doc: give a more thorough id handling explanation
[linux-2.6-microblaze.git] / drivers / net / can / usb / ems_usb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
4  *
5  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
6  */
7 #include <linux/signal.h>
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 #include <linux/netdevice.h>
11 #include <linux/usb.h>
12
13 #include <linux/can.h>
14 #include <linux/can/dev.h>
15 #include <linux/can/error.h>
16
17 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
18 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
19 MODULE_LICENSE("GPL v2");
20
21 /* Control-Values for CPC_Control() Command Subject Selection */
22 #define CONTR_CAN_MESSAGE 0x04
23 #define CONTR_CAN_STATE   0x0C
24 #define CONTR_BUS_ERROR   0x1C
25
26 /* Control Command Actions */
27 #define CONTR_CONT_OFF 0
28 #define CONTR_CONT_ON  1
29 #define CONTR_ONCE     2
30
31 /* Messages from CPC to PC */
32 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
33 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
34 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
35 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
36 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
37 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
38 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
39 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
40 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
41 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
42 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
43
44 /* Messages from the PC to the CPC interface  */
45 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
46 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
47 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
48 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
49 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
50 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
51 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
52 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
53
54 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
55 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
56 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
57
58 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
59
60 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
61
62 /* Overrun types */
63 #define CPC_OVR_EVENT_CAN       0x01
64 #define CPC_OVR_EVENT_CANSTATE  0x02
65 #define CPC_OVR_EVENT_BUSERROR  0x04
66
67 /*
68  * If the CAN controller lost a message we indicate it with the highest bit
69  * set in the count field.
70  */
71 #define CPC_OVR_HW 0x80
72
73 /* Size of the "struct ems_cpc_msg" without the union */
74 #define CPC_MSG_HEADER_LEN   11
75 #define CPC_CAN_MSG_MIN_SIZE 5
76
77 /* Define these values to match your devices */
78 #define USB_CPCUSB_VENDOR_ID 0x12D6
79
80 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
81
82 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
83 #define SJA1000_MOD_NORMAL 0x00
84 #define SJA1000_MOD_RM     0x01
85
86 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
87 #define SJA1000_ECC_SEG   0x1F
88 #define SJA1000_ECC_DIR   0x20
89 #define SJA1000_ECC_ERR   0x06
90 #define SJA1000_ECC_BIT   0x00
91 #define SJA1000_ECC_FORM  0x40
92 #define SJA1000_ECC_STUFF 0x80
93 #define SJA1000_ECC_MASK  0xc0
94
95 /* Status register content */
96 #define SJA1000_SR_BS 0x80
97 #define SJA1000_SR_ES 0x40
98
99 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
100
101 /*
102  * The device actually uses a 16MHz clock to generate the CAN clock
103  * but it expects SJA1000 bit settings based on 8MHz (is internally
104  * converted).
105  */
106 #define EMS_USB_ARM7_CLOCK 8000000
107
108 #define CPC_TX_QUEUE_TRIGGER_LOW        25
109 #define CPC_TX_QUEUE_TRIGGER_HIGH       35
110
111 /*
112  * CAN-Message representation in a CPC_MSG. Message object type is
113  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
114  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
115  */
116 struct cpc_can_msg {
117         __le32 id;
118         u8 length;
119         u8 msg[8];
120 };
121
122 /* Representation of the CAN parameters for the SJA1000 controller */
123 struct cpc_sja1000_params {
124         u8 mode;
125         u8 acc_code0;
126         u8 acc_code1;
127         u8 acc_code2;
128         u8 acc_code3;
129         u8 acc_mask0;
130         u8 acc_mask1;
131         u8 acc_mask2;
132         u8 acc_mask3;
133         u8 btr0;
134         u8 btr1;
135         u8 outp_contr;
136 };
137
138 /* CAN params message representation */
139 struct cpc_can_params {
140         u8 cc_type;
141
142         /* Will support M16C CAN controller in the future */
143         union {
144                 struct cpc_sja1000_params sja1000;
145         } cc_params;
146 };
147
148 /* Structure for confirmed message handling */
149 struct cpc_confirm {
150         u8 error; /* error code */
151 };
152
153 /* Structure for overrun conditions */
154 struct cpc_overrun {
155         u8 event;
156         u8 count;
157 };
158
159 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
160 struct cpc_sja1000_can_error {
161         u8 ecc;
162         u8 rxerr;
163         u8 txerr;
164 };
165
166 /* structure for CAN error conditions */
167 struct cpc_can_error {
168         u8 ecode;
169
170         struct {
171                 u8 cc_type;
172
173                 /* Other controllers may also provide error code capture regs */
174                 union {
175                         struct cpc_sja1000_can_error sja1000;
176                 } regs;
177         } cc;
178 };
179
180 /*
181  * Structure containing RX/TX error counter. This structure is used to request
182  * the values of the CAN controllers TX and RX error counter.
183  */
184 struct cpc_can_err_counter {
185         u8 rx;
186         u8 tx;
187 };
188
189 /* Main message type used between library and application */
190 struct __packed ems_cpc_msg {
191         u8 type;        /* type of message */
192         u8 length;      /* length of data within union 'msg' */
193         u8 msgid;       /* confirmation handle */
194         __le32 ts_sec;  /* timestamp in seconds */
195         __le32 ts_nsec; /* timestamp in nano seconds */
196
197         union {
198                 u8 generic[64];
199                 struct cpc_can_msg can_msg;
200                 struct cpc_can_params can_params;
201                 struct cpc_confirm confirmation;
202                 struct cpc_overrun overrun;
203                 struct cpc_can_error error;
204                 struct cpc_can_err_counter err_counter;
205                 u8 can_state;
206         } msg;
207 };
208
209 /*
210  * Table of devices that work with this driver
211  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
212  */
213 static struct usb_device_id ems_usb_table[] = {
214         {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
215         {} /* Terminating entry */
216 };
217
218 MODULE_DEVICE_TABLE(usb, ems_usb_table);
219
220 #define RX_BUFFER_SIZE      64
221 #define CPC_HEADER_SIZE     4
222 #define INTR_IN_BUFFER_SIZE 4
223
224 #define MAX_RX_URBS 10
225 #define MAX_TX_URBS 10
226
227 struct ems_usb;
228
229 struct ems_tx_urb_context {
230         struct ems_usb *dev;
231
232         u32 echo_index;
233         u8 dlc;
234 };
235
236 struct ems_usb {
237         struct can_priv can; /* must be the first member */
238
239         struct sk_buff *echo_skb[MAX_TX_URBS];
240
241         struct usb_device *udev;
242         struct net_device *netdev;
243
244         atomic_t active_tx_urbs;
245         struct usb_anchor tx_submitted;
246         struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
247
248         struct usb_anchor rx_submitted;
249
250         struct urb *intr_urb;
251
252         u8 *tx_msg_buffer;
253
254         u8 *intr_in_buffer;
255         unsigned int free_slots; /* remember number of available slots */
256
257         struct ems_cpc_msg active_params; /* active controller parameters */
258 };
259
260 static void ems_usb_read_interrupt_callback(struct urb *urb)
261 {
262         struct ems_usb *dev = urb->context;
263         struct net_device *netdev = dev->netdev;
264         int err;
265
266         if (!netif_device_present(netdev))
267                 return;
268
269         switch (urb->status) {
270         case 0:
271                 dev->free_slots = dev->intr_in_buffer[1];
272                 if (dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH &&
273                     netif_queue_stopped(netdev))
274                         netif_wake_queue(netdev);
275                 break;
276
277         case -ECONNRESET: /* unlink */
278         case -ENOENT:
279         case -EPIPE:
280         case -EPROTO:
281         case -ESHUTDOWN:
282                 return;
283
284         default:
285                 netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
286                 break;
287         }
288
289         err = usb_submit_urb(urb, GFP_ATOMIC);
290
291         if (err == -ENODEV)
292                 netif_device_detach(netdev);
293         else if (err)
294                 netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
295 }
296
297 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
298 {
299         struct can_frame *cf;
300         struct sk_buff *skb;
301         int i;
302         struct net_device_stats *stats = &dev->netdev->stats;
303
304         skb = alloc_can_skb(dev->netdev, &cf);
305         if (skb == NULL)
306                 return;
307
308         cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
309         cf->len = can_cc_dlc2len(msg->msg.can_msg.length & 0xF);
310
311         if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
312             msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
313                 cf->can_id |= CAN_EFF_FLAG;
314
315         if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
316             msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
317                 cf->can_id |= CAN_RTR_FLAG;
318         } else {
319                 for (i = 0; i < cf->len; i++)
320                         cf->data[i] = msg->msg.can_msg.msg[i];
321         }
322
323         stats->rx_packets++;
324         stats->rx_bytes += cf->len;
325         netif_rx(skb);
326 }
327
328 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
329 {
330         struct can_frame *cf;
331         struct sk_buff *skb;
332         struct net_device_stats *stats = &dev->netdev->stats;
333
334         skb = alloc_can_err_skb(dev->netdev, &cf);
335         if (skb == NULL)
336                 return;
337
338         if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
339                 u8 state = msg->msg.can_state;
340
341                 if (state & SJA1000_SR_BS) {
342                         dev->can.state = CAN_STATE_BUS_OFF;
343                         cf->can_id |= CAN_ERR_BUSOFF;
344
345                         dev->can.can_stats.bus_off++;
346                         can_bus_off(dev->netdev);
347                 } else if (state & SJA1000_SR_ES) {
348                         dev->can.state = CAN_STATE_ERROR_WARNING;
349                         dev->can.can_stats.error_warning++;
350                 } else {
351                         dev->can.state = CAN_STATE_ERROR_ACTIVE;
352                         dev->can.can_stats.error_passive++;
353                 }
354         } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
355                 u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
356                 u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
357                 u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
358
359                 /* bus error interrupt */
360                 dev->can.can_stats.bus_error++;
361                 stats->rx_errors++;
362
363                 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
364
365                 switch (ecc & SJA1000_ECC_MASK) {
366                 case SJA1000_ECC_BIT:
367                         cf->data[2] |= CAN_ERR_PROT_BIT;
368                         break;
369                 case SJA1000_ECC_FORM:
370                         cf->data[2] |= CAN_ERR_PROT_FORM;
371                         break;
372                 case SJA1000_ECC_STUFF:
373                         cf->data[2] |= CAN_ERR_PROT_STUFF;
374                         break;
375                 default:
376                         cf->data[3] = ecc & SJA1000_ECC_SEG;
377                         break;
378                 }
379
380                 /* Error occurred during transmission? */
381                 if ((ecc & SJA1000_ECC_DIR) == 0)
382                         cf->data[2] |= CAN_ERR_PROT_TX;
383
384                 if (dev->can.state == CAN_STATE_ERROR_WARNING ||
385                     dev->can.state == CAN_STATE_ERROR_PASSIVE) {
386                         cf->can_id |= CAN_ERR_CRTL;
387                         cf->data[1] = (txerr > rxerr) ?
388                             CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
389                 }
390         } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
391                 cf->can_id |= CAN_ERR_CRTL;
392                 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
393
394                 stats->rx_over_errors++;
395                 stats->rx_errors++;
396         }
397
398         stats->rx_packets++;
399         stats->rx_bytes += cf->len;
400         netif_rx(skb);
401 }
402
403 /*
404  * callback for bulk IN urb
405  */
406 static void ems_usb_read_bulk_callback(struct urb *urb)
407 {
408         struct ems_usb *dev = urb->context;
409         struct net_device *netdev;
410         int retval;
411
412         netdev = dev->netdev;
413
414         if (!netif_device_present(netdev))
415                 return;
416
417         switch (urb->status) {
418         case 0: /* success */
419                 break;
420
421         case -ENOENT:
422                 return;
423
424         default:
425                 netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
426                 goto resubmit_urb;
427         }
428
429         if (urb->actual_length > CPC_HEADER_SIZE) {
430                 struct ems_cpc_msg *msg;
431                 u8 *ibuf = urb->transfer_buffer;
432                 u8 msg_count, start;
433
434                 msg_count = ibuf[0] & ~0x80;
435
436                 start = CPC_HEADER_SIZE;
437
438                 while (msg_count) {
439                         msg = (struct ems_cpc_msg *)&ibuf[start];
440
441                         switch (msg->type) {
442                         case CPC_MSG_TYPE_CAN_STATE:
443                                 /* Process CAN state changes */
444                                 ems_usb_rx_err(dev, msg);
445                                 break;
446
447                         case CPC_MSG_TYPE_CAN_FRAME:
448                         case CPC_MSG_TYPE_EXT_CAN_FRAME:
449                         case CPC_MSG_TYPE_RTR_FRAME:
450                         case CPC_MSG_TYPE_EXT_RTR_FRAME:
451                                 ems_usb_rx_can_msg(dev, msg);
452                                 break;
453
454                         case CPC_MSG_TYPE_CAN_FRAME_ERROR:
455                                 /* Process errorframe */
456                                 ems_usb_rx_err(dev, msg);
457                                 break;
458
459                         case CPC_MSG_TYPE_OVERRUN:
460                                 /* Message lost while receiving */
461                                 ems_usb_rx_err(dev, msg);
462                                 break;
463                         }
464
465                         start += CPC_MSG_HEADER_LEN + msg->length;
466                         msg_count--;
467
468                         if (start > urb->transfer_buffer_length) {
469                                 netdev_err(netdev, "format error\n");
470                                 break;
471                         }
472                 }
473         }
474
475 resubmit_urb:
476         usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
477                           urb->transfer_buffer, RX_BUFFER_SIZE,
478                           ems_usb_read_bulk_callback, dev);
479
480         retval = usb_submit_urb(urb, GFP_ATOMIC);
481
482         if (retval == -ENODEV)
483                 netif_device_detach(netdev);
484         else if (retval)
485                 netdev_err(netdev,
486                            "failed resubmitting read bulk urb: %d\n", retval);
487 }
488
489 /*
490  * callback for bulk IN urb
491  */
492 static void ems_usb_write_bulk_callback(struct urb *urb)
493 {
494         struct ems_tx_urb_context *context = urb->context;
495         struct ems_usb *dev;
496         struct net_device *netdev;
497
498         BUG_ON(!context);
499
500         dev = context->dev;
501         netdev = dev->netdev;
502
503         /* free up our allocated buffer */
504         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
505                           urb->transfer_buffer, urb->transfer_dma);
506
507         atomic_dec(&dev->active_tx_urbs);
508
509         if (!netif_device_present(netdev))
510                 return;
511
512         if (urb->status)
513                 netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
514
515         netif_trans_update(netdev);
516
517         /* transmission complete interrupt */
518         netdev->stats.tx_packets++;
519         netdev->stats.tx_bytes += context->dlc;
520
521         can_get_echo_skb(netdev, context->echo_index, NULL);
522
523         /* Release context */
524         context->echo_index = MAX_TX_URBS;
525
526 }
527
528 /*
529  * Send the given CPC command synchronously
530  */
531 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
532 {
533         int actual_length;
534
535         /* Copy payload */
536         memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
537                msg->length + CPC_MSG_HEADER_LEN);
538
539         /* Clear header */
540         memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
541
542         return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
543                             &dev->tx_msg_buffer[0],
544                             msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
545                             &actual_length, 1000);
546 }
547
548 /*
549  * Change CAN controllers' mode register
550  */
551 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
552 {
553         dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
554
555         return ems_usb_command_msg(dev, &dev->active_params);
556 }
557
558 /*
559  * Send a CPC_Control command to change behaviour when interface receives a CAN
560  * message, bus error or CAN state changed notifications.
561  */
562 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
563 {
564         struct ems_cpc_msg cmd;
565
566         cmd.type = CPC_CMD_TYPE_CONTROL;
567         cmd.length = CPC_MSG_HEADER_LEN + 1;
568
569         cmd.msgid = 0;
570
571         cmd.msg.generic[0] = val;
572
573         return ems_usb_command_msg(dev, &cmd);
574 }
575
576 /*
577  * Start interface
578  */
579 static int ems_usb_start(struct ems_usb *dev)
580 {
581         struct net_device *netdev = dev->netdev;
582         int err, i;
583
584         dev->intr_in_buffer[0] = 0;
585         dev->free_slots = 50; /* initial size */
586
587         for (i = 0; i < MAX_RX_URBS; i++) {
588                 struct urb *urb = NULL;
589                 u8 *buf = NULL;
590
591                 /* create a URB, and a buffer for it */
592                 urb = usb_alloc_urb(0, GFP_KERNEL);
593                 if (!urb) {
594                         err = -ENOMEM;
595                         break;
596                 }
597
598                 buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
599                                          &urb->transfer_dma);
600                 if (!buf) {
601                         netdev_err(netdev, "No memory left for USB buffer\n");
602                         usb_free_urb(urb);
603                         err = -ENOMEM;
604                         break;
605                 }
606
607                 usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
608                                   buf, RX_BUFFER_SIZE,
609                                   ems_usb_read_bulk_callback, dev);
610                 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
611                 usb_anchor_urb(urb, &dev->rx_submitted);
612
613                 err = usb_submit_urb(urb, GFP_KERNEL);
614                 if (err) {
615                         usb_unanchor_urb(urb);
616                         usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
617                                           urb->transfer_dma);
618                         usb_free_urb(urb);
619                         break;
620                 }
621
622                 /* Drop reference, USB core will take care of freeing it */
623                 usb_free_urb(urb);
624         }
625
626         /* Did we submit any URBs */
627         if (i == 0) {
628                 netdev_warn(netdev, "couldn't setup read URBs\n");
629                 return err;
630         }
631
632         /* Warn if we've couldn't transmit all the URBs */
633         if (i < MAX_RX_URBS)
634                 netdev_warn(netdev, "rx performance may be slow\n");
635
636         /* Setup and start interrupt URB */
637         usb_fill_int_urb(dev->intr_urb, dev->udev,
638                          usb_rcvintpipe(dev->udev, 1),
639                          dev->intr_in_buffer,
640                          INTR_IN_BUFFER_SIZE,
641                          ems_usb_read_interrupt_callback, dev, 1);
642
643         err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
644         if (err) {
645                 netdev_warn(netdev, "intr URB submit failed: %d\n", err);
646
647                 return err;
648         }
649
650         /* CPC-USB will transfer received message to host */
651         err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
652         if (err)
653                 goto failed;
654
655         /* CPC-USB will transfer CAN state changes to host */
656         err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
657         if (err)
658                 goto failed;
659
660         /* CPC-USB will transfer bus errors to host */
661         err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
662         if (err)
663                 goto failed;
664
665         err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
666         if (err)
667                 goto failed;
668
669         dev->can.state = CAN_STATE_ERROR_ACTIVE;
670
671         return 0;
672
673 failed:
674         netdev_warn(netdev, "couldn't submit control: %d\n", err);
675
676         return err;
677 }
678
679 static void unlink_all_urbs(struct ems_usb *dev)
680 {
681         int i;
682
683         usb_unlink_urb(dev->intr_urb);
684
685         usb_kill_anchored_urbs(&dev->rx_submitted);
686
687         usb_kill_anchored_urbs(&dev->tx_submitted);
688         atomic_set(&dev->active_tx_urbs, 0);
689
690         for (i = 0; i < MAX_TX_URBS; i++)
691                 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
692 }
693
694 static int ems_usb_open(struct net_device *netdev)
695 {
696         struct ems_usb *dev = netdev_priv(netdev);
697         int err;
698
699         err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
700         if (err)
701                 return err;
702
703         /* common open */
704         err = open_candev(netdev);
705         if (err)
706                 return err;
707
708         /* finally start device */
709         err = ems_usb_start(dev);
710         if (err) {
711                 if (err == -ENODEV)
712                         netif_device_detach(dev->netdev);
713
714                 netdev_warn(netdev, "couldn't start device: %d\n", err);
715
716                 close_candev(netdev);
717
718                 return err;
719         }
720
721
722         netif_start_queue(netdev);
723
724         return 0;
725 }
726
727 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
728 {
729         struct ems_usb *dev = netdev_priv(netdev);
730         struct ems_tx_urb_context *context = NULL;
731         struct net_device_stats *stats = &netdev->stats;
732         struct can_frame *cf = (struct can_frame *)skb->data;
733         struct ems_cpc_msg *msg;
734         struct urb *urb;
735         u8 *buf;
736         int i, err;
737         size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
738                         + sizeof(struct cpc_can_msg);
739
740         if (can_dropped_invalid_skb(netdev, skb))
741                 return NETDEV_TX_OK;
742
743         /* create a URB, and a buffer for it, and copy the data to the URB */
744         urb = usb_alloc_urb(0, GFP_ATOMIC);
745         if (!urb)
746                 goto nomem;
747
748         buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
749         if (!buf) {
750                 netdev_err(netdev, "No memory left for USB buffer\n");
751                 usb_free_urb(urb);
752                 goto nomem;
753         }
754
755         msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
756
757         msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
758         msg->msg.can_msg.length = cf->len;
759
760         if (cf->can_id & CAN_RTR_FLAG) {
761                 msg->type = cf->can_id & CAN_EFF_FLAG ?
762                         CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
763
764                 msg->length = CPC_CAN_MSG_MIN_SIZE;
765         } else {
766                 msg->type = cf->can_id & CAN_EFF_FLAG ?
767                         CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
768
769                 for (i = 0; i < cf->len; i++)
770                         msg->msg.can_msg.msg[i] = cf->data[i];
771
772                 msg->length = CPC_CAN_MSG_MIN_SIZE + cf->len;
773         }
774
775         for (i = 0; i < MAX_TX_URBS; i++) {
776                 if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
777                         context = &dev->tx_contexts[i];
778                         break;
779                 }
780         }
781
782         /*
783          * May never happen! When this happens we'd more URBs in flight as
784          * allowed (MAX_TX_URBS).
785          */
786         if (!context) {
787                 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
788                 usb_free_urb(urb);
789
790                 netdev_warn(netdev, "couldn't find free context\n");
791
792                 return NETDEV_TX_BUSY;
793         }
794
795         context->dev = dev;
796         context->echo_index = i;
797         context->dlc = cf->len;
798
799         usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
800                           size, ems_usb_write_bulk_callback, context);
801         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
802         usb_anchor_urb(urb, &dev->tx_submitted);
803
804         can_put_echo_skb(skb, netdev, context->echo_index, 0);
805
806         atomic_inc(&dev->active_tx_urbs);
807
808         err = usb_submit_urb(urb, GFP_ATOMIC);
809         if (unlikely(err)) {
810                 can_free_echo_skb(netdev, context->echo_index, NULL);
811
812                 usb_unanchor_urb(urb);
813                 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
814                 dev_kfree_skb(skb);
815
816                 atomic_dec(&dev->active_tx_urbs);
817
818                 if (err == -ENODEV) {
819                         netif_device_detach(netdev);
820                 } else {
821                         netdev_warn(netdev, "failed tx_urb %d\n", err);
822
823                         stats->tx_dropped++;
824                 }
825         } else {
826                 netif_trans_update(netdev);
827
828                 /* Slow down tx path */
829                 if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
830                     dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
831                         netif_stop_queue(netdev);
832                 }
833         }
834
835         /*
836          * Release our reference to this URB, the USB core will eventually free
837          * it entirely.
838          */
839         usb_free_urb(urb);
840
841         return NETDEV_TX_OK;
842
843 nomem:
844         dev_kfree_skb(skb);
845         stats->tx_dropped++;
846
847         return NETDEV_TX_OK;
848 }
849
850 static int ems_usb_close(struct net_device *netdev)
851 {
852         struct ems_usb *dev = netdev_priv(netdev);
853
854         /* Stop polling */
855         unlink_all_urbs(dev);
856
857         netif_stop_queue(netdev);
858
859         /* Set CAN controller to reset mode */
860         if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
861                 netdev_warn(netdev, "couldn't stop device");
862
863         close_candev(netdev);
864
865         return 0;
866 }
867
868 static const struct net_device_ops ems_usb_netdev_ops = {
869         .ndo_open = ems_usb_open,
870         .ndo_stop = ems_usb_close,
871         .ndo_start_xmit = ems_usb_start_xmit,
872         .ndo_change_mtu = can_change_mtu,
873 };
874
875 static const struct can_bittiming_const ems_usb_bittiming_const = {
876         .name = "ems_usb",
877         .tseg1_min = 1,
878         .tseg1_max = 16,
879         .tseg2_min = 1,
880         .tseg2_max = 8,
881         .sjw_max = 4,
882         .brp_min = 1,
883         .brp_max = 64,
884         .brp_inc = 1,
885 };
886
887 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
888 {
889         struct ems_usb *dev = netdev_priv(netdev);
890
891         switch (mode) {
892         case CAN_MODE_START:
893                 if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
894                         netdev_warn(netdev, "couldn't start device");
895
896                 if (netif_queue_stopped(netdev))
897                         netif_wake_queue(netdev);
898                 break;
899
900         default:
901                 return -EOPNOTSUPP;
902         }
903
904         return 0;
905 }
906
907 static int ems_usb_set_bittiming(struct net_device *netdev)
908 {
909         struct ems_usb *dev = netdev_priv(netdev);
910         struct can_bittiming *bt = &dev->can.bittiming;
911         u8 btr0, btr1;
912
913         btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
914         btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
915                 (((bt->phase_seg2 - 1) & 0x7) << 4);
916         if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
917                 btr1 |= 0x80;
918
919         netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
920
921         dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
922         dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
923
924         return ems_usb_command_msg(dev, &dev->active_params);
925 }
926
927 static void init_params_sja1000(struct ems_cpc_msg *msg)
928 {
929         struct cpc_sja1000_params *sja1000 =
930                 &msg->msg.can_params.cc_params.sja1000;
931
932         msg->type = CPC_CMD_TYPE_CAN_PARAMS;
933         msg->length = sizeof(struct cpc_can_params);
934         msg->msgid = 0;
935
936         msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
937
938         /* Acceptance filter open */
939         sja1000->acc_code0 = 0x00;
940         sja1000->acc_code1 = 0x00;
941         sja1000->acc_code2 = 0x00;
942         sja1000->acc_code3 = 0x00;
943
944         /* Acceptance filter open */
945         sja1000->acc_mask0 = 0xFF;
946         sja1000->acc_mask1 = 0xFF;
947         sja1000->acc_mask2 = 0xFF;
948         sja1000->acc_mask3 = 0xFF;
949
950         sja1000->btr0 = 0;
951         sja1000->btr1 = 0;
952
953         sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
954         sja1000->mode = SJA1000_MOD_RM;
955 }
956
957 /*
958  * probe function for new CPC-USB devices
959  */
960 static int ems_usb_probe(struct usb_interface *intf,
961                          const struct usb_device_id *id)
962 {
963         struct net_device *netdev;
964         struct ems_usb *dev;
965         int i, err = -ENOMEM;
966
967         netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
968         if (!netdev) {
969                 dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
970                 return -ENOMEM;
971         }
972
973         dev = netdev_priv(netdev);
974
975         dev->udev = interface_to_usbdev(intf);
976         dev->netdev = netdev;
977
978         dev->can.state = CAN_STATE_STOPPED;
979         dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
980         dev->can.bittiming_const = &ems_usb_bittiming_const;
981         dev->can.do_set_bittiming = ems_usb_set_bittiming;
982         dev->can.do_set_mode = ems_usb_set_mode;
983         dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
984
985         netdev->netdev_ops = &ems_usb_netdev_ops;
986
987         netdev->flags |= IFF_ECHO; /* we support local echo */
988
989         init_usb_anchor(&dev->rx_submitted);
990
991         init_usb_anchor(&dev->tx_submitted);
992         atomic_set(&dev->active_tx_urbs, 0);
993
994         for (i = 0; i < MAX_TX_URBS; i++)
995                 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
996
997         dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
998         if (!dev->intr_urb)
999                 goto cleanup_candev;
1000
1001         dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1002         if (!dev->intr_in_buffer)
1003                 goto cleanup_intr_urb;
1004
1005         dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1006                                      sizeof(struct ems_cpc_msg), GFP_KERNEL);
1007         if (!dev->tx_msg_buffer)
1008                 goto cleanup_intr_in_buffer;
1009
1010         usb_set_intfdata(intf, dev);
1011
1012         SET_NETDEV_DEV(netdev, &intf->dev);
1013
1014         init_params_sja1000(&dev->active_params);
1015
1016         err = ems_usb_command_msg(dev, &dev->active_params);
1017         if (err) {
1018                 netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1019                 goto cleanup_tx_msg_buffer;
1020         }
1021
1022         err = register_candev(netdev);
1023         if (err) {
1024                 netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1025                 goto cleanup_tx_msg_buffer;
1026         }
1027
1028         return 0;
1029
1030 cleanup_tx_msg_buffer:
1031         kfree(dev->tx_msg_buffer);
1032
1033 cleanup_intr_in_buffer:
1034         kfree(dev->intr_in_buffer);
1035
1036 cleanup_intr_urb:
1037         usb_free_urb(dev->intr_urb);
1038
1039 cleanup_candev:
1040         free_candev(netdev);
1041
1042         return err;
1043 }
1044
1045 /*
1046  * called by the usb core when the device is removed from the system
1047  */
1048 static void ems_usb_disconnect(struct usb_interface *intf)
1049 {
1050         struct ems_usb *dev = usb_get_intfdata(intf);
1051
1052         usb_set_intfdata(intf, NULL);
1053
1054         if (dev) {
1055                 unregister_netdev(dev->netdev);
1056
1057                 unlink_all_urbs(dev);
1058
1059                 usb_free_urb(dev->intr_urb);
1060
1061                 kfree(dev->intr_in_buffer);
1062                 kfree(dev->tx_msg_buffer);
1063
1064                 free_candev(dev->netdev);
1065         }
1066 }
1067
1068 /* usb specific object needed to register this driver with the usb subsystem */
1069 static struct usb_driver ems_usb_driver = {
1070         .name = "ems_usb",
1071         .probe = ems_usb_probe,
1072         .disconnect = ems_usb_disconnect,
1073         .id_table = ems_usb_table,
1074 };
1075
1076 module_usb_driver(ems_usb_driver);