clk: mediatek: using CLK_MUX_ROUND_CLOSEST for the clock of dpi1_sel
[linux-2.6-microblaze.git] / drivers / mtd / nand / spi / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *      Peter Pan <peterpandong@micron.com>
7  *      Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9
10 #define pr_fmt(fmt)     "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21
22 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
23                                           const struct nand_page_io_req *req,
24                                           u16 *column)
25 {
26         struct nand_device *nand = spinand_to_nand(spinand);
27         unsigned int shift;
28
29         if (nand->memorg.planes_per_lun < 2)
30                 return;
31
32         /* The plane number is passed in MSB just above the column address */
33         shift = fls(nand->memorg.pagesize);
34         *column |= req->pos.plane << shift;
35 }
36
37 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
38 {
39         struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
40                                                       spinand->scratchbuf);
41         int ret;
42
43         ret = spi_mem_exec_op(spinand->spimem, &op);
44         if (ret)
45                 return ret;
46
47         *val = *spinand->scratchbuf;
48         return 0;
49 }
50
51 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
52 {
53         struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
54                                                       spinand->scratchbuf);
55
56         *spinand->scratchbuf = val;
57         return spi_mem_exec_op(spinand->spimem, &op);
58 }
59
60 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
61 {
62         return spinand_read_reg_op(spinand, REG_STATUS, status);
63 }
64
65 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
66 {
67         struct nand_device *nand = spinand_to_nand(spinand);
68
69         if (WARN_ON(spinand->cur_target < 0 ||
70                     spinand->cur_target >= nand->memorg.ntargets))
71                 return -EINVAL;
72
73         *cfg = spinand->cfg_cache[spinand->cur_target];
74         return 0;
75 }
76
77 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
78 {
79         struct nand_device *nand = spinand_to_nand(spinand);
80         int ret;
81
82         if (WARN_ON(spinand->cur_target < 0 ||
83                     spinand->cur_target >= nand->memorg.ntargets))
84                 return -EINVAL;
85
86         if (spinand->cfg_cache[spinand->cur_target] == cfg)
87                 return 0;
88
89         ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
90         if (ret)
91                 return ret;
92
93         spinand->cfg_cache[spinand->cur_target] = cfg;
94         return 0;
95 }
96
97 /**
98  * spinand_upd_cfg() - Update the configuration register
99  * @spinand: the spinand device
100  * @mask: the mask encoding the bits to update in the config reg
101  * @val: the new value to apply
102  *
103  * Update the configuration register.
104  *
105  * Return: 0 on success, a negative error code otherwise.
106  */
107 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
108 {
109         int ret;
110         u8 cfg;
111
112         ret = spinand_get_cfg(spinand, &cfg);
113         if (ret)
114                 return ret;
115
116         cfg &= ~mask;
117         cfg |= val;
118
119         return spinand_set_cfg(spinand, cfg);
120 }
121
122 /**
123  * spinand_select_target() - Select a specific NAND target/die
124  * @spinand: the spinand device
125  * @target: the target/die to select
126  *
127  * Select a new target/die. If chip only has one die, this function is a NOOP.
128  *
129  * Return: 0 on success, a negative error code otherwise.
130  */
131 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
132 {
133         struct nand_device *nand = spinand_to_nand(spinand);
134         int ret;
135
136         if (WARN_ON(target >= nand->memorg.ntargets))
137                 return -EINVAL;
138
139         if (spinand->cur_target == target)
140                 return 0;
141
142         if (nand->memorg.ntargets == 1) {
143                 spinand->cur_target = target;
144                 return 0;
145         }
146
147         ret = spinand->select_target(spinand, target);
148         if (ret)
149                 return ret;
150
151         spinand->cur_target = target;
152         return 0;
153 }
154
155 static int spinand_init_cfg_cache(struct spinand_device *spinand)
156 {
157         struct nand_device *nand = spinand_to_nand(spinand);
158         struct device *dev = &spinand->spimem->spi->dev;
159         unsigned int target;
160         int ret;
161
162         spinand->cfg_cache = devm_kcalloc(dev,
163                                           nand->memorg.ntargets,
164                                           sizeof(*spinand->cfg_cache),
165                                           GFP_KERNEL);
166         if (!spinand->cfg_cache)
167                 return -ENOMEM;
168
169         for (target = 0; target < nand->memorg.ntargets; target++) {
170                 ret = spinand_select_target(spinand, target);
171                 if (ret)
172                         return ret;
173
174                 /*
175                  * We use spinand_read_reg_op() instead of spinand_get_cfg()
176                  * here to bypass the config cache.
177                  */
178                 ret = spinand_read_reg_op(spinand, REG_CFG,
179                                           &spinand->cfg_cache[target]);
180                 if (ret)
181                         return ret;
182         }
183
184         return 0;
185 }
186
187 static int spinand_init_quad_enable(struct spinand_device *spinand)
188 {
189         bool enable = false;
190
191         if (!(spinand->flags & SPINAND_HAS_QE_BIT))
192                 return 0;
193
194         if (spinand->op_templates.read_cache->data.buswidth == 4 ||
195             spinand->op_templates.write_cache->data.buswidth == 4 ||
196             spinand->op_templates.update_cache->data.buswidth == 4)
197                 enable = true;
198
199         return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
200                                enable ? CFG_QUAD_ENABLE : 0);
201 }
202
203 static int spinand_ecc_enable(struct spinand_device *spinand,
204                               bool enable)
205 {
206         return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
207                                enable ? CFG_ECC_ENABLE : 0);
208 }
209
210 static int spinand_write_enable_op(struct spinand_device *spinand)
211 {
212         struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
213
214         return spi_mem_exec_op(spinand->spimem, &op);
215 }
216
217 static int spinand_load_page_op(struct spinand_device *spinand,
218                                 const struct nand_page_io_req *req)
219 {
220         struct nand_device *nand = spinand_to_nand(spinand);
221         unsigned int row = nanddev_pos_to_row(nand, &req->pos);
222         struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
223
224         return spi_mem_exec_op(spinand->spimem, &op);
225 }
226
227 static int spinand_read_from_cache_op(struct spinand_device *spinand,
228                                       const struct nand_page_io_req *req)
229 {
230         struct spi_mem_op op = *spinand->op_templates.read_cache;
231         struct nand_device *nand = spinand_to_nand(spinand);
232         struct mtd_info *mtd = nanddev_to_mtd(nand);
233         struct nand_page_io_req adjreq = *req;
234         unsigned int nbytes = 0;
235         void *buf = NULL;
236         u16 column = 0;
237         int ret;
238
239         if (req->datalen) {
240                 adjreq.datalen = nanddev_page_size(nand);
241                 adjreq.dataoffs = 0;
242                 adjreq.databuf.in = spinand->databuf;
243                 buf = spinand->databuf;
244                 nbytes = adjreq.datalen;
245         }
246
247         if (req->ooblen) {
248                 adjreq.ooblen = nanddev_per_page_oobsize(nand);
249                 adjreq.ooboffs = 0;
250                 adjreq.oobbuf.in = spinand->oobbuf;
251                 nbytes += nanddev_per_page_oobsize(nand);
252                 if (!buf) {
253                         buf = spinand->oobbuf;
254                         column = nanddev_page_size(nand);
255                 }
256         }
257
258         spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
259         op.addr.val = column;
260
261         /*
262          * Some controllers are limited in term of max RX data size. In this
263          * case, just repeat the READ_CACHE operation after updating the
264          * column.
265          */
266         while (nbytes) {
267                 op.data.buf.in = buf;
268                 op.data.nbytes = nbytes;
269                 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
270                 if (ret)
271                         return ret;
272
273                 ret = spi_mem_exec_op(spinand->spimem, &op);
274                 if (ret)
275                         return ret;
276
277                 buf += op.data.nbytes;
278                 nbytes -= op.data.nbytes;
279                 op.addr.val += op.data.nbytes;
280         }
281
282         if (req->datalen)
283                 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
284                        req->datalen);
285
286         if (req->ooblen) {
287                 if (req->mode == MTD_OPS_AUTO_OOB)
288                         mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
289                                                     spinand->oobbuf,
290                                                     req->ooboffs,
291                                                     req->ooblen);
292                 else
293                         memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
294                                req->ooblen);
295         }
296
297         return 0;
298 }
299
300 static int spinand_write_to_cache_op(struct spinand_device *spinand,
301                                      const struct nand_page_io_req *req)
302 {
303         struct spi_mem_op op = *spinand->op_templates.write_cache;
304         struct nand_device *nand = spinand_to_nand(spinand);
305         struct mtd_info *mtd = nanddev_to_mtd(nand);
306         struct nand_page_io_req adjreq = *req;
307         unsigned int nbytes = 0;
308         void *buf = NULL;
309         u16 column = 0;
310         int ret;
311
312         memset(spinand->databuf, 0xff,
313                nanddev_page_size(nand) +
314                nanddev_per_page_oobsize(nand));
315
316         if (req->datalen) {
317                 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
318                        req->datalen);
319                 adjreq.dataoffs = 0;
320                 adjreq.datalen = nanddev_page_size(nand);
321                 adjreq.databuf.out = spinand->databuf;
322                 nbytes = adjreq.datalen;
323                 buf = spinand->databuf;
324         }
325
326         if (req->ooblen) {
327                 if (req->mode == MTD_OPS_AUTO_OOB)
328                         mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
329                                                     spinand->oobbuf,
330                                                     req->ooboffs,
331                                                     req->ooblen);
332                 else
333                         memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
334                                req->ooblen);
335
336                 adjreq.ooblen = nanddev_per_page_oobsize(nand);
337                 adjreq.ooboffs = 0;
338                 nbytes += nanddev_per_page_oobsize(nand);
339                 if (!buf) {
340                         buf = spinand->oobbuf;
341                         column = nanddev_page_size(nand);
342                 }
343         }
344
345         spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
346
347         op = *spinand->op_templates.write_cache;
348         op.addr.val = column;
349
350         /*
351          * Some controllers are limited in term of max TX data size. In this
352          * case, split the operation into one LOAD CACHE and one or more
353          * LOAD RANDOM CACHE.
354          */
355         while (nbytes) {
356                 op.data.buf.out = buf;
357                 op.data.nbytes = nbytes;
358
359                 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
360                 if (ret)
361                         return ret;
362
363                 ret = spi_mem_exec_op(spinand->spimem, &op);
364                 if (ret)
365                         return ret;
366
367                 buf += op.data.nbytes;
368                 nbytes -= op.data.nbytes;
369                 op.addr.val += op.data.nbytes;
370
371                 /*
372                  * We need to use the RANDOM LOAD CACHE operation if there's
373                  * more than one iteration, because the LOAD operation resets
374                  * the cache to 0xff.
375                  */
376                 if (nbytes) {
377                         column = op.addr.val;
378                         op = *spinand->op_templates.update_cache;
379                         op.addr.val = column;
380                 }
381         }
382
383         return 0;
384 }
385
386 static int spinand_program_op(struct spinand_device *spinand,
387                               const struct nand_page_io_req *req)
388 {
389         struct nand_device *nand = spinand_to_nand(spinand);
390         unsigned int row = nanddev_pos_to_row(nand, &req->pos);
391         struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
392
393         return spi_mem_exec_op(spinand->spimem, &op);
394 }
395
396 static int spinand_erase_op(struct spinand_device *spinand,
397                             const struct nand_pos *pos)
398 {
399         struct nand_device *nand = spinand_to_nand(spinand);
400         unsigned int row = nanddev_pos_to_row(nand, pos);
401         struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
402
403         return spi_mem_exec_op(spinand->spimem, &op);
404 }
405
406 static int spinand_wait(struct spinand_device *spinand, u8 *s)
407 {
408         unsigned long timeo =  jiffies + msecs_to_jiffies(400);
409         u8 status;
410         int ret;
411
412         do {
413                 ret = spinand_read_status(spinand, &status);
414                 if (ret)
415                         return ret;
416
417                 if (!(status & STATUS_BUSY))
418                         goto out;
419         } while (time_before(jiffies, timeo));
420
421         /*
422          * Extra read, just in case the STATUS_READY bit has changed
423          * since our last check
424          */
425         ret = spinand_read_status(spinand, &status);
426         if (ret)
427                 return ret;
428
429 out:
430         if (s)
431                 *s = status;
432
433         return status & STATUS_BUSY ? -ETIMEDOUT : 0;
434 }
435
436 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
437 {
438         struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
439                                                  SPINAND_MAX_ID_LEN);
440         int ret;
441
442         ret = spi_mem_exec_op(spinand->spimem, &op);
443         if (!ret)
444                 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
445
446         return ret;
447 }
448
449 static int spinand_reset_op(struct spinand_device *spinand)
450 {
451         struct spi_mem_op op = SPINAND_RESET_OP;
452         int ret;
453
454         ret = spi_mem_exec_op(spinand->spimem, &op);
455         if (ret)
456                 return ret;
457
458         return spinand_wait(spinand, NULL);
459 }
460
461 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
462 {
463         return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
464 }
465
466 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
467 {
468         struct nand_device *nand = spinand_to_nand(spinand);
469
470         if (spinand->eccinfo.get_status)
471                 return spinand->eccinfo.get_status(spinand, status);
472
473         switch (status & STATUS_ECC_MASK) {
474         case STATUS_ECC_NO_BITFLIPS:
475                 return 0;
476
477         case STATUS_ECC_HAS_BITFLIPS:
478                 /*
479                  * We have no way to know exactly how many bitflips have been
480                  * fixed, so let's return the maximum possible value so that
481                  * wear-leveling layers move the data immediately.
482                  */
483                 return nand->eccreq.strength;
484
485         case STATUS_ECC_UNCOR_ERROR:
486                 return -EBADMSG;
487
488         default:
489                 break;
490         }
491
492         return -EINVAL;
493 }
494
495 static int spinand_read_page(struct spinand_device *spinand,
496                              const struct nand_page_io_req *req,
497                              bool ecc_enabled)
498 {
499         u8 status;
500         int ret;
501
502         ret = spinand_load_page_op(spinand, req);
503         if (ret)
504                 return ret;
505
506         ret = spinand_wait(spinand, &status);
507         if (ret < 0)
508                 return ret;
509
510         ret = spinand_read_from_cache_op(spinand, req);
511         if (ret)
512                 return ret;
513
514         if (!ecc_enabled)
515                 return 0;
516
517         return spinand_check_ecc_status(spinand, status);
518 }
519
520 static int spinand_write_page(struct spinand_device *spinand,
521                               const struct nand_page_io_req *req)
522 {
523         u8 status;
524         int ret;
525
526         ret = spinand_write_enable_op(spinand);
527         if (ret)
528                 return ret;
529
530         ret = spinand_write_to_cache_op(spinand, req);
531         if (ret)
532                 return ret;
533
534         ret = spinand_program_op(spinand, req);
535         if (ret)
536                 return ret;
537
538         ret = spinand_wait(spinand, &status);
539         if (!ret && (status & STATUS_PROG_FAILED))
540                 ret = -EIO;
541
542         return ret;
543 }
544
545 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
546                             struct mtd_oob_ops *ops)
547 {
548         struct spinand_device *spinand = mtd_to_spinand(mtd);
549         struct nand_device *nand = mtd_to_nanddev(mtd);
550         unsigned int max_bitflips = 0;
551         struct nand_io_iter iter;
552         bool enable_ecc = false;
553         bool ecc_failed = false;
554         int ret = 0;
555
556         if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
557                 enable_ecc = true;
558
559         mutex_lock(&spinand->lock);
560
561         nanddev_io_for_each_page(nand, from, ops, &iter) {
562                 ret = spinand_select_target(spinand, iter.req.pos.target);
563                 if (ret)
564                         break;
565
566                 ret = spinand_ecc_enable(spinand, enable_ecc);
567                 if (ret)
568                         break;
569
570                 ret = spinand_read_page(spinand, &iter.req, enable_ecc);
571                 if (ret < 0 && ret != -EBADMSG)
572                         break;
573
574                 if (ret == -EBADMSG) {
575                         ecc_failed = true;
576                         mtd->ecc_stats.failed++;
577                         ret = 0;
578                 } else {
579                         mtd->ecc_stats.corrected += ret;
580                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
581                 }
582
583                 ops->retlen += iter.req.datalen;
584                 ops->oobretlen += iter.req.ooblen;
585         }
586
587         mutex_unlock(&spinand->lock);
588
589         if (ecc_failed && !ret)
590                 ret = -EBADMSG;
591
592         return ret ? ret : max_bitflips;
593 }
594
595 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
596                              struct mtd_oob_ops *ops)
597 {
598         struct spinand_device *spinand = mtd_to_spinand(mtd);
599         struct nand_device *nand = mtd_to_nanddev(mtd);
600         struct nand_io_iter iter;
601         bool enable_ecc = false;
602         int ret = 0;
603
604         if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
605                 enable_ecc = true;
606
607         mutex_lock(&spinand->lock);
608
609         nanddev_io_for_each_page(nand, to, ops, &iter) {
610                 ret = spinand_select_target(spinand, iter.req.pos.target);
611                 if (ret)
612                         break;
613
614                 ret = spinand_ecc_enable(spinand, enable_ecc);
615                 if (ret)
616                         break;
617
618                 ret = spinand_write_page(spinand, &iter.req);
619                 if (ret)
620                         break;
621
622                 ops->retlen += iter.req.datalen;
623                 ops->oobretlen += iter.req.ooblen;
624         }
625
626         mutex_unlock(&spinand->lock);
627
628         return ret;
629 }
630
631 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
632 {
633         struct spinand_device *spinand = nand_to_spinand(nand);
634         struct nand_page_io_req req = {
635                 .pos = *pos,
636                 .ooblen = 2,
637                 .ooboffs = 0,
638                 .oobbuf.in = spinand->oobbuf,
639                 .mode = MTD_OPS_RAW,
640         };
641
642         memset(spinand->oobbuf, 0, 2);
643         spinand_select_target(spinand, pos->target);
644         spinand_read_page(spinand, &req, false);
645         if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff)
646                 return true;
647
648         return false;
649 }
650
651 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
652 {
653         struct nand_device *nand = mtd_to_nanddev(mtd);
654         struct spinand_device *spinand = nand_to_spinand(nand);
655         struct nand_pos pos;
656         int ret;
657
658         nanddev_offs_to_pos(nand, offs, &pos);
659         mutex_lock(&spinand->lock);
660         ret = nanddev_isbad(nand, &pos);
661         mutex_unlock(&spinand->lock);
662
663         return ret;
664 }
665
666 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
667 {
668         struct spinand_device *spinand = nand_to_spinand(nand);
669         struct nand_page_io_req req = {
670                 .pos = *pos,
671                 .ooboffs = 0,
672                 .ooblen = 2,
673                 .oobbuf.out = spinand->oobbuf,
674         };
675         int ret;
676
677         /* Erase block before marking it bad. */
678         ret = spinand_select_target(spinand, pos->target);
679         if (ret)
680                 return ret;
681
682         ret = spinand_write_enable_op(spinand);
683         if (ret)
684                 return ret;
685
686         spinand_erase_op(spinand, pos);
687
688         memset(spinand->oobbuf, 0, 2);
689         return spinand_write_page(spinand, &req);
690 }
691
692 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
693 {
694         struct nand_device *nand = mtd_to_nanddev(mtd);
695         struct spinand_device *spinand = nand_to_spinand(nand);
696         struct nand_pos pos;
697         int ret;
698
699         nanddev_offs_to_pos(nand, offs, &pos);
700         mutex_lock(&spinand->lock);
701         ret = nanddev_markbad(nand, &pos);
702         mutex_unlock(&spinand->lock);
703
704         return ret;
705 }
706
707 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
708 {
709         struct spinand_device *spinand = nand_to_spinand(nand);
710         u8 status;
711         int ret;
712
713         ret = spinand_select_target(spinand, pos->target);
714         if (ret)
715                 return ret;
716
717         ret = spinand_write_enable_op(spinand);
718         if (ret)
719                 return ret;
720
721         ret = spinand_erase_op(spinand, pos);
722         if (ret)
723                 return ret;
724
725         ret = spinand_wait(spinand, &status);
726         if (!ret && (status & STATUS_ERASE_FAILED))
727                 ret = -EIO;
728
729         return ret;
730 }
731
732 static int spinand_mtd_erase(struct mtd_info *mtd,
733                              struct erase_info *einfo)
734 {
735         struct spinand_device *spinand = mtd_to_spinand(mtd);
736         int ret;
737
738         mutex_lock(&spinand->lock);
739         ret = nanddev_mtd_erase(mtd, einfo);
740         mutex_unlock(&spinand->lock);
741
742         return ret;
743 }
744
745 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
746 {
747         struct spinand_device *spinand = mtd_to_spinand(mtd);
748         struct nand_device *nand = mtd_to_nanddev(mtd);
749         struct nand_pos pos;
750         int ret;
751
752         nanddev_offs_to_pos(nand, offs, &pos);
753         mutex_lock(&spinand->lock);
754         ret = nanddev_isreserved(nand, &pos);
755         mutex_unlock(&spinand->lock);
756
757         return ret;
758 }
759
760 static const struct nand_ops spinand_ops = {
761         .erase = spinand_erase,
762         .markbad = spinand_markbad,
763         .isbad = spinand_isbad,
764 };
765
766 static const struct spinand_manufacturer *spinand_manufacturers[] = {
767         &gigadevice_spinand_manufacturer,
768         &macronix_spinand_manufacturer,
769         &micron_spinand_manufacturer,
770         &toshiba_spinand_manufacturer,
771         &winbond_spinand_manufacturer,
772 };
773
774 static int spinand_manufacturer_detect(struct spinand_device *spinand)
775 {
776         unsigned int i;
777         int ret;
778
779         for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
780                 ret = spinand_manufacturers[i]->ops->detect(spinand);
781                 if (ret > 0) {
782                         spinand->manufacturer = spinand_manufacturers[i];
783                         return 0;
784                 } else if (ret < 0) {
785                         return ret;
786                 }
787         }
788
789         return -ENOTSUPP;
790 }
791
792 static int spinand_manufacturer_init(struct spinand_device *spinand)
793 {
794         if (spinand->manufacturer->ops->init)
795                 return spinand->manufacturer->ops->init(spinand);
796
797         return 0;
798 }
799
800 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
801 {
802         /* Release manufacturer private data */
803         if (spinand->manufacturer->ops->cleanup)
804                 return spinand->manufacturer->ops->cleanup(spinand);
805 }
806
807 static const struct spi_mem_op *
808 spinand_select_op_variant(struct spinand_device *spinand,
809                           const struct spinand_op_variants *variants)
810 {
811         struct nand_device *nand = spinand_to_nand(spinand);
812         unsigned int i;
813
814         for (i = 0; i < variants->nops; i++) {
815                 struct spi_mem_op op = variants->ops[i];
816                 unsigned int nbytes;
817                 int ret;
818
819                 nbytes = nanddev_per_page_oobsize(nand) +
820                          nanddev_page_size(nand);
821
822                 while (nbytes) {
823                         op.data.nbytes = nbytes;
824                         ret = spi_mem_adjust_op_size(spinand->spimem, &op);
825                         if (ret)
826                                 break;
827
828                         if (!spi_mem_supports_op(spinand->spimem, &op))
829                                 break;
830
831                         nbytes -= op.data.nbytes;
832                 }
833
834                 if (!nbytes)
835                         return &variants->ops[i];
836         }
837
838         return NULL;
839 }
840
841 /**
842  * spinand_match_and_init() - Try to find a match between a device ID and an
843  *                            entry in a spinand_info table
844  * @spinand: SPI NAND object
845  * @table: SPI NAND device description table
846  * @table_size: size of the device description table
847  *
848  * Should be used by SPI NAND manufacturer drivers when they want to find a
849  * match between a device ID retrieved through the READ_ID command and an
850  * entry in the SPI NAND description table. If a match is found, the spinand
851  * object will be initialized with information provided by the matching
852  * spinand_info entry.
853  *
854  * Return: 0 on success, a negative error code otherwise.
855  */
856 int spinand_match_and_init(struct spinand_device *spinand,
857                            const struct spinand_info *table,
858                            unsigned int table_size, u8 devid)
859 {
860         struct nand_device *nand = spinand_to_nand(spinand);
861         unsigned int i;
862
863         for (i = 0; i < table_size; i++) {
864                 const struct spinand_info *info = &table[i];
865                 const struct spi_mem_op *op;
866
867                 if (devid != info->devid)
868                         continue;
869
870                 nand->memorg = table[i].memorg;
871                 nand->eccreq = table[i].eccreq;
872                 spinand->eccinfo = table[i].eccinfo;
873                 spinand->flags = table[i].flags;
874                 spinand->select_target = table[i].select_target;
875
876                 op = spinand_select_op_variant(spinand,
877                                                info->op_variants.read_cache);
878                 if (!op)
879                         return -ENOTSUPP;
880
881                 spinand->op_templates.read_cache = op;
882
883                 op = spinand_select_op_variant(spinand,
884                                                info->op_variants.write_cache);
885                 if (!op)
886                         return -ENOTSUPP;
887
888                 spinand->op_templates.write_cache = op;
889
890                 op = spinand_select_op_variant(spinand,
891                                                info->op_variants.update_cache);
892                 spinand->op_templates.update_cache = op;
893
894                 return 0;
895         }
896
897         return -ENOTSUPP;
898 }
899
900 static int spinand_detect(struct spinand_device *spinand)
901 {
902         struct device *dev = &spinand->spimem->spi->dev;
903         struct nand_device *nand = spinand_to_nand(spinand);
904         int ret;
905
906         ret = spinand_reset_op(spinand);
907         if (ret)
908                 return ret;
909
910         ret = spinand_read_id_op(spinand, spinand->id.data);
911         if (ret)
912                 return ret;
913
914         spinand->id.len = SPINAND_MAX_ID_LEN;
915
916         ret = spinand_manufacturer_detect(spinand);
917         if (ret) {
918                 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
919                         spinand->id.data);
920                 return ret;
921         }
922
923         if (nand->memorg.ntargets > 1 && !spinand->select_target) {
924                 dev_err(dev,
925                         "SPI NANDs with more than one die must implement ->select_target()\n");
926                 return -EINVAL;
927         }
928
929         dev_info(&spinand->spimem->spi->dev,
930                  "%s SPI NAND was found.\n", spinand->manufacturer->name);
931         dev_info(&spinand->spimem->spi->dev,
932                  "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
933                  nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
934                  nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
935
936         return 0;
937 }
938
939 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
940                                        struct mtd_oob_region *region)
941 {
942         return -ERANGE;
943 }
944
945 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
946                                         struct mtd_oob_region *region)
947 {
948         if (section)
949                 return -ERANGE;
950
951         /* Reserve 2 bytes for the BBM. */
952         region->offset = 2;
953         region->length = 62;
954
955         return 0;
956 }
957
958 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
959         .ecc = spinand_noecc_ooblayout_ecc,
960         .free = spinand_noecc_ooblayout_free,
961 };
962
963 static int spinand_init(struct spinand_device *spinand)
964 {
965         struct device *dev = &spinand->spimem->spi->dev;
966         struct mtd_info *mtd = spinand_to_mtd(spinand);
967         struct nand_device *nand = mtd_to_nanddev(mtd);
968         int ret, i;
969
970         /*
971          * We need a scratch buffer because the spi_mem interface requires that
972          * buf passed in spi_mem_op->data.buf be DMA-able.
973          */
974         spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
975         if (!spinand->scratchbuf)
976                 return -ENOMEM;
977
978         ret = spinand_detect(spinand);
979         if (ret)
980                 goto err_free_bufs;
981
982         /*
983          * Use kzalloc() instead of devm_kzalloc() here, because some drivers
984          * may use this buffer for DMA access.
985          * Memory allocated by devm_ does not guarantee DMA-safe alignment.
986          */
987         spinand->databuf = kzalloc(nanddev_page_size(nand) +
988                                nanddev_per_page_oobsize(nand),
989                                GFP_KERNEL);
990         if (!spinand->databuf) {
991                 ret = -ENOMEM;
992                 goto err_free_bufs;
993         }
994
995         spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
996
997         ret = spinand_init_cfg_cache(spinand);
998         if (ret)
999                 goto err_free_bufs;
1000
1001         ret = spinand_init_quad_enable(spinand);
1002         if (ret)
1003                 goto err_free_bufs;
1004
1005         ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1006         if (ret)
1007                 goto err_free_bufs;
1008
1009         ret = spinand_manufacturer_init(spinand);
1010         if (ret) {
1011                 dev_err(dev,
1012                         "Failed to initialize the SPI NAND chip (err = %d)\n",
1013                         ret);
1014                 goto err_free_bufs;
1015         }
1016
1017         /* After power up, all blocks are locked, so unlock them here. */
1018         for (i = 0; i < nand->memorg.ntargets; i++) {
1019                 ret = spinand_select_target(spinand, i);
1020                 if (ret)
1021                         goto err_free_bufs;
1022
1023                 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1024                 if (ret)
1025                         goto err_free_bufs;
1026         }
1027
1028         ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1029         if (ret)
1030                 goto err_manuf_cleanup;
1031
1032         /*
1033          * Right now, we don't support ECC, so let the whole oob
1034          * area is available for user.
1035          */
1036         mtd->_read_oob = spinand_mtd_read;
1037         mtd->_write_oob = spinand_mtd_write;
1038         mtd->_block_isbad = spinand_mtd_block_isbad;
1039         mtd->_block_markbad = spinand_mtd_block_markbad;
1040         mtd->_block_isreserved = spinand_mtd_block_isreserved;
1041         mtd->_erase = spinand_mtd_erase;
1042
1043         if (spinand->eccinfo.ooblayout)
1044                 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1045         else
1046                 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1047
1048         ret = mtd_ooblayout_count_freebytes(mtd);
1049         if (ret < 0)
1050                 goto err_cleanup_nanddev;
1051
1052         mtd->oobavail = ret;
1053
1054         return 0;
1055
1056 err_cleanup_nanddev:
1057         nanddev_cleanup(nand);
1058
1059 err_manuf_cleanup:
1060         spinand_manufacturer_cleanup(spinand);
1061
1062 err_free_bufs:
1063         kfree(spinand->databuf);
1064         kfree(spinand->scratchbuf);
1065         return ret;
1066 }
1067
1068 static void spinand_cleanup(struct spinand_device *spinand)
1069 {
1070         struct nand_device *nand = spinand_to_nand(spinand);
1071
1072         nanddev_cleanup(nand);
1073         spinand_manufacturer_cleanup(spinand);
1074         kfree(spinand->databuf);
1075         kfree(spinand->scratchbuf);
1076 }
1077
1078 static int spinand_probe(struct spi_mem *mem)
1079 {
1080         struct spinand_device *spinand;
1081         struct mtd_info *mtd;
1082         int ret;
1083
1084         spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1085                                GFP_KERNEL);
1086         if (!spinand)
1087                 return -ENOMEM;
1088
1089         spinand->spimem = mem;
1090         spi_mem_set_drvdata(mem, spinand);
1091         spinand_set_of_node(spinand, mem->spi->dev.of_node);
1092         mutex_init(&spinand->lock);
1093         mtd = spinand_to_mtd(spinand);
1094         mtd->dev.parent = &mem->spi->dev;
1095
1096         ret = spinand_init(spinand);
1097         if (ret)
1098                 return ret;
1099
1100         ret = mtd_device_register(mtd, NULL, 0);
1101         if (ret)
1102                 goto err_spinand_cleanup;
1103
1104         return 0;
1105
1106 err_spinand_cleanup:
1107         spinand_cleanup(spinand);
1108
1109         return ret;
1110 }
1111
1112 static int spinand_remove(struct spi_mem *mem)
1113 {
1114         struct spinand_device *spinand;
1115         struct mtd_info *mtd;
1116         int ret;
1117
1118         spinand = spi_mem_get_drvdata(mem);
1119         mtd = spinand_to_mtd(spinand);
1120
1121         ret = mtd_device_unregister(mtd);
1122         if (ret)
1123                 return ret;
1124
1125         spinand_cleanup(spinand);
1126
1127         return 0;
1128 }
1129
1130 static const struct spi_device_id spinand_ids[] = {
1131         { .name = "spi-nand" },
1132         { /* sentinel */ },
1133 };
1134
1135 #ifdef CONFIG_OF
1136 static const struct of_device_id spinand_of_ids[] = {
1137         { .compatible = "spi-nand" },
1138         { /* sentinel */ },
1139 };
1140 #endif
1141
1142 static struct spi_mem_driver spinand_drv = {
1143         .spidrv = {
1144                 .id_table = spinand_ids,
1145                 .driver = {
1146                         .name = "spi-nand",
1147                         .of_match_table = of_match_ptr(spinand_of_ids),
1148                 },
1149         },
1150         .probe = spinand_probe,
1151         .remove = spinand_remove,
1152 };
1153 module_spi_mem_driver(spinand_drv);
1154
1155 MODULE_DESCRIPTION("SPI NAND framework");
1156 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1157 MODULE_LICENSE("GPL v2");