Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / tegra_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
4  * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
5  * Copyright (C) 2012 Avionic Design GmbH
6  */
7
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/mtd/partitions.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/reset.h>
21
22 #define COMMAND                                 0x00
23 #define   COMMAND_GO                            BIT(31)
24 #define   COMMAND_CLE                           BIT(30)
25 #define   COMMAND_ALE                           BIT(29)
26 #define   COMMAND_PIO                           BIT(28)
27 #define   COMMAND_TX                            BIT(27)
28 #define   COMMAND_RX                            BIT(26)
29 #define   COMMAND_SEC_CMD                       BIT(25)
30 #define   COMMAND_AFT_DAT                       BIT(24)
31 #define   COMMAND_TRANS_SIZE(size)              ((((size) - 1) & 0xf) << 20)
32 #define   COMMAND_A_VALID                       BIT(19)
33 #define   COMMAND_B_VALID                       BIT(18)
34 #define   COMMAND_RD_STATUS_CHK                 BIT(17)
35 #define   COMMAND_RBSY_CHK                      BIT(16)
36 #define   COMMAND_CE(x)                         BIT(8 + ((x) & 0x7))
37 #define   COMMAND_CLE_SIZE(size)                ((((size) - 1) & 0x3) << 4)
38 #define   COMMAND_ALE_SIZE(size)                ((((size) - 1) & 0xf) << 0)
39
40 #define STATUS                                  0x04
41
42 #define ISR                                     0x08
43 #define   ISR_CORRFAIL_ERR                      BIT(24)
44 #define   ISR_UND                               BIT(7)
45 #define   ISR_OVR                               BIT(6)
46 #define   ISR_CMD_DONE                          BIT(5)
47 #define   ISR_ECC_ERR                           BIT(4)
48
49 #define IER                                     0x0c
50 #define   IER_ERR_TRIG_VAL(x)                   (((x) & 0xf) << 16)
51 #define   IER_UND                               BIT(7)
52 #define   IER_OVR                               BIT(6)
53 #define   IER_CMD_DONE                          BIT(5)
54 #define   IER_ECC_ERR                           BIT(4)
55 #define   IER_GIE                               BIT(0)
56
57 #define CONFIG                                  0x10
58 #define   CONFIG_HW_ECC                         BIT(31)
59 #define   CONFIG_ECC_SEL                        BIT(30)
60 #define   CONFIG_ERR_COR                        BIT(29)
61 #define   CONFIG_PIPE_EN                        BIT(28)
62 #define   CONFIG_TVAL_4                         (0 << 24)
63 #define   CONFIG_TVAL_6                         (1 << 24)
64 #define   CONFIG_TVAL_8                         (2 << 24)
65 #define   CONFIG_SKIP_SPARE                     BIT(23)
66 #define   CONFIG_BUS_WIDTH_16                   BIT(21)
67 #define   CONFIG_COM_BSY                        BIT(20)
68 #define   CONFIG_PS_256                         (0 << 16)
69 #define   CONFIG_PS_512                         (1 << 16)
70 #define   CONFIG_PS_1024                        (2 << 16)
71 #define   CONFIG_PS_2048                        (3 << 16)
72 #define   CONFIG_PS_4096                        (4 << 16)
73 #define   CONFIG_SKIP_SPARE_SIZE_4              (0 << 14)
74 #define   CONFIG_SKIP_SPARE_SIZE_8              (1 << 14)
75 #define   CONFIG_SKIP_SPARE_SIZE_12             (2 << 14)
76 #define   CONFIG_SKIP_SPARE_SIZE_16             (3 << 14)
77 #define   CONFIG_TAG_BYTE_SIZE(x)                       ((x) & 0xff)
78
79 #define TIMING_1                                0x14
80 #define   TIMING_TRP_RESP(x)                    (((x) & 0xf) << 28)
81 #define   TIMING_TWB(x)                         (((x) & 0xf) << 24)
82 #define   TIMING_TCR_TAR_TRR(x)                 (((x) & 0xf) << 20)
83 #define   TIMING_TWHR(x)                        (((x) & 0xf) << 16)
84 #define   TIMING_TCS(x)                         (((x) & 0x3) << 14)
85 #define   TIMING_TWH(x)                         (((x) & 0x3) << 12)
86 #define   TIMING_TWP(x)                         (((x) & 0xf) <<  8)
87 #define   TIMING_TRH(x)                         (((x) & 0x3) <<  4)
88 #define   TIMING_TRP(x)                         (((x) & 0xf) <<  0)
89
90 #define RESP                                    0x18
91
92 #define TIMING_2                                0x1c
93 #define   TIMING_TADL(x)                        ((x) & 0xf)
94
95 #define CMD_REG1                                0x20
96 #define CMD_REG2                                0x24
97 #define ADDR_REG1                               0x28
98 #define ADDR_REG2                               0x2c
99
100 #define DMA_MST_CTRL                            0x30
101 #define   DMA_MST_CTRL_GO                       BIT(31)
102 #define   DMA_MST_CTRL_IN                       (0 << 30)
103 #define   DMA_MST_CTRL_OUT                      BIT(30)
104 #define   DMA_MST_CTRL_PERF_EN                  BIT(29)
105 #define   DMA_MST_CTRL_IE_DONE                  BIT(28)
106 #define   DMA_MST_CTRL_REUSE                    BIT(27)
107 #define   DMA_MST_CTRL_BURST_1                  (2 << 24)
108 #define   DMA_MST_CTRL_BURST_4                  (3 << 24)
109 #define   DMA_MST_CTRL_BURST_8                  (4 << 24)
110 #define   DMA_MST_CTRL_BURST_16                 (5 << 24)
111 #define   DMA_MST_CTRL_IS_DONE                  BIT(20)
112 #define   DMA_MST_CTRL_EN_A                     BIT(2)
113 #define   DMA_MST_CTRL_EN_B                     BIT(1)
114
115 #define DMA_CFG_A                               0x34
116 #define DMA_CFG_B                               0x38
117
118 #define FIFO_CTRL                               0x3c
119 #define   FIFO_CTRL_CLR_ALL                     BIT(3)
120
121 #define DATA_PTR                                0x40
122 #define TAG_PTR                                 0x44
123 #define ECC_PTR                                 0x48
124
125 #define DEC_STATUS                              0x4c
126 #define   DEC_STATUS_A_ECC_FAIL                 BIT(1)
127 #define   DEC_STATUS_ERR_COUNT_MASK             0x00ff0000
128 #define   DEC_STATUS_ERR_COUNT_SHIFT            16
129
130 #define HWSTATUS_CMD                            0x50
131 #define HWSTATUS_MASK                           0x54
132 #define   HWSTATUS_RDSTATUS_MASK(x)             (((x) & 0xff) << 24)
133 #define   HWSTATUS_RDSTATUS_VALUE(x)            (((x) & 0xff) << 16)
134 #define   HWSTATUS_RBSY_MASK(x)                 (((x) & 0xff) << 8)
135 #define   HWSTATUS_RBSY_VALUE(x)                (((x) & 0xff) << 0)
136
137 #define BCH_CONFIG                              0xcc
138 #define   BCH_ENABLE                            BIT(0)
139 #define   BCH_TVAL_4                            (0 << 4)
140 #define   BCH_TVAL_8                            (1 << 4)
141 #define   BCH_TVAL_14                           (2 << 4)
142 #define   BCH_TVAL_16                           (3 << 4)
143
144 #define DEC_STAT_RESULT                         0xd0
145 #define DEC_STAT_BUF                            0xd4
146 #define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK       0xff000000
147 #define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT      24
148 #define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK       0x00ff0000
149 #define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT      16
150 #define   DEC_STAT_BUF_MAX_CORR_CNT_MASK        0x00001f00
151 #define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT       8
152
153 #define OFFSET(val, off)        ((val) < (off) ? 0 : (val) - (off))
154
155 #define SKIP_SPARE_BYTES        4
156 #define BITS_PER_STEP_RS        18
157 #define BITS_PER_STEP_BCH       13
158
159 #define INT_MASK                (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
160 #define HWSTATUS_CMD_DEFAULT    NAND_STATUS_READY
161 #define HWSTATUS_MASK_DEFAULT   (HWSTATUS_RDSTATUS_MASK(1) | \
162                                 HWSTATUS_RDSTATUS_VALUE(0) | \
163                                 HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
164                                 HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
165
166 struct tegra_nand_controller {
167         struct nand_controller controller;
168         struct device *dev;
169         void __iomem *regs;
170         int irq;
171         struct clk *clk;
172         struct completion command_complete;
173         struct completion dma_complete;
174         bool last_read_error;
175         int cur_cs;
176         struct nand_chip *chip;
177 };
178
179 struct tegra_nand_chip {
180         struct nand_chip chip;
181         struct gpio_desc *wp_gpio;
182         struct mtd_oob_region ecc;
183         u32 config;
184         u32 config_ecc;
185         u32 bch_config;
186         int cs[1];
187 };
188
189 static inline struct tegra_nand_controller *
190                         to_tegra_ctrl(struct nand_controller *hw_ctrl)
191 {
192         return container_of(hw_ctrl, struct tegra_nand_controller, controller);
193 }
194
195 static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
196 {
197         return container_of(chip, struct tegra_nand_chip, chip);
198 }
199
200 static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
201                                        struct mtd_oob_region *oobregion)
202 {
203         struct nand_chip *chip = mtd_to_nand(mtd);
204         int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
205                                           BITS_PER_BYTE);
206
207         if (section > 0)
208                 return -ERANGE;
209
210         oobregion->offset = SKIP_SPARE_BYTES;
211         oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
212
213         return 0;
214 }
215
216 static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
217                                         struct mtd_oob_region *oobregion)
218 {
219         return -ERANGE;
220 }
221
222 static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
223         .ecc = tegra_nand_ooblayout_rs_ecc,
224         .free = tegra_nand_ooblayout_no_free,
225 };
226
227 static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
228                                         struct mtd_oob_region *oobregion)
229 {
230         struct nand_chip *chip = mtd_to_nand(mtd);
231         int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
232                                           BITS_PER_BYTE);
233
234         if (section > 0)
235                 return -ERANGE;
236
237         oobregion->offset = SKIP_SPARE_BYTES;
238         oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
239
240         return 0;
241 }
242
243 static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
244         .ecc = tegra_nand_ooblayout_bch_ecc,
245         .free = tegra_nand_ooblayout_no_free,
246 };
247
248 static irqreturn_t tegra_nand_irq(int irq, void *data)
249 {
250         struct tegra_nand_controller *ctrl = data;
251         u32 isr, dma;
252
253         isr = readl_relaxed(ctrl->regs + ISR);
254         dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
255         dev_dbg(ctrl->dev, "isr %08x\n", isr);
256
257         if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
258                 return IRQ_NONE;
259
260         /*
261          * The bit name is somewhat missleading: This is also set when
262          * HW ECC was successful. The data sheet states:
263          * Correctable OR Un-correctable errors occurred in the DMA transfer...
264          */
265         if (isr & ISR_CORRFAIL_ERR)
266                 ctrl->last_read_error = true;
267
268         if (isr & ISR_CMD_DONE)
269                 complete(&ctrl->command_complete);
270
271         if (isr & ISR_UND)
272                 dev_err(ctrl->dev, "FIFO underrun\n");
273
274         if (isr & ISR_OVR)
275                 dev_err(ctrl->dev, "FIFO overrun\n");
276
277         /* handle DMA interrupts */
278         if (dma & DMA_MST_CTRL_IS_DONE) {
279                 writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
280                 complete(&ctrl->dma_complete);
281         }
282
283         /* clear interrupts */
284         writel_relaxed(isr, ctrl->regs + ISR);
285
286         return IRQ_HANDLED;
287 }
288
289 static const char * const tegra_nand_reg_names[] = {
290         "COMMAND",
291         "STATUS",
292         "ISR",
293         "IER",
294         "CONFIG",
295         "TIMING",
296         NULL,
297         "TIMING2",
298         "CMD_REG1",
299         "CMD_REG2",
300         "ADDR_REG1",
301         "ADDR_REG2",
302         "DMA_MST_CTRL",
303         "DMA_CFG_A",
304         "DMA_CFG_B",
305         "FIFO_CTRL",
306 };
307
308 static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
309 {
310         u32 reg;
311         int i;
312
313         dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
314         for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
315                 const char *reg_name = tegra_nand_reg_names[i];
316
317                 if (!reg_name)
318                         continue;
319
320                 reg = readl_relaxed(ctrl->regs + (i * 4));
321                 dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
322         }
323 }
324
325 static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
326 {
327         u32 isr, dma;
328
329         disable_irq(ctrl->irq);
330
331         /* Abort current command/DMA operation */
332         writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
333         writel_relaxed(0, ctrl->regs + COMMAND);
334
335         /* clear interrupts */
336         isr = readl_relaxed(ctrl->regs + ISR);
337         writel_relaxed(isr, ctrl->regs + ISR);
338         dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
339         writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
340
341         reinit_completion(&ctrl->command_complete);
342         reinit_completion(&ctrl->dma_complete);
343
344         enable_irq(ctrl->irq);
345 }
346
347 static int tegra_nand_cmd(struct nand_chip *chip,
348                           const struct nand_subop *subop)
349 {
350         const struct nand_op_instr *instr;
351         const struct nand_op_instr *instr_data_in = NULL;
352         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
353         unsigned int op_id, size = 0, offset = 0;
354         bool first_cmd = true;
355         u32 reg, cmd = 0;
356         int ret;
357
358         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
359                 unsigned int naddrs, i;
360                 const u8 *addrs;
361                 u32 addr1 = 0, addr2 = 0;
362
363                 instr = &subop->instrs[op_id];
364
365                 switch (instr->type) {
366                 case NAND_OP_CMD_INSTR:
367                         if (first_cmd) {
368                                 cmd |= COMMAND_CLE;
369                                 writel_relaxed(instr->ctx.cmd.opcode,
370                                                ctrl->regs + CMD_REG1);
371                         } else {
372                                 cmd |= COMMAND_SEC_CMD;
373                                 writel_relaxed(instr->ctx.cmd.opcode,
374                                                ctrl->regs + CMD_REG2);
375                         }
376                         first_cmd = false;
377                         break;
378
379                 case NAND_OP_ADDR_INSTR:
380                         offset = nand_subop_get_addr_start_off(subop, op_id);
381                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
382                         addrs = &instr->ctx.addr.addrs[offset];
383
384                         cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
385                         for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
386                                 addr1 |= *addrs++ << (BITS_PER_BYTE * i);
387                         naddrs -= i;
388                         for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
389                                 addr2 |= *addrs++ << (BITS_PER_BYTE * i);
390
391                         writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
392                         writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
393                         break;
394
395                 case NAND_OP_DATA_IN_INSTR:
396                         size = nand_subop_get_data_len(subop, op_id);
397                         offset = nand_subop_get_data_start_off(subop, op_id);
398
399                         cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
400                                 COMMAND_RX | COMMAND_A_VALID;
401
402                         instr_data_in = instr;
403                         break;
404
405                 case NAND_OP_DATA_OUT_INSTR:
406                         size = nand_subop_get_data_len(subop, op_id);
407                         offset = nand_subop_get_data_start_off(subop, op_id);
408
409                         cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
410                                 COMMAND_TX | COMMAND_A_VALID;
411                         memcpy(&reg, instr->ctx.data.buf.out + offset, size);
412
413                         writel_relaxed(reg, ctrl->regs + RESP);
414                         break;
415
416                 case NAND_OP_WAITRDY_INSTR:
417                         cmd |= COMMAND_RBSY_CHK;
418                         break;
419                 }
420         }
421
422         cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
423         writel_relaxed(cmd, ctrl->regs + COMMAND);
424         ret = wait_for_completion_timeout(&ctrl->command_complete,
425                                           msecs_to_jiffies(500));
426         if (!ret) {
427                 dev_err(ctrl->dev, "COMMAND timeout\n");
428                 tegra_nand_dump_reg(ctrl);
429                 tegra_nand_controller_abort(ctrl);
430                 return -ETIMEDOUT;
431         }
432
433         if (instr_data_in) {
434                 reg = readl_relaxed(ctrl->regs + RESP);
435                 memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
436         }
437
438         return 0;
439 }
440
441 static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
442         NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
443                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
444                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
445                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
446                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
447         NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
448                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
449         NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
450                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
451                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
452                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
453                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
454                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
455         );
456
457 static void tegra_nand_select_target(struct nand_chip *chip,
458                                      unsigned int die_nr)
459 {
460         struct tegra_nand_chip *nand = to_tegra_chip(chip);
461         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
462
463         ctrl->cur_cs = nand->cs[die_nr];
464 }
465
466 static int tegra_nand_exec_op(struct nand_chip *chip,
467                               const struct nand_operation *op,
468                               bool check_only)
469 {
470         if (!check_only)
471                 tegra_nand_select_target(chip, op->cs);
472
473         return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
474                                       check_only);
475 }
476
477 static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
478                               struct nand_chip *chip, bool enable)
479 {
480         struct tegra_nand_chip *nand = to_tegra_chip(chip);
481
482         if (chip->ecc.algo == NAND_ECC_ALGO_BCH && enable)
483                 writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
484         else
485                 writel_relaxed(0, ctrl->regs + BCH_CONFIG);
486
487         if (enable)
488                 writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
489         else
490                 writel_relaxed(nand->config, ctrl->regs + CONFIG);
491 }
492
493 static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
494                                 void *buf, void *oob_buf, int oob_len, int page,
495                                 bool read)
496 {
497         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
498         enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
499         dma_addr_t dma_addr = 0, dma_addr_oob = 0;
500         u32 addr1, cmd, dma_ctrl;
501         int ret;
502
503         tegra_nand_select_target(chip, chip->cur_cs);
504
505         if (read) {
506                 writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
507                 writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
508         } else {
509                 writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
510                 writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
511         }
512         cmd = COMMAND_CLE | COMMAND_SEC_CMD;
513
514         /* Lower 16-bits are column, by default 0 */
515         addr1 = page << 16;
516
517         if (!buf)
518                 addr1 |= mtd->writesize;
519         writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
520
521         if (chip->options & NAND_ROW_ADDR_3) {
522                 writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
523                 cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
524         } else {
525                 cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
526         }
527
528         if (buf) {
529                 dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
530                 ret = dma_mapping_error(ctrl->dev, dma_addr);
531                 if (ret) {
532                         dev_err(ctrl->dev, "dma mapping error\n");
533                         return -EINVAL;
534                 }
535
536                 writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
537                 writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
538         }
539
540         if (oob_buf) {
541                 dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
542                                               dir);
543                 ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
544                 if (ret) {
545                         dev_err(ctrl->dev, "dma mapping error\n");
546                         ret = -EINVAL;
547                         goto err_unmap_dma_page;
548                 }
549
550                 writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
551                 writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
552         }
553
554         dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
555                    DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
556                    DMA_MST_CTRL_BURST_16;
557
558         if (buf)
559                 dma_ctrl |= DMA_MST_CTRL_EN_A;
560         if (oob_buf)
561                 dma_ctrl |= DMA_MST_CTRL_EN_B;
562
563         if (read)
564                 dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
565         else
566                 dma_ctrl |= DMA_MST_CTRL_OUT;
567
568         writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
569
570         cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
571                COMMAND_CE(ctrl->cur_cs);
572
573         if (buf)
574                 cmd |= COMMAND_A_VALID;
575         if (oob_buf)
576                 cmd |= COMMAND_B_VALID;
577
578         if (read)
579                 cmd |= COMMAND_RX;
580         else
581                 cmd |= COMMAND_TX | COMMAND_AFT_DAT;
582
583         writel_relaxed(cmd, ctrl->regs + COMMAND);
584
585         ret = wait_for_completion_timeout(&ctrl->command_complete,
586                                           msecs_to_jiffies(500));
587         if (!ret) {
588                 dev_err(ctrl->dev, "COMMAND timeout\n");
589                 tegra_nand_dump_reg(ctrl);
590                 tegra_nand_controller_abort(ctrl);
591                 ret = -ETIMEDOUT;
592                 goto err_unmap_dma;
593         }
594
595         ret = wait_for_completion_timeout(&ctrl->dma_complete,
596                                           msecs_to_jiffies(500));
597         if (!ret) {
598                 dev_err(ctrl->dev, "DMA timeout\n");
599                 tegra_nand_dump_reg(ctrl);
600                 tegra_nand_controller_abort(ctrl);
601                 ret = -ETIMEDOUT;
602                 goto err_unmap_dma;
603         }
604         ret = 0;
605
606 err_unmap_dma:
607         if (oob_buf)
608                 dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
609 err_unmap_dma_page:
610         if (buf)
611                 dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
612
613         return ret;
614 }
615
616 static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf,
617                                     int oob_required, int page)
618 {
619         struct mtd_info *mtd = nand_to_mtd(chip);
620         void *oob_buf = oob_required ? chip->oob_poi : NULL;
621
622         return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
623                                     mtd->oobsize, page, true);
624 }
625
626 static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf,
627                                      int oob_required, int page)
628 {
629         struct mtd_info *mtd = nand_to_mtd(chip);
630         void *oob_buf = oob_required ? chip->oob_poi : NULL;
631
632         return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
633                                      mtd->oobsize, page, false);
634 }
635
636 static int tegra_nand_read_oob(struct nand_chip *chip, int page)
637 {
638         struct mtd_info *mtd = nand_to_mtd(chip);
639
640         return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
641                                     mtd->oobsize, page, true);
642 }
643
644 static int tegra_nand_write_oob(struct nand_chip *chip, int page)
645 {
646         struct mtd_info *mtd = nand_to_mtd(chip);
647
648         return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
649                                     mtd->oobsize, page, false);
650 }
651
652 static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
653                                       int oob_required, int page)
654 {
655         struct mtd_info *mtd = nand_to_mtd(chip);
656         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
657         struct tegra_nand_chip *nand = to_tegra_chip(chip);
658         void *oob_buf = oob_required ? chip->oob_poi : NULL;
659         u32 dec_stat, max_corr_cnt;
660         unsigned long fail_sec_flag;
661         int ret;
662
663         tegra_nand_hw_ecc(ctrl, chip, true);
664         ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
665         tegra_nand_hw_ecc(ctrl, chip, false);
666         if (ret)
667                 return ret;
668
669         /* No correctable or un-correctable errors, page must have 0 bitflips */
670         if (!ctrl->last_read_error)
671                 return 0;
672
673         /*
674          * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
675          * which contains information for all ECC selections.
676          *
677          * Note that since we do not use Command Queues DEC_RESULT does not
678          * state the number of pages we can read from the DEC_STAT_BUF. But
679          * since CORRFAIL_ERR did occur during page read we do have a valid
680          * result in DEC_STAT_BUF.
681          */
682         ctrl->last_read_error = false;
683         dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
684
685         fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
686                         DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
687
688         max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
689                        DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
690
691         if (fail_sec_flag) {
692                 int bit, max_bitflips = 0;
693
694                 /*
695                  * Since we do not support subpage writes, a complete page
696                  * is either written or not. We can take a shortcut here by
697                  * checking wheather any of the sector has been successful
698                  * read. If at least one sectors has been read successfully,
699                  * the page must have been a written previously. It cannot
700                  * be an erased page.
701                  *
702                  * E.g. controller might return fail_sec_flag with 0x4, which
703                  * would mean only the third sector failed to correct. The
704                  * page must have been written and the third sector is really
705                  * not correctable anymore.
706                  */
707                 if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
708                         mtd->ecc_stats.failed += hweight8(fail_sec_flag);
709                         return max_corr_cnt;
710                 }
711
712                 /*
713                  * All sectors failed to correct, but the ECC isn't smart
714                  * enough to figure out if a page is really just erased.
715                  * Read OOB data and check whether data/OOB is completely
716                  * erased or if error correction just failed for all sub-
717                  * pages.
718                  */
719                 ret = tegra_nand_read_oob(chip, page);
720                 if (ret < 0)
721                         return ret;
722
723                 for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
724                         u8 *data = buf + (chip->ecc.size * bit);
725                         u8 *oob = chip->oob_poi + nand->ecc.offset +
726                                   (chip->ecc.bytes * bit);
727
728                         ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
729                                                           oob, chip->ecc.bytes,
730                                                           NULL, 0,
731                                                           chip->ecc.strength);
732                         if (ret < 0) {
733                                 mtd->ecc_stats.failed++;
734                         } else {
735                                 mtd->ecc_stats.corrected += ret;
736                                 max_bitflips = max(ret, max_bitflips);
737                         }
738                 }
739
740                 return max_t(unsigned int, max_corr_cnt, max_bitflips);
741         } else {
742                 int corr_sec_flag;
743
744                 corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
745                                 DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
746
747                 /*
748                  * The value returned in the register is the maximum of
749                  * bitflips encountered in any of the ECC regions. As there is
750                  * no way to get the number of bitflips in a specific regions
751                  * we are not able to deliver correct stats but instead
752                  * overestimate the number of corrected bitflips by assuming
753                  * that all regions where errors have been corrected
754                  * encountered the maximum number of bitflips.
755                  */
756                 mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
757
758                 return max_corr_cnt;
759         }
760 }
761
762 static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
763                                        int oob_required, int page)
764 {
765         struct mtd_info *mtd = nand_to_mtd(chip);
766         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
767         void *oob_buf = oob_required ? chip->oob_poi : NULL;
768         int ret;
769
770         tegra_nand_hw_ecc(ctrl, chip, true);
771         ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
772                                    0, page, false);
773         tegra_nand_hw_ecc(ctrl, chip, false);
774
775         return ret;
776 }
777
778 static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
779                                     const struct nand_sdr_timings *timings)
780 {
781         /*
782          * The period (and all other timings in this function) is in ps,
783          * so need to take care here to avoid integer overflows.
784          */
785         unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
786         unsigned int period = DIV_ROUND_UP(1000000, rate);
787         u32 val, reg = 0;
788
789         val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
790                                 timings->tRC_min), period);
791         reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
792
793         val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
794                                max(timings->tALS_min, timings->tALH_min)),
795                            period);
796         reg |= TIMING_TCS(OFFSET(val, 2));
797
798         val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
799                            period);
800         reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
801
802         reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
803         reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
804         reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
805         reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
806         reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
807
808         writel_relaxed(reg, ctrl->regs + TIMING_1);
809
810         val = DIV_ROUND_UP(timings->tADL_min, period);
811         reg = TIMING_TADL(OFFSET(val, 3));
812
813         writel_relaxed(reg, ctrl->regs + TIMING_2);
814 }
815
816 static int tegra_nand_setup_interface(struct nand_chip *chip, int csline,
817                                       const struct nand_interface_config *conf)
818 {
819         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
820         const struct nand_sdr_timings *timings;
821
822         timings = nand_get_sdr_timings(conf);
823         if (IS_ERR(timings))
824                 return PTR_ERR(timings);
825
826         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
827                 return 0;
828
829         tegra_nand_setup_timing(ctrl, timings);
830
831         return 0;
832 }
833
834 static const int rs_strength_bootable[] = { 4 };
835 static const int rs_strength[] = { 4, 6, 8 };
836 static const int bch_strength_bootable[] = { 8, 16 };
837 static const int bch_strength[] = { 4, 8, 14, 16 };
838
839 static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
840                                    int strength_len, int bits_per_step,
841                                    int oobsize)
842 {
843         struct nand_device *base = mtd_to_nanddev(nand_to_mtd(chip));
844         const struct nand_ecc_props *requirements =
845                 nanddev_get_ecc_requirements(base);
846         bool maximize = base->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH;
847         int i;
848
849         /*
850          * Loop through available strengths. Backwards in case we try to
851          * maximize the BCH strength.
852          */
853         for (i = 0; i < strength_len; i++) {
854                 int strength_sel, bytes_per_step, bytes_per_page;
855
856                 if (maximize) {
857                         strength_sel = strength[strength_len - i - 1];
858                 } else {
859                         strength_sel = strength[i];
860
861                         if (strength_sel < requirements->strength)
862                                 continue;
863                 }
864
865                 bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
866                                               BITS_PER_BYTE);
867                 bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
868
869                 /* Check whether strength fits OOB */
870                 if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
871                         return strength_sel;
872         }
873
874         return -EINVAL;
875 }
876
877 static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
878 {
879         const int *strength;
880         int strength_len, bits_per_step;
881
882         switch (chip->ecc.algo) {
883         case NAND_ECC_ALGO_RS:
884                 bits_per_step = BITS_PER_STEP_RS;
885                 if (chip->options & NAND_IS_BOOT_MEDIUM) {
886                         strength = rs_strength_bootable;
887                         strength_len = ARRAY_SIZE(rs_strength_bootable);
888                 } else {
889                         strength = rs_strength;
890                         strength_len = ARRAY_SIZE(rs_strength);
891                 }
892                 break;
893         case NAND_ECC_ALGO_BCH:
894                 bits_per_step = BITS_PER_STEP_BCH;
895                 if (chip->options & NAND_IS_BOOT_MEDIUM) {
896                         strength = bch_strength_bootable;
897                         strength_len = ARRAY_SIZE(bch_strength_bootable);
898                 } else {
899                         strength = bch_strength;
900                         strength_len = ARRAY_SIZE(bch_strength);
901                 }
902                 break;
903         default:
904                 return -EINVAL;
905         }
906
907         return tegra_nand_get_strength(chip, strength, strength_len,
908                                        bits_per_step, oobsize);
909 }
910
911 static int tegra_nand_attach_chip(struct nand_chip *chip)
912 {
913         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
914         const struct nand_ecc_props *requirements =
915                 nanddev_get_ecc_requirements(&chip->base);
916         struct tegra_nand_chip *nand = to_tegra_chip(chip);
917         struct mtd_info *mtd = nand_to_mtd(chip);
918         int bits_per_step;
919         int ret;
920
921         if (chip->bbt_options & NAND_BBT_USE_FLASH)
922                 chip->bbt_options |= NAND_BBT_NO_OOB;
923
924         chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
925         chip->ecc.size = 512;
926         chip->ecc.steps = mtd->writesize / chip->ecc.size;
927         if (requirements->step_size != 512) {
928                 dev_err(ctrl->dev, "Unsupported step size %d\n",
929                         requirements->step_size);
930                 return -EINVAL;
931         }
932
933         chip->ecc.read_page = tegra_nand_read_page_hwecc;
934         chip->ecc.write_page = tegra_nand_write_page_hwecc;
935         chip->ecc.read_page_raw = tegra_nand_read_page_raw;
936         chip->ecc.write_page_raw = tegra_nand_write_page_raw;
937         chip->ecc.read_oob = tegra_nand_read_oob;
938         chip->ecc.write_oob = tegra_nand_write_oob;
939
940         if (chip->options & NAND_BUSWIDTH_16)
941                 nand->config |= CONFIG_BUS_WIDTH_16;
942
943         if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
944                 if (mtd->writesize < 2048)
945                         chip->ecc.algo = NAND_ECC_ALGO_RS;
946                 else
947                         chip->ecc.algo = NAND_ECC_ALGO_BCH;
948         }
949
950         if (chip->ecc.algo == NAND_ECC_ALGO_BCH && mtd->writesize < 2048) {
951                 dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n");
952                 return -EINVAL;
953         }
954
955         if (!chip->ecc.strength) {
956                 ret = tegra_nand_select_strength(chip, mtd->oobsize);
957                 if (ret < 0) {
958                         dev_err(ctrl->dev,
959                                 "No valid strength found, minimum %d\n",
960                                 requirements->strength);
961                         return ret;
962                 }
963
964                 chip->ecc.strength = ret;
965         }
966
967         nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
968                            CONFIG_SKIP_SPARE_SIZE_4;
969
970         switch (chip->ecc.algo) {
971         case NAND_ECC_ALGO_RS:
972                 bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
973                 mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
974                 nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
975                                     CONFIG_ERR_COR;
976                 switch (chip->ecc.strength) {
977                 case 4:
978                         nand->config_ecc |= CONFIG_TVAL_4;
979                         break;
980                 case 6:
981                         nand->config_ecc |= CONFIG_TVAL_6;
982                         break;
983                 case 8:
984                         nand->config_ecc |= CONFIG_TVAL_8;
985                         break;
986                 default:
987                         dev_err(ctrl->dev, "ECC strength %d not supported\n",
988                                 chip->ecc.strength);
989                         return -EINVAL;
990                 }
991                 break;
992         case NAND_ECC_ALGO_BCH:
993                 bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
994                 mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
995                 nand->bch_config = BCH_ENABLE;
996                 switch (chip->ecc.strength) {
997                 case 4:
998                         nand->bch_config |= BCH_TVAL_4;
999                         break;
1000                 case 8:
1001                         nand->bch_config |= BCH_TVAL_8;
1002                         break;
1003                 case 14:
1004                         nand->bch_config |= BCH_TVAL_14;
1005                         break;
1006                 case 16:
1007                         nand->bch_config |= BCH_TVAL_16;
1008                         break;
1009                 default:
1010                         dev_err(ctrl->dev, "ECC strength %d not supported\n",
1011                                 chip->ecc.strength);
1012                         return -EINVAL;
1013                 }
1014                 break;
1015         default:
1016                 dev_err(ctrl->dev, "ECC algorithm not supported\n");
1017                 return -EINVAL;
1018         }
1019
1020         dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n",
1021                  chip->ecc.algo == NAND_ECC_ALGO_BCH ? "BCH" : "RS",
1022                  chip->ecc.strength);
1023
1024         chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
1025
1026         switch (mtd->writesize) {
1027         case 256:
1028                 nand->config |= CONFIG_PS_256;
1029                 break;
1030         case 512:
1031                 nand->config |= CONFIG_PS_512;
1032                 break;
1033         case 1024:
1034                 nand->config |= CONFIG_PS_1024;
1035                 break;
1036         case 2048:
1037                 nand->config |= CONFIG_PS_2048;
1038                 break;
1039         case 4096:
1040                 nand->config |= CONFIG_PS_4096;
1041                 break;
1042         default:
1043                 dev_err(ctrl->dev, "Unsupported writesize %d\n",
1044                         mtd->writesize);
1045                 return -ENODEV;
1046         }
1047
1048         /* Store complete configuration for HW ECC in config_ecc */
1049         nand->config_ecc |= nand->config;
1050
1051         /* Non-HW ECC read/writes complete OOB */
1052         nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
1053         writel_relaxed(nand->config, ctrl->regs + CONFIG);
1054
1055         return 0;
1056 }
1057
1058 static const struct nand_controller_ops tegra_nand_controller_ops = {
1059         .attach_chip = &tegra_nand_attach_chip,
1060         .exec_op = tegra_nand_exec_op,
1061         .setup_interface = tegra_nand_setup_interface,
1062 };
1063
1064 static int tegra_nand_chips_init(struct device *dev,
1065                                  struct tegra_nand_controller *ctrl)
1066 {
1067         struct device_node *np = dev->of_node;
1068         struct device_node *np_nand;
1069         int nsels, nchips = of_get_child_count(np);
1070         struct tegra_nand_chip *nand;
1071         struct mtd_info *mtd;
1072         struct nand_chip *chip;
1073         int ret;
1074         u32 cs;
1075
1076         if (nchips != 1) {
1077                 dev_err(dev, "Currently only one NAND chip supported\n");
1078                 return -EINVAL;
1079         }
1080
1081         np_nand = of_get_next_child(np, NULL);
1082
1083         nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
1084         if (nsels != 1) {
1085                 dev_err(dev, "Missing/invalid reg property\n");
1086                 return -EINVAL;
1087         }
1088
1089         /* Retrieve CS id, currently only single die NAND supported */
1090         ret = of_property_read_u32(np_nand, "reg", &cs);
1091         if (ret) {
1092                 dev_err(dev, "could not retrieve reg property: %d\n", ret);
1093                 return ret;
1094         }
1095
1096         nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
1097         if (!nand)
1098                 return -ENOMEM;
1099
1100         nand->cs[0] = cs;
1101
1102         nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
1103
1104         if (IS_ERR(nand->wp_gpio)) {
1105                 ret = PTR_ERR(nand->wp_gpio);
1106                 dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
1107                 return ret;
1108         }
1109
1110         chip = &nand->chip;
1111         chip->controller = &ctrl->controller;
1112
1113         mtd = nand_to_mtd(chip);
1114
1115         mtd->dev.parent = dev;
1116         mtd->owner = THIS_MODULE;
1117
1118         nand_set_flash_node(chip, np_nand);
1119
1120         if (!mtd->name)
1121                 mtd->name = "tegra_nand";
1122
1123         chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA;
1124
1125         ret = nand_scan(chip, 1);
1126         if (ret)
1127                 return ret;
1128
1129         mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
1130
1131         ret = mtd_device_register(mtd, NULL, 0);
1132         if (ret) {
1133                 dev_err(dev, "Failed to register mtd device: %d\n", ret);
1134                 nand_cleanup(chip);
1135                 return ret;
1136         }
1137
1138         ctrl->chip = chip;
1139
1140         return 0;
1141 }
1142
1143 static int tegra_nand_probe(struct platform_device *pdev)
1144 {
1145         struct reset_control *rst;
1146         struct tegra_nand_controller *ctrl;
1147         struct resource *res;
1148         int err = 0;
1149
1150         ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
1151         if (!ctrl)
1152                 return -ENOMEM;
1153
1154         ctrl->dev = &pdev->dev;
1155         nand_controller_init(&ctrl->controller);
1156         ctrl->controller.ops = &tegra_nand_controller_ops;
1157
1158         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1159         ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
1160         if (IS_ERR(ctrl->regs))
1161                 return PTR_ERR(ctrl->regs);
1162
1163         rst = devm_reset_control_get(&pdev->dev, "nand");
1164         if (IS_ERR(rst))
1165                 return PTR_ERR(rst);
1166
1167         ctrl->clk = devm_clk_get(&pdev->dev, "nand");
1168         if (IS_ERR(ctrl->clk))
1169                 return PTR_ERR(ctrl->clk);
1170
1171         err = clk_prepare_enable(ctrl->clk);
1172         if (err)
1173                 return err;
1174
1175         err = reset_control_reset(rst);
1176         if (err) {
1177                 dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
1178                 goto err_disable_clk;
1179         }
1180
1181         writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
1182         writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
1183         writel_relaxed(INT_MASK, ctrl->regs + IER);
1184
1185         init_completion(&ctrl->command_complete);
1186         init_completion(&ctrl->dma_complete);
1187
1188         ctrl->irq = platform_get_irq(pdev, 0);
1189         err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
1190                                dev_name(&pdev->dev), ctrl);
1191         if (err) {
1192                 dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
1193                 goto err_disable_clk;
1194         }
1195
1196         writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
1197
1198         err = tegra_nand_chips_init(ctrl->dev, ctrl);
1199         if (err)
1200                 goto err_disable_clk;
1201
1202         platform_set_drvdata(pdev, ctrl);
1203
1204         return 0;
1205
1206 err_disable_clk:
1207         clk_disable_unprepare(ctrl->clk);
1208         return err;
1209 }
1210
1211 static int tegra_nand_remove(struct platform_device *pdev)
1212 {
1213         struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
1214         struct nand_chip *chip = ctrl->chip;
1215         struct mtd_info *mtd = nand_to_mtd(chip);
1216         int ret;
1217
1218         ret = mtd_device_unregister(mtd);
1219         if (ret)
1220                 return ret;
1221
1222         nand_cleanup(chip);
1223
1224         clk_disable_unprepare(ctrl->clk);
1225
1226         return 0;
1227 }
1228
1229 static const struct of_device_id tegra_nand_of_match[] = {
1230         { .compatible = "nvidia,tegra20-nand" },
1231         { /* sentinel */ }
1232 };
1233 MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
1234
1235 static struct platform_driver tegra_nand_driver = {
1236         .driver = {
1237                 .name = "tegra-nand",
1238                 .of_match_table = tegra_nand_of_match,
1239         },
1240         .probe = tegra_nand_probe,
1241         .remove = tegra_nand_remove,
1242 };
1243 module_platform_driver(tegra_nand_driver);
1244
1245 MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
1246 MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
1247 MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
1248 MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
1249 MODULE_LICENSE("GPL v2");