Merge tag 'riscv-for-linus-5.15-mw1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION                                 \
73         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
74         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
75         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
76         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT              (5*HZ)
83
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("QLogic "
86                    "BCM57710/57711/57711E/"
87                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88                    "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_FIRMWARE(FW_FILE_NAME_E1);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
92 MODULE_FIRMWARE(FW_FILE_NAME_E2);
93
94 int bnx2x_num_queues;
95 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
96 MODULE_PARM_DESC(num_queues,
97                  " Set number of queues (default is as a number of CPUs)");
98
99 static int disable_tpa;
100 module_param(disable_tpa, int, 0444);
101 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
102
103 static int int_mode;
104 module_param(int_mode, int, 0444);
105 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
106                                 "(1 INT#x; 2 MSI)");
107
108 static int dropless_fc;
109 module_param(dropless_fc, int, 0444);
110 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
111
112 static int mrrs = -1;
113 module_param(mrrs, int, 0444);
114 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
115
116 static int debug;
117 module_param(debug, int, 0444);
118 MODULE_PARM_DESC(debug, " Default debug msglevel");
119
120 static struct workqueue_struct *bnx2x_wq;
121 struct workqueue_struct *bnx2x_iov_wq;
122
123 struct bnx2x_mac_vals {
124         u32 xmac_addr;
125         u32 xmac_val;
126         u32 emac_addr;
127         u32 emac_val;
128         u32 umac_addr[2];
129         u32 umac_val[2];
130         u32 bmac_addr;
131         u32 bmac_val[2];
132 };
133
134 enum bnx2x_board_type {
135         BCM57710 = 0,
136         BCM57711,
137         BCM57711E,
138         BCM57712,
139         BCM57712_MF,
140         BCM57712_VF,
141         BCM57800,
142         BCM57800_MF,
143         BCM57800_VF,
144         BCM57810,
145         BCM57810_MF,
146         BCM57810_VF,
147         BCM57840_4_10,
148         BCM57840_2_20,
149         BCM57840_MF,
150         BCM57840_VF,
151         BCM57811,
152         BCM57811_MF,
153         BCM57840_O,
154         BCM57840_MFO,
155         BCM57811_VF
156 };
157
158 /* indexed by board_type, above */
159 static struct {
160         char *name;
161 } board_info[] = {
162         [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
163         [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
164         [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
165         [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
166         [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
167         [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
168         [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
169         [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
170         [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
171         [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
172         [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
173         [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
174         [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
175         [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
176         [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
177         [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
178         [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
179         [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
180         [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
181         [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182         [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
183 };
184
185 #ifndef PCI_DEVICE_ID_NX2_57710
186 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
187 #endif
188 #ifndef PCI_DEVICE_ID_NX2_57711
189 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711E
192 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57712
195 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712_MF
198 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_VF
201 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57800
204 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800_MF
207 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_VF
210 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57810
213 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810_MF
216 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57840_O
219 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57810_VF
222 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
225 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
228 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
231 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MF
234 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_VF
237 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57811
240 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811_MF
243 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_VF
246 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
247 #endif
248
249 static const struct pci_device_id bnx2x_pci_tbl[] = {
250         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
251         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
252         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
263         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
270         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274         { 0 }
275 };
276
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278
279 const u32 dmae_reg_go_c[] = {
280         DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
281         DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
282         DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
283         DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
284 };
285
286 /* Global resources for unloading a previously loaded device */
287 #define BNX2X_PREV_WAIT_NEEDED 1
288 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
289 static LIST_HEAD(bnx2x_prev_list);
290
291 /* Forward declaration */
292 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
293 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
294 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
295
296 /****************************************************************************
297 * General service functions
298 ****************************************************************************/
299
300 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
301
302 static void __storm_memset_dma_mapping(struct bnx2x *bp,
303                                        u32 addr, dma_addr_t mapping)
304 {
305         REG_WR(bp,  addr, U64_LO(mapping));
306         REG_WR(bp,  addr + 4, U64_HI(mapping));
307 }
308
309 static void storm_memset_spq_addr(struct bnx2x *bp,
310                                   dma_addr_t mapping, u16 abs_fid)
311 {
312         u32 addr = XSEM_REG_FAST_MEMORY +
313                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
314
315         __storm_memset_dma_mapping(bp, addr, mapping);
316 }
317
318 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
319                                   u16 pf_id)
320 {
321         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
322                 pf_id);
323         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
324                 pf_id);
325         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
326                 pf_id);
327         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
328                 pf_id);
329 }
330
331 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
332                                  u8 enable)
333 {
334         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
335                 enable);
336         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
337                 enable);
338         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
339                 enable);
340         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
341                 enable);
342 }
343
344 static void storm_memset_eq_data(struct bnx2x *bp,
345                                  struct event_ring_data *eq_data,
346                                 u16 pfid)
347 {
348         size_t size = sizeof(struct event_ring_data);
349
350         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
351
352         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
353 }
354
355 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
356                                  u16 pfid)
357 {
358         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
359         REG_WR16(bp, addr, eq_prod);
360 }
361
362 /* used only at init
363  * locking is done by mcp
364  */
365 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
366 {
367         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
368         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
369         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
370                                PCICFG_VENDOR_ID_OFFSET);
371 }
372
373 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
374 {
375         u32 val;
376
377         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
378         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
379         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
380                                PCICFG_VENDOR_ID_OFFSET);
381
382         return val;
383 }
384
385 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
386 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
387 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
388 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
389 #define DMAE_DP_DST_NONE        "dst_addr [none]"
390
391 static void bnx2x_dp_dmae(struct bnx2x *bp,
392                           struct dmae_command *dmae, int msglvl)
393 {
394         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
395         int i;
396
397         switch (dmae->opcode & DMAE_COMMAND_DST) {
398         case DMAE_CMD_DST_PCI:
399                 if (src_type == DMAE_CMD_SRC_PCI)
400                         DP(msglvl, "DMAE: opcode 0x%08x\n"
401                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
402                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
403                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
404                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
405                            dmae->comp_addr_hi, dmae->comp_addr_lo,
406                            dmae->comp_val);
407                 else
408                         DP(msglvl, "DMAE: opcode 0x%08x\n"
409                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
410                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
411                            dmae->opcode, dmae->src_addr_lo >> 2,
412                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
413                            dmae->comp_addr_hi, dmae->comp_addr_lo,
414                            dmae->comp_val);
415                 break;
416         case DMAE_CMD_DST_GRC:
417                 if (src_type == DMAE_CMD_SRC_PCI)
418                         DP(msglvl, "DMAE: opcode 0x%08x\n"
419                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
420                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
421                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
422                            dmae->len, dmae->dst_addr_lo >> 2,
423                            dmae->comp_addr_hi, dmae->comp_addr_lo,
424                            dmae->comp_val);
425                 else
426                         DP(msglvl, "DMAE: opcode 0x%08x\n"
427                            "src [%08x], len [%d*4], dst [%08x]\n"
428                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
429                            dmae->opcode, dmae->src_addr_lo >> 2,
430                            dmae->len, dmae->dst_addr_lo >> 2,
431                            dmae->comp_addr_hi, dmae->comp_addr_lo,
432                            dmae->comp_val);
433                 break;
434         default:
435                 if (src_type == DMAE_CMD_SRC_PCI)
436                         DP(msglvl, "DMAE: opcode 0x%08x\n"
437                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
438                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
439                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
440                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
441                            dmae->comp_val);
442                 else
443                         DP(msglvl, "DMAE: opcode 0x%08x\n"
444                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
445                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
446                            dmae->opcode, dmae->src_addr_lo >> 2,
447                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
448                            dmae->comp_val);
449                 break;
450         }
451
452         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
453                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
454                    i, *(((u32 *)dmae) + i));
455 }
456
457 /* copy command into DMAE command memory and set DMAE command go */
458 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
459 {
460         u32 cmd_offset;
461         int i;
462
463         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
464         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
465                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
466         }
467         REG_WR(bp, dmae_reg_go_c[idx], 1);
468 }
469
470 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
471 {
472         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
473                            DMAE_CMD_C_ENABLE);
474 }
475
476 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
477 {
478         return opcode & ~DMAE_CMD_SRC_RESET;
479 }
480
481 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
482                              bool with_comp, u8 comp_type)
483 {
484         u32 opcode = 0;
485
486         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
487                    (dst_type << DMAE_COMMAND_DST_SHIFT));
488
489         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
490
491         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
492         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
493                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
494         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
495
496 #ifdef __BIG_ENDIAN
497         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
498 #else
499         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
500 #endif
501         if (with_comp)
502                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
503         return opcode;
504 }
505
506 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
507                                       struct dmae_command *dmae,
508                                       u8 src_type, u8 dst_type)
509 {
510         memset(dmae, 0, sizeof(struct dmae_command));
511
512         /* set the opcode */
513         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
514                                          true, DMAE_COMP_PCI);
515
516         /* fill in the completion parameters */
517         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
518         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
519         dmae->comp_val = DMAE_COMP_VAL;
520 }
521
522 /* issue a dmae command over the init-channel and wait for completion */
523 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
524                                u32 *comp)
525 {
526         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
527         int rc = 0;
528
529         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
530
531         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
532          * as long as this code is called both from syscall context and
533          * from ndo_set_rx_mode() flow that may be called from BH.
534          */
535
536         spin_lock_bh(&bp->dmae_lock);
537
538         /* reset completion */
539         *comp = 0;
540
541         /* post the command on the channel used for initializations */
542         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
543
544         /* wait for completion */
545         udelay(5);
546         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
547
548                 if (!cnt ||
549                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
550                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
551                         BNX2X_ERR("DMAE timeout!\n");
552                         rc = DMAE_TIMEOUT;
553                         goto unlock;
554                 }
555                 cnt--;
556                 udelay(50);
557         }
558         if (*comp & DMAE_PCI_ERR_FLAG) {
559                 BNX2X_ERR("DMAE PCI error!\n");
560                 rc = DMAE_PCI_ERROR;
561         }
562
563 unlock:
564
565         spin_unlock_bh(&bp->dmae_lock);
566
567         return rc;
568 }
569
570 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
571                       u32 len32)
572 {
573         int rc;
574         struct dmae_command dmae;
575
576         if (!bp->dmae_ready) {
577                 u32 *data = bnx2x_sp(bp, wb_data[0]);
578
579                 if (CHIP_IS_E1(bp))
580                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
581                 else
582                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
583                 return;
584         }
585
586         /* set opcode and fixed command fields */
587         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
588
589         /* fill in addresses and len */
590         dmae.src_addr_lo = U64_LO(dma_addr);
591         dmae.src_addr_hi = U64_HI(dma_addr);
592         dmae.dst_addr_lo = dst_addr >> 2;
593         dmae.dst_addr_hi = 0;
594         dmae.len = len32;
595
596         /* issue the command and wait for completion */
597         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
598         if (rc) {
599                 BNX2X_ERR("DMAE returned failure %d\n", rc);
600 #ifdef BNX2X_STOP_ON_ERROR
601                 bnx2x_panic();
602 #endif
603         }
604 }
605
606 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
607 {
608         int rc;
609         struct dmae_command dmae;
610
611         if (!bp->dmae_ready) {
612                 u32 *data = bnx2x_sp(bp, wb_data[0]);
613                 int i;
614
615                 if (CHIP_IS_E1(bp))
616                         for (i = 0; i < len32; i++)
617                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
618                 else
619                         for (i = 0; i < len32; i++)
620                                 data[i] = REG_RD(bp, src_addr + i*4);
621
622                 return;
623         }
624
625         /* set opcode and fixed command fields */
626         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
627
628         /* fill in addresses and len */
629         dmae.src_addr_lo = src_addr >> 2;
630         dmae.src_addr_hi = 0;
631         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
632         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
633         dmae.len = len32;
634
635         /* issue the command and wait for completion */
636         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
637         if (rc) {
638                 BNX2X_ERR("DMAE returned failure %d\n", rc);
639 #ifdef BNX2X_STOP_ON_ERROR
640                 bnx2x_panic();
641 #endif
642         }
643 }
644
645 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
646                                       u32 addr, u32 len)
647 {
648         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
649         int offset = 0;
650
651         while (len > dmae_wr_max) {
652                 bnx2x_write_dmae(bp, phys_addr + offset,
653                                  addr + offset, dmae_wr_max);
654                 offset += dmae_wr_max * 4;
655                 len -= dmae_wr_max;
656         }
657
658         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
659 }
660
661 enum storms {
662            XSTORM,
663            TSTORM,
664            CSTORM,
665            USTORM,
666            MAX_STORMS
667 };
668
669 #define STORMS_NUM 4
670 #define REGS_IN_ENTRY 4
671
672 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
673                                               enum storms storm,
674                                               int entry)
675 {
676         switch (storm) {
677         case XSTORM:
678                 return XSTORM_ASSERT_LIST_OFFSET(entry);
679         case TSTORM:
680                 return TSTORM_ASSERT_LIST_OFFSET(entry);
681         case CSTORM:
682                 return CSTORM_ASSERT_LIST_OFFSET(entry);
683         case USTORM:
684                 return USTORM_ASSERT_LIST_OFFSET(entry);
685         case MAX_STORMS:
686         default:
687                 BNX2X_ERR("unknown storm\n");
688         }
689         return -EINVAL;
690 }
691
692 static int bnx2x_mc_assert(struct bnx2x *bp)
693 {
694         char last_idx;
695         int i, j, rc = 0;
696         enum storms storm;
697         u32 regs[REGS_IN_ENTRY];
698         u32 bar_storm_intmem[STORMS_NUM] = {
699                 BAR_XSTRORM_INTMEM,
700                 BAR_TSTRORM_INTMEM,
701                 BAR_CSTRORM_INTMEM,
702                 BAR_USTRORM_INTMEM
703         };
704         u32 storm_assert_list_index[STORMS_NUM] = {
705                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
706                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
707                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
708                 USTORM_ASSERT_LIST_INDEX_OFFSET
709         };
710         char *storms_string[STORMS_NUM] = {
711                 "XSTORM",
712                 "TSTORM",
713                 "CSTORM",
714                 "USTORM"
715         };
716
717         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
718                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
719                                    storm_assert_list_index[storm]);
720                 if (last_idx)
721                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
722                                   storms_string[storm], last_idx);
723
724                 /* print the asserts */
725                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
726                         /* read a single assert entry */
727                         for (j = 0; j < REGS_IN_ENTRY; j++)
728                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
729                                           bnx2x_get_assert_list_entry(bp,
730                                                                       storm,
731                                                                       i) +
732                                           sizeof(u32) * j);
733
734                         /* log entry if it contains a valid assert */
735                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
736                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
737                                           storms_string[storm], i, regs[3],
738                                           regs[2], regs[1], regs[0]);
739                                 rc++;
740                         } else {
741                                 break;
742                         }
743                 }
744         }
745
746         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
747                   CHIP_IS_E1(bp) ? "everest1" :
748                   CHIP_IS_E1H(bp) ? "everest1h" :
749                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
750                   BCM_5710_FW_MAJOR_VERSION,
751                   BCM_5710_FW_MINOR_VERSION,
752                   BCM_5710_FW_REVISION_VERSION);
753
754         return rc;
755 }
756
757 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
758 #define SCRATCH_BUFFER_SIZE(bp) \
759         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
760
761 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
762 {
763         u32 addr, val;
764         u32 mark, offset;
765         __be32 data[9];
766         int word;
767         u32 trace_shmem_base;
768         if (BP_NOMCP(bp)) {
769                 BNX2X_ERR("NO MCP - can not dump\n");
770                 return;
771         }
772         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
773                 (bp->common.bc_ver & 0xff0000) >> 16,
774                 (bp->common.bc_ver & 0xff00) >> 8,
775                 (bp->common.bc_ver & 0xff));
776
777         if (pci_channel_offline(bp->pdev)) {
778                 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
779                 return;
780         }
781
782         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
783         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
784                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
785
786         if (BP_PATH(bp) == 0)
787                 trace_shmem_base = bp->common.shmem_base;
788         else
789                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
790
791         /* sanity */
792         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
793             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
794                                 SCRATCH_BUFFER_SIZE(bp)) {
795                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
796                           trace_shmem_base);
797                 return;
798         }
799
800         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
801
802         /* validate TRCB signature */
803         mark = REG_RD(bp, addr);
804         if (mark != MFW_TRACE_SIGNATURE) {
805                 BNX2X_ERR("Trace buffer signature is missing.");
806                 return ;
807         }
808
809         /* read cyclic buffer pointer */
810         addr += 4;
811         mark = REG_RD(bp, addr);
812         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
813         if (mark >= trace_shmem_base || mark < addr + 4) {
814                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
815                 return;
816         }
817         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
818
819         printk("%s", lvl);
820
821         /* dump buffer after the mark */
822         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
823                 for (word = 0; word < 8; word++)
824                         data[word] = htonl(REG_RD(bp, offset + 4*word));
825                 data[8] = 0x0;
826                 pr_cont("%s", (char *)data);
827         }
828
829         /* dump buffer before the mark */
830         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
831                 for (word = 0; word < 8; word++)
832                         data[word] = htonl(REG_RD(bp, offset + 4*word));
833                 data[8] = 0x0;
834                 pr_cont("%s", (char *)data);
835         }
836         printk("%s" "end of fw dump\n", lvl);
837 }
838
839 static void bnx2x_fw_dump(struct bnx2x *bp)
840 {
841         bnx2x_fw_dump_lvl(bp, KERN_ERR);
842 }
843
844 static void bnx2x_hc_int_disable(struct bnx2x *bp)
845 {
846         int port = BP_PORT(bp);
847         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
848         u32 val = REG_RD(bp, addr);
849
850         /* in E1 we must use only PCI configuration space to disable
851          * MSI/MSIX capability
852          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
853          */
854         if (CHIP_IS_E1(bp)) {
855                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
856                  * Use mask register to prevent from HC sending interrupts
857                  * after we exit the function
858                  */
859                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
860
861                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
862                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
863                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
864         } else
865                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
867                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
868                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
869
870         DP(NETIF_MSG_IFDOWN,
871            "write %x to HC %d (addr 0x%x)\n",
872            val, port, addr);
873
874         REG_WR(bp, addr, val);
875         if (REG_RD(bp, addr) != val)
876                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
877 }
878
879 static void bnx2x_igu_int_disable(struct bnx2x *bp)
880 {
881         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
882
883         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
884                  IGU_PF_CONF_INT_LINE_EN |
885                  IGU_PF_CONF_ATTN_BIT_EN);
886
887         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
888
889         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
890         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
891                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
892 }
893
894 static void bnx2x_int_disable(struct bnx2x *bp)
895 {
896         if (bp->common.int_block == INT_BLOCK_HC)
897                 bnx2x_hc_int_disable(bp);
898         else
899                 bnx2x_igu_int_disable(bp);
900 }
901
902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
903 {
904         int i;
905         u16 j;
906         struct hc_sp_status_block_data sp_sb_data;
907         int func = BP_FUNC(bp);
908 #ifdef BNX2X_STOP_ON_ERROR
909         u16 start = 0, end = 0;
910         u8 cos;
911 #endif
912         if (IS_PF(bp) && disable_int)
913                 bnx2x_int_disable(bp);
914
915         bp->stats_state = STATS_STATE_DISABLED;
916         bp->eth_stats.unrecoverable_error++;
917         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
918
919         BNX2X_ERR("begin crash dump -----------------\n");
920
921         /* Indices */
922         /* Common */
923         if (IS_PF(bp)) {
924                 struct host_sp_status_block *def_sb = bp->def_status_blk;
925                 int data_size, cstorm_offset;
926
927                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928                           bp->def_idx, bp->def_att_idx, bp->attn_state,
929                           bp->spq_prod_idx, bp->stats_counter);
930                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
931                           def_sb->atten_status_block.attn_bits,
932                           def_sb->atten_status_block.attn_bits_ack,
933                           def_sb->atten_status_block.status_block_id,
934                           def_sb->atten_status_block.attn_bits_index);
935                 BNX2X_ERR("     def (");
936                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
937                         pr_cont("0x%x%s",
938                                 def_sb->sp_sb.index_values[i],
939                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
940
941                 data_size = sizeof(struct hc_sp_status_block_data) /
942                             sizeof(u32);
943                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
944                 for (i = 0; i < data_size; i++)
945                         *((u32 *)&sp_sb_data + i) =
946                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
947                                            i * sizeof(u32));
948
949                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
950                         sp_sb_data.igu_sb_id,
951                         sp_sb_data.igu_seg_id,
952                         sp_sb_data.p_func.pf_id,
953                         sp_sb_data.p_func.vnic_id,
954                         sp_sb_data.p_func.vf_id,
955                         sp_sb_data.p_func.vf_valid,
956                         sp_sb_data.state);
957         }
958
959         for_each_eth_queue(bp, i) {
960                 struct bnx2x_fastpath *fp = &bp->fp[i];
961                 int loop;
962                 struct hc_status_block_data_e2 sb_data_e2;
963                 struct hc_status_block_data_e1x sb_data_e1x;
964                 struct hc_status_block_sm  *hc_sm_p =
965                         CHIP_IS_E1x(bp) ?
966                         sb_data_e1x.common.state_machine :
967                         sb_data_e2.common.state_machine;
968                 struct hc_index_data *hc_index_p =
969                         CHIP_IS_E1x(bp) ?
970                         sb_data_e1x.index_data :
971                         sb_data_e2.index_data;
972                 u8 data_size, cos;
973                 u32 *sb_data_p;
974                 struct bnx2x_fp_txdata txdata;
975
976                 if (!bp->fp)
977                         break;
978
979                 if (!fp->rx_cons_sb)
980                         continue;
981
982                 /* Rx */
983                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
984                           i, fp->rx_bd_prod, fp->rx_bd_cons,
985                           fp->rx_comp_prod,
986                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
987                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
988                           fp->rx_sge_prod, fp->last_max_sge,
989                           le16_to_cpu(fp->fp_hc_idx));
990
991                 /* Tx */
992                 for_each_cos_in_tx_queue(fp, cos)
993                 {
994                         if (!fp->txdata_ptr[cos])
995                                 break;
996
997                         txdata = *fp->txdata_ptr[cos];
998
999                         if (!txdata.tx_cons_sb)
1000                                 continue;
1001
1002                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1003                                   i, txdata.tx_pkt_prod,
1004                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005                                   txdata.tx_bd_cons,
1006                                   le16_to_cpu(*txdata.tx_cons_sb));
1007                 }
1008
1009                 loop = CHIP_IS_E1x(bp) ?
1010                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1011
1012                 /* host sb data */
1013
1014                 if (IS_FCOE_FP(fp))
1015                         continue;
1016
1017                 BNX2X_ERR("     run indexes (");
1018                 for (j = 0; j < HC_SB_MAX_SM; j++)
1019                         pr_cont("0x%x%s",
1020                                fp->sb_running_index[j],
1021                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1022
1023                 BNX2X_ERR("     indexes (");
1024                 for (j = 0; j < loop; j++)
1025                         pr_cont("0x%x%s",
1026                                fp->sb_index_values[j],
1027                                (j == loop - 1) ? ")" : " ");
1028
1029                 /* VF cannot access FW refelection for status block */
1030                 if (IS_VF(bp))
1031                         continue;
1032
1033                 /* fw sb data */
1034                 data_size = CHIP_IS_E1x(bp) ?
1035                         sizeof(struct hc_status_block_data_e1x) :
1036                         sizeof(struct hc_status_block_data_e2);
1037                 data_size /= sizeof(u32);
1038                 sb_data_p = CHIP_IS_E1x(bp) ?
1039                         (u32 *)&sb_data_e1x :
1040                         (u32 *)&sb_data_e2;
1041                 /* copy sb data in here */
1042                 for (j = 0; j < data_size; j++)
1043                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045                                 j * sizeof(u32));
1046
1047                 if (!CHIP_IS_E1x(bp)) {
1048                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1049                                 sb_data_e2.common.p_func.pf_id,
1050                                 sb_data_e2.common.p_func.vf_id,
1051                                 sb_data_e2.common.p_func.vf_valid,
1052                                 sb_data_e2.common.p_func.vnic_id,
1053                                 sb_data_e2.common.same_igu_sb_1b,
1054                                 sb_data_e2.common.state);
1055                 } else {
1056                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057                                 sb_data_e1x.common.p_func.pf_id,
1058                                 sb_data_e1x.common.p_func.vf_id,
1059                                 sb_data_e1x.common.p_func.vf_valid,
1060                                 sb_data_e1x.common.p_func.vnic_id,
1061                                 sb_data_e1x.common.same_igu_sb_1b,
1062                                 sb_data_e1x.common.state);
1063                 }
1064
1065                 /* SB_SMs data */
1066                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1067                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068                                 j, hc_sm_p[j].__flags,
1069                                 hc_sm_p[j].igu_sb_id,
1070                                 hc_sm_p[j].igu_seg_id,
1071                                 hc_sm_p[j].time_to_expire,
1072                                 hc_sm_p[j].timer_value);
1073                 }
1074
1075                 /* Indices data */
1076                 for (j = 0; j < loop; j++) {
1077                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078                                hc_index_p[j].flags,
1079                                hc_index_p[j].timeout);
1080                 }
1081         }
1082
1083 #ifdef BNX2X_STOP_ON_ERROR
1084         if (IS_PF(bp)) {
1085                 /* event queue */
1086                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087                 for (i = 0; i < NUM_EQ_DESC; i++) {
1088                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1089
1090                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091                                   i, bp->eq_ring[i].message.opcode,
1092                                   bp->eq_ring[i].message.error);
1093                         BNX2X_ERR("data: %x %x %x\n",
1094                                   data[0], data[1], data[2]);
1095                 }
1096         }
1097
1098         /* Rings */
1099         /* Rx */
1100         for_each_valid_rx_queue(bp, i) {
1101                 struct bnx2x_fastpath *fp = &bp->fp[i];
1102
1103                 if (!bp->fp)
1104                         break;
1105
1106                 if (!fp->rx_cons_sb)
1107                         continue;
1108
1109                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111                 for (j = start; j != end; j = RX_BD(j + 1)) {
1112                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1114
1115                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1116                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1117                 }
1118
1119                 start = RX_SGE(fp->rx_sge_prod);
1120                 end = RX_SGE(fp->last_max_sge);
1121                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1122                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1124
1125                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1126                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1127                 }
1128
1129                 start = RCQ_BD(fp->rx_comp_cons - 10);
1130                 end = RCQ_BD(fp->rx_comp_cons + 503);
1131                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1133
1134                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1136                 }
1137         }
1138
1139         /* Tx */
1140         for_each_valid_tx_queue(bp, i) {
1141                 struct bnx2x_fastpath *fp = &bp->fp[i];
1142
1143                 if (!bp->fp)
1144                         break;
1145
1146                 for_each_cos_in_tx_queue(fp, cos) {
1147                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1148
1149                         if (!fp->txdata_ptr[cos])
1150                                 break;
1151
1152                         if (!txdata->tx_cons_sb)
1153                                 continue;
1154
1155                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157                         for (j = start; j != end; j = TX_BD(j + 1)) {
1158                                 struct sw_tx_bd *sw_bd =
1159                                         &txdata->tx_buf_ring[j];
1160
1161                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162                                           i, cos, j, sw_bd->skb,
1163                                           sw_bd->first_bd);
1164                         }
1165
1166                         start = TX_BD(txdata->tx_bd_cons - 10);
1167                         end = TX_BD(txdata->tx_bd_cons + 254);
1168                         for (j = start; j != end; j = TX_BD(j + 1)) {
1169                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1170
1171                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172                                           i, cos, j, tx_bd[0], tx_bd[1],
1173                                           tx_bd[2], tx_bd[3]);
1174                         }
1175                 }
1176         }
1177 #endif
1178         if (IS_PF(bp)) {
1179                 int tmp_msg_en = bp->msg_enable;
1180
1181                 bnx2x_fw_dump(bp);
1182                 bp->msg_enable |= NETIF_MSG_HW;
1183                 BNX2X_ERR("Idle check (1st round) ----------\n");
1184                 bnx2x_idle_chk(bp);
1185                 BNX2X_ERR("Idle check (2nd round) ----------\n");
1186                 bnx2x_idle_chk(bp);
1187                 bp->msg_enable = tmp_msg_en;
1188                 bnx2x_mc_assert(bp);
1189         }
1190
1191         BNX2X_ERR("end crash dump -----------------\n");
1192 }
1193
1194 /*
1195  * FLR Support for E2
1196  *
1197  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1198  * initialization.
1199  */
1200 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1201 #define FLR_WAIT_INTERVAL       50      /* usec */
1202 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1203
1204 struct pbf_pN_buf_regs {
1205         int pN;
1206         u32 init_crd;
1207         u32 crd;
1208         u32 crd_freed;
1209 };
1210
1211 struct pbf_pN_cmd_regs {
1212         int pN;
1213         u32 lines_occup;
1214         u32 lines_freed;
1215 };
1216
1217 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1218                                      struct pbf_pN_buf_regs *regs,
1219                                      u32 poll_count)
1220 {
1221         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1222         u32 cur_cnt = poll_count;
1223
1224         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1225         crd = crd_start = REG_RD(bp, regs->crd);
1226         init_crd = REG_RD(bp, regs->init_crd);
1227
1228         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1229         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1230         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1231
1232         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1233                (init_crd - crd_start))) {
1234                 if (cur_cnt--) {
1235                         udelay(FLR_WAIT_INTERVAL);
1236                         crd = REG_RD(bp, regs->crd);
1237                         crd_freed = REG_RD(bp, regs->crd_freed);
1238                 } else {
1239                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1240                            regs->pN);
1241                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1242                            regs->pN, crd);
1243                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1244                            regs->pN, crd_freed);
1245                         break;
1246                 }
1247         }
1248         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1249            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1250 }
1251
1252 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1253                                      struct pbf_pN_cmd_regs *regs,
1254                                      u32 poll_count)
1255 {
1256         u32 occup, to_free, freed, freed_start;
1257         u32 cur_cnt = poll_count;
1258
1259         occup = to_free = REG_RD(bp, regs->lines_occup);
1260         freed = freed_start = REG_RD(bp, regs->lines_freed);
1261
1262         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1263         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1264
1265         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1266                 if (cur_cnt--) {
1267                         udelay(FLR_WAIT_INTERVAL);
1268                         occup = REG_RD(bp, regs->lines_occup);
1269                         freed = REG_RD(bp, regs->lines_freed);
1270                 } else {
1271                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1272                            regs->pN);
1273                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1274                            regs->pN, occup);
1275                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1276                            regs->pN, freed);
1277                         break;
1278                 }
1279         }
1280         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1281            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1282 }
1283
1284 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1285                                     u32 expected, u32 poll_count)
1286 {
1287         u32 cur_cnt = poll_count;
1288         u32 val;
1289
1290         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1291                 udelay(FLR_WAIT_INTERVAL);
1292
1293         return val;
1294 }
1295
1296 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1297                                     char *msg, u32 poll_cnt)
1298 {
1299         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1300         if (val != 0) {
1301                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1302                 return 1;
1303         }
1304         return 0;
1305 }
1306
1307 /* Common routines with VF FLR cleanup */
1308 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1309 {
1310         /* adjust polling timeout */
1311         if (CHIP_REV_IS_EMUL(bp))
1312                 return FLR_POLL_CNT * 2000;
1313
1314         if (CHIP_REV_IS_FPGA(bp))
1315                 return FLR_POLL_CNT * 120;
1316
1317         return FLR_POLL_CNT;
1318 }
1319
1320 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1321 {
1322         struct pbf_pN_cmd_regs cmd_regs[] = {
1323                 {0, (CHIP_IS_E3B0(bp)) ?
1324                         PBF_REG_TQ_OCCUPANCY_Q0 :
1325                         PBF_REG_P0_TQ_OCCUPANCY,
1326                     (CHIP_IS_E3B0(bp)) ?
1327                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1328                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1329                 {1, (CHIP_IS_E3B0(bp)) ?
1330                         PBF_REG_TQ_OCCUPANCY_Q1 :
1331                         PBF_REG_P1_TQ_OCCUPANCY,
1332                     (CHIP_IS_E3B0(bp)) ?
1333                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1334                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1335                 {4, (CHIP_IS_E3B0(bp)) ?
1336                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1337                         PBF_REG_P4_TQ_OCCUPANCY,
1338                     (CHIP_IS_E3B0(bp)) ?
1339                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1340                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1341         };
1342
1343         struct pbf_pN_buf_regs buf_regs[] = {
1344                 {0, (CHIP_IS_E3B0(bp)) ?
1345                         PBF_REG_INIT_CRD_Q0 :
1346                         PBF_REG_P0_INIT_CRD ,
1347                     (CHIP_IS_E3B0(bp)) ?
1348                         PBF_REG_CREDIT_Q0 :
1349                         PBF_REG_P0_CREDIT,
1350                     (CHIP_IS_E3B0(bp)) ?
1351                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1352                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1353                 {1, (CHIP_IS_E3B0(bp)) ?
1354                         PBF_REG_INIT_CRD_Q1 :
1355                         PBF_REG_P1_INIT_CRD,
1356                     (CHIP_IS_E3B0(bp)) ?
1357                         PBF_REG_CREDIT_Q1 :
1358                         PBF_REG_P1_CREDIT,
1359                     (CHIP_IS_E3B0(bp)) ?
1360                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1361                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1362                 {4, (CHIP_IS_E3B0(bp)) ?
1363                         PBF_REG_INIT_CRD_LB_Q :
1364                         PBF_REG_P4_INIT_CRD,
1365                     (CHIP_IS_E3B0(bp)) ?
1366                         PBF_REG_CREDIT_LB_Q :
1367                         PBF_REG_P4_CREDIT,
1368                     (CHIP_IS_E3B0(bp)) ?
1369                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1370                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1371         };
1372
1373         int i;
1374
1375         /* Verify the command queues are flushed P0, P1, P4 */
1376         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1377                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1378
1379         /* Verify the transmission buffers are flushed P0, P1, P4 */
1380         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1381                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1382 }
1383
1384 #define OP_GEN_PARAM(param) \
1385         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1386
1387 #define OP_GEN_TYPE(type) \
1388         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1389
1390 #define OP_GEN_AGG_VECT(index) \
1391         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1392
1393 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1394 {
1395         u32 op_gen_command = 0;
1396         u32 comp_addr = BAR_CSTRORM_INTMEM +
1397                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1398
1399         if (REG_RD(bp, comp_addr)) {
1400                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1401                 return 1;
1402         }
1403
1404         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1405         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1406         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1407         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1408
1409         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1410         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1411
1412         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1413                 BNX2X_ERR("FW final cleanup did not succeed\n");
1414                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1415                    (REG_RD(bp, comp_addr)));
1416                 bnx2x_panic();
1417                 return 1;
1418         }
1419         /* Zero completion for next FLR */
1420         REG_WR(bp, comp_addr, 0);
1421
1422         return 0;
1423 }
1424
1425 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1426 {
1427         u16 status;
1428
1429         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1430         return status & PCI_EXP_DEVSTA_TRPND;
1431 }
1432
1433 /* PF FLR specific routines
1434 */
1435 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1436 {
1437         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1438         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1439                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1440                         "CFC PF usage counter timed out",
1441                         poll_cnt))
1442                 return 1;
1443
1444         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1445         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1446                         DORQ_REG_PF_USAGE_CNT,
1447                         "DQ PF usage counter timed out",
1448                         poll_cnt))
1449                 return 1;
1450
1451         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1452         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1453                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1454                         "QM PF usage counter timed out",
1455                         poll_cnt))
1456                 return 1;
1457
1458         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1459         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1460                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1461                         "Timers VNIC usage counter timed out",
1462                         poll_cnt))
1463                 return 1;
1464         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1465                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1466                         "Timers NUM_SCANS usage counter timed out",
1467                         poll_cnt))
1468                 return 1;
1469
1470         /* Wait DMAE PF usage counter to zero */
1471         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1472                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1473                         "DMAE command register timed out",
1474                         poll_cnt))
1475                 return 1;
1476
1477         return 0;
1478 }
1479
1480 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1481 {
1482         u32 val;
1483
1484         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1485         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1486
1487         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1488         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1489
1490         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1491         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1492
1493         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1494         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1495
1496         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1497         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1498
1499         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1500         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1501
1502         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1503         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1504
1505         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1506         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1507            val);
1508 }
1509
1510 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1511 {
1512         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1513
1514         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1515
1516         /* Re-enable PF target read access */
1517         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1518
1519         /* Poll HW usage counters */
1520         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1521         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1522                 return -EBUSY;
1523
1524         /* Zero the igu 'trailing edge' and 'leading edge' */
1525
1526         /* Send the FW cleanup command */
1527         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1528                 return -EBUSY;
1529
1530         /* ATC cleanup */
1531
1532         /* Verify TX hw is flushed */
1533         bnx2x_tx_hw_flushed(bp, poll_cnt);
1534
1535         /* Wait 100ms (not adjusted according to platform) */
1536         msleep(100);
1537
1538         /* Verify no pending pci transactions */
1539         if (bnx2x_is_pcie_pending(bp->pdev))
1540                 BNX2X_ERR("PCIE Transactions still pending\n");
1541
1542         /* Debug */
1543         bnx2x_hw_enable_status(bp);
1544
1545         /*
1546          * Master enable - Due to WB DMAE writes performed before this
1547          * register is re-initialized as part of the regular function init
1548          */
1549         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1550
1551         return 0;
1552 }
1553
1554 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1555 {
1556         int port = BP_PORT(bp);
1557         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1558         u32 val = REG_RD(bp, addr);
1559         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1560         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1561         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1562
1563         if (msix) {
1564                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1565                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1566                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1567                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1568                 if (single_msix)
1569                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1570         } else if (msi) {
1571                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1572                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1573                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1574                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1575         } else {
1576                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1577                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1578                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1579                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1580
1581                 if (!CHIP_IS_E1(bp)) {
1582                         DP(NETIF_MSG_IFUP,
1583                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1584
1585                         REG_WR(bp, addr, val);
1586
1587                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1588                 }
1589         }
1590
1591         if (CHIP_IS_E1(bp))
1592                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1593
1594         DP(NETIF_MSG_IFUP,
1595            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1596            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1597
1598         REG_WR(bp, addr, val);
1599         /*
1600          * Ensure that HC_CONFIG is written before leading/trailing edge config
1601          */
1602         barrier();
1603
1604         if (!CHIP_IS_E1(bp)) {
1605                 /* init leading/trailing edge */
1606                 if (IS_MF(bp)) {
1607                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1608                         if (bp->port.pmf)
1609                                 /* enable nig and gpio3 attention */
1610                                 val |= 0x1100;
1611                 } else
1612                         val = 0xffff;
1613
1614                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1615                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1616         }
1617 }
1618
1619 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1620 {
1621         u32 val;
1622         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1623         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1624         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1625
1626         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1627
1628         if (msix) {
1629                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1630                          IGU_PF_CONF_SINGLE_ISR_EN);
1631                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1632                         IGU_PF_CONF_ATTN_BIT_EN);
1633
1634                 if (single_msix)
1635                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1636         } else if (msi) {
1637                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1638                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1639                         IGU_PF_CONF_ATTN_BIT_EN |
1640                         IGU_PF_CONF_SINGLE_ISR_EN);
1641         } else {
1642                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1643                 val |= (IGU_PF_CONF_INT_LINE_EN |
1644                         IGU_PF_CONF_ATTN_BIT_EN |
1645                         IGU_PF_CONF_SINGLE_ISR_EN);
1646         }
1647
1648         /* Clean previous status - need to configure igu prior to ack*/
1649         if ((!msix) || single_msix) {
1650                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651                 bnx2x_ack_int(bp);
1652         }
1653
1654         val |= IGU_PF_CONF_FUNC_EN;
1655
1656         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1657            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1658
1659         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660
1661         if (val & IGU_PF_CONF_INT_LINE_EN)
1662                 pci_intx(bp->pdev, true);
1663
1664         barrier();
1665
1666         /* init leading/trailing edge */
1667         if (IS_MF(bp)) {
1668                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1669                 if (bp->port.pmf)
1670                         /* enable nig and gpio3 attention */
1671                         val |= 0x1100;
1672         } else
1673                 val = 0xffff;
1674
1675         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1676         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1677 }
1678
1679 void bnx2x_int_enable(struct bnx2x *bp)
1680 {
1681         if (bp->common.int_block == INT_BLOCK_HC)
1682                 bnx2x_hc_int_enable(bp);
1683         else
1684                 bnx2x_igu_int_enable(bp);
1685 }
1686
1687 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1688 {
1689         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1690         int i, offset;
1691
1692         if (disable_hw)
1693                 /* prevent the HW from sending interrupts */
1694                 bnx2x_int_disable(bp);
1695
1696         /* make sure all ISRs are done */
1697         if (msix) {
1698                 synchronize_irq(bp->msix_table[0].vector);
1699                 offset = 1;
1700                 if (CNIC_SUPPORT(bp))
1701                         offset++;
1702                 for_each_eth_queue(bp, i)
1703                         synchronize_irq(bp->msix_table[offset++].vector);
1704         } else
1705                 synchronize_irq(bp->pdev->irq);
1706
1707         /* make sure sp_task is not running */
1708         cancel_delayed_work(&bp->sp_task);
1709         cancel_delayed_work(&bp->period_task);
1710         flush_workqueue(bnx2x_wq);
1711 }
1712
1713 /* fast path */
1714
1715 /*
1716  * General service functions
1717  */
1718
1719 /* Return true if succeeded to acquire the lock */
1720 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1721 {
1722         u32 lock_status;
1723         u32 resource_bit = (1 << resource);
1724         int func = BP_FUNC(bp);
1725         u32 hw_lock_control_reg;
1726
1727         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1728            "Trying to take a lock on resource %d\n", resource);
1729
1730         /* Validating that the resource is within range */
1731         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1732                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1733                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1734                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1735                 return false;
1736         }
1737
1738         if (func <= 5)
1739                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1740         else
1741                 hw_lock_control_reg =
1742                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1743
1744         /* Try to acquire the lock */
1745         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1746         lock_status = REG_RD(bp, hw_lock_control_reg);
1747         if (lock_status & resource_bit)
1748                 return true;
1749
1750         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1751            "Failed to get a lock on resource %d\n", resource);
1752         return false;
1753 }
1754
1755 /**
1756  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1757  *
1758  * @bp: driver handle
1759  *
1760  * Returns the recovery leader resource id according to the engine this function
1761  * belongs to. Currently only only 2 engines is supported.
1762  */
1763 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1764 {
1765         if (BP_PATH(bp))
1766                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1767         else
1768                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1769 }
1770
1771 /**
1772  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1773  *
1774  * @bp: driver handle
1775  *
1776  * Tries to acquire a leader lock for current engine.
1777  */
1778 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1779 {
1780         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1781 }
1782
1783 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1784
1785 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1786 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1787 {
1788         /* Set the interrupt occurred bit for the sp-task to recognize it
1789          * must ack the interrupt and transition according to the IGU
1790          * state machine.
1791          */
1792         atomic_set(&bp->interrupt_occurred, 1);
1793
1794         /* The sp_task must execute only after this bit
1795          * is set, otherwise we will get out of sync and miss all
1796          * further interrupts. Hence, the barrier.
1797          */
1798         smp_wmb();
1799
1800         /* schedule sp_task to workqueue */
1801         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1802 }
1803
1804 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1805 {
1806         struct bnx2x *bp = fp->bp;
1807         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1808         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1809         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1810         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1811
1812         DP(BNX2X_MSG_SP,
1813            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1814            fp->index, cid, command, bp->state,
1815            rr_cqe->ramrod_cqe.ramrod_type);
1816
1817         /* If cid is within VF range, replace the slowpath object with the
1818          * one corresponding to this VF
1819          */
1820         if (cid >= BNX2X_FIRST_VF_CID  &&
1821             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1822                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1823
1824         switch (command) {
1825         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1826                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1827                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1828                 break;
1829
1830         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1831                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1832                 drv_cmd = BNX2X_Q_CMD_SETUP;
1833                 break;
1834
1835         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1836                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1837                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1838                 break;
1839
1840         case (RAMROD_CMD_ID_ETH_HALT):
1841                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1842                 drv_cmd = BNX2X_Q_CMD_HALT;
1843                 break;
1844
1845         case (RAMROD_CMD_ID_ETH_TERMINATE):
1846                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1847                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1848                 break;
1849
1850         case (RAMROD_CMD_ID_ETH_EMPTY):
1851                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1852                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1853                 break;
1854
1855         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1856                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1857                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1858                 break;
1859
1860         default:
1861                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1862                           command, fp->index);
1863                 return;
1864         }
1865
1866         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1867             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1868                 /* q_obj->complete_cmd() failure means that this was
1869                  * an unexpected completion.
1870                  *
1871                  * In this case we don't want to increase the bp->spq_left
1872                  * because apparently we haven't sent this command the first
1873                  * place.
1874                  */
1875 #ifdef BNX2X_STOP_ON_ERROR
1876                 bnx2x_panic();
1877 #else
1878                 return;
1879 #endif
1880
1881         smp_mb__before_atomic();
1882         atomic_inc(&bp->cq_spq_left);
1883         /* push the change in bp->spq_left and towards the memory */
1884         smp_mb__after_atomic();
1885
1886         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1887
1888         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1889             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1890                 /* if Q update ramrod is completed for last Q in AFEX vif set
1891                  * flow, then ACK MCP at the end
1892                  *
1893                  * mark pending ACK to MCP bit.
1894                  * prevent case that both bits are cleared.
1895                  * At the end of load/unload driver checks that
1896                  * sp_state is cleared, and this order prevents
1897                  * races
1898                  */
1899                 smp_mb__before_atomic();
1900                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1901                 wmb();
1902                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1903                 smp_mb__after_atomic();
1904
1905                 /* schedule the sp task as mcp ack is required */
1906                 bnx2x_schedule_sp_task(bp);
1907         }
1908
1909         return;
1910 }
1911
1912 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1913 {
1914         struct bnx2x *bp = netdev_priv(dev_instance);
1915         u16 status = bnx2x_ack_int(bp);
1916         u16 mask;
1917         int i;
1918         u8 cos;
1919
1920         /* Return here if interrupt is shared and it's not for us */
1921         if (unlikely(status == 0)) {
1922                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1923                 return IRQ_NONE;
1924         }
1925         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1926
1927 #ifdef BNX2X_STOP_ON_ERROR
1928         if (unlikely(bp->panic))
1929                 return IRQ_HANDLED;
1930 #endif
1931
1932         for_each_eth_queue(bp, i) {
1933                 struct bnx2x_fastpath *fp = &bp->fp[i];
1934
1935                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1936                 if (status & mask) {
1937                         /* Handle Rx or Tx according to SB id */
1938                         for_each_cos_in_tx_queue(fp, cos)
1939                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1940                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1941                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1942                         status &= ~mask;
1943                 }
1944         }
1945
1946         if (CNIC_SUPPORT(bp)) {
1947                 mask = 0x2;
1948                 if (status & (mask | 0x1)) {
1949                         struct cnic_ops *c_ops = NULL;
1950
1951                         rcu_read_lock();
1952                         c_ops = rcu_dereference(bp->cnic_ops);
1953                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1954                                       CNIC_DRV_STATE_HANDLES_IRQ))
1955                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1956                         rcu_read_unlock();
1957
1958                         status &= ~mask;
1959                 }
1960         }
1961
1962         if (unlikely(status & 0x1)) {
1963
1964                 /* schedule sp task to perform default status block work, ack
1965                  * attentions and enable interrupts.
1966                  */
1967                 bnx2x_schedule_sp_task(bp);
1968
1969                 status &= ~0x1;
1970                 if (!status)
1971                         return IRQ_HANDLED;
1972         }
1973
1974         if (unlikely(status))
1975                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1976                    status);
1977
1978         return IRQ_HANDLED;
1979 }
1980
1981 /* Link */
1982
1983 /*
1984  * General service functions
1985  */
1986
1987 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1988 {
1989         u32 lock_status;
1990         u32 resource_bit = (1 << resource);
1991         int func = BP_FUNC(bp);
1992         u32 hw_lock_control_reg;
1993         int cnt;
1994
1995         /* Validating that the resource is within range */
1996         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1997                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1998                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1999                 return -EINVAL;
2000         }
2001
2002         if (func <= 5) {
2003                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2004         } else {
2005                 hw_lock_control_reg =
2006                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2007         }
2008
2009         /* Validating that the resource is not already taken */
2010         lock_status = REG_RD(bp, hw_lock_control_reg);
2011         if (lock_status & resource_bit) {
2012                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2013                    lock_status, resource_bit);
2014                 return -EEXIST;
2015         }
2016
2017         /* Try for 5 second every 5ms */
2018         for (cnt = 0; cnt < 1000; cnt++) {
2019                 /* Try to acquire the lock */
2020                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2021                 lock_status = REG_RD(bp, hw_lock_control_reg);
2022                 if (lock_status & resource_bit)
2023                         return 0;
2024
2025                 usleep_range(5000, 10000);
2026         }
2027         BNX2X_ERR("Timeout\n");
2028         return -EAGAIN;
2029 }
2030
2031 int bnx2x_release_leader_lock(struct bnx2x *bp)
2032 {
2033         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2034 }
2035
2036 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2037 {
2038         u32 lock_status;
2039         u32 resource_bit = (1 << resource);
2040         int func = BP_FUNC(bp);
2041         u32 hw_lock_control_reg;
2042
2043         /* Validating that the resource is within range */
2044         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2045                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2046                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2047                 return -EINVAL;
2048         }
2049
2050         if (func <= 5) {
2051                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2052         } else {
2053                 hw_lock_control_reg =
2054                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2055         }
2056
2057         /* Validating that the resource is currently taken */
2058         lock_status = REG_RD(bp, hw_lock_control_reg);
2059         if (!(lock_status & resource_bit)) {
2060                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2061                           lock_status, resource_bit);
2062                 return -EFAULT;
2063         }
2064
2065         REG_WR(bp, hw_lock_control_reg, resource_bit);
2066         return 0;
2067 }
2068
2069 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2070 {
2071         /* The GPIO should be swapped if swap register is set and active */
2072         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2073                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2074         int gpio_shift = gpio_num +
2075                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2076         u32 gpio_mask = (1 << gpio_shift);
2077         u32 gpio_reg;
2078         int value;
2079
2080         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2081                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2082                 return -EINVAL;
2083         }
2084
2085         /* read GPIO value */
2086         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2087
2088         /* get the requested pin value */
2089         if ((gpio_reg & gpio_mask) == gpio_mask)
2090                 value = 1;
2091         else
2092                 value = 0;
2093
2094         return value;
2095 }
2096
2097 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2098 {
2099         /* The GPIO should be swapped if swap register is set and active */
2100         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2101                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2102         int gpio_shift = gpio_num +
2103                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2104         u32 gpio_mask = (1 << gpio_shift);
2105         u32 gpio_reg;
2106
2107         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2108                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2109                 return -EINVAL;
2110         }
2111
2112         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2113         /* read GPIO and mask except the float bits */
2114         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2115
2116         switch (mode) {
2117         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2118                 DP(NETIF_MSG_LINK,
2119                    "Set GPIO %d (shift %d) -> output low\n",
2120                    gpio_num, gpio_shift);
2121                 /* clear FLOAT and set CLR */
2122                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2123                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2124                 break;
2125
2126         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2127                 DP(NETIF_MSG_LINK,
2128                    "Set GPIO %d (shift %d) -> output high\n",
2129                    gpio_num, gpio_shift);
2130                 /* clear FLOAT and set SET */
2131                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2132                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2133                 break;
2134
2135         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2136                 DP(NETIF_MSG_LINK,
2137                    "Set GPIO %d (shift %d) -> input\n",
2138                    gpio_num, gpio_shift);
2139                 /* set FLOAT */
2140                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2141                 break;
2142
2143         default:
2144                 break;
2145         }
2146
2147         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2148         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149
2150         return 0;
2151 }
2152
2153 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2154 {
2155         u32 gpio_reg = 0;
2156         int rc = 0;
2157
2158         /* Any port swapping should be handled by caller. */
2159
2160         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2161         /* read GPIO and mask except the float bits */
2162         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2163         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2164         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2165         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2166
2167         switch (mode) {
2168         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2169                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2170                 /* set CLR */
2171                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2172                 break;
2173
2174         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2175                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2176                 /* set SET */
2177                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2178                 break;
2179
2180         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2181                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2182                 /* set FLOAT */
2183                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2184                 break;
2185
2186         default:
2187                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2188                 rc = -EINVAL;
2189                 break;
2190         }
2191
2192         if (rc == 0)
2193                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2194
2195         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2196
2197         return rc;
2198 }
2199
2200 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2201 {
2202         /* The GPIO should be swapped if swap register is set and active */
2203         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2204                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2205         int gpio_shift = gpio_num +
2206                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2207         u32 gpio_mask = (1 << gpio_shift);
2208         u32 gpio_reg;
2209
2210         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2211                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2212                 return -EINVAL;
2213         }
2214
2215         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2216         /* read GPIO int */
2217         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2218
2219         switch (mode) {
2220         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2221                 DP(NETIF_MSG_LINK,
2222                    "Clear GPIO INT %d (shift %d) -> output low\n",
2223                    gpio_num, gpio_shift);
2224                 /* clear SET and set CLR */
2225                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2226                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2227                 break;
2228
2229         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2230                 DP(NETIF_MSG_LINK,
2231                    "Set GPIO INT %d (shift %d) -> output high\n",
2232                    gpio_num, gpio_shift);
2233                 /* clear CLR and set SET */
2234                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2235                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2236                 break;
2237
2238         default:
2239                 break;
2240         }
2241
2242         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2243         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2244
2245         return 0;
2246 }
2247
2248 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2249 {
2250         u32 spio_reg;
2251
2252         /* Only 2 SPIOs are configurable */
2253         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2254                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2255                 return -EINVAL;
2256         }
2257
2258         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2259         /* read SPIO and mask except the float bits */
2260         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2261
2262         switch (mode) {
2263         case MISC_SPIO_OUTPUT_LOW:
2264                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2265                 /* clear FLOAT and set CLR */
2266                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2267                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2268                 break;
2269
2270         case MISC_SPIO_OUTPUT_HIGH:
2271                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2272                 /* clear FLOAT and set SET */
2273                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2274                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2275                 break;
2276
2277         case MISC_SPIO_INPUT_HI_Z:
2278                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2279                 /* set FLOAT */
2280                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2281                 break;
2282
2283         default:
2284                 break;
2285         }
2286
2287         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2288         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2289
2290         return 0;
2291 }
2292
2293 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2294 {
2295         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2296
2297         bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2298                                            ADVERTISED_Pause);
2299         switch (bp->link_vars.ieee_fc &
2300                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2301         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2302                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2303                                                   ADVERTISED_Pause);
2304                 break;
2305
2306         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2307                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2308                 break;
2309
2310         default:
2311                 break;
2312         }
2313 }
2314
2315 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2316 {
2317         /* Initialize link parameters structure variables
2318          * It is recommended to turn off RX FC for jumbo frames
2319          *  for better performance
2320          */
2321         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2322                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2323         else
2324                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2325 }
2326
2327 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2328 {
2329         u32 pause_enabled = 0;
2330
2331         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2332                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2333                         pause_enabled = 1;
2334
2335                 REG_WR(bp, BAR_USTRORM_INTMEM +
2336                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2337                        pause_enabled);
2338         }
2339
2340         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2341            pause_enabled ? "enabled" : "disabled");
2342 }
2343
2344 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2345 {
2346         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2347         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2348
2349         if (!BP_NOMCP(bp)) {
2350                 bnx2x_set_requested_fc(bp);
2351                 bnx2x_acquire_phy_lock(bp);
2352
2353                 if (load_mode == LOAD_DIAG) {
2354                         struct link_params *lp = &bp->link_params;
2355                         lp->loopback_mode = LOOPBACK_XGXS;
2356                         /* Prefer doing PHY loopback at highest speed */
2357                         if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2358                                 if (lp->speed_cap_mask[cfx_idx] &
2359                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2360                                         lp->req_line_speed[cfx_idx] =
2361                                         SPEED_20000;
2362                                 else if (lp->speed_cap_mask[cfx_idx] &
2363                                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2364                                                 lp->req_line_speed[cfx_idx] =
2365                                                 SPEED_10000;
2366                                 else
2367                                         lp->req_line_speed[cfx_idx] =
2368                                         SPEED_1000;
2369                         }
2370                 }
2371
2372                 if (load_mode == LOAD_LOOPBACK_EXT) {
2373                         struct link_params *lp = &bp->link_params;
2374                         lp->loopback_mode = LOOPBACK_EXT;
2375                 }
2376
2377                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2378
2379                 bnx2x_release_phy_lock(bp);
2380
2381                 bnx2x_init_dropless_fc(bp);
2382
2383                 bnx2x_calc_fc_adv(bp);
2384
2385                 if (bp->link_vars.link_up) {
2386                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2387                         bnx2x_link_report(bp);
2388                 }
2389                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2390                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2391                 return rc;
2392         }
2393         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2394         return -EINVAL;
2395 }
2396
2397 void bnx2x_link_set(struct bnx2x *bp)
2398 {
2399         if (!BP_NOMCP(bp)) {
2400                 bnx2x_acquire_phy_lock(bp);
2401                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2402                 bnx2x_release_phy_lock(bp);
2403
2404                 bnx2x_init_dropless_fc(bp);
2405
2406                 bnx2x_calc_fc_adv(bp);
2407         } else
2408                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2409 }
2410
2411 static void bnx2x__link_reset(struct bnx2x *bp)
2412 {
2413         if (!BP_NOMCP(bp)) {
2414                 bnx2x_acquire_phy_lock(bp);
2415                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2416                 bnx2x_release_phy_lock(bp);
2417         } else
2418                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2419 }
2420
2421 void bnx2x_force_link_reset(struct bnx2x *bp)
2422 {
2423         bnx2x_acquire_phy_lock(bp);
2424         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2425         bnx2x_release_phy_lock(bp);
2426 }
2427
2428 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2429 {
2430         u8 rc = 0;
2431
2432         if (!BP_NOMCP(bp)) {
2433                 bnx2x_acquire_phy_lock(bp);
2434                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2435                                      is_serdes);
2436                 bnx2x_release_phy_lock(bp);
2437         } else
2438                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2439
2440         return rc;
2441 }
2442
2443 /* Calculates the sum of vn_min_rates.
2444    It's needed for further normalizing of the min_rates.
2445    Returns:
2446      sum of vn_min_rates.
2447        or
2448      0 - if all the min_rates are 0.
2449      In the later case fairness algorithm should be deactivated.
2450      If not all min_rates are zero then those that are zeroes will be set to 1.
2451  */
2452 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2453                                       struct cmng_init_input *input)
2454 {
2455         int all_zero = 1;
2456         int vn;
2457
2458         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2459                 u32 vn_cfg = bp->mf_config[vn];
2460                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2461                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2462
2463                 /* Skip hidden vns */
2464                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2465                         vn_min_rate = 0;
2466                 /* If min rate is zero - set it to 1 */
2467                 else if (!vn_min_rate)
2468                         vn_min_rate = DEF_MIN_RATE;
2469                 else
2470                         all_zero = 0;
2471
2472                 input->vnic_min_rate[vn] = vn_min_rate;
2473         }
2474
2475         /* if ETS or all min rates are zeros - disable fairness */
2476         if (BNX2X_IS_ETS_ENABLED(bp)) {
2477                 input->flags.cmng_enables &=
2478                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2479                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2480         } else if (all_zero) {
2481                 input->flags.cmng_enables &=
2482                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2483                 DP(NETIF_MSG_IFUP,
2484                    "All MIN values are zeroes fairness will be disabled\n");
2485         } else
2486                 input->flags.cmng_enables |=
2487                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2488 }
2489
2490 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2491                                     struct cmng_init_input *input)
2492 {
2493         u16 vn_max_rate;
2494         u32 vn_cfg = bp->mf_config[vn];
2495
2496         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2497                 vn_max_rate = 0;
2498         else {
2499                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2500
2501                 if (IS_MF_PERCENT_BW(bp)) {
2502                         /* maxCfg in percents of linkspeed */
2503                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2504                 } else /* SD modes */
2505                         /* maxCfg is absolute in 100Mb units */
2506                         vn_max_rate = maxCfg * 100;
2507         }
2508
2509         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2510
2511         input->vnic_max_rate[vn] = vn_max_rate;
2512 }
2513
2514 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2515 {
2516         if (CHIP_REV_IS_SLOW(bp))
2517                 return CMNG_FNS_NONE;
2518         if (IS_MF(bp))
2519                 return CMNG_FNS_MINMAX;
2520
2521         return CMNG_FNS_NONE;
2522 }
2523
2524 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2525 {
2526         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2527
2528         if (BP_NOMCP(bp))
2529                 return; /* what should be the default value in this case */
2530
2531         /* For 2 port configuration the absolute function number formula
2532          * is:
2533          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2534          *
2535          *      and there are 4 functions per port
2536          *
2537          * For 4 port configuration it is
2538          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2539          *
2540          *      and there are 2 functions per port
2541          */
2542         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2543                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2544
2545                 if (func >= E1H_FUNC_MAX)
2546                         break;
2547
2548                 bp->mf_config[vn] =
2549                         MF_CFG_RD(bp, func_mf_config[func].config);
2550         }
2551         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2552                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2553                 bp->flags |= MF_FUNC_DIS;
2554         } else {
2555                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2556                 bp->flags &= ~MF_FUNC_DIS;
2557         }
2558 }
2559
2560 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2561 {
2562         struct cmng_init_input input;
2563         memset(&input, 0, sizeof(struct cmng_init_input));
2564
2565         input.port_rate = bp->link_vars.line_speed;
2566
2567         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2568                 int vn;
2569
2570                 /* read mf conf from shmem */
2571                 if (read_cfg)
2572                         bnx2x_read_mf_cfg(bp);
2573
2574                 /* vn_weight_sum and enable fairness if not 0 */
2575                 bnx2x_calc_vn_min(bp, &input);
2576
2577                 /* calculate and set min-max rate for each vn */
2578                 if (bp->port.pmf)
2579                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2580                                 bnx2x_calc_vn_max(bp, vn, &input);
2581
2582                 /* always enable rate shaping and fairness */
2583                 input.flags.cmng_enables |=
2584                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2585
2586                 bnx2x_init_cmng(&input, &bp->cmng);
2587                 return;
2588         }
2589
2590         /* rate shaping and fairness are disabled */
2591         DP(NETIF_MSG_IFUP,
2592            "rate shaping and fairness are disabled\n");
2593 }
2594
2595 static void storm_memset_cmng(struct bnx2x *bp,
2596                               struct cmng_init *cmng,
2597                               u8 port)
2598 {
2599         int vn;
2600         size_t size = sizeof(struct cmng_struct_per_port);
2601
2602         u32 addr = BAR_XSTRORM_INTMEM +
2603                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2604
2605         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2606
2607         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2608                 int func = func_by_vn(bp, vn);
2609
2610                 addr = BAR_XSTRORM_INTMEM +
2611                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2612                 size = sizeof(struct rate_shaping_vars_per_vn);
2613                 __storm_memset_struct(bp, addr, size,
2614                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2615
2616                 addr = BAR_XSTRORM_INTMEM +
2617                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2618                 size = sizeof(struct fairness_vars_per_vn);
2619                 __storm_memset_struct(bp, addr, size,
2620                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2621         }
2622 }
2623
2624 /* init cmng mode in HW according to local configuration */
2625 void bnx2x_set_local_cmng(struct bnx2x *bp)
2626 {
2627         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2628
2629         if (cmng_fns != CMNG_FNS_NONE) {
2630                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2631                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2632         } else {
2633                 /* rate shaping and fairness are disabled */
2634                 DP(NETIF_MSG_IFUP,
2635                    "single function mode without fairness\n");
2636         }
2637 }
2638
2639 /* This function is called upon link interrupt */
2640 static void bnx2x_link_attn(struct bnx2x *bp)
2641 {
2642         /* Make sure that we are synced with the current statistics */
2643         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2644
2645         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2646
2647         bnx2x_init_dropless_fc(bp);
2648
2649         if (bp->link_vars.link_up) {
2650
2651                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2652                         struct host_port_stats *pstats;
2653
2654                         pstats = bnx2x_sp(bp, port_stats);
2655                         /* reset old mac stats */
2656                         memset(&(pstats->mac_stx[0]), 0,
2657                                sizeof(struct mac_stx));
2658                 }
2659                 if (bp->state == BNX2X_STATE_OPEN)
2660                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2661         }
2662
2663         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2664                 bnx2x_set_local_cmng(bp);
2665
2666         __bnx2x_link_report(bp);
2667
2668         if (IS_MF(bp))
2669                 bnx2x_link_sync_notify(bp);
2670 }
2671
2672 void bnx2x__link_status_update(struct bnx2x *bp)
2673 {
2674         if (bp->state != BNX2X_STATE_OPEN)
2675                 return;
2676
2677         /* read updated dcb configuration */
2678         if (IS_PF(bp)) {
2679                 bnx2x_dcbx_pmf_update(bp);
2680                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2681                 if (bp->link_vars.link_up)
2682                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2683                 else
2684                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2685                         /* indicate link status */
2686                 bnx2x_link_report(bp);
2687
2688         } else { /* VF */
2689                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2690                                           SUPPORTED_10baseT_Full |
2691                                           SUPPORTED_100baseT_Half |
2692                                           SUPPORTED_100baseT_Full |
2693                                           SUPPORTED_1000baseT_Full |
2694                                           SUPPORTED_2500baseX_Full |
2695                                           SUPPORTED_10000baseT_Full |
2696                                           SUPPORTED_TP |
2697                                           SUPPORTED_FIBRE |
2698                                           SUPPORTED_Autoneg |
2699                                           SUPPORTED_Pause |
2700                                           SUPPORTED_Asym_Pause);
2701                 bp->port.advertising[0] = bp->port.supported[0];
2702
2703                 bp->link_params.bp = bp;
2704                 bp->link_params.port = BP_PORT(bp);
2705                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2706                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2707                 bp->link_params.req_line_speed[0] = SPEED_10000;
2708                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2709                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2710                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2711                 bp->link_vars.line_speed = SPEED_10000;
2712                 bp->link_vars.link_status =
2713                         (LINK_STATUS_LINK_UP |
2714                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2715                 bp->link_vars.link_up = 1;
2716                 bp->link_vars.duplex = DUPLEX_FULL;
2717                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2718                 __bnx2x_link_report(bp);
2719
2720                 bnx2x_sample_bulletin(bp);
2721
2722                 /* if bulletin board did not have an update for link status
2723                  * __bnx2x_link_report will report current status
2724                  * but it will NOT duplicate report in case of already reported
2725                  * during sampling bulletin board.
2726                  */
2727                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2728         }
2729 }
2730
2731 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2732                                   u16 vlan_val, u8 allowed_prio)
2733 {
2734         struct bnx2x_func_state_params func_params = {NULL};
2735         struct bnx2x_func_afex_update_params *f_update_params =
2736                 &func_params.params.afex_update;
2737
2738         func_params.f_obj = &bp->func_obj;
2739         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2740
2741         /* no need to wait for RAMROD completion, so don't
2742          * set RAMROD_COMP_WAIT flag
2743          */
2744
2745         f_update_params->vif_id = vifid;
2746         f_update_params->afex_default_vlan = vlan_val;
2747         f_update_params->allowed_priorities = allowed_prio;
2748
2749         /* if ramrod can not be sent, response to MCP immediately */
2750         if (bnx2x_func_state_change(bp, &func_params) < 0)
2751                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2752
2753         return 0;
2754 }
2755
2756 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2757                                           u16 vif_index, u8 func_bit_map)
2758 {
2759         struct bnx2x_func_state_params func_params = {NULL};
2760         struct bnx2x_func_afex_viflists_params *update_params =
2761                 &func_params.params.afex_viflists;
2762         int rc;
2763         u32 drv_msg_code;
2764
2765         /* validate only LIST_SET and LIST_GET are received from switch */
2766         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2767                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2768                           cmd_type);
2769
2770         func_params.f_obj = &bp->func_obj;
2771         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2772
2773         /* set parameters according to cmd_type */
2774         update_params->afex_vif_list_command = cmd_type;
2775         update_params->vif_list_index = vif_index;
2776         update_params->func_bit_map =
2777                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2778         update_params->func_to_clear = 0;
2779         drv_msg_code =
2780                 (cmd_type == VIF_LIST_RULE_GET) ?
2781                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2782                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2783
2784         /* if ramrod can not be sent, respond to MCP immediately for
2785          * SET and GET requests (other are not triggered from MCP)
2786          */
2787         rc = bnx2x_func_state_change(bp, &func_params);
2788         if (rc < 0)
2789                 bnx2x_fw_command(bp, drv_msg_code, 0);
2790
2791         return 0;
2792 }
2793
2794 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2795 {
2796         struct afex_stats afex_stats;
2797         u32 func = BP_ABS_FUNC(bp);
2798         u32 mf_config;
2799         u16 vlan_val;
2800         u32 vlan_prio;
2801         u16 vif_id;
2802         u8 allowed_prio;
2803         u8 vlan_mode;
2804         u32 addr_to_write, vifid, addrs, stats_type, i;
2805
2806         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2807                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2808                 DP(BNX2X_MSG_MCP,
2809                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2810                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2811         }
2812
2813         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2814                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2815                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2816                 DP(BNX2X_MSG_MCP,
2817                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2818                    vifid, addrs);
2819                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2820                                                addrs);
2821         }
2822
2823         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2824                 addr_to_write = SHMEM2_RD(bp,
2825                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2826                 stats_type = SHMEM2_RD(bp,
2827                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2828
2829                 DP(BNX2X_MSG_MCP,
2830                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2831                    addr_to_write);
2832
2833                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2834
2835                 /* write response to scratchpad, for MCP */
2836                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2837                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2838                                *(((u32 *)(&afex_stats))+i));
2839
2840                 /* send ack message to MCP */
2841                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2842         }
2843
2844         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2845                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2846                 bp->mf_config[BP_VN(bp)] = mf_config;
2847                 DP(BNX2X_MSG_MCP,
2848                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2849                    mf_config);
2850
2851                 /* if VIF_SET is "enabled" */
2852                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2853                         /* set rate limit directly to internal RAM */
2854                         struct cmng_init_input cmng_input;
2855                         struct rate_shaping_vars_per_vn m_rs_vn;
2856                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2857                         u32 addr = BAR_XSTRORM_INTMEM +
2858                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2859
2860                         bp->mf_config[BP_VN(bp)] = mf_config;
2861
2862                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2863                         m_rs_vn.vn_counter.rate =
2864                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2865                         m_rs_vn.vn_counter.quota =
2866                                 (m_rs_vn.vn_counter.rate *
2867                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2868
2869                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2870
2871                         /* read relevant values from mf_cfg struct in shmem */
2872                         vif_id =
2873                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2874                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2875                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2876                         vlan_val =
2877                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2878                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2879                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2880                         vlan_prio = (mf_config &
2881                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2882                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2883                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2884                         vlan_mode =
2885                                 (MF_CFG_RD(bp,
2886                                            func_mf_config[func].afex_config) &
2887                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2888                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2889                         allowed_prio =
2890                                 (MF_CFG_RD(bp,
2891                                            func_mf_config[func].afex_config) &
2892                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2893                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2894
2895                         /* send ramrod to FW, return in case of failure */
2896                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2897                                                    allowed_prio))
2898                                 return;
2899
2900                         bp->afex_def_vlan_tag = vlan_val;
2901                         bp->afex_vlan_mode = vlan_mode;
2902                 } else {
2903                         /* notify link down because BP->flags is disabled */
2904                         bnx2x_link_report(bp);
2905
2906                         /* send INVALID VIF ramrod to FW */
2907                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2908
2909                         /* Reset the default afex VLAN */
2910                         bp->afex_def_vlan_tag = -1;
2911                 }
2912         }
2913 }
2914
2915 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2916 {
2917         struct bnx2x_func_switch_update_params *switch_update_params;
2918         struct bnx2x_func_state_params func_params;
2919
2920         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2921         switch_update_params = &func_params.params.switch_update;
2922         func_params.f_obj = &bp->func_obj;
2923         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2924
2925         /* Prepare parameters for function state transitions */
2926         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2927         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2928
2929         if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2930                 int func = BP_ABS_FUNC(bp);
2931                 u32 val;
2932
2933                 /* Re-learn the S-tag from shmem */
2934                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2935                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2936                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2937                         bp->mf_ov = val;
2938                 } else {
2939                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2940                         goto fail;
2941                 }
2942
2943                 /* Configure new S-tag in LLH */
2944                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2945                        bp->mf_ov);
2946
2947                 /* Send Ramrod to update FW of change */
2948                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2949                           &switch_update_params->changes);
2950                 switch_update_params->vlan = bp->mf_ov;
2951
2952                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2953                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2954                                   bp->mf_ov);
2955                         goto fail;
2956                 } else {
2957                         DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2958                            bp->mf_ov);
2959                 }
2960         } else {
2961                 goto fail;
2962         }
2963
2964         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2965         return;
2966 fail:
2967         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2968 }
2969
2970 static void bnx2x_pmf_update(struct bnx2x *bp)
2971 {
2972         int port = BP_PORT(bp);
2973         u32 val;
2974
2975         bp->port.pmf = 1;
2976         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2977
2978         /*
2979          * We need the mb() to ensure the ordering between the writing to
2980          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2981          */
2982         smp_mb();
2983
2984         /* queue a periodic task */
2985         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2986
2987         bnx2x_dcbx_pmf_update(bp);
2988
2989         /* enable nig attention */
2990         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2991         if (bp->common.int_block == INT_BLOCK_HC) {
2992                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2993                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2994         } else if (!CHIP_IS_E1x(bp)) {
2995                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2996                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2997         }
2998
2999         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3000 }
3001
3002 /* end of Link */
3003
3004 /* slow path */
3005
3006 /*
3007  * General service functions
3008  */
3009
3010 /* send the MCP a request, block until there is a reply */
3011 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3012 {
3013         int mb_idx = BP_FW_MB_IDX(bp);
3014         u32 seq;
3015         u32 rc = 0;
3016         u32 cnt = 1;
3017         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3018
3019         mutex_lock(&bp->fw_mb_mutex);
3020         seq = ++bp->fw_seq;
3021         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3022         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3023
3024         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3025                         (command | seq), param);
3026
3027         do {
3028                 /* let the FW do it's magic ... */
3029                 msleep(delay);
3030
3031                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3032
3033                 /* Give the FW up to 5 second (500*10ms) */
3034         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3035
3036         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3037            cnt*delay, rc, seq);
3038
3039         /* is this a reply to our command? */
3040         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3041                 rc &= FW_MSG_CODE_MASK;
3042         else {
3043                 /* FW BUG! */
3044                 BNX2X_ERR("FW failed to respond!\n");
3045                 bnx2x_fw_dump(bp);
3046                 rc = 0;
3047         }
3048         mutex_unlock(&bp->fw_mb_mutex);
3049
3050         return rc;
3051 }
3052
3053 static void storm_memset_func_cfg(struct bnx2x *bp,
3054                                  struct tstorm_eth_function_common_config *tcfg,
3055                                  u16 abs_fid)
3056 {
3057         size_t size = sizeof(struct tstorm_eth_function_common_config);
3058
3059         u32 addr = BAR_TSTRORM_INTMEM +
3060                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3061
3062         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3063 }
3064
3065 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3066 {
3067         if (CHIP_IS_E1x(bp)) {
3068                 struct tstorm_eth_function_common_config tcfg = {0};
3069
3070                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3071         }
3072
3073         /* Enable the function in the FW */
3074         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3075         storm_memset_func_en(bp, p->func_id, 1);
3076
3077         /* spq */
3078         if (p->spq_active) {
3079                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3080                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3081                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3082         }
3083 }
3084
3085 /**
3086  * bnx2x_get_common_flags - Return common flags
3087  *
3088  * @bp:         device handle
3089  * @fp:         queue handle
3090  * @zero_stats: TRUE if statistics zeroing is needed
3091  *
3092  * Return the flags that are common for the Tx-only and not normal connections.
3093  */
3094 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3095                                             struct bnx2x_fastpath *fp,
3096                                             bool zero_stats)
3097 {
3098         unsigned long flags = 0;
3099
3100         /* PF driver will always initialize the Queue to an ACTIVE state */
3101         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3102
3103         /* tx only connections collect statistics (on the same index as the
3104          * parent connection). The statistics are zeroed when the parent
3105          * connection is initialized.
3106          */
3107
3108         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3109         if (zero_stats)
3110                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3111
3112         if (bp->flags & TX_SWITCHING)
3113                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3114
3115         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3116         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3117
3118 #ifdef BNX2X_STOP_ON_ERROR
3119         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3120 #endif
3121
3122         return flags;
3123 }
3124
3125 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3126                                        struct bnx2x_fastpath *fp,
3127                                        bool leading)
3128 {
3129         unsigned long flags = 0;
3130
3131         /* calculate other queue flags */
3132         if (IS_MF_SD(bp))
3133                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3134
3135         if (IS_FCOE_FP(fp)) {
3136                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3137                 /* For FCoE - force usage of default priority (for afex) */
3138                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3139         }
3140
3141         if (fp->mode != TPA_MODE_DISABLED) {
3142                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3143                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3144                 if (fp->mode == TPA_MODE_GRO)
3145                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3146         }
3147
3148         if (leading) {
3149                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3150                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3151         }
3152
3153         /* Always set HW VLAN stripping */
3154         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3155
3156         /* configure silent vlan removal */
3157         if (IS_MF_AFEX(bp))
3158                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3159
3160         return flags | bnx2x_get_common_flags(bp, fp, true);
3161 }
3162
3163 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3164         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3165         u8 cos)
3166 {
3167         gen_init->stat_id = bnx2x_stats_id(fp);
3168         gen_init->spcl_id = fp->cl_id;
3169
3170         /* Always use mini-jumbo MTU for FCoE L2 ring */
3171         if (IS_FCOE_FP(fp))
3172                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3173         else
3174                 gen_init->mtu = bp->dev->mtu;
3175
3176         gen_init->cos = cos;
3177
3178         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3179 }
3180
3181 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3182         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3183         struct bnx2x_rxq_setup_params *rxq_init)
3184 {
3185         u8 max_sge = 0;
3186         u16 sge_sz = 0;
3187         u16 tpa_agg_size = 0;
3188
3189         if (fp->mode != TPA_MODE_DISABLED) {
3190                 pause->sge_th_lo = SGE_TH_LO(bp);
3191                 pause->sge_th_hi = SGE_TH_HI(bp);
3192
3193                 /* validate SGE ring has enough to cross high threshold */
3194                 WARN_ON(bp->dropless_fc &&
3195                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3196                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3197
3198                 tpa_agg_size = TPA_AGG_SIZE;
3199                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3200                         SGE_PAGE_SHIFT;
3201                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3202                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3203                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3204         }
3205
3206         /* pause - not for e1 */
3207         if (!CHIP_IS_E1(bp)) {
3208                 pause->bd_th_lo = BD_TH_LO(bp);
3209                 pause->bd_th_hi = BD_TH_HI(bp);
3210
3211                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3212                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3213                 /*
3214                  * validate that rings have enough entries to cross
3215                  * high thresholds
3216                  */
3217                 WARN_ON(bp->dropless_fc &&
3218                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3219                                 bp->rx_ring_size);
3220                 WARN_ON(bp->dropless_fc &&
3221                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3222                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3223
3224                 pause->pri_map = 1;
3225         }
3226
3227         /* rxq setup */
3228         rxq_init->dscr_map = fp->rx_desc_mapping;
3229         rxq_init->sge_map = fp->rx_sge_mapping;
3230         rxq_init->rcq_map = fp->rx_comp_mapping;
3231         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3232
3233         /* This should be a maximum number of data bytes that may be
3234          * placed on the BD (not including paddings).
3235          */
3236         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3237                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3238
3239         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3240         rxq_init->tpa_agg_sz = tpa_agg_size;
3241         rxq_init->sge_buf_sz = sge_sz;
3242         rxq_init->max_sges_pkt = max_sge;
3243         rxq_init->rss_engine_id = BP_FUNC(bp);
3244         rxq_init->mcast_engine_id = BP_FUNC(bp);
3245
3246         /* Maximum number or simultaneous TPA aggregation for this Queue.
3247          *
3248          * For PF Clients it should be the maximum available number.
3249          * VF driver(s) may want to define it to a smaller value.
3250          */
3251         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3252
3253         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3254         rxq_init->fw_sb_id = fp->fw_sb_id;
3255
3256         if (IS_FCOE_FP(fp))
3257                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3258         else
3259                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3260         /* configure silent vlan removal
3261          * if multi function mode is afex, then mask default vlan
3262          */
3263         if (IS_MF_AFEX(bp)) {
3264                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3265                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3266         }
3267 }
3268
3269 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3270         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3271         u8 cos)
3272 {
3273         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3274         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3275         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3276         txq_init->fw_sb_id = fp->fw_sb_id;
3277
3278         /*
3279          * set the tss leading client id for TX classification ==
3280          * leading RSS client id
3281          */
3282         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3283
3284         if (IS_FCOE_FP(fp)) {
3285                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3286                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3287         }
3288 }
3289
3290 static void bnx2x_pf_init(struct bnx2x *bp)
3291 {
3292         struct bnx2x_func_init_params func_init = {0};
3293         struct event_ring_data eq_data = { {0} };
3294
3295         if (!CHIP_IS_E1x(bp)) {
3296                 /* reset IGU PF statistics: MSIX + ATTN */
3297                 /* PF */
3298                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3299                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3300                            (CHIP_MODE_IS_4_PORT(bp) ?
3301                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3302                 /* ATTN */
3303                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3304                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3305                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3306                            (CHIP_MODE_IS_4_PORT(bp) ?
3307                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3308         }
3309
3310         func_init.spq_active = true;
3311         func_init.pf_id = BP_FUNC(bp);
3312         func_init.func_id = BP_FUNC(bp);
3313         func_init.spq_map = bp->spq_mapping;
3314         func_init.spq_prod = bp->spq_prod_idx;
3315
3316         bnx2x_func_init(bp, &func_init);
3317
3318         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3319
3320         /*
3321          * Congestion management values depend on the link rate
3322          * There is no active link so initial link rate is set to 10 Gbps.
3323          * When the link comes up The congestion management values are
3324          * re-calculated according to the actual link rate.
3325          */
3326         bp->link_vars.line_speed = SPEED_10000;
3327         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3328
3329         /* Only the PMF sets the HW */
3330         if (bp->port.pmf)
3331                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3332
3333         /* init Event Queue - PCI bus guarantees correct endianity*/
3334         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3335         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3336         eq_data.producer = bp->eq_prod;
3337         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3338         eq_data.sb_id = DEF_SB_ID;
3339         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3340 }
3341
3342 static void bnx2x_e1h_disable(struct bnx2x *bp)
3343 {
3344         int port = BP_PORT(bp);
3345
3346         bnx2x_tx_disable(bp);
3347
3348         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3349 }
3350
3351 static void bnx2x_e1h_enable(struct bnx2x *bp)
3352 {
3353         int port = BP_PORT(bp);
3354
3355         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3356                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3357
3358         /* Tx queue should be only re-enabled */
3359         netif_tx_wake_all_queues(bp->dev);
3360
3361         /*
3362          * Should not call netif_carrier_on since it will be called if the link
3363          * is up when checking for link state
3364          */
3365 }
3366
3367 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3368
3369 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3370 {
3371         struct eth_stats_info *ether_stat =
3372                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3373         struct bnx2x_vlan_mac_obj *mac_obj =
3374                 &bp->sp_objs->mac_obj;
3375         int i;
3376
3377         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3378                 ETH_STAT_INFO_VERSION_LEN);
3379
3380         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3381          * mac_local field in ether_stat struct. The base address is offset by 2
3382          * bytes to account for the field being 8 bytes but a mac address is
3383          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3384          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3385          * allocated by the ether_stat struct, so the macs will land in their
3386          * proper positions.
3387          */
3388         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3389                 memset(ether_stat->mac_local + i, 0,
3390                        sizeof(ether_stat->mac_local[0]));
3391         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3392                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3393                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3394                                 ETH_ALEN);
3395         ether_stat->mtu_size = bp->dev->mtu;
3396         if (bp->dev->features & NETIF_F_RXCSUM)
3397                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3398         if (bp->dev->features & NETIF_F_TSO)
3399                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3400         ether_stat->feature_flags |= bp->common.boot_mode;
3401
3402         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3403
3404         ether_stat->txq_size = bp->tx_ring_size;
3405         ether_stat->rxq_size = bp->rx_ring_size;
3406
3407 #ifdef CONFIG_BNX2X_SRIOV
3408         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3409 #endif
3410 }
3411
3412 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3413 {
3414         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3415         struct fcoe_stats_info *fcoe_stat =
3416                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3417
3418         if (!CNIC_LOADED(bp))
3419                 return;
3420
3421         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3422
3423         fcoe_stat->qos_priority =
3424                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3425
3426         /* insert FCoE stats from ramrod response */
3427         if (!NO_FCOE(bp)) {
3428                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3429                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3430                         tstorm_queue_statistics;
3431
3432                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3433                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3434                         xstorm_queue_statistics;
3435
3436                 struct fcoe_statistics_params *fw_fcoe_stat =
3437                         &bp->fw_stats_data->fcoe;
3438
3439                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3440                           fcoe_stat->rx_bytes_lo,
3441                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3442
3443                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3444                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3445                           fcoe_stat->rx_bytes_lo,
3446                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3447
3448                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3449                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3450                           fcoe_stat->rx_bytes_lo,
3451                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3452
3453                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3454                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3455                           fcoe_stat->rx_bytes_lo,
3456                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3457
3458                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3459                           fcoe_stat->rx_frames_lo,
3460                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3461
3462                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3463                           fcoe_stat->rx_frames_lo,
3464                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3465
3466                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3467                           fcoe_stat->rx_frames_lo,
3468                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3469
3470                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3471                           fcoe_stat->rx_frames_lo,
3472                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3473
3474                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3475                           fcoe_stat->tx_bytes_lo,
3476                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3477
3478                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3479                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3480                           fcoe_stat->tx_bytes_lo,
3481                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3482
3483                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3484                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3485                           fcoe_stat->tx_bytes_lo,
3486                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3487
3488                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3489                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3490                           fcoe_stat->tx_bytes_lo,
3491                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3492
3493                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3494                           fcoe_stat->tx_frames_lo,
3495                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3496
3497                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3498                           fcoe_stat->tx_frames_lo,
3499                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3500
3501                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3502                           fcoe_stat->tx_frames_lo,
3503                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3504
3505                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3506                           fcoe_stat->tx_frames_lo,
3507                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3508         }
3509
3510         /* ask L5 driver to add data to the struct */
3511         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3512 }
3513
3514 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3515 {
3516         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3517         struct iscsi_stats_info *iscsi_stat =
3518                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3519
3520         if (!CNIC_LOADED(bp))
3521                 return;
3522
3523         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3524                ETH_ALEN);
3525
3526         iscsi_stat->qos_priority =
3527                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3528
3529         /* ask L5 driver to add data to the struct */
3530         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3531 }
3532
3533 /* called due to MCP event (on pmf):
3534  *      reread new bandwidth configuration
3535  *      configure FW
3536  *      notify others function about the change
3537  */
3538 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3539 {
3540         /* Workaround for MFW bug.
3541          * MFW is not supposed to generate BW attention in
3542          * single function mode.
3543          */
3544         if (!IS_MF(bp)) {
3545                 DP(BNX2X_MSG_MCP,
3546                    "Ignoring MF BW config in single function mode\n");
3547                 return;
3548         }
3549
3550         if (bp->link_vars.link_up) {
3551                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3552                 bnx2x_link_sync_notify(bp);
3553         }
3554         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3555 }
3556
3557 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3558 {
3559         bnx2x_config_mf_bw(bp);
3560         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3561 }
3562
3563 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3564 {
3565         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3566         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3567 }
3568
3569 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3570 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3571
3572 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3573 {
3574         enum drv_info_opcode op_code;
3575         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3576         bool release = false;
3577         int wait;
3578
3579         /* if drv_info version supported by MFW doesn't match - send NACK */
3580         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3581                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3582                 return;
3583         }
3584
3585         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3586                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3587
3588         /* Must prevent other flows from accessing drv_info_to_mcp */
3589         mutex_lock(&bp->drv_info_mutex);
3590
3591         memset(&bp->slowpath->drv_info_to_mcp, 0,
3592                sizeof(union drv_info_to_mcp));
3593
3594         switch (op_code) {
3595         case ETH_STATS_OPCODE:
3596                 bnx2x_drv_info_ether_stat(bp);
3597                 break;
3598         case FCOE_STATS_OPCODE:
3599                 bnx2x_drv_info_fcoe_stat(bp);
3600                 break;
3601         case ISCSI_STATS_OPCODE:
3602                 bnx2x_drv_info_iscsi_stat(bp);
3603                 break;
3604         default:
3605                 /* if op code isn't supported - send NACK */
3606                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3607                 goto out;
3608         }
3609
3610         /* if we got drv_info attn from MFW then these fields are defined in
3611          * shmem2 for sure
3612          */
3613         SHMEM2_WR(bp, drv_info_host_addr_lo,
3614                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3615         SHMEM2_WR(bp, drv_info_host_addr_hi,
3616                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3617
3618         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3619
3620         /* Since possible management wants both this and get_driver_version
3621          * need to wait until management notifies us it finished utilizing
3622          * the buffer.
3623          */
3624         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3625                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3626         } else if (!bp->drv_info_mng_owner) {
3627                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3628
3629                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3630                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3631
3632                         /* Management is done; need to clear indication */
3633                         if (indication & bit) {
3634                                 SHMEM2_WR(bp, mfw_drv_indication,
3635                                           indication & ~bit);
3636                                 release = true;
3637                                 break;
3638                         }
3639
3640                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3641                 }
3642         }
3643         if (!release) {
3644                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3645                 bp->drv_info_mng_owner = true;
3646         }
3647
3648 out:
3649         mutex_unlock(&bp->drv_info_mutex);
3650 }
3651
3652 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3653 {
3654         u8 vals[4];
3655         int i = 0;
3656
3657         if (bnx2x_format) {
3658                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3659                            &vals[0], &vals[1], &vals[2], &vals[3]);
3660                 if (i > 0)
3661                         vals[0] -= '0';
3662         } else {
3663                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3664                            &vals[0], &vals[1], &vals[2], &vals[3]);
3665         }
3666
3667         while (i < 4)
3668                 vals[i++] = 0;
3669
3670         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3671 }
3672
3673 void bnx2x_update_mng_version(struct bnx2x *bp)
3674 {
3675         u32 iscsiver = DRV_VER_NOT_LOADED;
3676         u32 fcoever = DRV_VER_NOT_LOADED;
3677         u32 ethver = DRV_VER_NOT_LOADED;
3678         int idx = BP_FW_MB_IDX(bp);
3679         u8 *version;
3680
3681         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3682                 return;
3683
3684         mutex_lock(&bp->drv_info_mutex);
3685         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3686         if (bp->drv_info_mng_owner)
3687                 goto out;
3688
3689         if (bp->state != BNX2X_STATE_OPEN)
3690                 goto out;
3691
3692         /* Parse ethernet driver version */
3693         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3694         if (!CNIC_LOADED(bp))
3695                 goto out;
3696
3697         /* Try getting storage driver version via cnic */
3698         memset(&bp->slowpath->drv_info_to_mcp, 0,
3699                sizeof(union drv_info_to_mcp));
3700         bnx2x_drv_info_iscsi_stat(bp);
3701         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3702         iscsiver = bnx2x_update_mng_version_utility(version, false);
3703
3704         memset(&bp->slowpath->drv_info_to_mcp, 0,
3705                sizeof(union drv_info_to_mcp));
3706         bnx2x_drv_info_fcoe_stat(bp);
3707         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3708         fcoever = bnx2x_update_mng_version_utility(version, false);
3709
3710 out:
3711         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3712         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3713         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3714
3715         mutex_unlock(&bp->drv_info_mutex);
3716
3717         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3718            ethver, iscsiver, fcoever);
3719 }
3720
3721 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3722 {
3723         u32 drv_ver;
3724         u32 valid_dump;
3725
3726         if (!SHMEM2_HAS(bp, drv_info))
3727                 return;
3728
3729         /* Update Driver load time, possibly broken in y2038 */
3730         SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3731
3732         drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3733         SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3734
3735         SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3736
3737         /* Check & notify On-Chip dump. */
3738         valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3739
3740         if (valid_dump & FIRST_DUMP_VALID)
3741                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3742
3743         if (valid_dump & SECOND_DUMP_VALID)
3744                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3745 }
3746
3747 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3748 {
3749         u32 cmd_ok, cmd_fail;
3750
3751         /* sanity */
3752         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3753             event & DRV_STATUS_OEM_EVENT_MASK) {
3754                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3755                 return;
3756         }
3757
3758         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3759                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3760                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3761         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3762                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3763                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3764         }
3765
3766         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3767
3768         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3769                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3770                 /* This is the only place besides the function initialization
3771                  * where the bp->flags can change so it is done without any
3772                  * locks
3773                  */
3774                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3775                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3776                         bp->flags |= MF_FUNC_DIS;
3777
3778                         bnx2x_e1h_disable(bp);
3779                 } else {
3780                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3781                         bp->flags &= ~MF_FUNC_DIS;
3782
3783                         bnx2x_e1h_enable(bp);
3784                 }
3785                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3786                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3787         }
3788
3789         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3790                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3791                 bnx2x_config_mf_bw(bp);
3792                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3793                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3794         }
3795
3796         /* Report results to MCP */
3797         if (event)
3798                 bnx2x_fw_command(bp, cmd_fail, 0);
3799         else
3800                 bnx2x_fw_command(bp, cmd_ok, 0);
3801 }
3802
3803 /* must be called under the spq lock */
3804 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3805 {
3806         struct eth_spe *next_spe = bp->spq_prod_bd;
3807
3808         if (bp->spq_prod_bd == bp->spq_last_bd) {
3809                 bp->spq_prod_bd = bp->spq;
3810                 bp->spq_prod_idx = 0;
3811                 DP(BNX2X_MSG_SP, "end of spq\n");
3812         } else {
3813                 bp->spq_prod_bd++;
3814                 bp->spq_prod_idx++;
3815         }
3816         return next_spe;
3817 }
3818
3819 /* must be called under the spq lock */
3820 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3821 {
3822         int func = BP_FUNC(bp);
3823
3824         /*
3825          * Make sure that BD data is updated before writing the producer:
3826          * BD data is written to the memory, the producer is read from the
3827          * memory, thus we need a full memory barrier to ensure the ordering.
3828          */
3829         mb();
3830
3831         REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3832                          bp->spq_prod_idx);
3833 }
3834
3835 /**
3836  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3837  *
3838  * @cmd:        command to check
3839  * @cmd_type:   command type
3840  */
3841 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3842 {
3843         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3844             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3845             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3846             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3847             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3848             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3849             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3850                 return true;
3851         else
3852                 return false;
3853 }
3854
3855 /**
3856  * bnx2x_sp_post - place a single command on an SP ring
3857  *
3858  * @bp:         driver handle
3859  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3860  * @cid:        SW CID the command is related to
3861  * @data_hi:    command private data address (high 32 bits)
3862  * @data_lo:    command private data address (low 32 bits)
3863  * @cmd_type:   command type (e.g. NONE, ETH)
3864  *
3865  * SP data is handled as if it's always an address pair, thus data fields are
3866  * not swapped to little endian in upper functions. Instead this function swaps
3867  * data as if it's two u32 fields.
3868  */
3869 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3870                   u32 data_hi, u32 data_lo, int cmd_type)
3871 {
3872         struct eth_spe *spe;
3873         u16 type;
3874         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3875
3876 #ifdef BNX2X_STOP_ON_ERROR
3877         if (unlikely(bp->panic)) {
3878                 BNX2X_ERR("Can't post SP when there is panic\n");
3879                 return -EIO;
3880         }
3881 #endif
3882
3883         spin_lock_bh(&bp->spq_lock);
3884
3885         if (common) {
3886                 if (!atomic_read(&bp->eq_spq_left)) {
3887                         BNX2X_ERR("BUG! EQ ring full!\n");
3888                         spin_unlock_bh(&bp->spq_lock);
3889                         bnx2x_panic();
3890                         return -EBUSY;
3891                 }
3892         } else if (!atomic_read(&bp->cq_spq_left)) {
3893                         BNX2X_ERR("BUG! SPQ ring full!\n");
3894                         spin_unlock_bh(&bp->spq_lock);
3895                         bnx2x_panic();
3896                         return -EBUSY;
3897         }
3898
3899         spe = bnx2x_sp_get_next(bp);
3900
3901         /* CID needs port number to be encoded int it */
3902         spe->hdr.conn_and_cmd_data =
3903                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3904                                     HW_CID(bp, cid));
3905
3906         /* In some cases, type may already contain the func-id
3907          * mainly in SRIOV related use cases, so we add it here only
3908          * if it's not already set.
3909          */
3910         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3911                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3912                         SPE_HDR_CONN_TYPE;
3913                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3914                          SPE_HDR_FUNCTION_ID);
3915         } else {
3916                 type = cmd_type;
3917         }
3918
3919         spe->hdr.type = cpu_to_le16(type);
3920
3921         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3922         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3923
3924         /*
3925          * It's ok if the actual decrement is issued towards the memory
3926          * somewhere between the spin_lock and spin_unlock. Thus no
3927          * more explicit memory barrier is needed.
3928          */
3929         if (common)
3930                 atomic_dec(&bp->eq_spq_left);
3931         else
3932                 atomic_dec(&bp->cq_spq_left);
3933
3934         DP(BNX2X_MSG_SP,
3935            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3936            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3937            (u32)(U64_LO(bp->spq_mapping) +
3938            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3939            HW_CID(bp, cid), data_hi, data_lo, type,
3940            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3941
3942         bnx2x_sp_prod_update(bp);
3943         spin_unlock_bh(&bp->spq_lock);
3944         return 0;
3945 }
3946
3947 /* acquire split MCP access lock register */
3948 static int bnx2x_acquire_alr(struct bnx2x *bp)
3949 {
3950         u32 j, val;
3951         int rc = 0;
3952
3953         might_sleep();
3954         for (j = 0; j < 1000; j++) {
3955                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3956                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3957                 if (val & MCPR_ACCESS_LOCK_LOCK)
3958                         break;
3959
3960                 usleep_range(5000, 10000);
3961         }
3962         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3963                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3964                 rc = -EBUSY;
3965         }
3966
3967         return rc;
3968 }
3969
3970 /* release split MCP access lock register */
3971 static void bnx2x_release_alr(struct bnx2x *bp)
3972 {
3973         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3974 }
3975
3976 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3977 #define BNX2X_DEF_SB_IDX        0x0002
3978
3979 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3980 {
3981         struct host_sp_status_block *def_sb = bp->def_status_blk;
3982         u16 rc = 0;
3983
3984         barrier(); /* status block is written to by the chip */
3985         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3986                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3987                 rc |= BNX2X_DEF_SB_ATT_IDX;
3988         }
3989
3990         if (bp->def_idx != def_sb->sp_sb.running_index) {
3991                 bp->def_idx = def_sb->sp_sb.running_index;
3992                 rc |= BNX2X_DEF_SB_IDX;
3993         }
3994
3995         /* Do not reorder: indices reading should complete before handling */
3996         barrier();
3997         return rc;
3998 }
3999
4000 /*
4001  * slow path service functions
4002  */
4003
4004 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4005 {
4006         int port = BP_PORT(bp);
4007         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4008                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4009         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4010                                        NIG_REG_MASK_INTERRUPT_PORT0;
4011         u32 aeu_mask;
4012         u32 nig_mask = 0;
4013         u32 reg_addr;
4014
4015         if (bp->attn_state & asserted)
4016                 BNX2X_ERR("IGU ERROR\n");
4017
4018         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4019         aeu_mask = REG_RD(bp, aeu_addr);
4020
4021         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4022            aeu_mask, asserted);
4023         aeu_mask &= ~(asserted & 0x3ff);
4024         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4025
4026         REG_WR(bp, aeu_addr, aeu_mask);
4027         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4028
4029         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4030         bp->attn_state |= asserted;
4031         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4032
4033         if (asserted & ATTN_HARD_WIRED_MASK) {
4034                 if (asserted & ATTN_NIG_FOR_FUNC) {
4035
4036                         bnx2x_acquire_phy_lock(bp);
4037
4038                         /* save nig interrupt mask */
4039                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4040
4041                         /* If nig_mask is not set, no need to call the update
4042                          * function.
4043                          */
4044                         if (nig_mask) {
4045                                 REG_WR(bp, nig_int_mask_addr, 0);
4046
4047                                 bnx2x_link_attn(bp);
4048                         }
4049
4050                         /* handle unicore attn? */
4051                 }
4052                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4053                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4054
4055                 if (asserted & GPIO_2_FUNC)
4056                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4057
4058                 if (asserted & GPIO_3_FUNC)
4059                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4060
4061                 if (asserted & GPIO_4_FUNC)
4062                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4063
4064                 if (port == 0) {
4065                         if (asserted & ATTN_GENERAL_ATTN_1) {
4066                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4067                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4068                         }
4069                         if (asserted & ATTN_GENERAL_ATTN_2) {
4070                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4071                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4072                         }
4073                         if (asserted & ATTN_GENERAL_ATTN_3) {
4074                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4075                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4076                         }
4077                 } else {
4078                         if (asserted & ATTN_GENERAL_ATTN_4) {
4079                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4080                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4081                         }
4082                         if (asserted & ATTN_GENERAL_ATTN_5) {
4083                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4084                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4085                         }
4086                         if (asserted & ATTN_GENERAL_ATTN_6) {
4087                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4088                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4089                         }
4090                 }
4091
4092         } /* if hardwired */
4093
4094         if (bp->common.int_block == INT_BLOCK_HC)
4095                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4096                             COMMAND_REG_ATTN_BITS_SET);
4097         else
4098                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4099
4100         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4101            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4102         REG_WR(bp, reg_addr, asserted);
4103
4104         /* now set back the mask */
4105         if (asserted & ATTN_NIG_FOR_FUNC) {
4106                 /* Verify that IGU ack through BAR was written before restoring
4107                  * NIG mask. This loop should exit after 2-3 iterations max.
4108                  */
4109                 if (bp->common.int_block != INT_BLOCK_HC) {
4110                         u32 cnt = 0, igu_acked;
4111                         do {
4112                                 igu_acked = REG_RD(bp,
4113                                                    IGU_REG_ATTENTION_ACK_BITS);
4114                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4115                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4116                         if (!igu_acked)
4117                                 DP(NETIF_MSG_HW,
4118                                    "Failed to verify IGU ack on time\n");
4119                         barrier();
4120                 }
4121                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4122                 bnx2x_release_phy_lock(bp);
4123         }
4124 }
4125
4126 static void bnx2x_fan_failure(struct bnx2x *bp)
4127 {
4128         int port = BP_PORT(bp);
4129         u32 ext_phy_config;
4130         /* mark the failure */
4131         ext_phy_config =
4132                 SHMEM_RD(bp,
4133                          dev_info.port_hw_config[port].external_phy_config);
4134
4135         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4136         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4137         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4138                  ext_phy_config);
4139
4140         /* log the failure */
4141         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4142                             "Please contact OEM Support for assistance\n");
4143
4144         /* Schedule device reset (unload)
4145          * This is due to some boards consuming sufficient power when driver is
4146          * up to overheat if fan fails.
4147          */
4148         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4149 }
4150
4151 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4152 {
4153         int port = BP_PORT(bp);
4154         int reg_offset;
4155         u32 val;
4156
4157         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4158                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4159
4160         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4161
4162                 val = REG_RD(bp, reg_offset);
4163                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4164                 REG_WR(bp, reg_offset, val);
4165
4166                 BNX2X_ERR("SPIO5 hw attention\n");
4167
4168                 /* Fan failure attention */
4169                 bnx2x_hw_reset_phy(&bp->link_params);
4170                 bnx2x_fan_failure(bp);
4171         }
4172
4173         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4174                 bnx2x_acquire_phy_lock(bp);
4175                 bnx2x_handle_module_detect_int(&bp->link_params);
4176                 bnx2x_release_phy_lock(bp);
4177         }
4178
4179         if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4180
4181                 val = REG_RD(bp, reg_offset);
4182                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4183                 REG_WR(bp, reg_offset, val);
4184
4185                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4186                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4187                 bnx2x_panic();
4188         }
4189 }
4190
4191 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4192 {
4193         u32 val;
4194
4195         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4196
4197                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4198                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4199                 /* DORQ discard attention */
4200                 if (val & 0x2)
4201                         BNX2X_ERR("FATAL error from DORQ\n");
4202         }
4203
4204         if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4205
4206                 int port = BP_PORT(bp);
4207                 int reg_offset;
4208
4209                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4210                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4211
4212                 val = REG_RD(bp, reg_offset);
4213                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4214                 REG_WR(bp, reg_offset, val);
4215
4216                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4217                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4218                 bnx2x_panic();
4219         }
4220 }
4221
4222 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4223 {
4224         u32 val;
4225
4226         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4227
4228                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4229                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4230                 /* CFC error attention */
4231                 if (val & 0x2)
4232                         BNX2X_ERR("FATAL error from CFC\n");
4233         }
4234
4235         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4236                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4237                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4238                 /* RQ_USDMDP_FIFO_OVERFLOW */
4239                 if (val & 0x18000)
4240                         BNX2X_ERR("FATAL error from PXP\n");
4241
4242                 if (!CHIP_IS_E1x(bp)) {
4243                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4244                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4245                 }
4246         }
4247
4248         if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4249
4250                 int port = BP_PORT(bp);
4251                 int reg_offset;
4252
4253                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4254                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4255
4256                 val = REG_RD(bp, reg_offset);
4257                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4258                 REG_WR(bp, reg_offset, val);
4259
4260                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4261                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4262                 bnx2x_panic();
4263         }
4264 }
4265
4266 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4267 {
4268         u32 val;
4269
4270         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4271
4272                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4273                         int func = BP_FUNC(bp);
4274
4275                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4276                         bnx2x_read_mf_cfg(bp);
4277                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4278                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4279                         val = SHMEM_RD(bp,
4280                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4281
4282                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4283                                    DRV_STATUS_OEM_EVENT_MASK))
4284                                 bnx2x_oem_event(bp,
4285                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4286                                                 DRV_STATUS_OEM_EVENT_MASK)));
4287
4288                         if (val & DRV_STATUS_SET_MF_BW)
4289                                 bnx2x_set_mf_bw(bp);
4290
4291                         if (val & DRV_STATUS_DRV_INFO_REQ)
4292                                 bnx2x_handle_drv_info_req(bp);
4293
4294                         if (val & DRV_STATUS_VF_DISABLED)
4295                                 bnx2x_schedule_iov_task(bp,
4296                                                         BNX2X_IOV_HANDLE_FLR);
4297
4298                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4299                                 bnx2x_pmf_update(bp);
4300
4301                         if (bp->port.pmf &&
4302                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4303                                 bp->dcbx_enabled > 0)
4304                                 /* start dcbx state machine */
4305                                 bnx2x_dcbx_set_params(bp,
4306                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4307                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4308                                 bnx2x_handle_afex_cmd(bp,
4309                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4310                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4311                                 bnx2x_handle_eee_event(bp);
4312
4313                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4314                                 bnx2x_schedule_sp_rtnl(bp,
4315                                         BNX2X_SP_RTNL_UPDATE_SVID, 0);
4316
4317                         if (bp->link_vars.periodic_flags &
4318                             PERIODIC_FLAGS_LINK_EVENT) {
4319                                 /*  sync with link */
4320                                 bnx2x_acquire_phy_lock(bp);
4321                                 bp->link_vars.periodic_flags &=
4322                                         ~PERIODIC_FLAGS_LINK_EVENT;
4323                                 bnx2x_release_phy_lock(bp);
4324                                 if (IS_MF(bp))
4325                                         bnx2x_link_sync_notify(bp);
4326                                 bnx2x_link_report(bp);
4327                         }
4328                         /* Always call it here: bnx2x_link_report() will
4329                          * prevent the link indication duplication.
4330                          */
4331                         bnx2x__link_status_update(bp);
4332                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4333
4334                         BNX2X_ERR("MC assert!\n");
4335                         bnx2x_mc_assert(bp);
4336                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4337                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4338                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4339                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4340                         bnx2x_panic();
4341
4342                 } else if (attn & BNX2X_MCP_ASSERT) {
4343
4344                         BNX2X_ERR("MCP assert!\n");
4345                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4346                         bnx2x_fw_dump(bp);
4347
4348                 } else
4349                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4350         }
4351
4352         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4353                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4354                 if (attn & BNX2X_GRC_TIMEOUT) {
4355                         val = CHIP_IS_E1(bp) ? 0 :
4356                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4357                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4358                 }
4359                 if (attn & BNX2X_GRC_RSV) {
4360                         val = CHIP_IS_E1(bp) ? 0 :
4361                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4362                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4363                 }
4364                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4365         }
4366 }
4367
4368 /*
4369  * Bits map:
4370  * 0-7   - Engine0 load counter.
4371  * 8-15  - Engine1 load counter.
4372  * 16    - Engine0 RESET_IN_PROGRESS bit.
4373  * 17    - Engine1 RESET_IN_PROGRESS bit.
4374  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4375  *         on the engine
4376  * 19    - Engine1 ONE_IS_LOADED.
4377  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4378  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4379  *         just the one belonging to its engine).
4380  *
4381  */
4382 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4383
4384 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4385 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4386 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4387 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4388 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4389 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4390 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4391
4392 /*
4393  * Set the GLOBAL_RESET bit.
4394  *
4395  * Should be run under rtnl lock
4396  */
4397 void bnx2x_set_reset_global(struct bnx2x *bp)
4398 {
4399         u32 val;
4400         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4401         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4402         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4403         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4404 }
4405
4406 /*
4407  * Clear the GLOBAL_RESET bit.
4408  *
4409  * Should be run under rtnl lock
4410  */
4411 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4412 {
4413         u32 val;
4414         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4415         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4416         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4417         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4418 }
4419
4420 /*
4421  * Checks the GLOBAL_RESET bit.
4422  *
4423  * should be run under rtnl lock
4424  */
4425 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4426 {
4427         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428
4429         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4430         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4431 }
4432
4433 /*
4434  * Clear RESET_IN_PROGRESS bit for the current engine.
4435  *
4436  * Should be run under rtnl lock
4437  */
4438 static void bnx2x_set_reset_done(struct bnx2x *bp)
4439 {
4440         u32 val;
4441         u32 bit = BP_PATH(bp) ?
4442                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4443         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4444         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4445
4446         /* Clear the bit */
4447         val &= ~bit;
4448         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4449
4450         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4451 }
4452
4453 /*
4454  * Set RESET_IN_PROGRESS for the current engine.
4455  *
4456  * should be run under rtnl lock
4457  */
4458 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4459 {
4460         u32 val;
4461         u32 bit = BP_PATH(bp) ?
4462                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4463         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4464         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4465
4466         /* Set the bit */
4467         val |= bit;
4468         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4469         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4470 }
4471
4472 /*
4473  * Checks the RESET_IN_PROGRESS bit for the given engine.
4474  * should be run under rtnl lock
4475  */
4476 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4477 {
4478         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4479         u32 bit = engine ?
4480                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4481
4482         /* return false if bit is set */
4483         return (val & bit) ? false : true;
4484 }
4485
4486 /*
4487  * set pf load for the current pf.
4488  *
4489  * should be run under rtnl lock
4490  */
4491 void bnx2x_set_pf_load(struct bnx2x *bp)
4492 {
4493         u32 val1, val;
4494         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4495                              BNX2X_PATH0_LOAD_CNT_MASK;
4496         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4497                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4498
4499         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4500         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4501
4502         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4503
4504         /* get the current counter value */
4505         val1 = (val & mask) >> shift;
4506
4507         /* set bit of that PF */
4508         val1 |= (1 << bp->pf_num);
4509
4510         /* clear the old value */
4511         val &= ~mask;
4512
4513         /* set the new one */
4514         val |= ((val1 << shift) & mask);
4515
4516         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4517         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4518 }
4519
4520 /**
4521  * bnx2x_clear_pf_load - clear pf load mark
4522  *
4523  * @bp:         driver handle
4524  *
4525  * Should be run under rtnl lock.
4526  * Decrements the load counter for the current engine. Returns
4527  * whether other functions are still loaded
4528  */
4529 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4530 {
4531         u32 val1, val;
4532         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4533                              BNX2X_PATH0_LOAD_CNT_MASK;
4534         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4535                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4536
4537         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4538         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4539         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4540
4541         /* get the current counter value */
4542         val1 = (val & mask) >> shift;
4543
4544         /* clear bit of that PF */
4545         val1 &= ~(1 << bp->pf_num);
4546
4547         /* clear the old value */
4548         val &= ~mask;
4549
4550         /* set the new one */
4551         val |= ((val1 << shift) & mask);
4552
4553         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4554         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4555         return val1 != 0;
4556 }
4557
4558 /*
4559  * Read the load status for the current engine.
4560  *
4561  * should be run under rtnl lock
4562  */
4563 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4564 {
4565         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4566                              BNX2X_PATH0_LOAD_CNT_MASK);
4567         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4568                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4569         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4570
4571         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4572
4573         val = (val & mask) >> shift;
4574
4575         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4576            engine, val);
4577
4578         return val != 0;
4579 }
4580
4581 static void _print_parity(struct bnx2x *bp, u32 reg)
4582 {
4583         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4584 }
4585
4586 static void _print_next_block(int idx, const char *blk)
4587 {
4588         pr_cont("%s%s", idx ? ", " : "", blk);
4589 }
4590
4591 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4592                                             int *par_num, bool print)
4593 {
4594         u32 cur_bit;
4595         bool res;
4596         int i;
4597
4598         res = false;
4599
4600         for (i = 0; sig; i++) {
4601                 cur_bit = (0x1UL << i);
4602                 if (sig & cur_bit) {
4603                         res |= true; /* Each bit is real error! */
4604
4605                         if (print) {
4606                                 switch (cur_bit) {
4607                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4608                                         _print_next_block((*par_num)++, "BRB");
4609                                         _print_parity(bp,
4610                                                       BRB1_REG_BRB1_PRTY_STS);
4611                                         break;
4612                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4613                                         _print_next_block((*par_num)++,
4614                                                           "PARSER");
4615                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4616                                         break;
4617                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4618                                         _print_next_block((*par_num)++, "TSDM");
4619                                         _print_parity(bp,
4620                                                       TSDM_REG_TSDM_PRTY_STS);
4621                                         break;
4622                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4623                                         _print_next_block((*par_num)++,
4624                                                           "SEARCHER");
4625                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4626                                         break;
4627                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4628                                         _print_next_block((*par_num)++, "TCM");
4629                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4630                                         break;
4631                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4632                                         _print_next_block((*par_num)++,
4633                                                           "TSEMI");
4634                                         _print_parity(bp,
4635                                                       TSEM_REG_TSEM_PRTY_STS_0);
4636                                         _print_parity(bp,
4637                                                       TSEM_REG_TSEM_PRTY_STS_1);
4638                                         break;
4639                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4640                                         _print_next_block((*par_num)++, "XPB");
4641                                         _print_parity(bp, GRCBASE_XPB +
4642                                                           PB_REG_PB_PRTY_STS);
4643                                         break;
4644                                 }
4645                         }
4646
4647                         /* Clear the bit */
4648                         sig &= ~cur_bit;
4649                 }
4650         }
4651
4652         return res;
4653 }
4654
4655 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4656                                             int *par_num, bool *global,
4657                                             bool print)
4658 {
4659         u32 cur_bit;
4660         bool res;
4661         int i;
4662
4663         res = false;
4664
4665         for (i = 0; sig; i++) {
4666                 cur_bit = (0x1UL << i);
4667                 if (sig & cur_bit) {
4668                         res |= true; /* Each bit is real error! */
4669                         switch (cur_bit) {
4670                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4671                                 if (print) {
4672                                         _print_next_block((*par_num)++, "PBF");
4673                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4674                                 }
4675                                 break;
4676                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4677                                 if (print) {
4678                                         _print_next_block((*par_num)++, "QM");
4679                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4680                                 }
4681                                 break;
4682                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4683                                 if (print) {
4684                                         _print_next_block((*par_num)++, "TM");
4685                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4686                                 }
4687                                 break;
4688                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4689                                 if (print) {
4690                                         _print_next_block((*par_num)++, "XSDM");
4691                                         _print_parity(bp,
4692                                                       XSDM_REG_XSDM_PRTY_STS);
4693                                 }
4694                                 break;
4695                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4696                                 if (print) {
4697                                         _print_next_block((*par_num)++, "XCM");
4698                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4699                                 }
4700                                 break;
4701                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4702                                 if (print) {
4703                                         _print_next_block((*par_num)++,
4704                                                           "XSEMI");
4705                                         _print_parity(bp,
4706                                                       XSEM_REG_XSEM_PRTY_STS_0);
4707                                         _print_parity(bp,
4708                                                       XSEM_REG_XSEM_PRTY_STS_1);
4709                                 }
4710                                 break;
4711                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4712                                 if (print) {
4713                                         _print_next_block((*par_num)++,
4714                                                           "DOORBELLQ");
4715                                         _print_parity(bp,
4716                                                       DORQ_REG_DORQ_PRTY_STS);
4717                                 }
4718                                 break;
4719                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4720                                 if (print) {
4721                                         _print_next_block((*par_num)++, "NIG");
4722                                         if (CHIP_IS_E1x(bp)) {
4723                                                 _print_parity(bp,
4724                                                         NIG_REG_NIG_PRTY_STS);
4725                                         } else {
4726                                                 _print_parity(bp,
4727                                                         NIG_REG_NIG_PRTY_STS_0);
4728                                                 _print_parity(bp,
4729                                                         NIG_REG_NIG_PRTY_STS_1);
4730                                         }
4731                                 }
4732                                 break;
4733                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4734                                 if (print)
4735                                         _print_next_block((*par_num)++,
4736                                                           "VAUX PCI CORE");
4737                                 *global = true;
4738                                 break;
4739                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4740                                 if (print) {
4741                                         _print_next_block((*par_num)++,
4742                                                           "DEBUG");
4743                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4744                                 }
4745                                 break;
4746                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4747                                 if (print) {
4748                                         _print_next_block((*par_num)++, "USDM");
4749                                         _print_parity(bp,
4750                                                       USDM_REG_USDM_PRTY_STS);
4751                                 }
4752                                 break;
4753                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4754                                 if (print) {
4755                                         _print_next_block((*par_num)++, "UCM");
4756                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4757                                 }
4758                                 break;
4759                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4760                                 if (print) {
4761                                         _print_next_block((*par_num)++,
4762                                                           "USEMI");
4763                                         _print_parity(bp,
4764                                                       USEM_REG_USEM_PRTY_STS_0);
4765                                         _print_parity(bp,
4766                                                       USEM_REG_USEM_PRTY_STS_1);
4767                                 }
4768                                 break;
4769                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4770                                 if (print) {
4771                                         _print_next_block((*par_num)++, "UPB");
4772                                         _print_parity(bp, GRCBASE_UPB +
4773                                                           PB_REG_PB_PRTY_STS);
4774                                 }
4775                                 break;
4776                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4777                                 if (print) {
4778                                         _print_next_block((*par_num)++, "CSDM");
4779                                         _print_parity(bp,
4780                                                       CSDM_REG_CSDM_PRTY_STS);
4781                                 }
4782                                 break;
4783                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4784                                 if (print) {
4785                                         _print_next_block((*par_num)++, "CCM");
4786                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4787                                 }
4788                                 break;
4789                         }
4790
4791                         /* Clear the bit */
4792                         sig &= ~cur_bit;
4793                 }
4794         }
4795
4796         return res;
4797 }
4798
4799 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4800                                             int *par_num, bool print)
4801 {
4802         u32 cur_bit;
4803         bool res;
4804         int i;
4805
4806         res = false;
4807
4808         for (i = 0; sig; i++) {
4809                 cur_bit = (0x1UL << i);
4810                 if (sig & cur_bit) {
4811                         res = true; /* Each bit is real error! */
4812                         if (print) {
4813                                 switch (cur_bit) {
4814                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4815                                         _print_next_block((*par_num)++,
4816                                                           "CSEMI");
4817                                         _print_parity(bp,
4818                                                       CSEM_REG_CSEM_PRTY_STS_0);
4819                                         _print_parity(bp,
4820                                                       CSEM_REG_CSEM_PRTY_STS_1);
4821                                         break;
4822                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4823                                         _print_next_block((*par_num)++, "PXP");
4824                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4825                                         _print_parity(bp,
4826                                                       PXP2_REG_PXP2_PRTY_STS_0);
4827                                         _print_parity(bp,
4828                                                       PXP2_REG_PXP2_PRTY_STS_1);
4829                                         break;
4830                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4831                                         _print_next_block((*par_num)++,
4832                                                           "PXPPCICLOCKCLIENT");
4833                                         break;
4834                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4835                                         _print_next_block((*par_num)++, "CFC");
4836                                         _print_parity(bp,
4837                                                       CFC_REG_CFC_PRTY_STS);
4838                                         break;
4839                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4840                                         _print_next_block((*par_num)++, "CDU");
4841                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4842                                         break;
4843                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4844                                         _print_next_block((*par_num)++, "DMAE");
4845                                         _print_parity(bp,
4846                                                       DMAE_REG_DMAE_PRTY_STS);
4847                                         break;
4848                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4849                                         _print_next_block((*par_num)++, "IGU");
4850                                         if (CHIP_IS_E1x(bp))
4851                                                 _print_parity(bp,
4852                                                         HC_REG_HC_PRTY_STS);
4853                                         else
4854                                                 _print_parity(bp,
4855                                                         IGU_REG_IGU_PRTY_STS);
4856                                         break;
4857                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4858                                         _print_next_block((*par_num)++, "MISC");
4859                                         _print_parity(bp,
4860                                                       MISC_REG_MISC_PRTY_STS);
4861                                         break;
4862                                 }
4863                         }
4864
4865                         /* Clear the bit */
4866                         sig &= ~cur_bit;
4867                 }
4868         }
4869
4870         return res;
4871 }
4872
4873 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4874                                             int *par_num, bool *global,
4875                                             bool print)
4876 {
4877         bool res = false;
4878         u32 cur_bit;
4879         int i;
4880
4881         for (i = 0; sig; i++) {
4882                 cur_bit = (0x1UL << i);
4883                 if (sig & cur_bit) {
4884                         switch (cur_bit) {
4885                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4886                                 if (print)
4887                                         _print_next_block((*par_num)++,
4888                                                           "MCP ROM");
4889                                 *global = true;
4890                                 res = true;
4891                                 break;
4892                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4893                                 if (print)
4894                                         _print_next_block((*par_num)++,
4895                                                           "MCP UMP RX");
4896                                 *global = true;
4897                                 res = true;
4898                                 break;
4899                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4900                                 if (print)
4901                                         _print_next_block((*par_num)++,
4902                                                           "MCP UMP TX");
4903                                 *global = true;
4904                                 res = true;
4905                                 break;
4906                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4907                                 (*par_num)++;
4908                                 /* clear latched SCPAD PATIRY from MCP */
4909                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4910                                        1UL << 10);
4911                                 break;
4912                         }
4913
4914                         /* Clear the bit */
4915                         sig &= ~cur_bit;
4916                 }
4917         }
4918
4919         return res;
4920 }
4921
4922 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4923                                             int *par_num, bool print)
4924 {
4925         u32 cur_bit;
4926         bool res;
4927         int i;
4928
4929         res = false;
4930
4931         for (i = 0; sig; i++) {
4932                 cur_bit = (0x1UL << i);
4933                 if (sig & cur_bit) {
4934                         res = true; /* Each bit is real error! */
4935                         if (print) {
4936                                 switch (cur_bit) {
4937                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4938                                         _print_next_block((*par_num)++,
4939                                                           "PGLUE_B");
4940                                         _print_parity(bp,
4941                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4942                                         break;
4943                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4944                                         _print_next_block((*par_num)++, "ATC");
4945                                         _print_parity(bp,
4946                                                       ATC_REG_ATC_PRTY_STS);
4947                                         break;
4948                                 }
4949                         }
4950                         /* Clear the bit */
4951                         sig &= ~cur_bit;
4952                 }
4953         }
4954
4955         return res;
4956 }
4957
4958 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4959                               u32 *sig)
4960 {
4961         bool res = false;
4962
4963         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4964             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4965             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4966             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4967             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4968                 int par_num = 0;
4969
4970                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4971                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4972                           sig[0] & HW_PRTY_ASSERT_SET_0,
4973                           sig[1] & HW_PRTY_ASSERT_SET_1,
4974                           sig[2] & HW_PRTY_ASSERT_SET_2,
4975                           sig[3] & HW_PRTY_ASSERT_SET_3,
4976                           sig[4] & HW_PRTY_ASSERT_SET_4);
4977                 if (print) {
4978                         if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4979                              (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4980                              (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4981                              (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4982                              (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4983                                 netdev_err(bp->dev,
4984                                            "Parity errors detected in blocks: ");
4985                         } else {
4986                                 print = false;
4987                         }
4988                 }
4989                 res |= bnx2x_check_blocks_with_parity0(bp,
4990                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4991                 res |= bnx2x_check_blocks_with_parity1(bp,
4992                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4993                 res |= bnx2x_check_blocks_with_parity2(bp,
4994                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4995                 res |= bnx2x_check_blocks_with_parity3(bp,
4996                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4997                 res |= bnx2x_check_blocks_with_parity4(bp,
4998                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4999
5000                 if (print)
5001                         pr_cont("\n");
5002         }
5003
5004         return res;
5005 }
5006
5007 /**
5008  * bnx2x_chk_parity_attn - checks for parity attentions.
5009  *
5010  * @bp:         driver handle
5011  * @global:     true if there was a global attention
5012  * @print:      show parity attention in syslog
5013  */
5014 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5015 {
5016         struct attn_route attn = { {0} };
5017         int port = BP_PORT(bp);
5018
5019         attn.sig[0] = REG_RD(bp,
5020                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5021                              port*4);
5022         attn.sig[1] = REG_RD(bp,
5023                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5024                              port*4);
5025         attn.sig[2] = REG_RD(bp,
5026                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5027                              port*4);
5028         attn.sig[3] = REG_RD(bp,
5029                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5030                              port*4);
5031         /* Since MCP attentions can't be disabled inside the block, we need to
5032          * read AEU registers to see whether they're currently disabled
5033          */
5034         attn.sig[3] &= ((REG_RD(bp,
5035                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5036                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5037                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5038                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5039
5040         if (!CHIP_IS_E1x(bp))
5041                 attn.sig[4] = REG_RD(bp,
5042                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5043                                      port*4);
5044
5045         return bnx2x_parity_attn(bp, global, print, attn.sig);
5046 }
5047
5048 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5049 {
5050         u32 val;
5051         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5052
5053                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5054                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5055                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5056                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5057                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5058                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5059                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5060                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5061                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5062                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5063                 if (val &
5064                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5065                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5066                 if (val &
5067                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5068                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5069                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5070                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5071                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5072                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5073                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5074                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5075         }
5076         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5077                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5078                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5079                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5080                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5081                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5082                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5083                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5084                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5085                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5086                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5087                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5088                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5089                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5090                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5091         }
5092
5093         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5094                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5095                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5096                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5097                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5098         }
5099 }
5100
5101 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5102 {
5103         struct attn_route attn, *group_mask;
5104         int port = BP_PORT(bp);
5105         int index;
5106         u32 reg_addr;
5107         u32 val;
5108         u32 aeu_mask;
5109         bool global = false;
5110
5111         /* need to take HW lock because MCP or other port might also
5112            try to handle this event */
5113         bnx2x_acquire_alr(bp);
5114
5115         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5116 #ifndef BNX2X_STOP_ON_ERROR
5117                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5118                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5119                 /* Disable HW interrupts */
5120                 bnx2x_int_disable(bp);
5121                 /* In case of parity errors don't handle attentions so that
5122                  * other function would "see" parity errors.
5123                  */
5124 #else
5125                 bnx2x_panic();
5126 #endif
5127                 bnx2x_release_alr(bp);
5128                 return;
5129         }
5130
5131         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5132         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5133         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5134         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5135         if (!CHIP_IS_E1x(bp))
5136                 attn.sig[4] =
5137                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5138         else
5139                 attn.sig[4] = 0;
5140
5141         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5142            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5143
5144         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5145                 if (deasserted & (1 << index)) {
5146                         group_mask = &bp->attn_group[index];
5147
5148                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5149                            index,
5150                            group_mask->sig[0], group_mask->sig[1],
5151                            group_mask->sig[2], group_mask->sig[3],
5152                            group_mask->sig[4]);
5153
5154                         bnx2x_attn_int_deasserted4(bp,
5155                                         attn.sig[4] & group_mask->sig[4]);
5156                         bnx2x_attn_int_deasserted3(bp,
5157                                         attn.sig[3] & group_mask->sig[3]);
5158                         bnx2x_attn_int_deasserted1(bp,
5159                                         attn.sig[1] & group_mask->sig[1]);
5160                         bnx2x_attn_int_deasserted2(bp,
5161                                         attn.sig[2] & group_mask->sig[2]);
5162                         bnx2x_attn_int_deasserted0(bp,
5163                                         attn.sig[0] & group_mask->sig[0]);
5164                 }
5165         }
5166
5167         bnx2x_release_alr(bp);
5168
5169         if (bp->common.int_block == INT_BLOCK_HC)
5170                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5171                             COMMAND_REG_ATTN_BITS_CLR);
5172         else
5173                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5174
5175         val = ~deasserted;
5176         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5177            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5178         REG_WR(bp, reg_addr, val);
5179
5180         if (~bp->attn_state & deasserted)
5181                 BNX2X_ERR("IGU ERROR\n");
5182
5183         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5184                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5185
5186         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5187         aeu_mask = REG_RD(bp, reg_addr);
5188
5189         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5190            aeu_mask, deasserted);
5191         aeu_mask |= (deasserted & 0x3ff);
5192         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5193
5194         REG_WR(bp, reg_addr, aeu_mask);
5195         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5196
5197         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5198         bp->attn_state &= ~deasserted;
5199         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5200 }
5201
5202 static void bnx2x_attn_int(struct bnx2x *bp)
5203 {
5204         /* read local copy of bits */
5205         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5206                                                                 attn_bits);
5207         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5208                                                                 attn_bits_ack);
5209         u32 attn_state = bp->attn_state;
5210
5211         /* look for changed bits */
5212         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5213         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5214
5215         DP(NETIF_MSG_HW,
5216            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5217            attn_bits, attn_ack, asserted, deasserted);
5218
5219         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5220                 BNX2X_ERR("BAD attention state\n");
5221
5222         /* handle bits that were raised */
5223         if (asserted)
5224                 bnx2x_attn_int_asserted(bp, asserted);
5225
5226         if (deasserted)
5227                 bnx2x_attn_int_deasserted(bp, deasserted);
5228 }
5229
5230 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5231                       u16 index, u8 op, u8 update)
5232 {
5233         u32 igu_addr = bp->igu_base_addr;
5234         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5235         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5236                              igu_addr);
5237 }
5238
5239 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5240 {
5241         /* No memory barriers */
5242         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5243 }
5244
5245 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5246                                       union event_ring_elem *elem)
5247 {
5248         u8 err = elem->message.error;
5249
5250         if (!bp->cnic_eth_dev.starting_cid  ||
5251             (cid < bp->cnic_eth_dev.starting_cid &&
5252             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5253                 return 1;
5254
5255         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5256
5257         if (unlikely(err)) {
5258
5259                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5260                           cid);
5261                 bnx2x_panic_dump(bp, false);
5262         }
5263         bnx2x_cnic_cfc_comp(bp, cid, err);
5264         return 0;
5265 }
5266
5267 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5268 {
5269         struct bnx2x_mcast_ramrod_params rparam;
5270         int rc;
5271
5272         memset(&rparam, 0, sizeof(rparam));
5273
5274         rparam.mcast_obj = &bp->mcast_obj;
5275
5276         netif_addr_lock_bh(bp->dev);
5277
5278         /* Clear pending state for the last command */
5279         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5280
5281         /* If there are pending mcast commands - send them */
5282         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5283                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5284                 if (rc < 0)
5285                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5286                                   rc);
5287         }
5288
5289         netif_addr_unlock_bh(bp->dev);
5290 }
5291
5292 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5293                                             union event_ring_elem *elem)
5294 {
5295         unsigned long ramrod_flags = 0;
5296         int rc = 0;
5297         u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5298         u32 cid = echo & BNX2X_SWCID_MASK;
5299         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5300
5301         /* Always push next commands out, don't wait here */
5302         __set_bit(RAMROD_CONT, &ramrod_flags);
5303
5304         switch (echo >> BNX2X_SWCID_SHIFT) {
5305         case BNX2X_FILTER_MAC_PENDING:
5306                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5307                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5308                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5309                 else
5310                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5311
5312                 break;
5313         case BNX2X_FILTER_VLAN_PENDING:
5314                 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5315                 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5316                 break;
5317         case BNX2X_FILTER_MCAST_PENDING:
5318                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5319                 /* This is only relevant for 57710 where multicast MACs are
5320                  * configured as unicast MACs using the same ramrod.
5321                  */
5322                 bnx2x_handle_mcast_eqe(bp);
5323                 return;
5324         default:
5325                 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5326                 return;
5327         }
5328
5329         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5330
5331         if (rc < 0)
5332                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5333         else if (rc > 0)
5334                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5335 }
5336
5337 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5338
5339 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5340 {
5341         netif_addr_lock_bh(bp->dev);
5342
5343         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5344
5345         /* Send rx_mode command again if was requested */
5346         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5347                 bnx2x_set_storm_rx_mode(bp);
5348         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5349                                     &bp->sp_state))
5350                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5351         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5352                                     &bp->sp_state))
5353                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5354
5355         netif_addr_unlock_bh(bp->dev);
5356 }
5357
5358 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5359                                               union event_ring_elem *elem)
5360 {
5361         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5362                 DP(BNX2X_MSG_SP,
5363                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5364                    elem->message.data.vif_list_event.func_bit_map);
5365                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5366                         elem->message.data.vif_list_event.func_bit_map);
5367         } else if (elem->message.data.vif_list_event.echo ==
5368                    VIF_LIST_RULE_SET) {
5369                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5370                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5371         }
5372 }
5373
5374 /* called with rtnl_lock */
5375 static void bnx2x_after_function_update(struct bnx2x *bp)
5376 {
5377         int q, rc;
5378         struct bnx2x_fastpath *fp;
5379         struct bnx2x_queue_state_params queue_params = {NULL};
5380         struct bnx2x_queue_update_params *q_update_params =
5381                 &queue_params.params.update;
5382
5383         /* Send Q update command with afex vlan removal values for all Qs */
5384         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5385
5386         /* set silent vlan removal values according to vlan mode */
5387         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5388                   &q_update_params->update_flags);
5389         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5390                   &q_update_params->update_flags);
5391         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5392
5393         /* in access mode mark mask and value are 0 to strip all vlans */
5394         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5395                 q_update_params->silent_removal_value = 0;
5396                 q_update_params->silent_removal_mask = 0;
5397         } else {
5398                 q_update_params->silent_removal_value =
5399                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5400                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5401         }
5402
5403         for_each_eth_queue(bp, q) {
5404                 /* Set the appropriate Queue object */
5405                 fp = &bp->fp[q];
5406                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5407
5408                 /* send the ramrod */
5409                 rc = bnx2x_queue_state_change(bp, &queue_params);
5410                 if (rc < 0)
5411                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5412                                   q);
5413         }
5414
5415         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5416                 fp = &bp->fp[FCOE_IDX(bp)];
5417                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5418
5419                 /* clear pending completion bit */
5420                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5421
5422                 /* mark latest Q bit */
5423                 smp_mb__before_atomic();
5424                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5425                 smp_mb__after_atomic();
5426
5427                 /* send Q update ramrod for FCoE Q */
5428                 rc = bnx2x_queue_state_change(bp, &queue_params);
5429                 if (rc < 0)
5430                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5431                                   q);
5432         } else {
5433                 /* If no FCoE ring - ACK MCP now */
5434                 bnx2x_link_report(bp);
5435                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5436         }
5437 }
5438
5439 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5440         struct bnx2x *bp, u32 cid)
5441 {
5442         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5443
5444         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5445                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5446         else
5447                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5448 }
5449
5450 static void bnx2x_eq_int(struct bnx2x *bp)
5451 {
5452         u16 hw_cons, sw_cons, sw_prod;
5453         union event_ring_elem *elem;
5454         u8 echo;
5455         u32 cid;
5456         u8 opcode;
5457         int rc, spqe_cnt = 0;
5458         struct bnx2x_queue_sp_obj *q_obj;
5459         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5460         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5461
5462         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5463
5464         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5465          * when we get the next-page we need to adjust so the loop
5466          * condition below will be met. The next element is the size of a
5467          * regular element and hence incrementing by 1
5468          */
5469         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5470                 hw_cons++;
5471
5472         /* This function may never run in parallel with itself for a
5473          * specific bp, thus there is no need in "paired" read memory
5474          * barrier here.
5475          */
5476         sw_cons = bp->eq_cons;
5477         sw_prod = bp->eq_prod;
5478
5479         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5480                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5481
5482         for (; sw_cons != hw_cons;
5483               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5484
5485                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5486
5487                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5488                 if (!rc) {
5489                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5490                            rc);
5491                         goto next_spqe;
5492                 }
5493
5494                 opcode = elem->message.opcode;
5495
5496                 /* handle eq element */
5497                 switch (opcode) {
5498                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5499                         bnx2x_vf_mbx_schedule(bp,
5500                                               &elem->message.data.vf_pf_event);
5501                         continue;
5502
5503                 case EVENT_RING_OPCODE_STAT_QUERY:
5504                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5505                                "got statistics comp event %d\n",
5506                                bp->stats_comp++);
5507                         /* nothing to do with stats comp */
5508                         goto next_spqe;
5509
5510                 case EVENT_RING_OPCODE_CFC_DEL:
5511                         /* handle according to cid range */
5512                         /*
5513                          * we may want to verify here that the bp state is
5514                          * HALTING
5515                          */
5516
5517                         /* elem CID originates from FW; actually LE */
5518                         cid = SW_CID(elem->message.data.cfc_del_event.cid);
5519
5520                         DP(BNX2X_MSG_SP,
5521                            "got delete ramrod for MULTI[%d]\n", cid);
5522
5523                         if (CNIC_LOADED(bp) &&
5524                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5525                                 goto next_spqe;
5526
5527                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5528
5529                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5530                                 break;
5531
5532                         goto next_spqe;
5533
5534                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5535                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5536                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5537                         if (f_obj->complete_cmd(bp, f_obj,
5538                                                 BNX2X_F_CMD_TX_STOP))
5539                                 break;
5540                         goto next_spqe;
5541
5542                 case EVENT_RING_OPCODE_START_TRAFFIC:
5543                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5544                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5545                         if (f_obj->complete_cmd(bp, f_obj,
5546                                                 BNX2X_F_CMD_TX_START))
5547                                 break;
5548                         goto next_spqe;
5549
5550                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5551                         echo = elem->message.data.function_update_event.echo;
5552                         if (echo == SWITCH_UPDATE) {
5553                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5554                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5555                                 if (f_obj->complete_cmd(
5556                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5557                                         break;
5558
5559                         } else {
5560                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5561
5562                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5563                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5564                                 f_obj->complete_cmd(bp, f_obj,
5565                                                     BNX2X_F_CMD_AFEX_UPDATE);
5566
5567                                 /* We will perform the Queues update from
5568                                  * sp_rtnl task as all Queue SP operations
5569                                  * should run under rtnl_lock.
5570                                  */
5571                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5572                         }
5573
5574                         goto next_spqe;
5575
5576                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5577                         f_obj->complete_cmd(bp, f_obj,
5578                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5579                         bnx2x_after_afex_vif_lists(bp, elem);
5580                         goto next_spqe;
5581                 case EVENT_RING_OPCODE_FUNCTION_START:
5582                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5583                            "got FUNC_START ramrod\n");
5584                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5585                                 break;
5586
5587                         goto next_spqe;
5588
5589                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5590                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5591                            "got FUNC_STOP ramrod\n");
5592                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5593                                 break;
5594
5595                         goto next_spqe;
5596
5597                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5598                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5599                            "got set_timesync ramrod completion\n");
5600                         if (f_obj->complete_cmd(bp, f_obj,
5601                                                 BNX2X_F_CMD_SET_TIMESYNC))
5602                                 break;
5603                         goto next_spqe;
5604                 }
5605
5606                 switch (opcode | bp->state) {
5607                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5608                       BNX2X_STATE_OPEN):
5609                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5610                       BNX2X_STATE_OPENING_WAIT4_PORT):
5611                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5612                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5613                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5614                            SW_CID(elem->message.data.eth_event.echo));
5615                         rss_raw->clear_pending(rss_raw);
5616                         break;
5617
5618                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5619                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5620                 case (EVENT_RING_OPCODE_SET_MAC |
5621                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5622                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5623                       BNX2X_STATE_OPEN):
5624                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5625                       BNX2X_STATE_DIAG):
5626                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5627                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5628                         DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5629                         bnx2x_handle_classification_eqe(bp, elem);
5630                         break;
5631
5632                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5633                       BNX2X_STATE_OPEN):
5634                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5635                       BNX2X_STATE_DIAG):
5636                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5637                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5638                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5639                         bnx2x_handle_mcast_eqe(bp);
5640                         break;
5641
5642                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5643                       BNX2X_STATE_OPEN):
5644                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5645                       BNX2X_STATE_DIAG):
5646                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5647                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5648                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5649                         bnx2x_handle_rx_mode_eqe(bp);
5650                         break;
5651                 default:
5652                         /* unknown event log error and continue */
5653                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5654                                   elem->message.opcode, bp->state);
5655                 }
5656 next_spqe:
5657                 spqe_cnt++;
5658         } /* for */
5659
5660         smp_mb__before_atomic();
5661         atomic_add(spqe_cnt, &bp->eq_spq_left);
5662
5663         bp->eq_cons = sw_cons;
5664         bp->eq_prod = sw_prod;
5665         /* Make sure that above mem writes were issued towards the memory */
5666         smp_wmb();
5667
5668         /* update producer */
5669         bnx2x_update_eq_prod(bp, bp->eq_prod);
5670 }
5671
5672 static void bnx2x_sp_task(struct work_struct *work)
5673 {
5674         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5675
5676         DP(BNX2X_MSG_SP, "sp task invoked\n");
5677
5678         /* make sure the atomic interrupt_occurred has been written */
5679         smp_rmb();
5680         if (atomic_read(&bp->interrupt_occurred)) {
5681
5682                 /* what work needs to be performed? */
5683                 u16 status = bnx2x_update_dsb_idx(bp);
5684
5685                 DP(BNX2X_MSG_SP, "status %x\n", status);
5686                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5687                 atomic_set(&bp->interrupt_occurred, 0);
5688
5689                 /* HW attentions */
5690                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5691                         bnx2x_attn_int(bp);
5692                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5693                 }
5694
5695                 /* SP events: STAT_QUERY and others */
5696                 if (status & BNX2X_DEF_SB_IDX) {
5697                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5698
5699                         if (FCOE_INIT(bp) &&
5700                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5701                                 /* Prevent local bottom-halves from running as
5702                                  * we are going to change the local NAPI list.
5703                                  */
5704                                 local_bh_disable();
5705                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5706                                 local_bh_enable();
5707                         }
5708
5709                         /* Handle EQ completions */
5710                         bnx2x_eq_int(bp);
5711                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5712                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5713
5714                         status &= ~BNX2X_DEF_SB_IDX;
5715                 }
5716
5717                 /* if status is non zero then perhaps something went wrong */
5718                 if (unlikely(status))
5719                         DP(BNX2X_MSG_SP,
5720                            "got an unknown interrupt! (status 0x%x)\n", status);
5721
5722                 /* ack status block only if something was actually handled */
5723                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5724                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5725         }
5726
5727         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5728         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5729                                &bp->sp_state)) {
5730                 bnx2x_link_report(bp);
5731                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5732         }
5733 }
5734
5735 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5736 {
5737         struct net_device *dev = dev_instance;
5738         struct bnx2x *bp = netdev_priv(dev);
5739
5740         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5741                      IGU_INT_DISABLE, 0);
5742
5743 #ifdef BNX2X_STOP_ON_ERROR
5744         if (unlikely(bp->panic))
5745                 return IRQ_HANDLED;
5746 #endif
5747
5748         if (CNIC_LOADED(bp)) {
5749                 struct cnic_ops *c_ops;
5750
5751                 rcu_read_lock();
5752                 c_ops = rcu_dereference(bp->cnic_ops);
5753                 if (c_ops)
5754                         c_ops->cnic_handler(bp->cnic_data, NULL);
5755                 rcu_read_unlock();
5756         }
5757
5758         /* schedule sp task to perform default status block work, ack
5759          * attentions and enable interrupts.
5760          */
5761         bnx2x_schedule_sp_task(bp);
5762
5763         return IRQ_HANDLED;
5764 }
5765
5766 /* end of slow path */
5767
5768 void bnx2x_drv_pulse(struct bnx2x *bp)
5769 {
5770         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5771                  bp->fw_drv_pulse_wr_seq);
5772 }
5773
5774 static void bnx2x_timer(struct timer_list *t)
5775 {
5776         struct bnx2x *bp = from_timer(bp, t, timer);
5777
5778         if (!netif_running(bp->dev))
5779                 return;
5780
5781         if (IS_PF(bp) &&
5782             !BP_NOMCP(bp)) {
5783                 int mb_idx = BP_FW_MB_IDX(bp);
5784                 u16 drv_pulse;
5785                 u16 mcp_pulse;
5786
5787                 ++bp->fw_drv_pulse_wr_seq;
5788                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5789                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5790                 bnx2x_drv_pulse(bp);
5791
5792                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5793                              MCP_PULSE_SEQ_MASK);
5794                 /* The delta between driver pulse and mcp response
5795                  * should not get too big. If the MFW is more than 5 pulses
5796                  * behind, we should worry about it enough to generate an error
5797                  * log.
5798                  */
5799                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5800                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5801                                   drv_pulse, mcp_pulse);
5802         }
5803
5804         if (bp->state == BNX2X_STATE_OPEN)
5805                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5806
5807         /* sample pf vf bulletin board for new posts from pf */
5808         if (IS_VF(bp))
5809                 bnx2x_timer_sriov(bp);
5810
5811         mod_timer(&bp->timer, jiffies + bp->current_interval);
5812 }
5813
5814 /* end of Statistics */
5815
5816 /* nic init */
5817
5818 /*
5819  * nic init service functions
5820  */
5821
5822 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5823 {
5824         u32 i;
5825         if (!(len%4) && !(addr%4))
5826                 for (i = 0; i < len; i += 4)
5827                         REG_WR(bp, addr + i, fill);
5828         else
5829                 for (i = 0; i < len; i++)
5830                         REG_WR8(bp, addr + i, fill);
5831 }
5832
5833 /* helper: writes FP SP data to FW - data_size in dwords */
5834 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5835                                 int fw_sb_id,
5836                                 u32 *sb_data_p,
5837                                 u32 data_size)
5838 {
5839         int index;
5840         for (index = 0; index < data_size; index++)
5841                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5842                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5843                         sizeof(u32)*index,
5844                         *(sb_data_p + index));
5845 }
5846
5847 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5848 {
5849         u32 *sb_data_p;
5850         u32 data_size = 0;
5851         struct hc_status_block_data_e2 sb_data_e2;
5852         struct hc_status_block_data_e1x sb_data_e1x;
5853
5854         /* disable the function first */
5855         if (!CHIP_IS_E1x(bp)) {
5856                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5857                 sb_data_e2.common.state = SB_DISABLED;
5858                 sb_data_e2.common.p_func.vf_valid = false;
5859                 sb_data_p = (u32 *)&sb_data_e2;
5860                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5861         } else {
5862                 memset(&sb_data_e1x, 0,
5863                        sizeof(struct hc_status_block_data_e1x));
5864                 sb_data_e1x.common.state = SB_DISABLED;
5865                 sb_data_e1x.common.p_func.vf_valid = false;
5866                 sb_data_p = (u32 *)&sb_data_e1x;
5867                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5868         }
5869         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5870
5871         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5872                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5873                         CSTORM_STATUS_BLOCK_SIZE);
5874         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5875                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5876                         CSTORM_SYNC_BLOCK_SIZE);
5877 }
5878
5879 /* helper:  writes SP SB data to FW */
5880 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5881                 struct hc_sp_status_block_data *sp_sb_data)
5882 {
5883         int func = BP_FUNC(bp);
5884         int i;
5885         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5886                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5887                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5888                         i*sizeof(u32),
5889                         *((u32 *)sp_sb_data + i));
5890 }
5891
5892 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5893 {
5894         int func = BP_FUNC(bp);
5895         struct hc_sp_status_block_data sp_sb_data;
5896         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5897
5898         sp_sb_data.state = SB_DISABLED;
5899         sp_sb_data.p_func.vf_valid = false;
5900
5901         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5902
5903         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5904                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5905                         CSTORM_SP_STATUS_BLOCK_SIZE);
5906         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5907                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5908                         CSTORM_SP_SYNC_BLOCK_SIZE);
5909 }
5910
5911 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5912                                            int igu_sb_id, int igu_seg_id)
5913 {
5914         hc_sm->igu_sb_id = igu_sb_id;
5915         hc_sm->igu_seg_id = igu_seg_id;
5916         hc_sm->timer_value = 0xFF;
5917         hc_sm->time_to_expire = 0xFFFFFFFF;
5918 }
5919
5920 /* allocates state machine ids. */
5921 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5922 {
5923         /* zero out state machine indices */
5924         /* rx indices */
5925         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5926
5927         /* tx indices */
5928         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5929         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5930         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5931         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5932
5933         /* map indices */
5934         /* rx indices */
5935         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5936                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937
5938         /* tx indices */
5939         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5940                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5941         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5942                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5943         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5944                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5945         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5946                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5947 }
5948
5949 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5950                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5951 {
5952         int igu_seg_id;
5953
5954         struct hc_status_block_data_e2 sb_data_e2;
5955         struct hc_status_block_data_e1x sb_data_e1x;
5956         struct hc_status_block_sm  *hc_sm_p;
5957         int data_size;
5958         u32 *sb_data_p;
5959
5960         if (CHIP_INT_MODE_IS_BC(bp))
5961                 igu_seg_id = HC_SEG_ACCESS_NORM;
5962         else
5963                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5964
5965         bnx2x_zero_fp_sb(bp, fw_sb_id);
5966
5967         if (!CHIP_IS_E1x(bp)) {
5968                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5969                 sb_data_e2.common.state = SB_ENABLED;
5970                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5971                 sb_data_e2.common.p_func.vf_id = vfid;
5972                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5973                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5974                 sb_data_e2.common.same_igu_sb_1b = true;
5975                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5976                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5977                 hc_sm_p = sb_data_e2.common.state_machine;
5978                 sb_data_p = (u32 *)&sb_data_e2;
5979                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5980                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5981         } else {
5982                 memset(&sb_data_e1x, 0,
5983                        sizeof(struct hc_status_block_data_e1x));
5984                 sb_data_e1x.common.state = SB_ENABLED;
5985                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5986                 sb_data_e1x.common.p_func.vf_id = 0xff;
5987                 sb_data_e1x.common.p_func.vf_valid = false;
5988                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5989                 sb_data_e1x.common.same_igu_sb_1b = true;
5990                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5991                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5992                 hc_sm_p = sb_data_e1x.common.state_machine;
5993                 sb_data_p = (u32 *)&sb_data_e1x;
5994                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5995                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5996         }
5997
5998         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5999                                        igu_sb_id, igu_seg_id);
6000         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6001                                        igu_sb_id, igu_seg_id);
6002
6003         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6004
6005         /* write indices to HW - PCI guarantees endianity of regpairs */
6006         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6007 }
6008
6009 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6010                                      u16 tx_usec, u16 rx_usec)
6011 {
6012         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6013                                     false, rx_usec);
6014         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6015                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6016                                        tx_usec);
6017         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6018                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6019                                        tx_usec);
6020         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6021                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6022                                        tx_usec);
6023 }
6024
6025 static void bnx2x_init_def_sb(struct bnx2x *bp)
6026 {
6027         struct host_sp_status_block *def_sb = bp->def_status_blk;
6028         dma_addr_t mapping = bp->def_status_blk_mapping;
6029         int igu_sp_sb_index;
6030         int igu_seg_id;
6031         int port = BP_PORT(bp);
6032         int func = BP_FUNC(bp);
6033         int reg_offset, reg_offset_en5;
6034         u64 section;
6035         int index;
6036         struct hc_sp_status_block_data sp_sb_data;
6037         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6038
6039         if (CHIP_INT_MODE_IS_BC(bp)) {
6040                 igu_sp_sb_index = DEF_SB_IGU_ID;
6041                 igu_seg_id = HC_SEG_ACCESS_DEF;
6042         } else {
6043                 igu_sp_sb_index = bp->igu_dsb_id;
6044                 igu_seg_id = IGU_SEG_ACCESS_DEF;
6045         }
6046
6047         /* ATTN */
6048         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6049                                             atten_status_block);
6050         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6051
6052         bp->attn_state = 0;
6053
6054         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6055                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6056         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6057                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6058         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6059                 int sindex;
6060                 /* take care of sig[0]..sig[4] */
6061                 for (sindex = 0; sindex < 4; sindex++)
6062                         bp->attn_group[index].sig[sindex] =
6063                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6064
6065                 if (!CHIP_IS_E1x(bp))
6066                         /*
6067                          * enable5 is separate from the rest of the registers,
6068                          * and therefore the address skip is 4
6069                          * and not 16 between the different groups
6070                          */
6071                         bp->attn_group[index].sig[4] = REG_RD(bp,
6072                                         reg_offset_en5 + 0x4*index);
6073                 else
6074                         bp->attn_group[index].sig[4] = 0;
6075         }
6076
6077         if (bp->common.int_block == INT_BLOCK_HC) {
6078                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6079                                      HC_REG_ATTN_MSG0_ADDR_L);
6080
6081                 REG_WR(bp, reg_offset, U64_LO(section));
6082                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6083         } else if (!CHIP_IS_E1x(bp)) {
6084                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6085                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6086         }
6087
6088         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6089                                             sp_sb);
6090
6091         bnx2x_zero_sp_sb(bp);
6092
6093         /* PCI guarantees endianity of regpairs */
6094         sp_sb_data.state                = SB_ENABLED;
6095         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6096         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6097         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6098         sp_sb_data.igu_seg_id           = igu_seg_id;
6099         sp_sb_data.p_func.pf_id         = func;
6100         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6101         sp_sb_data.p_func.vf_id         = 0xff;
6102
6103         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6104
6105         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6106 }
6107
6108 void bnx2x_update_coalesce(struct bnx2x *bp)
6109 {
6110         int i;
6111
6112         for_each_eth_queue(bp, i)
6113                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6114                                          bp->tx_ticks, bp->rx_ticks);
6115 }
6116
6117 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6118 {
6119         spin_lock_init(&bp->spq_lock);
6120         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6121
6122         bp->spq_prod_idx = 0;
6123         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6124         bp->spq_prod_bd = bp->spq;
6125         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6126 }
6127
6128 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6129 {
6130         int i;
6131         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6132                 union event_ring_elem *elem =
6133                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6134
6135                 elem->next_page.addr.hi =
6136                         cpu_to_le32(U64_HI(bp->eq_mapping +
6137                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6138                 elem->next_page.addr.lo =
6139                         cpu_to_le32(U64_LO(bp->eq_mapping +
6140                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6141         }
6142         bp->eq_cons = 0;
6143         bp->eq_prod = NUM_EQ_DESC;
6144         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6145         /* we want a warning message before it gets wrought... */
6146         atomic_set(&bp->eq_spq_left,
6147                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6148 }
6149
6150 /* called with netif_addr_lock_bh() */
6151 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6152                                unsigned long rx_mode_flags,
6153                                unsigned long rx_accept_flags,
6154                                unsigned long tx_accept_flags,
6155                                unsigned long ramrod_flags)
6156 {
6157         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6158         int rc;
6159
6160         memset(&ramrod_param, 0, sizeof(ramrod_param));
6161
6162         /* Prepare ramrod parameters */
6163         ramrod_param.cid = 0;
6164         ramrod_param.cl_id = cl_id;
6165         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6166         ramrod_param.func_id = BP_FUNC(bp);
6167
6168         ramrod_param.pstate = &bp->sp_state;
6169         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6170
6171         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6172         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6173
6174         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6175
6176         ramrod_param.ramrod_flags = ramrod_flags;
6177         ramrod_param.rx_mode_flags = rx_mode_flags;
6178
6179         ramrod_param.rx_accept_flags = rx_accept_flags;
6180         ramrod_param.tx_accept_flags = tx_accept_flags;
6181
6182         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6183         if (rc < 0) {
6184                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6185                 return rc;
6186         }
6187
6188         return 0;
6189 }
6190
6191 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6192                                    unsigned long *rx_accept_flags,
6193                                    unsigned long *tx_accept_flags)
6194 {
6195         /* Clear the flags first */
6196         *rx_accept_flags = 0;
6197         *tx_accept_flags = 0;
6198
6199         switch (rx_mode) {
6200         case BNX2X_RX_MODE_NONE:
6201                 /*
6202                  * 'drop all' supersedes any accept flags that may have been
6203                  * passed to the function.
6204                  */
6205                 break;
6206         case BNX2X_RX_MODE_NORMAL:
6207                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6208                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6209                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6210
6211                 /* internal switching mode */
6212                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6213                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6214                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6215
6216                 if (bp->accept_any_vlan) {
6217                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6218                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6219                 }
6220
6221                 break;
6222         case BNX2X_RX_MODE_ALLMULTI:
6223                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6224                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6225                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6226
6227                 /* internal switching mode */
6228                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6229                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6230                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6231
6232                 if (bp->accept_any_vlan) {
6233                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6234                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6235                 }
6236
6237                 break;
6238         case BNX2X_RX_MODE_PROMISC:
6239                 /* According to definition of SI mode, iface in promisc mode
6240                  * should receive matched and unmatched (in resolution of port)
6241                  * unicast packets.
6242                  */
6243                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6244                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6245                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6246                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6247
6248                 /* internal switching mode */
6249                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6250                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6251
6252                 if (IS_MF_SI(bp))
6253                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6254                 else
6255                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6256
6257                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6258                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6259
6260                 break;
6261         default:
6262                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6263                 return -EINVAL;
6264         }
6265
6266         return 0;
6267 }
6268
6269 /* called with netif_addr_lock_bh() */
6270 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6271 {
6272         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6273         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6274         int rc;
6275
6276         if (!NO_FCOE(bp))
6277                 /* Configure rx_mode of FCoE Queue */
6278                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6279
6280         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6281                                      &tx_accept_flags);
6282         if (rc)
6283                 return rc;
6284
6285         __set_bit(RAMROD_RX, &ramrod_flags);
6286         __set_bit(RAMROD_TX, &ramrod_flags);
6287
6288         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6289                                    rx_accept_flags, tx_accept_flags,
6290                                    ramrod_flags);
6291 }
6292
6293 static void bnx2x_init_internal_common(struct bnx2x *bp)
6294 {
6295         int i;
6296
6297         /* Zero this manually as its initialization is
6298            currently missing in the initTool */
6299         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6300                 REG_WR(bp, BAR_USTRORM_INTMEM +
6301                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6302         if (!CHIP_IS_E1x(bp)) {
6303                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6304                         CHIP_INT_MODE_IS_BC(bp) ?
6305                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6306         }
6307 }
6308
6309 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6310 {
6311         switch (load_code) {
6312         case FW_MSG_CODE_DRV_LOAD_COMMON:
6313         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6314                 bnx2x_init_internal_common(bp);
6315                 fallthrough;
6316
6317         case FW_MSG_CODE_DRV_LOAD_PORT:
6318                 /* nothing to do */
6319                 fallthrough;
6320
6321         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6322                 /* internal memory per function is
6323                    initialized inside bnx2x_pf_init */
6324                 break;
6325
6326         default:
6327                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6328                 break;
6329         }
6330 }
6331
6332 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6333 {
6334         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6335 }
6336
6337 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6338 {
6339         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6340 }
6341
6342 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6343 {
6344         if (CHIP_IS_E1x(fp->bp))
6345                 return BP_L_ID(fp->bp) + fp->index;
6346         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6347                 return bnx2x_fp_igu_sb_id(fp);
6348 }
6349
6350 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6351 {
6352         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6353         u8 cos;
6354         unsigned long q_type = 0;
6355         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6356         fp->rx_queue = fp_idx;
6357         fp->cid = fp_idx;
6358         fp->cl_id = bnx2x_fp_cl_id(fp);
6359         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6360         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6361         /* qZone id equals to FW (per path) client id */
6362         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6363
6364         /* init shortcut */
6365         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6366
6367         /* Setup SB indices */
6368         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6369
6370         /* Configure Queue State object */
6371         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6372         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6373
6374         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6375
6376         /* init tx data */
6377         for_each_cos_in_tx_queue(fp, cos) {
6378                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6379                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6380                                   FP_COS_TO_TXQ(fp, cos, bp),
6381                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6382                 cids[cos] = fp->txdata_ptr[cos]->cid;
6383         }
6384
6385         /* nothing more for vf to do here */
6386         if (IS_VF(bp))
6387                 return;
6388
6389         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6390                       fp->fw_sb_id, fp->igu_sb_id);
6391         bnx2x_update_fpsb_idx(fp);
6392         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6393                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6394                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6395
6396         /**
6397          * Configure classification DBs: Always enable Tx switching
6398          */
6399         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6400
6401         DP(NETIF_MSG_IFUP,
6402            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6403            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6404            fp->igu_sb_id);
6405 }
6406
6407 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6408 {
6409         int i;
6410
6411         for (i = 1; i <= NUM_TX_RINGS; i++) {
6412                 struct eth_tx_next_bd *tx_next_bd =
6413                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6414
6415                 tx_next_bd->addr_hi =
6416                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6417                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6418                 tx_next_bd->addr_lo =
6419                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6420                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6421         }
6422
6423         *txdata->tx_cons_sb = cpu_to_le16(0);
6424
6425         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6426         txdata->tx_db.data.zero_fill1 = 0;
6427         txdata->tx_db.data.prod = 0;
6428
6429         txdata->tx_pkt_prod = 0;
6430         txdata->tx_pkt_cons = 0;
6431         txdata->tx_bd_prod = 0;
6432         txdata->tx_bd_cons = 0;
6433         txdata->tx_pkt = 0;
6434 }
6435
6436 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6437 {
6438         int i;
6439
6440         for_each_tx_queue_cnic(bp, i)
6441                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6442 }
6443
6444 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6445 {
6446         int i;
6447         u8 cos;
6448
6449         for_each_eth_queue(bp, i)
6450                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6451                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6452 }
6453
6454 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6455 {
6456         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6457         unsigned long q_type = 0;
6458
6459         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6460         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6461                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6462         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6463         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6464         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6465         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6466         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6467                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6468                           fp);
6469
6470         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6471
6472         /* qZone id equals to FW (per path) client id */
6473         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6474         /* init shortcut */
6475         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6476                 bnx2x_rx_ustorm_prods_offset(fp);
6477
6478         /* Configure Queue State object */
6479         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6480         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6481
6482         /* No multi-CoS for FCoE L2 client */
6483         BUG_ON(fp->max_cos != 1);
6484
6485         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6486                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6487                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6488
6489         DP(NETIF_MSG_IFUP,
6490            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6491            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6492            fp->igu_sb_id);
6493 }
6494
6495 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6496 {
6497         if (!NO_FCOE(bp))
6498                 bnx2x_init_fcoe_fp(bp);
6499
6500         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6501                       BNX2X_VF_ID_INVALID, false,
6502                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6503
6504         /* ensure status block indices were read */
6505         rmb();
6506         bnx2x_init_rx_rings_cnic(bp);
6507         bnx2x_init_tx_rings_cnic(bp);
6508
6509         /* flush all */
6510         mb();
6511 }
6512
6513 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6514 {
6515         int i;
6516
6517         /* Setup NIC internals and enable interrupts */
6518         for_each_eth_queue(bp, i)
6519                 bnx2x_init_eth_fp(bp, i);
6520
6521         /* ensure status block indices were read */
6522         rmb();
6523         bnx2x_init_rx_rings(bp);
6524         bnx2x_init_tx_rings(bp);
6525
6526         if (IS_PF(bp)) {
6527                 /* Initialize MOD_ABS interrupts */
6528                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6529                                        bp->common.shmem_base,
6530                                        bp->common.shmem2_base, BP_PORT(bp));
6531
6532                 /* initialize the default status block and sp ring */
6533                 bnx2x_init_def_sb(bp);
6534                 bnx2x_update_dsb_idx(bp);
6535                 bnx2x_init_sp_ring(bp);
6536         } else {
6537                 bnx2x_memset_stats(bp);
6538         }
6539 }
6540
6541 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6542 {
6543         bnx2x_init_eq_ring(bp);
6544         bnx2x_init_internal(bp, load_code);
6545         bnx2x_pf_init(bp);
6546         bnx2x_stats_init(bp);
6547
6548         /* flush all before enabling interrupts */
6549         mb();
6550
6551         bnx2x_int_enable(bp);
6552
6553         /* Check for SPIO5 */
6554         bnx2x_attn_int_deasserted0(bp,
6555                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6556                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6557 }
6558
6559 /* gzip service functions */
6560 static int bnx2x_gunzip_init(struct bnx2x *bp)
6561 {
6562         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6563                                             &bp->gunzip_mapping, GFP_KERNEL);
6564         if (bp->gunzip_buf  == NULL)
6565                 goto gunzip_nomem1;
6566
6567         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6568         if (bp->strm  == NULL)
6569                 goto gunzip_nomem2;
6570
6571         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6572         if (bp->strm->workspace == NULL)
6573                 goto gunzip_nomem3;
6574
6575         return 0;
6576
6577 gunzip_nomem3:
6578         kfree(bp->strm);
6579         bp->strm = NULL;
6580
6581 gunzip_nomem2:
6582         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6583                           bp->gunzip_mapping);
6584         bp->gunzip_buf = NULL;
6585
6586 gunzip_nomem1:
6587         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6588         return -ENOMEM;
6589 }
6590
6591 static void bnx2x_gunzip_end(struct bnx2x *bp)
6592 {
6593         if (bp->strm) {
6594                 vfree(bp->strm->workspace);
6595                 kfree(bp->strm);
6596                 bp->strm = NULL;
6597         }
6598
6599         if (bp->gunzip_buf) {
6600                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6601                                   bp->gunzip_mapping);
6602                 bp->gunzip_buf = NULL;
6603         }
6604 }
6605
6606 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6607 {
6608         int n, rc;
6609
6610         /* check gzip header */
6611         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6612                 BNX2X_ERR("Bad gzip header\n");
6613                 return -EINVAL;
6614         }
6615
6616         n = 10;
6617
6618 #define FNAME                           0x8
6619
6620         if (zbuf[3] & FNAME)
6621                 while ((zbuf[n++] != 0) && (n < len));
6622
6623         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6624         bp->strm->avail_in = len - n;
6625         bp->strm->next_out = bp->gunzip_buf;
6626         bp->strm->avail_out = FW_BUF_SIZE;
6627
6628         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6629         if (rc != Z_OK)
6630                 return rc;
6631
6632         rc = zlib_inflate(bp->strm, Z_FINISH);
6633         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6634                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6635                            bp->strm->msg);
6636
6637         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6638         if (bp->gunzip_outlen & 0x3)
6639                 netdev_err(bp->dev,
6640                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6641                                 bp->gunzip_outlen);
6642         bp->gunzip_outlen >>= 2;
6643
6644         zlib_inflateEnd(bp->strm);
6645
6646         if (rc == Z_STREAM_END)
6647                 return 0;
6648
6649         return rc;
6650 }
6651
6652 /* nic load/unload */
6653
6654 /*
6655  * General service functions
6656  */
6657
6658 /* send a NIG loopback debug packet */
6659 static void bnx2x_lb_pckt(struct bnx2x *bp)
6660 {
6661         u32 wb_write[3];
6662
6663         /* Ethernet source and destination addresses */
6664         wb_write[0] = 0x55555555;
6665         wb_write[1] = 0x55555555;
6666         wb_write[2] = 0x20;             /* SOP */
6667         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6668
6669         /* NON-IP protocol */
6670         wb_write[0] = 0x09000000;
6671         wb_write[1] = 0x55555555;
6672         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6673         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6674 }
6675
6676 /* some of the internal memories
6677  * are not directly readable from the driver
6678  * to test them we send debug packets
6679  */
6680 static int bnx2x_int_mem_test(struct bnx2x *bp)
6681 {
6682         int factor;
6683         int count, i;
6684         u32 val = 0;
6685
6686         if (CHIP_REV_IS_FPGA(bp))
6687                 factor = 120;
6688         else if (CHIP_REV_IS_EMUL(bp))
6689                 factor = 200;
6690         else
6691                 factor = 1;
6692
6693         /* Disable inputs of parser neighbor blocks */
6694         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6695         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6696         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6697         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6698
6699         /*  Write 0 to parser credits for CFC search request */
6700         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6701
6702         /* send Ethernet packet */
6703         bnx2x_lb_pckt(bp);
6704
6705         /* TODO do i reset NIG statistic? */
6706         /* Wait until NIG register shows 1 packet of size 0x10 */
6707         count = 1000 * factor;
6708         while (count) {
6709
6710                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6711                 val = *bnx2x_sp(bp, wb_data[0]);
6712                 if (val == 0x10)
6713                         break;
6714
6715                 usleep_range(10000, 20000);
6716                 count--;
6717         }
6718         if (val != 0x10) {
6719                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6720                 return -1;
6721         }
6722
6723         /* Wait until PRS register shows 1 packet */
6724         count = 1000 * factor;
6725         while (count) {
6726                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6727                 if (val == 1)
6728                         break;
6729
6730                 usleep_range(10000, 20000);
6731                 count--;
6732         }
6733         if (val != 0x1) {
6734                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6735                 return -2;
6736         }
6737
6738         /* Reset and init BRB, PRS */
6739         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6740         msleep(50);
6741         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6742         msleep(50);
6743         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6744         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6745
6746         DP(NETIF_MSG_HW, "part2\n");
6747
6748         /* Disable inputs of parser neighbor blocks */
6749         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6750         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6751         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6752         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6753
6754         /* Write 0 to parser credits for CFC search request */
6755         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6756
6757         /* send 10 Ethernet packets */
6758         for (i = 0; i < 10; i++)
6759                 bnx2x_lb_pckt(bp);
6760
6761         /* Wait until NIG register shows 10 + 1
6762            packets of size 11*0x10 = 0xb0 */
6763         count = 1000 * factor;
6764         while (count) {
6765
6766                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6767                 val = *bnx2x_sp(bp, wb_data[0]);
6768                 if (val == 0xb0)
6769                         break;
6770
6771                 usleep_range(10000, 20000);
6772                 count--;
6773         }
6774         if (val != 0xb0) {
6775                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6776                 return -3;
6777         }
6778
6779         /* Wait until PRS register shows 2 packets */
6780         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781         if (val != 2)
6782                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6783
6784         /* Write 1 to parser credits for CFC search request */
6785         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6786
6787         /* Wait until PRS register shows 3 packets */
6788         msleep(10 * factor);
6789         /* Wait until NIG register shows 1 packet of size 0x10 */
6790         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6791         if (val != 3)
6792                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6793
6794         /* clear NIG EOP FIFO */
6795         for (i = 0; i < 11; i++)
6796                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6797         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6798         if (val != 1) {
6799                 BNX2X_ERR("clear of NIG failed\n");
6800                 return -4;
6801         }
6802
6803         /* Reset and init BRB, PRS, NIG */
6804         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6805         msleep(50);
6806         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6807         msleep(50);
6808         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6809         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6810         if (!CNIC_SUPPORT(bp))
6811                 /* set NIC mode */
6812                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6813
6814         /* Enable inputs of parser neighbor blocks */
6815         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6816         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6817         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6818         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6819
6820         DP(NETIF_MSG_HW, "done\n");
6821
6822         return 0; /* OK */
6823 }
6824
6825 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6826 {
6827         u32 val;
6828
6829         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6830         if (!CHIP_IS_E1x(bp))
6831                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6832         else
6833                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6834         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6835         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6836         /*
6837          * mask read length error interrupts in brb for parser
6838          * (parsing unit and 'checksum and crc' unit)
6839          * these errors are legal (PU reads fixed length and CAC can cause
6840          * read length error on truncated packets)
6841          */
6842         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6843         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6844         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6845         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6846         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6847         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6848 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6849 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6850         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6851         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6852         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6853 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6854 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6855         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6856         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6857         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6858         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6859 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6860 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6861
6862         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6863                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6864                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6865         if (!CHIP_IS_E1x(bp))
6866                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6867                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6868         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6869
6870         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6871         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6872         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6873 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6874
6875         if (!CHIP_IS_E1x(bp))
6876                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6877                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6878
6879         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6880         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6881 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6882         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6883 }
6884
6885 static void bnx2x_reset_common(struct bnx2x *bp)
6886 {
6887         u32 val = 0x1400;
6888
6889         /* reset_common */
6890         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6891                0xd3ffff7f);
6892
6893         if (CHIP_IS_E3(bp)) {
6894                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6895                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6896         }
6897
6898         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6899 }
6900
6901 static void bnx2x_setup_dmae(struct bnx2x *bp)
6902 {
6903         bp->dmae_ready = 0;
6904         spin_lock_init(&bp->dmae_lock);
6905 }
6906
6907 static void bnx2x_init_pxp(struct bnx2x *bp)
6908 {
6909         u16 devctl;
6910         int r_order, w_order;
6911
6912         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6913         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6914         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6915         if (bp->mrrs == -1)
6916                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6917         else {
6918                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6919                 r_order = bp->mrrs;
6920         }
6921
6922         bnx2x_init_pxp_arb(bp, r_order, w_order);
6923 }
6924
6925 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6926 {
6927         int is_required;
6928         u32 val;
6929         int port;
6930
6931         if (BP_NOMCP(bp))
6932                 return;
6933
6934         is_required = 0;
6935         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6936               SHARED_HW_CFG_FAN_FAILURE_MASK;
6937
6938         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6939                 is_required = 1;
6940
6941         /*
6942          * The fan failure mechanism is usually related to the PHY type since
6943          * the power consumption of the board is affected by the PHY. Currently,
6944          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6945          */
6946         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6947                 for (port = PORT_0; port < PORT_MAX; port++) {
6948                         is_required |=
6949                                 bnx2x_fan_failure_det_req(
6950                                         bp,
6951                                         bp->common.shmem_base,
6952                                         bp->common.shmem2_base,
6953                                         port);
6954                 }
6955
6956         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6957
6958         if (is_required == 0)
6959                 return;
6960
6961         /* Fan failure is indicated by SPIO 5 */
6962         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6963
6964         /* set to active low mode */
6965         val = REG_RD(bp, MISC_REG_SPIO_INT);
6966         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6967         REG_WR(bp, MISC_REG_SPIO_INT, val);
6968
6969         /* enable interrupt to signal the IGU */
6970         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6971         val |= MISC_SPIO_SPIO5;
6972         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6973 }
6974
6975 void bnx2x_pf_disable(struct bnx2x *bp)
6976 {
6977         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6978         val &= ~IGU_PF_CONF_FUNC_EN;
6979
6980         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6981         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6982         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6983 }
6984
6985 static void bnx2x__common_init_phy(struct bnx2x *bp)
6986 {
6987         u32 shmem_base[2], shmem2_base[2];
6988         /* Avoid common init in case MFW supports LFA */
6989         if (SHMEM2_RD(bp, size) >
6990             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6991                 return;
6992         shmem_base[0] =  bp->common.shmem_base;
6993         shmem2_base[0] = bp->common.shmem2_base;
6994         if (!CHIP_IS_E1x(bp)) {
6995                 shmem_base[1] =
6996                         SHMEM2_RD(bp, other_shmem_base_addr);
6997                 shmem2_base[1] =
6998                         SHMEM2_RD(bp, other_shmem2_base_addr);
6999         }
7000         bnx2x_acquire_phy_lock(bp);
7001         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7002                               bp->common.chip_id);
7003         bnx2x_release_phy_lock(bp);
7004 }
7005
7006 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7007 {
7008         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7009         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7010         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7011         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7012         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7013
7014         /* make sure this value is 0 */
7015         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7016
7017         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7018         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7019         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7020         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7021 }
7022
7023 static void bnx2x_set_endianity(struct bnx2x *bp)
7024 {
7025 #ifdef __BIG_ENDIAN
7026         bnx2x_config_endianity(bp, 1);
7027 #else
7028         bnx2x_config_endianity(bp, 0);
7029 #endif
7030 }
7031
7032 static void bnx2x_reset_endianity(struct bnx2x *bp)
7033 {
7034         bnx2x_config_endianity(bp, 0);
7035 }
7036
7037 /**
7038  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7039  *
7040  * @bp:         driver handle
7041  */
7042 static int bnx2x_init_hw_common(struct bnx2x *bp)
7043 {
7044         u32 val;
7045
7046         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7047
7048         /*
7049          * take the RESET lock to protect undi_unload flow from accessing
7050          * registers while we're resetting the chip
7051          */
7052         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7053
7054         bnx2x_reset_common(bp);
7055         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7056
7057         val = 0xfffc;
7058         if (CHIP_IS_E3(bp)) {
7059                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7060                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7061         }
7062         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7063
7064         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7065
7066         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7067
7068         if (!CHIP_IS_E1x(bp)) {
7069                 u8 abs_func_id;
7070
7071                 /**
7072                  * 4-port mode or 2-port mode we need to turn of master-enable
7073                  * for everyone, after that, turn it back on for self.
7074                  * so, we disregard multi-function or not, and always disable
7075                  * for all functions on the given path, this means 0,2,4,6 for
7076                  * path 0 and 1,3,5,7 for path 1
7077                  */
7078                 for (abs_func_id = BP_PATH(bp);
7079                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7080                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7081                                 REG_WR(bp,
7082                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7083                                     1);
7084                                 continue;
7085                         }
7086
7087                         bnx2x_pretend_func(bp, abs_func_id);
7088                         /* clear pf enable */
7089                         bnx2x_pf_disable(bp);
7090                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7091                 }
7092         }
7093
7094         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7095         if (CHIP_IS_E1(bp)) {
7096                 /* enable HW interrupt from PXP on USDM overflow
7097                    bit 16 on INT_MASK_0 */
7098                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7099         }
7100
7101         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7102         bnx2x_init_pxp(bp);
7103         bnx2x_set_endianity(bp);
7104         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7105
7106         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7107                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7108
7109         /* let the HW do it's magic ... */
7110         msleep(100);
7111         /* finish PXP init */
7112         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7113         if (val != 1) {
7114                 BNX2X_ERR("PXP2 CFG failed\n");
7115                 return -EBUSY;
7116         }
7117         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7118         if (val != 1) {
7119                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7120                 return -EBUSY;
7121         }
7122
7123         /* Timers bug workaround E2 only. We need to set the entire ILT to
7124          * have entries with value "0" and valid bit on.
7125          * This needs to be done by the first PF that is loaded in a path
7126          * (i.e. common phase)
7127          */
7128         if (!CHIP_IS_E1x(bp)) {
7129 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7130  * (i.e. vnic3) to start even if it is marked as "scan-off".
7131  * This occurs when a different function (func2,3) is being marked
7132  * as "scan-off". Real-life scenario for example: if a driver is being
7133  * load-unloaded while func6,7 are down. This will cause the timer to access
7134  * the ilt, translate to a logical address and send a request to read/write.
7135  * Since the ilt for the function that is down is not valid, this will cause
7136  * a translation error which is unrecoverable.
7137  * The Workaround is intended to make sure that when this happens nothing fatal
7138  * will occur. The workaround:
7139  *      1.  First PF driver which loads on a path will:
7140  *              a.  After taking the chip out of reset, by using pretend,
7141  *                  it will write "0" to the following registers of
7142  *                  the other vnics.
7143  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7144  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7145  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7146  *                  And for itself it will write '1' to
7147  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7148  *                  dmae-operations (writing to pram for example.)
7149  *                  note: can be done for only function 6,7 but cleaner this
7150  *                        way.
7151  *              b.  Write zero+valid to the entire ILT.
7152  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7153  *                  VNIC3 (of that port). The range allocated will be the
7154  *                  entire ILT. This is needed to prevent  ILT range error.
7155  *      2.  Any PF driver load flow:
7156  *              a.  ILT update with the physical addresses of the allocated
7157  *                  logical pages.
7158  *              b.  Wait 20msec. - note that this timeout is needed to make
7159  *                  sure there are no requests in one of the PXP internal
7160  *                  queues with "old" ILT addresses.
7161  *              c.  PF enable in the PGLC.
7162  *              d.  Clear the was_error of the PF in the PGLC. (could have
7163  *                  occurred while driver was down)
7164  *              e.  PF enable in the CFC (WEAK + STRONG)
7165  *              f.  Timers scan enable
7166  *      3.  PF driver unload flow:
7167  *              a.  Clear the Timers scan_en.
7168  *              b.  Polling for scan_on=0 for that PF.
7169  *              c.  Clear the PF enable bit in the PXP.
7170  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7171  *              e.  Write zero+valid to all ILT entries (The valid bit must
7172  *                  stay set)
7173  *              f.  If this is VNIC 3 of a port then also init
7174  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7175  *                  to the last entry in the ILT.
7176  *
7177  *      Notes:
7178  *      Currently the PF error in the PGLC is non recoverable.
7179  *      In the future the there will be a recovery routine for this error.
7180  *      Currently attention is masked.
7181  *      Having an MCP lock on the load/unload process does not guarantee that
7182  *      there is no Timer disable during Func6/7 enable. This is because the
7183  *      Timers scan is currently being cleared by the MCP on FLR.
7184  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7185  *      there is error before clearing it. But the flow above is simpler and
7186  *      more general.
7187  *      All ILT entries are written by zero+valid and not just PF6/7
7188  *      ILT entries since in the future the ILT entries allocation for
7189  *      PF-s might be dynamic.
7190  */
7191                 struct ilt_client_info ilt_cli;
7192                 struct bnx2x_ilt ilt;
7193                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7194                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7195
7196                 /* initialize dummy TM client */
7197                 ilt_cli.start = 0;
7198                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7199                 ilt_cli.client_num = ILT_CLIENT_TM;
7200
7201                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7202                  * Step 2: set the timers first/last ilt entry to point
7203                  * to the entire range to prevent ILT range error for 3rd/4th
7204                  * vnic (this code assumes existence of the vnic)
7205                  *
7206                  * both steps performed by call to bnx2x_ilt_client_init_op()
7207                  * with dummy TM client
7208                  *
7209                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7210                  * and his brother are split registers
7211                  */
7212                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7213                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7214                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7215
7216                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7217                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7218                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7219         }
7220
7221         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7222         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7223
7224         if (!CHIP_IS_E1x(bp)) {
7225                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7226                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7227                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7228
7229                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7230
7231                 /* let the HW do it's magic ... */
7232                 do {
7233                         msleep(200);
7234                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7235                 } while (factor-- && (val != 1));
7236
7237                 if (val != 1) {
7238                         BNX2X_ERR("ATC_INIT failed\n");
7239                         return -EBUSY;
7240                 }
7241         }
7242
7243         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7244
7245         bnx2x_iov_init_dmae(bp);
7246
7247         /* clean the DMAE memory */
7248         bp->dmae_ready = 1;
7249         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7250
7251         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7252
7253         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7254
7255         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7256
7257         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7258
7259         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7260         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7261         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7262         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7263
7264         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7265
7266         /* QM queues pointers table */
7267         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7268
7269         /* soft reset pulse */
7270         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7271         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7272
7273         if (CNIC_SUPPORT(bp))
7274                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7275
7276         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7277
7278         if (!CHIP_REV_IS_SLOW(bp))
7279                 /* enable hw interrupt from doorbell Q */
7280                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7281
7282         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7283
7284         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7285         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7286
7287         if (!CHIP_IS_E1(bp))
7288                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7289
7290         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7291                 if (IS_MF_AFEX(bp)) {
7292                         /* configure that VNTag and VLAN headers must be
7293                          * received in afex mode
7294                          */
7295                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7296                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7297                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7298                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7299                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7300                 } else {
7301                         /* Bit-map indicating which L2 hdrs may appear
7302                          * after the basic Ethernet header
7303                          */
7304                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7305                                bp->path_has_ovlan ? 7 : 6);
7306                 }
7307         }
7308
7309         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7310         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7311         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7312         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7313
7314         if (!CHIP_IS_E1x(bp)) {
7315                 /* reset VFC memories */
7316                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7317                            VFC_MEMORIES_RST_REG_CAM_RST |
7318                            VFC_MEMORIES_RST_REG_RAM_RST);
7319                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7320                            VFC_MEMORIES_RST_REG_CAM_RST |
7321                            VFC_MEMORIES_RST_REG_RAM_RST);
7322
7323                 msleep(20);
7324         }
7325
7326         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7327         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7328         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7329         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7330
7331         /* sync semi rtc */
7332         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7333                0x80000000);
7334         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7335                0x80000000);
7336
7337         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7338         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7339         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7340
7341         if (!CHIP_IS_E1x(bp)) {
7342                 if (IS_MF_AFEX(bp)) {
7343                         /* configure that VNTag and VLAN headers must be
7344                          * sent in afex mode
7345                          */
7346                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7347                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7348                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7349                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7350                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7351                 } else {
7352                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7353                                bp->path_has_ovlan ? 7 : 6);
7354                 }
7355         }
7356
7357         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7358
7359         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7360
7361         if (CNIC_SUPPORT(bp)) {
7362                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7363                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7364                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7365                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7366                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7367                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7368                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7369                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7370                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7371                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7372         }
7373         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7374
7375         if (sizeof(union cdu_context) != 1024)
7376                 /* we currently assume that a context is 1024 bytes */
7377                 dev_alert(&bp->pdev->dev,
7378                           "please adjust the size of cdu_context(%ld)\n",
7379                           (long)sizeof(union cdu_context));
7380
7381         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7382         val = (4 << 24) + (0 << 12) + 1024;
7383         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7384
7385         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7386         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7387         /* enable context validation interrupt from CFC */
7388         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7389
7390         /* set the thresholds to prevent CFC/CDU race */
7391         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7392
7393         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7394
7395         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7396                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7397
7398         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7399         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7400
7401         /* Reset PCIE errors for debug */
7402         REG_WR(bp, 0x2814, 0xffffffff);
7403         REG_WR(bp, 0x3820, 0xffffffff);
7404
7405         if (!CHIP_IS_E1x(bp)) {
7406                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7407                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7408                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7409                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7410                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7411                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7412                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7413                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7414                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7415                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7416                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7417         }
7418
7419         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7420         if (!CHIP_IS_E1(bp)) {
7421                 /* in E3 this done in per-port section */
7422                 if (!CHIP_IS_E3(bp))
7423                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7424         }
7425         if (CHIP_IS_E1H(bp))
7426                 /* not applicable for E2 (and above ...) */
7427                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7428
7429         if (CHIP_REV_IS_SLOW(bp))
7430                 msleep(200);
7431
7432         /* finish CFC init */
7433         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7434         if (val != 1) {
7435                 BNX2X_ERR("CFC LL_INIT failed\n");
7436                 return -EBUSY;
7437         }
7438         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7439         if (val != 1) {
7440                 BNX2X_ERR("CFC AC_INIT failed\n");
7441                 return -EBUSY;
7442         }
7443         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7444         if (val != 1) {
7445                 BNX2X_ERR("CFC CAM_INIT failed\n");
7446                 return -EBUSY;
7447         }
7448         REG_WR(bp, CFC_REG_DEBUG0, 0);
7449
7450         if (CHIP_IS_E1(bp)) {
7451                 /* read NIG statistic
7452                    to see if this is our first up since powerup */
7453                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7454                 val = *bnx2x_sp(bp, wb_data[0]);
7455
7456                 /* do internal memory self test */
7457                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7458                         BNX2X_ERR("internal mem self test failed\n");
7459                         return -EBUSY;
7460                 }
7461         }
7462
7463         bnx2x_setup_fan_failure_detection(bp);
7464
7465         /* clear PXP2 attentions */
7466         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7467
7468         bnx2x_enable_blocks_attention(bp);
7469         bnx2x_enable_blocks_parity(bp);
7470
7471         if (!BP_NOMCP(bp)) {
7472                 if (CHIP_IS_E1x(bp))
7473                         bnx2x__common_init_phy(bp);
7474         } else
7475                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7476
7477         if (SHMEM2_HAS(bp, netproc_fw_ver))
7478                 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7479
7480         return 0;
7481 }
7482
7483 /**
7484  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7485  *
7486  * @bp:         driver handle
7487  */
7488 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7489 {
7490         int rc = bnx2x_init_hw_common(bp);
7491
7492         if (rc)
7493                 return rc;
7494
7495         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7496         if (!BP_NOMCP(bp))
7497                 bnx2x__common_init_phy(bp);
7498
7499         return 0;
7500 }
7501
7502 static int bnx2x_init_hw_port(struct bnx2x *bp)
7503 {
7504         int port = BP_PORT(bp);
7505         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7506         u32 low, high;
7507         u32 val, reg;
7508
7509         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7510
7511         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7512
7513         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7514         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7515         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7516
7517         /* Timers bug workaround: disables the pf_master bit in pglue at
7518          * common phase, we need to enable it here before any dmae access are
7519          * attempted. Therefore we manually added the enable-master to the
7520          * port phase (it also happens in the function phase)
7521          */
7522         if (!CHIP_IS_E1x(bp))
7523                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7524
7525         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7526         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7527         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7528         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7529
7530         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7531         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7532         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7533         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7534
7535         /* QM cid (connection) count */
7536         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7537
7538         if (CNIC_SUPPORT(bp)) {
7539                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7540                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7541                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7542         }
7543
7544         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7545
7546         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7547
7548         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7549
7550                 if (IS_MF(bp))
7551                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7552                 else if (bp->dev->mtu > 4096) {
7553                         if (bp->flags & ONE_PORT_FLAG)
7554                                 low = 160;
7555                         else {
7556                                 val = bp->dev->mtu;
7557                                 /* (24*1024 + val*4)/256 */
7558                                 low = 96 + (val/64) +
7559                                                 ((val % 64) ? 1 : 0);
7560                         }
7561                 } else
7562                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7563                 high = low + 56;        /* 14*1024/256 */
7564                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7565                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7566         }
7567
7568         if (CHIP_MODE_IS_4_PORT(bp))
7569                 REG_WR(bp, (BP_PORT(bp) ?
7570                             BRB1_REG_MAC_GUARANTIED_1 :
7571                             BRB1_REG_MAC_GUARANTIED_0), 40);
7572
7573         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7574         if (CHIP_IS_E3B0(bp)) {
7575                 if (IS_MF_AFEX(bp)) {
7576                         /* configure headers for AFEX mode */
7577                         REG_WR(bp, BP_PORT(bp) ?
7578                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7579                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7580                         REG_WR(bp, BP_PORT(bp) ?
7581                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7582                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7583                         REG_WR(bp, BP_PORT(bp) ?
7584                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7585                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7586                 } else {
7587                         /* Ovlan exists only if we are in multi-function +
7588                          * switch-dependent mode, in switch-independent there
7589                          * is no ovlan headers
7590                          */
7591                         REG_WR(bp, BP_PORT(bp) ?
7592                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7593                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7594                                (bp->path_has_ovlan ? 7 : 6));
7595                 }
7596         }
7597
7598         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7599         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7600         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7601         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7602
7603         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7604         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7605         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7606         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7607
7608         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7609         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7610
7611         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7612
7613         if (CHIP_IS_E1x(bp)) {
7614                 /* configure PBF to work without PAUSE mtu 9000 */
7615                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7616
7617                 /* update threshold */
7618                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7619                 /* update init credit */
7620                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7621
7622                 /* probe changes */
7623                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7624                 udelay(50);
7625                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7626         }
7627
7628         if (CNIC_SUPPORT(bp))
7629                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7630
7631         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7632         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7633
7634         if (CHIP_IS_E1(bp)) {
7635                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7636                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7637         }
7638         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7639
7640         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7641
7642         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7643         /* init aeu_mask_attn_func_0/1:
7644          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7645          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7646          *             bits 4-7 are used for "per vn group attention" */
7647         val = IS_MF(bp) ? 0xF7 : 0x7;
7648         /* Enable DCBX attention for all but E1 */
7649         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7650         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7651
7652         /* SCPAD_PARITY should NOT trigger close the gates */
7653         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7654         REG_WR(bp, reg,
7655                REG_RD(bp, reg) &
7656                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7657
7658         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7659         REG_WR(bp, reg,
7660                REG_RD(bp, reg) &
7661                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7662
7663         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7664
7665         if (!CHIP_IS_E1x(bp)) {
7666                 /* Bit-map indicating which L2 hdrs may appear after the
7667                  * basic Ethernet header
7668                  */
7669                 if (IS_MF_AFEX(bp))
7670                         REG_WR(bp, BP_PORT(bp) ?
7671                                NIG_REG_P1_HDRS_AFTER_BASIC :
7672                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7673                 else
7674                         REG_WR(bp, BP_PORT(bp) ?
7675                                NIG_REG_P1_HDRS_AFTER_BASIC :
7676                                NIG_REG_P0_HDRS_AFTER_BASIC,
7677                                IS_MF_SD(bp) ? 7 : 6);
7678
7679                 if (CHIP_IS_E3(bp))
7680                         REG_WR(bp, BP_PORT(bp) ?
7681                                    NIG_REG_LLH1_MF_MODE :
7682                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7683         }
7684         if (!CHIP_IS_E3(bp))
7685                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7686
7687         if (!CHIP_IS_E1(bp)) {
7688                 /* 0x2 disable mf_ov, 0x1 enable */
7689                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7690                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7691
7692                 if (!CHIP_IS_E1x(bp)) {
7693                         val = 0;
7694                         switch (bp->mf_mode) {
7695                         case MULTI_FUNCTION_SD:
7696                                 val = 1;
7697                                 break;
7698                         case MULTI_FUNCTION_SI:
7699                         case MULTI_FUNCTION_AFEX:
7700                                 val = 2;
7701                                 break;
7702                         }
7703
7704                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7705                                                   NIG_REG_LLH0_CLS_TYPE), val);
7706                 }
7707                 {
7708                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7709                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7710                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7711                 }
7712         }
7713
7714         /* If SPIO5 is set to generate interrupts, enable it for this port */
7715         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7716         if (val & MISC_SPIO_SPIO5) {
7717                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7718                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7719                 val = REG_RD(bp, reg_addr);
7720                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7721                 REG_WR(bp, reg_addr, val);
7722         }
7723
7724         if (CHIP_IS_E3B0(bp))
7725                 bp->flags |= PTP_SUPPORTED;
7726
7727         return 0;
7728 }
7729
7730 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7731 {
7732         int reg;
7733         u32 wb_write[2];
7734
7735         if (CHIP_IS_E1(bp))
7736                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7737         else
7738                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7739
7740         wb_write[0] = ONCHIP_ADDR1(addr);
7741         wb_write[1] = ONCHIP_ADDR2(addr);
7742         REG_WR_DMAE(bp, reg, wb_write, 2);
7743 }
7744
7745 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7746 {
7747         u32 data, ctl, cnt = 100;
7748         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7749         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7750         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7751         u32 sb_bit =  1 << (idu_sb_id%32);
7752         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7753         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7754
7755         /* Not supported in BC mode */
7756         if (CHIP_INT_MODE_IS_BC(bp))
7757                 return;
7758
7759         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7760                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7761                 IGU_REGULAR_CLEANUP_SET                         |
7762                 IGU_REGULAR_BCLEANUP;
7763
7764         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7765               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7766               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7767
7768         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7769                          data, igu_addr_data);
7770         REG_WR(bp, igu_addr_data, data);
7771         barrier();
7772         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7773                           ctl, igu_addr_ctl);
7774         REG_WR(bp, igu_addr_ctl, ctl);
7775         barrier();
7776
7777         /* wait for clean up to finish */
7778         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7779                 msleep(20);
7780
7781         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7782                 DP(NETIF_MSG_HW,
7783                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7784                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7785         }
7786 }
7787
7788 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7789 {
7790         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7791 }
7792
7793 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7794 {
7795         u32 i, base = FUNC_ILT_BASE(func);
7796         for (i = base; i < base + ILT_PER_FUNC; i++)
7797                 bnx2x_ilt_wr(bp, i, 0);
7798 }
7799
7800 static void bnx2x_init_searcher(struct bnx2x *bp)
7801 {
7802         int port = BP_PORT(bp);
7803         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7804         /* T1 hash bits value determines the T1 number of entries */
7805         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7806 }
7807
7808 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7809 {
7810         int rc;
7811         struct bnx2x_func_state_params func_params = {NULL};
7812         struct bnx2x_func_switch_update_params *switch_update_params =
7813                 &func_params.params.switch_update;
7814
7815         /* Prepare parameters for function state transitions */
7816         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7817         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7818
7819         func_params.f_obj = &bp->func_obj;
7820         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7821
7822         /* Function parameters */
7823         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7824                   &switch_update_params->changes);
7825         if (suspend)
7826                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7827                           &switch_update_params->changes);
7828
7829         rc = bnx2x_func_state_change(bp, &func_params);
7830
7831         return rc;
7832 }
7833
7834 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7835 {
7836         int rc, i, port = BP_PORT(bp);
7837         int vlan_en = 0, mac_en[NUM_MACS];
7838
7839         /* Close input from network */
7840         if (bp->mf_mode == SINGLE_FUNCTION) {
7841                 bnx2x_set_rx_filter(&bp->link_params, 0);
7842         } else {
7843                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7844                                    NIG_REG_LLH0_FUNC_EN);
7845                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7846                           NIG_REG_LLH0_FUNC_EN, 0);
7847                 for (i = 0; i < NUM_MACS; i++) {
7848                         mac_en[i] = REG_RD(bp, port ?
7849                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7850                                               4 * i) :
7851                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7852                                               4 * i));
7853                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7854                                               4 * i) :
7855                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7856                 }
7857         }
7858
7859         /* Close BMC to host */
7860         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7861                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7862
7863         /* Suspend Tx switching to the PF. Completion of this ramrod
7864          * further guarantees that all the packets of that PF / child
7865          * VFs in BRB were processed by the Parser, so it is safe to
7866          * change the NIC_MODE register.
7867          */
7868         rc = bnx2x_func_switch_update(bp, 1);
7869         if (rc) {
7870                 BNX2X_ERR("Can't suspend tx-switching!\n");
7871                 return rc;
7872         }
7873
7874         /* Change NIC_MODE register */
7875         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7876
7877         /* Open input from network */
7878         if (bp->mf_mode == SINGLE_FUNCTION) {
7879                 bnx2x_set_rx_filter(&bp->link_params, 1);
7880         } else {
7881                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7882                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7883                 for (i = 0; i < NUM_MACS; i++) {
7884                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7885                                               4 * i) :
7886                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7887                                   mac_en[i]);
7888                 }
7889         }
7890
7891         /* Enable BMC to host */
7892         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7893                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7894
7895         /* Resume Tx switching to the PF */
7896         rc = bnx2x_func_switch_update(bp, 0);
7897         if (rc) {
7898                 BNX2X_ERR("Can't resume tx-switching!\n");
7899                 return rc;
7900         }
7901
7902         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7903         return 0;
7904 }
7905
7906 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7907 {
7908         int rc;
7909
7910         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7911
7912         if (CONFIGURE_NIC_MODE(bp)) {
7913                 /* Configure searcher as part of function hw init */
7914                 bnx2x_init_searcher(bp);
7915
7916                 /* Reset NIC mode */
7917                 rc = bnx2x_reset_nic_mode(bp);
7918                 if (rc)
7919                         BNX2X_ERR("Can't change NIC mode!\n");
7920                 return rc;
7921         }
7922
7923         return 0;
7924 }
7925
7926 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7927  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7928  * the addresses of the transaction, resulting in was-error bit set in the pci
7929  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7930  * to clear the interrupt which detected this from the pglueb and the was done
7931  * bit
7932  */
7933 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7934 {
7935         if (!CHIP_IS_E1x(bp))
7936                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7937                        1 << BP_ABS_FUNC(bp));
7938 }
7939
7940 static int bnx2x_init_hw_func(struct bnx2x *bp)
7941 {
7942         int port = BP_PORT(bp);
7943         int func = BP_FUNC(bp);
7944         int init_phase = PHASE_PF0 + func;
7945         struct bnx2x_ilt *ilt = BP_ILT(bp);
7946         u16 cdu_ilt_start;
7947         u32 addr, val;
7948         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7949         int i, main_mem_width, rc;
7950
7951         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7952
7953         /* FLR cleanup - hmmm */
7954         if (!CHIP_IS_E1x(bp)) {
7955                 rc = bnx2x_pf_flr_clnup(bp);
7956                 if (rc) {
7957                         bnx2x_fw_dump(bp);
7958                         return rc;
7959                 }
7960         }
7961
7962         /* set MSI reconfigure capability */
7963         if (bp->common.int_block == INT_BLOCK_HC) {
7964                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7965                 val = REG_RD(bp, addr);
7966                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7967                 REG_WR(bp, addr, val);
7968         }
7969
7970         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7971         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7972
7973         ilt = BP_ILT(bp);
7974         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7975
7976         if (IS_SRIOV(bp))
7977                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7978         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7979
7980         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7981          * those of the VFs, so start line should be reset
7982          */
7983         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7984         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7985                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7986                 ilt->lines[cdu_ilt_start + i].page_mapping =
7987                         bp->context[i].cxt_mapping;
7988                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7989         }
7990
7991         bnx2x_ilt_init_op(bp, INITOP_SET);
7992
7993         if (!CONFIGURE_NIC_MODE(bp)) {
7994                 bnx2x_init_searcher(bp);
7995                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7996                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7997         } else {
7998                 /* Set NIC mode */
7999                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8000                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8001         }
8002
8003         if (!CHIP_IS_E1x(bp)) {
8004                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8005
8006                 /* Turn on a single ISR mode in IGU if driver is going to use
8007                  * INT#x or MSI
8008                  */
8009                 if (!(bp->flags & USING_MSIX_FLAG))
8010                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8011                 /*
8012                  * Timers workaround bug: function init part.
8013                  * Need to wait 20msec after initializing ILT,
8014                  * needed to make sure there are no requests in
8015                  * one of the PXP internal queues with "old" ILT addresses
8016                  */
8017                 msleep(20);
8018                 /*
8019                  * Master enable - Due to WB DMAE writes performed before this
8020                  * register is re-initialized as part of the regular function
8021                  * init
8022                  */
8023                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8024                 /* Enable the function in IGU */
8025                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8026         }
8027
8028         bp->dmae_ready = 1;
8029
8030         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8031
8032         bnx2x_clean_pglue_errors(bp);
8033
8034         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8035         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8036         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8037         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8038         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8039         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8040         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8041         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8042         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8043         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8044         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8045         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8046         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8047
8048         if (!CHIP_IS_E1x(bp))
8049                 REG_WR(bp, QM_REG_PF_EN, 1);
8050
8051         if (!CHIP_IS_E1x(bp)) {
8052                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8053                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8054                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8055                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8056         }
8057         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8058
8059         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8060         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8061         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8062
8063         bnx2x_iov_init_dq(bp);
8064
8065         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8066         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8067         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8068         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8069         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8070         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8071         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8072         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8073         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8074         if (!CHIP_IS_E1x(bp))
8075                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8076
8077         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8078
8079         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8080
8081         if (!CHIP_IS_E1x(bp))
8082                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8083
8084         if (IS_MF(bp)) {
8085                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8086                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8087                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8088                                bp->mf_ov);
8089                 }
8090         }
8091
8092         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8093
8094         /* HC init per function */
8095         if (bp->common.int_block == INT_BLOCK_HC) {
8096                 if (CHIP_IS_E1H(bp)) {
8097                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8098
8099                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8100                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8101                 }
8102                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8103
8104         } else {
8105                 int num_segs, sb_idx, prod_offset;
8106
8107                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8108
8109                 if (!CHIP_IS_E1x(bp)) {
8110                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8111                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8112                 }
8113
8114                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8115
8116                 if (!CHIP_IS_E1x(bp)) {
8117                         int dsb_idx = 0;
8118                         /**
8119                          * Producer memory:
8120                          * E2 mode: address 0-135 match to the mapping memory;
8121                          * 136 - PF0 default prod; 137 - PF1 default prod;
8122                          * 138 - PF2 default prod; 139 - PF3 default prod;
8123                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8124                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8125                          * 144-147 reserved.
8126                          *
8127                          * E1.5 mode - In backward compatible mode;
8128                          * for non default SB; each even line in the memory
8129                          * holds the U producer and each odd line hold
8130                          * the C producer. The first 128 producers are for
8131                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8132                          * producers are for the DSB for each PF.
8133                          * Each PF has five segments: (the order inside each
8134                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8135                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8136                          * 144-147 attn prods;
8137                          */
8138                         /* non-default-status-blocks */
8139                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8140                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8141                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8142                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8143                                         num_segs;
8144
8145                                 for (i = 0; i < num_segs; i++) {
8146                                         addr = IGU_REG_PROD_CONS_MEMORY +
8147                                                         (prod_offset + i) * 4;
8148                                         REG_WR(bp, addr, 0);
8149                                 }
8150                                 /* send consumer update with value 0 */
8151                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8152                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8153                                 bnx2x_igu_clear_sb(bp,
8154                                                    bp->igu_base_sb + sb_idx);
8155                         }
8156
8157                         /* default-status-blocks */
8158                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8159                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8160
8161                         if (CHIP_MODE_IS_4_PORT(bp))
8162                                 dsb_idx = BP_FUNC(bp);
8163                         else
8164                                 dsb_idx = BP_VN(bp);
8165
8166                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8167                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8168                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8169
8170                         /*
8171                          * igu prods come in chunks of E1HVN_MAX (4) -
8172                          * does not matters what is the current chip mode
8173                          */
8174                         for (i = 0; i < (num_segs * E1HVN_MAX);
8175                              i += E1HVN_MAX) {
8176                                 addr = IGU_REG_PROD_CONS_MEMORY +
8177                                                         (prod_offset + i)*4;
8178                                 REG_WR(bp, addr, 0);
8179                         }
8180                         /* send consumer update with 0 */
8181                         if (CHIP_INT_MODE_IS_BC(bp)) {
8182                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8183                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8184                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8186                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8187                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8188                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8189                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8190                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8191                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8192                         } else {
8193                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8194                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8195                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8197                         }
8198                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8199
8200                         /* !!! These should become driver const once
8201                            rf-tool supports split-68 const */
8202                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8203                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8204                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8205                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8206                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8207                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8208                 }
8209         }
8210
8211         /* Reset PCIE errors for debug */
8212         REG_WR(bp, 0x2114, 0xffffffff);
8213         REG_WR(bp, 0x2120, 0xffffffff);
8214
8215         if (CHIP_IS_E1x(bp)) {
8216                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8217                 main_mem_base = HC_REG_MAIN_MEMORY +
8218                                 BP_PORT(bp) * (main_mem_size * 4);
8219                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8220                 main_mem_width = 8;
8221
8222                 val = REG_RD(bp, main_mem_prty_clr);
8223                 if (val)
8224                         DP(NETIF_MSG_HW,
8225                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8226                            val);
8227
8228                 /* Clear "false" parity errors in MSI-X table */
8229                 for (i = main_mem_base;
8230                      i < main_mem_base + main_mem_size * 4;
8231                      i += main_mem_width) {
8232                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8233                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8234                                          i, main_mem_width / 4);
8235                 }
8236                 /* Clear HC parity attention */
8237                 REG_RD(bp, main_mem_prty_clr);
8238         }
8239
8240 #ifdef BNX2X_STOP_ON_ERROR
8241         /* Enable STORMs SP logging */
8242         REG_WR8(bp, BAR_USTRORM_INTMEM +
8243                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8244         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8245                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8246         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8247                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8248         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8249                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8250 #endif
8251
8252         bnx2x_phy_probe(&bp->link_params);
8253
8254         return 0;
8255 }
8256
8257 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8258 {
8259         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8260
8261         if (!CHIP_IS_E1x(bp))
8262                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8263                                sizeof(struct host_hc_status_block_e2));
8264         else
8265                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8266                                sizeof(struct host_hc_status_block_e1x));
8267
8268         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8269 }
8270
8271 void bnx2x_free_mem(struct bnx2x *bp)
8272 {
8273         int i;
8274
8275         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8276                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8277
8278         if (IS_VF(bp))
8279                 return;
8280
8281         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8282                        sizeof(struct host_sp_status_block));
8283
8284         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8285                        sizeof(struct bnx2x_slowpath));
8286
8287         for (i = 0; i < L2_ILT_LINES(bp); i++)
8288                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8289                                bp->context[i].size);
8290         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8291
8292         BNX2X_FREE(bp->ilt->lines);
8293
8294         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8295
8296         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8297                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8298
8299         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8300
8301         bnx2x_iov_free_mem(bp);
8302 }
8303
8304 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8305 {
8306         if (!CHIP_IS_E1x(bp)) {
8307                 /* size = the status block + ramrod buffers */
8308                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8309                                                     sizeof(struct host_hc_status_block_e2));
8310                 if (!bp->cnic_sb.e2_sb)
8311                         goto alloc_mem_err;
8312         } else {
8313                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8314                                                      sizeof(struct host_hc_status_block_e1x));
8315                 if (!bp->cnic_sb.e1x_sb)
8316                         goto alloc_mem_err;
8317         }
8318
8319         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8320                 /* allocate searcher T2 table, as it wasn't allocated before */
8321                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8322                 if (!bp->t2)
8323                         goto alloc_mem_err;
8324         }
8325
8326         /* write address to which L5 should insert its values */
8327         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8328                 &bp->slowpath->drv_info_to_mcp;
8329
8330         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8331                 goto alloc_mem_err;
8332
8333         return 0;
8334
8335 alloc_mem_err:
8336         bnx2x_free_mem_cnic(bp);
8337         BNX2X_ERR("Can't allocate memory\n");
8338         return -ENOMEM;
8339 }
8340
8341 int bnx2x_alloc_mem(struct bnx2x *bp)
8342 {
8343         int i, allocated, context_size;
8344
8345         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8346                 /* allocate searcher T2 table */
8347                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8348                 if (!bp->t2)
8349                         goto alloc_mem_err;
8350         }
8351
8352         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8353                                              sizeof(struct host_sp_status_block));
8354         if (!bp->def_status_blk)
8355                 goto alloc_mem_err;
8356
8357         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8358                                        sizeof(struct bnx2x_slowpath));
8359         if (!bp->slowpath)
8360                 goto alloc_mem_err;
8361
8362         /* Allocate memory for CDU context:
8363          * This memory is allocated separately and not in the generic ILT
8364          * functions because CDU differs in few aspects:
8365          * 1. There are multiple entities allocating memory for context -
8366          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8367          * its own ILT lines.
8368          * 2. Since CDU page-size is not a single 4KB page (which is the case
8369          * for the other ILT clients), to be efficient we want to support
8370          * allocation of sub-page-size in the last entry.
8371          * 3. Context pointers are used by the driver to pass to FW / update
8372          * the context (for the other ILT clients the pointers are used just to
8373          * free the memory during unload).
8374          */
8375         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8376
8377         for (i = 0, allocated = 0; allocated < context_size; i++) {
8378                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8379                                           (context_size - allocated));
8380                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8381                                                       bp->context[i].size);
8382                 if (!bp->context[i].vcxt)
8383                         goto alloc_mem_err;
8384                 allocated += bp->context[i].size;
8385         }
8386         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8387                                  GFP_KERNEL);
8388         if (!bp->ilt->lines)
8389                 goto alloc_mem_err;
8390
8391         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8392                 goto alloc_mem_err;
8393
8394         if (bnx2x_iov_alloc_mem(bp))
8395                 goto alloc_mem_err;
8396
8397         /* Slow path ring */
8398         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8399         if (!bp->spq)
8400                 goto alloc_mem_err;
8401
8402         /* EQ */
8403         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8404                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8405         if (!bp->eq_ring)
8406                 goto alloc_mem_err;
8407
8408         return 0;
8409
8410 alloc_mem_err:
8411         bnx2x_free_mem(bp);
8412         BNX2X_ERR("Can't allocate memory\n");
8413         return -ENOMEM;
8414 }
8415
8416 /*
8417  * Init service functions
8418  */
8419
8420 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8421                       struct bnx2x_vlan_mac_obj *obj, bool set,
8422                       int mac_type, unsigned long *ramrod_flags)
8423 {
8424         int rc;
8425         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8426
8427         memset(&ramrod_param, 0, sizeof(ramrod_param));
8428
8429         /* Fill general parameters */
8430         ramrod_param.vlan_mac_obj = obj;
8431         ramrod_param.ramrod_flags = *ramrod_flags;
8432
8433         /* Fill a user request section if needed */
8434         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8435                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8436
8437                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8438
8439                 /* Set the command: ADD or DEL */
8440                 if (set)
8441                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8442                 else
8443                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8444         }
8445
8446         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8447
8448         if (rc == -EEXIST) {
8449                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8450                 /* do not treat adding same MAC as error */
8451                 rc = 0;
8452         } else if (rc < 0)
8453                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8454
8455         return rc;
8456 }
8457
8458 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8459                        struct bnx2x_vlan_mac_obj *obj, bool set,
8460                        unsigned long *ramrod_flags)
8461 {
8462         int rc;
8463         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8464
8465         memset(&ramrod_param, 0, sizeof(ramrod_param));
8466
8467         /* Fill general parameters */
8468         ramrod_param.vlan_mac_obj = obj;
8469         ramrod_param.ramrod_flags = *ramrod_flags;
8470
8471         /* Fill a user request section if needed */
8472         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8473                 ramrod_param.user_req.u.vlan.vlan = vlan;
8474                 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8475                 /* Set the command: ADD or DEL */
8476                 if (set)
8477                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8478                 else
8479                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8480         }
8481
8482         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8483
8484         if (rc == -EEXIST) {
8485                 /* Do not treat adding same vlan as error. */
8486                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8487                 rc = 0;
8488         } else if (rc < 0) {
8489                 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8490         }
8491
8492         return rc;
8493 }
8494
8495 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8496 {
8497         struct bnx2x_vlan_entry *vlan;
8498
8499         /* Mark that hw forgot all entries */
8500         list_for_each_entry(vlan, &bp->vlan_reg, link)
8501                 vlan->hw = false;
8502
8503         bp->vlan_cnt = 0;
8504 }
8505
8506 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8507 {
8508         struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8509         unsigned long ramrod_flags = 0, vlan_flags = 0;
8510         int rc;
8511
8512         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8513         __set_bit(BNX2X_VLAN, &vlan_flags);
8514         rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8515         if (rc)
8516                 return rc;
8517
8518         bnx2x_clear_vlan_info(bp);
8519
8520         return 0;
8521 }
8522
8523 int bnx2x_del_all_macs(struct bnx2x *bp,
8524                        struct bnx2x_vlan_mac_obj *mac_obj,
8525                        int mac_type, bool wait_for_comp)
8526 {
8527         int rc;
8528         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8529
8530         /* Wait for completion of requested */
8531         if (wait_for_comp)
8532                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8533
8534         /* Set the mac type of addresses we want to clear */
8535         __set_bit(mac_type, &vlan_mac_flags);
8536
8537         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8538         if (rc < 0)
8539                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8540
8541         return rc;
8542 }
8543
8544 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8545 {
8546         if (IS_PF(bp)) {
8547                 unsigned long ramrod_flags = 0;
8548
8549                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8550                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8551                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8552                                          &bp->sp_objs->mac_obj, set,
8553                                          BNX2X_ETH_MAC, &ramrod_flags);
8554         } else { /* vf */
8555                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8556                                              bp->fp->index, set);
8557         }
8558 }
8559
8560 int bnx2x_setup_leading(struct bnx2x *bp)
8561 {
8562         if (IS_PF(bp))
8563                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8564         else /* VF */
8565                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8566 }
8567
8568 /**
8569  * bnx2x_set_int_mode - configure interrupt mode
8570  *
8571  * @bp:         driver handle
8572  *
8573  * In case of MSI-X it will also try to enable MSI-X.
8574  */
8575 int bnx2x_set_int_mode(struct bnx2x *bp)
8576 {
8577         int rc = 0;
8578
8579         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8580                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8581                 return -EINVAL;
8582         }
8583
8584         switch (int_mode) {
8585         case BNX2X_INT_MODE_MSIX:
8586                 /* attempt to enable msix */
8587                 rc = bnx2x_enable_msix(bp);
8588
8589                 /* msix attained */
8590                 if (!rc)
8591                         return 0;
8592
8593                 /* vfs use only msix */
8594                 if (rc && IS_VF(bp))
8595                         return rc;
8596
8597                 /* failed to enable multiple MSI-X */
8598                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8599                                bp->num_queues,
8600                                1 + bp->num_cnic_queues);
8601
8602                 fallthrough;
8603         case BNX2X_INT_MODE_MSI:
8604                 bnx2x_enable_msi(bp);
8605
8606                 fallthrough;
8607         case BNX2X_INT_MODE_INTX:
8608                 bp->num_ethernet_queues = 1;
8609                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8610                 BNX2X_DEV_INFO("set number of queues to 1\n");
8611                 break;
8612         default:
8613                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8614                 return -EINVAL;
8615         }
8616         return 0;
8617 }
8618
8619 /* must be called prior to any HW initializations */
8620 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8621 {
8622         if (IS_SRIOV(bp))
8623                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8624         return L2_ILT_LINES(bp);
8625 }
8626
8627 void bnx2x_ilt_set_info(struct bnx2x *bp)
8628 {
8629         struct ilt_client_info *ilt_client;
8630         struct bnx2x_ilt *ilt = BP_ILT(bp);
8631         u16 line = 0;
8632
8633         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8634         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8635
8636         /* CDU */
8637         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8638         ilt_client->client_num = ILT_CLIENT_CDU;
8639         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8640         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8641         ilt_client->start = line;
8642         line += bnx2x_cid_ilt_lines(bp);
8643
8644         if (CNIC_SUPPORT(bp))
8645                 line += CNIC_ILT_LINES;
8646         ilt_client->end = line - 1;
8647
8648         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8649            ilt_client->start,
8650            ilt_client->end,
8651            ilt_client->page_size,
8652            ilt_client->flags,
8653            ilog2(ilt_client->page_size >> 12));
8654
8655         /* QM */
8656         if (QM_INIT(bp->qm_cid_count)) {
8657                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8658                 ilt_client->client_num = ILT_CLIENT_QM;
8659                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8660                 ilt_client->flags = 0;
8661                 ilt_client->start = line;
8662
8663                 /* 4 bytes for each cid */
8664                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8665                                                          QM_ILT_PAGE_SZ);
8666
8667                 ilt_client->end = line - 1;
8668
8669                 DP(NETIF_MSG_IFUP,
8670                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8671                    ilt_client->start,
8672                    ilt_client->end,
8673                    ilt_client->page_size,
8674                    ilt_client->flags,
8675                    ilog2(ilt_client->page_size >> 12));
8676         }
8677
8678         if (CNIC_SUPPORT(bp)) {
8679                 /* SRC */
8680                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8681                 ilt_client->client_num = ILT_CLIENT_SRC;
8682                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8683                 ilt_client->flags = 0;
8684                 ilt_client->start = line;
8685                 line += SRC_ILT_LINES;
8686                 ilt_client->end = line - 1;
8687
8688                 DP(NETIF_MSG_IFUP,
8689                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8690                    ilt_client->start,
8691                    ilt_client->end,
8692                    ilt_client->page_size,
8693                    ilt_client->flags,
8694                    ilog2(ilt_client->page_size >> 12));
8695
8696                 /* TM */
8697                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8698                 ilt_client->client_num = ILT_CLIENT_TM;
8699                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8700                 ilt_client->flags = 0;
8701                 ilt_client->start = line;
8702                 line += TM_ILT_LINES;
8703                 ilt_client->end = line - 1;
8704
8705                 DP(NETIF_MSG_IFUP,
8706                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8707                    ilt_client->start,
8708                    ilt_client->end,
8709                    ilt_client->page_size,
8710                    ilt_client->flags,
8711                    ilog2(ilt_client->page_size >> 12));
8712         }
8713
8714         BUG_ON(line > ILT_MAX_LINES);
8715 }
8716
8717 /**
8718  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8719  *
8720  * @bp:                 driver handle
8721  * @fp:                 pointer to fastpath
8722  * @init_params:        pointer to parameters structure
8723  *
8724  * parameters configured:
8725  *      - HC configuration
8726  *      - Queue's CDU context
8727  */
8728 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8729         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8730 {
8731         u8 cos;
8732         int cxt_index, cxt_offset;
8733
8734         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8735         if (!IS_FCOE_FP(fp)) {
8736                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8737                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8738
8739                 /* If HC is supported, enable host coalescing in the transition
8740                  * to INIT state.
8741                  */
8742                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8743                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8744
8745                 /* HC rate */
8746                 init_params->rx.hc_rate = bp->rx_ticks ?
8747                         (1000000 / bp->rx_ticks) : 0;
8748                 init_params->tx.hc_rate = bp->tx_ticks ?
8749                         (1000000 / bp->tx_ticks) : 0;
8750
8751                 /* FW SB ID */
8752                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8753                         fp->fw_sb_id;
8754
8755                 /*
8756                  * CQ index among the SB indices: FCoE clients uses the default
8757                  * SB, therefore it's different.
8758                  */
8759                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8760                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8761         }
8762
8763         /* set maximum number of COSs supported by this queue */
8764         init_params->max_cos = fp->max_cos;
8765
8766         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8767             fp->index, init_params->max_cos);
8768
8769         /* set the context pointers queue object */
8770         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8771                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8772                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8773                                 ILT_PAGE_CIDS);
8774                 init_params->cxts[cos] =
8775                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8776         }
8777 }
8778
8779 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8780                         struct bnx2x_queue_state_params *q_params,
8781                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8782                         int tx_index, bool leading)
8783 {
8784         memset(tx_only_params, 0, sizeof(*tx_only_params));
8785
8786         /* Set the command */
8787         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8788
8789         /* Set tx-only QUEUE flags: don't zero statistics */
8790         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8791
8792         /* choose the index of the cid to send the slow path on */
8793         tx_only_params->cid_index = tx_index;
8794
8795         /* Set general TX_ONLY_SETUP parameters */
8796         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8797
8798         /* Set Tx TX_ONLY_SETUP parameters */
8799         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8800
8801         DP(NETIF_MSG_IFUP,
8802            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8803            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8804            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8805            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8806
8807         /* send the ramrod */
8808         return bnx2x_queue_state_change(bp, q_params);
8809 }
8810
8811 /**
8812  * bnx2x_setup_queue - setup queue
8813  *
8814  * @bp:         driver handle
8815  * @fp:         pointer to fastpath
8816  * @leading:    is leading
8817  *
8818  * This function performs 2 steps in a Queue state machine
8819  *      actually: 1) RESET->INIT 2) INIT->SETUP
8820  */
8821
8822 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8823                        bool leading)
8824 {
8825         struct bnx2x_queue_state_params q_params = {NULL};
8826         struct bnx2x_queue_setup_params *setup_params =
8827                                                 &q_params.params.setup;
8828         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8829                                                 &q_params.params.tx_only;
8830         int rc;
8831         u8 tx_index;
8832
8833         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8834
8835         /* reset IGU state skip FCoE L2 queue */
8836         if (!IS_FCOE_FP(fp))
8837                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8838                              IGU_INT_ENABLE, 0);
8839
8840         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8841         /* We want to wait for completion in this context */
8842         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8843
8844         /* Prepare the INIT parameters */
8845         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8846
8847         /* Set the command */
8848         q_params.cmd = BNX2X_Q_CMD_INIT;
8849
8850         /* Change the state to INIT */
8851         rc = bnx2x_queue_state_change(bp, &q_params);
8852         if (rc) {
8853                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8854                 return rc;
8855         }
8856
8857         DP(NETIF_MSG_IFUP, "init complete\n");
8858
8859         /* Now move the Queue to the SETUP state... */
8860         memset(setup_params, 0, sizeof(*setup_params));
8861
8862         /* Set QUEUE flags */
8863         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8864
8865         /* Set general SETUP parameters */
8866         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8867                                 FIRST_TX_COS_INDEX);
8868
8869         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8870                             &setup_params->rxq_params);
8871
8872         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8873                            FIRST_TX_COS_INDEX);
8874
8875         /* Set the command */
8876         q_params.cmd = BNX2X_Q_CMD_SETUP;
8877
8878         if (IS_FCOE_FP(fp))
8879                 bp->fcoe_init = true;
8880
8881         /* Change the state to SETUP */
8882         rc = bnx2x_queue_state_change(bp, &q_params);
8883         if (rc) {
8884                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8885                 return rc;
8886         }
8887
8888         /* loop through the relevant tx-only indices */
8889         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8890               tx_index < fp->max_cos;
8891               tx_index++) {
8892
8893                 /* prepare and send tx-only ramrod*/
8894                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8895                                           tx_only_params, tx_index, leading);
8896                 if (rc) {
8897                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8898                                   fp->index, tx_index);
8899                         return rc;
8900                 }
8901         }
8902
8903         return rc;
8904 }
8905
8906 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8907 {
8908         struct bnx2x_fastpath *fp = &bp->fp[index];
8909         struct bnx2x_fp_txdata *txdata;
8910         struct bnx2x_queue_state_params q_params = {NULL};
8911         int rc, tx_index;
8912
8913         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8914
8915         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8916         /* We want to wait for completion in this context */
8917         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8918
8919         /* close tx-only connections */
8920         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8921              tx_index < fp->max_cos;
8922              tx_index++){
8923
8924                 /* ascertain this is a normal queue*/
8925                 txdata = fp->txdata_ptr[tx_index];
8926
8927                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8928                                                         txdata->txq_index);
8929
8930                 /* send halt terminate on tx-only connection */
8931                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8932                 memset(&q_params.params.terminate, 0,
8933                        sizeof(q_params.params.terminate));
8934                 q_params.params.terminate.cid_index = tx_index;
8935
8936                 rc = bnx2x_queue_state_change(bp, &q_params);
8937                 if (rc)
8938                         return rc;
8939
8940                 /* send halt terminate on tx-only connection */
8941                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8942                 memset(&q_params.params.cfc_del, 0,
8943                        sizeof(q_params.params.cfc_del));
8944                 q_params.params.cfc_del.cid_index = tx_index;
8945                 rc = bnx2x_queue_state_change(bp, &q_params);
8946                 if (rc)
8947                         return rc;
8948         }
8949         /* Stop the primary connection: */
8950         /* ...halt the connection */
8951         q_params.cmd = BNX2X_Q_CMD_HALT;
8952         rc = bnx2x_queue_state_change(bp, &q_params);
8953         if (rc)
8954                 return rc;
8955
8956         /* ...terminate the connection */
8957         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8958         memset(&q_params.params.terminate, 0,
8959                sizeof(q_params.params.terminate));
8960         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8961         rc = bnx2x_queue_state_change(bp, &q_params);
8962         if (rc)
8963                 return rc;
8964         /* ...delete cfc entry */
8965         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8966         memset(&q_params.params.cfc_del, 0,
8967                sizeof(q_params.params.cfc_del));
8968         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8969         return bnx2x_queue_state_change(bp, &q_params);
8970 }
8971
8972 static void bnx2x_reset_func(struct bnx2x *bp)
8973 {
8974         int port = BP_PORT(bp);
8975         int func = BP_FUNC(bp);
8976         int i;
8977
8978         /* Disable the function in the FW */
8979         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8980         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8981         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8982         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8983
8984         /* FP SBs */
8985         for_each_eth_queue(bp, i) {
8986                 struct bnx2x_fastpath *fp = &bp->fp[i];
8987                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8988                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8989                            SB_DISABLED);
8990         }
8991
8992         if (CNIC_LOADED(bp))
8993                 /* CNIC SB */
8994                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8995                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8996                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8997
8998         /* SP SB */
8999         REG_WR8(bp, BAR_CSTRORM_INTMEM +
9000                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9001                 SB_DISABLED);
9002
9003         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9004                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9005                        0);
9006
9007         /* Configure IGU */
9008         if (bp->common.int_block == INT_BLOCK_HC) {
9009                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9010                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9011         } else {
9012                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9013                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9014         }
9015
9016         if (CNIC_LOADED(bp)) {
9017                 /* Disable Timer scan */
9018                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9019                 /*
9020                  * Wait for at least 10ms and up to 2 second for the timers
9021                  * scan to complete
9022                  */
9023                 for (i = 0; i < 200; i++) {
9024                         usleep_range(10000, 20000);
9025                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9026                                 break;
9027                 }
9028         }
9029         /* Clear ILT */
9030         bnx2x_clear_func_ilt(bp, func);
9031
9032         /* Timers workaround bug for E2: if this is vnic-3,
9033          * we need to set the entire ilt range for this timers.
9034          */
9035         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9036                 struct ilt_client_info ilt_cli;
9037                 /* use dummy TM client */
9038                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9039                 ilt_cli.start = 0;
9040                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9041                 ilt_cli.client_num = ILT_CLIENT_TM;
9042
9043                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9044         }
9045
9046         /* this assumes that reset_port() called before reset_func()*/
9047         if (!CHIP_IS_E1x(bp))
9048                 bnx2x_pf_disable(bp);
9049
9050         bp->dmae_ready = 0;
9051 }
9052
9053 static void bnx2x_reset_port(struct bnx2x *bp)
9054 {
9055         int port = BP_PORT(bp);
9056         u32 val;
9057
9058         /* Reset physical Link */
9059         bnx2x__link_reset(bp);
9060
9061         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9062
9063         /* Do not rcv packets to BRB */
9064         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9065         /* Do not direct rcv packets that are not for MCP to the BRB */
9066         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9067                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9068
9069         /* Configure AEU */
9070         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9071
9072         msleep(100);
9073         /* Check for BRB port occupancy */
9074         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9075         if (val)
9076                 DP(NETIF_MSG_IFDOWN,
9077                    "BRB1 is not empty  %d blocks are occupied\n", val);
9078
9079         /* TODO: Close Doorbell port? */
9080 }
9081
9082 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9083 {
9084         struct bnx2x_func_state_params func_params = {NULL};
9085
9086         /* Prepare parameters for function state transitions */
9087         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9088
9089         func_params.f_obj = &bp->func_obj;
9090         func_params.cmd = BNX2X_F_CMD_HW_RESET;
9091
9092         func_params.params.hw_init.load_phase = load_code;
9093
9094         return bnx2x_func_state_change(bp, &func_params);
9095 }
9096
9097 static int bnx2x_func_stop(struct bnx2x *bp)
9098 {
9099         struct bnx2x_func_state_params func_params = {NULL};
9100         int rc;
9101
9102         /* Prepare parameters for function state transitions */
9103         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9104         func_params.f_obj = &bp->func_obj;
9105         func_params.cmd = BNX2X_F_CMD_STOP;
9106
9107         /*
9108          * Try to stop the function the 'good way'. If fails (in case
9109          * of a parity error during bnx2x_chip_cleanup()) and we are
9110          * not in a debug mode, perform a state transaction in order to
9111          * enable further HW_RESET transaction.
9112          */
9113         rc = bnx2x_func_state_change(bp, &func_params);
9114         if (rc) {
9115 #ifdef BNX2X_STOP_ON_ERROR
9116                 return rc;
9117 #else
9118                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9119                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9120                 return bnx2x_func_state_change(bp, &func_params);
9121 #endif
9122         }
9123
9124         return 0;
9125 }
9126
9127 /**
9128  * bnx2x_send_unload_req - request unload mode from the MCP.
9129  *
9130  * @bp:                 driver handle
9131  * @unload_mode:        requested function's unload mode
9132  *
9133  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9134  */
9135 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9136 {
9137         u32 reset_code = 0;
9138         int port = BP_PORT(bp);
9139
9140         /* Select the UNLOAD request mode */
9141         if (unload_mode == UNLOAD_NORMAL)
9142                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9143
9144         else if (bp->flags & NO_WOL_FLAG)
9145                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9146
9147         else if (bp->wol) {
9148                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9149                 u8 *mac_addr = bp->dev->dev_addr;
9150                 struct pci_dev *pdev = bp->pdev;
9151                 u32 val;
9152                 u16 pmc;
9153
9154                 /* The mac address is written to entries 1-4 to
9155                  * preserve entry 0 which is used by the PMF
9156                  */
9157                 u8 entry = (BP_VN(bp) + 1)*8;
9158
9159                 val = (mac_addr[0] << 8) | mac_addr[1];
9160                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9161
9162                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9163                       (mac_addr[4] << 8) | mac_addr[5];
9164                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9165
9166                 /* Enable the PME and clear the status */
9167                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9168                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9169                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9170
9171                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9172
9173         } else
9174                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9175
9176         /* Send the request to the MCP */
9177         if (!BP_NOMCP(bp))
9178                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9179         else {
9180                 int path = BP_PATH(bp);
9181
9182                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9183                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9184                    bnx2x_load_count[path][2]);
9185                 bnx2x_load_count[path][0]--;
9186                 bnx2x_load_count[path][1 + port]--;
9187                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9188                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9189                    bnx2x_load_count[path][2]);
9190                 if (bnx2x_load_count[path][0] == 0)
9191                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9192                 else if (bnx2x_load_count[path][1 + port] == 0)
9193                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9194                 else
9195                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9196         }
9197
9198         return reset_code;
9199 }
9200
9201 /**
9202  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9203  *
9204  * @bp:         driver handle
9205  * @keep_link:          true iff link should be kept up
9206  */
9207 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9208 {
9209         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9210
9211         /* Report UNLOAD_DONE to MCP */
9212         if (!BP_NOMCP(bp))
9213                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9214 }
9215
9216 static int bnx2x_func_wait_started(struct bnx2x *bp)
9217 {
9218         int tout = 50;
9219         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9220
9221         if (!bp->port.pmf)
9222                 return 0;
9223
9224         /*
9225          * (assumption: No Attention from MCP at this stage)
9226          * PMF probably in the middle of TX disable/enable transaction
9227          * 1. Sync IRS for default SB
9228          * 2. Sync SP queue - this guarantees us that attention handling started
9229          * 3. Wait, that TX disable/enable transaction completes
9230          *
9231          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9232          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9233          * received completion for the transaction the state is TX_STOPPED.
9234          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9235          * transaction.
9236          */
9237
9238         /* make sure default SB ISR is done */
9239         if (msix)
9240                 synchronize_irq(bp->msix_table[0].vector);
9241         else
9242                 synchronize_irq(bp->pdev->irq);
9243
9244         flush_workqueue(bnx2x_wq);
9245         flush_workqueue(bnx2x_iov_wq);
9246
9247         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9248                                 BNX2X_F_STATE_STARTED && tout--)
9249                 msleep(20);
9250
9251         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9252                                                 BNX2X_F_STATE_STARTED) {
9253 #ifdef BNX2X_STOP_ON_ERROR
9254                 BNX2X_ERR("Wrong function state\n");
9255                 return -EBUSY;
9256 #else
9257                 /*
9258                  * Failed to complete the transaction in a "good way"
9259                  * Force both transactions with CLR bit
9260                  */
9261                 struct bnx2x_func_state_params func_params = {NULL};
9262
9263                 DP(NETIF_MSG_IFDOWN,
9264                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9265
9266                 func_params.f_obj = &bp->func_obj;
9267                 __set_bit(RAMROD_DRV_CLR_ONLY,
9268                                         &func_params.ramrod_flags);
9269
9270                 /* STARTED-->TX_ST0PPED */
9271                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9272                 bnx2x_func_state_change(bp, &func_params);
9273
9274                 /* TX_ST0PPED-->STARTED */
9275                 func_params.cmd = BNX2X_F_CMD_TX_START;
9276                 return bnx2x_func_state_change(bp, &func_params);
9277 #endif
9278         }
9279
9280         return 0;
9281 }
9282
9283 static void bnx2x_disable_ptp(struct bnx2x *bp)
9284 {
9285         int port = BP_PORT(bp);
9286
9287         /* Disable sending PTP packets to host */
9288         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9289                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9290
9291         /* Reset PTP event detection rules */
9292         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9293                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9294         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9295                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9296         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9297                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9298         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9299                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9300
9301         /* Disable the PTP feature */
9302         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9303                NIG_REG_P0_PTP_EN, 0x0);
9304 }
9305
9306 /* Called during unload, to stop PTP-related stuff */
9307 static void bnx2x_stop_ptp(struct bnx2x *bp)
9308 {
9309         /* Cancel PTP work queue. Should be done after the Tx queues are
9310          * drained to prevent additional scheduling.
9311          */
9312         cancel_work_sync(&bp->ptp_task);
9313
9314         if (bp->ptp_tx_skb) {
9315                 dev_kfree_skb_any(bp->ptp_tx_skb);
9316                 bp->ptp_tx_skb = NULL;
9317         }
9318
9319         /* Disable PTP in HW */
9320         bnx2x_disable_ptp(bp);
9321
9322         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9323 }
9324
9325 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9326 {
9327         int port = BP_PORT(bp);
9328         int i, rc = 0;
9329         u8 cos;
9330         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9331         u32 reset_code;
9332
9333         /* Wait until tx fastpath tasks complete */
9334         for_each_tx_queue(bp, i) {
9335                 struct bnx2x_fastpath *fp = &bp->fp[i];
9336
9337                 for_each_cos_in_tx_queue(fp, cos)
9338                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9339 #ifdef BNX2X_STOP_ON_ERROR
9340                 if (rc)
9341                         return;
9342 #endif
9343         }
9344
9345         /* Give HW time to discard old tx messages */
9346         usleep_range(1000, 2000);
9347
9348         /* Clean all ETH MACs */
9349         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9350                                 false);
9351         if (rc < 0)
9352                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9353
9354         /* Clean up UC list  */
9355         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9356                                 true);
9357         if (rc < 0)
9358                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9359                           rc);
9360
9361         /* The whole *vlan_obj structure may be not initialized if VLAN
9362          * filtering offload is not supported by hardware. Currently this is
9363          * true for all hardware covered by CHIP_IS_E1x().
9364          */
9365         if (!CHIP_IS_E1x(bp)) {
9366                 /* Remove all currently configured VLANs */
9367                 rc = bnx2x_del_all_vlans(bp);
9368                 if (rc < 0)
9369                         BNX2X_ERR("Failed to delete all VLANs\n");
9370         }
9371
9372         /* Disable LLH */
9373         if (!CHIP_IS_E1(bp))
9374                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9375
9376         /* Set "drop all" (stop Rx).
9377          * We need to take a netif_addr_lock() here in order to prevent
9378          * a race between the completion code and this code.
9379          */
9380         netif_addr_lock_bh(bp->dev);
9381         /* Schedule the rx_mode command */
9382         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9383                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9384         else if (bp->slowpath)
9385                 bnx2x_set_storm_rx_mode(bp);
9386
9387         /* Cleanup multicast configuration */
9388         rparam.mcast_obj = &bp->mcast_obj;
9389         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9390         if (rc < 0)
9391                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9392
9393         netif_addr_unlock_bh(bp->dev);
9394
9395         bnx2x_iov_chip_cleanup(bp);
9396
9397         /*
9398          * Send the UNLOAD_REQUEST to the MCP. This will return if
9399          * this function should perform FUNC, PORT or COMMON HW
9400          * reset.
9401          */
9402         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9403
9404         /*
9405          * (assumption: No Attention from MCP at this stage)
9406          * PMF probably in the middle of TX disable/enable transaction
9407          */
9408         rc = bnx2x_func_wait_started(bp);
9409         if (rc) {
9410                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9411 #ifdef BNX2X_STOP_ON_ERROR
9412                 return;
9413 #endif
9414         }
9415
9416         /* Close multi and leading connections
9417          * Completions for ramrods are collected in a synchronous way
9418          */
9419         for_each_eth_queue(bp, i)
9420                 if (bnx2x_stop_queue(bp, i))
9421 #ifdef BNX2X_STOP_ON_ERROR
9422                         return;
9423 #else
9424                         goto unload_error;
9425 #endif
9426
9427         if (CNIC_LOADED(bp)) {
9428                 for_each_cnic_queue(bp, i)
9429                         if (bnx2x_stop_queue(bp, i))
9430 #ifdef BNX2X_STOP_ON_ERROR
9431                                 return;
9432 #else
9433                                 goto unload_error;
9434 #endif
9435         }
9436
9437         /* If SP settings didn't get completed so far - something
9438          * very wrong has happen.
9439          */
9440         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9441                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9442
9443 #ifndef BNX2X_STOP_ON_ERROR
9444 unload_error:
9445 #endif
9446         rc = bnx2x_func_stop(bp);
9447         if (rc) {
9448                 BNX2X_ERR("Function stop failed!\n");
9449 #ifdef BNX2X_STOP_ON_ERROR
9450                 return;
9451 #endif
9452         }
9453
9454         /* stop_ptp should be after the Tx queues are drained to prevent
9455          * scheduling to the cancelled PTP work queue. It should also be after
9456          * function stop ramrod is sent, since as part of this ramrod FW access
9457          * PTP registers.
9458          */
9459         if (bp->flags & PTP_SUPPORTED) {
9460                 bnx2x_stop_ptp(bp);
9461                 if (bp->ptp_clock) {
9462                         ptp_clock_unregister(bp->ptp_clock);
9463                         bp->ptp_clock = NULL;
9464                 }
9465         }
9466
9467         /* Disable HW interrupts, NAPI */
9468         bnx2x_netif_stop(bp, 1);
9469         /* Delete all NAPI objects */
9470         bnx2x_del_all_napi(bp);
9471         if (CNIC_LOADED(bp))
9472                 bnx2x_del_all_napi_cnic(bp);
9473
9474         /* Release IRQs */
9475         bnx2x_free_irq(bp);
9476
9477         /* Reset the chip, unless PCI function is offline. If we reach this
9478          * point following a PCI error handling, it means device is really
9479          * in a bad state and we're about to remove it, so reset the chip
9480          * is not a good idea.
9481          */
9482         if (!pci_channel_offline(bp->pdev)) {
9483                 rc = bnx2x_reset_hw(bp, reset_code);
9484                 if (rc)
9485                         BNX2X_ERR("HW_RESET failed\n");
9486         }
9487
9488         /* Report UNLOAD_DONE to MCP */
9489         bnx2x_send_unload_done(bp, keep_link);
9490 }
9491
9492 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9493 {
9494         u32 val;
9495
9496         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9497
9498         if (CHIP_IS_E1(bp)) {
9499                 int port = BP_PORT(bp);
9500                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9501                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9502
9503                 val = REG_RD(bp, addr);
9504                 val &= ~(0x300);
9505                 REG_WR(bp, addr, val);
9506         } else {
9507                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9508                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9509                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9510                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9511         }
9512 }
9513
9514 /* Close gates #2, #3 and #4: */
9515 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9516 {
9517         u32 val;
9518
9519         /* Gates #2 and #4a are closed/opened for "not E1" only */
9520         if (!CHIP_IS_E1(bp)) {
9521                 /* #4 */
9522                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9523                 /* #2 */
9524                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9525         }
9526
9527         /* #3 */
9528         if (CHIP_IS_E1x(bp)) {
9529                 /* Prevent interrupts from HC on both ports */
9530                 val = REG_RD(bp, HC_REG_CONFIG_1);
9531                 REG_WR(bp, HC_REG_CONFIG_1,
9532                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9533                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9534
9535                 val = REG_RD(bp, HC_REG_CONFIG_0);
9536                 REG_WR(bp, HC_REG_CONFIG_0,
9537                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9538                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9539         } else {
9540                 /* Prevent incoming interrupts in IGU */
9541                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9542
9543                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9544                        (!close) ?
9545                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9546                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9547         }
9548
9549         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9550                 close ? "closing" : "opening");
9551 }
9552
9553 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9554
9555 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9556 {
9557         /* Do some magic... */
9558         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9559         *magic_val = val & SHARED_MF_CLP_MAGIC;
9560         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9561 }
9562
9563 /**
9564  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9565  *
9566  * @bp:         driver handle
9567  * @magic_val:  old value of the `magic' bit.
9568  */
9569 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9570 {
9571         /* Restore the `magic' bit value... */
9572         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9573         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9574                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9575 }
9576
9577 /**
9578  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9579  *
9580  * @bp:         driver handle
9581  * @magic_val:  old value of 'magic' bit.
9582  *
9583  * Takes care of CLP configurations.
9584  */
9585 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9586 {
9587         u32 shmem;
9588         u32 validity_offset;
9589
9590         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9591
9592         /* Set `magic' bit in order to save MF config */
9593         if (!CHIP_IS_E1(bp))
9594                 bnx2x_clp_reset_prep(bp, magic_val);
9595
9596         /* Get shmem offset */
9597         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9598         validity_offset =
9599                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9600
9601         /* Clear validity map flags */
9602         if (shmem > 0)
9603                 REG_WR(bp, shmem + validity_offset, 0);
9604 }
9605
9606 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9607 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9608
9609 /**
9610  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9611  *
9612  * @bp: driver handle
9613  */
9614 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9615 {
9616         /* special handling for emulation and FPGA,
9617            wait 10 times longer */
9618         if (CHIP_REV_IS_SLOW(bp))
9619                 msleep(MCP_ONE_TIMEOUT*10);
9620         else
9621                 msleep(MCP_ONE_TIMEOUT);
9622 }
9623
9624 /*
9625  * initializes bp->common.shmem_base and waits for validity signature to appear
9626  */
9627 static int bnx2x_init_shmem(struct bnx2x *bp)
9628 {
9629         int cnt = 0;
9630         u32 val = 0;
9631
9632         do {
9633                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9634
9635                 /* If we read all 0xFFs, means we are in PCI error state and
9636                  * should bail out to avoid crashes on adapter's FW reads.
9637                  */
9638                 if (bp->common.shmem_base == 0xFFFFFFFF) {
9639                         bp->flags |= NO_MCP_FLAG;
9640                         return -ENODEV;
9641                 }
9642
9643                 if (bp->common.shmem_base) {
9644                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9645                         if (val & SHR_MEM_VALIDITY_MB)
9646                                 return 0;
9647                 }
9648
9649                 bnx2x_mcp_wait_one(bp);
9650
9651         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9652
9653         BNX2X_ERR("BAD MCP validity signature\n");
9654
9655         return -ENODEV;
9656 }
9657
9658 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9659 {
9660         int rc = bnx2x_init_shmem(bp);
9661
9662         /* Restore the `magic' bit value */
9663         if (!CHIP_IS_E1(bp))
9664                 bnx2x_clp_reset_done(bp, magic_val);
9665
9666         return rc;
9667 }
9668
9669 static void bnx2x_pxp_prep(struct bnx2x *bp)
9670 {
9671         if (!CHIP_IS_E1(bp)) {
9672                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9673                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9674         }
9675 }
9676
9677 /*
9678  * Reset the whole chip except for:
9679  *      - PCIE core
9680  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9681  *              one reset bit)
9682  *      - IGU
9683  *      - MISC (including AEU)
9684  *      - GRC
9685  *      - RBCN, RBCP
9686  */
9687 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9688 {
9689         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9690         u32 global_bits2, stay_reset2;
9691
9692         /*
9693          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9694          * (per chip) blocks.
9695          */
9696         global_bits2 =
9697                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9698                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9699
9700         /* Don't reset the following blocks.
9701          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9702          *            reset, as in 4 port device they might still be owned
9703          *            by the MCP (there is only one leader per path).
9704          */
9705         not_reset_mask1 =
9706                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9707                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9708                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9709
9710         not_reset_mask2 =
9711                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9712                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9713                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9714                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9715                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9716                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9717                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9718                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9719                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9720                 MISC_REGISTERS_RESET_REG_2_PGLC |
9721                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9722                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9723                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9724                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9725                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9726                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9727
9728         /*
9729          * Keep the following blocks in reset:
9730          *  - all xxMACs are handled by the bnx2x_link code.
9731          */
9732         stay_reset2 =
9733                 MISC_REGISTERS_RESET_REG_2_XMAC |
9734                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9735
9736         /* Full reset masks according to the chip */
9737         reset_mask1 = 0xffffffff;
9738
9739         if (CHIP_IS_E1(bp))
9740                 reset_mask2 = 0xffff;
9741         else if (CHIP_IS_E1H(bp))
9742                 reset_mask2 = 0x1ffff;
9743         else if (CHIP_IS_E2(bp))
9744                 reset_mask2 = 0xfffff;
9745         else /* CHIP_IS_E3 */
9746                 reset_mask2 = 0x3ffffff;
9747
9748         /* Don't reset global blocks unless we need to */
9749         if (!global)
9750                 reset_mask2 &= ~global_bits2;
9751
9752         /*
9753          * In case of attention in the QM, we need to reset PXP
9754          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9755          * because otherwise QM reset would release 'close the gates' shortly
9756          * before resetting the PXP, then the PSWRQ would send a write
9757          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9758          * read the payload data from PSWWR, but PSWWR would not
9759          * respond. The write queue in PGLUE would stuck, dmae commands
9760          * would not return. Therefore it's important to reset the second
9761          * reset register (containing the
9762          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9763          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9764          * bit).
9765          */
9766         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9767                reset_mask2 & (~not_reset_mask2));
9768
9769         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9770                reset_mask1 & (~not_reset_mask1));
9771
9772         barrier();
9773
9774         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9775                reset_mask2 & (~stay_reset2));
9776
9777         barrier();
9778
9779         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9780 }
9781
9782 /**
9783  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9784  * It should get cleared in no more than 1s.
9785  *
9786  * @bp: driver handle
9787  *
9788  * It should get cleared in no more than 1s. Returns 0 if
9789  * pending writes bit gets cleared.
9790  */
9791 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9792 {
9793         u32 cnt = 1000;
9794         u32 pend_bits = 0;
9795
9796         do {
9797                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9798
9799                 if (pend_bits == 0)
9800                         break;
9801
9802                 usleep_range(1000, 2000);
9803         } while (cnt-- > 0);
9804
9805         if (cnt <= 0) {
9806                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9807                           pend_bits);
9808                 return -EBUSY;
9809         }
9810
9811         return 0;
9812 }
9813
9814 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9815 {
9816         int cnt = 1000;
9817         u32 val = 0;
9818         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9819         u32 tags_63_32 = 0;
9820
9821         /* Empty the Tetris buffer, wait for 1s */
9822         do {
9823                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9824                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9825                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9826                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9827                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9828                 if (CHIP_IS_E3(bp))
9829                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9830
9831                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9832                     ((port_is_idle_0 & 0x1) == 0x1) &&
9833                     ((port_is_idle_1 & 0x1) == 0x1) &&
9834                     (pgl_exp_rom2 == 0xffffffff) &&
9835                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9836                         break;
9837                 usleep_range(1000, 2000);
9838         } while (cnt-- > 0);
9839
9840         if (cnt <= 0) {
9841                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9842                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9843                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9844                           pgl_exp_rom2);
9845                 return -EAGAIN;
9846         }
9847
9848         barrier();
9849
9850         /* Close gates #2, #3 and #4 */
9851         bnx2x_set_234_gates(bp, true);
9852
9853         /* Poll for IGU VQs for 57712 and newer chips */
9854         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9855                 return -EAGAIN;
9856
9857         /* TBD: Indicate that "process kill" is in progress to MCP */
9858
9859         /* Clear "unprepared" bit */
9860         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9861         barrier();
9862
9863         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9864          * PSWHST, GRC and PSWRD Tetris buffer.
9865          */
9866         usleep_range(1000, 2000);
9867
9868         /* Prepare to chip reset: */
9869         /* MCP */
9870         if (global)
9871                 bnx2x_reset_mcp_prep(bp, &val);
9872
9873         /* PXP */
9874         bnx2x_pxp_prep(bp);
9875         barrier();
9876
9877         /* reset the chip */
9878         bnx2x_process_kill_chip_reset(bp, global);
9879         barrier();
9880
9881         /* clear errors in PGB */
9882         if (!CHIP_IS_E1x(bp))
9883                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9884
9885         /* Recover after reset: */
9886         /* MCP */
9887         if (global && bnx2x_reset_mcp_comp(bp, val))
9888                 return -EAGAIN;
9889
9890         /* TBD: Add resetting the NO_MCP mode DB here */
9891
9892         /* Open the gates #2, #3 and #4 */
9893         bnx2x_set_234_gates(bp, false);
9894
9895         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9896          * reset state, re-enable attentions. */
9897
9898         return 0;
9899 }
9900
9901 static int bnx2x_leader_reset(struct bnx2x *bp)
9902 {
9903         int rc = 0;
9904         bool global = bnx2x_reset_is_global(bp);
9905         u32 load_code;
9906
9907         /* if not going to reset MCP - load "fake" driver to reset HW while
9908          * driver is owner of the HW
9909          */
9910         if (!global && !BP_NOMCP(bp)) {
9911                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9912                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9913                 if (!load_code) {
9914                         BNX2X_ERR("MCP response failure, aborting\n");
9915                         rc = -EAGAIN;
9916                         goto exit_leader_reset;
9917                 }
9918                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9919                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9920                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9921                         rc = -EAGAIN;
9922                         goto exit_leader_reset2;
9923                 }
9924                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9925                 if (!load_code) {
9926                         BNX2X_ERR("MCP response failure, aborting\n");
9927                         rc = -EAGAIN;
9928                         goto exit_leader_reset2;
9929                 }
9930         }
9931
9932         /* Try to recover after the failure */
9933         if (bnx2x_process_kill(bp, global)) {
9934                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9935                           BP_PATH(bp));
9936                 rc = -EAGAIN;
9937                 goto exit_leader_reset2;
9938         }
9939
9940         /*
9941          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9942          * state.
9943          */
9944         bnx2x_set_reset_done(bp);
9945         if (global)
9946                 bnx2x_clear_reset_global(bp);
9947
9948 exit_leader_reset2:
9949         /* unload "fake driver" if it was loaded */
9950         if (!global && !BP_NOMCP(bp)) {
9951                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9952                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9953         }
9954 exit_leader_reset:
9955         bp->is_leader = 0;
9956         bnx2x_release_leader_lock(bp);
9957         smp_mb();
9958         return rc;
9959 }
9960
9961 static void bnx2x_recovery_failed(struct bnx2x *bp)
9962 {
9963         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9964
9965         /* Disconnect this device */
9966         netif_device_detach(bp->dev);
9967
9968         /*
9969          * Block ifup for all function on this engine until "process kill"
9970          * or power cycle.
9971          */
9972         bnx2x_set_reset_in_progress(bp);
9973
9974         /* Shut down the power */
9975         bnx2x_set_power_state(bp, PCI_D3hot);
9976
9977         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9978
9979         smp_mb();
9980 }
9981
9982 /*
9983  * Assumption: runs under rtnl lock. This together with the fact
9984  * that it's called only from bnx2x_sp_rtnl() ensure that it
9985  * will never be called when netif_running(bp->dev) is false.
9986  */
9987 static void bnx2x_parity_recover(struct bnx2x *bp)
9988 {
9989         u32 error_recovered, error_unrecovered;
9990         bool is_parity, global = false;
9991 #ifdef CONFIG_BNX2X_SRIOV
9992         int vf_idx;
9993
9994         for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
9995                 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
9996
9997                 if (vf)
9998                         vf->state = VF_LOST;
9999         }
10000 #endif
10001         DP(NETIF_MSG_HW, "Handling parity\n");
10002         while (1) {
10003                 switch (bp->recovery_state) {
10004                 case BNX2X_RECOVERY_INIT:
10005                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10006                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10007                         WARN_ON(!is_parity);
10008
10009                         /* Try to get a LEADER_LOCK HW lock */
10010                         if (bnx2x_trylock_leader_lock(bp)) {
10011                                 bnx2x_set_reset_in_progress(bp);
10012                                 /*
10013                                  * Check if there is a global attention and if
10014                                  * there was a global attention, set the global
10015                                  * reset bit.
10016                                  */
10017
10018                                 if (global)
10019                                         bnx2x_set_reset_global(bp);
10020
10021                                 bp->is_leader = 1;
10022                         }
10023
10024                         /* Stop the driver */
10025                         /* If interface has been removed - break */
10026                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10027                                 return;
10028
10029                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
10030
10031                         /* Ensure "is_leader", MCP command sequence and
10032                          * "recovery_state" update values are seen on other
10033                          * CPUs.
10034                          */
10035                         smp_mb();
10036                         break;
10037
10038                 case BNX2X_RECOVERY_WAIT:
10039                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10040                         if (bp->is_leader) {
10041                                 int other_engine = BP_PATH(bp) ? 0 : 1;
10042                                 bool other_load_status =
10043                                         bnx2x_get_load_status(bp, other_engine);
10044                                 bool load_status =
10045                                         bnx2x_get_load_status(bp, BP_PATH(bp));
10046                                 global = bnx2x_reset_is_global(bp);
10047
10048                                 /*
10049                                  * In case of a parity in a global block, let
10050                                  * the first leader that performs a
10051                                  * leader_reset() reset the global blocks in
10052                                  * order to clear global attentions. Otherwise
10053                                  * the gates will remain closed for that
10054                                  * engine.
10055                                  */
10056                                 if (load_status ||
10057                                     (global && other_load_status)) {
10058                                         /* Wait until all other functions get
10059                                          * down.
10060                                          */
10061                                         schedule_delayed_work(&bp->sp_rtnl_task,
10062                                                                 HZ/10);
10063                                         return;
10064                                 } else {
10065                                         /* If all other functions got down -
10066                                          * try to bring the chip back to
10067                                          * normal. In any case it's an exit
10068                                          * point for a leader.
10069                                          */
10070                                         if (bnx2x_leader_reset(bp)) {
10071                                                 bnx2x_recovery_failed(bp);
10072                                                 return;
10073                                         }
10074
10075                                         /* If we are here, means that the
10076                                          * leader has succeeded and doesn't
10077                                          * want to be a leader any more. Try
10078                                          * to continue as a none-leader.
10079                                          */
10080                                         break;
10081                                 }
10082                         } else { /* non-leader */
10083                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10084                                         /* Try to get a LEADER_LOCK HW lock as
10085                                          * long as a former leader may have
10086                                          * been unloaded by the user or
10087                                          * released a leadership by another
10088                                          * reason.
10089                                          */
10090                                         if (bnx2x_trylock_leader_lock(bp)) {
10091                                                 /* I'm a leader now! Restart a
10092                                                  * switch case.
10093                                                  */
10094                                                 bp->is_leader = 1;
10095                                                 break;
10096                                         }
10097
10098                                         schedule_delayed_work(&bp->sp_rtnl_task,
10099                                                                 HZ/10);
10100                                         return;
10101
10102                                 } else {
10103                                         /*
10104                                          * If there was a global attention, wait
10105                                          * for it to be cleared.
10106                                          */
10107                                         if (bnx2x_reset_is_global(bp)) {
10108                                                 schedule_delayed_work(
10109                                                         &bp->sp_rtnl_task,
10110                                                         HZ/10);
10111                                                 return;
10112                                         }
10113
10114                                         error_recovered =
10115                                           bp->eth_stats.recoverable_error;
10116                                         error_unrecovered =
10117                                           bp->eth_stats.unrecoverable_error;
10118                                         bp->recovery_state =
10119                                                 BNX2X_RECOVERY_NIC_LOADING;
10120                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10121                                                 error_unrecovered++;
10122                                                 netdev_err(bp->dev,
10123                                                            "Recovery failed. Power cycle needed\n");
10124                                                 /* Disconnect this device */
10125                                                 netif_device_detach(bp->dev);
10126                                                 /* Shut down the power */
10127                                                 bnx2x_set_power_state(
10128                                                         bp, PCI_D3hot);
10129                                                 smp_mb();
10130                                         } else {
10131                                                 bp->recovery_state =
10132                                                         BNX2X_RECOVERY_DONE;
10133                                                 error_recovered++;
10134                                                 smp_mb();
10135                                         }
10136                                         bp->eth_stats.recoverable_error =
10137                                                 error_recovered;
10138                                         bp->eth_stats.unrecoverable_error =
10139                                                 error_unrecovered;
10140
10141                                         return;
10142                                 }
10143                         }
10144                 default:
10145                         return;
10146                 }
10147         }
10148 }
10149
10150 static int bnx2x_udp_port_update(struct bnx2x *bp)
10151 {
10152         struct bnx2x_func_switch_update_params *switch_update_params;
10153         struct bnx2x_func_state_params func_params = {NULL};
10154         u16 vxlan_port = 0, geneve_port = 0;
10155         int rc;
10156
10157         switch_update_params = &func_params.params.switch_update;
10158
10159         /* Prepare parameters for function state transitions */
10160         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10161         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10162
10163         func_params.f_obj = &bp->func_obj;
10164         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10165
10166         /* Function parameters */
10167         __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10168                   &switch_update_params->changes);
10169
10170         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10171                 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10172                 switch_update_params->geneve_dst_port = geneve_port;
10173         }
10174
10175         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10176                 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10177                 switch_update_params->vxlan_dst_port = vxlan_port;
10178         }
10179
10180         /* Re-enable inner-rss for the offloaded UDP tunnels */
10181         __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10182                   &switch_update_params->changes);
10183
10184         rc = bnx2x_func_state_change(bp, &func_params);
10185         if (rc)
10186                 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10187                           vxlan_port, geneve_port, rc);
10188         else
10189                 DP(BNX2X_MSG_SP,
10190                    "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10191                    vxlan_port, geneve_port);
10192
10193         return rc;
10194 }
10195
10196 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10197 {
10198         struct bnx2x *bp = netdev_priv(netdev);
10199         struct udp_tunnel_info ti;
10200
10201         udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10202         bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10203
10204         return bnx2x_udp_port_update(bp);
10205 }
10206
10207 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10208         .sync_table     = bnx2x_udp_tunnel_sync,
10209         .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10210                           UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10211         .tables         = {
10212                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10213                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10214         },
10215 };
10216
10217 static int bnx2x_close(struct net_device *dev);
10218
10219 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10220  * scheduled on a general queue in order to prevent a dead lock.
10221  */
10222 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10223 {
10224         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10225
10226         rtnl_lock();
10227
10228         if (!netif_running(bp->dev)) {
10229                 rtnl_unlock();
10230                 return;
10231         }
10232
10233         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10234 #ifdef BNX2X_STOP_ON_ERROR
10235                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10236                           "you will need to reboot when done\n");
10237                 goto sp_rtnl_not_reset;
10238 #endif
10239                 /*
10240                  * Clear all pending SP commands as we are going to reset the
10241                  * function anyway.
10242                  */
10243                 bp->sp_rtnl_state = 0;
10244                 smp_mb();
10245
10246                 bnx2x_parity_recover(bp);
10247
10248                 rtnl_unlock();
10249                 return;
10250         }
10251
10252         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10253 #ifdef BNX2X_STOP_ON_ERROR
10254                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10255                           "you will need to reboot when done\n");
10256                 goto sp_rtnl_not_reset;
10257 #endif
10258
10259                 /*
10260                  * Clear all pending SP commands as we are going to reset the
10261                  * function anyway.
10262                  */
10263                 bp->sp_rtnl_state = 0;
10264                 smp_mb();
10265
10266                 /* Immediately indicate link as down */
10267                 bp->link_vars.link_up = 0;
10268                 bp->force_link_down = true;
10269                 netif_carrier_off(bp->dev);
10270                 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10271
10272                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10273                 /* When ret value shows failure of allocation failure,
10274                  * the nic is rebooted again. If open still fails, a error
10275                  * message to notify the user.
10276                  */
10277                 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10278                         bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10279                         if (bnx2x_nic_load(bp, LOAD_NORMAL))
10280                                 BNX2X_ERR("Open the NIC fails again!\n");
10281                 }
10282                 rtnl_unlock();
10283                 return;
10284         }
10285 #ifdef BNX2X_STOP_ON_ERROR
10286 sp_rtnl_not_reset:
10287 #endif
10288         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10289                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10290         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10291                 bnx2x_after_function_update(bp);
10292         /*
10293          * in case of fan failure we need to reset id if the "stop on error"
10294          * debug flag is set, since we trying to prevent permanent overheating
10295          * damage
10296          */
10297         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10298                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10299                 netif_device_detach(bp->dev);
10300                 bnx2x_close(bp->dev);
10301                 rtnl_unlock();
10302                 return;
10303         }
10304
10305         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10306                 DP(BNX2X_MSG_SP,
10307                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10308                 bnx2x_vfpf_set_mcast(bp->dev);
10309         }
10310         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10311                                &bp->sp_rtnl_state)){
10312                 if (netif_carrier_ok(bp->dev)) {
10313                         bnx2x_tx_disable(bp);
10314                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10315                 }
10316         }
10317
10318         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10319                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10320                 bnx2x_set_rx_mode_inner(bp);
10321         }
10322
10323         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10324                                &bp->sp_rtnl_state))
10325                 bnx2x_pf_set_vfs_vlan(bp);
10326
10327         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10328                 bnx2x_dcbx_stop_hw_tx(bp);
10329                 bnx2x_dcbx_resume_hw_tx(bp);
10330         }
10331
10332         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10333                                &bp->sp_rtnl_state))
10334                 bnx2x_update_mng_version(bp);
10335
10336         if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10337                 bnx2x_handle_update_svid_cmd(bp);
10338
10339         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10340          * can be called from other contexts as well)
10341          */
10342         rtnl_unlock();
10343
10344         /* enable SR-IOV if applicable */
10345         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10346                                                &bp->sp_rtnl_state)) {
10347                 bnx2x_disable_sriov(bp);
10348                 bnx2x_enable_sriov(bp);
10349         }
10350 }
10351
10352 static void bnx2x_period_task(struct work_struct *work)
10353 {
10354         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10355
10356         if (!netif_running(bp->dev))
10357                 goto period_task_exit;
10358
10359         if (CHIP_REV_IS_SLOW(bp)) {
10360                 BNX2X_ERR("period task called on emulation, ignoring\n");
10361                 goto period_task_exit;
10362         }
10363
10364         bnx2x_acquire_phy_lock(bp);
10365         /*
10366          * The barrier is needed to ensure the ordering between the writing to
10367          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10368          * the reading here.
10369          */
10370         smp_mb();
10371         if (bp->port.pmf) {
10372                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10373
10374                 /* Re-queue task in 1 sec */
10375                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10376         }
10377
10378         bnx2x_release_phy_lock(bp);
10379 period_task_exit:
10380         return;
10381 }
10382
10383 /*
10384  * Init service functions
10385  */
10386
10387 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10388 {
10389         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10390         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10391         return base + (BP_ABS_FUNC(bp)) * stride;
10392 }
10393
10394 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10395                                          u8 port, u32 reset_reg,
10396                                          struct bnx2x_mac_vals *vals)
10397 {
10398         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10399         u32 base_addr;
10400
10401         if (!(mask & reset_reg))
10402                 return false;
10403
10404         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10405         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10406         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10407         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10408         REG_WR(bp, vals->umac_addr[port], 0);
10409
10410         return true;
10411 }
10412
10413 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10414                                         struct bnx2x_mac_vals *vals)
10415 {
10416         u32 val, base_addr, offset, mask, reset_reg;
10417         bool mac_stopped = false;
10418         u8 port = BP_PORT(bp);
10419
10420         /* reset addresses as they also mark which values were changed */
10421         memset(vals, 0, sizeof(*vals));
10422
10423         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10424
10425         if (!CHIP_IS_E3(bp)) {
10426                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10427                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10428                 if ((mask & reset_reg) && val) {
10429                         u32 wb_data[2];
10430                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10431                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10432                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10433                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10434                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10435
10436                         /*
10437                          * use rd/wr since we cannot use dmae. This is safe
10438                          * since MCP won't access the bus due to the request
10439                          * to unload, and no function on the path can be
10440                          * loaded at this time.
10441                          */
10442                         wb_data[0] = REG_RD(bp, base_addr + offset);
10443                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10444                         vals->bmac_addr = base_addr + offset;
10445                         vals->bmac_val[0] = wb_data[0];
10446                         vals->bmac_val[1] = wb_data[1];
10447                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10448                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10449                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10450                 }
10451                 BNX2X_DEV_INFO("Disable emac Rx\n");
10452                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10453                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10454                 REG_WR(bp, vals->emac_addr, 0);
10455                 mac_stopped = true;
10456         } else {
10457                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10458                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10459                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10460                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10461                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10462                                val & ~(1 << 1));
10463                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10464                                val | (1 << 1));
10465                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10466                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10467                         REG_WR(bp, vals->xmac_addr, 0);
10468                         mac_stopped = true;
10469                 }
10470
10471                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10472                                                             reset_reg, vals);
10473                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10474                                                             reset_reg, vals);
10475         }
10476
10477         if (mac_stopped)
10478                 msleep(20);
10479 }
10480
10481 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10482 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10483                                         0x1848 + ((f) << 4))
10484 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10485 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10486 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10487
10488 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10489 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10490 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10491
10492 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10493 {
10494         /* UNDI marks its presence in DORQ -
10495          * it initializes CID offset for normal bell to 0x7
10496          */
10497         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10498             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10499                 return false;
10500
10501         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10502                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10503                 return true;
10504         }
10505
10506         return false;
10507 }
10508
10509 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10510 {
10511         u16 rcq, bd;
10512         u32 addr, tmp_reg;
10513
10514         if (BP_FUNC(bp) < 2)
10515                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10516         else
10517                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10518
10519         tmp_reg = REG_RD(bp, addr);
10520         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10521         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10522
10523         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10524         REG_WR(bp, addr, tmp_reg);
10525
10526         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10527                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10528 }
10529
10530 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10531 {
10532         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10533                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10534         if (!rc) {
10535                 BNX2X_ERR("MCP response failure, aborting\n");
10536                 return -EBUSY;
10537         }
10538
10539         return 0;
10540 }
10541
10542 static struct bnx2x_prev_path_list *
10543                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10544 {
10545         struct bnx2x_prev_path_list *tmp_list;
10546
10547         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10548                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10549                     bp->pdev->bus->number == tmp_list->bus &&
10550                     BP_PATH(bp) == tmp_list->path)
10551                         return tmp_list;
10552
10553         return NULL;
10554 }
10555
10556 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10557 {
10558         struct bnx2x_prev_path_list *tmp_list;
10559         int rc;
10560
10561         rc = down_interruptible(&bnx2x_prev_sem);
10562         if (rc) {
10563                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10564                 return rc;
10565         }
10566
10567         tmp_list = bnx2x_prev_path_get_entry(bp);
10568         if (tmp_list) {
10569                 tmp_list->aer = 1;
10570                 rc = 0;
10571         } else {
10572                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10573                           BP_PATH(bp));
10574         }
10575
10576         up(&bnx2x_prev_sem);
10577
10578         return rc;
10579 }
10580
10581 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10582 {
10583         struct bnx2x_prev_path_list *tmp_list;
10584         bool rc = false;
10585
10586         if (down_trylock(&bnx2x_prev_sem))
10587                 return false;
10588
10589         tmp_list = bnx2x_prev_path_get_entry(bp);
10590         if (tmp_list) {
10591                 if (tmp_list->aer) {
10592                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10593                            BP_PATH(bp));
10594                 } else {
10595                         rc = true;
10596                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10597                                        BP_PATH(bp));
10598                 }
10599         }
10600
10601         up(&bnx2x_prev_sem);
10602
10603         return rc;
10604 }
10605
10606 bool bnx2x_port_after_undi(struct bnx2x *bp)
10607 {
10608         struct bnx2x_prev_path_list *entry;
10609         bool val;
10610
10611         down(&bnx2x_prev_sem);
10612
10613         entry = bnx2x_prev_path_get_entry(bp);
10614         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10615
10616         up(&bnx2x_prev_sem);
10617
10618         return val;
10619 }
10620
10621 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10622 {
10623         struct bnx2x_prev_path_list *tmp_list;
10624         int rc;
10625
10626         rc = down_interruptible(&bnx2x_prev_sem);
10627         if (rc) {
10628                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10629                 return rc;
10630         }
10631
10632         /* Check whether the entry for this path already exists */
10633         tmp_list = bnx2x_prev_path_get_entry(bp);
10634         if (tmp_list) {
10635                 if (!tmp_list->aer) {
10636                         BNX2X_ERR("Re-Marking the path.\n");
10637                 } else {
10638                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10639                            BP_PATH(bp));
10640                         tmp_list->aer = 0;
10641                 }
10642                 up(&bnx2x_prev_sem);
10643                 return 0;
10644         }
10645         up(&bnx2x_prev_sem);
10646
10647         /* Create an entry for this path and add it */
10648         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10649         if (!tmp_list) {
10650                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10651                 return -ENOMEM;
10652         }
10653
10654         tmp_list->bus = bp->pdev->bus->number;
10655         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10656         tmp_list->path = BP_PATH(bp);
10657         tmp_list->aer = 0;
10658         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10659
10660         rc = down_interruptible(&bnx2x_prev_sem);
10661         if (rc) {
10662                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10663                 kfree(tmp_list);
10664         } else {
10665                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10666                    BP_PATH(bp));
10667                 list_add(&tmp_list->list, &bnx2x_prev_list);
10668                 up(&bnx2x_prev_sem);
10669         }
10670
10671         return rc;
10672 }
10673
10674 static int bnx2x_do_flr(struct bnx2x *bp)
10675 {
10676         struct pci_dev *dev = bp->pdev;
10677
10678         if (CHIP_IS_E1x(bp)) {
10679                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10680                 return -EINVAL;
10681         }
10682
10683         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10684         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10685                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10686                           bp->common.bc_ver);
10687                 return -EINVAL;
10688         }
10689
10690         if (!pci_wait_for_pending_transaction(dev))
10691                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10692
10693         BNX2X_DEV_INFO("Initiating FLR\n");
10694         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10695
10696         return 0;
10697 }
10698
10699 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10700 {
10701         int rc;
10702
10703         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10704
10705         /* Test if previous unload process was already finished for this path */
10706         if (bnx2x_prev_is_path_marked(bp))
10707                 return bnx2x_prev_mcp_done(bp);
10708
10709         BNX2X_DEV_INFO("Path is unmarked\n");
10710
10711         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10712         if (bnx2x_prev_is_after_undi(bp))
10713                 goto out;
10714
10715         /* If function has FLR capabilities, and existing FW version matches
10716          * the one required, then FLR will be sufficient to clean any residue
10717          * left by previous driver
10718          */
10719         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10720
10721         if (!rc) {
10722                 /* fw version is good */
10723                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10724                 rc = bnx2x_do_flr(bp);
10725         }
10726
10727         if (!rc) {
10728                 /* FLR was performed */
10729                 BNX2X_DEV_INFO("FLR successful\n");
10730                 return 0;
10731         }
10732
10733         BNX2X_DEV_INFO("Could not FLR\n");
10734
10735 out:
10736         /* Close the MCP request, return failure*/
10737         rc = bnx2x_prev_mcp_done(bp);
10738         if (!rc)
10739                 rc = BNX2X_PREV_WAIT_NEEDED;
10740
10741         return rc;
10742 }
10743
10744 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10745 {
10746         u32 reset_reg, tmp_reg = 0, rc;
10747         bool prev_undi = false;
10748         struct bnx2x_mac_vals mac_vals;
10749
10750         /* It is possible a previous function received 'common' answer,
10751          * but hasn't loaded yet, therefore creating a scenario of
10752          * multiple functions receiving 'common' on the same path.
10753          */
10754         BNX2X_DEV_INFO("Common unload Flow\n");
10755
10756         memset(&mac_vals, 0, sizeof(mac_vals));
10757
10758         if (bnx2x_prev_is_path_marked(bp))
10759                 return bnx2x_prev_mcp_done(bp);
10760
10761         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10762
10763         /* Reset should be performed after BRB is emptied */
10764         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10765                 u32 timer_count = 1000;
10766
10767                 /* Close the MAC Rx to prevent BRB from filling up */
10768                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10769
10770                 /* close LLH filters for both ports towards the BRB */
10771                 bnx2x_set_rx_filter(&bp->link_params, 0);
10772                 bp->link_params.port ^= 1;
10773                 bnx2x_set_rx_filter(&bp->link_params, 0);
10774                 bp->link_params.port ^= 1;
10775
10776                 /* Check if the UNDI driver was previously loaded */
10777                 if (bnx2x_prev_is_after_undi(bp)) {
10778                         prev_undi = true;
10779                         /* clear the UNDI indication */
10780                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10781                         /* clear possible idle check errors */
10782                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10783                 }
10784                 if (!CHIP_IS_E1x(bp))
10785                         /* block FW from writing to host */
10786                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10787
10788                 /* wait until BRB is empty */
10789                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10790                 while (timer_count) {
10791                         u32 prev_brb = tmp_reg;
10792
10793                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10794                         if (!tmp_reg)
10795                                 break;
10796
10797                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10798
10799                         /* reset timer as long as BRB actually gets emptied */
10800                         if (prev_brb > tmp_reg)
10801                                 timer_count = 1000;
10802                         else
10803                                 timer_count--;
10804
10805                         /* If UNDI resides in memory, manually increment it */
10806                         if (prev_undi)
10807                                 bnx2x_prev_unload_undi_inc(bp, 1);
10808
10809                         udelay(10);
10810                 }
10811
10812                 if (!timer_count)
10813                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10814         }
10815
10816         /* No packets are in the pipeline, path is ready for reset */
10817         bnx2x_reset_common(bp);
10818
10819         if (mac_vals.xmac_addr)
10820                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10821         if (mac_vals.umac_addr[0])
10822                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10823         if (mac_vals.umac_addr[1])
10824                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10825         if (mac_vals.emac_addr)
10826                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10827         if (mac_vals.bmac_addr) {
10828                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10829                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10830         }
10831
10832         rc = bnx2x_prev_mark_path(bp, prev_undi);
10833         if (rc) {
10834                 bnx2x_prev_mcp_done(bp);
10835                 return rc;
10836         }
10837
10838         return bnx2x_prev_mcp_done(bp);
10839 }
10840
10841 static int bnx2x_prev_unload(struct bnx2x *bp)
10842 {
10843         int time_counter = 10;
10844         u32 rc, fw, hw_lock_reg, hw_lock_val;
10845         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10846
10847         /* clear hw from errors which may have resulted from an interrupted
10848          * dmae transaction.
10849          */
10850         bnx2x_clean_pglue_errors(bp);
10851
10852         /* Release previously held locks */
10853         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10854                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10855                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10856
10857         hw_lock_val = REG_RD(bp, hw_lock_reg);
10858         if (hw_lock_val) {
10859                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10860                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10861                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10862                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10863                 }
10864
10865                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10866                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10867         } else
10868                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10869
10870         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10871                 BNX2X_DEV_INFO("Release previously held alr\n");
10872                 bnx2x_release_alr(bp);
10873         }
10874
10875         do {
10876                 int aer = 0;
10877                 /* Lock MCP using an unload request */
10878                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10879                 if (!fw) {
10880                         BNX2X_ERR("MCP response failure, aborting\n");
10881                         rc = -EBUSY;
10882                         break;
10883                 }
10884
10885                 rc = down_interruptible(&bnx2x_prev_sem);
10886                 if (rc) {
10887                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10888                                   rc);
10889                 } else {
10890                         /* If Path is marked by EEH, ignore unload status */
10891                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10892                                  bnx2x_prev_path_get_entry(bp)->aer);
10893                         up(&bnx2x_prev_sem);
10894                 }
10895
10896                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10897                         rc = bnx2x_prev_unload_common(bp);
10898                         break;
10899                 }
10900
10901                 /* non-common reply from MCP might require looping */
10902                 rc = bnx2x_prev_unload_uncommon(bp);
10903                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10904                         break;
10905
10906                 msleep(20);
10907         } while (--time_counter);
10908
10909         if (!time_counter || rc) {
10910                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10911                 rc = -EPROBE_DEFER;
10912         }
10913
10914         /* Mark function if its port was used to boot from SAN */
10915         if (bnx2x_port_after_undi(bp))
10916                 bp->link_params.feature_config_flags |=
10917                         FEATURE_CONFIG_BOOT_FROM_SAN;
10918
10919         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10920
10921         return rc;
10922 }
10923
10924 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10925 {
10926         u32 val, val2, val3, val4, id, boot_mode;
10927         u16 pmc;
10928
10929         /* Get the chip revision id and number. */
10930         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10931         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10932         id = ((val & 0xffff) << 16);
10933         val = REG_RD(bp, MISC_REG_CHIP_REV);
10934         id |= ((val & 0xf) << 12);
10935
10936         /* Metal is read from PCI regs, but we can't access >=0x400 from
10937          * the configuration space (so we need to reg_rd)
10938          */
10939         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10940         id |= (((val >> 24) & 0xf) << 4);
10941         val = REG_RD(bp, MISC_REG_BOND_ID);
10942         id |= (val & 0xf);
10943         bp->common.chip_id = id;
10944
10945         /* force 57811 according to MISC register */
10946         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10947                 if (CHIP_IS_57810(bp))
10948                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10949                                 (bp->common.chip_id & 0x0000FFFF);
10950                 else if (CHIP_IS_57810_MF(bp))
10951                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10952                                 (bp->common.chip_id & 0x0000FFFF);
10953                 bp->common.chip_id |= 0x1;
10954         }
10955
10956         /* Set doorbell size */
10957         bp->db_size = (1 << BNX2X_DB_SHIFT);
10958
10959         if (!CHIP_IS_E1x(bp)) {
10960                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10961                 if ((val & 1) == 0)
10962                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10963                 else
10964                         val = (val >> 1) & 1;
10965                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10966                                                        "2_PORT_MODE");
10967                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10968                                                  CHIP_2_PORT_MODE;
10969
10970                 if (CHIP_MODE_IS_4_PORT(bp))
10971                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10972                 else
10973                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10974         } else {
10975                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10976                 bp->pfid = bp->pf_num;                  /* 0..7 */
10977         }
10978
10979         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10980
10981         bp->link_params.chip_id = bp->common.chip_id;
10982         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10983
10984         val = (REG_RD(bp, 0x2874) & 0x55);
10985         if ((bp->common.chip_id & 0x1) ||
10986             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10987                 bp->flags |= ONE_PORT_FLAG;
10988                 BNX2X_DEV_INFO("single port device\n");
10989         }
10990
10991         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10992         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10993                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10994         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10995                        bp->common.flash_size, bp->common.flash_size);
10996
10997         bnx2x_init_shmem(bp);
10998
10999         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11000                                         MISC_REG_GENERIC_CR_1 :
11001                                         MISC_REG_GENERIC_CR_0));
11002
11003         bp->link_params.shmem_base = bp->common.shmem_base;
11004         bp->link_params.shmem2_base = bp->common.shmem2_base;
11005         if (SHMEM2_RD(bp, size) >
11006             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11007                 bp->link_params.lfa_base =
11008                 REG_RD(bp, bp->common.shmem2_base +
11009                        (u32)offsetof(struct shmem2_region,
11010                                      lfa_host_addr[BP_PORT(bp)]));
11011         else
11012                 bp->link_params.lfa_base = 0;
11013         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11014                        bp->common.shmem_base, bp->common.shmem2_base);
11015
11016         if (!bp->common.shmem_base) {
11017                 BNX2X_DEV_INFO("MCP not active\n");
11018                 bp->flags |= NO_MCP_FLAG;
11019                 return;
11020         }
11021
11022         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11023         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11024
11025         bp->link_params.hw_led_mode = ((bp->common.hw_config &
11026                                         SHARED_HW_CFG_LED_MODE_MASK) >>
11027                                        SHARED_HW_CFG_LED_MODE_SHIFT);
11028
11029         bp->link_params.feature_config_flags = 0;
11030         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11031         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11032                 bp->link_params.feature_config_flags |=
11033                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11034         else
11035                 bp->link_params.feature_config_flags &=
11036                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11037
11038         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11039         bp->common.bc_ver = val;
11040         BNX2X_DEV_INFO("bc_ver %X\n", val);
11041         if (val < BNX2X_BC_VER) {
11042                 /* for now only warn
11043                  * later we might need to enforce this */
11044                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11045                           BNX2X_BC_VER, val);
11046         }
11047         bp->link_params.feature_config_flags |=
11048                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11049                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11050
11051         bp->link_params.feature_config_flags |=
11052                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11053                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11054         bp->link_params.feature_config_flags |=
11055                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11056                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11057         bp->link_params.feature_config_flags |=
11058                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11059                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11060
11061         bp->link_params.feature_config_flags |=
11062                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11063                 FEATURE_CONFIG_MT_SUPPORT : 0;
11064
11065         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11066                         BC_SUPPORTS_PFC_STATS : 0;
11067
11068         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11069                         BC_SUPPORTS_FCOE_FEATURES : 0;
11070
11071         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11072                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11073
11074         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11075                         BC_SUPPORTS_RMMOD_CMD : 0;
11076
11077         boot_mode = SHMEM_RD(bp,
11078                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11079                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11080         switch (boot_mode) {
11081         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11082                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11083                 break;
11084         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11085                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11086                 break;
11087         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11088                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11089                 break;
11090         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11091                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11092                 break;
11093         }
11094
11095         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11096         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11097
11098         BNX2X_DEV_INFO("%sWoL capable\n",
11099                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
11100
11101         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11102         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11103         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11104         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11105
11106         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11107                  val, val2, val3, val4);
11108 }
11109
11110 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11111 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11112
11113 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11114 {
11115         int pfid = BP_FUNC(bp);
11116         int igu_sb_id;
11117         u32 val;
11118         u8 fid, igu_sb_cnt = 0;
11119
11120         bp->igu_base_sb = 0xff;
11121         if (CHIP_INT_MODE_IS_BC(bp)) {
11122                 int vn = BP_VN(bp);
11123                 igu_sb_cnt = bp->igu_sb_cnt;
11124                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11125                         FP_SB_MAX_E1x;
11126
11127                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11128                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11129
11130                 return 0;
11131         }
11132
11133         /* IGU in normal mode - read CAM */
11134         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11135              igu_sb_id++) {
11136                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11137                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11138                         continue;
11139                 fid = IGU_FID(val);
11140                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11141                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11142                                 continue;
11143                         if (IGU_VEC(val) == 0)
11144                                 /* default status block */
11145                                 bp->igu_dsb_id = igu_sb_id;
11146                         else {
11147                                 if (bp->igu_base_sb == 0xff)
11148                                         bp->igu_base_sb = igu_sb_id;
11149                                 igu_sb_cnt++;
11150                         }
11151                 }
11152         }
11153
11154 #ifdef CONFIG_PCI_MSI
11155         /* Due to new PF resource allocation by MFW T7.4 and above, it's
11156          * optional that number of CAM entries will not be equal to the value
11157          * advertised in PCI.
11158          * Driver should use the minimal value of both as the actual status
11159          * block count
11160          */
11161         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11162 #endif
11163
11164         if (igu_sb_cnt == 0) {
11165                 BNX2X_ERR("CAM configuration error\n");
11166                 return -EINVAL;
11167         }
11168
11169         return 0;
11170 }
11171
11172 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11173 {
11174         int cfg_size = 0, idx, port = BP_PORT(bp);
11175
11176         /* Aggregation of supported attributes of all external phys */
11177         bp->port.supported[0] = 0;
11178         bp->port.supported[1] = 0;
11179         switch (bp->link_params.num_phys) {
11180         case 1:
11181                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11182                 cfg_size = 1;
11183                 break;
11184         case 2:
11185                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11186                 cfg_size = 1;
11187                 break;
11188         case 3:
11189                 if (bp->link_params.multi_phy_config &
11190                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11191                         bp->port.supported[1] =
11192                                 bp->link_params.phy[EXT_PHY1].supported;
11193                         bp->port.supported[0] =
11194                                 bp->link_params.phy[EXT_PHY2].supported;
11195                 } else {
11196                         bp->port.supported[0] =
11197                                 bp->link_params.phy[EXT_PHY1].supported;
11198                         bp->port.supported[1] =
11199                                 bp->link_params.phy[EXT_PHY2].supported;
11200                 }
11201                 cfg_size = 2;
11202                 break;
11203         }
11204
11205         if (!(bp->port.supported[0] || bp->port.supported[1])) {
11206                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11207                            SHMEM_RD(bp,
11208                            dev_info.port_hw_config[port].external_phy_config),
11209                            SHMEM_RD(bp,
11210                            dev_info.port_hw_config[port].external_phy_config2));
11211                 return;
11212         }
11213
11214         if (CHIP_IS_E3(bp))
11215                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11216         else {
11217                 switch (switch_cfg) {
11218                 case SWITCH_CFG_1G:
11219                         bp->port.phy_addr = REG_RD(
11220                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11221                         break;
11222                 case SWITCH_CFG_10G:
11223                         bp->port.phy_addr = REG_RD(
11224                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11225                         break;
11226                 default:
11227                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11228                                   bp->port.link_config[0]);
11229                         return;
11230                 }
11231         }
11232         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11233         /* mask what we support according to speed_cap_mask per configuration */
11234         for (idx = 0; idx < cfg_size; idx++) {
11235                 if (!(bp->link_params.speed_cap_mask[idx] &
11236                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11237                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11238
11239                 if (!(bp->link_params.speed_cap_mask[idx] &
11240                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11241                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11242
11243                 if (!(bp->link_params.speed_cap_mask[idx] &
11244                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11245                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11246
11247                 if (!(bp->link_params.speed_cap_mask[idx] &
11248                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11249                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11250
11251                 if (!(bp->link_params.speed_cap_mask[idx] &
11252                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11253                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11254                                                      SUPPORTED_1000baseT_Full);
11255
11256                 if (!(bp->link_params.speed_cap_mask[idx] &
11257                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11258                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11259
11260                 if (!(bp->link_params.speed_cap_mask[idx] &
11261                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11262                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11263
11264                 if (!(bp->link_params.speed_cap_mask[idx] &
11265                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11266                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11267         }
11268
11269         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11270                        bp->port.supported[1]);
11271 }
11272
11273 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11274 {
11275         u32 link_config, idx, cfg_size = 0;
11276         bp->port.advertising[0] = 0;
11277         bp->port.advertising[1] = 0;
11278         switch (bp->link_params.num_phys) {
11279         case 1:
11280         case 2:
11281                 cfg_size = 1;
11282                 break;
11283         case 3:
11284                 cfg_size = 2;
11285                 break;
11286         }
11287         for (idx = 0; idx < cfg_size; idx++) {
11288                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11289                 link_config = bp->port.link_config[idx];
11290                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11291                 case PORT_FEATURE_LINK_SPEED_AUTO:
11292                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11293                                 bp->link_params.req_line_speed[idx] =
11294                                         SPEED_AUTO_NEG;
11295                                 bp->port.advertising[idx] |=
11296                                         bp->port.supported[idx];
11297                                 if (bp->link_params.phy[EXT_PHY1].type ==
11298                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11299                                         bp->port.advertising[idx] |=
11300                                         (SUPPORTED_100baseT_Half |
11301                                          SUPPORTED_100baseT_Full);
11302                         } else {
11303                                 /* force 10G, no AN */
11304                                 bp->link_params.req_line_speed[idx] =
11305                                         SPEED_10000;
11306                                 bp->port.advertising[idx] |=
11307                                         (ADVERTISED_10000baseT_Full |
11308                                          ADVERTISED_FIBRE);
11309                                 continue;
11310                         }
11311                         break;
11312
11313                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11314                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11315                                 bp->link_params.req_line_speed[idx] =
11316                                         SPEED_10;
11317                                 bp->port.advertising[idx] |=
11318                                         (ADVERTISED_10baseT_Full |
11319                                          ADVERTISED_TP);
11320                         } else {
11321                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11322                                             link_config,
11323                                     bp->link_params.speed_cap_mask[idx]);
11324                                 return;
11325                         }
11326                         break;
11327
11328                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11329                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11330                                 bp->link_params.req_line_speed[idx] =
11331                                         SPEED_10;
11332                                 bp->link_params.req_duplex[idx] =
11333                                         DUPLEX_HALF;
11334                                 bp->port.advertising[idx] |=
11335                                         (ADVERTISED_10baseT_Half |
11336                                          ADVERTISED_TP);
11337                         } else {
11338                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11339                                             link_config,
11340                                           bp->link_params.speed_cap_mask[idx]);
11341                                 return;
11342                         }
11343                         break;
11344
11345                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11346                         if (bp->port.supported[idx] &
11347                             SUPPORTED_100baseT_Full) {
11348                                 bp->link_params.req_line_speed[idx] =
11349                                         SPEED_100;
11350                                 bp->port.advertising[idx] |=
11351                                         (ADVERTISED_100baseT_Full |
11352                                          ADVERTISED_TP);
11353                         } else {
11354                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11355                                             link_config,
11356                                           bp->link_params.speed_cap_mask[idx]);
11357                                 return;
11358                         }
11359                         break;
11360
11361                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11362                         if (bp->port.supported[idx] &
11363                             SUPPORTED_100baseT_Half) {
11364                                 bp->link_params.req_line_speed[idx] =
11365                                                                 SPEED_100;
11366                                 bp->link_params.req_duplex[idx] =
11367                                                                 DUPLEX_HALF;
11368                                 bp->port.advertising[idx] |=
11369                                         (ADVERTISED_100baseT_Half |
11370                                          ADVERTISED_TP);
11371                         } else {
11372                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11373                                     link_config,
11374                                     bp->link_params.speed_cap_mask[idx]);
11375                                 return;
11376                         }
11377                         break;
11378
11379                 case PORT_FEATURE_LINK_SPEED_1G:
11380                         if (bp->port.supported[idx] &
11381                             SUPPORTED_1000baseT_Full) {
11382                                 bp->link_params.req_line_speed[idx] =
11383                                         SPEED_1000;
11384                                 bp->port.advertising[idx] |=
11385                                         (ADVERTISED_1000baseT_Full |
11386                                          ADVERTISED_TP);
11387                         } else if (bp->port.supported[idx] &
11388                                    SUPPORTED_1000baseKX_Full) {
11389                                 bp->link_params.req_line_speed[idx] =
11390                                         SPEED_1000;
11391                                 bp->port.advertising[idx] |=
11392                                         ADVERTISED_1000baseKX_Full;
11393                         } else {
11394                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11395                                     link_config,
11396                                     bp->link_params.speed_cap_mask[idx]);
11397                                 return;
11398                         }
11399                         break;
11400
11401                 case PORT_FEATURE_LINK_SPEED_2_5G:
11402                         if (bp->port.supported[idx] &
11403                             SUPPORTED_2500baseX_Full) {
11404                                 bp->link_params.req_line_speed[idx] =
11405                                         SPEED_2500;
11406                                 bp->port.advertising[idx] |=
11407                                         (ADVERTISED_2500baseX_Full |
11408                                                 ADVERTISED_TP);
11409                         } else {
11410                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11411                                     link_config,
11412                                     bp->link_params.speed_cap_mask[idx]);
11413                                 return;
11414                         }
11415                         break;
11416
11417                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11418                         if (bp->port.supported[idx] &
11419                             SUPPORTED_10000baseT_Full) {
11420                                 bp->link_params.req_line_speed[idx] =
11421                                         SPEED_10000;
11422                                 bp->port.advertising[idx] |=
11423                                         (ADVERTISED_10000baseT_Full |
11424                                                 ADVERTISED_FIBRE);
11425                         } else if (bp->port.supported[idx] &
11426                                    SUPPORTED_10000baseKR_Full) {
11427                                 bp->link_params.req_line_speed[idx] =
11428                                         SPEED_10000;
11429                                 bp->port.advertising[idx] |=
11430                                         (ADVERTISED_10000baseKR_Full |
11431                                                 ADVERTISED_FIBRE);
11432                         } else {
11433                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11434                                     link_config,
11435                                     bp->link_params.speed_cap_mask[idx]);
11436                                 return;
11437                         }
11438                         break;
11439                 case PORT_FEATURE_LINK_SPEED_20G:
11440                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11441
11442                         break;
11443                 default:
11444                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11445                                   link_config);
11446                                 bp->link_params.req_line_speed[idx] =
11447                                                         SPEED_AUTO_NEG;
11448                                 bp->port.advertising[idx] =
11449                                                 bp->port.supported[idx];
11450                         break;
11451                 }
11452
11453                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11454                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11455                 if (bp->link_params.req_flow_ctrl[idx] ==
11456                     BNX2X_FLOW_CTRL_AUTO) {
11457                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11458                                 bp->link_params.req_flow_ctrl[idx] =
11459                                                         BNX2X_FLOW_CTRL_NONE;
11460                         else
11461                                 bnx2x_set_requested_fc(bp);
11462                 }
11463
11464                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11465                                bp->link_params.req_line_speed[idx],
11466                                bp->link_params.req_duplex[idx],
11467                                bp->link_params.req_flow_ctrl[idx],
11468                                bp->port.advertising[idx]);
11469         }
11470 }
11471
11472 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11473 {
11474         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11475         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11476         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11477         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11478 }
11479
11480 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11481 {
11482         int port = BP_PORT(bp);
11483         u32 config;
11484         u32 ext_phy_type, ext_phy_config, eee_mode;
11485
11486         bp->link_params.bp = bp;
11487         bp->link_params.port = port;
11488
11489         bp->link_params.lane_config =
11490                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11491
11492         bp->link_params.speed_cap_mask[0] =
11493                 SHMEM_RD(bp,
11494                          dev_info.port_hw_config[port].speed_capability_mask) &
11495                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11496         bp->link_params.speed_cap_mask[1] =
11497                 SHMEM_RD(bp,
11498                          dev_info.port_hw_config[port].speed_capability_mask2) &
11499                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11500         bp->port.link_config[0] =
11501                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11502
11503         bp->port.link_config[1] =
11504                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11505
11506         bp->link_params.multi_phy_config =
11507                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11508         /* If the device is capable of WoL, set the default state according
11509          * to the HW
11510          */
11511         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11512         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11513                    (config & PORT_FEATURE_WOL_ENABLED));
11514
11515         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11516             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11517                 bp->flags |= NO_ISCSI_FLAG;
11518         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11519             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11520                 bp->flags |= NO_FCOE_FLAG;
11521
11522         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11523                        bp->link_params.lane_config,
11524                        bp->link_params.speed_cap_mask[0],
11525                        bp->port.link_config[0]);
11526
11527         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11528                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11529         bnx2x_phy_probe(&bp->link_params);
11530         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11531
11532         bnx2x_link_settings_requested(bp);
11533
11534         /*
11535          * If connected directly, work with the internal PHY, otherwise, work
11536          * with the external PHY
11537          */
11538         ext_phy_config =
11539                 SHMEM_RD(bp,
11540                          dev_info.port_hw_config[port].external_phy_config);
11541         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11542         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11543                 bp->mdio.prtad = bp->port.phy_addr;
11544
11545         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11546                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11547                 bp->mdio.prtad =
11548                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11549
11550         /* Configure link feature according to nvram value */
11551         eee_mode = (((SHMEM_RD(bp, dev_info.
11552                       port_feature_config[port].eee_power_mode)) &
11553                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11554                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11555         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11556                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11557                                            EEE_MODE_ENABLE_LPI |
11558                                            EEE_MODE_OUTPUT_TIME;
11559         } else {
11560                 bp->link_params.eee_mode = 0;
11561         }
11562 }
11563
11564 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11565 {
11566         u32 no_flags = NO_ISCSI_FLAG;
11567         int port = BP_PORT(bp);
11568         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11569                                 drv_lic_key[port].max_iscsi_conn);
11570
11571         if (!CNIC_SUPPORT(bp)) {
11572                 bp->flags |= no_flags;
11573                 return;
11574         }
11575
11576         /* Get the number of maximum allowed iSCSI connections */
11577         bp->cnic_eth_dev.max_iscsi_conn =
11578                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11579                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11580
11581         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11582                        bp->cnic_eth_dev.max_iscsi_conn);
11583
11584         /*
11585          * If maximum allowed number of connections is zero -
11586          * disable the feature.
11587          */
11588         if (!bp->cnic_eth_dev.max_iscsi_conn)
11589                 bp->flags |= no_flags;
11590 }
11591
11592 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11593 {
11594         /* Port info */
11595         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11596                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11597         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11598                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11599
11600         /* Node info */
11601         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11602                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11603         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11604                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11605 }
11606
11607 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11608 {
11609         u8 count = 0;
11610
11611         if (IS_MF(bp)) {
11612                 u8 fid;
11613
11614                 /* iterate over absolute function ids for this path: */
11615                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11616                         if (IS_MF_SD(bp)) {
11617                                 u32 cfg = MF_CFG_RD(bp,
11618                                                     func_mf_config[fid].config);
11619
11620                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11621                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11622                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11623                                         count++;
11624                         } else {
11625                                 u32 cfg = MF_CFG_RD(bp,
11626                                                     func_ext_config[fid].
11627                                                                       func_cfg);
11628
11629                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11630                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11631                                         count++;
11632                         }
11633                 }
11634         } else { /* SF */
11635                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11636
11637                 for (port = 0; port < port_cnt; port++) {
11638                         u32 lic = SHMEM_RD(bp,
11639                                            drv_lic_key[port].max_fcoe_conn) ^
11640                                   FW_ENCODE_32BIT_PATTERN;
11641                         if (lic)
11642                                 count++;
11643                 }
11644         }
11645
11646         return count;
11647 }
11648
11649 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11650 {
11651         int port = BP_PORT(bp);
11652         int func = BP_ABS_FUNC(bp);
11653         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11654                                 drv_lic_key[port].max_fcoe_conn);
11655         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11656
11657         if (!CNIC_SUPPORT(bp)) {
11658                 bp->flags |= NO_FCOE_FLAG;
11659                 return;
11660         }
11661
11662         /* Get the number of maximum allowed FCoE connections */
11663         bp->cnic_eth_dev.max_fcoe_conn =
11664                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11665                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11666
11667         /* Calculate the number of maximum allowed FCoE tasks */
11668         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11669
11670         /* check if FCoE resources must be shared between different functions */
11671         if (num_fcoe_func)
11672                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11673
11674         /* Read the WWN: */
11675         if (!IS_MF(bp)) {
11676                 /* Port info */
11677                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11678                         SHMEM_RD(bp,
11679                                  dev_info.port_hw_config[port].
11680                                  fcoe_wwn_port_name_upper);
11681                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11682                         SHMEM_RD(bp,
11683                                  dev_info.port_hw_config[port].
11684                                  fcoe_wwn_port_name_lower);
11685
11686                 /* Node info */
11687                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11688                         SHMEM_RD(bp,
11689                                  dev_info.port_hw_config[port].
11690                                  fcoe_wwn_node_name_upper);
11691                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11692                         SHMEM_RD(bp,
11693                                  dev_info.port_hw_config[port].
11694                                  fcoe_wwn_node_name_lower);
11695         } else if (!IS_MF_SD(bp)) {
11696                 /* Read the WWN info only if the FCoE feature is enabled for
11697                  * this function.
11698                  */
11699                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11700                         bnx2x_get_ext_wwn_info(bp, func);
11701         } else {
11702                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11703                         bnx2x_get_ext_wwn_info(bp, func);
11704         }
11705
11706         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11707
11708         /*
11709          * If maximum allowed number of connections is zero -
11710          * disable the feature.
11711          */
11712         if (!bp->cnic_eth_dev.max_fcoe_conn) {
11713                 bp->flags |= NO_FCOE_FLAG;
11714                 eth_zero_addr(bp->fip_mac);
11715         }
11716 }
11717
11718 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11719 {
11720         /*
11721          * iSCSI may be dynamically disabled but reading
11722          * info here we will decrease memory usage by driver
11723          * if the feature is disabled for good
11724          */
11725         bnx2x_get_iscsi_info(bp);
11726         bnx2x_get_fcoe_info(bp);
11727 }
11728
11729 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11730 {
11731         u32 val, val2;
11732         int func = BP_ABS_FUNC(bp);
11733         int port = BP_PORT(bp);
11734         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11735         u8 *fip_mac = bp->fip_mac;
11736
11737         if (IS_MF(bp)) {
11738                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11739                  * FCoE MAC then the appropriate feature should be disabled.
11740                  * In non SD mode features configuration comes from struct
11741                  * func_ext_config.
11742                  */
11743                 if (!IS_MF_SD(bp)) {
11744                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11745                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11746                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11747                                                  iscsi_mac_addr_upper);
11748                                 val = MF_CFG_RD(bp, func_ext_config[func].
11749                                                 iscsi_mac_addr_lower);
11750                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11751                                 BNX2X_DEV_INFO
11752                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11753                         } else {
11754                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11755                         }
11756
11757                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11758                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11759                                                  fcoe_mac_addr_upper);
11760                                 val = MF_CFG_RD(bp, func_ext_config[func].
11761                                                 fcoe_mac_addr_lower);
11762                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11763                                 BNX2X_DEV_INFO
11764                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11765                         } else {
11766                                 bp->flags |= NO_FCOE_FLAG;
11767                         }
11768
11769                         bp->mf_ext_config = cfg;
11770
11771                 } else { /* SD MODE */
11772                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11773                                 /* use primary mac as iscsi mac */
11774                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11775
11776                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11777                                 BNX2X_DEV_INFO
11778                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11779                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11780                                 /* use primary mac as fip mac */
11781                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11782                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11783                                 BNX2X_DEV_INFO
11784                                         ("Read FIP MAC: %pM\n", fip_mac);
11785                         }
11786                 }
11787
11788                 /* If this is a storage-only interface, use SAN mac as
11789                  * primary MAC. Notice that for SD this is already the case,
11790                  * as the SAN mac was copied from the primary MAC.
11791                  */
11792                 if (IS_MF_FCOE_AFEX(bp))
11793                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11794         } else {
11795                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11796                                 iscsi_mac_upper);
11797                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11798                                iscsi_mac_lower);
11799                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11800
11801                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11802                                 fcoe_fip_mac_upper);
11803                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11804                                fcoe_fip_mac_lower);
11805                 bnx2x_set_mac_buf(fip_mac, val, val2);
11806         }
11807
11808         /* Disable iSCSI OOO if MAC configuration is invalid. */
11809         if (!is_valid_ether_addr(iscsi_mac)) {
11810                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11811                 eth_zero_addr(iscsi_mac);
11812         }
11813
11814         /* Disable FCoE if MAC configuration is invalid. */
11815         if (!is_valid_ether_addr(fip_mac)) {
11816                 bp->flags |= NO_FCOE_FLAG;
11817                 eth_zero_addr(bp->fip_mac);
11818         }
11819 }
11820
11821 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11822 {
11823         u32 val, val2;
11824         int func = BP_ABS_FUNC(bp);
11825         int port = BP_PORT(bp);
11826
11827         /* Zero primary MAC configuration */
11828         eth_zero_addr(bp->dev->dev_addr);
11829
11830         if (BP_NOMCP(bp)) {
11831                 BNX2X_ERROR("warning: random MAC workaround active\n");
11832                 eth_hw_addr_random(bp->dev);
11833         } else if (IS_MF(bp)) {
11834                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11835                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11836                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11837                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11838                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11839
11840                 if (CNIC_SUPPORT(bp))
11841                         bnx2x_get_cnic_mac_hwinfo(bp);
11842         } else {
11843                 /* in SF read MACs from port configuration */
11844                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11845                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11846                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11847
11848                 if (CNIC_SUPPORT(bp))
11849                         bnx2x_get_cnic_mac_hwinfo(bp);
11850         }
11851
11852         if (!BP_NOMCP(bp)) {
11853                 /* Read physical port identifier from shmem */
11854                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11855                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11856                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11857                 bp->flags |= HAS_PHYS_PORT_ID;
11858         }
11859
11860         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11861
11862         if (!is_valid_ether_addr(bp->dev->dev_addr))
11863                 dev_err(&bp->pdev->dev,
11864                         "bad Ethernet MAC address configuration: %pM\n"
11865                         "change it manually before bringing up the appropriate network interface\n",
11866                         bp->dev->dev_addr);
11867 }
11868
11869 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11870 {
11871         int tmp;
11872         u32 cfg;
11873
11874         if (IS_VF(bp))
11875                 return false;
11876
11877         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11878                 /* Take function: tmp = func */
11879                 tmp = BP_ABS_FUNC(bp);
11880                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11881                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11882         } else {
11883                 /* Take port: tmp = port */
11884                 tmp = BP_PORT(bp);
11885                 cfg = SHMEM_RD(bp,
11886                                dev_info.port_hw_config[tmp].generic_features);
11887                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11888         }
11889         return cfg;
11890 }
11891
11892 static void validate_set_si_mode(struct bnx2x *bp)
11893 {
11894         u8 func = BP_ABS_FUNC(bp);
11895         u32 val;
11896
11897         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11898
11899         /* check for legal mac (upper bytes) */
11900         if (val != 0xffff) {
11901                 bp->mf_mode = MULTI_FUNCTION_SI;
11902                 bp->mf_config[BP_VN(bp)] =
11903                         MF_CFG_RD(bp, func_mf_config[func].config);
11904         } else
11905                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11906 }
11907
11908 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11909 {
11910         int /*abs*/func = BP_ABS_FUNC(bp);
11911         int vn;
11912         u32 val = 0, val2 = 0;
11913         int rc = 0;
11914
11915         /* Validate that chip access is feasible */
11916         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11917                 dev_err(&bp->pdev->dev,
11918                         "Chip read returns all Fs. Preventing probe from continuing\n");
11919                 return -EINVAL;
11920         }
11921
11922         bnx2x_get_common_hwinfo(bp);
11923
11924         /*
11925          * initialize IGU parameters
11926          */
11927         if (CHIP_IS_E1x(bp)) {
11928                 bp->common.int_block = INT_BLOCK_HC;
11929
11930                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11931                 bp->igu_base_sb = 0;
11932         } else {
11933                 bp->common.int_block = INT_BLOCK_IGU;
11934
11935                 /* do not allow device reset during IGU info processing */
11936                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11937
11938                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11939
11940                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11941                         int tout = 5000;
11942
11943                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11944
11945                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11946                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11947                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11948
11949                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11950                                 tout--;
11951                                 usleep_range(1000, 2000);
11952                         }
11953
11954                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11955                                 dev_err(&bp->pdev->dev,
11956                                         "FORCING Normal Mode failed!!!\n");
11957                                 bnx2x_release_hw_lock(bp,
11958                                                       HW_LOCK_RESOURCE_RESET);
11959                                 return -EPERM;
11960                         }
11961                 }
11962
11963                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11964                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11965                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11966                 } else
11967                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11968
11969                 rc = bnx2x_get_igu_cam_info(bp);
11970                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11971                 if (rc)
11972                         return rc;
11973         }
11974
11975         /*
11976          * set base FW non-default (fast path) status block id, this value is
11977          * used to initialize the fw_sb_id saved on the fp/queue structure to
11978          * determine the id used by the FW.
11979          */
11980         if (CHIP_IS_E1x(bp))
11981                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11982         else /*
11983               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11984               * the same queue are indicated on the same IGU SB). So we prefer
11985               * FW and IGU SBs to be the same value.
11986               */
11987                 bp->base_fw_ndsb = bp->igu_base_sb;
11988
11989         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11990                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11991                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11992
11993         /*
11994          * Initialize MF configuration
11995          */
11996         bp->mf_ov = 0;
11997         bp->mf_mode = 0;
11998         bp->mf_sub_mode = 0;
11999         vn = BP_VN(bp);
12000
12001         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12002                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12003                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
12004                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12005
12006                 if (SHMEM2_HAS(bp, mf_cfg_addr))
12007                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12008                 else
12009                         bp->common.mf_cfg_base = bp->common.shmem_base +
12010                                 offsetof(struct shmem_region, func_mb) +
12011                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12012                 /*
12013                  * get mf configuration:
12014                  * 1. Existence of MF configuration
12015                  * 2. MAC address must be legal (check only upper bytes)
12016                  *    for  Switch-Independent mode;
12017                  *    OVLAN must be legal for Switch-Dependent mode
12018                  * 3. SF_MODE configures specific MF mode
12019                  */
12020                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12021                         /* get mf configuration */
12022                         val = SHMEM_RD(bp,
12023                                        dev_info.shared_feature_config.config);
12024                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12025
12026                         switch (val) {
12027                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12028                                 validate_set_si_mode(bp);
12029                                 break;
12030                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12031                                 if ((!CHIP_IS_E1x(bp)) &&
12032                                     (MF_CFG_RD(bp, func_mf_config[func].
12033                                                mac_upper) != 0xffff) &&
12034                                     (SHMEM2_HAS(bp,
12035                                                 afex_driver_support))) {
12036                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
12037                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12038                                                 func_mf_config[func].config);
12039                                 } else {
12040                                         BNX2X_DEV_INFO("can not configure afex mode\n");
12041                                 }
12042                                 break;
12043                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12044                                 /* get OV configuration */
12045                                 val = MF_CFG_RD(bp,
12046                                         func_mf_config[FUNC_0].e1hov_tag);
12047                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12048
12049                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12050                                         bp->mf_mode = MULTI_FUNCTION_SD;
12051                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12052                                                 func_mf_config[func].config);
12053                                 } else
12054                                         BNX2X_DEV_INFO("illegal OV for SD\n");
12055                                 break;
12056                         case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12057                                 bp->mf_mode = MULTI_FUNCTION_SD;
12058                                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12059                                 bp->mf_config[vn] =
12060                                         MF_CFG_RD(bp,
12061                                                   func_mf_config[func].config);
12062
12063                                 if (SHMEM2_HAS(bp, mtu_size)) {
12064                                         int mtu_idx = BP_FW_MB_IDX(bp);
12065                                         u16 mtu_size;
12066                                         u32 mtu;
12067
12068                                         mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12069                                         mtu_size = (u16)mtu;
12070                                         DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12071                                            mtu_size, mtu);
12072
12073                                         /* if valid: update device mtu */
12074                                         if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12075                                             (mtu_size <=
12076                                              ETH_MAX_JUMBO_PACKET_SIZE))
12077                                                 bp->dev->mtu = mtu_size;
12078                                 }
12079                                 break;
12080                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12081                                 bp->mf_mode = MULTI_FUNCTION_SD;
12082                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12083                                 bp->mf_config[vn] =
12084                                         MF_CFG_RD(bp,
12085                                                   func_mf_config[func].config);
12086                                 break;
12087                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12088                                 bp->mf_config[vn] = 0;
12089                                 break;
12090                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12091                                 val2 = SHMEM_RD(bp,
12092                                         dev_info.shared_hw_config.config_3);
12093                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12094                                 switch (val2) {
12095                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12096                                         validate_set_si_mode(bp);
12097                                         bp->mf_sub_mode =
12098                                                         SUB_MF_MODE_NPAR1_DOT_5;
12099                                         break;
12100                                 default:
12101                                         /* Unknown configuration */
12102                                         bp->mf_config[vn] = 0;
12103                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12104                                                        val);
12105                                 }
12106                                 break;
12107                         default:
12108                                 /* Unknown configuration: reset mf_config */
12109                                 bp->mf_config[vn] = 0;
12110                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12111                         }
12112                 }
12113
12114                 BNX2X_DEV_INFO("%s function mode\n",
12115                                IS_MF(bp) ? "multi" : "single");
12116
12117                 switch (bp->mf_mode) {
12118                 case MULTI_FUNCTION_SD:
12119                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12120                               FUNC_MF_CFG_E1HOV_TAG_MASK;
12121                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12122                                 bp->mf_ov = val;
12123                                 bp->path_has_ovlan = true;
12124
12125                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12126                                                func, bp->mf_ov, bp->mf_ov);
12127                         } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12128                                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12129                                 dev_err(&bp->pdev->dev,
12130                                         "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12131                                         func);
12132                                 bp->path_has_ovlan = true;
12133                         } else {
12134                                 dev_err(&bp->pdev->dev,
12135                                         "No valid MF OV for func %d, aborting\n",
12136                                         func);
12137                                 return -EPERM;
12138                         }
12139                         break;
12140                 case MULTI_FUNCTION_AFEX:
12141                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12142                         break;
12143                 case MULTI_FUNCTION_SI:
12144                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12145                                        func);
12146                         break;
12147                 default:
12148                         if (vn) {
12149                                 dev_err(&bp->pdev->dev,
12150                                         "VN %d is in a single function mode, aborting\n",
12151                                         vn);
12152                                 return -EPERM;
12153                         }
12154                         break;
12155                 }
12156
12157                 /* check if other port on the path needs ovlan:
12158                  * Since MF configuration is shared between ports
12159                  * Possible mixed modes are only
12160                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12161                  */
12162                 if (CHIP_MODE_IS_4_PORT(bp) &&
12163                     !bp->path_has_ovlan &&
12164                     !IS_MF(bp) &&
12165                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12166                         u8 other_port = !BP_PORT(bp);
12167                         u8 other_func = BP_PATH(bp) + 2*other_port;
12168                         val = MF_CFG_RD(bp,
12169                                         func_mf_config[other_func].e1hov_tag);
12170                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12171                                 bp->path_has_ovlan = true;
12172                 }
12173         }
12174
12175         /* adjust igu_sb_cnt to MF for E1H */
12176         if (CHIP_IS_E1H(bp) && IS_MF(bp))
12177                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12178
12179         /* port info */
12180         bnx2x_get_port_hwinfo(bp);
12181
12182         /* Get MAC addresses */
12183         bnx2x_get_mac_hwinfo(bp);
12184
12185         bnx2x_get_cnic_info(bp);
12186
12187         return rc;
12188 }
12189
12190 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12191 {
12192         char str_id[VENDOR_ID_LEN + 1];
12193         unsigned int vpd_len, kw_len;
12194         u8 *vpd_data;
12195         int rodi;
12196
12197         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12198
12199         vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12200         if (IS_ERR(vpd_data))
12201                 return;
12202
12203         rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12204                                             PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12205         if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12206                 goto out_not_found;
12207
12208         /* vendor specific info */
12209         snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12210         if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12211                 rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12212                                                     PCI_VPD_RO_KEYWORD_VENDOR0,
12213                                                     &kw_len);
12214                 if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12215                         memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12216                         bp->fw_ver[kw_len] = ' ';
12217                 }
12218         }
12219 out_not_found:
12220         kfree(vpd_data);
12221 }
12222
12223 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12224 {
12225         u32 flags = 0;
12226
12227         if (CHIP_REV_IS_FPGA(bp))
12228                 SET_FLAGS(flags, MODE_FPGA);
12229         else if (CHIP_REV_IS_EMUL(bp))
12230                 SET_FLAGS(flags, MODE_EMUL);
12231         else
12232                 SET_FLAGS(flags, MODE_ASIC);
12233
12234         if (CHIP_MODE_IS_4_PORT(bp))
12235                 SET_FLAGS(flags, MODE_PORT4);
12236         else
12237                 SET_FLAGS(flags, MODE_PORT2);
12238
12239         if (CHIP_IS_E2(bp))
12240                 SET_FLAGS(flags, MODE_E2);
12241         else if (CHIP_IS_E3(bp)) {
12242                 SET_FLAGS(flags, MODE_E3);
12243                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12244                         SET_FLAGS(flags, MODE_E3_A0);
12245                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12246                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12247         }
12248
12249         if (IS_MF(bp)) {
12250                 SET_FLAGS(flags, MODE_MF);
12251                 switch (bp->mf_mode) {
12252                 case MULTI_FUNCTION_SD:
12253                         SET_FLAGS(flags, MODE_MF_SD);
12254                         break;
12255                 case MULTI_FUNCTION_SI:
12256                         SET_FLAGS(flags, MODE_MF_SI);
12257                         break;
12258                 case MULTI_FUNCTION_AFEX:
12259                         SET_FLAGS(flags, MODE_MF_AFEX);
12260                         break;
12261                 }
12262         } else
12263                 SET_FLAGS(flags, MODE_SF);
12264
12265 #if defined(__LITTLE_ENDIAN)
12266         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12267 #else /*(__BIG_ENDIAN)*/
12268         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12269 #endif
12270         INIT_MODE_FLAGS(bp) = flags;
12271 }
12272
12273 static int bnx2x_init_bp(struct bnx2x *bp)
12274 {
12275         int func;
12276         int rc;
12277
12278         mutex_init(&bp->port.phy_mutex);
12279         mutex_init(&bp->fw_mb_mutex);
12280         mutex_init(&bp->drv_info_mutex);
12281         sema_init(&bp->stats_lock, 1);
12282         bp->drv_info_mng_owner = false;
12283         INIT_LIST_HEAD(&bp->vlan_reg);
12284
12285         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12286         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12287         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12288         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12289         if (IS_PF(bp)) {
12290                 rc = bnx2x_get_hwinfo(bp);
12291                 if (rc)
12292                         return rc;
12293         } else {
12294                 eth_zero_addr(bp->dev->dev_addr);
12295         }
12296
12297         bnx2x_set_modes_bitmap(bp);
12298
12299         rc = bnx2x_alloc_mem_bp(bp);
12300         if (rc)
12301                 return rc;
12302
12303         bnx2x_read_fwinfo(bp);
12304
12305         func = BP_FUNC(bp);
12306
12307         /* need to reset chip if undi was active */
12308         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12309                 /* init fw_seq */
12310                 bp->fw_seq =
12311                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12312                                                         DRV_MSG_SEQ_NUMBER_MASK;
12313                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12314
12315                 rc = bnx2x_prev_unload(bp);
12316                 if (rc) {
12317                         bnx2x_free_mem_bp(bp);
12318                         return rc;
12319                 }
12320         }
12321
12322         if (CHIP_REV_IS_FPGA(bp))
12323                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12324
12325         if (BP_NOMCP(bp) && (func == 0))
12326                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12327
12328         bp->disable_tpa = disable_tpa;
12329         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12330         /* Reduce memory usage in kdump environment by disabling TPA */
12331         bp->disable_tpa |= is_kdump_kernel();
12332
12333         /* Set TPA flags */
12334         if (bp->disable_tpa) {
12335                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12336                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12337         }
12338
12339         if (CHIP_IS_E1(bp))
12340                 bp->dropless_fc = false;
12341         else
12342                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12343
12344         bp->mrrs = mrrs;
12345
12346         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12347         if (IS_VF(bp))
12348                 bp->rx_ring_size = MAX_RX_AVAIL;
12349
12350         /* make sure that the numbers are in the right granularity */
12351         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12352         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12353
12354         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12355
12356         timer_setup(&bp->timer, bnx2x_timer, 0);
12357         bp->timer.expires = jiffies + bp->current_interval;
12358
12359         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12360             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12361             SHMEM2_HAS(bp, dcbx_en) &&
12362             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12363             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12364             SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12365                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12366                 bnx2x_dcbx_init_params(bp);
12367         } else {
12368                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12369         }
12370
12371         if (CHIP_IS_E1x(bp))
12372                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12373         else
12374                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12375
12376         /* multiple tx priority */
12377         if (IS_VF(bp))
12378                 bp->max_cos = 1;
12379         else if (CHIP_IS_E1x(bp))
12380                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12381         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12382                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12383         else if (CHIP_IS_E3B0(bp))
12384                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12385         else
12386                 BNX2X_ERR("unknown chip %x revision %x\n",
12387                           CHIP_NUM(bp), CHIP_REV(bp));
12388         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12389
12390         /* We need at least one default status block for slow-path events,
12391          * second status block for the L2 queue, and a third status block for
12392          * CNIC if supported.
12393          */
12394         if (IS_VF(bp))
12395                 bp->min_msix_vec_cnt = 1;
12396         else if (CNIC_SUPPORT(bp))
12397                 bp->min_msix_vec_cnt = 3;
12398         else /* PF w/o cnic */
12399                 bp->min_msix_vec_cnt = 2;
12400         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12401
12402         bp->dump_preset_idx = 1;
12403
12404         return rc;
12405 }
12406
12407 /****************************************************************************
12408 * General service functions
12409 ****************************************************************************/
12410
12411 /*
12412  * net_device service functions
12413  */
12414
12415 /* called with rtnl_lock */
12416 static int bnx2x_open(struct net_device *dev)
12417 {
12418         struct bnx2x *bp = netdev_priv(dev);
12419         int rc;
12420
12421         bp->stats_init = true;
12422
12423         netif_carrier_off(dev);
12424
12425         bnx2x_set_power_state(bp, PCI_D0);
12426
12427         /* If parity had happen during the unload, then attentions
12428          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12429          * want the first function loaded on the current engine to
12430          * complete the recovery.
12431          * Parity recovery is only relevant for PF driver.
12432          */
12433         if (IS_PF(bp)) {
12434                 int other_engine = BP_PATH(bp) ? 0 : 1;
12435                 bool other_load_status, load_status;
12436                 bool global = false;
12437
12438                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12439                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12440                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12441                     bnx2x_chk_parity_attn(bp, &global, true)) {
12442                         do {
12443                                 /* If there are attentions and they are in a
12444                                  * global blocks, set the GLOBAL_RESET bit
12445                                  * regardless whether it will be this function
12446                                  * that will complete the recovery or not.
12447                                  */
12448                                 if (global)
12449                                         bnx2x_set_reset_global(bp);
12450
12451                                 /* Only the first function on the current
12452                                  * engine should try to recover in open. In case
12453                                  * of attentions in global blocks only the first
12454                                  * in the chip should try to recover.
12455                                  */
12456                                 if ((!load_status &&
12457                                      (!global || !other_load_status)) &&
12458                                       bnx2x_trylock_leader_lock(bp) &&
12459                                       !bnx2x_leader_reset(bp)) {
12460                                         netdev_info(bp->dev,
12461                                                     "Recovered in open\n");
12462                                         break;
12463                                 }
12464
12465                                 /* recovery has failed... */
12466                                 bnx2x_set_power_state(bp, PCI_D3hot);
12467                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12468
12469                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12470                                           "If you still see this message after a few retries then power cycle is required.\n");
12471
12472                                 return -EAGAIN;
12473                         } while (0);
12474                 }
12475         }
12476
12477         bp->recovery_state = BNX2X_RECOVERY_DONE;
12478         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12479         if (rc)
12480                 return rc;
12481
12482         return 0;
12483 }
12484
12485 /* called with rtnl_lock */
12486 static int bnx2x_close(struct net_device *dev)
12487 {
12488         struct bnx2x *bp = netdev_priv(dev);
12489
12490         /* Unload the driver, release IRQs */
12491         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12492
12493         return 0;
12494 }
12495
12496 struct bnx2x_mcast_list_elem_group
12497 {
12498         struct list_head mcast_group_link;
12499         struct bnx2x_mcast_list_elem mcast_elems[];
12500 };
12501
12502 #define MCAST_ELEMS_PER_PG \
12503         ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12504         sizeof(struct bnx2x_mcast_list_elem))
12505
12506 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12507 {
12508         struct bnx2x_mcast_list_elem_group *current_mcast_group;
12509
12510         while (!list_empty(mcast_group_list)) {
12511                 current_mcast_group = list_first_entry(mcast_group_list,
12512                                       struct bnx2x_mcast_list_elem_group,
12513                                       mcast_group_link);
12514                 list_del(&current_mcast_group->mcast_group_link);
12515                 free_page((unsigned long)current_mcast_group);
12516         }
12517 }
12518
12519 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12520                                       struct bnx2x_mcast_ramrod_params *p,
12521                                       struct list_head *mcast_group_list)
12522 {
12523         struct bnx2x_mcast_list_elem *mc_mac;
12524         struct netdev_hw_addr *ha;
12525         struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12526         int mc_count = netdev_mc_count(bp->dev);
12527         int offset = 0;
12528
12529         INIT_LIST_HEAD(&p->mcast_list);
12530         netdev_for_each_mc_addr(ha, bp->dev) {
12531                 if (!offset) {
12532                         current_mcast_group =
12533                                 (struct bnx2x_mcast_list_elem_group *)
12534                                 __get_free_page(GFP_ATOMIC);
12535                         if (!current_mcast_group) {
12536                                 bnx2x_free_mcast_macs_list(mcast_group_list);
12537                                 BNX2X_ERR("Failed to allocate mc MAC list\n");
12538                                 return -ENOMEM;
12539                         }
12540                         list_add(&current_mcast_group->mcast_group_link,
12541                                  mcast_group_list);
12542                 }
12543                 mc_mac = &current_mcast_group->mcast_elems[offset];
12544                 mc_mac->mac = bnx2x_mc_addr(ha);
12545                 list_add_tail(&mc_mac->link, &p->mcast_list);
12546                 offset++;
12547                 if (offset == MCAST_ELEMS_PER_PG)
12548                         offset = 0;
12549         }
12550         p->mcast_list_len = mc_count;
12551         return 0;
12552 }
12553
12554 /**
12555  * bnx2x_set_uc_list - configure a new unicast MACs list.
12556  *
12557  * @bp: driver handle
12558  *
12559  * We will use zero (0) as a MAC type for these MACs.
12560  */
12561 static int bnx2x_set_uc_list(struct bnx2x *bp)
12562 {
12563         int rc;
12564         struct net_device *dev = bp->dev;
12565         struct netdev_hw_addr *ha;
12566         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12567         unsigned long ramrod_flags = 0;
12568
12569         /* First schedule a cleanup up of old configuration */
12570         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12571         if (rc < 0) {
12572                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12573                 return rc;
12574         }
12575
12576         netdev_for_each_uc_addr(ha, dev) {
12577                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12578                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12579                 if (rc == -EEXIST) {
12580                         DP(BNX2X_MSG_SP,
12581                            "Failed to schedule ADD operations: %d\n", rc);
12582                         /* do not treat adding same MAC as error */
12583                         rc = 0;
12584
12585                 } else if (rc < 0) {
12586
12587                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12588                                   rc);
12589                         return rc;
12590                 }
12591         }
12592
12593         /* Execute the pending commands */
12594         __set_bit(RAMROD_CONT, &ramrod_flags);
12595         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12596                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12597 }
12598
12599 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12600 {
12601         LIST_HEAD(mcast_group_list);
12602         struct net_device *dev = bp->dev;
12603         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12604         int rc = 0;
12605
12606         rparam.mcast_obj = &bp->mcast_obj;
12607
12608         /* first, clear all configured multicast MACs */
12609         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12610         if (rc < 0) {
12611                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12612                 return rc;
12613         }
12614
12615         /* then, configure a new MACs list */
12616         if (netdev_mc_count(dev)) {
12617                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12618                 if (rc)
12619                         return rc;
12620
12621                 /* Now add the new MACs */
12622                 rc = bnx2x_config_mcast(bp, &rparam,
12623                                         BNX2X_MCAST_CMD_ADD);
12624                 if (rc < 0)
12625                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12626                                   rc);
12627
12628                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12629         }
12630
12631         return rc;
12632 }
12633
12634 static int bnx2x_set_mc_list(struct bnx2x *bp)
12635 {
12636         LIST_HEAD(mcast_group_list);
12637         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12638         struct net_device *dev = bp->dev;
12639         int rc = 0;
12640
12641         /* On older adapters, we need to flush and re-add filters */
12642         if (CHIP_IS_E1x(bp))
12643                 return bnx2x_set_mc_list_e1x(bp);
12644
12645         rparam.mcast_obj = &bp->mcast_obj;
12646
12647         if (netdev_mc_count(dev)) {
12648                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12649                 if (rc)
12650                         return rc;
12651
12652                 /* Override the curently configured set of mc filters */
12653                 rc = bnx2x_config_mcast(bp, &rparam,
12654                                         BNX2X_MCAST_CMD_SET);
12655                 if (rc < 0)
12656                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12657                                   rc);
12658
12659                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12660         } else {
12661                 /* If no mc addresses are required, flush the configuration */
12662                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12663                 if (rc < 0)
12664                         BNX2X_ERR("Failed to clear multicast configuration %d\n",
12665                                   rc);
12666         }
12667
12668         return rc;
12669 }
12670
12671 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12672 static void bnx2x_set_rx_mode(struct net_device *dev)
12673 {
12674         struct bnx2x *bp = netdev_priv(dev);
12675
12676         if (bp->state != BNX2X_STATE_OPEN) {
12677                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12678                 return;
12679         } else {
12680                 /* Schedule an SP task to handle rest of change */
12681                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12682                                        NETIF_MSG_IFUP);
12683         }
12684 }
12685
12686 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12687 {
12688         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12689
12690         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12691
12692         netif_addr_lock_bh(bp->dev);
12693
12694         if (bp->dev->flags & IFF_PROMISC) {
12695                 rx_mode = BNX2X_RX_MODE_PROMISC;
12696         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12697                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12698                     CHIP_IS_E1(bp))) {
12699                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12700         } else {
12701                 if (IS_PF(bp)) {
12702                         /* some multicasts */
12703                         if (bnx2x_set_mc_list(bp) < 0)
12704                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12705
12706                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12707                         netif_addr_unlock_bh(bp->dev);
12708                         if (bnx2x_set_uc_list(bp) < 0)
12709                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12710                         netif_addr_lock_bh(bp->dev);
12711                 } else {
12712                         /* configuring mcast to a vf involves sleeping (when we
12713                          * wait for the pf's response).
12714                          */
12715                         bnx2x_schedule_sp_rtnl(bp,
12716                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12717                 }
12718         }
12719
12720         bp->rx_mode = rx_mode;
12721         /* handle ISCSI SD mode */
12722         if (IS_MF_ISCSI_ONLY(bp))
12723                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12724
12725         /* Schedule the rx_mode command */
12726         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12727                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12728                 netif_addr_unlock_bh(bp->dev);
12729                 return;
12730         }
12731
12732         if (IS_PF(bp)) {
12733                 bnx2x_set_storm_rx_mode(bp);
12734                 netif_addr_unlock_bh(bp->dev);
12735         } else {
12736                 /* VF will need to request the PF to make this change, and so
12737                  * the VF needs to release the bottom-half lock prior to the
12738                  * request (as it will likely require sleep on the VF side)
12739                  */
12740                 netif_addr_unlock_bh(bp->dev);
12741                 bnx2x_vfpf_storm_rx_mode(bp);
12742         }
12743 }
12744
12745 /* called with rtnl_lock */
12746 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12747                            int devad, u16 addr)
12748 {
12749         struct bnx2x *bp = netdev_priv(netdev);
12750         u16 value;
12751         int rc;
12752
12753         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12754            prtad, devad, addr);
12755
12756         /* The HW expects different devad if CL22 is used */
12757         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12758
12759         bnx2x_acquire_phy_lock(bp);
12760         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12761         bnx2x_release_phy_lock(bp);
12762         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12763
12764         if (!rc)
12765                 rc = value;
12766         return rc;
12767 }
12768
12769 /* called with rtnl_lock */
12770 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12771                             u16 addr, u16 value)
12772 {
12773         struct bnx2x *bp = netdev_priv(netdev);
12774         int rc;
12775
12776         DP(NETIF_MSG_LINK,
12777            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12778            prtad, devad, addr, value);
12779
12780         /* The HW expects different devad if CL22 is used */
12781         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12782
12783         bnx2x_acquire_phy_lock(bp);
12784         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12785         bnx2x_release_phy_lock(bp);
12786         return rc;
12787 }
12788
12789 /* called with rtnl_lock */
12790 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12791 {
12792         struct bnx2x *bp = netdev_priv(dev);
12793         struct mii_ioctl_data *mdio = if_mii(ifr);
12794
12795         if (!netif_running(dev))
12796                 return -EAGAIN;
12797
12798         switch (cmd) {
12799         case SIOCSHWTSTAMP:
12800                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12801         default:
12802                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12803                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12804                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12805         }
12806 }
12807
12808 static int bnx2x_validate_addr(struct net_device *dev)
12809 {
12810         struct bnx2x *bp = netdev_priv(dev);
12811
12812         /* query the bulletin board for mac address configured by the PF */
12813         if (IS_VF(bp))
12814                 bnx2x_sample_bulletin(bp);
12815
12816         if (!is_valid_ether_addr(dev->dev_addr)) {
12817                 BNX2X_ERR("Non-valid Ethernet address\n");
12818                 return -EADDRNOTAVAIL;
12819         }
12820         return 0;
12821 }
12822
12823 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12824                                   struct netdev_phys_item_id *ppid)
12825 {
12826         struct bnx2x *bp = netdev_priv(netdev);
12827
12828         if (!(bp->flags & HAS_PHYS_PORT_ID))
12829                 return -EOPNOTSUPP;
12830
12831         ppid->id_len = sizeof(bp->phys_port_id);
12832         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12833
12834         return 0;
12835 }
12836
12837 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12838                                               struct net_device *dev,
12839                                               netdev_features_t features)
12840 {
12841         /*
12842          * A skb with gso_size + header length > 9700 will cause a
12843          * firmware panic. Drop GSO support.
12844          *
12845          * Eventually the upper layer should not pass these packets down.
12846          *
12847          * For speed, if the gso_size is <= 9000, assume there will
12848          * not be 700 bytes of headers and pass it through. Only do a
12849          * full (slow) validation if the gso_size is > 9000.
12850          *
12851          * (Due to the way SKB_BY_FRAGS works this will also do a full
12852          * validation in that case.)
12853          */
12854         if (unlikely(skb_is_gso(skb) &&
12855                      (skb_shinfo(skb)->gso_size > 9000) &&
12856                      !skb_gso_validate_mac_len(skb, 9700)))
12857                 features &= ~NETIF_F_GSO_MASK;
12858
12859         features = vlan_features_check(skb, features);
12860         return vxlan_features_check(skb, features);
12861 }
12862
12863 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12864 {
12865         int rc;
12866
12867         if (IS_PF(bp)) {
12868                 unsigned long ramrod_flags = 0;
12869
12870                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12871                 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12872                                         add, &ramrod_flags);
12873         } else {
12874                 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12875         }
12876
12877         return rc;
12878 }
12879
12880 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12881 {
12882         struct bnx2x_vlan_entry *vlan;
12883         int rc = 0;
12884
12885         /* Configure all non-configured entries */
12886         list_for_each_entry(vlan, &bp->vlan_reg, link) {
12887                 if (vlan->hw)
12888                         continue;
12889
12890                 if (bp->vlan_cnt >= bp->vlan_credit)
12891                         return -ENOBUFS;
12892
12893                 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12894                 if (rc) {
12895                         BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12896                         return rc;
12897                 }
12898
12899                 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12900                 vlan->hw = true;
12901                 bp->vlan_cnt++;
12902         }
12903
12904         return 0;
12905 }
12906
12907 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12908 {
12909         bool need_accept_any_vlan;
12910
12911         need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12912
12913         if (bp->accept_any_vlan != need_accept_any_vlan) {
12914                 bp->accept_any_vlan = need_accept_any_vlan;
12915                 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12916                    bp->accept_any_vlan ? "raised" : "cleared");
12917                 if (set_rx_mode) {
12918                         if (IS_PF(bp))
12919                                 bnx2x_set_rx_mode_inner(bp);
12920                         else
12921                                 bnx2x_vfpf_storm_rx_mode(bp);
12922                 }
12923         }
12924 }
12925
12926 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12927 {
12928         /* Don't set rx mode here. Our caller will do it. */
12929         bnx2x_vlan_configure(bp, false);
12930
12931         return 0;
12932 }
12933
12934 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12935 {
12936         struct bnx2x *bp = netdev_priv(dev);
12937         struct bnx2x_vlan_entry *vlan;
12938
12939         DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12940
12941         vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12942         if (!vlan)
12943                 return -ENOMEM;
12944
12945         vlan->vid = vid;
12946         vlan->hw = false;
12947         list_add_tail(&vlan->link, &bp->vlan_reg);
12948
12949         if (netif_running(dev))
12950                 bnx2x_vlan_configure(bp, true);
12951
12952         return 0;
12953 }
12954
12955 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12956 {
12957         struct bnx2x *bp = netdev_priv(dev);
12958         struct bnx2x_vlan_entry *vlan;
12959         bool found = false;
12960         int rc = 0;
12961
12962         DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12963
12964         list_for_each_entry(vlan, &bp->vlan_reg, link)
12965                 if (vlan->vid == vid) {
12966                         found = true;
12967                         break;
12968                 }
12969
12970         if (!found) {
12971                 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12972                 return -EINVAL;
12973         }
12974
12975         if (netif_running(dev) && vlan->hw) {
12976                 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12977                 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12978                 bp->vlan_cnt--;
12979         }
12980
12981         list_del(&vlan->link);
12982         kfree(vlan);
12983
12984         if (netif_running(dev))
12985                 bnx2x_vlan_configure(bp, true);
12986
12987         DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
12988
12989         return rc;
12990 }
12991
12992 static const struct net_device_ops bnx2x_netdev_ops = {
12993         .ndo_open               = bnx2x_open,
12994         .ndo_stop               = bnx2x_close,
12995         .ndo_start_xmit         = bnx2x_start_xmit,
12996         .ndo_select_queue       = bnx2x_select_queue,
12997         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12998         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12999         .ndo_validate_addr      = bnx2x_validate_addr,
13000         .ndo_eth_ioctl          = bnx2x_ioctl,
13001         .ndo_change_mtu         = bnx2x_change_mtu,
13002         .ndo_fix_features       = bnx2x_fix_features,
13003         .ndo_set_features       = bnx2x_set_features,
13004         .ndo_tx_timeout         = bnx2x_tx_timeout,
13005         .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13006         .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13007         .ndo_setup_tc           = __bnx2x_setup_tc,
13008 #ifdef CONFIG_BNX2X_SRIOV
13009         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13010         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13011         .ndo_get_vf_config      = bnx2x_get_vf_config,
13012         .ndo_set_vf_spoofchk    = bnx2x_set_vf_spoofchk,
13013 #endif
13014 #ifdef NETDEV_FCOE_WWNN
13015         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13016 #endif
13017
13018         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13019         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13020         .ndo_features_check     = bnx2x_features_check,
13021 };
13022
13023 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13024 {
13025         struct device *dev = &bp->pdev->dev;
13026
13027         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13028             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13029                 dev_err(dev, "System does not support DMA, aborting\n");
13030                 return -EIO;
13031         }
13032
13033         return 0;
13034 }
13035
13036 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13037 {
13038         if (bp->flags & AER_ENABLED) {
13039                 pci_disable_pcie_error_reporting(bp->pdev);
13040                 bp->flags &= ~AER_ENABLED;
13041         }
13042 }
13043
13044 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13045                           struct net_device *dev, unsigned long board_type)
13046 {
13047         int rc;
13048         u32 pci_cfg_dword;
13049         bool chip_is_e1x = (board_type == BCM57710 ||
13050                             board_type == BCM57711 ||
13051                             board_type == BCM57711E);
13052
13053         SET_NETDEV_DEV(dev, &pdev->dev);
13054
13055         bp->dev = dev;
13056         bp->pdev = pdev;
13057
13058         rc = pci_enable_device(pdev);
13059         if (rc) {
13060                 dev_err(&bp->pdev->dev,
13061                         "Cannot enable PCI device, aborting\n");
13062                 goto err_out;
13063         }
13064
13065         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13066                 dev_err(&bp->pdev->dev,
13067                         "Cannot find PCI device base address, aborting\n");
13068                 rc = -ENODEV;
13069                 goto err_out_disable;
13070         }
13071
13072         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13073                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13074                 rc = -ENODEV;
13075                 goto err_out_disable;
13076         }
13077
13078         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13079         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13080             PCICFG_REVESION_ID_ERROR_VAL) {
13081                 pr_err("PCI device error, probably due to fan failure, aborting\n");
13082                 rc = -ENODEV;
13083                 goto err_out_disable;
13084         }
13085
13086         if (atomic_read(&pdev->enable_cnt) == 1) {
13087                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13088                 if (rc) {
13089                         dev_err(&bp->pdev->dev,
13090                                 "Cannot obtain PCI resources, aborting\n");
13091                         goto err_out_disable;
13092                 }
13093
13094                 pci_set_master(pdev);
13095                 pci_save_state(pdev);
13096         }
13097
13098         if (IS_PF(bp)) {
13099                 if (!pdev->pm_cap) {
13100                         dev_err(&bp->pdev->dev,
13101                                 "Cannot find power management capability, aborting\n");
13102                         rc = -EIO;
13103                         goto err_out_release;
13104                 }
13105         }
13106
13107         if (!pci_is_pcie(pdev)) {
13108                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13109                 rc = -EIO;
13110                 goto err_out_release;
13111         }
13112
13113         rc = bnx2x_set_coherency_mask(bp);
13114         if (rc)
13115                 goto err_out_release;
13116
13117         dev->mem_start = pci_resource_start(pdev, 0);
13118         dev->base_addr = dev->mem_start;
13119         dev->mem_end = pci_resource_end(pdev, 0);
13120
13121         dev->irq = pdev->irq;
13122
13123         bp->regview = pci_ioremap_bar(pdev, 0);
13124         if (!bp->regview) {
13125                 dev_err(&bp->pdev->dev,
13126                         "Cannot map register space, aborting\n");
13127                 rc = -ENOMEM;
13128                 goto err_out_release;
13129         }
13130
13131         /* In E1/E1H use pci device function given by kernel.
13132          * In E2/E3 read physical function from ME register since these chips
13133          * support Physical Device Assignment where kernel BDF maybe arbitrary
13134          * (depending on hypervisor).
13135          */
13136         if (chip_is_e1x) {
13137                 bp->pf_num = PCI_FUNC(pdev->devfn);
13138         } else {
13139                 /* chip is E2/3*/
13140                 pci_read_config_dword(bp->pdev,
13141                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13142                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13143                                   ME_REG_ABS_PF_NUM_SHIFT);
13144         }
13145         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13146
13147         /* clean indirect addresses */
13148         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13149                                PCICFG_VENDOR_ID_OFFSET);
13150
13151         /* Set PCIe reset type to fundamental for EEH recovery */
13152         pdev->needs_freset = 1;
13153
13154         /* AER (Advanced Error reporting) configuration */
13155         rc = pci_enable_pcie_error_reporting(pdev);
13156         if (!rc)
13157                 bp->flags |= AER_ENABLED;
13158         else
13159                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13160
13161         /*
13162          * Clean the following indirect addresses for all functions since it
13163          * is not used by the driver.
13164          */
13165         if (IS_PF(bp)) {
13166                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13167                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13168                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13169                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13170
13171                 if (chip_is_e1x) {
13172                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13173                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13174                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13175                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13176                 }
13177
13178                 /* Enable internal target-read (in case we are probed after PF
13179                  * FLR). Must be done prior to any BAR read access. Only for
13180                  * 57712 and up
13181                  */
13182                 if (!chip_is_e1x)
13183                         REG_WR(bp,
13184                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13185         }
13186
13187         dev->watchdog_timeo = TX_TIMEOUT;
13188
13189         dev->netdev_ops = &bnx2x_netdev_ops;
13190         bnx2x_set_ethtool_ops(bp, dev);
13191
13192         dev->priv_flags |= IFF_UNICAST_FLT;
13193
13194         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13195                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13196                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13197                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13198         if (!chip_is_e1x) {
13199                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13200                                     NETIF_F_GSO_IPXIP4 |
13201                                     NETIF_F_GSO_UDP_TUNNEL |
13202                                     NETIF_F_GSO_UDP_TUNNEL_CSUM |
13203                                     NETIF_F_GSO_PARTIAL;
13204
13205                 dev->hw_enc_features =
13206                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13207                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13208                         NETIF_F_GSO_IPXIP4 |
13209                         NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13210                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13211                         NETIF_F_GSO_PARTIAL;
13212
13213                 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13214                                             NETIF_F_GSO_UDP_TUNNEL_CSUM;
13215
13216                 if (IS_PF(bp))
13217                         dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13218         }
13219
13220         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13221                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13222
13223         if (IS_PF(bp)) {
13224                 if (chip_is_e1x)
13225                         bp->accept_any_vlan = true;
13226                 else
13227                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13228         }
13229         /* For VF we'll know whether to enable VLAN filtering after
13230          * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13231          */
13232
13233         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13234         dev->features |= NETIF_F_HIGHDMA;
13235         if (dev->features & NETIF_F_LRO)
13236                 dev->features &= ~NETIF_F_GRO_HW;
13237
13238         /* Add Loopback capability to the device */
13239         dev->hw_features |= NETIF_F_LOOPBACK;
13240
13241 #ifdef BCM_DCBNL
13242         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13243 #endif
13244
13245         /* MTU range, 46 - 9600 */
13246         dev->min_mtu = ETH_MIN_PACKET_SIZE;
13247         dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13248
13249         /* get_port_hwinfo() will set prtad and mmds properly */
13250         bp->mdio.prtad = MDIO_PRTAD_NONE;
13251         bp->mdio.mmds = 0;
13252         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13253         bp->mdio.dev = dev;
13254         bp->mdio.mdio_read = bnx2x_mdio_read;
13255         bp->mdio.mdio_write = bnx2x_mdio_write;
13256
13257         return 0;
13258
13259 err_out_release:
13260         if (atomic_read(&pdev->enable_cnt) == 1)
13261                 pci_release_regions(pdev);
13262
13263 err_out_disable:
13264         pci_disable_device(pdev);
13265
13266 err_out:
13267         return rc;
13268 }
13269
13270 static int bnx2x_check_firmware(struct bnx2x *bp)
13271 {
13272         const struct firmware *firmware = bp->firmware;
13273         struct bnx2x_fw_file_hdr *fw_hdr;
13274         struct bnx2x_fw_file_section *sections;
13275         u32 offset, len, num_ops;
13276         __be16 *ops_offsets;
13277         int i;
13278         const u8 *fw_ver;
13279
13280         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13281                 BNX2X_ERR("Wrong FW size\n");
13282                 return -EINVAL;
13283         }
13284
13285         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13286         sections = (struct bnx2x_fw_file_section *)fw_hdr;
13287
13288         /* Make sure none of the offsets and sizes make us read beyond
13289          * the end of the firmware data */
13290         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13291                 offset = be32_to_cpu(sections[i].offset);
13292                 len = be32_to_cpu(sections[i].len);
13293                 if (offset + len > firmware->size) {
13294                         BNX2X_ERR("Section %d length is out of bounds\n", i);
13295                         return -EINVAL;
13296                 }
13297         }
13298
13299         /* Likewise for the init_ops offsets */
13300         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13301         ops_offsets = (__force __be16 *)(firmware->data + offset);
13302         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13303
13304         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13305                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13306                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
13307                         return -EINVAL;
13308                 }
13309         }
13310
13311         /* Check FW version */
13312         offset = be32_to_cpu(fw_hdr->fw_version.offset);
13313         fw_ver = firmware->data + offset;
13314         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13315             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13316             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13317             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13318                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13319                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13320                        BCM_5710_FW_MAJOR_VERSION,
13321                        BCM_5710_FW_MINOR_VERSION,
13322                        BCM_5710_FW_REVISION_VERSION,
13323                        BCM_5710_FW_ENGINEERING_VERSION);
13324                 return -EINVAL;
13325         }
13326
13327         return 0;
13328 }
13329
13330 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13331 {
13332         const __be32 *source = (const __be32 *)_source;
13333         u32 *target = (u32 *)_target;
13334         u32 i;
13335
13336         for (i = 0; i < n/4; i++)
13337                 target[i] = be32_to_cpu(source[i]);
13338 }
13339
13340 /*
13341    Ops array is stored in the following format:
13342    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13343  */
13344 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13345 {
13346         const __be32 *source = (const __be32 *)_source;
13347         struct raw_op *target = (struct raw_op *)_target;
13348         u32 i, j, tmp;
13349
13350         for (i = 0, j = 0; i < n/8; i++, j += 2) {
13351                 tmp = be32_to_cpu(source[j]);
13352                 target[i].op = (tmp >> 24) & 0xff;
13353                 target[i].offset = tmp & 0xffffff;
13354                 target[i].raw_data = be32_to_cpu(source[j + 1]);
13355         }
13356 }
13357
13358 /* IRO array is stored in the following format:
13359  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13360  */
13361 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13362 {
13363         const __be32 *source = (const __be32 *)_source;
13364         struct iro *target = (struct iro *)_target;
13365         u32 i, j, tmp;
13366
13367         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13368                 target[i].base = be32_to_cpu(source[j]);
13369                 j++;
13370                 tmp = be32_to_cpu(source[j]);
13371                 target[i].m1 = (tmp >> 16) & 0xffff;
13372                 target[i].m2 = tmp & 0xffff;
13373                 j++;
13374                 tmp = be32_to_cpu(source[j]);
13375                 target[i].m3 = (tmp >> 16) & 0xffff;
13376                 target[i].size = tmp & 0xffff;
13377                 j++;
13378         }
13379 }
13380
13381 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13382 {
13383         const __be16 *source = (const __be16 *)_source;
13384         u16 *target = (u16 *)_target;
13385         u32 i;
13386
13387         for (i = 0; i < n/2; i++)
13388                 target[i] = be16_to_cpu(source[i]);
13389 }
13390
13391 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13392 do {                                                                    \
13393         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13394         bp->arr = kmalloc(len, GFP_KERNEL);                             \
13395         if (!bp->arr)                                                   \
13396                 goto lbl;                                               \
13397         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13398              (u8 *)bp->arr, len);                                       \
13399 } while (0)
13400
13401 static int bnx2x_init_firmware(struct bnx2x *bp)
13402 {
13403         const char *fw_file_name;
13404         struct bnx2x_fw_file_hdr *fw_hdr;
13405         int rc;
13406
13407         if (bp->firmware)
13408                 return 0;
13409
13410         if (CHIP_IS_E1(bp))
13411                 fw_file_name = FW_FILE_NAME_E1;
13412         else if (CHIP_IS_E1H(bp))
13413                 fw_file_name = FW_FILE_NAME_E1H;
13414         else if (!CHIP_IS_E1x(bp))
13415                 fw_file_name = FW_FILE_NAME_E2;
13416         else {
13417                 BNX2X_ERR("Unsupported chip revision\n");
13418                 return -EINVAL;
13419         }
13420         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13421
13422         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13423         if (rc) {
13424                 BNX2X_ERR("Can't load firmware file %s\n",
13425                           fw_file_name);
13426                 goto request_firmware_exit;
13427         }
13428
13429         rc = bnx2x_check_firmware(bp);
13430         if (rc) {
13431                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13432                 goto request_firmware_exit;
13433         }
13434
13435         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13436
13437         /* Initialize the pointers to the init arrays */
13438         /* Blob */
13439         rc = -ENOMEM;
13440         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13441
13442         /* Opcodes */
13443         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13444
13445         /* Offsets */
13446         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13447                             be16_to_cpu_n);
13448
13449         /* STORMs firmware */
13450         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13451                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13452         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13453                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13454         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13455                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13456         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13457                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13458         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13459                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13460         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13461                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13462         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13463                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13464         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13465                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13466         /* IRO */
13467         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13468
13469         return 0;
13470
13471 iro_alloc_err:
13472         kfree(bp->init_ops_offsets);
13473 init_offsets_alloc_err:
13474         kfree(bp->init_ops);
13475 init_ops_alloc_err:
13476         kfree(bp->init_data);
13477 request_firmware_exit:
13478         release_firmware(bp->firmware);
13479         bp->firmware = NULL;
13480
13481         return rc;
13482 }
13483
13484 static void bnx2x_release_firmware(struct bnx2x *bp)
13485 {
13486         kfree(bp->init_ops_offsets);
13487         kfree(bp->init_ops);
13488         kfree(bp->init_data);
13489         release_firmware(bp->firmware);
13490         bp->firmware = NULL;
13491 }
13492
13493 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13494         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13495         .init_hw_cmn      = bnx2x_init_hw_common,
13496         .init_hw_port     = bnx2x_init_hw_port,
13497         .init_hw_func     = bnx2x_init_hw_func,
13498
13499         .reset_hw_cmn     = bnx2x_reset_common,
13500         .reset_hw_port    = bnx2x_reset_port,
13501         .reset_hw_func    = bnx2x_reset_func,
13502
13503         .gunzip_init      = bnx2x_gunzip_init,
13504         .gunzip_end       = bnx2x_gunzip_end,
13505
13506         .init_fw          = bnx2x_init_firmware,
13507         .release_fw       = bnx2x_release_firmware,
13508 };
13509
13510 void bnx2x__init_func_obj(struct bnx2x *bp)
13511 {
13512         /* Prepare DMAE related driver resources */
13513         bnx2x_setup_dmae(bp);
13514
13515         bnx2x_init_func_obj(bp, &bp->func_obj,
13516                             bnx2x_sp(bp, func_rdata),
13517                             bnx2x_sp_mapping(bp, func_rdata),
13518                             bnx2x_sp(bp, func_afex_rdata),
13519                             bnx2x_sp_mapping(bp, func_afex_rdata),
13520                             &bnx2x_func_sp_drv);
13521 }
13522
13523 /* must be called after sriov-enable */
13524 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13525 {
13526         int cid_count = BNX2X_L2_MAX_CID(bp);
13527
13528         if (IS_SRIOV(bp))
13529                 cid_count += BNX2X_VF_CIDS;
13530
13531         if (CNIC_SUPPORT(bp))
13532                 cid_count += CNIC_CID_MAX;
13533
13534         return roundup(cid_count, QM_CID_ROUND);
13535 }
13536
13537 /**
13538  * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13539  * @pdev: pci device
13540  * @cnic_cnt: count
13541  *
13542  */
13543 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13544 {
13545         int index;
13546         u16 control = 0;
13547
13548         /*
13549          * If MSI-X is not supported - return number of SBs needed to support
13550          * one fast path queue: one FP queue + SB for CNIC
13551          */
13552         if (!pdev->msix_cap) {
13553                 dev_info(&pdev->dev, "no msix capability found\n");
13554                 return 1 + cnic_cnt;
13555         }
13556         dev_info(&pdev->dev, "msix capability found\n");
13557
13558         /*
13559          * The value in the PCI configuration space is the index of the last
13560          * entry, namely one less than the actual size of the table, which is
13561          * exactly what we want to return from this function: number of all SBs
13562          * without the default SB.
13563          * For VFs there is no default SB, then we return (index+1).
13564          */
13565         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13566
13567         index = control & PCI_MSIX_FLAGS_QSIZE;
13568
13569         return index;
13570 }
13571
13572 static int set_max_cos_est(int chip_id)
13573 {
13574         switch (chip_id) {
13575         case BCM57710:
13576         case BCM57711:
13577         case BCM57711E:
13578                 return BNX2X_MULTI_TX_COS_E1X;
13579         case BCM57712:
13580         case BCM57712_MF:
13581                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13582         case BCM57800:
13583         case BCM57800_MF:
13584         case BCM57810:
13585         case BCM57810_MF:
13586         case BCM57840_4_10:
13587         case BCM57840_2_20:
13588         case BCM57840_O:
13589         case BCM57840_MFO:
13590         case BCM57840_MF:
13591         case BCM57811:
13592         case BCM57811_MF:
13593                 return BNX2X_MULTI_TX_COS_E3B0;
13594         case BCM57712_VF:
13595         case BCM57800_VF:
13596         case BCM57810_VF:
13597         case BCM57840_VF:
13598         case BCM57811_VF:
13599                 return 1;
13600         default:
13601                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13602                 return -ENODEV;
13603         }
13604 }
13605
13606 static int set_is_vf(int chip_id)
13607 {
13608         switch (chip_id) {
13609         case BCM57712_VF:
13610         case BCM57800_VF:
13611         case BCM57810_VF:
13612         case BCM57840_VF:
13613         case BCM57811_VF:
13614                 return true;
13615         default:
13616                 return false;
13617         }
13618 }
13619
13620 /* nig_tsgen registers relative address */
13621 #define tsgen_ctrl 0x0
13622 #define tsgen_freecount 0x10
13623 #define tsgen_synctime_t0 0x20
13624 #define tsgen_offset_t0 0x28
13625 #define tsgen_drift_t0 0x30
13626 #define tsgen_synctime_t1 0x58
13627 #define tsgen_offset_t1 0x60
13628 #define tsgen_drift_t1 0x68
13629
13630 /* FW workaround for setting drift */
13631 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13632                                           int best_val, int best_period)
13633 {
13634         struct bnx2x_func_state_params func_params = {NULL};
13635         struct bnx2x_func_set_timesync_params *set_timesync_params =
13636                 &func_params.params.set_timesync;
13637
13638         /* Prepare parameters for function state transitions */
13639         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13640         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13641
13642         func_params.f_obj = &bp->func_obj;
13643         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13644
13645         /* Function parameters */
13646         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13647         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13648         set_timesync_params->add_sub_drift_adjust_value =
13649                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13650         set_timesync_params->drift_adjust_value = best_val;
13651         set_timesync_params->drift_adjust_period = best_period;
13652
13653         return bnx2x_func_state_change(bp, &func_params);
13654 }
13655
13656 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13657 {
13658         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13659         int rc;
13660         int drift_dir = 1;
13661         int val, period, period1, period2, dif, dif1, dif2;
13662         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13663
13664         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13665
13666         if (!netif_running(bp->dev)) {
13667                 DP(BNX2X_MSG_PTP,
13668                    "PTP adjfreq called while the interface is down\n");
13669                 return -ENETDOWN;
13670         }
13671
13672         if (ppb < 0) {
13673                 ppb = -ppb;
13674                 drift_dir = 0;
13675         }
13676
13677         if (ppb == 0) {
13678                 best_val = 1;
13679                 best_period = 0x1FFFFFF;
13680         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13681                 best_val = 31;
13682                 best_period = 1;
13683         } else {
13684                 /* Changed not to allow val = 8, 16, 24 as these values
13685                  * are not supported in workaround.
13686                  */
13687                 for (val = 0; val <= 31; val++) {
13688                         if ((val & 0x7) == 0)
13689                                 continue;
13690                         period1 = val * 1000000 / ppb;
13691                         period2 = period1 + 1;
13692                         if (period1 != 0)
13693                                 dif1 = ppb - (val * 1000000 / period1);
13694                         else
13695                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13696                         if (dif1 < 0)
13697                                 dif1 = -dif1;
13698                         dif2 = ppb - (val * 1000000 / period2);
13699                         if (dif2 < 0)
13700                                 dif2 = -dif2;
13701                         dif = (dif1 < dif2) ? dif1 : dif2;
13702                         period = (dif1 < dif2) ? period1 : period2;
13703                         if (dif < best_dif) {
13704                                 best_dif = dif;
13705                                 best_val = val;
13706                                 best_period = period;
13707                         }
13708                 }
13709         }
13710
13711         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13712                                             best_period);
13713         if (rc) {
13714                 BNX2X_ERR("Failed to set drift\n");
13715                 return -EFAULT;
13716         }
13717
13718         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13719            best_period);
13720
13721         return 0;
13722 }
13723
13724 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13725 {
13726         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13727
13728         if (!netif_running(bp->dev)) {
13729                 DP(BNX2X_MSG_PTP,
13730                    "PTP adjtime called while the interface is down\n");
13731                 return -ENETDOWN;
13732         }
13733
13734         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13735
13736         timecounter_adjtime(&bp->timecounter, delta);
13737
13738         return 0;
13739 }
13740
13741 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13742 {
13743         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13744         u64 ns;
13745
13746         if (!netif_running(bp->dev)) {
13747                 DP(BNX2X_MSG_PTP,
13748                    "PTP gettime called while the interface is down\n");
13749                 return -ENETDOWN;
13750         }
13751
13752         ns = timecounter_read(&bp->timecounter);
13753
13754         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13755
13756         *ts = ns_to_timespec64(ns);
13757
13758         return 0;
13759 }
13760
13761 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13762                              const struct timespec64 *ts)
13763 {
13764         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13765         u64 ns;
13766
13767         if (!netif_running(bp->dev)) {
13768                 DP(BNX2X_MSG_PTP,
13769                    "PTP settime called while the interface is down\n");
13770                 return -ENETDOWN;
13771         }
13772
13773         ns = timespec64_to_ns(ts);
13774
13775         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13776
13777         /* Re-init the timecounter */
13778         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13779
13780         return 0;
13781 }
13782
13783 /* Enable (or disable) ancillary features of the phc subsystem */
13784 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13785                             struct ptp_clock_request *rq, int on)
13786 {
13787         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13788
13789         BNX2X_ERR("PHC ancillary features are not supported\n");
13790         return -ENOTSUPP;
13791 }
13792
13793 void bnx2x_register_phc(struct bnx2x *bp)
13794 {
13795         /* Fill the ptp_clock_info struct and register PTP clock*/
13796         bp->ptp_clock_info.owner = THIS_MODULE;
13797         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13798         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13799         bp->ptp_clock_info.n_alarm = 0;
13800         bp->ptp_clock_info.n_ext_ts = 0;
13801         bp->ptp_clock_info.n_per_out = 0;
13802         bp->ptp_clock_info.pps = 0;
13803         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13804         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13805         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13806         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13807         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13808
13809         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13810         if (IS_ERR(bp->ptp_clock)) {
13811                 bp->ptp_clock = NULL;
13812                 BNX2X_ERR("PTP clock registration failed\n");
13813         }
13814 }
13815
13816 static int bnx2x_init_one(struct pci_dev *pdev,
13817                                     const struct pci_device_id *ent)
13818 {
13819         struct net_device *dev = NULL;
13820         struct bnx2x *bp;
13821         int rc, max_non_def_sbs;
13822         int rx_count, tx_count, rss_count, doorbell_size;
13823         int max_cos_est;
13824         bool is_vf;
13825         int cnic_cnt;
13826
13827         /* Management FW 'remembers' living interfaces. Allow it some time
13828          * to forget previously living interfaces, allowing a proper re-load.
13829          */
13830         if (is_kdump_kernel()) {
13831                 ktime_t now = ktime_get_boottime();
13832                 ktime_t fw_ready_time = ktime_set(5, 0);
13833
13834                 if (ktime_before(now, fw_ready_time))
13835                         msleep(ktime_ms_delta(fw_ready_time, now));
13836         }
13837
13838         /* An estimated maximum supported CoS number according to the chip
13839          * version.
13840          * We will try to roughly estimate the maximum number of CoSes this chip
13841          * may support in order to minimize the memory allocated for Tx
13842          * netdev_queue's. This number will be accurately calculated during the
13843          * initialization of bp->max_cos based on the chip versions AND chip
13844          * revision in the bnx2x_init_bp().
13845          */
13846         max_cos_est = set_max_cos_est(ent->driver_data);
13847         if (max_cos_est < 0)
13848                 return max_cos_est;
13849         is_vf = set_is_vf(ent->driver_data);
13850         cnic_cnt = is_vf ? 0 : 1;
13851
13852         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13853
13854         /* add another SB for VF as it has no default SB */
13855         max_non_def_sbs += is_vf ? 1 : 0;
13856
13857         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13858         rss_count = max_non_def_sbs - cnic_cnt;
13859
13860         if (rss_count < 1)
13861                 return -EINVAL;
13862
13863         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13864         rx_count = rss_count + cnic_cnt;
13865
13866         /* Maximum number of netdev Tx queues:
13867          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13868          */
13869         tx_count = rss_count * max_cos_est + cnic_cnt;
13870
13871         /* dev zeroed in init_etherdev */
13872         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13873         if (!dev)
13874                 return -ENOMEM;
13875
13876         bp = netdev_priv(dev);
13877
13878         bp->flags = 0;
13879         if (is_vf)
13880                 bp->flags |= IS_VF_FLAG;
13881
13882         bp->igu_sb_cnt = max_non_def_sbs;
13883         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13884         bp->msg_enable = debug;
13885         bp->cnic_support = cnic_cnt;
13886         bp->cnic_probe = bnx2x_cnic_probe;
13887
13888         pci_set_drvdata(pdev, dev);
13889
13890         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13891         if (rc < 0) {
13892                 free_netdev(dev);
13893                 return rc;
13894         }
13895
13896         BNX2X_DEV_INFO("This is a %s function\n",
13897                        IS_PF(bp) ? "physical" : "virtual");
13898         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13899         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13900         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13901                        tx_count, rx_count);
13902
13903         rc = bnx2x_init_bp(bp);
13904         if (rc)
13905                 goto init_one_exit;
13906
13907         /* Map doorbells here as we need the real value of bp->max_cos which
13908          * is initialized in bnx2x_init_bp() to determine the number of
13909          * l2 connections.
13910          */
13911         if (IS_VF(bp)) {
13912                 bp->doorbells = bnx2x_vf_doorbells(bp);
13913                 rc = bnx2x_vf_pci_alloc(bp);
13914                 if (rc)
13915                         goto init_one_freemem;
13916         } else {
13917                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13918                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13919                         dev_err(&bp->pdev->dev,
13920                                 "Cannot map doorbells, bar size too small, aborting\n");
13921                         rc = -ENOMEM;
13922                         goto init_one_freemem;
13923                 }
13924                 bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13925                                                 doorbell_size);
13926         }
13927         if (!bp->doorbells) {
13928                 dev_err(&bp->pdev->dev,
13929                         "Cannot map doorbell space, aborting\n");
13930                 rc = -ENOMEM;
13931                 goto init_one_freemem;
13932         }
13933
13934         if (IS_VF(bp)) {
13935                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13936                 if (rc)
13937                         goto init_one_freemem;
13938
13939 #ifdef CONFIG_BNX2X_SRIOV
13940                 /* VF with OLD Hypervisor or old PF do not support filtering */
13941                 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13942                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13943                         dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13944                 }
13945 #endif
13946         }
13947
13948         /* Enable SRIOV if capability found in configuration space */
13949         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13950         if (rc)
13951                 goto init_one_freemem;
13952
13953         /* calc qm_cid_count */
13954         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13955         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13956
13957         /* disable FCOE L2 queue for E1x*/
13958         if (CHIP_IS_E1x(bp))
13959                 bp->flags |= NO_FCOE_FLAG;
13960
13961         /* Set bp->num_queues for MSI-X mode*/
13962         bnx2x_set_num_queues(bp);
13963
13964         /* Configure interrupt mode: try to enable MSI-X/MSI if
13965          * needed.
13966          */
13967         rc = bnx2x_set_int_mode(bp);
13968         if (rc) {
13969                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13970                 goto init_one_freemem;
13971         }
13972         BNX2X_DEV_INFO("set interrupts successfully\n");
13973
13974         /* register the net device */
13975         rc = register_netdev(dev);
13976         if (rc) {
13977                 dev_err(&pdev->dev, "Cannot register net device\n");
13978                 goto init_one_freemem;
13979         }
13980         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13981
13982         if (!NO_FCOE(bp)) {
13983                 /* Add storage MAC address */
13984                 rtnl_lock();
13985                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13986                 rtnl_unlock();
13987         }
13988         BNX2X_DEV_INFO(
13989                "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
13990                board_info[ent->driver_data].name,
13991                (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13992                dev->base_addr, bp->pdev->irq, dev->dev_addr);
13993         pcie_print_link_status(bp->pdev);
13994
13995         if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13996                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
13997
13998         return 0;
13999
14000 init_one_freemem:
14001         bnx2x_free_mem_bp(bp);
14002
14003 init_one_exit:
14004         bnx2x_disable_pcie_error_reporting(bp);
14005
14006         if (bp->regview)
14007                 iounmap(bp->regview);
14008
14009         if (IS_PF(bp) && bp->doorbells)
14010                 iounmap(bp->doorbells);
14011
14012         free_netdev(dev);
14013
14014         if (atomic_read(&pdev->enable_cnt) == 1)
14015                 pci_release_regions(pdev);
14016
14017         pci_disable_device(pdev);
14018
14019         return rc;
14020 }
14021
14022 static void __bnx2x_remove(struct pci_dev *pdev,
14023                            struct net_device *dev,
14024                            struct bnx2x *bp,
14025                            bool remove_netdev)
14026 {
14027         /* Delete storage MAC address */
14028         if (!NO_FCOE(bp)) {
14029                 rtnl_lock();
14030                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14031                 rtnl_unlock();
14032         }
14033
14034 #ifdef BCM_DCBNL
14035         /* Delete app tlvs from dcbnl */
14036         bnx2x_dcbnl_update_applist(bp, true);
14037 #endif
14038
14039         if (IS_PF(bp) &&
14040             !BP_NOMCP(bp) &&
14041             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14042                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14043
14044         /* Close the interface - either directly or implicitly */
14045         if (remove_netdev) {
14046                 unregister_netdev(dev);
14047         } else {
14048                 rtnl_lock();
14049                 dev_close(dev);
14050                 rtnl_unlock();
14051         }
14052
14053         bnx2x_iov_remove_one(bp);
14054
14055         /* Power on: we can't let PCI layer write to us while we are in D3 */
14056         if (IS_PF(bp)) {
14057                 bnx2x_set_power_state(bp, PCI_D0);
14058                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14059
14060                 /* Set endianity registers to reset values in case next driver
14061                  * boots in different endianty environment.
14062                  */
14063                 bnx2x_reset_endianity(bp);
14064         }
14065
14066         /* Disable MSI/MSI-X */
14067         bnx2x_disable_msi(bp);
14068
14069         /* Power off */
14070         if (IS_PF(bp))
14071                 bnx2x_set_power_state(bp, PCI_D3hot);
14072
14073         /* Make sure RESET task is not scheduled before continuing */
14074         cancel_delayed_work_sync(&bp->sp_rtnl_task);
14075
14076         /* send message via vfpf channel to release the resources of this vf */
14077         if (IS_VF(bp))
14078                 bnx2x_vfpf_release(bp);
14079
14080         /* Assumes no further PCIe PM changes will occur */
14081         if (system_state == SYSTEM_POWER_OFF) {
14082                 pci_wake_from_d3(pdev, bp->wol);
14083                 pci_set_power_state(pdev, PCI_D3hot);
14084         }
14085
14086         bnx2x_disable_pcie_error_reporting(bp);
14087         if (remove_netdev) {
14088                 if (bp->regview)
14089                         iounmap(bp->regview);
14090
14091                 /* For vfs, doorbells are part of the regview and were unmapped
14092                  * along with it. FW is only loaded by PF.
14093                  */
14094                 if (IS_PF(bp)) {
14095                         if (bp->doorbells)
14096                                 iounmap(bp->doorbells);
14097
14098                         bnx2x_release_firmware(bp);
14099                 } else {
14100                         bnx2x_vf_pci_dealloc(bp);
14101                 }
14102                 bnx2x_free_mem_bp(bp);
14103
14104                 free_netdev(dev);
14105
14106                 if (atomic_read(&pdev->enable_cnt) == 1)
14107                         pci_release_regions(pdev);
14108
14109                 pci_disable_device(pdev);
14110         }
14111 }
14112
14113 static void bnx2x_remove_one(struct pci_dev *pdev)
14114 {
14115         struct net_device *dev = pci_get_drvdata(pdev);
14116         struct bnx2x *bp;
14117
14118         if (!dev) {
14119                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14120                 return;
14121         }
14122         bp = netdev_priv(dev);
14123
14124         __bnx2x_remove(pdev, dev, bp, true);
14125 }
14126
14127 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14128 {
14129         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14130
14131         bp->rx_mode = BNX2X_RX_MODE_NONE;
14132
14133         if (CNIC_LOADED(bp))
14134                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14135
14136         /* Stop Tx */
14137         bnx2x_tx_disable(bp);
14138         /* Delete all NAPI objects */
14139         bnx2x_del_all_napi(bp);
14140         if (CNIC_LOADED(bp))
14141                 bnx2x_del_all_napi_cnic(bp);
14142         netdev_reset_tc(bp->dev);
14143
14144         del_timer_sync(&bp->timer);
14145         cancel_delayed_work_sync(&bp->sp_task);
14146         cancel_delayed_work_sync(&bp->period_task);
14147
14148         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14149                 bp->stats_state = STATS_STATE_DISABLED;
14150                 up(&bp->stats_lock);
14151         }
14152
14153         bnx2x_save_statistics(bp);
14154
14155         netif_carrier_off(bp->dev);
14156
14157         return 0;
14158 }
14159
14160 /**
14161  * bnx2x_io_error_detected - called when PCI error is detected
14162  * @pdev: Pointer to PCI device
14163  * @state: The current pci connection state
14164  *
14165  * This function is called after a PCI bus error affecting
14166  * this device has been detected.
14167  */
14168 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14169                                                 pci_channel_state_t state)
14170 {
14171         struct net_device *dev = pci_get_drvdata(pdev);
14172         struct bnx2x *bp = netdev_priv(dev);
14173
14174         rtnl_lock();
14175
14176         BNX2X_ERR("IO error detected\n");
14177
14178         netif_device_detach(dev);
14179
14180         if (state == pci_channel_io_perm_failure) {
14181                 rtnl_unlock();
14182                 return PCI_ERS_RESULT_DISCONNECT;
14183         }
14184
14185         if (netif_running(dev))
14186                 bnx2x_eeh_nic_unload(bp);
14187
14188         bnx2x_prev_path_mark_eeh(bp);
14189
14190         pci_disable_device(pdev);
14191
14192         rtnl_unlock();
14193
14194         /* Request a slot reset */
14195         return PCI_ERS_RESULT_NEED_RESET;
14196 }
14197
14198 /**
14199  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14200  * @pdev: Pointer to PCI device
14201  *
14202  * Restart the card from scratch, as if from a cold-boot.
14203  */
14204 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14205 {
14206         struct net_device *dev = pci_get_drvdata(pdev);
14207         struct bnx2x *bp = netdev_priv(dev);
14208         int i;
14209
14210         rtnl_lock();
14211         BNX2X_ERR("IO slot reset initializing...\n");
14212         if (pci_enable_device(pdev)) {
14213                 dev_err(&pdev->dev,
14214                         "Cannot re-enable PCI device after reset\n");
14215                 rtnl_unlock();
14216                 return PCI_ERS_RESULT_DISCONNECT;
14217         }
14218
14219         pci_set_master(pdev);
14220         pci_restore_state(pdev);
14221         pci_save_state(pdev);
14222
14223         if (netif_running(dev))
14224                 bnx2x_set_power_state(bp, PCI_D0);
14225
14226         if (netif_running(dev)) {
14227                 BNX2X_ERR("IO slot reset --> driver unload\n");
14228
14229                 /* MCP should have been reset; Need to wait for validity */
14230                 if (bnx2x_init_shmem(bp)) {
14231                         rtnl_unlock();
14232                         return PCI_ERS_RESULT_DISCONNECT;
14233                 }
14234
14235                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14236                         u32 v;
14237
14238                         v = SHMEM2_RD(bp,
14239                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14240                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14241                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14242                 }
14243                 bnx2x_drain_tx_queues(bp);
14244                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14245                 bnx2x_netif_stop(bp, 1);
14246                 bnx2x_free_irq(bp);
14247
14248                 /* Report UNLOAD_DONE to MCP */
14249                 bnx2x_send_unload_done(bp, true);
14250
14251                 bp->sp_state = 0;
14252                 bp->port.pmf = 0;
14253
14254                 bnx2x_prev_unload(bp);
14255
14256                 /* We should have reseted the engine, so It's fair to
14257                  * assume the FW will no longer write to the bnx2x driver.
14258                  */
14259                 bnx2x_squeeze_objects(bp);
14260                 bnx2x_free_skbs(bp);
14261                 for_each_rx_queue(bp, i)
14262                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14263                 bnx2x_free_fp_mem(bp);
14264                 bnx2x_free_mem(bp);
14265
14266                 bp->state = BNX2X_STATE_CLOSED;
14267         }
14268
14269         rtnl_unlock();
14270
14271         return PCI_ERS_RESULT_RECOVERED;
14272 }
14273
14274 /**
14275  * bnx2x_io_resume - called when traffic can start flowing again
14276  * @pdev: Pointer to PCI device
14277  *
14278  * This callback is called when the error recovery driver tells us that
14279  * its OK to resume normal operation.
14280  */
14281 static void bnx2x_io_resume(struct pci_dev *pdev)
14282 {
14283         struct net_device *dev = pci_get_drvdata(pdev);
14284         struct bnx2x *bp = netdev_priv(dev);
14285
14286         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14287                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14288                 return;
14289         }
14290
14291         rtnl_lock();
14292
14293         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14294                                                         DRV_MSG_SEQ_NUMBER_MASK;
14295
14296         if (netif_running(dev))
14297                 bnx2x_nic_load(bp, LOAD_NORMAL);
14298
14299         netif_device_attach(dev);
14300
14301         rtnl_unlock();
14302 }
14303
14304 static const struct pci_error_handlers bnx2x_err_handler = {
14305         .error_detected = bnx2x_io_error_detected,
14306         .slot_reset     = bnx2x_io_slot_reset,
14307         .resume         = bnx2x_io_resume,
14308 };
14309
14310 static void bnx2x_shutdown(struct pci_dev *pdev)
14311 {
14312         struct net_device *dev = pci_get_drvdata(pdev);
14313         struct bnx2x *bp;
14314
14315         if (!dev)
14316                 return;
14317
14318         bp = netdev_priv(dev);
14319         if (!bp)
14320                 return;
14321
14322         rtnl_lock();
14323         netif_device_detach(dev);
14324         rtnl_unlock();
14325
14326         /* Don't remove the netdevice, as there are scenarios which will cause
14327          * the kernel to hang, e.g., when trying to remove bnx2i while the
14328          * rootfs is mounted from SAN.
14329          */
14330         __bnx2x_remove(pdev, dev, bp, false);
14331 }
14332
14333 static struct pci_driver bnx2x_pci_driver = {
14334         .name        = DRV_MODULE_NAME,
14335         .id_table    = bnx2x_pci_tbl,
14336         .probe       = bnx2x_init_one,
14337         .remove      = bnx2x_remove_one,
14338         .driver.pm   = &bnx2x_pm_ops,
14339         .err_handler = &bnx2x_err_handler,
14340 #ifdef CONFIG_BNX2X_SRIOV
14341         .sriov_configure = bnx2x_sriov_configure,
14342 #endif
14343         .shutdown    = bnx2x_shutdown,
14344 };
14345
14346 static int __init bnx2x_init(void)
14347 {
14348         int ret;
14349
14350         bnx2x_wq = create_singlethread_workqueue("bnx2x");
14351         if (bnx2x_wq == NULL) {
14352                 pr_err("Cannot create workqueue\n");
14353                 return -ENOMEM;
14354         }
14355         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14356         if (!bnx2x_iov_wq) {
14357                 pr_err("Cannot create iov workqueue\n");
14358                 destroy_workqueue(bnx2x_wq);
14359                 return -ENOMEM;
14360         }
14361
14362         ret = pci_register_driver(&bnx2x_pci_driver);
14363         if (ret) {
14364                 pr_err("Cannot register driver\n");
14365                 destroy_workqueue(bnx2x_wq);
14366                 destroy_workqueue(bnx2x_iov_wq);
14367         }
14368         return ret;
14369 }
14370
14371 static void __exit bnx2x_cleanup(void)
14372 {
14373         struct list_head *pos, *q;
14374
14375         pci_unregister_driver(&bnx2x_pci_driver);
14376
14377         destroy_workqueue(bnx2x_wq);
14378         destroy_workqueue(bnx2x_iov_wq);
14379
14380         /* Free globally allocated resources */
14381         list_for_each_safe(pos, q, &bnx2x_prev_list) {
14382                 struct bnx2x_prev_path_list *tmp =
14383                         list_entry(pos, struct bnx2x_prev_path_list, list);
14384                 list_del(pos);
14385                 kfree(tmp);
14386         }
14387 }
14388
14389 void bnx2x_notify_link_changed(struct bnx2x *bp)
14390 {
14391         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14392 }
14393
14394 module_init(bnx2x_init);
14395 module_exit(bnx2x_cleanup);
14396
14397 /**
14398  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14399  * @bp:         driver handle
14400  *
14401  * This function will wait until the ramrod completion returns.
14402  * Return 0 if success, -ENODEV if ramrod doesn't return.
14403  */
14404 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14405 {
14406         unsigned long ramrod_flags = 0;
14407
14408         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14409         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14410                                  &bp->iscsi_l2_mac_obj, true,
14411                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14412 }
14413
14414 /* count denotes the number of new completions we have seen */
14415 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14416 {
14417         struct eth_spe *spe;
14418         int cxt_index, cxt_offset;
14419
14420 #ifdef BNX2X_STOP_ON_ERROR
14421         if (unlikely(bp->panic))
14422                 return;
14423 #endif
14424
14425         spin_lock_bh(&bp->spq_lock);
14426         BUG_ON(bp->cnic_spq_pending < count);
14427         bp->cnic_spq_pending -= count;
14428
14429         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14430                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14431                                 & SPE_HDR_CONN_TYPE) >>
14432                                 SPE_HDR_CONN_TYPE_SHIFT;
14433                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14434                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14435
14436                 /* Set validation for iSCSI L2 client before sending SETUP
14437                  *  ramrod
14438                  */
14439                 if (type == ETH_CONNECTION_TYPE) {
14440                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14441                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14442                                         ILT_PAGE_CIDS;
14443                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14444                                         (cxt_index * ILT_PAGE_CIDS);
14445                                 bnx2x_set_ctx_validation(bp,
14446                                         &bp->context[cxt_index].
14447                                                          vcxt[cxt_offset].eth,
14448                                         BNX2X_ISCSI_ETH_CID(bp));
14449                         }
14450                 }
14451
14452                 /*
14453                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14454                  * and in the air. We also check that number of outstanding
14455                  * COMMON ramrods is not more than the EQ and SPQ can
14456                  * accommodate.
14457                  */
14458                 if (type == ETH_CONNECTION_TYPE) {
14459                         if (!atomic_read(&bp->cq_spq_left))
14460                                 break;
14461                         else
14462                                 atomic_dec(&bp->cq_spq_left);
14463                 } else if (type == NONE_CONNECTION_TYPE) {
14464                         if (!atomic_read(&bp->eq_spq_left))
14465                                 break;
14466                         else
14467                                 atomic_dec(&bp->eq_spq_left);
14468                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14469                            (type == FCOE_CONNECTION_TYPE)) {
14470                         if (bp->cnic_spq_pending >=
14471                             bp->cnic_eth_dev.max_kwqe_pending)
14472                                 break;
14473                         else
14474                                 bp->cnic_spq_pending++;
14475                 } else {
14476                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14477                         bnx2x_panic();
14478                         break;
14479                 }
14480
14481                 spe = bnx2x_sp_get_next(bp);
14482                 *spe = *bp->cnic_kwq_cons;
14483
14484                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14485                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14486
14487                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14488                         bp->cnic_kwq_cons = bp->cnic_kwq;
14489                 else
14490                         bp->cnic_kwq_cons++;
14491         }
14492         bnx2x_sp_prod_update(bp);
14493         spin_unlock_bh(&bp->spq_lock);
14494 }
14495
14496 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14497                                struct kwqe_16 *kwqes[], u32 count)
14498 {
14499         struct bnx2x *bp = netdev_priv(dev);
14500         int i;
14501
14502 #ifdef BNX2X_STOP_ON_ERROR
14503         if (unlikely(bp->panic)) {
14504                 BNX2X_ERR("Can't post to SP queue while panic\n");
14505                 return -EIO;
14506         }
14507 #endif
14508
14509         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14510             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14511                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14512                 return -EAGAIN;
14513         }
14514
14515         spin_lock_bh(&bp->spq_lock);
14516
14517         for (i = 0; i < count; i++) {
14518                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14519
14520                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14521                         break;
14522
14523                 *bp->cnic_kwq_prod = *spe;
14524
14525                 bp->cnic_kwq_pending++;
14526
14527                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14528                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14529                    spe->data.update_data_addr.hi,
14530                    spe->data.update_data_addr.lo,
14531                    bp->cnic_kwq_pending);
14532
14533                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14534                         bp->cnic_kwq_prod = bp->cnic_kwq;
14535                 else
14536                         bp->cnic_kwq_prod++;
14537         }
14538
14539         spin_unlock_bh(&bp->spq_lock);
14540
14541         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14542                 bnx2x_cnic_sp_post(bp, 0);
14543
14544         return i;
14545 }
14546
14547 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14548 {
14549         struct cnic_ops *c_ops;
14550         int rc = 0;
14551
14552         mutex_lock(&bp->cnic_mutex);
14553         c_ops = rcu_dereference_protected(bp->cnic_ops,
14554                                           lockdep_is_held(&bp->cnic_mutex));
14555         if (c_ops)
14556                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14557         mutex_unlock(&bp->cnic_mutex);
14558
14559         return rc;
14560 }
14561
14562 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14563 {
14564         struct cnic_ops *c_ops;
14565         int rc = 0;
14566
14567         rcu_read_lock();
14568         c_ops = rcu_dereference(bp->cnic_ops);
14569         if (c_ops)
14570                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14571         rcu_read_unlock();
14572
14573         return rc;
14574 }
14575
14576 /*
14577  * for commands that have no data
14578  */
14579 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14580 {
14581         struct cnic_ctl_info ctl = {0};
14582
14583         ctl.cmd = cmd;
14584
14585         return bnx2x_cnic_ctl_send(bp, &ctl);
14586 }
14587
14588 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14589 {
14590         struct cnic_ctl_info ctl = {0};
14591
14592         /* first we tell CNIC and only then we count this as a completion */
14593         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14594         ctl.data.comp.cid = cid;
14595         ctl.data.comp.error = err;
14596
14597         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14598         bnx2x_cnic_sp_post(bp, 0);
14599 }
14600
14601 /* Called with netif_addr_lock_bh() taken.
14602  * Sets an rx_mode config for an iSCSI ETH client.
14603  * Doesn't block.
14604  * Completion should be checked outside.
14605  */
14606 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14607 {
14608         unsigned long accept_flags = 0, ramrod_flags = 0;
14609         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14610         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14611
14612         if (start) {
14613                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14614                  * because it's the only way for UIO Queue to accept
14615                  * multicasts (in non-promiscuous mode only one Queue per
14616                  * function will receive multicast packets (leading in our
14617                  * case).
14618                  */
14619                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14620                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14621                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14622                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14623
14624                 /* Clear STOP_PENDING bit if START is requested */
14625                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14626
14627                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14628         } else
14629                 /* Clear START_PENDING bit if STOP is requested */
14630                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14631
14632         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14633                 set_bit(sched_state, &bp->sp_state);
14634         else {
14635                 __set_bit(RAMROD_RX, &ramrod_flags);
14636                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14637                                     ramrod_flags);
14638         }
14639 }
14640
14641 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14642 {
14643         struct bnx2x *bp = netdev_priv(dev);
14644         int rc = 0;
14645
14646         switch (ctl->cmd) {
14647         case DRV_CTL_CTXTBL_WR_CMD: {
14648                 u32 index = ctl->data.io.offset;
14649                 dma_addr_t addr = ctl->data.io.dma_addr;
14650
14651                 bnx2x_ilt_wr(bp, index, addr);
14652                 break;
14653         }
14654
14655         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14656                 int count = ctl->data.credit.credit_count;
14657
14658                 bnx2x_cnic_sp_post(bp, count);
14659                 break;
14660         }
14661
14662         /* rtnl_lock is held.  */
14663         case DRV_CTL_START_L2_CMD: {
14664                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14665                 unsigned long sp_bits = 0;
14666
14667                 /* Configure the iSCSI classification object */
14668                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14669                                    cp->iscsi_l2_client_id,
14670                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14671                                    bnx2x_sp(bp, mac_rdata),
14672                                    bnx2x_sp_mapping(bp, mac_rdata),
14673                                    BNX2X_FILTER_MAC_PENDING,
14674                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14675                                    &bp->macs_pool);
14676
14677                 /* Set iSCSI MAC address */
14678                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14679                 if (rc)
14680                         break;
14681
14682                 barrier();
14683
14684                 /* Start accepting on iSCSI L2 ring */
14685
14686                 netif_addr_lock_bh(dev);
14687                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14688                 netif_addr_unlock_bh(dev);
14689
14690                 /* bits to wait on */
14691                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14692                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14693
14694                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14695                         BNX2X_ERR("rx_mode completion timed out!\n");
14696
14697                 break;
14698         }
14699
14700         /* rtnl_lock is held.  */
14701         case DRV_CTL_STOP_L2_CMD: {
14702                 unsigned long sp_bits = 0;
14703
14704                 /* Stop accepting on iSCSI L2 ring */
14705                 netif_addr_lock_bh(dev);
14706                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14707                 netif_addr_unlock_bh(dev);
14708
14709                 /* bits to wait on */
14710                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14711                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14712
14713                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14714                         BNX2X_ERR("rx_mode completion timed out!\n");
14715
14716                 barrier();
14717
14718                 /* Unset iSCSI L2 MAC */
14719                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14720                                         BNX2X_ISCSI_ETH_MAC, true);
14721                 break;
14722         }
14723         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14724                 int count = ctl->data.credit.credit_count;
14725
14726                 smp_mb__before_atomic();
14727                 atomic_add(count, &bp->cq_spq_left);
14728                 smp_mb__after_atomic();
14729                 break;
14730         }
14731         case DRV_CTL_ULP_REGISTER_CMD: {
14732                 int ulp_type = ctl->data.register_data.ulp_type;
14733
14734                 if (CHIP_IS_E3(bp)) {
14735                         int idx = BP_FW_MB_IDX(bp);
14736                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14737                         int path = BP_PATH(bp);
14738                         int port = BP_PORT(bp);
14739                         int i;
14740                         u32 scratch_offset;
14741                         u32 *host_addr;
14742
14743                         /* first write capability to shmem2 */
14744                         if (ulp_type == CNIC_ULP_ISCSI)
14745                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14746                         else if (ulp_type == CNIC_ULP_FCOE)
14747                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14748                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14749
14750                         if ((ulp_type != CNIC_ULP_FCOE) ||
14751                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14752                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14753                                 break;
14754
14755                         /* if reached here - should write fcoe capabilities */
14756                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14757                         if (!scratch_offset)
14758                                 break;
14759                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14760                                                    fcoe_features[path][port]);
14761                         host_addr = (u32 *) &(ctl->data.register_data.
14762                                               fcoe_features);
14763                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14764                              i += 4)
14765                                 REG_WR(bp, scratch_offset + i,
14766                                        *(host_addr + i/4));
14767                 }
14768                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14769                 break;
14770         }
14771
14772         case DRV_CTL_ULP_UNREGISTER_CMD: {
14773                 int ulp_type = ctl->data.ulp_type;
14774
14775                 if (CHIP_IS_E3(bp)) {
14776                         int idx = BP_FW_MB_IDX(bp);
14777                         u32 cap;
14778
14779                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14780                         if (ulp_type == CNIC_ULP_ISCSI)
14781                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14782                         else if (ulp_type == CNIC_ULP_FCOE)
14783                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14784                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14785                 }
14786                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14787                 break;
14788         }
14789
14790         default:
14791                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14792                 rc = -EINVAL;
14793         }
14794
14795         /* For storage-only interfaces, change driver state */
14796         if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14797                 switch (ctl->drv_state) {
14798                 case DRV_NOP:
14799                         break;
14800                 case DRV_ACTIVE:
14801                         bnx2x_set_os_driver_state(bp,
14802                                                   OS_DRIVER_STATE_ACTIVE);
14803                         break;
14804                 case DRV_INACTIVE:
14805                         bnx2x_set_os_driver_state(bp,
14806                                                   OS_DRIVER_STATE_DISABLED);
14807                         break;
14808                 case DRV_UNLOADED:
14809                         bnx2x_set_os_driver_state(bp,
14810                                                   OS_DRIVER_STATE_NOT_LOADED);
14811                         break;
14812                 default:
14813                 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14814                 }
14815         }
14816
14817         return rc;
14818 }
14819
14820 static int bnx2x_get_fc_npiv(struct net_device *dev,
14821                              struct cnic_fc_npiv_tbl *cnic_tbl)
14822 {
14823         struct bnx2x *bp = netdev_priv(dev);
14824         struct bdn_fc_npiv_tbl *tbl = NULL;
14825         u32 offset, entries;
14826         int rc = -EINVAL;
14827         int i;
14828
14829         if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14830                 goto out;
14831
14832         DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14833
14834         tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14835         if (!tbl) {
14836                 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14837                 goto out;
14838         }
14839
14840         offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14841         if (!offset) {
14842                 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14843                 goto out;
14844         }
14845         DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14846
14847         /* Read the table contents from nvram */
14848         if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14849                 BNX2X_ERR("Failed to read FC-NPIV table\n");
14850                 goto out;
14851         }
14852
14853         /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14854          * the number of entries back to cpu endianness.
14855          */
14856         entries = tbl->fc_npiv_cfg.num_of_npiv;
14857         entries = (__force u32)be32_to_cpu((__force __be32)entries);
14858         tbl->fc_npiv_cfg.num_of_npiv = entries;
14859
14860         if (!tbl->fc_npiv_cfg.num_of_npiv) {
14861                 DP(BNX2X_MSG_MCP,
14862                    "No FC-NPIV table [valid, simply not present]\n");
14863                 goto out;
14864         } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14865                 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14866                           tbl->fc_npiv_cfg.num_of_npiv);
14867                 goto out;
14868         } else {
14869                 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14870                    tbl->fc_npiv_cfg.num_of_npiv);
14871         }
14872
14873         /* Copy the data into cnic-provided struct */
14874         cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14875         for (i = 0; i < cnic_tbl->count; i++) {
14876                 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14877                 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14878         }
14879
14880         rc = 0;
14881 out:
14882         kfree(tbl);
14883         return rc;
14884 }
14885
14886 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14887 {
14888         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14889
14890         if (bp->flags & USING_MSIX_FLAG) {
14891                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14892                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14893                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14894         } else {
14895                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14896                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14897         }
14898         if (!CHIP_IS_E1x(bp))
14899                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14900         else
14901                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14902
14903         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14904         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14905         cp->irq_arr[1].status_blk = bp->def_status_blk;
14906         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14907         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14908
14909         cp->num_irq = 2;
14910 }
14911
14912 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14913 {
14914         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14915
14916         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14917                              bnx2x_cid_ilt_lines(bp);
14918         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14919         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14920         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14921
14922         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14923            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14924            cp->iscsi_l2_cid);
14925
14926         if (NO_ISCSI_OOO(bp))
14927                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14928 }
14929
14930 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14931                                void *data)
14932 {
14933         struct bnx2x *bp = netdev_priv(dev);
14934         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14935         int rc;
14936
14937         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14938
14939         if (ops == NULL) {
14940                 BNX2X_ERR("NULL ops received\n");
14941                 return -EINVAL;
14942         }
14943
14944         if (!CNIC_SUPPORT(bp)) {
14945                 BNX2X_ERR("Can't register CNIC when not supported\n");
14946                 return -EOPNOTSUPP;
14947         }
14948
14949         if (!CNIC_LOADED(bp)) {
14950                 rc = bnx2x_load_cnic(bp);
14951                 if (rc) {
14952                         BNX2X_ERR("CNIC-related load failed\n");
14953                         return rc;
14954                 }
14955         }
14956
14957         bp->cnic_enabled = true;
14958
14959         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14960         if (!bp->cnic_kwq)
14961                 return -ENOMEM;
14962
14963         bp->cnic_kwq_cons = bp->cnic_kwq;
14964         bp->cnic_kwq_prod = bp->cnic_kwq;
14965         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14966
14967         bp->cnic_spq_pending = 0;
14968         bp->cnic_kwq_pending = 0;
14969
14970         bp->cnic_data = data;
14971
14972         cp->num_irq = 0;
14973         cp->drv_state |= CNIC_DRV_STATE_REGD;
14974         cp->iro_arr = bp->iro_arr;
14975
14976         bnx2x_setup_cnic_irq_info(bp);
14977
14978         rcu_assign_pointer(bp->cnic_ops, ops);
14979
14980         /* Schedule driver to read CNIC driver versions */
14981         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14982
14983         return 0;
14984 }
14985
14986 static int bnx2x_unregister_cnic(struct net_device *dev)
14987 {
14988         struct bnx2x *bp = netdev_priv(dev);
14989         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14990
14991         mutex_lock(&bp->cnic_mutex);
14992         cp->drv_state = 0;
14993         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14994         mutex_unlock(&bp->cnic_mutex);
14995         synchronize_rcu();
14996         bp->cnic_enabled = false;
14997         kfree(bp->cnic_kwq);
14998         bp->cnic_kwq = NULL;
14999
15000         return 0;
15001 }
15002
15003 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15004 {
15005         struct bnx2x *bp = netdev_priv(dev);
15006         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15007
15008         /* If both iSCSI and FCoE are disabled - return NULL in
15009          * order to indicate CNIC that it should not try to work
15010          * with this device.
15011          */
15012         if (NO_ISCSI(bp) && NO_FCOE(bp))
15013                 return NULL;
15014
15015         cp->drv_owner = THIS_MODULE;
15016         cp->chip_id = CHIP_ID(bp);
15017         cp->pdev = bp->pdev;
15018         cp->io_base = bp->regview;
15019         cp->io_base2 = bp->doorbells;
15020         cp->max_kwqe_pending = 8;
15021         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15022         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15023                              bnx2x_cid_ilt_lines(bp);
15024         cp->ctx_tbl_len = CNIC_ILT_LINES;
15025         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15026         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15027         cp->drv_ctl = bnx2x_drv_ctl;
15028         cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15029         cp->drv_register_cnic = bnx2x_register_cnic;
15030         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15031         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15032         cp->iscsi_l2_client_id =
15033                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15034         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15035
15036         if (NO_ISCSI_OOO(bp))
15037                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15038
15039         if (NO_ISCSI(bp))
15040                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15041
15042         if (NO_FCOE(bp))
15043                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15044
15045         BNX2X_DEV_INFO(
15046                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15047            cp->ctx_blk_size,
15048            cp->ctx_tbl_offset,
15049            cp->ctx_tbl_len,
15050            cp->starting_cid);
15051         return cp;
15052 }
15053
15054 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15055 {
15056         struct bnx2x *bp = fp->bp;
15057         u32 offset = BAR_USTRORM_INTMEM;
15058
15059         if (IS_VF(bp))
15060                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15061         else if (!CHIP_IS_E1x(bp))
15062                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15063         else
15064                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15065
15066         return offset;
15067 }
15068
15069 /* called only on E1H or E2.
15070  * When pretending to be PF, the pretend value is the function number 0...7
15071  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15072  * combination
15073  */
15074 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15075 {
15076         u32 pretend_reg;
15077
15078         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15079                 return -1;
15080
15081         /* get my own pretend register */
15082         pretend_reg = bnx2x_get_pretend_reg(bp);
15083         REG_WR(bp, pretend_reg, pretend_func_val);
15084         REG_RD(bp, pretend_reg);
15085         return 0;
15086 }
15087
15088 static void bnx2x_ptp_task(struct work_struct *work)
15089 {
15090         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15091         int port = BP_PORT(bp);
15092         u32 val_seq;
15093         u64 timestamp, ns;
15094         struct skb_shared_hwtstamps shhwtstamps;
15095         bool bail = true;
15096         int i;
15097
15098         /* FW may take a while to complete timestamping; try a bit and if it's
15099          * still not complete, may indicate an error state - bail out then.
15100          */
15101         for (i = 0; i < 10; i++) {
15102                 /* Read Tx timestamp registers */
15103                 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15104                                  NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15105                 if (val_seq & 0x10000) {
15106                         bail = false;
15107                         break;
15108                 }
15109                 msleep(1 << i);
15110         }
15111
15112         if (!bail) {
15113                 /* There is a valid timestamp value */
15114                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15115                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15116                 timestamp <<= 32;
15117                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15118                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15119                 /* Reset timestamp register to allow new timestamp */
15120                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15121                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15122                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15123
15124                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15125                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15126                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15127
15128                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15129                    timestamp, ns);
15130         } else {
15131                 DP(BNX2X_MSG_PTP,
15132                    "Tx timestamp is not recorded (register read=%u)\n",
15133                    val_seq);
15134                 bp->eth_stats.ptp_skip_tx_ts++;
15135         }
15136
15137         dev_kfree_skb_any(bp->ptp_tx_skb);
15138         bp->ptp_tx_skb = NULL;
15139 }
15140
15141 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15142 {
15143         int port = BP_PORT(bp);
15144         u64 timestamp, ns;
15145
15146         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15147                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15148         timestamp <<= 32;
15149         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15150                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15151
15152         /* Reset timestamp register to allow new timestamp */
15153         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15154                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15155
15156         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15157
15158         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15159
15160         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15161            timestamp, ns);
15162 }
15163
15164 /* Read the PHC */
15165 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15166 {
15167         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15168         int port = BP_PORT(bp);
15169         u32 wb_data[2];
15170         u64 phc_cycles;
15171
15172         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15173                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15174         phc_cycles = wb_data[1];
15175         phc_cycles = (phc_cycles << 32) + wb_data[0];
15176
15177         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15178
15179         return phc_cycles;
15180 }
15181
15182 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15183 {
15184         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15185         bp->cyclecounter.read = bnx2x_cyclecounter_read;
15186         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15187         bp->cyclecounter.shift = 0;
15188         bp->cyclecounter.mult = 1;
15189 }
15190
15191 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15192 {
15193         struct bnx2x_func_state_params func_params = {NULL};
15194         struct bnx2x_func_set_timesync_params *set_timesync_params =
15195                 &func_params.params.set_timesync;
15196
15197         /* Prepare parameters for function state transitions */
15198         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15199         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15200
15201         func_params.f_obj = &bp->func_obj;
15202         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15203
15204         /* Function parameters */
15205         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15206         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15207
15208         return bnx2x_func_state_change(bp, &func_params);
15209 }
15210
15211 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15212 {
15213         struct bnx2x_queue_state_params q_params;
15214         int rc, i;
15215
15216         /* send queue update ramrod to enable PTP packets */
15217         memset(&q_params, 0, sizeof(q_params));
15218         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15219         q_params.cmd = BNX2X_Q_CMD_UPDATE;
15220         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15221                   &q_params.params.update.update_flags);
15222         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15223                   &q_params.params.update.update_flags);
15224
15225         /* send the ramrod on all the queues of the PF */
15226         for_each_eth_queue(bp, i) {
15227                 struct bnx2x_fastpath *fp = &bp->fp[i];
15228
15229                 /* Set the appropriate Queue object */
15230                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15231
15232                 /* Update the Queue state */
15233                 rc = bnx2x_queue_state_change(bp, &q_params);
15234                 if (rc) {
15235                         BNX2X_ERR("Failed to enable PTP packets\n");
15236                         return rc;
15237                 }
15238         }
15239
15240         return 0;
15241 }
15242
15243 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15244 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15245 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15246 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15247 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15248 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15249 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15250 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15251 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15252 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15253 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15254 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15255
15256 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15257 {
15258         int port = BP_PORT(bp);
15259         u32 param, rule;
15260         int rc;
15261
15262         if (!bp->hwtstamp_ioctl_called)
15263                 return 0;
15264
15265         param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15266                 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15267         rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15268                 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15269         switch (bp->tx_type) {
15270         case HWTSTAMP_TX_ON:
15271                 bp->flags |= TX_TIMESTAMPING_EN;
15272                 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15273                 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15274                 break;
15275         case HWTSTAMP_TX_ONESTEP_SYNC:
15276         case HWTSTAMP_TX_ONESTEP_P2P:
15277                 BNX2X_ERR("One-step timestamping is not supported\n");
15278                 return -ERANGE;
15279         }
15280
15281         param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15282                 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15283         rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15284                 NIG_REG_P0_LLH_PTP_RULE_MASK;
15285         switch (bp->rx_filter) {
15286         case HWTSTAMP_FILTER_NONE:
15287                 break;
15288         case HWTSTAMP_FILTER_ALL:
15289         case HWTSTAMP_FILTER_SOME:
15290         case HWTSTAMP_FILTER_NTP_ALL:
15291                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15292                 break;
15293         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15294         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15295         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15296                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15297                 /* Initialize PTP detection for UDP/IPv4 events */
15298                 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15299                 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15300                 break;
15301         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15302         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15303         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15304                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15305                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15306                 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15307                 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15308                 break;
15309         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15310         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15311         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15312                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15313                 /* Initialize PTP detection L2 events */
15314                 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15315                 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15316
15317                 break;
15318         case HWTSTAMP_FILTER_PTP_V2_EVENT:
15319         case HWTSTAMP_FILTER_PTP_V2_SYNC:
15320         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15321                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15322                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15323                 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15324                 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15325                 break;
15326         }
15327
15328         /* Indicate to FW that this PF expects recorded PTP packets */
15329         rc = bnx2x_enable_ptp_packets(bp);
15330         if (rc)
15331                 return rc;
15332
15333         /* Enable sending PTP packets to host */
15334         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15335                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15336
15337         return 0;
15338 }
15339
15340 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15341 {
15342         struct hwtstamp_config config;
15343         int rc;
15344
15345         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15346
15347         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15348                 return -EFAULT;
15349
15350         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15351            config.tx_type, config.rx_filter);
15352
15353         if (config.flags) {
15354                 BNX2X_ERR("config.flags is reserved for future use\n");
15355                 return -EINVAL;
15356         }
15357
15358         bp->hwtstamp_ioctl_called = true;
15359         bp->tx_type = config.tx_type;
15360         bp->rx_filter = config.rx_filter;
15361
15362         rc = bnx2x_configure_ptp_filters(bp);
15363         if (rc)
15364                 return rc;
15365
15366         config.rx_filter = bp->rx_filter;
15367
15368         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15369                 -EFAULT : 0;
15370 }
15371
15372 /* Configures HW for PTP */
15373 static int bnx2x_configure_ptp(struct bnx2x *bp)
15374 {
15375         int rc, port = BP_PORT(bp);
15376         u32 wb_data[2];
15377
15378         /* Reset PTP event detection rules - will be configured in the IOCTL */
15379         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15380                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15381         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15382                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15383         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15384                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15385         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15386                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15387
15388         /* Disable PTP packets to host - will be configured in the IOCTL*/
15389         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15390                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15391
15392         /* Enable the PTP feature */
15393         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15394                NIG_REG_P0_PTP_EN, 0x3F);
15395
15396         /* Enable the free-running counter */
15397         wb_data[0] = 0;
15398         wb_data[1] = 0;
15399         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15400
15401         /* Reset drift register (offset register is not reset) */
15402         rc = bnx2x_send_reset_timesync_ramrod(bp);
15403         if (rc) {
15404                 BNX2X_ERR("Failed to reset PHC drift register\n");
15405                 return -EFAULT;
15406         }
15407
15408         /* Reset possibly old timestamps */
15409         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15410                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15411         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15412                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15413
15414         return 0;
15415 }
15416
15417 /* Called during load, to initialize PTP-related stuff */
15418 void bnx2x_init_ptp(struct bnx2x *bp)
15419 {
15420         int rc;
15421
15422         /* Configure PTP in HW */
15423         rc = bnx2x_configure_ptp(bp);
15424         if (rc) {
15425                 BNX2X_ERR("Stopping PTP initialization\n");
15426                 return;
15427         }
15428
15429         /* Init work queue for Tx timestamping */
15430         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15431
15432         /* Init cyclecounter and timecounter. This is done only in the first
15433          * load. If done in every load, PTP application will fail when doing
15434          * unload / load (e.g. MTU change) while it is running.
15435          */
15436         if (!bp->timecounter_init_done) {
15437                 bnx2x_init_cyclecounter(bp);
15438                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15439                                  ktime_to_ns(ktime_get_real()));
15440                 bp->timecounter_init_done = true;
15441         }
15442
15443         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15444 }