Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / s3c2410.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright © 2004-2008 Simtec Electronics
4  *      http://armlinux.simtec.co.uk/
5  *      Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 */
9
10 #define pr_fmt(fmt) "nand-s3c2410: " fmt
11
12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
13 #define DEBUG
14 #endif
15
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/io.h>
21 #include <linux/ioport.h>
22 #include <linux/platform_device.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/cpufreq.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/partitions.h>
34
35 #include <linux/platform_data/mtd-nand-s3c2410.h>
36
37 #define S3C2410_NFREG(x) (x)
38
39 #define S3C2410_NFCONF          S3C2410_NFREG(0x00)
40 #define S3C2410_NFCMD           S3C2410_NFREG(0x04)
41 #define S3C2410_NFADDR          S3C2410_NFREG(0x08)
42 #define S3C2410_NFDATA          S3C2410_NFREG(0x0C)
43 #define S3C2410_NFSTAT          S3C2410_NFREG(0x10)
44 #define S3C2410_NFECC           S3C2410_NFREG(0x14)
45 #define S3C2440_NFCONT          S3C2410_NFREG(0x04)
46 #define S3C2440_NFCMD           S3C2410_NFREG(0x08)
47 #define S3C2440_NFADDR          S3C2410_NFREG(0x0C)
48 #define S3C2440_NFDATA          S3C2410_NFREG(0x10)
49 #define S3C2440_NFSTAT          S3C2410_NFREG(0x20)
50 #define S3C2440_NFMECC0         S3C2410_NFREG(0x2C)
51 #define S3C2412_NFSTAT          S3C2410_NFREG(0x28)
52 #define S3C2412_NFMECC0         S3C2410_NFREG(0x34)
53 #define S3C2410_NFCONF_EN               (1<<15)
54 #define S3C2410_NFCONF_INITECC          (1<<12)
55 #define S3C2410_NFCONF_nFCE             (1<<11)
56 #define S3C2410_NFCONF_TACLS(x)         ((x)<<8)
57 #define S3C2410_NFCONF_TWRPH0(x)        ((x)<<4)
58 #define S3C2410_NFCONF_TWRPH1(x)        ((x)<<0)
59 #define S3C2410_NFSTAT_BUSY             (1<<0)
60 #define S3C2440_NFCONF_TACLS(x)         ((x)<<12)
61 #define S3C2440_NFCONF_TWRPH0(x)        ((x)<<8)
62 #define S3C2440_NFCONF_TWRPH1(x)        ((x)<<4)
63 #define S3C2440_NFCONT_INITECC          (1<<4)
64 #define S3C2440_NFCONT_nFCE             (1<<1)
65 #define S3C2440_NFCONT_ENABLE           (1<<0)
66 #define S3C2440_NFSTAT_READY            (1<<0)
67 #define S3C2412_NFCONF_NANDBOOT         (1<<31)
68 #define S3C2412_NFCONT_INIT_MAIN_ECC    (1<<5)
69 #define S3C2412_NFCONT_nFCE0            (1<<1)
70 #define S3C2412_NFSTAT_READY            (1<<0)
71
72 /* new oob placement block for use with hardware ecc generation
73  */
74 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
75                                  struct mtd_oob_region *oobregion)
76 {
77         if (section)
78                 return -ERANGE;
79
80         oobregion->offset = 0;
81         oobregion->length = 3;
82
83         return 0;
84 }
85
86 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
87                                   struct mtd_oob_region *oobregion)
88 {
89         if (section)
90                 return -ERANGE;
91
92         oobregion->offset = 8;
93         oobregion->length = 8;
94
95         return 0;
96 }
97
98 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
99         .ecc = s3c2410_ooblayout_ecc,
100         .free = s3c2410_ooblayout_free,
101 };
102
103 /* controller and mtd information */
104
105 struct s3c2410_nand_info;
106
107 /**
108  * struct s3c2410_nand_mtd - driver MTD structure
109  * @mtd: The MTD instance to pass to the MTD layer.
110  * @chip: The NAND chip information.
111  * @set: The platform information supplied for this set of NAND chips.
112  * @info: Link back to the hardware information.
113 */
114 struct s3c2410_nand_mtd {
115         struct nand_chip                chip;
116         struct s3c2410_nand_set         *set;
117         struct s3c2410_nand_info        *info;
118 };
119
120 enum s3c_cpu_type {
121         TYPE_S3C2410,
122         TYPE_S3C2412,
123         TYPE_S3C2440,
124 };
125
126 enum s3c_nand_clk_state {
127         CLOCK_DISABLE   = 0,
128         CLOCK_ENABLE,
129         CLOCK_SUSPEND,
130 };
131
132 /* overview of the s3c2410 nand state */
133
134 /**
135  * struct s3c2410_nand_info - NAND controller state.
136  * @controller: Base controller structure.
137  * @mtds: An array of MTD instances on this controller.
138  * @platform: The platform data for this board.
139  * @device: The platform device we bound to.
140  * @clk: The clock resource for this controller.
141  * @regs: The area mapped for the hardware registers.
142  * @sel_reg: Pointer to the register controlling the NAND selection.
143  * @sel_bit: The bit in @sel_reg to select the NAND chip.
144  * @mtd_count: The number of MTDs created from this controller.
145  * @save_sel: The contents of @sel_reg to be saved over suspend.
146  * @clk_rate: The clock rate from @clk.
147  * @clk_state: The current clock state.
148  * @cpu_type: The exact type of this controller.
149  * @freq_transition: CPUFreq notifier block
150  */
151 struct s3c2410_nand_info {
152         /* mtd info */
153         struct nand_controller          controller;
154         struct s3c2410_nand_mtd         *mtds;
155         struct s3c2410_platform_nand    *platform;
156
157         /* device info */
158         struct device                   *device;
159         struct clk                      *clk;
160         void __iomem                    *regs;
161         void __iomem                    *sel_reg;
162         int                             sel_bit;
163         int                             mtd_count;
164         unsigned long                   save_sel;
165         unsigned long                   clk_rate;
166         enum s3c_nand_clk_state         clk_state;
167
168         enum s3c_cpu_type               cpu_type;
169
170 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
171         struct notifier_block   freq_transition;
172 #endif
173 };
174
175 struct s3c24XX_nand_devtype_data {
176         enum s3c_cpu_type type;
177 };
178
179 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
180         .type = TYPE_S3C2410,
181 };
182
183 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
184         .type = TYPE_S3C2412,
185 };
186
187 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
188         .type = TYPE_S3C2440,
189 };
190
191 /* conversion functions */
192
193 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
194 {
195         return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
196                             chip);
197 }
198
199 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
200 {
201         return s3c2410_nand_mtd_toours(mtd)->info;
202 }
203
204 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
205 {
206         return platform_get_drvdata(dev);
207 }
208
209 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
210 {
211         return dev_get_platdata(&dev->dev);
212 }
213
214 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
215 {
216 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
217         return 1;
218 #else
219         return 0;
220 #endif
221 }
222
223 /**
224  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
225  * @info: The controller instance.
226  * @new_state: State to which clock should be set.
227  */
228 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
229                 enum s3c_nand_clk_state new_state)
230 {
231         if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
232                 return;
233
234         if (info->clk_state == CLOCK_ENABLE) {
235                 if (new_state != CLOCK_ENABLE)
236                         clk_disable_unprepare(info->clk);
237         } else {
238                 if (new_state == CLOCK_ENABLE)
239                         clk_prepare_enable(info->clk);
240         }
241
242         info->clk_state = new_state;
243 }
244
245 /* timing calculations */
246
247 #define NS_IN_KHZ 1000000
248
249 /**
250  * s3c_nand_calc_rate - calculate timing data.
251  * @wanted: The cycle time in nanoseconds.
252  * @clk: The clock rate in kHz.
253  * @max: The maximum divider value.
254  *
255  * Calculate the timing value from the given parameters.
256  */
257 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
258 {
259         int result;
260
261         result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
262
263         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
264
265         if (result > max) {
266                 pr_err("%d ns is too big for current clock rate %ld\n",
267                         wanted, clk);
268                 return -1;
269         }
270
271         if (result < 1)
272                 result = 1;
273
274         return result;
275 }
276
277 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
278
279 /* controller setup */
280
281 /**
282  * s3c2410_nand_setrate - setup controller timing information.
283  * @info: The controller instance.
284  *
285  * Given the information supplied by the platform, calculate and set
286  * the necessary timing registers in the hardware to generate the
287  * necessary timing cycles to the hardware.
288  */
289 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
290 {
291         struct s3c2410_platform_nand *plat = info->platform;
292         int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
293         int tacls, twrph0, twrph1;
294         unsigned long clkrate = clk_get_rate(info->clk);
295         unsigned long set, cfg, mask;
296         unsigned long flags;
297
298         /* calculate the timing information for the controller */
299
300         info->clk_rate = clkrate;
301         clkrate /= 1000;        /* turn clock into kHz for ease of use */
302
303         if (plat != NULL) {
304                 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
305                 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
306                 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
307         } else {
308                 /* default timings */
309                 tacls = tacls_max;
310                 twrph0 = 8;
311                 twrph1 = 8;
312         }
313
314         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
315                 dev_err(info->device, "cannot get suitable timings\n");
316                 return -EINVAL;
317         }
318
319         dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
320                 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
321                                                 twrph1, to_ns(twrph1, clkrate));
322
323         switch (info->cpu_type) {
324         case TYPE_S3C2410:
325                 mask = (S3C2410_NFCONF_TACLS(3) |
326                         S3C2410_NFCONF_TWRPH0(7) |
327                         S3C2410_NFCONF_TWRPH1(7));
328                 set = S3C2410_NFCONF_EN;
329                 set |= S3C2410_NFCONF_TACLS(tacls - 1);
330                 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
331                 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
332                 break;
333
334         case TYPE_S3C2440:
335         case TYPE_S3C2412:
336                 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
337                         S3C2440_NFCONF_TWRPH0(7) |
338                         S3C2440_NFCONF_TWRPH1(7));
339
340                 set = S3C2440_NFCONF_TACLS(tacls - 1);
341                 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
342                 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
343                 break;
344
345         default:
346                 BUG();
347         }
348
349         local_irq_save(flags);
350
351         cfg = readl(info->regs + S3C2410_NFCONF);
352         cfg &= ~mask;
353         cfg |= set;
354         writel(cfg, info->regs + S3C2410_NFCONF);
355
356         local_irq_restore(flags);
357
358         dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
359
360         return 0;
361 }
362
363 /**
364  * s3c2410_nand_inithw - basic hardware initialisation
365  * @info: The hardware state.
366  *
367  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
368  * to setup the hardware access speeds and set the controller to be enabled.
369 */
370 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
371 {
372         int ret;
373
374         ret = s3c2410_nand_setrate(info);
375         if (ret < 0)
376                 return ret;
377
378         switch (info->cpu_type) {
379         case TYPE_S3C2410:
380         default:
381                 break;
382
383         case TYPE_S3C2440:
384         case TYPE_S3C2412:
385                 /* enable the controller and de-assert nFCE */
386
387                 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
388         }
389
390         return 0;
391 }
392
393 /**
394  * s3c2410_nand_select_chip - select the given nand chip
395  * @this: NAND chip object.
396  * @chip: The chip number.
397  *
398  * This is called by the MTD layer to either select a given chip for the
399  * @mtd instance, or to indicate that the access has finished and the
400  * chip can be de-selected.
401  *
402  * The routine ensures that the nFCE line is correctly setup, and any
403  * platform specific selection code is called to route nFCE to the specific
404  * chip.
405  */
406 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
407 {
408         struct s3c2410_nand_info *info;
409         struct s3c2410_nand_mtd *nmtd;
410         unsigned long cur;
411
412         nmtd = nand_get_controller_data(this);
413         info = nmtd->info;
414
415         if (chip != -1)
416                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
417
418         cur = readl(info->sel_reg);
419
420         if (chip == -1) {
421                 cur |= info->sel_bit;
422         } else {
423                 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
424                         dev_err(info->device, "invalid chip %d\n", chip);
425                         return;
426                 }
427
428                 if (info->platform != NULL) {
429                         if (info->platform->select_chip != NULL)
430                                 (info->platform->select_chip) (nmtd->set, chip);
431                 }
432
433                 cur &= ~info->sel_bit;
434         }
435
436         writel(cur, info->sel_reg);
437
438         if (chip == -1)
439                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
440 }
441
442 /* s3c2410_nand_hwcontrol
443  *
444  * Issue command and address cycles to the chip
445 */
446
447 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
448                                    unsigned int ctrl)
449 {
450         struct mtd_info *mtd = nand_to_mtd(chip);
451         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
452
453         if (cmd == NAND_CMD_NONE)
454                 return;
455
456         if (ctrl & NAND_CLE)
457                 writeb(cmd, info->regs + S3C2410_NFCMD);
458         else
459                 writeb(cmd, info->regs + S3C2410_NFADDR);
460 }
461
462 /* command and control functions */
463
464 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
465                                    unsigned int ctrl)
466 {
467         struct mtd_info *mtd = nand_to_mtd(chip);
468         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
469
470         if (cmd == NAND_CMD_NONE)
471                 return;
472
473         if (ctrl & NAND_CLE)
474                 writeb(cmd, info->regs + S3C2440_NFCMD);
475         else
476                 writeb(cmd, info->regs + S3C2440_NFADDR);
477 }
478
479 /* s3c2410_nand_devready()
480  *
481  * returns 0 if the nand is busy, 1 if it is ready
482 */
483
484 static int s3c2410_nand_devready(struct nand_chip *chip)
485 {
486         struct mtd_info *mtd = nand_to_mtd(chip);
487         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
488         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
489 }
490
491 static int s3c2440_nand_devready(struct nand_chip *chip)
492 {
493         struct mtd_info *mtd = nand_to_mtd(chip);
494         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
495         return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
496 }
497
498 static int s3c2412_nand_devready(struct nand_chip *chip)
499 {
500         struct mtd_info *mtd = nand_to_mtd(chip);
501         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
502         return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
503 }
504
505 /* ECC handling functions */
506
507 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
508                                      u_char *read_ecc, u_char *calc_ecc)
509 {
510         struct mtd_info *mtd = nand_to_mtd(chip);
511         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
512         unsigned int diff0, diff1, diff2;
513         unsigned int bit, byte;
514
515         pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
516
517         diff0 = read_ecc[0] ^ calc_ecc[0];
518         diff1 = read_ecc[1] ^ calc_ecc[1];
519         diff2 = read_ecc[2] ^ calc_ecc[2];
520
521         pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
522                  __func__, 3, read_ecc, 3, calc_ecc,
523                  diff0, diff1, diff2);
524
525         if (diff0 == 0 && diff1 == 0 && diff2 == 0)
526                 return 0;               /* ECC is ok */
527
528         /* sometimes people do not think about using the ECC, so check
529          * to see if we have an 0xff,0xff,0xff read ECC and then ignore
530          * the error, on the assumption that this is an un-eccd page.
531          */
532         if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
533             && info->platform->ignore_unset_ecc)
534                 return 0;
535
536         /* Can we correct this ECC (ie, one row and column change).
537          * Note, this is similar to the 256 error code on smartmedia */
538
539         if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
540             ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
541             ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
542                 /* calculate the bit position of the error */
543
544                 bit  = ((diff2 >> 3) & 1) |
545                        ((diff2 >> 4) & 2) |
546                        ((diff2 >> 5) & 4);
547
548                 /* calculate the byte position of the error */
549
550                 byte = ((diff2 << 7) & 0x100) |
551                        ((diff1 << 0) & 0x80)  |
552                        ((diff1 << 1) & 0x40)  |
553                        ((diff1 << 2) & 0x20)  |
554                        ((diff1 << 3) & 0x10)  |
555                        ((diff0 >> 4) & 0x08)  |
556                        ((diff0 >> 3) & 0x04)  |
557                        ((diff0 >> 2) & 0x02)  |
558                        ((diff0 >> 1) & 0x01);
559
560                 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
561                         bit, byte);
562
563                 dat[byte] ^= (1 << bit);
564                 return 1;
565         }
566
567         /* if there is only one bit difference in the ECC, then
568          * one of only a row or column parity has changed, which
569          * means the error is most probably in the ECC itself */
570
571         diff0 |= (diff1 << 8);
572         diff0 |= (diff2 << 16);
573
574         /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
575         if ((diff0 & (diff0 - 1)) == 0)
576                 return 1;
577
578         return -1;
579 }
580
581 /* ECC functions
582  *
583  * These allow the s3c2410 and s3c2440 to use the controller's ECC
584  * generator block to ECC the data as it passes through]
585 */
586
587 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
588 {
589         struct s3c2410_nand_info *info;
590         unsigned long ctrl;
591
592         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
593         ctrl = readl(info->regs + S3C2410_NFCONF);
594         ctrl |= S3C2410_NFCONF_INITECC;
595         writel(ctrl, info->regs + S3C2410_NFCONF);
596 }
597
598 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
599 {
600         struct s3c2410_nand_info *info;
601         unsigned long ctrl;
602
603         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
604         ctrl = readl(info->regs + S3C2440_NFCONT);
605         writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
606                info->regs + S3C2440_NFCONT);
607 }
608
609 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
610 {
611         struct s3c2410_nand_info *info;
612         unsigned long ctrl;
613
614         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
615         ctrl = readl(info->regs + S3C2440_NFCONT);
616         writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
617 }
618
619 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
620                                       const u_char *dat, u_char *ecc_code)
621 {
622         struct mtd_info *mtd = nand_to_mtd(chip);
623         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
624
625         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
626         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
627         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
628
629         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
630
631         return 0;
632 }
633
634 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
635                                       const u_char *dat, u_char *ecc_code)
636 {
637         struct mtd_info *mtd = nand_to_mtd(chip);
638         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
639         unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
640
641         ecc_code[0] = ecc;
642         ecc_code[1] = ecc >> 8;
643         ecc_code[2] = ecc >> 16;
644
645         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
646
647         return 0;
648 }
649
650 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
651                                       const u_char *dat, u_char *ecc_code)
652 {
653         struct mtd_info *mtd = nand_to_mtd(chip);
654         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
655         unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
656
657         ecc_code[0] = ecc;
658         ecc_code[1] = ecc >> 8;
659         ecc_code[2] = ecc >> 16;
660
661         pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
662
663         return 0;
664 }
665
666 /* over-ride the standard functions for a little more speed. We can
667  * use read/write block to move the data buffers to/from the controller
668 */
669
670 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
671 {
672         readsb(this->legacy.IO_ADDR_R, buf, len);
673 }
674
675 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
676 {
677         struct mtd_info *mtd = nand_to_mtd(this);
678         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
679
680         readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
681
682         /* cleanup if we've got less than a word to do */
683         if (len & 3) {
684                 buf += len & ~3;
685
686                 for (; len & 3; len--)
687                         *buf++ = readb(info->regs + S3C2440_NFDATA);
688         }
689 }
690
691 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
692                                    int len)
693 {
694         writesb(this->legacy.IO_ADDR_W, buf, len);
695 }
696
697 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
698                                    int len)
699 {
700         struct mtd_info *mtd = nand_to_mtd(this);
701         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
702
703         writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
704
705         /* cleanup any fractional write */
706         if (len & 3) {
707                 buf += len & ~3;
708
709                 for (; len & 3; len--, buf++)
710                         writeb(*buf, info->regs + S3C2440_NFDATA);
711         }
712 }
713
714 /* cpufreq driver support */
715
716 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
717
718 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
719                                           unsigned long val, void *data)
720 {
721         struct s3c2410_nand_info *info;
722         unsigned long newclk;
723
724         info = container_of(nb, struct s3c2410_nand_info, freq_transition);
725         newclk = clk_get_rate(info->clk);
726
727         if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
728             (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
729                 s3c2410_nand_setrate(info);
730         }
731
732         return 0;
733 }
734
735 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
736 {
737         info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
738
739         return cpufreq_register_notifier(&info->freq_transition,
740                                          CPUFREQ_TRANSITION_NOTIFIER);
741 }
742
743 static inline void
744 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
745 {
746         cpufreq_unregister_notifier(&info->freq_transition,
747                                     CPUFREQ_TRANSITION_NOTIFIER);
748 }
749
750 #else
751 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
752 {
753         return 0;
754 }
755
756 static inline void
757 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
758 {
759 }
760 #endif
761
762 /* device management functions */
763
764 static int s3c24xx_nand_remove(struct platform_device *pdev)
765 {
766         struct s3c2410_nand_info *info = to_nand_info(pdev);
767
768         if (info == NULL)
769                 return 0;
770
771         s3c2410_nand_cpufreq_deregister(info);
772
773         /* Release all our mtds  and their partitions, then go through
774          * freeing the resources used
775          */
776
777         if (info->mtds != NULL) {
778                 struct s3c2410_nand_mtd *ptr = info->mtds;
779                 int mtdno;
780
781                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
782                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
783                         WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
784                         nand_cleanup(&ptr->chip);
785                 }
786         }
787
788         /* free the common resources */
789
790         if (!IS_ERR(info->clk))
791                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
792
793         return 0;
794 }
795
796 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
797                                       struct s3c2410_nand_mtd *mtd,
798                                       struct s3c2410_nand_set *set)
799 {
800         if (set) {
801                 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
802
803                 mtdinfo->name = set->name;
804
805                 return mtd_device_register(mtdinfo, set->partitions,
806                                            set->nr_partitions);
807         }
808
809         return -ENODEV;
810 }
811
812 static int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline,
813                                         const struct nand_interface_config *conf)
814 {
815         struct mtd_info *mtd = nand_to_mtd(chip);
816         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
817         struct s3c2410_platform_nand *pdata = info->platform;
818         const struct nand_sdr_timings *timings;
819         int tacls;
820
821         timings = nand_get_sdr_timings(conf);
822         if (IS_ERR(timings))
823                 return -ENOTSUPP;
824
825         tacls = timings->tCLS_min - timings->tWP_min;
826         if (tacls < 0)
827                 tacls = 0;
828
829         pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
830         pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
831         pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
832
833         return s3c2410_nand_setrate(info);
834 }
835
836 /**
837  * s3c2410_nand_init_chip - initialise a single instance of an chip
838  * @info: The base NAND controller the chip is on.
839  * @nmtd: The new controller MTD instance to fill in.
840  * @set: The information passed from the board specific platform data.
841  *
842  * Initialise the given @nmtd from the information in @info and @set. This
843  * readies the structure for use with the MTD layer functions by ensuring
844  * all pointers are setup and the necessary control routines selected.
845  */
846 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
847                                    struct s3c2410_nand_mtd *nmtd,
848                                    struct s3c2410_nand_set *set)
849 {
850         struct device_node *np = info->device->of_node;
851         struct nand_chip *chip = &nmtd->chip;
852         void __iomem *regs = info->regs;
853
854         nand_set_flash_node(chip, set->of_node);
855
856         chip->legacy.write_buf    = s3c2410_nand_write_buf;
857         chip->legacy.read_buf     = s3c2410_nand_read_buf;
858         chip->legacy.select_chip  = s3c2410_nand_select_chip;
859         chip->legacy.chip_delay   = 50;
860         nand_set_controller_data(chip, nmtd);
861         chip->options      = set->options;
862         chip->controller   = &info->controller;
863
864         /*
865          * let's keep behavior unchanged for legacy boards booting via pdata and
866          * auto-detect timings only when booting with a device tree.
867          */
868         if (!np)
869                 chip->options |= NAND_KEEP_TIMINGS;
870
871         switch (info->cpu_type) {
872         case TYPE_S3C2410:
873                 chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
874                 info->sel_reg   = regs + S3C2410_NFCONF;
875                 info->sel_bit   = S3C2410_NFCONF_nFCE;
876                 chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
877                 chip->legacy.dev_ready = s3c2410_nand_devready;
878                 break;
879
880         case TYPE_S3C2440:
881                 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
882                 info->sel_reg   = regs + S3C2440_NFCONT;
883                 info->sel_bit   = S3C2440_NFCONT_nFCE;
884                 chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
885                 chip->legacy.dev_ready = s3c2440_nand_devready;
886                 chip->legacy.read_buf  = s3c2440_nand_read_buf;
887                 chip->legacy.write_buf  = s3c2440_nand_write_buf;
888                 break;
889
890         case TYPE_S3C2412:
891                 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
892                 info->sel_reg   = regs + S3C2440_NFCONT;
893                 info->sel_bit   = S3C2412_NFCONT_nFCE0;
894                 chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
895                 chip->legacy.dev_ready = s3c2412_nand_devready;
896
897                 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
898                         dev_info(info->device, "System booted from NAND\n");
899
900                 break;
901         }
902
903         chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
904
905         nmtd->info         = info;
906         nmtd->set          = set;
907
908         chip->ecc.engine_type = info->platform->engine_type;
909
910         /*
911          * If you use u-boot BBT creation code, specifying this flag will
912          * let the kernel fish out the BBT from the NAND.
913          */
914         if (set->flash_bbt)
915                 chip->bbt_options |= NAND_BBT_USE_FLASH;
916 }
917
918 /**
919  * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
920  * @chip: The NAND chip
921  *
922  * This hook is called by the core after the identification of the NAND chip,
923  * once the relevant per-chip information is up to date.. This call ensure that
924  * we update the internal state accordingly.
925  *
926  * The internal state is currently limited to the ECC state information.
927 */
928 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
929 {
930         struct mtd_info *mtd = nand_to_mtd(chip);
931         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
932
933         switch (chip->ecc.engine_type) {
934
935         case NAND_ECC_ENGINE_TYPE_NONE:
936                 dev_info(info->device, "ECC disabled\n");
937                 break;
938
939         case NAND_ECC_ENGINE_TYPE_SOFT:
940                 /*
941                  * This driver expects Hamming based ECC when engine_type is set
942                  * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
943                  * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field
944                  * to s3c2410_platform_nand.
945                  */
946                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
947                 dev_info(info->device, "soft ECC\n");
948                 break;
949
950         case NAND_ECC_ENGINE_TYPE_ON_HOST:
951                 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
952                 chip->ecc.correct   = s3c2410_nand_correct_data;
953                 chip->ecc.strength  = 1;
954
955                 switch (info->cpu_type) {
956                 case TYPE_S3C2410:
957                         chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
958                         chip->ecc.calculate = s3c2410_nand_calculate_ecc;
959                         break;
960
961                 case TYPE_S3C2412:
962                         chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
963                         chip->ecc.calculate = s3c2412_nand_calculate_ecc;
964                         break;
965
966                 case TYPE_S3C2440:
967                         chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
968                         chip->ecc.calculate = s3c2440_nand_calculate_ecc;
969                         break;
970                 }
971
972                 dev_dbg(info->device, "chip %p => page shift %d\n",
973                         chip, chip->page_shift);
974
975                 /* change the behaviour depending on whether we are using
976                  * the large or small page nand device */
977                 if (chip->page_shift > 10) {
978                         chip->ecc.size      = 256;
979                         chip->ecc.bytes     = 3;
980                 } else {
981                         chip->ecc.size      = 512;
982                         chip->ecc.bytes     = 3;
983                         mtd_set_ooblayout(nand_to_mtd(chip),
984                                           &s3c2410_ooblayout_ops);
985                 }
986
987                 dev_info(info->device, "hardware ECC\n");
988                 break;
989
990         default:
991                 dev_err(info->device, "invalid ECC mode!\n");
992                 return -EINVAL;
993         }
994
995         if (chip->bbt_options & NAND_BBT_USE_FLASH)
996                 chip->options |= NAND_SKIP_BBTSCAN;
997
998         return 0;
999 }
1000
1001 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1002         .attach_chip = s3c2410_nand_attach_chip,
1003         .setup_interface = s3c2410_nand_setup_interface,
1004 };
1005
1006 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1007         {
1008                 .compatible = "samsung,s3c2410-nand",
1009                 .data = &s3c2410_nand_devtype_data,
1010         }, {
1011                 /* also compatible with s3c6400 */
1012                 .compatible = "samsung,s3c2412-nand",
1013                 .data = &s3c2412_nand_devtype_data,
1014         }, {
1015                 .compatible = "samsung,s3c2440-nand",
1016                 .data = &s3c2440_nand_devtype_data,
1017         },
1018         { /* sentinel */ }
1019 };
1020 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1021
1022 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1023 {
1024         const struct s3c24XX_nand_devtype_data *devtype_data;
1025         struct s3c2410_platform_nand *pdata;
1026         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1027         struct device_node *np = pdev->dev.of_node, *child;
1028         struct s3c2410_nand_set *sets;
1029
1030         devtype_data = of_device_get_match_data(&pdev->dev);
1031         if (!devtype_data)
1032                 return -ENODEV;
1033
1034         info->cpu_type = devtype_data->type;
1035
1036         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1037         if (!pdata)
1038                 return -ENOMEM;
1039
1040         pdev->dev.platform_data = pdata;
1041
1042         pdata->nr_sets = of_get_child_count(np);
1043         if (!pdata->nr_sets)
1044                 return 0;
1045
1046         sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1047                             GFP_KERNEL);
1048         if (!sets)
1049                 return -ENOMEM;
1050
1051         pdata->sets = sets;
1052
1053         for_each_available_child_of_node(np, child) {
1054                 sets->name = (char *)child->name;
1055                 sets->of_node = child;
1056                 sets->nr_chips = 1;
1057
1058                 of_node_get(child);
1059
1060                 sets++;
1061         }
1062
1063         return 0;
1064 }
1065
1066 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1067 {
1068         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1069
1070         info->cpu_type = platform_get_device_id(pdev)->driver_data;
1071
1072         return 0;
1073 }
1074
1075 /* s3c24xx_nand_probe
1076  *
1077  * called by device layer when it finds a device matching
1078  * one our driver can handled. This code checks to see if
1079  * it can allocate all necessary resources then calls the
1080  * nand layer to look for devices
1081 */
1082 static int s3c24xx_nand_probe(struct platform_device *pdev)
1083 {
1084         struct s3c2410_platform_nand *plat;
1085         struct s3c2410_nand_info *info;
1086         struct s3c2410_nand_mtd *nmtd;
1087         struct s3c2410_nand_set *sets;
1088         struct resource *res;
1089         int err = 0;
1090         int size;
1091         int nr_sets;
1092         int setno;
1093
1094         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1095         if (info == NULL) {
1096                 err = -ENOMEM;
1097                 goto exit_error;
1098         }
1099
1100         platform_set_drvdata(pdev, info);
1101
1102         nand_controller_init(&info->controller);
1103         info->controller.ops = &s3c24xx_nand_controller_ops;
1104
1105         /* get the clock source and enable it */
1106
1107         info->clk = devm_clk_get(&pdev->dev, "nand");
1108         if (IS_ERR(info->clk)) {
1109                 dev_err(&pdev->dev, "failed to get clock\n");
1110                 err = -ENOENT;
1111                 goto exit_error;
1112         }
1113
1114         s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1115
1116         if (pdev->dev.of_node)
1117                 err = s3c24xx_nand_probe_dt(pdev);
1118         else
1119                 err = s3c24xx_nand_probe_pdata(pdev);
1120
1121         if (err)
1122                 goto exit_error;
1123
1124         plat = to_nand_plat(pdev);
1125
1126         /* allocate and map the resource */
1127
1128         /* currently we assume we have the one resource */
1129         res = pdev->resource;
1130         size = resource_size(res);
1131
1132         info->device    = &pdev->dev;
1133         info->platform  = plat;
1134
1135         info->regs = devm_ioremap_resource(&pdev->dev, res);
1136         if (IS_ERR(info->regs)) {
1137                 err = PTR_ERR(info->regs);
1138                 goto exit_error;
1139         }
1140
1141         dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1142
1143         if (!plat->sets || plat->nr_sets < 1) {
1144                 err = -EINVAL;
1145                 goto exit_error;
1146         }
1147
1148         sets = plat->sets;
1149         nr_sets = plat->nr_sets;
1150
1151         info->mtd_count = nr_sets;
1152
1153         /* allocate our information */
1154
1155         size = nr_sets * sizeof(*info->mtds);
1156         info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1157         if (info->mtds == NULL) {
1158                 err = -ENOMEM;
1159                 goto exit_error;
1160         }
1161
1162         /* initialise all possible chips */
1163
1164         nmtd = info->mtds;
1165
1166         for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1167                 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1168
1169                 pr_debug("initialising set %d (%p, info %p)\n",
1170                          setno, nmtd, info);
1171
1172                 mtd->dev.parent = &pdev->dev;
1173                 s3c2410_nand_init_chip(info, nmtd, sets);
1174
1175                 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1176                 if (err)
1177                         goto exit_error;
1178
1179                 s3c2410_nand_add_partition(info, nmtd, sets);
1180         }
1181
1182         /* initialise the hardware */
1183         err = s3c2410_nand_inithw(info);
1184         if (err != 0)
1185                 goto exit_error;
1186
1187         err = s3c2410_nand_cpufreq_register(info);
1188         if (err < 0) {
1189                 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1190                 goto exit_error;
1191         }
1192
1193         if (allow_clk_suspend(info)) {
1194                 dev_info(&pdev->dev, "clock idle support enabled\n");
1195                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1196         }
1197
1198         return 0;
1199
1200  exit_error:
1201         s3c24xx_nand_remove(pdev);
1202
1203         if (err == 0)
1204                 err = -EINVAL;
1205         return err;
1206 }
1207
1208 /* PM Support */
1209 #ifdef CONFIG_PM
1210
1211 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1212 {
1213         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1214
1215         if (info) {
1216                 info->save_sel = readl(info->sel_reg);
1217
1218                 /* For the moment, we must ensure nFCE is high during
1219                  * the time we are suspended. This really should be
1220                  * handled by suspending the MTDs we are using, but
1221                  * that is currently not the case. */
1222
1223                 writel(info->save_sel | info->sel_bit, info->sel_reg);
1224
1225                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1226         }
1227
1228         return 0;
1229 }
1230
1231 static int s3c24xx_nand_resume(struct platform_device *dev)
1232 {
1233         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1234         unsigned long sel;
1235
1236         if (info) {
1237                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1238                 s3c2410_nand_inithw(info);
1239
1240                 /* Restore the state of the nFCE line. */
1241
1242                 sel = readl(info->sel_reg);
1243                 sel &= ~info->sel_bit;
1244                 sel |= info->save_sel & info->sel_bit;
1245                 writel(sel, info->sel_reg);
1246
1247                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1248         }
1249
1250         return 0;
1251 }
1252
1253 #else
1254 #define s3c24xx_nand_suspend NULL
1255 #define s3c24xx_nand_resume NULL
1256 #endif
1257
1258 /* driver device registration */
1259
1260 static const struct platform_device_id s3c24xx_driver_ids[] = {
1261         {
1262                 .name           = "s3c2410-nand",
1263                 .driver_data    = TYPE_S3C2410,
1264         }, {
1265                 .name           = "s3c2440-nand",
1266                 .driver_data    = TYPE_S3C2440,
1267         }, {
1268                 .name           = "s3c2412-nand",
1269                 .driver_data    = TYPE_S3C2412,
1270         }, {
1271                 .name           = "s3c6400-nand",
1272                 .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1273         },
1274         { }
1275 };
1276
1277 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1278
1279 static struct platform_driver s3c24xx_nand_driver = {
1280         .probe          = s3c24xx_nand_probe,
1281         .remove         = s3c24xx_nand_remove,
1282         .suspend        = s3c24xx_nand_suspend,
1283         .resume         = s3c24xx_nand_resume,
1284         .id_table       = s3c24xx_driver_ids,
1285         .driver         = {
1286                 .name   = "s3c24xx-nand",
1287                 .of_match_table = s3c24xx_nand_dt_ids,
1288         },
1289 };
1290
1291 module_platform_driver(s3c24xx_nand_driver);
1292
1293 MODULE_LICENSE("GPL");
1294 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1295 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");