Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-microblaze.git] / drivers / net / dsa / lantiq_gswip.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47
48 #include "lantiq_pce.h"
49
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB                 0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE         BIT(15)
53 #define GSWIP_MDIO_CTRL                 0x08
54 #define  GSWIP_MDIO_CTRL_BUSY           BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD             BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR             BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK     0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT    5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK     0x1f
60 #define GSWIP_MDIO_READ                 0x09
61 #define GSWIP_MDIO_WRITE                0x0A
62 #define GSWIP_MDIO_MDC_CFG0             0x0B
63 #define GSWIP_MDIO_MDC_CFG1             0x0C
64 #define GSWIP_MDIO_PHYp(p)              (0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK       0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO       0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN       0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP         0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK      0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO      0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10       0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100      0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1        0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK       0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO       0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN         0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS        0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK     0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO     0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN       0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS      0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK     0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO     0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN       0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS      0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK       0x001f
87 #define  GSWIP_MDIO_PHY_MASK            (GSWIP_MDIO_PHY_ADDR_MASK | \
88                                          GSWIP_MDIO_PHY_FCONRX_MASK | \
89                                          GSWIP_MDIO_PHY_FCONTX_MASK | \
90                                          GSWIP_MDIO_PHY_LINK_MASK | \
91                                          GSWIP_MDIO_PHY_SPEED_MASK | \
92                                          GSWIP_MDIO_PHY_FDUP_MASK)
93
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)               (0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET            BIT(15)
97 #define  GSWIP_MII_CFG_EN               BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE          BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS         BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS        BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK         BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP        0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM        0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP       0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM       0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII       0x4
107 #define  GSWIP_MII_CFG_MODE_GMII        0x9
108 #define  GSWIP_MII_CFG_MODE_MASK        0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5        0x00
110 #define  GSWIP_MII_CFG_RATE_M25 0x10
111 #define  GSWIP_MII_CFG_RATE_M125        0x20
112 #define  GSWIP_MII_CFG_RATE_M50 0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO        0x40
114 #define  GSWIP_MII_CFG_RATE_MASK        0x70
115 #define GSWIP_MII_PCDU0                 0x01
116 #define GSWIP_MII_PCDU1                 0x03
117 #define GSWIP_MII_PCDU5                 0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK      GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK      GENMASK(9, 7)
120
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES                     0x000
123 #define  GSWIP_SWRES_R1                 BIT(1)  /* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0                 BIT(0)  /* GSWIP Hardware reset */
125 #define GSWIP_VERSION                   0x013
126 #define  GSWIP_VERSION_REV_SHIFT        0
127 #define  GSWIP_VERSION_REV_MASK         GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT        8
129 #define  GSWIP_VERSION_MOD_MASK         GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0             0x100
131 #define   GSWIP_VERSION_2_1             0x021
132 #define   GSWIP_VERSION_2_2             0x122
133 #define   GSWIP_VERSION_2_2_ETC         0x022
134
135 #define GSWIP_BM_RAM_VAL(x)             (0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR               0x044
137 #define GSWIP_BM_RAM_CTRL               0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS          BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD        BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK    GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL            0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD    BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)               (0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN            BIT(0)  /* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT            BIT(1)  /* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)          (0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES    BIT(0)  /* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES    BIT(1)  /* Software Reset for RMON RAM 2 */
151
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)            (0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK              0x448
155 #define GSWIP_PCE_TBL_VAL(x)            (0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR              0x44E
157 #define GSWIP_PCE_TBL_CTRL              0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS         BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE        BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD         BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM     BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK   GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK  GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD  0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR  0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD  0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR  0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK   GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1                 0x453   /* Monitoring port map */
170 #define GSWIP_PCE_PMAP2                 0x454   /* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3                 0x455   /* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0               0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL         BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID     BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN         BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1               0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK    BIT(2)  /* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD        BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)           (0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM          BIT(5)  /* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP         BIT(6)  /* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS      BIT(11) /* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN        0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX            0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX            0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING      0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING    0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK  GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)              (0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR            BIT(0)  /* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR           BIT(3)  /* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR           BIT(4)  /* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR            BIT(5)  /* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0           BIT(6)  /* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)            (0x486 + ((p) * 0xA))
196
197 #define GSWIP_MAC_FLEN                  0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)            (0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN         BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN        BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK     0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO     0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX       0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX       0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX     0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE     0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK     0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO     0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN       0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS      0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK     0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO     0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII      0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII    0x0002
215 #define GSWIP_MAC_CTRL_2p(p)            (0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_LCHKL          BIT(2) /* Frame Length Check Long Enable */
217 #define GSWIP_MAC_CTRL_2_MLEN           BIT(3) /* Maximum Untagged Frame Lnegth */
218
219 /* Ethernet Switch Fetch DMA Port Control Register */
220 #define GSWIP_FDMA_PCTRLp(p)            (0xA80 + ((p) * 0x6))
221 #define  GSWIP_FDMA_PCTRL_EN            BIT(0)  /* FDMA Port Enable */
222 #define  GSWIP_FDMA_PCTRL_STEN          BIT(1)  /* Special Tag Insertion Enable */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK  GENMASK(4, 3)   /* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3       /* VLAN Modification Control */
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS   (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO  (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID    (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH  (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
229
230 /* Ethernet Switch Store DMA Port Control Register */
231 #define GSWIP_SDMA_PCTRLp(p)            (0xBC0 + ((p) * 0x6))
232 #define  GSWIP_SDMA_PCTRL_EN            BIT(0)  /* SDMA Port Enable */
233 #define  GSWIP_SDMA_PCTRL_FCEN          BIT(1)  /* Flow Control Enable */
234 #define  GSWIP_SDMA_PCTRL_PAUFWD        BIT(3)  /* Pause Frame Forwarding */
235
236 #define GSWIP_TABLE_ACTIVE_VLAN         0x01
237 #define GSWIP_TABLE_VLAN_MAPPING        0x02
238 #define GSWIP_TABLE_MAC_BRIDGE          0x0b
239 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC  0x01    /* Static not, aging entry */
240
241 #define XRX200_GPHY_FW_ALIGN    (16 * 1024)
242
243 /* Maximum packet size supported by the switch. In theory this should be 10240,
244  * but long packets currently cause lock-ups with an MTU of over 2526. Medium
245  * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
246  * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
247  * packet reception. This is probably caused by the PPA engine, which is on the
248  * RX part of the device. Packet transmission works properly up to 10240.
249  */
250 #define GSWIP_MAX_PACKET_LENGTH 2400
251
252 struct gswip_hw_info {
253         int max_ports;
254         int cpu_port;
255         const struct dsa_switch_ops *ops;
256 };
257
258 struct xway_gphy_match_data {
259         char *fe_firmware_name;
260         char *ge_firmware_name;
261 };
262
263 struct gswip_gphy_fw {
264         struct clk *clk_gate;
265         struct reset_control *reset;
266         u32 fw_addr_offset;
267         char *fw_name;
268 };
269
270 struct gswip_vlan {
271         struct net_device *bridge;
272         u16 vid;
273         u8 fid;
274 };
275
276 struct gswip_priv {
277         __iomem void *gswip;
278         __iomem void *mdio;
279         __iomem void *mii;
280         const struct gswip_hw_info *hw_info;
281         const struct xway_gphy_match_data *gphy_fw_name_cfg;
282         struct dsa_switch *ds;
283         struct device *dev;
284         struct regmap *rcu_regmap;
285         struct gswip_vlan vlans[64];
286         int num_gphy_fw;
287         struct gswip_gphy_fw *gphy_fw;
288         u32 port_vlan_filter;
289         struct mutex pce_table_lock;
290 };
291
292 struct gswip_pce_table_entry {
293         u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
294         u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
295         u16 key[8];
296         u16 val[5];
297         u16 mask;
298         u8 gmap;
299         bool type;
300         bool valid;
301         bool key_mode;
302 };
303
304 struct gswip_rmon_cnt_desc {
305         unsigned int size;
306         unsigned int offset;
307         const char *name;
308 };
309
310 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
311
312 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
313         /** Receive Packet Count (only packets that are accepted and not discarded). */
314         MIB_DESC(1, 0x1F, "RxGoodPkts"),
315         MIB_DESC(1, 0x23, "RxUnicastPkts"),
316         MIB_DESC(1, 0x22, "RxMulticastPkts"),
317         MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
318         MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
319         MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
320         MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
321         MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
322         MIB_DESC(1, 0x20, "RxGoodPausePkts"),
323         MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
324         MIB_DESC(1, 0x12, "Rx64BytePkts"),
325         MIB_DESC(1, 0x13, "Rx127BytePkts"),
326         MIB_DESC(1, 0x14, "Rx255BytePkts"),
327         MIB_DESC(1, 0x15, "Rx511BytePkts"),
328         MIB_DESC(1, 0x16, "Rx1023BytePkts"),
329         /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
330         MIB_DESC(1, 0x17, "RxMaxBytePkts"),
331         MIB_DESC(1, 0x18, "RxDroppedPkts"),
332         MIB_DESC(1, 0x19, "RxFilteredPkts"),
333         MIB_DESC(2, 0x24, "RxGoodBytes"),
334         MIB_DESC(2, 0x26, "RxBadBytes"),
335         MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
336         MIB_DESC(1, 0x0C, "TxGoodPkts"),
337         MIB_DESC(1, 0x06, "TxUnicastPkts"),
338         MIB_DESC(1, 0x07, "TxMulticastPkts"),
339         MIB_DESC(1, 0x00, "Tx64BytePkts"),
340         MIB_DESC(1, 0x01, "Tx127BytePkts"),
341         MIB_DESC(1, 0x02, "Tx255BytePkts"),
342         MIB_DESC(1, 0x03, "Tx511BytePkts"),
343         MIB_DESC(1, 0x04, "Tx1023BytePkts"),
344         /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
345         MIB_DESC(1, 0x05, "TxMaxBytePkts"),
346         MIB_DESC(1, 0x08, "TxSingleCollCount"),
347         MIB_DESC(1, 0x09, "TxMultCollCount"),
348         MIB_DESC(1, 0x0A, "TxLateCollCount"),
349         MIB_DESC(1, 0x0B, "TxExcessCollCount"),
350         MIB_DESC(1, 0x0D, "TxPauseCount"),
351         MIB_DESC(1, 0x10, "TxDroppedPkts"),
352         MIB_DESC(2, 0x0E, "TxGoodBytes"),
353 };
354
355 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
356 {
357         return __raw_readl(priv->gswip + (offset * 4));
358 }
359
360 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
361 {
362         __raw_writel(val, priv->gswip + (offset * 4));
363 }
364
365 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
366                               u32 offset)
367 {
368         u32 val = gswip_switch_r(priv, offset);
369
370         val &= ~(clear);
371         val |= set;
372         gswip_switch_w(priv, val, offset);
373 }
374
375 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
376                                   u32 cleared)
377 {
378         u32 val;
379
380         return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
381                                   (val & cleared) == 0, 20, 50000);
382 }
383
384 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
385 {
386         return __raw_readl(priv->mdio + (offset * 4));
387 }
388
389 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
390 {
391         __raw_writel(val, priv->mdio + (offset * 4));
392 }
393
394 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
395                             u32 offset)
396 {
397         u32 val = gswip_mdio_r(priv, offset);
398
399         val &= ~(clear);
400         val |= set;
401         gswip_mdio_w(priv, val, offset);
402 }
403
404 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
405 {
406         return __raw_readl(priv->mii + (offset * 4));
407 }
408
409 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
410 {
411         __raw_writel(val, priv->mii + (offset * 4));
412 }
413
414 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
415                            u32 offset)
416 {
417         u32 val = gswip_mii_r(priv, offset);
418
419         val &= ~(clear);
420         val |= set;
421         gswip_mii_w(priv, val, offset);
422 }
423
424 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
425                                int port)
426 {
427         /* There's no MII_CFG register for the CPU port */
428         if (!dsa_is_cpu_port(priv->ds, port))
429                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
430 }
431
432 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
433                                 int port)
434 {
435         switch (port) {
436         case 0:
437                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
438                 break;
439         case 1:
440                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
441                 break;
442         case 5:
443                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
444                 break;
445         }
446 }
447
448 static int gswip_mdio_poll(struct gswip_priv *priv)
449 {
450         int cnt = 100;
451
452         while (likely(cnt--)) {
453                 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
454
455                 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
456                         return 0;
457                 usleep_range(20, 40);
458         }
459
460         return -ETIMEDOUT;
461 }
462
463 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
464 {
465         struct gswip_priv *priv = bus->priv;
466         int err;
467
468         err = gswip_mdio_poll(priv);
469         if (err) {
470                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
471                 return err;
472         }
473
474         gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
475         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
476                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
477                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
478                 GSWIP_MDIO_CTRL);
479
480         return 0;
481 }
482
483 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
484 {
485         struct gswip_priv *priv = bus->priv;
486         int err;
487
488         err = gswip_mdio_poll(priv);
489         if (err) {
490                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491                 return err;
492         }
493
494         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
495                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
496                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
497                 GSWIP_MDIO_CTRL);
498
499         err = gswip_mdio_poll(priv);
500         if (err) {
501                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
502                 return err;
503         }
504
505         return gswip_mdio_r(priv, GSWIP_MDIO_READ);
506 }
507
508 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
509 {
510         struct dsa_switch *ds = priv->ds;
511         int err;
512
513         ds->slave_mii_bus = mdiobus_alloc();
514         if (!ds->slave_mii_bus)
515                 return -ENOMEM;
516
517         ds->slave_mii_bus->priv = priv;
518         ds->slave_mii_bus->read = gswip_mdio_rd;
519         ds->slave_mii_bus->write = gswip_mdio_wr;
520         ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
521         snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
522                  dev_name(priv->dev));
523         ds->slave_mii_bus->parent = priv->dev;
524         ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
525
526         err = of_mdiobus_register(ds->slave_mii_bus, mdio_np);
527         if (err)
528                 mdiobus_free(ds->slave_mii_bus);
529
530         return err;
531 }
532
533 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
534                                       struct gswip_pce_table_entry *tbl)
535 {
536         int i;
537         int err;
538         u16 crtl;
539         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
540                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
541
542         mutex_lock(&priv->pce_table_lock);
543
544         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
545                                      GSWIP_PCE_TBL_CTRL_BAS);
546         if (err) {
547                 mutex_unlock(&priv->pce_table_lock);
548                 return err;
549         }
550
551         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
552         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
553                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
554                           tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
555                           GSWIP_PCE_TBL_CTRL);
556
557         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
558                                      GSWIP_PCE_TBL_CTRL_BAS);
559         if (err) {
560                 mutex_unlock(&priv->pce_table_lock);
561                 return err;
562         }
563
564         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
565                 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
566
567         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
568                 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
569
570         tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
571
572         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
573
574         tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
575         tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
576         tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
577
578         mutex_unlock(&priv->pce_table_lock);
579
580         return 0;
581 }
582
583 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
584                                        struct gswip_pce_table_entry *tbl)
585 {
586         int i;
587         int err;
588         u16 crtl;
589         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
590                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
591
592         mutex_lock(&priv->pce_table_lock);
593
594         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
595                                      GSWIP_PCE_TBL_CTRL_BAS);
596         if (err) {
597                 mutex_unlock(&priv->pce_table_lock);
598                 return err;
599         }
600
601         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
602         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
603                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
604                           tbl->table | addr_mode,
605                           GSWIP_PCE_TBL_CTRL);
606
607         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
608                 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
609
610         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
611                 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
612
613         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
614                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
615                           tbl->table | addr_mode,
616                           GSWIP_PCE_TBL_CTRL);
617
618         gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
619
620         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
621         crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
622                   GSWIP_PCE_TBL_CTRL_GMAP_MASK);
623         if (tbl->type)
624                 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
625         if (tbl->valid)
626                 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
627         crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
628         crtl |= GSWIP_PCE_TBL_CTRL_BAS;
629         gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
630
631         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
632                                      GSWIP_PCE_TBL_CTRL_BAS);
633
634         mutex_unlock(&priv->pce_table_lock);
635
636         return err;
637 }
638
639 /* Add the LAN port into a bridge with the CPU port by
640  * default. This prevents automatic forwarding of
641  * packages between the LAN ports when no explicit
642  * bridge is configured.
643  */
644 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
645 {
646         struct gswip_pce_table_entry vlan_active = {0,};
647         struct gswip_pce_table_entry vlan_mapping = {0,};
648         unsigned int cpu_port = priv->hw_info->cpu_port;
649         unsigned int max_ports = priv->hw_info->max_ports;
650         int err;
651
652         if (port >= max_ports) {
653                 dev_err(priv->dev, "single port for %i supported\n", port);
654                 return -EIO;
655         }
656
657         vlan_active.index = port + 1;
658         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
659         vlan_active.key[0] = 0; /* vid */
660         vlan_active.val[0] = port + 1 /* fid */;
661         vlan_active.valid = add;
662         err = gswip_pce_table_entry_write(priv, &vlan_active);
663         if (err) {
664                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
665                 return err;
666         }
667
668         if (!add)
669                 return 0;
670
671         vlan_mapping.index = port + 1;
672         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
673         vlan_mapping.val[0] = 0 /* vid */;
674         vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
675         vlan_mapping.val[2] = 0;
676         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
677         if (err) {
678                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
679                 return err;
680         }
681
682         return 0;
683 }
684
685 static int gswip_port_enable(struct dsa_switch *ds, int port,
686                              struct phy_device *phydev)
687 {
688         struct gswip_priv *priv = ds->priv;
689         int err;
690
691         if (!dsa_is_user_port(ds, port))
692                 return 0;
693
694         if (!dsa_is_cpu_port(ds, port)) {
695                 err = gswip_add_single_port_br(priv, port, true);
696                 if (err)
697                         return err;
698         }
699
700         /* RMON Counter Enable for port */
701         gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
702
703         /* enable port fetch/store dma & VLAN Modification */
704         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
705                                    GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
706                          GSWIP_FDMA_PCTRLp(port));
707         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
708                           GSWIP_SDMA_PCTRLp(port));
709
710         if (!dsa_is_cpu_port(ds, port)) {
711                 u32 mdio_phy = 0;
712
713                 if (phydev)
714                         mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
715
716                 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
717                                 GSWIP_MDIO_PHYp(port));
718         }
719
720         return 0;
721 }
722
723 static void gswip_port_disable(struct dsa_switch *ds, int port)
724 {
725         struct gswip_priv *priv = ds->priv;
726
727         if (!dsa_is_user_port(ds, port))
728                 return;
729
730         gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
731                           GSWIP_FDMA_PCTRLp(port));
732         gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
733                           GSWIP_SDMA_PCTRLp(port));
734 }
735
736 static int gswip_pce_load_microcode(struct gswip_priv *priv)
737 {
738         int i;
739         int err;
740
741         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
742                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
743                           GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
744         gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
745
746         for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
747                 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
748                 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
749                                GSWIP_PCE_TBL_VAL(0));
750                 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
751                                GSWIP_PCE_TBL_VAL(1));
752                 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
753                                GSWIP_PCE_TBL_VAL(2));
754                 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
755                                GSWIP_PCE_TBL_VAL(3));
756
757                 /* start the table access: */
758                 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
759                                   GSWIP_PCE_TBL_CTRL);
760                 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
761                                              GSWIP_PCE_TBL_CTRL_BAS);
762                 if (err)
763                         return err;
764         }
765
766         /* tell the switch that the microcode is loaded */
767         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
768                           GSWIP_PCE_GCTRL_0);
769
770         return 0;
771 }
772
773 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
774                                      bool vlan_filtering,
775                                      struct netlink_ext_ack *extack)
776 {
777         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
778         struct gswip_priv *priv = ds->priv;
779
780         /* Do not allow changing the VLAN filtering options while in bridge */
781         if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
782                 NL_SET_ERR_MSG_MOD(extack,
783                                    "Dynamic toggling of vlan_filtering not supported");
784                 return -EIO;
785         }
786
787         if (vlan_filtering) {
788                 /* Use port based VLAN tag */
789                 gswip_switch_mask(priv,
790                                   GSWIP_PCE_VCTRL_VSR,
791                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
792                                   GSWIP_PCE_VCTRL_VEMR,
793                                   GSWIP_PCE_VCTRL(port));
794                 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
795                                   GSWIP_PCE_PCTRL_0p(port));
796         } else {
797                 /* Use port based VLAN tag */
798                 gswip_switch_mask(priv,
799                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
800                                   GSWIP_PCE_VCTRL_VEMR,
801                                   GSWIP_PCE_VCTRL_VSR,
802                                   GSWIP_PCE_VCTRL(port));
803                 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
804                                   GSWIP_PCE_PCTRL_0p(port));
805         }
806
807         return 0;
808 }
809
810 static int gswip_setup(struct dsa_switch *ds)
811 {
812         struct gswip_priv *priv = ds->priv;
813         unsigned int cpu_port = priv->hw_info->cpu_port;
814         int i;
815         int err;
816
817         gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
818         usleep_range(5000, 10000);
819         gswip_switch_w(priv, 0, GSWIP_SWRES);
820
821         /* disable port fetch/store dma on all ports */
822         for (i = 0; i < priv->hw_info->max_ports; i++) {
823                 gswip_port_disable(ds, i);
824                 gswip_port_vlan_filtering(ds, i, false, NULL);
825         }
826
827         /* enable Switch */
828         gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
829
830         err = gswip_pce_load_microcode(priv);
831         if (err) {
832                 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
833                 return err;
834         }
835
836         /* Default unknown Broadcast/Multicast/Unicast port maps */
837         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
838         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
839         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
840
841         /* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
842          * interoperability problem with this auto polling mechanism because
843          * their status registers think that the link is in a different state
844          * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
845          * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
846          * auto polling state machine consider the link being negotiated with
847          * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
848          * to the switch port being completely dead (RX and TX are both not
849          * working).
850          * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
851          * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
852          * it would work fine for a few minutes to hours and then stop, on
853          * other device it would no traffic could be sent or received at all.
854          * Testing shows that when PHY auto polling is disabled these problems
855          * go away.
856          */
857         gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
858
859         /* Configure the MDIO Clock 2.5 MHz */
860         gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
861
862         /* Disable the xMII interface and clear it's isolation bit */
863         for (i = 0; i < priv->hw_info->max_ports; i++)
864                 gswip_mii_mask_cfg(priv,
865                                    GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
866                                    0, i);
867
868         /* enable special tag insertion on cpu port */
869         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
870                           GSWIP_FDMA_PCTRLp(cpu_port));
871
872         /* accept special tag in ingress direction */
873         gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
874                           GSWIP_PCE_PCTRL_0p(cpu_port));
875
876         gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
877                           GSWIP_BM_QUEUE_GCTRL);
878
879         /* VLAN aware Switching */
880         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
881
882         /* Flush MAC Table */
883         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
884
885         err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
886                                      GSWIP_PCE_GCTRL_0_MTFL);
887         if (err) {
888                 dev_err(priv->dev, "MAC flushing didn't finish\n");
889                 return err;
890         }
891
892         ds->mtu_enforcement_ingress = true;
893
894         gswip_port_enable(ds, cpu_port, NULL);
895
896         ds->configure_vlan_while_not_filtering = false;
897
898         return 0;
899 }
900
901 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
902                                                     int port,
903                                                     enum dsa_tag_protocol mp)
904 {
905         return DSA_TAG_PROTO_GSWIP;
906 }
907
908 static int gswip_vlan_active_create(struct gswip_priv *priv,
909                                     struct net_device *bridge,
910                                     int fid, u16 vid)
911 {
912         struct gswip_pce_table_entry vlan_active = {0,};
913         unsigned int max_ports = priv->hw_info->max_ports;
914         int idx = -1;
915         int err;
916         int i;
917
918         /* Look for a free slot */
919         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
920                 if (!priv->vlans[i].bridge) {
921                         idx = i;
922                         break;
923                 }
924         }
925
926         if (idx == -1)
927                 return -ENOSPC;
928
929         if (fid == -1)
930                 fid = idx;
931
932         vlan_active.index = idx;
933         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
934         vlan_active.key[0] = vid;
935         vlan_active.val[0] = fid;
936         vlan_active.valid = true;
937
938         err = gswip_pce_table_entry_write(priv, &vlan_active);
939         if (err) {
940                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
941                 return err;
942         }
943
944         priv->vlans[idx].bridge = bridge;
945         priv->vlans[idx].vid = vid;
946         priv->vlans[idx].fid = fid;
947
948         return idx;
949 }
950
951 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
952 {
953         struct gswip_pce_table_entry vlan_active = {0,};
954         int err;
955
956         vlan_active.index = idx;
957         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
958         vlan_active.valid = false;
959         err = gswip_pce_table_entry_write(priv, &vlan_active);
960         if (err)
961                 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
962         priv->vlans[idx].bridge = NULL;
963
964         return err;
965 }
966
967 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
968                                   struct net_device *bridge, int port)
969 {
970         struct gswip_pce_table_entry vlan_mapping = {0,};
971         unsigned int max_ports = priv->hw_info->max_ports;
972         unsigned int cpu_port = priv->hw_info->cpu_port;
973         bool active_vlan_created = false;
974         int idx = -1;
975         int i;
976         int err;
977
978         /* Check if there is already a page for this bridge */
979         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
980                 if (priv->vlans[i].bridge == bridge) {
981                         idx = i;
982                         break;
983                 }
984         }
985
986         /* If this bridge is not programmed yet, add a Active VLAN table
987          * entry in a free slot and prepare the VLAN mapping table entry.
988          */
989         if (idx == -1) {
990                 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
991                 if (idx < 0)
992                         return idx;
993                 active_vlan_created = true;
994
995                 vlan_mapping.index = idx;
996                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
997                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
998                 vlan_mapping.val[0] = 0;
999         } else {
1000                 /* Read the existing VLAN mapping entry from the switch */
1001                 vlan_mapping.index = idx;
1002                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1003                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1004                 if (err) {
1005                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1006                                 err);
1007                         return err;
1008                 }
1009         }
1010
1011         /* Update the VLAN mapping entry and write it to the switch */
1012         vlan_mapping.val[1] |= BIT(cpu_port);
1013         vlan_mapping.val[1] |= BIT(port);
1014         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1015         if (err) {
1016                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1017                 /* In case an Active VLAN was creaetd delete it again */
1018                 if (active_vlan_created)
1019                         gswip_vlan_active_remove(priv, idx);
1020                 return err;
1021         }
1022
1023         gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1024         return 0;
1025 }
1026
1027 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1028                                 struct net_device *bridge, int port,
1029                                 u16 vid, bool untagged,
1030                                 bool pvid)
1031 {
1032         struct gswip_pce_table_entry vlan_mapping = {0,};
1033         unsigned int max_ports = priv->hw_info->max_ports;
1034         unsigned int cpu_port = priv->hw_info->cpu_port;
1035         bool active_vlan_created = false;
1036         int idx = -1;
1037         int fid = -1;
1038         int i;
1039         int err;
1040
1041         /* Check if there is already a page for this bridge */
1042         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1043                 if (priv->vlans[i].bridge == bridge) {
1044                         if (fid != -1 && fid != priv->vlans[i].fid)
1045                                 dev_err(priv->dev, "one bridge with multiple flow ids\n");
1046                         fid = priv->vlans[i].fid;
1047                         if (priv->vlans[i].vid == vid) {
1048                                 idx = i;
1049                                 break;
1050                         }
1051                 }
1052         }
1053
1054         /* If this bridge is not programmed yet, add a Active VLAN table
1055          * entry in a free slot and prepare the VLAN mapping table entry.
1056          */
1057         if (idx == -1) {
1058                 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1059                 if (idx < 0)
1060                         return idx;
1061                 active_vlan_created = true;
1062
1063                 vlan_mapping.index = idx;
1064                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1065                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1066                 vlan_mapping.val[0] = vid;
1067         } else {
1068                 /* Read the existing VLAN mapping entry from the switch */
1069                 vlan_mapping.index = idx;
1070                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1071                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1072                 if (err) {
1073                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1074                                 err);
1075                         return err;
1076                 }
1077         }
1078
1079         vlan_mapping.val[0] = vid;
1080         /* Update the VLAN mapping entry and write it to the switch */
1081         vlan_mapping.val[1] |= BIT(cpu_port);
1082         vlan_mapping.val[2] |= BIT(cpu_port);
1083         vlan_mapping.val[1] |= BIT(port);
1084         if (untagged)
1085                 vlan_mapping.val[2] &= ~BIT(port);
1086         else
1087                 vlan_mapping.val[2] |= BIT(port);
1088         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1089         if (err) {
1090                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1091                 /* In case an Active VLAN was creaetd delete it again */
1092                 if (active_vlan_created)
1093                         gswip_vlan_active_remove(priv, idx);
1094                 return err;
1095         }
1096
1097         if (pvid)
1098                 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1099
1100         return 0;
1101 }
1102
1103 static int gswip_vlan_remove(struct gswip_priv *priv,
1104                              struct net_device *bridge, int port,
1105                              u16 vid, bool pvid, bool vlan_aware)
1106 {
1107         struct gswip_pce_table_entry vlan_mapping = {0,};
1108         unsigned int max_ports = priv->hw_info->max_ports;
1109         unsigned int cpu_port = priv->hw_info->cpu_port;
1110         int idx = -1;
1111         int i;
1112         int err;
1113
1114         /* Check if there is already a page for this bridge */
1115         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1116                 if (priv->vlans[i].bridge == bridge &&
1117                     (!vlan_aware || priv->vlans[i].vid == vid)) {
1118                         idx = i;
1119                         break;
1120                 }
1121         }
1122
1123         if (idx == -1) {
1124                 dev_err(priv->dev, "bridge to leave does not exists\n");
1125                 return -ENOENT;
1126         }
1127
1128         vlan_mapping.index = idx;
1129         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1130         err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1131         if (err) {
1132                 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1133                 return err;
1134         }
1135
1136         vlan_mapping.val[1] &= ~BIT(port);
1137         vlan_mapping.val[2] &= ~BIT(port);
1138         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1139         if (err) {
1140                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1141                 return err;
1142         }
1143
1144         /* In case all ports are removed from the bridge, remove the VLAN */
1145         if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1146                 err = gswip_vlan_active_remove(priv, idx);
1147                 if (err) {
1148                         dev_err(priv->dev, "failed to write active VLAN: %d\n",
1149                                 err);
1150                         return err;
1151                 }
1152         }
1153
1154         /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1155         if (pvid)
1156                 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1157
1158         return 0;
1159 }
1160
1161 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1162                                   struct dsa_bridge bridge,
1163                                   bool *tx_fwd_offload,
1164                                   struct netlink_ext_ack *extack)
1165 {
1166         struct net_device *br = bridge.dev;
1167         struct gswip_priv *priv = ds->priv;
1168         int err;
1169
1170         /* When the bridge uses VLAN filtering we have to configure VLAN
1171          * specific bridges. No bridge is configured here.
1172          */
1173         if (!br_vlan_enabled(br)) {
1174                 err = gswip_vlan_add_unaware(priv, br, port);
1175                 if (err)
1176                         return err;
1177                 priv->port_vlan_filter &= ~BIT(port);
1178         } else {
1179                 priv->port_vlan_filter |= BIT(port);
1180         }
1181         return gswip_add_single_port_br(priv, port, false);
1182 }
1183
1184 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1185                                     struct dsa_bridge bridge)
1186 {
1187         struct net_device *br = bridge.dev;
1188         struct gswip_priv *priv = ds->priv;
1189
1190         gswip_add_single_port_br(priv, port, true);
1191
1192         /* When the bridge uses VLAN filtering we have to configure VLAN
1193          * specific bridges. No bridge is configured here.
1194          */
1195         if (!br_vlan_enabled(br))
1196                 gswip_vlan_remove(priv, br, port, 0, true, false);
1197 }
1198
1199 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1200                                    const struct switchdev_obj_port_vlan *vlan,
1201                                    struct netlink_ext_ack *extack)
1202 {
1203         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1204         struct gswip_priv *priv = ds->priv;
1205         unsigned int max_ports = priv->hw_info->max_ports;
1206         int pos = max_ports;
1207         int i, idx = -1;
1208
1209         /* We only support VLAN filtering on bridges */
1210         if (!dsa_is_cpu_port(ds, port) && !bridge)
1211                 return -EOPNOTSUPP;
1212
1213         /* Check if there is already a page for this VLAN */
1214         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1215                 if (priv->vlans[i].bridge == bridge &&
1216                     priv->vlans[i].vid == vlan->vid) {
1217                         idx = i;
1218                         break;
1219                 }
1220         }
1221
1222         /* If this VLAN is not programmed yet, we have to reserve
1223          * one entry in the VLAN table. Make sure we start at the
1224          * next position round.
1225          */
1226         if (idx == -1) {
1227                 /* Look for a free slot */
1228                 for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1229                         if (!priv->vlans[pos].bridge) {
1230                                 idx = pos;
1231                                 pos++;
1232                                 break;
1233                         }
1234                 }
1235
1236                 if (idx == -1) {
1237                         NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1238                         return -ENOSPC;
1239                 }
1240         }
1241
1242         return 0;
1243 }
1244
1245 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1246                                const struct switchdev_obj_port_vlan *vlan,
1247                                struct netlink_ext_ack *extack)
1248 {
1249         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1250         struct gswip_priv *priv = ds->priv;
1251         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1252         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1253         int err;
1254
1255         err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1256         if (err)
1257                 return err;
1258
1259         /* We have to receive all packets on the CPU port and should not
1260          * do any VLAN filtering here. This is also called with bridge
1261          * NULL and then we do not know for which bridge to configure
1262          * this.
1263          */
1264         if (dsa_is_cpu_port(ds, port))
1265                 return 0;
1266
1267         return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1268                                     untagged, pvid);
1269 }
1270
1271 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1272                                const struct switchdev_obj_port_vlan *vlan)
1273 {
1274         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1275         struct gswip_priv *priv = ds->priv;
1276         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1277
1278         /* We have to receive all packets on the CPU port and should not
1279          * do any VLAN filtering here. This is also called with bridge
1280          * NULL and then we do not know for which bridge to configure
1281          * this.
1282          */
1283         if (dsa_is_cpu_port(ds, port))
1284                 return 0;
1285
1286         return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1287 }
1288
1289 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1290 {
1291         struct gswip_priv *priv = ds->priv;
1292         struct gswip_pce_table_entry mac_bridge = {0,};
1293         int i;
1294         int err;
1295
1296         for (i = 0; i < 2048; i++) {
1297                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1298                 mac_bridge.index = i;
1299
1300                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1301                 if (err) {
1302                         dev_err(priv->dev, "failed to read mac bridge: %d\n",
1303                                 err);
1304                         return;
1305                 }
1306
1307                 if (!mac_bridge.valid)
1308                         continue;
1309
1310                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1311                         continue;
1312
1313                 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1314                         continue;
1315
1316                 mac_bridge.valid = false;
1317                 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1318                 if (err) {
1319                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1320                                 err);
1321                         return;
1322                 }
1323         }
1324 }
1325
1326 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1327 {
1328         struct gswip_priv *priv = ds->priv;
1329         u32 stp_state;
1330
1331         switch (state) {
1332         case BR_STATE_DISABLED:
1333                 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1334                                   GSWIP_SDMA_PCTRLp(port));
1335                 return;
1336         case BR_STATE_BLOCKING:
1337         case BR_STATE_LISTENING:
1338                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1339                 break;
1340         case BR_STATE_LEARNING:
1341                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1342                 break;
1343         case BR_STATE_FORWARDING:
1344                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1345                 break;
1346         default:
1347                 dev_err(priv->dev, "invalid STP state: %d\n", state);
1348                 return;
1349         }
1350
1351         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1352                           GSWIP_SDMA_PCTRLp(port));
1353         gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1354                           GSWIP_PCE_PCTRL_0p(port));
1355 }
1356
1357 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1358                           const unsigned char *addr, u16 vid, bool add)
1359 {
1360         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1361         struct gswip_priv *priv = ds->priv;
1362         struct gswip_pce_table_entry mac_bridge = {0,};
1363         unsigned int cpu_port = priv->hw_info->cpu_port;
1364         int fid = -1;
1365         int i;
1366         int err;
1367
1368         if (!bridge)
1369                 return -EINVAL;
1370
1371         for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1372                 if (priv->vlans[i].bridge == bridge) {
1373                         fid = priv->vlans[i].fid;
1374                         break;
1375                 }
1376         }
1377
1378         if (fid == -1) {
1379                 dev_err(priv->dev, "Port not part of a bridge\n");
1380                 return -EINVAL;
1381         }
1382
1383         mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1384         mac_bridge.key_mode = true;
1385         mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1386         mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1387         mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1388         mac_bridge.key[3] = fid;
1389         mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1390         mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1391         mac_bridge.valid = add;
1392
1393         err = gswip_pce_table_entry_write(priv, &mac_bridge);
1394         if (err)
1395                 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1396
1397         return err;
1398 }
1399
1400 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1401                               const unsigned char *addr, u16 vid,
1402                               struct dsa_db db)
1403 {
1404         return gswip_port_fdb(ds, port, addr, vid, true);
1405 }
1406
1407 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1408                               const unsigned char *addr, u16 vid,
1409                               struct dsa_db db)
1410 {
1411         return gswip_port_fdb(ds, port, addr, vid, false);
1412 }
1413
1414 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1415                                dsa_fdb_dump_cb_t *cb, void *data)
1416 {
1417         struct gswip_priv *priv = ds->priv;
1418         struct gswip_pce_table_entry mac_bridge = {0,};
1419         unsigned char addr[6];
1420         int i;
1421         int err;
1422
1423         for (i = 0; i < 2048; i++) {
1424                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1425                 mac_bridge.index = i;
1426
1427                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1428                 if (err) {
1429                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1430                                 err);
1431                         return err;
1432                 }
1433
1434                 if (!mac_bridge.valid)
1435                         continue;
1436
1437                 addr[5] = mac_bridge.key[0] & 0xff;
1438                 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1439                 addr[3] = mac_bridge.key[1] & 0xff;
1440                 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1441                 addr[1] = mac_bridge.key[2] & 0xff;
1442                 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1443                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1444                         if (mac_bridge.val[0] & BIT(port)) {
1445                                 err = cb(addr, 0, true, data);
1446                                 if (err)
1447                                         return err;
1448                         }
1449                 } else {
1450                         if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1451                                 err = cb(addr, 0, false, data);
1452                                 if (err)
1453                                         return err;
1454                         }
1455                 }
1456         }
1457         return 0;
1458 }
1459
1460 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1461 {
1462         /* Includes 8 bytes for special header. */
1463         return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1464 }
1465
1466 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1467 {
1468         struct gswip_priv *priv = ds->priv;
1469         int cpu_port = priv->hw_info->cpu_port;
1470
1471         /* CPU port always has maximum mtu of user ports, so use it to set
1472          * switch frame size, including 8 byte special header.
1473          */
1474         if (port == cpu_port) {
1475                 new_mtu += 8;
1476                 gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1477                                GSWIP_MAC_FLEN);
1478         }
1479
1480         /* Enable MLEN for ports with non-standard MTUs, including the special
1481          * header on the CPU port added above.
1482          */
1483         if (new_mtu != ETH_DATA_LEN)
1484                 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1485                                   GSWIP_MAC_CTRL_2p(port));
1486         else
1487                 gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1488                                   GSWIP_MAC_CTRL_2p(port));
1489
1490         return 0;
1491 }
1492
1493 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1494                                           struct phylink_config *config)
1495 {
1496         switch (port) {
1497         case 0:
1498         case 1:
1499                 phy_interface_set_rgmii(config->supported_interfaces);
1500                 __set_bit(PHY_INTERFACE_MODE_MII,
1501                           config->supported_interfaces);
1502                 __set_bit(PHY_INTERFACE_MODE_REVMII,
1503                           config->supported_interfaces);
1504                 __set_bit(PHY_INTERFACE_MODE_RMII,
1505                           config->supported_interfaces);
1506                 break;
1507
1508         case 2:
1509         case 3:
1510         case 4:
1511                 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1512                           config->supported_interfaces);
1513                 break;
1514
1515         case 5:
1516                 phy_interface_set_rgmii(config->supported_interfaces);
1517                 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1518                           config->supported_interfaces);
1519                 break;
1520         }
1521
1522         config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1523                 MAC_10 | MAC_100 | MAC_1000;
1524 }
1525
1526 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1527                                           struct phylink_config *config)
1528 {
1529         switch (port) {
1530         case 0:
1531                 phy_interface_set_rgmii(config->supported_interfaces);
1532                 __set_bit(PHY_INTERFACE_MODE_GMII,
1533                           config->supported_interfaces);
1534                 __set_bit(PHY_INTERFACE_MODE_RMII,
1535                           config->supported_interfaces);
1536                 break;
1537
1538         case 1:
1539         case 2:
1540         case 3:
1541         case 4:
1542                 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1543                           config->supported_interfaces);
1544                 break;
1545
1546         case 5:
1547                 phy_interface_set_rgmii(config->supported_interfaces);
1548                 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1549                           config->supported_interfaces);
1550                 __set_bit(PHY_INTERFACE_MODE_RMII,
1551                           config->supported_interfaces);
1552                 break;
1553         }
1554
1555         config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1556                 MAC_10 | MAC_100 | MAC_1000;
1557 }
1558
1559 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1560 {
1561         u32 mdio_phy;
1562
1563         if (link)
1564                 mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1565         else
1566                 mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1567
1568         gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1569                         GSWIP_MDIO_PHYp(port));
1570 }
1571
1572 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1573                                  phy_interface_t interface)
1574 {
1575         u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1576
1577         switch (speed) {
1578         case SPEED_10:
1579                 mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1580
1581                 if (interface == PHY_INTERFACE_MODE_RMII)
1582                         mii_cfg = GSWIP_MII_CFG_RATE_M50;
1583                 else
1584                         mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1585
1586                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1587                 break;
1588
1589         case SPEED_100:
1590                 mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1591
1592                 if (interface == PHY_INTERFACE_MODE_RMII)
1593                         mii_cfg = GSWIP_MII_CFG_RATE_M50;
1594                 else
1595                         mii_cfg = GSWIP_MII_CFG_RATE_M25;
1596
1597                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1598                 break;
1599
1600         case SPEED_1000:
1601                 mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1602
1603                 mii_cfg = GSWIP_MII_CFG_RATE_M125;
1604
1605                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1606                 break;
1607         }
1608
1609         gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1610                         GSWIP_MDIO_PHYp(port));
1611         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1612         gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1613                           GSWIP_MAC_CTRL_0p(port));
1614 }
1615
1616 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1617 {
1618         u32 mac_ctrl_0, mdio_phy;
1619
1620         if (duplex == DUPLEX_FULL) {
1621                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1622                 mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1623         } else {
1624                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1625                 mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1626         }
1627
1628         gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1629                           GSWIP_MAC_CTRL_0p(port));
1630         gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1631                         GSWIP_MDIO_PHYp(port));
1632 }
1633
1634 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1635                                  bool tx_pause, bool rx_pause)
1636 {
1637         u32 mac_ctrl_0, mdio_phy;
1638
1639         if (tx_pause && rx_pause) {
1640                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1641                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1642                            GSWIP_MDIO_PHY_FCONRX_EN;
1643         } else if (tx_pause) {
1644                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1645                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1646                            GSWIP_MDIO_PHY_FCONRX_DIS;
1647         } else if (rx_pause) {
1648                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1649                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1650                            GSWIP_MDIO_PHY_FCONRX_EN;
1651         } else {
1652                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1653                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1654                            GSWIP_MDIO_PHY_FCONRX_DIS;
1655         }
1656
1657         gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1658                           mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1659         gswip_mdio_mask(priv,
1660                         GSWIP_MDIO_PHY_FCONTX_MASK |
1661                         GSWIP_MDIO_PHY_FCONRX_MASK,
1662                         mdio_phy, GSWIP_MDIO_PHYp(port));
1663 }
1664
1665 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1666                                      unsigned int mode,
1667                                      const struct phylink_link_state *state)
1668 {
1669         struct gswip_priv *priv = ds->priv;
1670         u32 miicfg = 0;
1671
1672         miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1673
1674         switch (state->interface) {
1675         case PHY_INTERFACE_MODE_MII:
1676         case PHY_INTERFACE_MODE_INTERNAL:
1677                 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1678                 break;
1679         case PHY_INTERFACE_MODE_REVMII:
1680                 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1681                 break;
1682         case PHY_INTERFACE_MODE_RMII:
1683                 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1684                 break;
1685         case PHY_INTERFACE_MODE_RGMII:
1686         case PHY_INTERFACE_MODE_RGMII_ID:
1687         case PHY_INTERFACE_MODE_RGMII_RXID:
1688         case PHY_INTERFACE_MODE_RGMII_TXID:
1689                 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1690                 break;
1691         case PHY_INTERFACE_MODE_GMII:
1692                 miicfg |= GSWIP_MII_CFG_MODE_GMII;
1693                 break;
1694         default:
1695                 dev_err(ds->dev,
1696                         "Unsupported interface: %d\n", state->interface);
1697                 return;
1698         }
1699
1700         gswip_mii_mask_cfg(priv,
1701                            GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1702                            GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1703                            miicfg, port);
1704
1705         switch (state->interface) {
1706         case PHY_INTERFACE_MODE_RGMII_ID:
1707                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1708                                           GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1709                 break;
1710         case PHY_INTERFACE_MODE_RGMII_RXID:
1711                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1712                 break;
1713         case PHY_INTERFACE_MODE_RGMII_TXID:
1714                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1715                 break;
1716         default:
1717                 break;
1718         }
1719 }
1720
1721 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1722                                         unsigned int mode,
1723                                         phy_interface_t interface)
1724 {
1725         struct gswip_priv *priv = ds->priv;
1726
1727         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1728
1729         if (!dsa_is_cpu_port(ds, port))
1730                 gswip_port_set_link(priv, port, false);
1731 }
1732
1733 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1734                                       unsigned int mode,
1735                                       phy_interface_t interface,
1736                                       struct phy_device *phydev,
1737                                       int speed, int duplex,
1738                                       bool tx_pause, bool rx_pause)
1739 {
1740         struct gswip_priv *priv = ds->priv;
1741
1742         if (!dsa_is_cpu_port(ds, port)) {
1743                 gswip_port_set_link(priv, port, true);
1744                 gswip_port_set_speed(priv, port, speed, interface);
1745                 gswip_port_set_duplex(priv, port, duplex);
1746                 gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1747         }
1748
1749         gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1750 }
1751
1752 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1753                               uint8_t *data)
1754 {
1755         int i;
1756
1757         if (stringset != ETH_SS_STATS)
1758                 return;
1759
1760         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1761                 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1762                         ETH_GSTRING_LEN);
1763 }
1764
1765 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1766                                     u32 index)
1767 {
1768         u32 result;
1769         int err;
1770
1771         gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1772         gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1773                                 GSWIP_BM_RAM_CTRL_OPMOD,
1774                               table | GSWIP_BM_RAM_CTRL_BAS,
1775                               GSWIP_BM_RAM_CTRL);
1776
1777         err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1778                                      GSWIP_BM_RAM_CTRL_BAS);
1779         if (err) {
1780                 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1781                         table, index);
1782                 return 0;
1783         }
1784
1785         result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1786         result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1787
1788         return result;
1789 }
1790
1791 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1792                                     uint64_t *data)
1793 {
1794         struct gswip_priv *priv = ds->priv;
1795         const struct gswip_rmon_cnt_desc *rmon_cnt;
1796         int i;
1797         u64 high;
1798
1799         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1800                 rmon_cnt = &gswip_rmon_cnt[i];
1801
1802                 data[i] = gswip_bcm_ram_entry_read(priv, port,
1803                                                    rmon_cnt->offset);
1804                 if (rmon_cnt->size == 2) {
1805                         high = gswip_bcm_ram_entry_read(priv, port,
1806                                                         rmon_cnt->offset + 1);
1807                         data[i] |= high << 32;
1808                 }
1809         }
1810 }
1811
1812 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1813 {
1814         if (sset != ETH_SS_STATS)
1815                 return 0;
1816
1817         return ARRAY_SIZE(gswip_rmon_cnt);
1818 }
1819
1820 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1821         .get_tag_protocol       = gswip_get_tag_protocol,
1822         .setup                  = gswip_setup,
1823         .port_enable            = gswip_port_enable,
1824         .port_disable           = gswip_port_disable,
1825         .port_bridge_join       = gswip_port_bridge_join,
1826         .port_bridge_leave      = gswip_port_bridge_leave,
1827         .port_fast_age          = gswip_port_fast_age,
1828         .port_vlan_filtering    = gswip_port_vlan_filtering,
1829         .port_vlan_add          = gswip_port_vlan_add,
1830         .port_vlan_del          = gswip_port_vlan_del,
1831         .port_stp_state_set     = gswip_port_stp_state_set,
1832         .port_fdb_add           = gswip_port_fdb_add,
1833         .port_fdb_del           = gswip_port_fdb_del,
1834         .port_fdb_dump          = gswip_port_fdb_dump,
1835         .port_change_mtu        = gswip_port_change_mtu,
1836         .port_max_mtu           = gswip_port_max_mtu,
1837         .phylink_get_caps       = gswip_xrx200_phylink_get_caps,
1838         .phylink_mac_config     = gswip_phylink_mac_config,
1839         .phylink_mac_link_down  = gswip_phylink_mac_link_down,
1840         .phylink_mac_link_up    = gswip_phylink_mac_link_up,
1841         .get_strings            = gswip_get_strings,
1842         .get_ethtool_stats      = gswip_get_ethtool_stats,
1843         .get_sset_count         = gswip_get_sset_count,
1844 };
1845
1846 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1847         .get_tag_protocol       = gswip_get_tag_protocol,
1848         .setup                  = gswip_setup,
1849         .port_enable            = gswip_port_enable,
1850         .port_disable           = gswip_port_disable,
1851         .port_bridge_join       = gswip_port_bridge_join,
1852         .port_bridge_leave      = gswip_port_bridge_leave,
1853         .port_fast_age          = gswip_port_fast_age,
1854         .port_vlan_filtering    = gswip_port_vlan_filtering,
1855         .port_vlan_add          = gswip_port_vlan_add,
1856         .port_vlan_del          = gswip_port_vlan_del,
1857         .port_stp_state_set     = gswip_port_stp_state_set,
1858         .port_fdb_add           = gswip_port_fdb_add,
1859         .port_fdb_del           = gswip_port_fdb_del,
1860         .port_fdb_dump          = gswip_port_fdb_dump,
1861         .port_change_mtu        = gswip_port_change_mtu,
1862         .port_max_mtu           = gswip_port_max_mtu,
1863         .phylink_get_caps       = gswip_xrx300_phylink_get_caps,
1864         .phylink_mac_config     = gswip_phylink_mac_config,
1865         .phylink_mac_link_down  = gswip_phylink_mac_link_down,
1866         .phylink_mac_link_up    = gswip_phylink_mac_link_up,
1867         .get_strings            = gswip_get_strings,
1868         .get_ethtool_stats      = gswip_get_ethtool_stats,
1869         .get_sset_count         = gswip_get_sset_count,
1870 };
1871
1872 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1873         .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1874         .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1875 };
1876
1877 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1878         .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1879         .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1880 };
1881
1882 static const struct xway_gphy_match_data xrx300_gphy_data = {
1883         .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1884         .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1885 };
1886
1887 static const struct of_device_id xway_gphy_match[] = {
1888         { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1889         { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1890         { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1891         { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1892         { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1893         {},
1894 };
1895
1896 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1897 {
1898         struct device *dev = priv->dev;
1899         const struct firmware *fw;
1900         void *fw_addr;
1901         dma_addr_t dma_addr;
1902         dma_addr_t dev_addr;
1903         size_t size;
1904         int ret;
1905
1906         ret = clk_prepare_enable(gphy_fw->clk_gate);
1907         if (ret)
1908                 return ret;
1909
1910         reset_control_assert(gphy_fw->reset);
1911
1912         /* The vendor BSP uses a 200ms delay after asserting the reset line.
1913          * Without this some users are observing that the PHY is not coming up
1914          * on the MDIO bus.
1915          */
1916         msleep(200);
1917
1918         ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1919         if (ret) {
1920                 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1921                         gphy_fw->fw_name, ret);
1922                 return ret;
1923         }
1924
1925         /* GPHY cores need the firmware code in a persistent and contiguous
1926          * memory area with a 16 kB boundary aligned start address.
1927          */
1928         size = fw->size + XRX200_GPHY_FW_ALIGN;
1929
1930         fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1931         if (fw_addr) {
1932                 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1933                 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1934                 memcpy(fw_addr, fw->data, fw->size);
1935         } else {
1936                 dev_err(dev, "failed to alloc firmware memory\n");
1937                 release_firmware(fw);
1938                 return -ENOMEM;
1939         }
1940
1941         release_firmware(fw);
1942
1943         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1944         if (ret)
1945                 return ret;
1946
1947         reset_control_deassert(gphy_fw->reset);
1948
1949         return ret;
1950 }
1951
1952 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1953                                struct gswip_gphy_fw *gphy_fw,
1954                                struct device_node *gphy_fw_np, int i)
1955 {
1956         struct device *dev = priv->dev;
1957         u32 gphy_mode;
1958         int ret;
1959         char gphyname[10];
1960
1961         snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1962
1963         gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1964         if (IS_ERR(gphy_fw->clk_gate)) {
1965                 dev_err(dev, "Failed to lookup gate clock\n");
1966                 return PTR_ERR(gphy_fw->clk_gate);
1967         }
1968
1969         ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1970         if (ret)
1971                 return ret;
1972
1973         ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1974         /* Default to GE mode */
1975         if (ret)
1976                 gphy_mode = GPHY_MODE_GE;
1977
1978         switch (gphy_mode) {
1979         case GPHY_MODE_FE:
1980                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1981                 break;
1982         case GPHY_MODE_GE:
1983                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1984                 break;
1985         default:
1986                 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1987                 return -EINVAL;
1988         }
1989
1990         gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1991         if (IS_ERR(gphy_fw->reset)) {
1992                 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1993                         dev_err(dev, "Failed to lookup gphy reset\n");
1994                 return PTR_ERR(gphy_fw->reset);
1995         }
1996
1997         return gswip_gphy_fw_load(priv, gphy_fw);
1998 }
1999
2000 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2001                                  struct gswip_gphy_fw *gphy_fw)
2002 {
2003         int ret;
2004
2005         /* check if the device was fully probed */
2006         if (!gphy_fw->fw_name)
2007                 return;
2008
2009         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2010         if (ret)
2011                 dev_err(priv->dev, "can not reset GPHY FW pointer");
2012
2013         clk_disable_unprepare(gphy_fw->clk_gate);
2014
2015         reset_control_put(gphy_fw->reset);
2016 }
2017
2018 static int gswip_gphy_fw_list(struct gswip_priv *priv,
2019                               struct device_node *gphy_fw_list_np, u32 version)
2020 {
2021         struct device *dev = priv->dev;
2022         struct device_node *gphy_fw_np;
2023         const struct of_device_id *match;
2024         int err;
2025         int i = 0;
2026
2027         /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2028          * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2029          * needs a different GPHY firmware.
2030          */
2031         if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2032                 switch (version) {
2033                 case GSWIP_VERSION_2_0:
2034                         priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2035                         break;
2036                 case GSWIP_VERSION_2_1:
2037                         priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2038                         break;
2039                 default:
2040                         dev_err(dev, "unknown GSWIP version: 0x%x", version);
2041                         return -ENOENT;
2042                 }
2043         }
2044
2045         match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2046         if (match && match->data)
2047                 priv->gphy_fw_name_cfg = match->data;
2048
2049         if (!priv->gphy_fw_name_cfg) {
2050                 dev_err(dev, "GPHY compatible type not supported");
2051                 return -ENOENT;
2052         }
2053
2054         priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2055         if (!priv->num_gphy_fw)
2056                 return -ENOENT;
2057
2058         priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2059                                                            "lantiq,rcu");
2060         if (IS_ERR(priv->rcu_regmap))
2061                 return PTR_ERR(priv->rcu_regmap);
2062
2063         priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2064                                            sizeof(*priv->gphy_fw),
2065                                            GFP_KERNEL | __GFP_ZERO);
2066         if (!priv->gphy_fw)
2067                 return -ENOMEM;
2068
2069         for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2070                 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2071                                           gphy_fw_np, i);
2072                 if (err)
2073                         goto remove_gphy;
2074                 i++;
2075         }
2076
2077         /* The standalone PHY11G requires 300ms to be fully
2078          * initialized and ready for any MDIO communication after being
2079          * taken out of reset. For the SoC-internal GPHY variant there
2080          * is no (known) documentation for the minimum time after a
2081          * reset. Use the same value as for the standalone variant as
2082          * some users have reported internal PHYs not being detected
2083          * without any delay.
2084          */
2085         msleep(300);
2086
2087         return 0;
2088
2089 remove_gphy:
2090         for (i = 0; i < priv->num_gphy_fw; i++)
2091                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2092         return err;
2093 }
2094
2095 static int gswip_probe(struct platform_device *pdev)
2096 {
2097         struct gswip_priv *priv;
2098         struct device_node *np, *mdio_np, *gphy_fw_np;
2099         struct device *dev = &pdev->dev;
2100         int err;
2101         int i;
2102         u32 version;
2103
2104         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2105         if (!priv)
2106                 return -ENOMEM;
2107
2108         priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2109         if (IS_ERR(priv->gswip))
2110                 return PTR_ERR(priv->gswip);
2111
2112         priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2113         if (IS_ERR(priv->mdio))
2114                 return PTR_ERR(priv->mdio);
2115
2116         priv->mii = devm_platform_ioremap_resource(pdev, 2);
2117         if (IS_ERR(priv->mii))
2118                 return PTR_ERR(priv->mii);
2119
2120         priv->hw_info = of_device_get_match_data(dev);
2121         if (!priv->hw_info)
2122                 return -EINVAL;
2123
2124         priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2125         if (!priv->ds)
2126                 return -ENOMEM;
2127
2128         priv->ds->dev = dev;
2129         priv->ds->num_ports = priv->hw_info->max_ports;
2130         priv->ds->priv = priv;
2131         priv->ds->ops = priv->hw_info->ops;
2132         priv->dev = dev;
2133         mutex_init(&priv->pce_table_lock);
2134         version = gswip_switch_r(priv, GSWIP_VERSION);
2135
2136         np = dev->of_node;
2137         switch (version) {
2138         case GSWIP_VERSION_2_0:
2139         case GSWIP_VERSION_2_1:
2140                 if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2141                         return -EINVAL;
2142                 break;
2143         case GSWIP_VERSION_2_2:
2144         case GSWIP_VERSION_2_2_ETC:
2145                 if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2146                     !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2147                         return -EINVAL;
2148                 break;
2149         default:
2150                 dev_err(dev, "unknown GSWIP version: 0x%x", version);
2151                 return -ENOENT;
2152         }
2153
2154         /* bring up the mdio bus */
2155         gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2156         if (gphy_fw_np) {
2157                 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2158                 of_node_put(gphy_fw_np);
2159                 if (err) {
2160                         dev_err(dev, "gphy fw probe failed\n");
2161                         return err;
2162                 }
2163         }
2164
2165         /* bring up the mdio bus */
2166         mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2167         if (mdio_np) {
2168                 err = gswip_mdio(priv, mdio_np);
2169                 if (err) {
2170                         dev_err(dev, "mdio probe failed\n");
2171                         goto put_mdio_node;
2172                 }
2173         }
2174
2175         err = dsa_register_switch(priv->ds);
2176         if (err) {
2177                 dev_err(dev, "dsa switch register failed: %i\n", err);
2178                 goto mdio_bus;
2179         }
2180         if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2181                 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2182                         priv->hw_info->cpu_port);
2183                 err = -EINVAL;
2184                 goto disable_switch;
2185         }
2186
2187         platform_set_drvdata(pdev, priv);
2188
2189         dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2190                  (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2191                  (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2192         return 0;
2193
2194 disable_switch:
2195         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2196         dsa_unregister_switch(priv->ds);
2197 mdio_bus:
2198         if (mdio_np) {
2199                 mdiobus_unregister(priv->ds->slave_mii_bus);
2200                 mdiobus_free(priv->ds->slave_mii_bus);
2201         }
2202 put_mdio_node:
2203         of_node_put(mdio_np);
2204         for (i = 0; i < priv->num_gphy_fw; i++)
2205                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2206         return err;
2207 }
2208
2209 static int gswip_remove(struct platform_device *pdev)
2210 {
2211         struct gswip_priv *priv = platform_get_drvdata(pdev);
2212         int i;
2213
2214         if (!priv)
2215                 return 0;
2216
2217         /* disable the switch */
2218         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2219
2220         dsa_unregister_switch(priv->ds);
2221
2222         if (priv->ds->slave_mii_bus) {
2223                 mdiobus_unregister(priv->ds->slave_mii_bus);
2224                 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2225                 mdiobus_free(priv->ds->slave_mii_bus);
2226         }
2227
2228         for (i = 0; i < priv->num_gphy_fw; i++)
2229                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2230
2231         platform_set_drvdata(pdev, NULL);
2232
2233         return 0;
2234 }
2235
2236 static void gswip_shutdown(struct platform_device *pdev)
2237 {
2238         struct gswip_priv *priv = platform_get_drvdata(pdev);
2239
2240         if (!priv)
2241                 return;
2242
2243         dsa_switch_shutdown(priv->ds);
2244
2245         platform_set_drvdata(pdev, NULL);
2246 }
2247
2248 static const struct gswip_hw_info gswip_xrx200 = {
2249         .max_ports = 7,
2250         .cpu_port = 6,
2251         .ops = &gswip_xrx200_switch_ops,
2252 };
2253
2254 static const struct gswip_hw_info gswip_xrx300 = {
2255         .max_ports = 7,
2256         .cpu_port = 6,
2257         .ops = &gswip_xrx300_switch_ops,
2258 };
2259
2260 static const struct of_device_id gswip_of_match[] = {
2261         { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2262         { .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2263         { .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2264         {},
2265 };
2266 MODULE_DEVICE_TABLE(of, gswip_of_match);
2267
2268 static struct platform_driver gswip_driver = {
2269         .probe = gswip_probe,
2270         .remove = gswip_remove,
2271         .shutdown = gswip_shutdown,
2272         .driver = {
2273                 .name = "gswip",
2274                 .of_match_table = gswip_of_match,
2275         },
2276 };
2277
2278 module_platform_driver(gswip_driver);
2279
2280 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2281 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2282 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2283 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2284 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2285 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2286 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2287 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2288 MODULE_LICENSE("GPL v2");