                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
11238                         }
11239
11240                         if (del) {
11241                                 spin_lock_bh(&bp->ntp_fltr_lock);
11242                                 hlist_del_rcu(&fltr->hash);
11243                                 bp->ntp_fltr_count--;
11244                                 spin_unlock_bh(&bp->ntp_fltr_lock);
11245                                 synchronize_rcu();
11246                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
11247                                 kfree(fltr);
11248                         }
11249                 }
11250         }
11251         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
11252                 netdev_info(bp->dev, "Receive PF driver unload event!\n");
11253 }
11254
11255 #else
11256
11257 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11258 {
11259 }
11260
11261 #endif /* CONFIG_RFS_ACCEL */
11262
11263 static void bnxt_udp_tunnel_add(struct net_device *dev,
11264                                 struct udp_tunnel_info *ti)
11265 {
11266         struct bnxt *bp = netdev_priv(dev);
11267
11268         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
11269                 return;
11270
11271         if (!netif_running(dev))
11272                 return;
11273
11274         switch (ti->type) {
11275         case UDP_TUNNEL_TYPE_VXLAN:
11276                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
11277                         return;
11278
11279                 bp->vxlan_port_cnt++;
11280                 if (bp->vxlan_port_cnt == 1) {
11281                         bp->vxlan_port = ti->port;
11282                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
11283                         bnxt_queue_sp_work(bp);
11284                 }
11285                 break;
11286         case UDP_TUNNEL_TYPE_GENEVE:
11287                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
11288                         return;
11289
11290                 bp->nge_port_cnt++;
11291                 if (bp->nge_port_cnt == 1) {
11292                         bp->nge_port = ti->port;
11293                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
11294                 }
11295                 break;
11296         default:
11297                 return;
11298         }
11299
11300         bnxt_queue_sp_work(bp);
11301 }
11302
11303 static void bnxt_udp_tunnel_del(struct net_device *dev,
11304                                 struct udp_tunnel_info *ti)
11305 {
11306         struct bnxt *bp = netdev_priv(dev);
11307
11308         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
11309                 return;
11310
11311         if (!netif_running(dev))
11312                 return;
11313
11314         switch (ti->type) {
11315         case UDP_TUNNEL_TYPE_VXLAN:
11316                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
11317                         return;
11318                 bp->vxlan_port_cnt--;
11319
11320                 if (bp->vxlan_port_cnt != 0)
11321                         return;
11322
11323                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
11324                 break;
11325         case UDP_TUNNEL_TYPE_GENEVE:
11326                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
11327                         return;
11328                 bp->nge_port_cnt--;
11329
11330                 if (bp->nge_port_cnt != 0)
11331                         return;
11332
11333                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
11334                 break;
11335         default:
11336                 return;
11337         }
11338
11339         bnxt_queue_sp_work(bp);
11340 }
11341
11342 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11343                                struct net_device *dev, u32 filter_mask,
11344                                int nlflags)
11345 {
11346         struct bnxt *bp = netdev_priv(dev);
11347
11348         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
11349                                        nlflags, filter_mask, NULL);
11350 }
11351
11352 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
11353                                u16 flags, struct netlink_ext_ack *extack)
11354 {
11355         struct bnxt *bp = netdev_priv(dev);
11356         struct nlattr *attr, *br_spec;
11357         int rem, rc = 0;
11358
11359         if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
11360                 return -EOPNOTSUPP;
11361
11362         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
11363         if (!br_spec)
11364                 return -EINVAL;
11365
11366         nla_for_each_nested(attr, br_spec, rem) {
11367                 u16 mode;
11368
11369                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
11370                         continue;
11371
11372                 if (nla_len(attr) < sizeof(mode))
11373                         return -EINVAL;
11374
11375                 mode = nla_get_u16(attr);
11376                 if (mode == bp->br_mode)
11377                         break;
11378
11379                 rc = bnxt_hwrm_set_br_mode(bp, mode);
11380                 if (!rc)
11381                         bp->br_mode = mode;
11382                 break;
11383         }
11384         return rc;
11385 }
11386
11387 int bnxt_get_port_parent_id(struct net_device *dev,
11388                             struct netdev_phys_item_id *ppid)
11389 {
11390         struct bnxt *bp = netdev_priv(dev);
11391
11392         if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
11393                 return -EOPNOTSUPP;
11394
11395         /* The PF and it's VF-reps only support the switchdev framework */
11396         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
11397                 return -EOPNOTSUPP;
11398
11399         ppid->id_len = sizeof(bp->dsn);
11400         memcpy(ppid->id, bp->dsn, ppid->id_len);
11401
11402         return 0;
11403 }
11404
11405 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
11406 {
11407         struct bnxt *bp = netdev_priv(dev);
11408
11409         return &bp->dl_port;
11410 }
11411
11412 static const struct net_device_ops bnxt_netdev_ops = {
11413         .ndo_open               = bnxt_open,
11414         .ndo_start_xmit         = bnxt_start_xmit,
11415         .ndo_stop               = bnxt_close,
11416         .ndo_get_stats64        = bnxt_get_stats64,
11417         .ndo_set_rx_mode        = bnxt_set_rx_mode,
11418         .ndo_do_ioctl           = bnxt_ioctl,
11419         .ndo_validate_addr      = eth_validate_addr,
11420         .ndo_set_mac_address    = bnxt_change_mac_addr,
11421         .ndo_change_mtu         = bnxt_change_mtu,
11422         .ndo_fix_features       = bnxt_fix_features,
11423         .ndo_set_features       = bnxt_set_features,
11424         .ndo_tx_timeout         = bnxt_tx_timeout,
11425 #ifdef CONFIG_BNXT_SRIOV
11426         .ndo_get_vf_config      = bnxt_get_vf_config,
11427         .ndo_set_vf_mac         = bnxt_set_vf_mac,
11428         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
11429         .ndo_set_vf_rate        = bnxt_set_vf_bw,
11430         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
11431         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
11432         .ndo_set_vf_trust       = bnxt_set_vf_trust,
11433 #endif
11434         .ndo_setup_tc           = bnxt_setup_tc,
11435 #ifdef CONFIG_RFS_ACCEL
11436         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
11437 #endif
11438         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
11439         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
11440         .ndo_bpf                = bnxt_xdp,
11441         .ndo_xdp_xmit           = bnxt_xdp_xmit,
11442         .ndo_bridge_getlink     = bnxt_bridge_getlink,
11443         .ndo_bridge_setlink     = bnxt_bridge_setlink,
11444         .ndo_get_devlink_port   = bnxt_get_devlink_port,
11445 };
11446
11447 static void bnxt_remove_one(struct pci_dev *pdev)
11448 {
11449         struct net_device *dev = pci_get_drvdata(pdev);
11450         struct bnxt *bp = netdev_priv(dev);
11451
11452         if (BNXT_PF(bp))
11453                 bnxt_sriov_disable(bp);
11454
11455         bnxt_dl_fw_reporters_destroy(bp, true);
11456         if (BNXT_PF(bp))
11457                 devlink_port_type_clear(&bp->dl_port);
11458         pci_disable_pcie_error_reporting(pdev);
11459         unregister_netdev(dev);
11460         bnxt_dl_unregister(bp);
11461         bnxt_shutdown_tc(bp);
11462         bnxt_cancel_sp_work(bp);
11463         bp->sp_event = 0;
11464
11465         bnxt_clear_int_mode(bp);
11466         bnxt_hwrm_func_drv_unrgtr(bp);
11467         bnxt_free_hwrm_resources(bp);
11468         bnxt_free_hwrm_short_cmd_req(bp);
11469         bnxt_ethtool_free(bp);
11470         bnxt_dcb_free(bp);
11471         kfree(bp->edev);
11472         bp->edev = NULL;
11473         kfree(bp->fw_health);
11474         bp->fw_health = NULL;
11475         bnxt_cleanup_pci(bp);
11476         bnxt_free_ctx_mem(bp);
11477         kfree(bp->ctx);
11478         bp->ctx = NULL;
11479         bnxt_free_port_stats(bp);
11480         free_netdev(dev);
11481 }
11482
11483 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
11484 {
11485         int rc = 0;
11486         struct bnxt_link_info *link_info = &bp->link_info;
11487
11488         rc = bnxt_hwrm_phy_qcaps(bp);
11489         if (rc) {
11490                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
11491                            rc);
11492                 return rc;
11493         }
11494         if (!fw_dflt)
11495                 return 0;
11496
11497         rc = bnxt_update_link(bp, false);
11498         if (rc) {
11499                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
11500                            rc);
11501                 return rc;
11502         }
11503
11504         /* Older firmware does not have supported_auto_speeds, so assume
11505          * that all supported speeds can be autonegotiated.
11506          */
11507         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
11508                 link_info->support_auto_speeds = link_info->support_speeds;
11509
11510         bnxt_init_ethtool_link_settings(bp);
11511         return 0;
11512 }
11513
11514 static int bnxt_get_max_irq(struct pci_dev *pdev)
11515 {
11516         u16 ctrl;
11517
11518         if (!pdev->msix_cap)
11519                 return 1;
11520
11521         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
11522         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
11523 }
11524
11525 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11526                                 int *max_cp)
11527 {
11528         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11529         int max_ring_grps = 0, max_irq;
11530
11531         *max_tx = hw_resc->max_tx_rings;
11532         *max_rx = hw_resc->max_rx_rings;
11533         *max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
11534         max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
11535                         bnxt_get_ulp_msix_num(bp),
11536                         hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
11537         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11538                 *max_cp = min_t(int, *max_cp, max_irq);
11539         max_ring_grps = hw_resc->max_hw_ring_grps;
11540         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
11541                 *max_cp -= 1;
11542                 *max_rx -= 2;
11543         }
11544         if (bp->flags & BNXT_FLAG_AGG_RINGS)
11545                 *max_rx >>= 1;
11546         if (bp->flags & BNXT_FLAG_CHIP_P5) {
11547                 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
11548                 /* On P5 chips, max_cp output param should be available NQs */
11549                 *max_cp = max_irq;
11550         }
11551         *max_rx = min_t(int, *max_rx, max_ring_grps);
11552 }
11553
11554 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
11555 {
11556         int rx, tx, cp;
11557
11558         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
11559         *max_rx = rx;
11560         *max_tx = tx;
11561         if (!rx || !tx || !cp)
11562                 return -ENOMEM;
11563
11564         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
11565 }
11566
11567 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11568                                bool shared)
11569 {
11570         int rc;
11571
11572         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11573         if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
11574                 /* Not enough rings, try disabling agg rings. */
11575                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
11576                 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11577                 if (rc) {
11578                         /* set BNXT_FLAG_AGG_RINGS back for consistency */
11579                         bp->flags |= BNXT_FLAG_AGG_RINGS;
11580                         return rc;
11581                 }
11582                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
11583                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11584                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11585                 bnxt_set_ring_params(bp);
11586         }
11587
11588         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
11589                 int max_cp, max_stat, max_irq;
11590
11591                 /* Reserve minimum resources for RoCE */
11592                 max_cp = bnxt_get_max_func_cp_rings(bp);
11593                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
11594                 max_irq = bnxt_get_max_func_irqs(bp);
11595                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
11596                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
11597                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
11598                         return 0;
11599
11600                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
11601                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
11602                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
11603                 max_cp = min_t(int, max_cp, max_irq);
11604                 max_cp = min_t(int, max_cp, max_stat);
11605                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
11606                 if (rc)
11607                         rc = 0;
11608         }
11609         return rc;
11610 }
11611
11612 /* In initial default shared ring setting, each shared ring must have a
11613  * RX/TX ring pair.
11614  */
11615 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
11616 {
11617         bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
11618         bp->rx_nr_rings = bp->cp_nr_rings;
11619         bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
11620         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11621 }
11622
11623 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
11624 {
11625         int dflt_rings, max_rx_rings, max_tx_rings, rc;
11626
11627         if (!bnxt_can_reserve_rings(bp))
11628                 return 0;
11629
11630         if (sh)
11631                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
11632         dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
11633         /* Reduce default rings on multi-port cards so that total default
11634          * rings do not exceed CPU count.
11635          */
11636         if (bp->port_count > 1) {
11637                 int max_rings =
11638                         max_t(int, num_online_cpus() / bp->port_count, 1);
11639
11640                 dflt_rings = min_t(int, dflt_rings, max_rings);
11641         }
11642         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
11643         if (rc)
11644                 return rc;
11645         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
11646         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
11647         if (sh)
11648                 bnxt_trim_dflt_sh_rings(bp);
11649         else
11650                 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
11651         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11652
11653         rc = __bnxt_reserve_rings(bp);
11654         if (rc)
11655                 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
11656         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11657         if (sh)
11658                 bnxt_trim_dflt_sh_rings(bp);
11659
11660         /* Rings may have been trimmed, re-reserve the trimmed rings. */
11661         if (bnxt_need_reserve_rings(bp)) {
11662                 rc = __bnxt_reserve_rings(bp);
11663                 if (rc)
11664                         netdev_warn(bp->dev, "2nd rings reservation failed.\n");
11665                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11666         }
11667         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
11668                 bp->rx_nr_rings++;
11669                 bp->cp_nr_rings++;
11670         }
11671         if (rc) {
11672                 bp->tx_nr_rings = 0;
11673                 bp->rx_nr_rings = 0;
11674         }
11675         return rc;
11676 }
11677
11678 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
11679 {
11680         int rc;
11681
11682         if (bp->tx_nr_rings)
11683                 return 0;
11684
11685         bnxt_ulp_irq_stop(bp);
11686         bnxt_clear_int_mode(bp);
11687         rc = bnxt_set_dflt_rings(bp, true);
11688         if (rc) {
11689                 netdev_err(bp->dev, "Not enough rings available.\n");
11690                 goto init_dflt_ring_err;
11691         }
11692         rc = bnxt_init_int_mode(bp);
11693         if (rc)
11694                 goto init_dflt_ring_err;
11695
11696         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11697         if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
11698                 bp->flags |= BNXT_FLAG_RFS;
11699                 bp->dev->features |= NETIF_F_NTUPLE;
11700         }
11701 init_dflt_ring_err:
11702         bnxt_ulp_irq_restart(bp, rc);
11703         return rc;
11704 }
11705
11706 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
11707 {
11708         int rc;
11709
11710         ASSERT_RTNL();
11711         bnxt_hwrm_func_qcaps(bp);
11712
11713         if (netif_running(bp->dev))
11714                 __bnxt_close_nic(bp, true, false);
11715
11716         bnxt_ulp_irq_stop(bp);
11717         bnxt_clear_int_mode(bp);
11718         rc = bnxt_init_int_mode(bp);
11719         bnxt_ulp_irq_restart(bp, rc);
11720
11721         if (netif_running(bp->dev)) {
11722                 if (rc)
11723                         dev_close(bp->dev);
11724                 else
11725                         rc = bnxt_open_nic(bp, true, false);
11726         }
11727
11728         return rc;
11729 }
11730
11731 static int bnxt_init_mac_addr(struct bnxt *bp)
11732 {
11733         int rc = 0;
11734
11735         if (BNXT_PF(bp)) {
11736                 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
11737         } else {
11738 #ifdef CONFIG_BNXT_SRIOV
11739                 struct bnxt_vf_info *vf = &bp->vf;
11740                 bool strict_approval = true;
11741
11742                 if (is_valid_ether_addr(vf->mac_addr)) {
11743                         /* overwrite netdev dev_addr with admin VF MAC */
11744                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
11745                         /* Older PF driver or firmware may not approve this
11746                          * correctly.
11747                          */
11748                         strict_approval = false;
11749                 } else {
11750                         eth_hw_addr_random(bp->dev);
11751                 }
11752                 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
11753 #endif
11754         }
11755         return rc;
11756 }
11757
11758 #define BNXT_VPD_LEN    512
11759 static void bnxt_vpd_read_info(struct bnxt *bp)
11760 {
11761         struct pci_dev *pdev = bp->pdev;
11762         int i, len, pos, ro_size;
11763         ssize_t vpd_size;
11764         u8 *vpd_data;
11765
11766         vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
11767         if (!vpd_data)
11768                 return;
11769
11770         vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
11771         if (vpd_size <= 0) {
11772                 netdev_err(bp->dev, "Unable to read VPD\n");
11773                 goto exit;
11774         }
11775
11776         i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
11777         if (i < 0) {
11778                 netdev_err(bp->dev, "VPD READ-Only not found\n");
11779                 goto exit;
11780         }
11781
11782         ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
11783         i += PCI_VPD_LRDT_TAG_SIZE;
11784         if (i + ro_size > vpd_size)
11785                 goto exit;
11786
11787         pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
11788                                         PCI_VPD_RO_KEYWORD_PARTNO);
11789         if (pos < 0)
11790                 goto read_sn;
11791
11792         len = pci_vpd_info_field_size(&vpd_data[pos]);
11793         pos += PCI_VPD_INFO_FLD_HDR_SIZE;
11794         if (len + pos > vpd_size)
11795                 goto read_sn;
11796
11797         strlcpy(bp->board_partno, &vpd_data[pos], min(len, BNXT_VPD_FLD_LEN));
11798
11799 read_sn:
11800         pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
11801                                         PCI_VPD_RO_KEYWORD_SERIALNO);
11802         if (pos < 0)
11803                 goto exit;
11804
11805         len = pci_vpd_info_field_size(&vpd_data[pos]);
11806         pos += PCI_VPD_INFO_FLD_HDR_SIZE;
11807         if (len + pos > vpd_size)
11808                 goto exit;
11809
11810         strlcpy(bp->board_serialno, &vpd_data[pos], min(len, BNXT_VPD_FLD_LEN));
11811 exit:
11812         kfree(vpd_data);
11813 }
11814
11815 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
11816 {
11817         struct pci_dev *pdev = bp->pdev;
11818         u64 qword;
11819
11820         qword = pci_get_dsn(pdev);
11821         if (!qword) {
11822                 netdev_info(bp->dev, "Unable to read adapter's DSN\n");
11823                 return -EOPNOTSUPP;
11824         }
11825
11826         put_unaligned_le64(qword, dsn);
11827
11828         bp->flags |= BNXT_FLAG_DSN_VALID;
11829         return 0;
11830 }
11831
11832 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
11833 {
11834         struct net_device *dev;
11835         struct bnxt *bp;
11836         int rc, max_irqs;
11837
11838         if (pci_is_bridge(pdev))
11839                 return -ENODEV;
11840
11841         /* Clear any pending DMA transactions from crash kernel
11842          * while loading driver in capture kernel.
11843          */
11844         if (is_kdump_kernel()) {
11845                 pci_clear_master(pdev);
11846                 pcie_flr(pdev);
11847         }
11848
11849         max_irqs = bnxt_get_max_irq(pdev);
11850         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
11851         if (!dev)
11852                 return -ENOMEM;
11853
11854         bp = netdev_priv(dev);
11855         bnxt_set_max_func_irqs(bp, max_irqs);
11856
11857         if (bnxt_vf_pciid(ent->driver_data))
11858                 bp->flags |= BNXT_FLAG_VF;
11859
11860         if (pdev->msix_cap)
11861                 bp->flags |= BNXT_FLAG_MSIX_CAP;
11862
11863         rc = bnxt_init_board(pdev, dev);
11864         if (rc < 0)
11865                 goto init_err_free;
11866
11867         dev->netdev_ops = &bnxt_netdev_ops;
11868         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
11869         dev->ethtool_ops = &bnxt_ethtool_ops;
11870         pci_set_drvdata(pdev, dev);
11871
11872         bnxt_vpd_read_info(bp);
11873
11874         rc = bnxt_alloc_hwrm_resources(bp);
11875         if (rc)
11876                 goto init_err_pci_clean;
11877
11878         mutex_init(&bp->hwrm_cmd_lock);
11879         mutex_init(&bp->link_lock);
11880
11881         rc = bnxt_fw_init_one_p1(bp);
11882         if (rc)
11883                 goto init_err_pci_clean;
11884
11885         if (BNXT_CHIP_P5(bp))
11886                 bp->flags |= BNXT_FLAG_CHIP_P5;
11887
11888         rc = bnxt_fw_init_one_p2(bp);
11889         if (rc)
11890                 goto init_err_pci_clean;
11891
11892         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
11893                            NETIF_F_TSO | NETIF_F_TSO6 |
11894                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
11895                            NETIF_F_GSO_IPXIP4 |
11896                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
11897                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
11898                            NETIF_F_RXCSUM | NETIF_F_GRO;
11899
11900         if (BNXT_SUPPORTS_TPA(bp))
11901                 dev->hw_features |= NETIF_F_LRO;
11902
11903         dev->hw_enc_features =
11904                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
11905                         NETIF_F_TSO | NETIF_F_TSO6 |
11906                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
11907                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
11908                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
11909         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
11910                                     NETIF_F_GSO_GRE_CSUM;
11911         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
11912         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
11913                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
11914         if (BNXT_SUPPORTS_TPA(bp))
11915                 dev->hw_features |= NETIF_F_GRO_HW;
11916         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
11917         if (dev->features & NETIF_F_GRO_HW)
11918                 dev->features &= ~NETIF_F_LRO;
11919         dev->priv_flags |= IFF_UNICAST_FLT;
11920
11921 #ifdef CONFIG_BNXT_SRIOV
11922         init_waitqueue_head(&bp->sriov_cfg_wait);
11923         mutex_init(&bp->sriov_lock);
11924 #endif
11925         if (BNXT_SUPPORTS_TPA(bp)) {
11926                 bp->gro_func = bnxt_gro_func_5730x;
11927                 if (BNXT_CHIP_P4(bp))
11928                         bp->gro_func = bnxt_gro_func_5731x;
11929                 else if (BNXT_CHIP_P5(bp))
11930                         bp->gro_func = bnxt_gro_func_5750x;
11931         }
11932         if (!BNXT_CHIP_P4_PLUS(bp))
11933                 bp->flags |= BNXT_FLAG_DOUBLE_DB;
11934
11935         bp->ulp_probe = bnxt_ulp_probe;
11936
11937         rc = bnxt_init_mac_addr(bp);
11938         if (rc) {
11939                 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
11940                 rc = -EADDRNOTAVAIL;
11941                 goto init_err_pci_clean;
11942         }
11943
11944         if (BNXT_PF(bp)) {
11945                 /* Read the adapter's DSN to use as the eswitch switch_id */
11946                 rc = bnxt_pcie_dsn_get(bp, bp->dsn);
11947         }
11948
11949         /* MTU range: 60 - FW defined max */
11950         dev->min_mtu = ETH_ZLEN;
11951         dev->max_mtu = bp->max_mtu;
11952
11953         rc = bnxt_probe_phy(bp, true);
11954         if (rc)
11955                 goto init_err_pci_clean;
11956
11957         bnxt_set_rx_skb_mode(bp, false);
11958         bnxt_set_tpa_flags(bp);
11959         bnxt_set_ring_params(bp);
11960         rc = bnxt_set_dflt_rings(bp, true);
11961         if (rc) {
11962                 netdev_err(bp->dev, "Not enough rings available.\n");
11963                 rc = -ENOMEM;
11964                 goto init_err_pci_clean;
11965         }
11966
11967         bnxt_fw_init_one_p3(bp);
11968
11969         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
11970                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
11971
11972         rc = bnxt_init_int_mode(bp);
11973         if (rc)
11974                 goto init_err_pci_clean;
11975
11976         /* No TC has been set yet and rings may have been trimmed due to
11977          * limited MSIX, so we re-initialize the TX rings per TC.
11978          */
11979         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11980
11981         if (BNXT_PF(bp)) {
11982                 if (!bnxt_pf_wq) {
11983                         bnxt_pf_wq =
11984                                 create_singlethread_workqueue("bnxt_pf_wq");
11985                         if (!bnxt_pf_wq) {
11986                                 dev_err(&pdev->dev, "Unable to create workqueue.\n");
11987                                 goto init_err_pci_clean;
11988                         }
11989                 }
11990                 bnxt_init_tc(bp);
11991         }
11992
11993         bnxt_dl_register(bp);
11994
11995         rc = register_netdev(dev);
11996         if (rc)
11997                 goto init_err_cleanup;
11998
11999         if (BNXT_PF(bp))
12000                 devlink_port_type_eth_set(&bp->dl_port, bp->dev);
12001         bnxt_dl_fw_reporters_create(bp);
12002
12003         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
12004                     board_info[ent->driver_data].name,
12005                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
12006         pcie_print_link_status(pdev);
12007
12008         return 0;
12009
12010 init_err_cleanup:
12011         bnxt_dl_unregister(bp);
12012         bnxt_shutdown_tc(bp);
12013         bnxt_clear_int_mode(bp);
12014
12015 init_err_pci_clean:
12016         bnxt_hwrm_func_drv_unrgtr(bp);
12017         bnxt_free_hwrm_short_cmd_req(bp);
12018         bnxt_free_hwrm_resources(bp);
12019         kfree(bp->fw_health);
12020         bp->fw_health = NULL;
12021         bnxt_cleanup_pci(bp);
12022         bnxt_free_ctx_mem(bp);
12023         kfree(bp->ctx);
12024         bp->ctx = NULL;
12025
12026 init_err_free:
12027         free_netdev(dev);
12028         return rc;
12029 }
12030
12031 static void bnxt_shutdown(struct pci_dev *pdev)
12032 {
12033         struct net_device *dev = pci_get_drvdata(pdev);
12034         struct bnxt *bp;
12035
12036         if (!dev)
12037                 return;
12038
12039         rtnl_lock();
12040         bp = netdev_priv(dev);
12041         if (!bp)
12042                 goto shutdown_exit;
12043
12044         if (netif_running(dev))
12045                 dev_close(dev);
12046
12047         bnxt_ulp_shutdown(bp);
12048         bnxt_clear_int_mode(bp);
12049         pci_disable_device(pdev);
12050
12051         if (system_state == SYSTEM_POWER_OFF) {
12052                 pci_wake_from_d3(pdev, bp->wol);
12053                 pci_set_power_state(pdev, PCI_D3hot);
12054         }
12055
12056 shutdown_exit:
12057         rtnl_unlock();
12058 }
12059
12060 #ifdef CONFIG_PM_SLEEP
12061 static int bnxt_suspend(struct device *device)
12062 {
12063         struct net_device *dev = dev_get_drvdata(device);
12064         struct bnxt *bp = netdev_priv(dev);
12065         int rc = 0;
12066
12067         rtnl_lock();
12068         bnxt_ulp_stop(bp);
12069         if (netif_running(dev)) {
12070                 netif_device_detach(dev);
12071                 rc = bnxt_close(dev);
12072         }
12073         bnxt_hwrm_func_drv_unrgtr(bp);
12074         pci_disable_device(bp->pdev);
12075         bnxt_free_ctx_mem(bp);
12076         kfree(bp->ctx);
12077         bp->ctx = NULL;
12078         rtnl_unlock();
12079         return rc;
12080 }
12081
12082 static int bnxt_resume(struct device *device)
12083 {
12084         struct net_device *dev = dev_get_drvdata(device);
12085         struct bnxt *bp = netdev_priv(dev);
12086         int rc = 0;
12087
12088         rtnl_lock();
12089         rc = pci_enable_device(bp->pdev);
12090         if (rc) {
12091                 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
12092                            rc);
12093                 goto resume_exit;
12094         }
12095         pci_set_master(bp->pdev);
12096         if (bnxt_hwrm_ver_get(bp)) {
12097                 rc = -ENODEV;
12098                 goto resume_exit;
12099         }
12100         rc = bnxt_hwrm_func_reset(bp);
12101         if (rc) {
12102                 rc = -EBUSY;
12103                 goto resume_exit;
12104         }
12105
12106         if (bnxt_hwrm_queue_qportcfg(bp)) {
12107                 rc = -ENODEV;
12108                 goto resume_exit;
12109         }
12110
12111         if (bp->hwrm_spec_code >= 0x10803) {
12112                 if (bnxt_alloc_ctx_mem(bp)) {
12113                         rc = -ENODEV;
12114                         goto resume_exit;
12115                 }
12116         }
12117         if (BNXT_NEW_RM(bp))
12118                 bnxt_hwrm_func_resc_qcaps(bp, false);
12119
12120         if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
12121                 rc = -ENODEV;
12122                 goto resume_exit;
12123         }
12124
12125         bnxt_get_wol_settings(bp);
12126         if (netif_running(dev)) {
12127                 rc = bnxt_open(dev);
12128                 if (!rc)
12129                         netif_device_attach(dev);
12130         }
12131
12132 resume_exit:
12133         bnxt_ulp_start(bp, rc);
12134         rtnl_unlock();
12135         return rc;
12136 }
12137
12138 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
12139 #define BNXT_PM_OPS (&bnxt_pm_ops)
12140
12141 #else
12142
12143 #define BNXT_PM_OPS NULL
12144
12145 #endif /* CONFIG_PM_SLEEP */
12146
12147 /**
12148  * bnxt_io_error_detected - called when PCI error is detected
12149  * @pdev: Pointer to PCI device
12150  * @state: The current pci connection state
12151  *
12152  * This function is called after a PCI bus error affecting
12153  * this device has been detected.
12154  */
12155 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
12156                                                pci_channel_state_t state)
12157 {
12158         struct net_device *netdev = pci_get_drvdata(pdev);
12159         struct bnxt *bp = netdev_priv(netdev);
12160
12161         netdev_info(netdev, "PCI I/O error detected\n");
12162
12163         rtnl_lock();
12164         netif_device_detach(netdev);
12165
12166         bnxt_ulp_stop(bp);
12167
12168         if (state == pci_channel_io_perm_failure) {
12169                 rtnl_unlock();
12170                 return PCI_ERS_RESULT_DISCONNECT;
12171         }
12172
12173         if (netif_running(netdev))
12174                 bnxt_close(netdev);
12175
12176         pci_disable_device(pdev);
12177         rtnl_unlock();
12178
12179         /* Request a slot slot reset. */
12180         return PCI_ERS_RESULT_NEED_RESET;
12181 }
12182
12183 /**
12184  * bnxt_io_slot_reset - called after the pci bus has been reset.
12185  * @pdev: Pointer to PCI device
12186  *
12187  * Restart the card from scratch, as if from a cold-boot.
12188  * At this point, the card has exprienced a hard reset,
12189  * followed by fixups by BIOS, and has its config space
12190  * set up identically to what it was at cold boot.
12191  */
12192 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
12193 {
12194         struct net_device *netdev = pci_get_drvdata(pdev);
12195         struct bnxt *bp = netdev_priv(netdev);
12196         int err = 0;
12197         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
12198
12199         netdev_info(bp->dev, "PCI Slot Reset\n");
12200
12201         rtnl_lock();
12202
12203         if (pci_enable_device(pdev)) {
12204                 dev_err(&pdev->dev,
12205                         "Cannot re-enable PCI device after reset.\n");
12206         } else {
12207                 pci_set_master(pdev);
12208
12209                 err = bnxt_hwrm_func_reset(bp);
12210                 if (!err && netif_running(netdev))
12211                         err = bnxt_open(netdev);
12212
12213                 if (!err)
12214                         result = PCI_ERS_RESULT_RECOVERED;
12215                 bnxt_ulp_start(bp, err);
12216         }
12217
12218         if (result != PCI_ERS_RESULT_RECOVERED) {
12219                 if (netif_running(netdev))
12220                         dev_close(netdev);
12221                 pci_disable_device(pdev);
12222         }
12223
12224         rtnl_unlock();
12225
12226         return result;
12227 }
12228
12229 /**
12230  * bnxt_io_resume - called when traffic can start flowing again.
12231  * @pdev: Pointer to PCI device
12232  *
12233  * This callback is called when the error recovery driver tells
12234  * us that its OK to resume normal operation.
12235  */
12236 static void bnxt_io_resume(struct pci_dev *pdev)
12237 {
12238         struct net_device *netdev = pci_get_drvdata(pdev);
12239
12240         rtnl_lock();
12241
12242         netif_device_attach(netdev);
12243
12244         rtnl_unlock();
12245 }
12246
12247 static const struct pci_error_handlers bnxt_err_handler = {
12248         .error_detected = bnxt_io_error_detected,
12249         .slot_reset     = bnxt_io_slot_reset,
12250         .resume         = bnxt_io_resume
12251 };
12252
12253 static struct pci_driver bnxt_pci_driver = {
12254         .name           = DRV_MODULE_NAME,
12255         .id_table       = bnxt_pci_tbl,
12256         .probe          = bnxt_init_one,
12257         .remove         = bnxt_remove_one,
12258         .shutdown       = bnxt_shutdown,
12259         .driver.pm      = BNXT_PM_OPS,
12260         .err_handler    = &bnxt_err_handler,
12261 #if defined(CONFIG_BNXT_SRIOV)
12262         .sriov_configure = bnxt_sriov_configure,
12263 #endif
12264 };
12265
12266 static int __init bnxt_init(void)
12267 {
12268         bnxt_debug_init();
12269         return pci_register_driver(&bnxt_pci_driver);
12270 }
12271
12272 static void __exit bnxt_exit(void)
12273 {
12274         pci_unregister_driver(&bnxt_pci_driver);
12275         if (bnxt_pf_wq)
12276                 destroy_workqueue(bnxt_pf_wq);
12277         bnxt_debug_exit();
12278 }
12279
12280 module_init(bnxt_init);
12281 module_exit(bnxt_exit);