binfmt: a.out: Fix bogus semicolon
[linux-2.6-microblaze.git] / drivers / mtd / nand / spi / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *      Peter Pan <peterpandong@micron.com>
7  *      Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9
10 #define pr_fmt(fmt)     "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22
23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25         struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26                                                       spinand->scratchbuf);
27         int ret;
28
29         ret = spi_mem_exec_op(spinand->spimem, &op);
30         if (ret)
31                 return ret;
32
33         *val = *spinand->scratchbuf;
34         return 0;
35 }
36
37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39         struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40                                                       spinand->scratchbuf);
41
42         *spinand->scratchbuf = val;
43         return spi_mem_exec_op(spinand->spimem, &op);
44 }
45
46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48         return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50
51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53         struct nand_device *nand = spinand_to_nand(spinand);
54
55         if (WARN_ON(spinand->cur_target < 0 ||
56                     spinand->cur_target >= nand->memorg.ntargets))
57                 return -EINVAL;
58
59         *cfg = spinand->cfg_cache[spinand->cur_target];
60         return 0;
61 }
62
63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65         struct nand_device *nand = spinand_to_nand(spinand);
66         int ret;
67
68         if (WARN_ON(spinand->cur_target < 0 ||
69                     spinand->cur_target >= nand->memorg.ntargets))
70                 return -EINVAL;
71
72         if (spinand->cfg_cache[spinand->cur_target] == cfg)
73                 return 0;
74
75         ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76         if (ret)
77                 return ret;
78
79         spinand->cfg_cache[spinand->cur_target] = cfg;
80         return 0;
81 }
82
83 /**
84  * spinand_upd_cfg() - Update the configuration register
85  * @spinand: the spinand device
86  * @mask: the mask encoding the bits to update in the config reg
87  * @val: the new value to apply
88  *
89  * Update the configuration register.
90  *
91  * Return: 0 on success, a negative error code otherwise.
92  */
93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95         int ret;
96         u8 cfg;
97
98         ret = spinand_get_cfg(spinand, &cfg);
99         if (ret)
100                 return ret;
101
102         cfg &= ~mask;
103         cfg |= val;
104
105         return spinand_set_cfg(spinand, cfg);
106 }
107
108 /**
109  * spinand_select_target() - Select a specific NAND target/die
110  * @spinand: the spinand device
111  * @target: the target/die to select
112  *
113  * Select a new target/die. If chip only has one die, this function is a NOOP.
114  *
115  * Return: 0 on success, a negative error code otherwise.
116  */
117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119         struct nand_device *nand = spinand_to_nand(spinand);
120         int ret;
121
122         if (WARN_ON(target >= nand->memorg.ntargets))
123                 return -EINVAL;
124
125         if (spinand->cur_target == target)
126                 return 0;
127
128         if (nand->memorg.ntargets == 1) {
129                 spinand->cur_target = target;
130                 return 0;
131         }
132
133         ret = spinand->select_target(spinand, target);
134         if (ret)
135                 return ret;
136
137         spinand->cur_target = target;
138         return 0;
139 }
140
141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143         struct nand_device *nand = spinand_to_nand(spinand);
144         unsigned int target;
145         int ret;
146
147         for (target = 0; target < nand->memorg.ntargets; target++) {
148                 ret = spinand_select_target(spinand, target);
149                 if (ret)
150                         return ret;
151
152                 /*
153                  * We use spinand_read_reg_op() instead of spinand_get_cfg()
154                  * here to bypass the config cache.
155                  */
156                 ret = spinand_read_reg_op(spinand, REG_CFG,
157                                           &spinand->cfg_cache[target]);
158                 if (ret)
159                         return ret;
160         }
161
162         return 0;
163 }
164
165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167         struct nand_device *nand = spinand_to_nand(spinand);
168         struct device *dev = &spinand->spimem->spi->dev;
169
170         spinand->cfg_cache = devm_kcalloc(dev,
171                                           nand->memorg.ntargets,
172                                           sizeof(*spinand->cfg_cache),
173                                           GFP_KERNEL);
174         if (!spinand->cfg_cache)
175                 return -ENOMEM;
176
177         return 0;
178 }
179
180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182         bool enable = false;
183
184         if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185                 return 0;
186
187         if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188             spinand->op_templates.write_cache->data.buswidth == 4 ||
189             spinand->op_templates.update_cache->data.buswidth == 4)
190                 enable = true;
191
192         return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193                                enable ? CFG_QUAD_ENABLE : 0);
194 }
195
196 static int spinand_ecc_enable(struct spinand_device *spinand,
197                               bool enable)
198 {
199         return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200                                enable ? CFG_ECC_ENABLE : 0);
201 }
202
203 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
204 {
205         struct nand_device *nand = spinand_to_nand(spinand);
206
207         if (spinand->eccinfo.get_status)
208                 return spinand->eccinfo.get_status(spinand, status);
209
210         switch (status & STATUS_ECC_MASK) {
211         case STATUS_ECC_NO_BITFLIPS:
212                 return 0;
213
214         case STATUS_ECC_HAS_BITFLIPS:
215                 /*
216                  * We have no way to know exactly how many bitflips have been
217                  * fixed, so let's return the maximum possible value so that
218                  * wear-leveling layers move the data immediately.
219                  */
220                 return nanddev_get_ecc_conf(nand)->strength;
221
222         case STATUS_ECC_UNCOR_ERROR:
223                 return -EBADMSG;
224
225         default:
226                 break;
227         }
228
229         return -EINVAL;
230 }
231
232 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
233                                        struct mtd_oob_region *region)
234 {
235         return -ERANGE;
236 }
237
238 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
239                                         struct mtd_oob_region *region)
240 {
241         if (section)
242                 return -ERANGE;
243
244         /* Reserve 2 bytes for the BBM. */
245         region->offset = 2;
246         region->length = 62;
247
248         return 0;
249 }
250
251 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
252         .ecc = spinand_noecc_ooblayout_ecc,
253         .free = spinand_noecc_ooblayout_free,
254 };
255
256 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
257 {
258         struct spinand_device *spinand = nand_to_spinand(nand);
259         struct mtd_info *mtd = nanddev_to_mtd(nand);
260         struct spinand_ondie_ecc_conf *engine_conf;
261
262         nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
263         nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
264         nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
265
266         engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
267         if (!engine_conf)
268                 return -ENOMEM;
269
270         nand->ecc.ctx.priv = engine_conf;
271
272         if (spinand->eccinfo.ooblayout)
273                 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
274         else
275                 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
276
277         return 0;
278 }
279
280 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
281 {
282         kfree(nand->ecc.ctx.priv);
283 }
284
285 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
286                                             struct nand_page_io_req *req)
287 {
288         struct spinand_device *spinand = nand_to_spinand(nand);
289         bool enable = (req->mode != MTD_OPS_RAW);
290
291         /* Only enable or disable the engine */
292         return spinand_ecc_enable(spinand, enable);
293 }
294
295 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
296                                            struct nand_page_io_req *req)
297 {
298         struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
299         struct spinand_device *spinand = nand_to_spinand(nand);
300         struct mtd_info *mtd = spinand_to_mtd(spinand);
301         int ret;
302
303         if (req->mode == MTD_OPS_RAW)
304                 return 0;
305
306         /* Nothing to do when finishing a page write */
307         if (req->type == NAND_PAGE_WRITE)
308                 return 0;
309
310         /* Finish a page write: check the status, report errors/bitflips */
311         ret = spinand_check_ecc_status(spinand, engine_conf->status);
312         if (ret == -EBADMSG)
313                 mtd->ecc_stats.failed++;
314         else if (ret > 0)
315                 mtd->ecc_stats.corrected += ret;
316
317         return ret;
318 }
319
320 static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
321         .init_ctx = spinand_ondie_ecc_init_ctx,
322         .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
323         .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
324         .finish_io_req = spinand_ondie_ecc_finish_io_req,
325 };
326
327 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
328         .ops = &spinand_ondie_ecc_engine_ops,
329 };
330
331 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
332 {
333         struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
334
335         if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
336             engine_conf)
337                 engine_conf->status = status;
338 }
339
340 static int spinand_write_enable_op(struct spinand_device *spinand)
341 {
342         struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
343
344         return spi_mem_exec_op(spinand->spimem, &op);
345 }
346
347 static int spinand_load_page_op(struct spinand_device *spinand,
348                                 const struct nand_page_io_req *req)
349 {
350         struct nand_device *nand = spinand_to_nand(spinand);
351         unsigned int row = nanddev_pos_to_row(nand, &req->pos);
352         struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
353
354         return spi_mem_exec_op(spinand->spimem, &op);
355 }
356
357 static int spinand_read_from_cache_op(struct spinand_device *spinand,
358                                       const struct nand_page_io_req *req)
359 {
360         struct nand_device *nand = spinand_to_nand(spinand);
361         struct mtd_info *mtd = spinand_to_mtd(spinand);
362         struct spi_mem_dirmap_desc *rdesc;
363         unsigned int nbytes = 0;
364         void *buf = NULL;
365         u16 column = 0;
366         ssize_t ret;
367
368         if (req->datalen) {
369                 buf = spinand->databuf;
370                 nbytes = nanddev_page_size(nand);
371                 column = 0;
372         }
373
374         if (req->ooblen) {
375                 nbytes += nanddev_per_page_oobsize(nand);
376                 if (!buf) {
377                         buf = spinand->oobbuf;
378                         column = nanddev_page_size(nand);
379                 }
380         }
381
382         rdesc = spinand->dirmaps[req->pos.plane].rdesc;
383
384         while (nbytes) {
385                 ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
386                 if (ret < 0)
387                         return ret;
388
389                 if (!ret || ret > nbytes)
390                         return -EIO;
391
392                 nbytes -= ret;
393                 column += ret;
394                 buf += ret;
395         }
396
397         if (req->datalen)
398                 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
399                        req->datalen);
400
401         if (req->ooblen) {
402                 if (req->mode == MTD_OPS_AUTO_OOB)
403                         mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
404                                                     spinand->oobbuf,
405                                                     req->ooboffs,
406                                                     req->ooblen);
407                 else
408                         memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
409                                req->ooblen);
410         }
411
412         return 0;
413 }
414
415 static int spinand_write_to_cache_op(struct spinand_device *spinand,
416                                      const struct nand_page_io_req *req)
417 {
418         struct nand_device *nand = spinand_to_nand(spinand);
419         struct mtd_info *mtd = spinand_to_mtd(spinand);
420         struct spi_mem_dirmap_desc *wdesc;
421         unsigned int nbytes, column = 0;
422         void *buf = spinand->databuf;
423         ssize_t ret;
424
425         /*
426          * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
427          * the cache content to 0xFF (depends on vendor implementation), so we
428          * must fill the page cache entirely even if we only want to program
429          * the data portion of the page, otherwise we might corrupt the BBM or
430          * user data previously programmed in OOB area.
431          *
432          * Only reset the data buffer manually, the OOB buffer is prepared by
433          * ECC engines ->prepare_io_req() callback.
434          */
435         nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
436         memset(spinand->databuf, 0xff, nanddev_page_size(nand));
437
438         if (req->datalen)
439                 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
440                        req->datalen);
441
442         if (req->ooblen) {
443                 if (req->mode == MTD_OPS_AUTO_OOB)
444                         mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
445                                                     spinand->oobbuf,
446                                                     req->ooboffs,
447                                                     req->ooblen);
448                 else
449                         memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
450                                req->ooblen);
451         }
452
453         wdesc = spinand->dirmaps[req->pos.plane].wdesc;
454
455         while (nbytes) {
456                 ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
457                 if (ret < 0)
458                         return ret;
459
460                 if (!ret || ret > nbytes)
461                         return -EIO;
462
463                 nbytes -= ret;
464                 column += ret;
465                 buf += ret;
466         }
467
468         return 0;
469 }
470
471 static int spinand_program_op(struct spinand_device *spinand,
472                               const struct nand_page_io_req *req)
473 {
474         struct nand_device *nand = spinand_to_nand(spinand);
475         unsigned int row = nanddev_pos_to_row(nand, &req->pos);
476         struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
477
478         return spi_mem_exec_op(spinand->spimem, &op);
479 }
480
481 static int spinand_erase_op(struct spinand_device *spinand,
482                             const struct nand_pos *pos)
483 {
484         struct nand_device *nand = spinand_to_nand(spinand);
485         unsigned int row = nanddev_pos_to_row(nand, pos);
486         struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
487
488         return spi_mem_exec_op(spinand->spimem, &op);
489 }
490
491 static int spinand_wait(struct spinand_device *spinand,
492                         unsigned long initial_delay_us,
493                         unsigned long poll_delay_us,
494                         u8 *s)
495 {
496         struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
497                                                       spinand->scratchbuf);
498         u8 status;
499         int ret;
500
501         ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
502                                   initial_delay_us,
503                                   poll_delay_us,
504                                   SPINAND_WAITRDY_TIMEOUT_MS);
505         if (ret)
506                 return ret;
507
508         status = *spinand->scratchbuf;
509         if (!(status & STATUS_BUSY))
510                 goto out;
511
512         /*
513          * Extra read, just in case the STATUS_READY bit has changed
514          * since our last check
515          */
516         ret = spinand_read_status(spinand, &status);
517         if (ret)
518                 return ret;
519
520 out:
521         if (s)
522                 *s = status;
523
524         return status & STATUS_BUSY ? -ETIMEDOUT : 0;
525 }
526
527 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
528                               u8 ndummy, u8 *buf)
529 {
530         struct spi_mem_op op = SPINAND_READID_OP(
531                 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
532         int ret;
533
534         ret = spi_mem_exec_op(spinand->spimem, &op);
535         if (!ret)
536                 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
537
538         return ret;
539 }
540
541 static int spinand_reset_op(struct spinand_device *spinand)
542 {
543         struct spi_mem_op op = SPINAND_RESET_OP;
544         int ret;
545
546         ret = spi_mem_exec_op(spinand->spimem, &op);
547         if (ret)
548                 return ret;
549
550         return spinand_wait(spinand,
551                             SPINAND_RESET_INITIAL_DELAY_US,
552                             SPINAND_RESET_POLL_DELAY_US,
553                             NULL);
554 }
555
556 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
557 {
558         return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
559 }
560
561 static int spinand_read_page(struct spinand_device *spinand,
562                              const struct nand_page_io_req *req)
563 {
564         struct nand_device *nand = spinand_to_nand(spinand);
565         u8 status;
566         int ret;
567
568         ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
569         if (ret)
570                 return ret;
571
572         ret = spinand_load_page_op(spinand, req);
573         if (ret)
574                 return ret;
575
576         ret = spinand_wait(spinand,
577                            SPINAND_READ_INITIAL_DELAY_US,
578                            SPINAND_READ_POLL_DELAY_US,
579                            &status);
580         if (ret < 0)
581                 return ret;
582
583         spinand_ondie_ecc_save_status(nand, status);
584
585         ret = spinand_read_from_cache_op(spinand, req);
586         if (ret)
587                 return ret;
588
589         return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
590 }
591
592 static int spinand_write_page(struct spinand_device *spinand,
593                               const struct nand_page_io_req *req)
594 {
595         struct nand_device *nand = spinand_to_nand(spinand);
596         u8 status;
597         int ret;
598
599         ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
600         if (ret)
601                 return ret;
602
603         ret = spinand_write_enable_op(spinand);
604         if (ret)
605                 return ret;
606
607         ret = spinand_write_to_cache_op(spinand, req);
608         if (ret)
609                 return ret;
610
611         ret = spinand_program_op(spinand, req);
612         if (ret)
613                 return ret;
614
615         ret = spinand_wait(spinand,
616                            SPINAND_WRITE_INITIAL_DELAY_US,
617                            SPINAND_WRITE_POLL_DELAY_US,
618                            &status);
619         if (!ret && (status & STATUS_PROG_FAILED))
620                 return -EIO;
621
622         return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
623 }
624
625 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
626                             struct mtd_oob_ops *ops)
627 {
628         struct spinand_device *spinand = mtd_to_spinand(mtd);
629         struct nand_device *nand = mtd_to_nanddev(mtd);
630         unsigned int max_bitflips = 0;
631         struct nand_io_iter iter;
632         bool disable_ecc = false;
633         bool ecc_failed = false;
634         int ret = 0;
635
636         if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
637                 disable_ecc = true;
638
639         mutex_lock(&spinand->lock);
640
641         nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
642                 if (disable_ecc)
643                         iter.req.mode = MTD_OPS_RAW;
644
645                 ret = spinand_select_target(spinand, iter.req.pos.target);
646                 if (ret)
647                         break;
648
649                 ret = spinand_read_page(spinand, &iter.req);
650                 if (ret < 0 && ret != -EBADMSG)
651                         break;
652
653                 if (ret == -EBADMSG)
654                         ecc_failed = true;
655                 else
656                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
657
658                 ret = 0;
659                 ops->retlen += iter.req.datalen;
660                 ops->oobretlen += iter.req.ooblen;
661         }
662
663         mutex_unlock(&spinand->lock);
664
665         if (ecc_failed && !ret)
666                 ret = -EBADMSG;
667
668         return ret ? ret : max_bitflips;
669 }
670
671 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
672                              struct mtd_oob_ops *ops)
673 {
674         struct spinand_device *spinand = mtd_to_spinand(mtd);
675         struct nand_device *nand = mtd_to_nanddev(mtd);
676         struct nand_io_iter iter;
677         bool disable_ecc = false;
678         int ret = 0;
679
680         if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
681                 disable_ecc = true;
682
683         mutex_lock(&spinand->lock);
684
685         nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
686                 if (disable_ecc)
687                         iter.req.mode = MTD_OPS_RAW;
688
689                 ret = spinand_select_target(spinand, iter.req.pos.target);
690                 if (ret)
691                         break;
692
693                 ret = spinand_write_page(spinand, &iter.req);
694                 if (ret)
695                         break;
696
697                 ops->retlen += iter.req.datalen;
698                 ops->oobretlen += iter.req.ooblen;
699         }
700
701         mutex_unlock(&spinand->lock);
702
703         return ret;
704 }
705
706 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
707 {
708         struct spinand_device *spinand = nand_to_spinand(nand);
709         u8 marker[2] = { };
710         struct nand_page_io_req req = {
711                 .pos = *pos,
712                 .ooblen = sizeof(marker),
713                 .ooboffs = 0,
714                 .oobbuf.in = marker,
715                 .mode = MTD_OPS_RAW,
716         };
717
718         spinand_select_target(spinand, pos->target);
719         spinand_read_page(spinand, &req);
720         if (marker[0] != 0xff || marker[1] != 0xff)
721                 return true;
722
723         return false;
724 }
725
726 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
727 {
728         struct nand_device *nand = mtd_to_nanddev(mtd);
729         struct spinand_device *spinand = nand_to_spinand(nand);
730         struct nand_pos pos;
731         int ret;
732
733         nanddev_offs_to_pos(nand, offs, &pos);
734         mutex_lock(&spinand->lock);
735         ret = nanddev_isbad(nand, &pos);
736         mutex_unlock(&spinand->lock);
737
738         return ret;
739 }
740
741 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
742 {
743         struct spinand_device *spinand = nand_to_spinand(nand);
744         u8 marker[2] = { };
745         struct nand_page_io_req req = {
746                 .pos = *pos,
747                 .ooboffs = 0,
748                 .ooblen = sizeof(marker),
749                 .oobbuf.out = marker,
750                 .mode = MTD_OPS_RAW,
751         };
752         int ret;
753
754         ret = spinand_select_target(spinand, pos->target);
755         if (ret)
756                 return ret;
757
758         ret = spinand_write_enable_op(spinand);
759         if (ret)
760                 return ret;
761
762         return spinand_write_page(spinand, &req);
763 }
764
765 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
766 {
767         struct nand_device *nand = mtd_to_nanddev(mtd);
768         struct spinand_device *spinand = nand_to_spinand(nand);
769         struct nand_pos pos;
770         int ret;
771
772         nanddev_offs_to_pos(nand, offs, &pos);
773         mutex_lock(&spinand->lock);
774         ret = nanddev_markbad(nand, &pos);
775         mutex_unlock(&spinand->lock);
776
777         return ret;
778 }
779
780 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
781 {
782         struct spinand_device *spinand = nand_to_spinand(nand);
783         u8 status;
784         int ret;
785
786         ret = spinand_select_target(spinand, pos->target);
787         if (ret)
788                 return ret;
789
790         ret = spinand_write_enable_op(spinand);
791         if (ret)
792                 return ret;
793
794         ret = spinand_erase_op(spinand, pos);
795         if (ret)
796                 return ret;
797
798         ret = spinand_wait(spinand,
799                            SPINAND_ERASE_INITIAL_DELAY_US,
800                            SPINAND_ERASE_POLL_DELAY_US,
801                            &status);
802
803         if (!ret && (status & STATUS_ERASE_FAILED))
804                 ret = -EIO;
805
806         return ret;
807 }
808
809 static int spinand_mtd_erase(struct mtd_info *mtd,
810                              struct erase_info *einfo)
811 {
812         struct spinand_device *spinand = mtd_to_spinand(mtd);
813         int ret;
814
815         mutex_lock(&spinand->lock);
816         ret = nanddev_mtd_erase(mtd, einfo);
817         mutex_unlock(&spinand->lock);
818
819         return ret;
820 }
821
822 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
823 {
824         struct spinand_device *spinand = mtd_to_spinand(mtd);
825         struct nand_device *nand = mtd_to_nanddev(mtd);
826         struct nand_pos pos;
827         int ret;
828
829         nanddev_offs_to_pos(nand, offs, &pos);
830         mutex_lock(&spinand->lock);
831         ret = nanddev_isreserved(nand, &pos);
832         mutex_unlock(&spinand->lock);
833
834         return ret;
835 }
836
837 static int spinand_create_dirmap(struct spinand_device *spinand,
838                                  unsigned int plane)
839 {
840         struct nand_device *nand = spinand_to_nand(spinand);
841         struct spi_mem_dirmap_info info = {
842                 .length = nanddev_page_size(nand) +
843                           nanddev_per_page_oobsize(nand),
844         };
845         struct spi_mem_dirmap_desc *desc;
846
847         /* The plane number is passed in MSB just above the column address */
848         info.offset = plane << fls(nand->memorg.pagesize);
849
850         info.op_tmpl = *spinand->op_templates.update_cache;
851         desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
852                                           spinand->spimem, &info);
853         if (IS_ERR(desc))
854                 return PTR_ERR(desc);
855
856         spinand->dirmaps[plane].wdesc = desc;
857
858         info.op_tmpl = *spinand->op_templates.read_cache;
859         desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
860                                           spinand->spimem, &info);
861         if (IS_ERR(desc))
862                 return PTR_ERR(desc);
863
864         spinand->dirmaps[plane].rdesc = desc;
865
866         return 0;
867 }
868
869 static int spinand_create_dirmaps(struct spinand_device *spinand)
870 {
871         struct nand_device *nand = spinand_to_nand(spinand);
872         int i, ret;
873
874         spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
875                                         sizeof(*spinand->dirmaps) *
876                                         nand->memorg.planes_per_lun,
877                                         GFP_KERNEL);
878         if (!spinand->dirmaps)
879                 return -ENOMEM;
880
881         for (i = 0; i < nand->memorg.planes_per_lun; i++) {
882                 ret = spinand_create_dirmap(spinand, i);
883                 if (ret)
884                         return ret;
885         }
886
887         return 0;
888 }
889
890 static const struct nand_ops spinand_ops = {
891         .erase = spinand_erase,
892         .markbad = spinand_markbad,
893         .isbad = spinand_isbad,
894 };
895
896 static const struct spinand_manufacturer *spinand_manufacturers[] = {
897         &gigadevice_spinand_manufacturer,
898         &macronix_spinand_manufacturer,
899         &micron_spinand_manufacturer,
900         &paragon_spinand_manufacturer,
901         &toshiba_spinand_manufacturer,
902         &winbond_spinand_manufacturer,
903 };
904
905 static int spinand_manufacturer_match(struct spinand_device *spinand,
906                                       enum spinand_readid_method rdid_method)
907 {
908         u8 *id = spinand->id.data;
909         unsigned int i;
910         int ret;
911
912         for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
913                 const struct spinand_manufacturer *manufacturer =
914                         spinand_manufacturers[i];
915
916                 if (id[0] != manufacturer->id)
917                         continue;
918
919                 ret = spinand_match_and_init(spinand,
920                                              manufacturer->chips,
921                                              manufacturer->nchips,
922                                              rdid_method);
923                 if (ret < 0)
924                         continue;
925
926                 spinand->manufacturer = manufacturer;
927                 return 0;
928         }
929         return -ENOTSUPP;
930 }
931
932 static int spinand_id_detect(struct spinand_device *spinand)
933 {
934         u8 *id = spinand->id.data;
935         int ret;
936
937         ret = spinand_read_id_op(spinand, 0, 0, id);
938         if (ret)
939                 return ret;
940         ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
941         if (!ret)
942                 return 0;
943
944         ret = spinand_read_id_op(spinand, 1, 0, id);
945         if (ret)
946                 return ret;
947         ret = spinand_manufacturer_match(spinand,
948                                          SPINAND_READID_METHOD_OPCODE_ADDR);
949         if (!ret)
950                 return 0;
951
952         ret = spinand_read_id_op(spinand, 0, 1, id);
953         if (ret)
954                 return ret;
955         ret = spinand_manufacturer_match(spinand,
956                                          SPINAND_READID_METHOD_OPCODE_DUMMY);
957
958         return ret;
959 }
960
961 static int spinand_manufacturer_init(struct spinand_device *spinand)
962 {
963         if (spinand->manufacturer->ops->init)
964                 return spinand->manufacturer->ops->init(spinand);
965
966         return 0;
967 }
968
969 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
970 {
971         /* Release manufacturer private data */
972         if (spinand->manufacturer->ops->cleanup)
973                 return spinand->manufacturer->ops->cleanup(spinand);
974 }
975
976 static const struct spi_mem_op *
977 spinand_select_op_variant(struct spinand_device *spinand,
978                           const struct spinand_op_variants *variants)
979 {
980         struct nand_device *nand = spinand_to_nand(spinand);
981         unsigned int i;
982
983         for (i = 0; i < variants->nops; i++) {
984                 struct spi_mem_op op = variants->ops[i];
985                 unsigned int nbytes;
986                 int ret;
987
988                 nbytes = nanddev_per_page_oobsize(nand) +
989                          nanddev_page_size(nand);
990
991                 while (nbytes) {
992                         op.data.nbytes = nbytes;
993                         ret = spi_mem_adjust_op_size(spinand->spimem, &op);
994                         if (ret)
995                                 break;
996
997                         if (!spi_mem_supports_op(spinand->spimem, &op))
998                                 break;
999
1000                         nbytes -= op.data.nbytes;
1001                 }
1002
1003                 if (!nbytes)
1004                         return &variants->ops[i];
1005         }
1006
1007         return NULL;
1008 }
1009
1010 /**
1011  * spinand_match_and_init() - Try to find a match between a device ID and an
1012  *                            entry in a spinand_info table
1013  * @spinand: SPI NAND object
1014  * @table: SPI NAND device description table
1015  * @table_size: size of the device description table
1016  * @rdid_method: read id method to match
1017  *
1018  * Match between a device ID retrieved through the READ_ID command and an
1019  * entry in the SPI NAND description table. If a match is found, the spinand
1020  * object will be initialized with information provided by the matching
1021  * spinand_info entry.
1022  *
1023  * Return: 0 on success, a negative error code otherwise.
1024  */
1025 int spinand_match_and_init(struct spinand_device *spinand,
1026                            const struct spinand_info *table,
1027                            unsigned int table_size,
1028                            enum spinand_readid_method rdid_method)
1029 {
1030         u8 *id = spinand->id.data;
1031         struct nand_device *nand = spinand_to_nand(spinand);
1032         unsigned int i;
1033
1034         for (i = 0; i < table_size; i++) {
1035                 const struct spinand_info *info = &table[i];
1036                 const struct spi_mem_op *op;
1037
1038                 if (rdid_method != info->devid.method)
1039                         continue;
1040
1041                 if (memcmp(id + 1, info->devid.id, info->devid.len))
1042                         continue;
1043
1044                 nand->memorg = table[i].memorg;
1045                 nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1046                 spinand->eccinfo = table[i].eccinfo;
1047                 spinand->flags = table[i].flags;
1048                 spinand->id.len = 1 + table[i].devid.len;
1049                 spinand->select_target = table[i].select_target;
1050
1051                 op = spinand_select_op_variant(spinand,
1052                                                info->op_variants.read_cache);
1053                 if (!op)
1054                         return -ENOTSUPP;
1055
1056                 spinand->op_templates.read_cache = op;
1057
1058                 op = spinand_select_op_variant(spinand,
1059                                                info->op_variants.write_cache);
1060                 if (!op)
1061                         return -ENOTSUPP;
1062
1063                 spinand->op_templates.write_cache = op;
1064
1065                 op = spinand_select_op_variant(spinand,
1066                                                info->op_variants.update_cache);
1067                 spinand->op_templates.update_cache = op;
1068
1069                 return 0;
1070         }
1071
1072         return -ENOTSUPP;
1073 }
1074
1075 static int spinand_detect(struct spinand_device *spinand)
1076 {
1077         struct device *dev = &spinand->spimem->spi->dev;
1078         struct nand_device *nand = spinand_to_nand(spinand);
1079         int ret;
1080
1081         ret = spinand_reset_op(spinand);
1082         if (ret)
1083                 return ret;
1084
1085         ret = spinand_id_detect(spinand);
1086         if (ret) {
1087                 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1088                         spinand->id.data);
1089                 return ret;
1090         }
1091
1092         if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1093                 dev_err(dev,
1094                         "SPI NANDs with more than one die must implement ->select_target()\n");
1095                 return -EINVAL;
1096         }
1097
1098         dev_info(&spinand->spimem->spi->dev,
1099                  "%s SPI NAND was found.\n", spinand->manufacturer->name);
1100         dev_info(&spinand->spimem->spi->dev,
1101                  "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1102                  nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1103                  nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1104
1105         return 0;
1106 }
1107
1108 static int spinand_init_flash(struct spinand_device *spinand)
1109 {
1110         struct device *dev = &spinand->spimem->spi->dev;
1111         struct nand_device *nand = spinand_to_nand(spinand);
1112         int ret, i;
1113
1114         ret = spinand_read_cfg(spinand);
1115         if (ret)
1116                 return ret;
1117
1118         ret = spinand_init_quad_enable(spinand);
1119         if (ret)
1120                 return ret;
1121
1122         ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1123         if (ret)
1124                 return ret;
1125
1126         ret = spinand_manufacturer_init(spinand);
1127         if (ret) {
1128                 dev_err(dev,
1129                 "Failed to initialize the SPI NAND chip (err = %d)\n",
1130                 ret);
1131                 return ret;
1132         }
1133
1134         /* After power up, all blocks are locked, so unlock them here. */
1135         for (i = 0; i < nand->memorg.ntargets; i++) {
1136                 ret = spinand_select_target(spinand, i);
1137                 if (ret)
1138                         break;
1139
1140                 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1141                 if (ret)
1142                         break;
1143         }
1144
1145         if (ret)
1146                 spinand_manufacturer_cleanup(spinand);
1147
1148         return ret;
1149 }
1150
1151 static void spinand_mtd_resume(struct mtd_info *mtd)
1152 {
1153         struct spinand_device *spinand = mtd_to_spinand(mtd);
1154         int ret;
1155
1156         ret = spinand_reset_op(spinand);
1157         if (ret)
1158                 return;
1159
1160         ret = spinand_init_flash(spinand);
1161         if (ret)
1162                 return;
1163
1164         spinand_ecc_enable(spinand, false);
1165 }
1166
1167 static int spinand_init(struct spinand_device *spinand)
1168 {
1169         struct device *dev = &spinand->spimem->spi->dev;
1170         struct mtd_info *mtd = spinand_to_mtd(spinand);
1171         struct nand_device *nand = mtd_to_nanddev(mtd);
1172         int ret;
1173
1174         /*
1175          * We need a scratch buffer because the spi_mem interface requires that
1176          * buf passed in spi_mem_op->data.buf be DMA-able.
1177          */
1178         spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1179         if (!spinand->scratchbuf)
1180                 return -ENOMEM;
1181
1182         ret = spinand_detect(spinand);
1183         if (ret)
1184                 goto err_free_bufs;
1185
1186         /*
1187          * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1188          * may use this buffer for DMA access.
1189          * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1190          */
1191         spinand->databuf = kzalloc(nanddev_page_size(nand) +
1192                                nanddev_per_page_oobsize(nand),
1193                                GFP_KERNEL);
1194         if (!spinand->databuf) {
1195                 ret = -ENOMEM;
1196                 goto err_free_bufs;
1197         }
1198
1199         spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1200
1201         ret = spinand_init_cfg_cache(spinand);
1202         if (ret)
1203                 goto err_free_bufs;
1204
1205         ret = spinand_init_flash(spinand);
1206         if (ret)
1207                 goto err_free_bufs;
1208
1209         ret = spinand_create_dirmaps(spinand);
1210         if (ret) {
1211                 dev_err(dev,
1212                         "Failed to create direct mappings for read/write operations (err = %d)\n",
1213                         ret);
1214                 goto err_manuf_cleanup;
1215         }
1216
1217         ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1218         if (ret)
1219                 goto err_manuf_cleanup;
1220
1221         /* SPI-NAND default ECC engine is on-die */
1222         nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1223         nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1224
1225         spinand_ecc_enable(spinand, false);
1226         ret = nanddev_ecc_engine_init(nand);
1227         if (ret)
1228                 goto err_cleanup_nanddev;
1229
1230         mtd->_read_oob = spinand_mtd_read;
1231         mtd->_write_oob = spinand_mtd_write;
1232         mtd->_block_isbad = spinand_mtd_block_isbad;
1233         mtd->_block_markbad = spinand_mtd_block_markbad;
1234         mtd->_block_isreserved = spinand_mtd_block_isreserved;
1235         mtd->_erase = spinand_mtd_erase;
1236         mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1237         mtd->_resume = spinand_mtd_resume;
1238
1239         if (nand->ecc.engine) {
1240                 ret = mtd_ooblayout_count_freebytes(mtd);
1241                 if (ret < 0)
1242                         goto err_cleanup_ecc_engine;
1243         }
1244
1245         mtd->oobavail = ret;
1246
1247         /* Propagate ECC information to mtd_info */
1248         mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1249         mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1250
1251         return 0;
1252
1253 err_cleanup_ecc_engine:
1254         nanddev_ecc_engine_cleanup(nand);
1255
1256 err_cleanup_nanddev:
1257         nanddev_cleanup(nand);
1258
1259 err_manuf_cleanup:
1260         spinand_manufacturer_cleanup(spinand);
1261
1262 err_free_bufs:
1263         kfree(spinand->databuf);
1264         kfree(spinand->scratchbuf);
1265         return ret;
1266 }
1267
1268 static void spinand_cleanup(struct spinand_device *spinand)
1269 {
1270         struct nand_device *nand = spinand_to_nand(spinand);
1271
1272         nanddev_cleanup(nand);
1273         spinand_manufacturer_cleanup(spinand);
1274         kfree(spinand->databuf);
1275         kfree(spinand->scratchbuf);
1276 }
1277
1278 static int spinand_probe(struct spi_mem *mem)
1279 {
1280         struct spinand_device *spinand;
1281         struct mtd_info *mtd;
1282         int ret;
1283
1284         spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1285                                GFP_KERNEL);
1286         if (!spinand)
1287                 return -ENOMEM;
1288
1289         spinand->spimem = mem;
1290         spi_mem_set_drvdata(mem, spinand);
1291         spinand_set_of_node(spinand, mem->spi->dev.of_node);
1292         mutex_init(&spinand->lock);
1293         mtd = spinand_to_mtd(spinand);
1294         mtd->dev.parent = &mem->spi->dev;
1295
1296         ret = spinand_init(spinand);
1297         if (ret)
1298                 return ret;
1299
1300         ret = mtd_device_register(mtd, NULL, 0);
1301         if (ret)
1302                 goto err_spinand_cleanup;
1303
1304         return 0;
1305
1306 err_spinand_cleanup:
1307         spinand_cleanup(spinand);
1308
1309         return ret;
1310 }
1311
1312 static int spinand_remove(struct spi_mem *mem)
1313 {
1314         struct spinand_device *spinand;
1315         struct mtd_info *mtd;
1316         int ret;
1317
1318         spinand = spi_mem_get_drvdata(mem);
1319         mtd = spinand_to_mtd(spinand);
1320
1321         ret = mtd_device_unregister(mtd);
1322         if (ret)
1323                 return ret;
1324
1325         spinand_cleanup(spinand);
1326
1327         return 0;
1328 }
1329
1330 static const struct spi_device_id spinand_ids[] = {
1331         { .name = "spi-nand" },
1332         { /* sentinel */ },
1333 };
1334 MODULE_DEVICE_TABLE(spi, spinand_ids);
1335
1336 #ifdef CONFIG_OF
1337 static const struct of_device_id spinand_of_ids[] = {
1338         { .compatible = "spi-nand" },
1339         { /* sentinel */ },
1340 };
1341 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1342 #endif
1343
1344 static struct spi_mem_driver spinand_drv = {
1345         .spidrv = {
1346                 .id_table = spinand_ids,
1347                 .driver = {
1348                         .name = "spi-nand",
1349                         .of_match_table = of_match_ptr(spinand_of_ids),
1350                 },
1351         },
1352         .probe = spinand_probe,
1353         .remove = spinand_remove,
1354 };
1355 module_spi_mem_driver(spinand_drv);
1356
1357 MODULE_DESCRIPTION("SPI NAND framework");
1358 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1359 MODULE_LICENSE("GPL v2");