binfmt: a.out: Fix bogus semicolon
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / omap2.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
4  * Copyright © 2004 Micron Technology Inc.
5  * Copyright © 2004 David Brownell
6  */
7
8 #include <linux/platform_device.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/delay.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand-ecc-sw-bch.h>
19 #include <linux/mtd/rawnand.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/omap-dma.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26
27 #include <linux/platform_data/elm.h>
28
29 #include <linux/omap-gpmc.h>
30 #include <linux/platform_data/mtd-nand-omap2.h>
31
32 #define DRIVER_NAME     "omap2-nand"
33 #define OMAP_NAND_TIMEOUT_MS    5000
34
35 #define NAND_Ecc_P1e            (1 << 0)
36 #define NAND_Ecc_P2e            (1 << 1)
37 #define NAND_Ecc_P4e            (1 << 2)
38 #define NAND_Ecc_P8e            (1 << 3)
39 #define NAND_Ecc_P16e           (1 << 4)
40 #define NAND_Ecc_P32e           (1 << 5)
41 #define NAND_Ecc_P64e           (1 << 6)
42 #define NAND_Ecc_P128e          (1 << 7)
43 #define NAND_Ecc_P256e          (1 << 8)
44 #define NAND_Ecc_P512e          (1 << 9)
45 #define NAND_Ecc_P1024e         (1 << 10)
46 #define NAND_Ecc_P2048e         (1 << 11)
47
48 #define NAND_Ecc_P1o            (1 << 16)
49 #define NAND_Ecc_P2o            (1 << 17)
50 #define NAND_Ecc_P4o            (1 << 18)
51 #define NAND_Ecc_P8o            (1 << 19)
52 #define NAND_Ecc_P16o           (1 << 20)
53 #define NAND_Ecc_P32o           (1 << 21)
54 #define NAND_Ecc_P64o           (1 << 22)
55 #define NAND_Ecc_P128o          (1 << 23)
56 #define NAND_Ecc_P256o          (1 << 24)
57 #define NAND_Ecc_P512o          (1 << 25)
58 #define NAND_Ecc_P1024o         (1 << 26)
59 #define NAND_Ecc_P2048o         (1 << 27)
60
61 #define TF(value)       (value ? 1 : 0)
62
63 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
64 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
65 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
66 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
67 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
68 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
69 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
70 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
71
72 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
73 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
74 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
75 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
76 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
77 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
78 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
79 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
80
81 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
82 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
83 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
84 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
85 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
86 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
87 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
88 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
89
90 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
91 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
92 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
93 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
94 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
95 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
96 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
97 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
98
99 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
100 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
101
102 #define PREFETCH_CONFIG1_CS_SHIFT       24
103 #define ECC_CONFIG_CS_SHIFT             1
104 #define CS_MASK                         0x7
105 #define ENABLE_PREFETCH                 (0x1 << 7)
106 #define DMA_MPU_MODE_SHIFT              2
107 #define ECCSIZE0_SHIFT                  12
108 #define ECCSIZE1_SHIFT                  22
109 #define ECC1RESULTSIZE                  0x1
110 #define ECCCLEAR                        0x100
111 #define ECC1                            0x1
112 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
113 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
114 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
115 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
116 #define STATUS_BUFF_EMPTY               0x00000001
117
118 #define SECTOR_BYTES            512
119 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
120 #define BCH4_BIT_PAD            4
121
122 /* GPMC ecc engine settings for read */
123 #define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
124 #define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
125 #define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
126 #define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
127 #define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
128
129 /* GPMC ecc engine settings for write */
130 #define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
131 #define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
132 #define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
133
134 #define BBM_LEN                 2
135
136 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
137                                 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
138                                 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
139                                 0x07, 0x0e};
140 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
141         0xac, 0x6b, 0xff, 0x99, 0x7b};
142 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
143
144 struct omap_nand_info {
145         struct nand_chip                nand;
146         struct platform_device          *pdev;
147
148         int                             gpmc_cs;
149         bool                            dev_ready;
150         enum nand_io                    xfer_type;
151         int                             devsize;
152         enum omap_ecc                   ecc_opt;
153         struct device_node              *elm_of_node;
154
155         unsigned long                   phys_base;
156         struct completion               comp;
157         struct dma_chan                 *dma;
158         int                             gpmc_irq_fifo;
159         int                             gpmc_irq_count;
160         enum {
161                 OMAP_NAND_IO_READ = 0,  /* read */
162                 OMAP_NAND_IO_WRITE,     /* write */
163         } iomode;
164         u_char                          *buf;
165         int                                     buf_len;
166         /* Interface to GPMC */
167         struct gpmc_nand_regs           reg;
168         struct gpmc_nand_ops            *ops;
169         bool                            flash_bbt;
170         /* fields specific for BCHx_HW ECC scheme */
171         struct device                   *elm_dev;
172         /* NAND ready gpio */
173         struct gpio_desc                *ready_gpiod;
174         unsigned int                    neccpg;
175         unsigned int                    nsteps_per_eccpg;
176         unsigned int                    eccpg_size;
177         unsigned int                    eccpg_bytes;
178 };
179
180 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
181 {
182         return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
183 }
184
185 /**
186  * omap_prefetch_enable - configures and starts prefetch transfer
187  * @cs: cs (chip select) number
188  * @fifo_th: fifo threshold to be used for read/ write
189  * @dma_mode: dma mode enable (1) or disable (0)
190  * @u32_count: number of bytes to be transferred
191  * @is_write: prefetch read(0) or write post(1) mode
192  * @info: NAND device structure containing platform data
193  */
194 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
195         unsigned int u32_count, int is_write, struct omap_nand_info *info)
196 {
197         u32 val;
198
199         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
200                 return -1;
201
202         if (readl(info->reg.gpmc_prefetch_control))
203                 return -EBUSY;
204
205         /* Set the amount of bytes to be prefetched */
206         writel(u32_count, info->reg.gpmc_prefetch_config2);
207
208         /* Set dma/mpu mode, the prefetch read / post write and
209          * enable the engine. Set which cs is has requested for.
210          */
211         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
212                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
213                 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
214         writel(val, info->reg.gpmc_prefetch_config1);
215
216         /*  Start the prefetch engine */
217         writel(0x1, info->reg.gpmc_prefetch_control);
218
219         return 0;
220 }
221
222 /*
223  * omap_prefetch_reset - disables and stops the prefetch engine
224  */
225 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
226 {
227         u32 config1;
228
229         /* check if the same module/cs is trying to reset */
230         config1 = readl(info->reg.gpmc_prefetch_config1);
231         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
232                 return -EINVAL;
233
234         /* Stop the PFPW engine */
235         writel(0x0, info->reg.gpmc_prefetch_control);
236
237         /* Reset/disable the PFPW engine */
238         writel(0x0, info->reg.gpmc_prefetch_config1);
239
240         return 0;
241 }
242
243 /**
244  * omap_hwcontrol - hardware specific access to control-lines
245  * @chip: NAND chip object
246  * @cmd: command to device
247  * @ctrl:
248  * NAND_NCE: bit 0 -> don't care
249  * NAND_CLE: bit 1 -> Command Latch
250  * NAND_ALE: bit 2 -> Address Latch
251  *
252  * NOTE: boards may use different bits for these!!
253  */
254 static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
255 {
256         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
257
258         if (cmd != NAND_CMD_NONE) {
259                 if (ctrl & NAND_CLE)
260                         writeb(cmd, info->reg.gpmc_nand_command);
261
262                 else if (ctrl & NAND_ALE)
263                         writeb(cmd, info->reg.gpmc_nand_address);
264
265                 else /* NAND_NCE */
266                         writeb(cmd, info->reg.gpmc_nand_data);
267         }
268 }
269
270 /**
271  * omap_read_buf8 - read data from NAND controller into buffer
272  * @mtd: MTD device structure
273  * @buf: buffer to store date
274  * @len: number of bytes to read
275  */
276 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
277 {
278         struct nand_chip *nand = mtd_to_nand(mtd);
279
280         ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
281 }
282
283 /**
284  * omap_write_buf8 - write buffer to NAND controller
285  * @mtd: MTD device structure
286  * @buf: data buffer
287  * @len: number of bytes to write
288  */
289 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
290 {
291         struct omap_nand_info *info = mtd_to_omap(mtd);
292         u_char *p = (u_char *)buf;
293         bool status;
294
295         while (len--) {
296                 iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
297                 /* wait until buffer is available for write */
298                 do {
299                         status = info->ops->nand_writebuffer_empty();
300                 } while (!status);
301         }
302 }
303
304 /**
305  * omap_read_buf16 - read data from NAND controller into buffer
306  * @mtd: MTD device structure
307  * @buf: buffer to store date
308  * @len: number of bytes to read
309  */
310 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
311 {
312         struct nand_chip *nand = mtd_to_nand(mtd);
313
314         ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
315 }
316
317 /**
318  * omap_write_buf16 - write buffer to NAND controller
319  * @mtd: MTD device structure
320  * @buf: data buffer
321  * @len: number of bytes to write
322  */
323 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
324 {
325         struct omap_nand_info *info = mtd_to_omap(mtd);
326         u16 *p = (u16 *) buf;
327         bool status;
328         /* FIXME try bursts of writesw() or DMA ... */
329         len >>= 1;
330
331         while (len--) {
332                 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
333                 /* wait until buffer is available for write */
334                 do {
335                         status = info->ops->nand_writebuffer_empty();
336                 } while (!status);
337         }
338 }
339
340 /**
341  * omap_read_buf_pref - read data from NAND controller into buffer
342  * @chip: NAND chip object
343  * @buf: buffer to store date
344  * @len: number of bytes to read
345  */
346 static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
347 {
348         struct mtd_info *mtd = nand_to_mtd(chip);
349         struct omap_nand_info *info = mtd_to_omap(mtd);
350         uint32_t r_count = 0;
351         int ret = 0;
352         u32 *p = (u32 *)buf;
353
354         /* take care of subpage reads */
355         if (len % 4) {
356                 if (info->nand.options & NAND_BUSWIDTH_16)
357                         omap_read_buf16(mtd, buf, len % 4);
358                 else
359                         omap_read_buf8(mtd, buf, len % 4);
360                 p = (u32 *) (buf + len % 4);
361                 len -= len % 4;
362         }
363
364         /* configure and start prefetch transfer */
365         ret = omap_prefetch_enable(info->gpmc_cs,
366                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
367         if (ret) {
368                 /* PFPW engine is busy, use cpu copy method */
369                 if (info->nand.options & NAND_BUSWIDTH_16)
370                         omap_read_buf16(mtd, (u_char *)p, len);
371                 else
372                         omap_read_buf8(mtd, (u_char *)p, len);
373         } else {
374                 do {
375                         r_count = readl(info->reg.gpmc_prefetch_status);
376                         r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
377                         r_count = r_count >> 2;
378                         ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
379                         p += r_count;
380                         len -= r_count << 2;
381                 } while (len);
382                 /* disable and stop the PFPW engine */
383                 omap_prefetch_reset(info->gpmc_cs, info);
384         }
385 }
386
387 /**
388  * omap_write_buf_pref - write buffer to NAND controller
389  * @chip: NAND chip object
390  * @buf: data buffer
391  * @len: number of bytes to write
392  */
393 static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
394                                 int len)
395 {
396         struct mtd_info *mtd = nand_to_mtd(chip);
397         struct omap_nand_info *info = mtd_to_omap(mtd);
398         uint32_t w_count = 0;
399         int i = 0, ret = 0;
400         u16 *p = (u16 *)buf;
401         unsigned long tim, limit;
402         u32 val;
403
404         /* take care of subpage writes */
405         if (len % 2 != 0) {
406                 writeb(*buf, info->nand.legacy.IO_ADDR_W);
407                 p = (u16 *)(buf + 1);
408                 len--;
409         }
410
411         /*  configure and start prefetch transfer */
412         ret = omap_prefetch_enable(info->gpmc_cs,
413                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
414         if (ret) {
415                 /* PFPW engine is busy, use cpu copy method */
416                 if (info->nand.options & NAND_BUSWIDTH_16)
417                         omap_write_buf16(mtd, (u_char *)p, len);
418                 else
419                         omap_write_buf8(mtd, (u_char *)p, len);
420         } else {
421                 while (len) {
422                         w_count = readl(info->reg.gpmc_prefetch_status);
423                         w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
424                         w_count = w_count >> 1;
425                         for (i = 0; (i < w_count) && len; i++, len -= 2)
426                                 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
427                 }
428                 /* wait for data to flushed-out before reset the prefetch */
429                 tim = 0;
430                 limit = (loops_per_jiffy *
431                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
432                 do {
433                         cpu_relax();
434                         val = readl(info->reg.gpmc_prefetch_status);
435                         val = PREFETCH_STATUS_COUNT(val);
436                 } while (val && (tim++ < limit));
437
438                 /* disable and stop the PFPW engine */
439                 omap_prefetch_reset(info->gpmc_cs, info);
440         }
441 }
442
443 /*
444  * omap_nand_dma_callback: callback on the completion of dma transfer
445  * @data: pointer to completion data structure
446  */
447 static void omap_nand_dma_callback(void *data)
448 {
449         complete((struct completion *) data);
450 }
451
452 /*
453  * omap_nand_dma_transfer: configure and start dma transfer
454  * @mtd: MTD device structure
455  * @addr: virtual address in RAM of source/destination
456  * @len: number of data bytes to be transferred
457  * @is_write: flag for read/write operation
458  */
459 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
460                                         unsigned int len, int is_write)
461 {
462         struct omap_nand_info *info = mtd_to_omap(mtd);
463         struct dma_async_tx_descriptor *tx;
464         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
465                                                         DMA_FROM_DEVICE;
466         struct scatterlist sg;
467         unsigned long tim, limit;
468         unsigned n;
469         int ret;
470         u32 val;
471
472         if (!virt_addr_valid(addr))
473                 goto out_copy;
474
475         sg_init_one(&sg, addr, len);
476         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
477         if (n == 0) {
478                 dev_err(&info->pdev->dev,
479                         "Couldn't DMA map a %d byte buffer\n", len);
480                 goto out_copy;
481         }
482
483         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
484                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
485                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
486         if (!tx)
487                 goto out_copy_unmap;
488
489         tx->callback = omap_nand_dma_callback;
490         tx->callback_param = &info->comp;
491         dmaengine_submit(tx);
492
493         init_completion(&info->comp);
494
495         /* setup and start DMA using dma_addr */
496         dma_async_issue_pending(info->dma);
497
498         /*  configure and start prefetch transfer */
499         ret = omap_prefetch_enable(info->gpmc_cs,
500                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
501         if (ret)
502                 /* PFPW engine is busy, use cpu copy method */
503                 goto out_copy_unmap;
504
505         wait_for_completion(&info->comp);
506         tim = 0;
507         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
508
509         do {
510                 cpu_relax();
511                 val = readl(info->reg.gpmc_prefetch_status);
512                 val = PREFETCH_STATUS_COUNT(val);
513         } while (val && (tim++ < limit));
514
515         /* disable and stop the PFPW engine */
516         omap_prefetch_reset(info->gpmc_cs, info);
517
518         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
519         return 0;
520
521 out_copy_unmap:
522         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
523 out_copy:
524         if (info->nand.options & NAND_BUSWIDTH_16)
525                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
526                         : omap_write_buf16(mtd, (u_char *) addr, len);
527         else
528                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
529                         : omap_write_buf8(mtd, (u_char *) addr, len);
530         return 0;
531 }
532
533 /**
534  * omap_read_buf_dma_pref - read data from NAND controller into buffer
535  * @chip: NAND chip object
536  * @buf: buffer to store date
537  * @len: number of bytes to read
538  */
539 static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
540                                    int len)
541 {
542         struct mtd_info *mtd = nand_to_mtd(chip);
543
544         if (len <= mtd->oobsize)
545                 omap_read_buf_pref(chip, buf, len);
546         else
547                 /* start transfer in DMA mode */
548                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
549 }
550
551 /**
552  * omap_write_buf_dma_pref - write buffer to NAND controller
553  * @chip: NAND chip object
554  * @buf: data buffer
555  * @len: number of bytes to write
556  */
557 static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
558                                     int len)
559 {
560         struct mtd_info *mtd = nand_to_mtd(chip);
561
562         if (len <= mtd->oobsize)
563                 omap_write_buf_pref(chip, buf, len);
564         else
565                 /* start transfer in DMA mode */
566                 omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
567 }
568
569 /*
570  * omap_nand_irq - GPMC irq handler
571  * @this_irq: gpmc irq number
572  * @dev: omap_nand_info structure pointer is passed here
573  */
574 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
575 {
576         struct omap_nand_info *info = (struct omap_nand_info *) dev;
577         u32 bytes;
578
579         bytes = readl(info->reg.gpmc_prefetch_status);
580         bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
581         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
582         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
583                 if (this_irq == info->gpmc_irq_count)
584                         goto done;
585
586                 if (info->buf_len && (info->buf_len < bytes))
587                         bytes = info->buf_len;
588                 else if (!info->buf_len)
589                         bytes = 0;
590                 iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
591                               bytes >> 2);
592                 info->buf = info->buf + bytes;
593                 info->buf_len -= bytes;
594
595         } else {
596                 ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
597                              bytes >> 2);
598                 info->buf = info->buf + bytes;
599
600                 if (this_irq == info->gpmc_irq_count)
601                         goto done;
602         }
603
604         return IRQ_HANDLED;
605
606 done:
607         complete(&info->comp);
608
609         disable_irq_nosync(info->gpmc_irq_fifo);
610         disable_irq_nosync(info->gpmc_irq_count);
611
612         return IRQ_HANDLED;
613 }
614
615 /*
616  * omap_read_buf_irq_pref - read data from NAND controller into buffer
617  * @chip: NAND chip object
618  * @buf: buffer to store date
619  * @len: number of bytes to read
620  */
621 static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
622                                    int len)
623 {
624         struct mtd_info *mtd = nand_to_mtd(chip);
625         struct omap_nand_info *info = mtd_to_omap(mtd);
626         int ret = 0;
627
628         if (len <= mtd->oobsize) {
629                 omap_read_buf_pref(chip, buf, len);
630                 return;
631         }
632
633         info->iomode = OMAP_NAND_IO_READ;
634         info->buf = buf;
635         init_completion(&info->comp);
636
637         /*  configure and start prefetch transfer */
638         ret = omap_prefetch_enable(info->gpmc_cs,
639                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
640         if (ret)
641                 /* PFPW engine is busy, use cpu copy method */
642                 goto out_copy;
643
644         info->buf_len = len;
645
646         enable_irq(info->gpmc_irq_count);
647         enable_irq(info->gpmc_irq_fifo);
648
649         /* waiting for read to complete */
650         wait_for_completion(&info->comp);
651
652         /* disable and stop the PFPW engine */
653         omap_prefetch_reset(info->gpmc_cs, info);
654         return;
655
656 out_copy:
657         if (info->nand.options & NAND_BUSWIDTH_16)
658                 omap_read_buf16(mtd, buf, len);
659         else
660                 omap_read_buf8(mtd, buf, len);
661 }
662
663 /*
664  * omap_write_buf_irq_pref - write buffer to NAND controller
665  * @chip: NAND chip object
666  * @buf: data buffer
667  * @len: number of bytes to write
668  */
669 static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
670                                     int len)
671 {
672         struct mtd_info *mtd = nand_to_mtd(chip);
673         struct omap_nand_info *info = mtd_to_omap(mtd);
674         int ret = 0;
675         unsigned long tim, limit;
676         u32 val;
677
678         if (len <= mtd->oobsize) {
679                 omap_write_buf_pref(chip, buf, len);
680                 return;
681         }
682
683         info->iomode = OMAP_NAND_IO_WRITE;
684         info->buf = (u_char *) buf;
685         init_completion(&info->comp);
686
687         /* configure and start prefetch transfer : size=24 */
688         ret = omap_prefetch_enable(info->gpmc_cs,
689                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
690         if (ret)
691                 /* PFPW engine is busy, use cpu copy method */
692                 goto out_copy;
693
694         info->buf_len = len;
695
696         enable_irq(info->gpmc_irq_count);
697         enable_irq(info->gpmc_irq_fifo);
698
699         /* waiting for write to complete */
700         wait_for_completion(&info->comp);
701
702         /* wait for data to flushed-out before reset the prefetch */
703         tim = 0;
704         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
705         do {
706                 val = readl(info->reg.gpmc_prefetch_status);
707                 val = PREFETCH_STATUS_COUNT(val);
708                 cpu_relax();
709         } while (val && (tim++ < limit));
710
711         /* disable and stop the PFPW engine */
712         omap_prefetch_reset(info->gpmc_cs, info);
713         return;
714
715 out_copy:
716         if (info->nand.options & NAND_BUSWIDTH_16)
717                 omap_write_buf16(mtd, buf, len);
718         else
719                 omap_write_buf8(mtd, buf, len);
720 }
721
722 /**
723  * gen_true_ecc - This function will generate true ECC value
724  * @ecc_buf: buffer to store ecc code
725  *
726  * This generated true ECC value can be used when correcting
727  * data read from NAND flash memory core
728  */
729 static void gen_true_ecc(u8 *ecc_buf)
730 {
731         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
732                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
733
734         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
735                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
736         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
737                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
738         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
739                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
740 }
741
742 /**
743  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
744  * @ecc_data1:  ecc code from nand spare area
745  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
746  * @page_data:  page data
747  *
748  * This function compares two ECC's and indicates if there is an error.
749  * If the error can be corrected it will be corrected to the buffer.
750  * If there is no error, %0 is returned. If there is an error but it
751  * was corrected, %1 is returned. Otherwise, %-1 is returned.
752  */
753 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
754                             u8 *ecc_data2,      /* read from register */
755                             u8 *page_data)
756 {
757         uint    i;
758         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
759         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
760         u8      ecc_bit[24];
761         u8      ecc_sum = 0;
762         u8      find_bit = 0;
763         uint    find_byte = 0;
764         int     isEccFF;
765
766         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
767
768         gen_true_ecc(ecc_data1);
769         gen_true_ecc(ecc_data2);
770
771         for (i = 0; i <= 2; i++) {
772                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
773                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
774         }
775
776         for (i = 0; i < 8; i++) {
777                 tmp0_bit[i]     = *ecc_data1 % 2;
778                 *ecc_data1      = *ecc_data1 / 2;
779         }
780
781         for (i = 0; i < 8; i++) {
782                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
783                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
784         }
785
786         for (i = 0; i < 8; i++) {
787                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
788                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
789         }
790
791         for (i = 0; i < 8; i++) {
792                 comp0_bit[i]     = *ecc_data2 % 2;
793                 *ecc_data2       = *ecc_data2 / 2;
794         }
795
796         for (i = 0; i < 8; i++) {
797                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
798                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
799         }
800
801         for (i = 0; i < 8; i++) {
802                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
803                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
804         }
805
806         for (i = 0; i < 6; i++)
807                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
808
809         for (i = 0; i < 8; i++)
810                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
811
812         for (i = 0; i < 8; i++)
813                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
814
815         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
816         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
817
818         for (i = 0; i < 24; i++)
819                 ecc_sum += ecc_bit[i];
820
821         switch (ecc_sum) {
822         case 0:
823                 /* Not reached because this function is not called if
824                  *  ECC values are equal
825                  */
826                 return 0;
827
828         case 1:
829                 /* Uncorrectable error */
830                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
831                 return -EBADMSG;
832
833         case 11:
834                 /* UN-Correctable error */
835                 pr_debug("ECC UNCORRECTED_ERROR B\n");
836                 return -EBADMSG;
837
838         case 12:
839                 /* Correctable error */
840                 find_byte = (ecc_bit[23] << 8) +
841                             (ecc_bit[21] << 7) +
842                             (ecc_bit[19] << 6) +
843                             (ecc_bit[17] << 5) +
844                             (ecc_bit[15] << 4) +
845                             (ecc_bit[13] << 3) +
846                             (ecc_bit[11] << 2) +
847                             (ecc_bit[9]  << 1) +
848                             ecc_bit[7];
849
850                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
851
852                 pr_debug("Correcting single bit ECC error at offset: "
853                                 "%d, bit: %d\n", find_byte, find_bit);
854
855                 page_data[find_byte] ^= (1 << find_bit);
856
857                 return 1;
858         default:
859                 if (isEccFF) {
860                         if (ecc_data2[0] == 0 &&
861                             ecc_data2[1] == 0 &&
862                             ecc_data2[2] == 0)
863                                 return 0;
864                 }
865                 pr_debug("UNCORRECTED_ERROR default\n");
866                 return -EBADMSG;
867         }
868 }
869
870 /**
871  * omap_correct_data - Compares the ECC read with HW generated ECC
872  * @chip: NAND chip object
873  * @dat: page data
874  * @read_ecc: ecc read from nand flash
875  * @calc_ecc: ecc read from HW ECC registers
876  *
877  * Compares the ecc read from nand spare area with ECC registers values
878  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
879  * detection and correction. If there are no errors, %0 is returned. If
880  * there were errors and all of the errors were corrected, the number of
881  * corrected errors is returned. If uncorrectable errors exist, %-1 is
882  * returned.
883  */
884 static int omap_correct_data(struct nand_chip *chip, u_char *dat,
885                              u_char *read_ecc, u_char *calc_ecc)
886 {
887         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
888         int blockCnt = 0, i = 0, ret = 0;
889         int stat = 0;
890
891         /* Ex NAND_ECC_HW12_2048 */
892         if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
893             info->nand.ecc.size == 2048)
894                 blockCnt = 4;
895         else
896                 blockCnt = 1;
897
898         for (i = 0; i < blockCnt; i++) {
899                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
900                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
901                         if (ret < 0)
902                                 return ret;
903                         /* keep track of the number of corrected errors */
904                         stat += ret;
905                 }
906                 read_ecc += 3;
907                 calc_ecc += 3;
908                 dat      += 512;
909         }
910         return stat;
911 }
912
913 /**
914  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
915  * @chip: NAND chip object
916  * @dat: The pointer to data on which ecc is computed
917  * @ecc_code: The ecc_code buffer
918  *
919  * Using noninverted ECC can be considered ugly since writing a blank
920  * page ie. padding will clear the ECC bytes. This is no problem as long
921  * nobody is trying to write data on the seemingly unused page. Reading
922  * an erased page will produce an ECC mismatch between generated and read
923  * ECC bytes that has to be dealt with separately.
924  */
925 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
926                               u_char *ecc_code)
927 {
928         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
929         u32 val;
930
931         val = readl(info->reg.gpmc_ecc_config);
932         if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
933                 return -EINVAL;
934
935         /* read ecc result */
936         val = readl(info->reg.gpmc_ecc1_result);
937         *ecc_code++ = val;          /* P128e, ..., P1e */
938         *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
939         /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
940         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
941
942         return 0;
943 }
944
945 /**
946  * omap_enable_hwecc - This function enables the hardware ecc functionality
947  * @chip: NAND chip object
948  * @mode: Read/Write mode
949  */
950 static void omap_enable_hwecc(struct nand_chip *chip, int mode)
951 {
952         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
953         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
954         u32 val;
955
956         /* clear ecc and enable bits */
957         val = ECCCLEAR | ECC1;
958         writel(val, info->reg.gpmc_ecc_control);
959
960         /* program ecc and result sizes */
961         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
962                          ECC1RESULTSIZE);
963         writel(val, info->reg.gpmc_ecc_size_config);
964
965         switch (mode) {
966         case NAND_ECC_READ:
967         case NAND_ECC_WRITE:
968                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
969                 break;
970         case NAND_ECC_READSYN:
971                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
972                 break;
973         default:
974                 dev_info(&info->pdev->dev,
975                         "error: unrecognized Mode[%d]!\n", mode);
976                 break;
977         }
978
979         /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
980         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
981         writel(val, info->reg.gpmc_ecc_config);
982 }
983
984 /**
985  * omap_wait - wait until the command is done
986  * @this: NAND Chip structure
987  *
988  * Wait function is called during Program and erase operations and
989  * the way it is called from MTD layer, we should wait till the NAND
990  * chip is ready after the programming/erase operation has completed.
991  *
992  * Erase can take up to 400ms and program up to 20ms according to
993  * general NAND and SmartMedia specs
994  */
995 static int omap_wait(struct nand_chip *this)
996 {
997         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
998         unsigned long timeo = jiffies;
999         int status;
1000
1001         timeo += msecs_to_jiffies(400);
1002
1003         writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1004         while (time_before(jiffies, timeo)) {
1005                 status = readb(info->reg.gpmc_nand_data);
1006                 if (status & NAND_STATUS_READY)
1007                         break;
1008                 cond_resched();
1009         }
1010
1011         status = readb(info->reg.gpmc_nand_data);
1012         return status;
1013 }
1014
1015 /**
1016  * omap_dev_ready - checks the NAND Ready GPIO line
1017  * @chip: NAND chip object
1018  *
1019  * Returns true if ready and false if busy.
1020  */
1021 static int omap_dev_ready(struct nand_chip *chip)
1022 {
1023         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1024
1025         return gpiod_get_value(info->ready_gpiod);
1026 }
1027
1028 /**
1029  * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1030  * @chip: NAND chip object
1031  * @mode: Read/Write mode
1032  *
1033  * When using BCH with SW correction (i.e. no ELM), sector size is set
1034  * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1035  * for both reading and writing with:
1036  * eccsize0 = 0  (no additional protected byte in spare area)
1037  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1038  */
1039 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
1040                                                  int mode)
1041 {
1042         unsigned int bch_type;
1043         unsigned int dev_width, nsectors;
1044         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1045         enum omap_ecc ecc_opt = info->ecc_opt;
1046         u32 val, wr_mode;
1047         unsigned int ecc_size1, ecc_size0;
1048
1049         /* GPMC configurations for calculating ECC */
1050         switch (ecc_opt) {
1051         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1052                 bch_type = 0;
1053                 nsectors = 1;
1054                 wr_mode   = BCH_WRAPMODE_6;
1055                 ecc_size0 = BCH_ECC_SIZE0;
1056                 ecc_size1 = BCH_ECC_SIZE1;
1057                 break;
1058         case OMAP_ECC_BCH4_CODE_HW:
1059                 bch_type = 0;
1060                 nsectors = chip->ecc.steps;
1061                 if (mode == NAND_ECC_READ) {
1062                         wr_mode   = BCH_WRAPMODE_1;
1063                         ecc_size0 = BCH4R_ECC_SIZE0;
1064                         ecc_size1 = BCH4R_ECC_SIZE1;
1065                 } else {
1066                         wr_mode   = BCH_WRAPMODE_6;
1067                         ecc_size0 = BCH_ECC_SIZE0;
1068                         ecc_size1 = BCH_ECC_SIZE1;
1069                 }
1070                 break;
1071         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1072                 bch_type = 1;
1073                 nsectors = 1;
1074                 wr_mode   = BCH_WRAPMODE_6;
1075                 ecc_size0 = BCH_ECC_SIZE0;
1076                 ecc_size1 = BCH_ECC_SIZE1;
1077                 break;
1078         case OMAP_ECC_BCH8_CODE_HW:
1079                 bch_type = 1;
1080                 nsectors = chip->ecc.steps;
1081                 if (mode == NAND_ECC_READ) {
1082                         wr_mode   = BCH_WRAPMODE_1;
1083                         ecc_size0 = BCH8R_ECC_SIZE0;
1084                         ecc_size1 = BCH8R_ECC_SIZE1;
1085                 } else {
1086                         wr_mode   = BCH_WRAPMODE_6;
1087                         ecc_size0 = BCH_ECC_SIZE0;
1088                         ecc_size1 = BCH_ECC_SIZE1;
1089                 }
1090                 break;
1091         case OMAP_ECC_BCH16_CODE_HW:
1092                 bch_type = 0x2;
1093                 nsectors = chip->ecc.steps;
1094                 if (mode == NAND_ECC_READ) {
1095                         wr_mode   = 0x01;
1096                         ecc_size0 = 52; /* ECC bits in nibbles per sector */
1097                         ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1098                 } else {
1099                         wr_mode   = 0x01;
1100                         ecc_size0 = 0;  /* extra bits in nibbles per sector */
1101                         ecc_size1 = 52; /* OOB bits in nibbles per sector */
1102                 }
1103                 break;
1104         default:
1105                 return;
1106         }
1107
1108         writel(ECC1, info->reg.gpmc_ecc_control);
1109
1110         /* Configure ecc size for BCH */
1111         val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1112         writel(val, info->reg.gpmc_ecc_size_config);
1113
1114         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1115
1116         /* BCH configuration */
1117         val = ((1                        << 16) | /* enable BCH */
1118                (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
1119                (wr_mode                  <<  8) | /* wrap mode */
1120                (dev_width                <<  7) | /* bus width */
1121                (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1122                (info->gpmc_cs            <<  1) | /* ECC CS */
1123                (0x1));                            /* enable ECC */
1124
1125         writel(val, info->reg.gpmc_ecc_config);
1126
1127         /* Clear ecc and enable bits */
1128         writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1129 }
1130
1131 static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1132 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1133                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
1134
1135 /**
1136  * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1137  * @mtd:        MTD device structure
1138  * @dat:        The pointer to data on which ecc is computed
1139  * @ecc_calc:   The ecc_code buffer
1140  * @i:          The sector number (for a multi sector page)
1141  *
1142  * Support calculating of BCH4/8/16 ECC vectors for one sector
1143  * within a page. Sector number is in @i.
1144  */
1145 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1146                                    const u_char *dat, u_char *ecc_calc, int i)
1147 {
1148         struct omap_nand_info *info = mtd_to_omap(mtd);
1149         int eccbytes    = info->nand.ecc.bytes;
1150         struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1151         u8 *ecc_code;
1152         unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1153         u32 val;
1154         int j;
1155
1156         ecc_code = ecc_calc;
1157         switch (info->ecc_opt) {
1158         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1159         case OMAP_ECC_BCH8_CODE_HW:
1160                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1161                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1162                 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1163                 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1164                 *ecc_code++ = (bch_val4 & 0xFF);
1165                 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1166                 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1167                 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1168                 *ecc_code++ = (bch_val3 & 0xFF);
1169                 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1170                 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1171                 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1172                 *ecc_code++ = (bch_val2 & 0xFF);
1173                 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1174                 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1175                 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1176                 *ecc_code++ = (bch_val1 & 0xFF);
1177                 break;
1178         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1179         case OMAP_ECC_BCH4_CODE_HW:
1180                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182                 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1183                 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1184                 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1185                         ((bch_val1 >> 28) & 0xF);
1186                 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1187                 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1188                 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1189                 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1190                 break;
1191         case OMAP_ECC_BCH16_CODE_HW:
1192                 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1193                 ecc_code[0]  = ((val >>  8) & 0xFF);
1194                 ecc_code[1]  = ((val >>  0) & 0xFF);
1195                 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1196                 ecc_code[2]  = ((val >> 24) & 0xFF);
1197                 ecc_code[3]  = ((val >> 16) & 0xFF);
1198                 ecc_code[4]  = ((val >>  8) & 0xFF);
1199                 ecc_code[5]  = ((val >>  0) & 0xFF);
1200                 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1201                 ecc_code[6]  = ((val >> 24) & 0xFF);
1202                 ecc_code[7]  = ((val >> 16) & 0xFF);
1203                 ecc_code[8]  = ((val >>  8) & 0xFF);
1204                 ecc_code[9]  = ((val >>  0) & 0xFF);
1205                 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1206                 ecc_code[10] = ((val >> 24) & 0xFF);
1207                 ecc_code[11] = ((val >> 16) & 0xFF);
1208                 ecc_code[12] = ((val >>  8) & 0xFF);
1209                 ecc_code[13] = ((val >>  0) & 0xFF);
1210                 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1211                 ecc_code[14] = ((val >> 24) & 0xFF);
1212                 ecc_code[15] = ((val >> 16) & 0xFF);
1213                 ecc_code[16] = ((val >>  8) & 0xFF);
1214                 ecc_code[17] = ((val >>  0) & 0xFF);
1215                 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1216                 ecc_code[18] = ((val >> 24) & 0xFF);
1217                 ecc_code[19] = ((val >> 16) & 0xFF);
1218                 ecc_code[20] = ((val >>  8) & 0xFF);
1219                 ecc_code[21] = ((val >>  0) & 0xFF);
1220                 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1221                 ecc_code[22] = ((val >> 24) & 0xFF);
1222                 ecc_code[23] = ((val >> 16) & 0xFF);
1223                 ecc_code[24] = ((val >>  8) & 0xFF);
1224                 ecc_code[25] = ((val >>  0) & 0xFF);
1225                 break;
1226         default:
1227                 return -EINVAL;
1228         }
1229
1230         /* ECC scheme specific syndrome customizations */
1231         switch (info->ecc_opt) {
1232         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1233                 /* Add constant polynomial to remainder, so that
1234                  * ECC of blank pages results in 0x0 on reading back
1235                  */
1236                 for (j = 0; j < eccbytes; j++)
1237                         ecc_calc[j] ^= bch4_polynomial[j];
1238                 break;
1239         case OMAP_ECC_BCH4_CODE_HW:
1240                 /* Set  8th ECC byte as 0x0 for ROM compatibility */
1241                 ecc_calc[eccbytes - 1] = 0x0;
1242                 break;
1243         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1244                 /* Add constant polynomial to remainder, so that
1245                  * ECC of blank pages results in 0x0 on reading back
1246                  */
1247                 for (j = 0; j < eccbytes; j++)
1248                         ecc_calc[j] ^= bch8_polynomial[j];
1249                 break;
1250         case OMAP_ECC_BCH8_CODE_HW:
1251                 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1252                 ecc_calc[eccbytes - 1] = 0x0;
1253                 break;
1254         case OMAP_ECC_BCH16_CODE_HW:
1255                 break;
1256         default:
1257                 return -EINVAL;
1258         }
1259
1260         return 0;
1261 }
1262
1263 /**
1264  * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1265  * @chip:       NAND chip object
1266  * @dat:        The pointer to data on which ecc is computed
1267  * @ecc_calc:   Buffer storing the calculated ECC bytes
1268  *
1269  * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1270  * when SW based correction is required as ECC is required for one sector
1271  * at a time.
1272  */
1273 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1274                                      const u_char *dat, u_char *ecc_calc)
1275 {
1276         return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1277 }
1278
1279 /**
1280  * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1281  * @mtd:        MTD device structure
1282  * @dat:        The pointer to data on which ecc is computed
1283  * @ecc_calc:   Buffer storing the calculated ECC bytes
1284  *
1285  * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1286  */
1287 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1288                                         const u_char *dat, u_char *ecc_calc)
1289 {
1290         struct omap_nand_info *info = mtd_to_omap(mtd);
1291         int eccbytes = info->nand.ecc.bytes;
1292         unsigned long nsectors;
1293         int i, ret;
1294
1295         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1296         for (i = 0; i < nsectors; i++) {
1297                 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1298                 if (ret)
1299                         return ret;
1300
1301                 ecc_calc += eccbytes;
1302         }
1303
1304         return 0;
1305 }
1306
1307 /**
1308  * erased_sector_bitflips - count bit flips
1309  * @data:       data sector buffer
1310  * @oob:        oob buffer
1311  * @info:       omap_nand_info
1312  *
1313  * Check the bit flips in erased page falls below correctable level.
1314  * If falls below, report the page as erased with correctable bit
1315  * flip, else report as uncorrectable page.
1316  */
1317 static int erased_sector_bitflips(u_char *data, u_char *oob,
1318                 struct omap_nand_info *info)
1319 {
1320         int flip_bits = 0, i;
1321
1322         for (i = 0; i < info->nand.ecc.size; i++) {
1323                 flip_bits += hweight8(~data[i]);
1324                 if (flip_bits > info->nand.ecc.strength)
1325                         return 0;
1326         }
1327
1328         for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1329                 flip_bits += hweight8(~oob[i]);
1330                 if (flip_bits > info->nand.ecc.strength)
1331                         return 0;
1332         }
1333
1334         /*
1335          * Bit flips falls in correctable level.
1336          * Fill data area with 0xFF
1337          */
1338         if (flip_bits) {
1339                 memset(data, 0xFF, info->nand.ecc.size);
1340                 memset(oob, 0xFF, info->nand.ecc.bytes);
1341         }
1342
1343         return flip_bits;
1344 }
1345
1346 /**
1347  * omap_elm_correct_data - corrects page data area in case error reported
1348  * @chip:       NAND chip object
1349  * @data:       page data
1350  * @read_ecc:   ecc read from nand flash
1351  * @calc_ecc:   ecc read from HW ECC registers
1352  *
1353  * Calculated ecc vector reported as zero in case of non-error pages.
1354  * In case of non-zero ecc vector, first filter out erased-pages, and
1355  * then process data via ELM to detect bit-flips.
1356  */
1357 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1358                                  u_char *read_ecc, u_char *calc_ecc)
1359 {
1360         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1361         struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1362         int eccsteps = info->nsteps_per_eccpg;
1363         int i , j, stat = 0;
1364         int eccflag, actual_eccbytes;
1365         struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1366         u_char *ecc_vec = calc_ecc;
1367         u_char *spare_ecc = read_ecc;
1368         u_char *erased_ecc_vec;
1369         u_char *buf;
1370         int bitflip_count;
1371         bool is_error_reported = false;
1372         u32 bit_pos, byte_pos, error_max, pos;
1373         int err;
1374
1375         switch (info->ecc_opt) {
1376         case OMAP_ECC_BCH4_CODE_HW:
1377                 /* omit  7th ECC byte reserved for ROM code compatibility */
1378                 actual_eccbytes = ecc->bytes - 1;
1379                 erased_ecc_vec = bch4_vector;
1380                 break;
1381         case OMAP_ECC_BCH8_CODE_HW:
1382                 /* omit 14th ECC byte reserved for ROM code compatibility */
1383                 actual_eccbytes = ecc->bytes - 1;
1384                 erased_ecc_vec = bch8_vector;
1385                 break;
1386         case OMAP_ECC_BCH16_CODE_HW:
1387                 actual_eccbytes = ecc->bytes;
1388                 erased_ecc_vec = bch16_vector;
1389                 break;
1390         default:
1391                 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1392                 return -EINVAL;
1393         }
1394
1395         /* Initialize elm error vector to zero */
1396         memset(err_vec, 0, sizeof(err_vec));
1397
1398         for (i = 0; i < eccsteps ; i++) {
1399                 eccflag = 0;    /* initialize eccflag */
1400
1401                 /*
1402                  * Check any error reported,
1403                  * In case of error, non zero ecc reported.
1404                  */
1405                 for (j = 0; j < actual_eccbytes; j++) {
1406                         if (calc_ecc[j] != 0) {
1407                                 eccflag = 1; /* non zero ecc, error present */
1408                                 break;
1409                         }
1410                 }
1411
1412                 if (eccflag == 1) {
1413                         if (memcmp(calc_ecc, erased_ecc_vec,
1414                                                 actual_eccbytes) == 0) {
1415                                 /*
1416                                  * calc_ecc[] matches pattern for ECC(all 0xff)
1417                                  * so this is definitely an erased-page
1418                                  */
1419                         } else {
1420                                 buf = &data[info->nand.ecc.size * i];
1421                                 /*
1422                                  * count number of 0-bits in read_buf.
1423                                  * This check can be removed once a similar
1424                                  * check is introduced in generic NAND driver
1425                                  */
1426                                 bitflip_count = erased_sector_bitflips(
1427                                                 buf, read_ecc, info);
1428                                 if (bitflip_count) {
1429                                         /*
1430                                          * number of 0-bits within ECC limits
1431                                          * So this may be an erased-page
1432                                          */
1433                                         stat += bitflip_count;
1434                                 } else {
1435                                         /*
1436                                          * Too many 0-bits. It may be a
1437                                          * - programmed-page, OR
1438                                          * - erased-page with many bit-flips
1439                                          * So this page requires check by ELM
1440                                          */
1441                                         err_vec[i].error_reported = true;
1442                                         is_error_reported = true;
1443                                 }
1444                         }
1445                 }
1446
1447                 /* Update the ecc vector */
1448                 calc_ecc += ecc->bytes;
1449                 read_ecc += ecc->bytes;
1450         }
1451
1452         /* Check if any error reported */
1453         if (!is_error_reported)
1454                 return stat;
1455
1456         /* Decode BCH error using ELM module */
1457         elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1458
1459         err = 0;
1460         for (i = 0; i < eccsteps; i++) {
1461                 if (err_vec[i].error_uncorrectable) {
1462                         dev_err(&info->pdev->dev,
1463                                 "uncorrectable bit-flips found\n");
1464                         err = -EBADMSG;
1465                 } else if (err_vec[i].error_reported) {
1466                         for (j = 0; j < err_vec[i].error_count; j++) {
1467                                 switch (info->ecc_opt) {
1468                                 case OMAP_ECC_BCH4_CODE_HW:
1469                                         /* Add 4 bits to take care of padding */
1470                                         pos = err_vec[i].error_loc[j] +
1471                                                 BCH4_BIT_PAD;
1472                                         break;
1473                                 case OMAP_ECC_BCH8_CODE_HW:
1474                                 case OMAP_ECC_BCH16_CODE_HW:
1475                                         pos = err_vec[i].error_loc[j];
1476                                         break;
1477                                 default:
1478                                         return -EINVAL;
1479                                 }
1480                                 error_max = (ecc->size + actual_eccbytes) * 8;
1481                                 /* Calculate bit position of error */
1482                                 bit_pos = pos % 8;
1483
1484                                 /* Calculate byte position of error */
1485                                 byte_pos = (error_max - pos - 1) / 8;
1486
1487                                 if (pos < error_max) {
1488                                         if (byte_pos < 512) {
1489                                                 pr_debug("bitflip@dat[%d]=%x\n",
1490                                                      byte_pos, data[byte_pos]);
1491                                                 data[byte_pos] ^= 1 << bit_pos;
1492                                         } else {
1493                                                 pr_debug("bitflip@oob[%d]=%x\n",
1494                                                         (byte_pos - 512),
1495                                                      spare_ecc[byte_pos - 512]);
1496                                                 spare_ecc[byte_pos - 512] ^=
1497                                                         1 << bit_pos;
1498                                         }
1499                                 } else {
1500                                         dev_err(&info->pdev->dev,
1501                                                 "invalid bit-flip @ %d:%d\n",
1502                                                 byte_pos, bit_pos);
1503                                         err = -EBADMSG;
1504                                 }
1505                         }
1506                 }
1507
1508                 /* Update number of correctable errors */
1509                 stat = max_t(unsigned int, stat, err_vec[i].error_count);
1510
1511                 /* Update page data with sector size */
1512                 data += ecc->size;
1513                 spare_ecc += ecc->bytes;
1514         }
1515
1516         return (err) ? err : stat;
1517 }
1518
1519 /**
1520  * omap_write_page_bch - BCH ecc based write page function for entire page
1521  * @chip:               nand chip info structure
1522  * @buf:                data buffer
1523  * @oob_required:       must write chip->oob_poi to OOB
1524  * @page:               page
1525  *
1526  * Custom write page method evolved to support multi sector writing in one shot
1527  */
1528 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1529                                int oob_required, int page)
1530 {
1531         struct mtd_info *mtd = nand_to_mtd(chip);
1532         struct omap_nand_info *info = mtd_to_omap(mtd);
1533         uint8_t *ecc_calc = chip->ecc.calc_buf;
1534         unsigned int eccpg;
1535         int ret;
1536
1537         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1538         if (ret)
1539                 return ret;
1540
1541         for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1542                 /* Enable GPMC ecc engine */
1543                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1544
1545                 /* Write data */
1546                 chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size),
1547                                        info->eccpg_size);
1548
1549                 /* Update ecc vector from GPMC result registers */
1550                 ret = omap_calculate_ecc_bch_multi(mtd,
1551                                                    buf + (eccpg * info->eccpg_size),
1552                                                    ecc_calc);
1553                 if (ret)
1554                         return ret;
1555
1556                 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
1557                                                  chip->oob_poi,
1558                                                  eccpg * info->eccpg_bytes,
1559                                                  info->eccpg_bytes);
1560                 if (ret)
1561                         return ret;
1562         }
1563
1564         /* Write ecc vector to OOB area */
1565         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1566
1567         return nand_prog_page_end_op(chip);
1568 }
1569
1570 /**
1571  * omap_write_subpage_bch - BCH hardware ECC based subpage write
1572  * @chip:       nand chip info structure
1573  * @offset:     column address of subpage within the page
1574  * @data_len:   data length
1575  * @buf:        data buffer
1576  * @oob_required: must write chip->oob_poi to OOB
1577  * @page: page number to write
1578  *
1579  * OMAP optimized subpage write method.
1580  */
1581 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1582                                   u32 data_len, const u8 *buf,
1583                                   int oob_required, int page)
1584 {
1585         struct mtd_info *mtd = nand_to_mtd(chip);
1586         struct omap_nand_info *info = mtd_to_omap(mtd);
1587         u8 *ecc_calc = chip->ecc.calc_buf;
1588         int ecc_size      = chip->ecc.size;
1589         int ecc_bytes     = chip->ecc.bytes;
1590         u32 start_step = offset / ecc_size;
1591         u32 end_step   = (offset + data_len - 1) / ecc_size;
1592         unsigned int eccpg;
1593         int step, ret = 0;
1594
1595         /*
1596          * Write entire page at one go as it would be optimal
1597          * as ECC is calculated by hardware.
1598          * ECC is calculated for all subpages but we choose
1599          * only what we want.
1600          */
1601         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1602         if (ret)
1603                 return ret;
1604
1605         for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1606                 /* Enable GPMC ECC engine */
1607                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1608
1609                 /* Write data */
1610                 chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size),
1611                                        info->eccpg_size);
1612
1613                 for (step = 0; step < info->nsteps_per_eccpg; step++) {
1614                         unsigned int base_step = eccpg * info->nsteps_per_eccpg;
1615                         const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
1616
1617                         /* Mask ECC of un-touched subpages with 0xFFs */
1618                         if ((step + base_step) < start_step ||
1619                             (step + base_step) > end_step)
1620                                 memset(ecc_calc + (step * ecc_bytes), 0xff,
1621                                        ecc_bytes);
1622                         else
1623                                 ret = _omap_calculate_ecc_bch(mtd,
1624                                                               bufoffs + (step * ecc_size),
1625                                                               ecc_calc + (step * ecc_bytes),
1626                                                               step);
1627
1628                         if (ret)
1629                                 return ret;
1630                 }
1631
1632                 /*
1633                  * Copy the calculated ECC for the whole page including the
1634                  * masked values (0xFF) corresponding to unwritten subpages.
1635                  */
1636                 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
1637                                                  eccpg * info->eccpg_bytes,
1638                                                  info->eccpg_bytes);
1639                 if (ret)
1640                         return ret;
1641         }
1642
1643         /* write OOB buffer to NAND device */
1644         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1645
1646         return nand_prog_page_end_op(chip);
1647 }
1648
1649 /**
1650  * omap_read_page_bch - BCH ecc based page read function for entire page
1651  * @chip:               nand chip info structure
1652  * @buf:                buffer to store read data
1653  * @oob_required:       caller requires OOB data read to chip->oob_poi
1654  * @page:               page number to read
1655  *
1656  * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1657  * used for error correction.
1658  * Custom method evolved to support ELM error correction & multi sector
1659  * reading. On reading page data area is read along with OOB data with
1660  * ecc engine enabled. ecc vector updated after read of OOB data.
1661  * For non error pages ecc vector reported as zero.
1662  */
1663 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1664                               int oob_required, int page)
1665 {
1666         struct mtd_info *mtd = nand_to_mtd(chip);
1667         struct omap_nand_info *info = mtd_to_omap(mtd);
1668         uint8_t *ecc_calc = chip->ecc.calc_buf;
1669         uint8_t *ecc_code = chip->ecc.code_buf;
1670         unsigned int max_bitflips = 0, eccpg;
1671         int stat, ret;
1672
1673         ret = nand_read_page_op(chip, page, 0, NULL, 0);
1674         if (ret)
1675                 return ret;
1676
1677         for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1678                 /* Enable GPMC ecc engine */
1679                 chip->ecc.hwctl(chip, NAND_ECC_READ);
1680
1681                 /* Read data */
1682                 ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
1683                                                  buf + (eccpg * info->eccpg_size),
1684                                                  info->eccpg_size, false);
1685                 if (ret)
1686                         return ret;
1687
1688                 /* Read oob bytes */
1689                 ret = nand_change_read_column_op(chip,
1690                                                  mtd->writesize + BBM_LEN +
1691                                                  (eccpg * info->eccpg_bytes),
1692                                                  chip->oob_poi + BBM_LEN +
1693                                                  (eccpg * info->eccpg_bytes),
1694                                                  info->eccpg_bytes, false);
1695                 if (ret)
1696                         return ret;
1697
1698                 /* Calculate ecc bytes */
1699                 ret = omap_calculate_ecc_bch_multi(mtd,
1700                                                    buf + (eccpg * info->eccpg_size),
1701                                                    ecc_calc);
1702                 if (ret)
1703                         return ret;
1704
1705                 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
1706                                                  chip->oob_poi,
1707                                                  eccpg * info->eccpg_bytes,
1708                                                  info->eccpg_bytes);
1709                 if (ret)
1710                         return ret;
1711
1712                 stat = chip->ecc.correct(chip,
1713                                          buf + (eccpg * info->eccpg_size),
1714                                          ecc_code, ecc_calc);
1715                 if (stat < 0) {
1716                         mtd->ecc_stats.failed++;
1717                 } else {
1718                         mtd->ecc_stats.corrected += stat;
1719                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1720                 }
1721         }
1722
1723         return max_bitflips;
1724 }
1725
1726 /**
1727  * is_elm_present - checks for presence of ELM module by scanning DT nodes
1728  * @info: NAND device structure containing platform data
1729  * @elm_node: ELM's DT node
1730  */
1731 static bool is_elm_present(struct omap_nand_info *info,
1732                            struct device_node *elm_node)
1733 {
1734         struct platform_device *pdev;
1735
1736         /* check whether elm-id is passed via DT */
1737         if (!elm_node) {
1738                 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1739                 return false;
1740         }
1741         pdev = of_find_device_by_node(elm_node);
1742         /* check whether ELM device is registered */
1743         if (!pdev) {
1744                 dev_err(&info->pdev->dev, "ELM device not found\n");
1745                 return false;
1746         }
1747         /* ELM module available, now configure it */
1748         info->elm_dev = &pdev->dev;
1749         return true;
1750 }
1751
1752 static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1753 {
1754         bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1755
1756         switch (info->ecc_opt) {
1757         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1758         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1759                 ecc_needs_omap_bch = false;
1760                 ecc_needs_bch = true;
1761                 ecc_needs_elm = false;
1762                 break;
1763         case OMAP_ECC_BCH4_CODE_HW:
1764         case OMAP_ECC_BCH8_CODE_HW:
1765         case OMAP_ECC_BCH16_CODE_HW:
1766                 ecc_needs_omap_bch = true;
1767                 ecc_needs_bch = false;
1768                 ecc_needs_elm = true;
1769                 break;
1770         default:
1771                 ecc_needs_omap_bch = false;
1772                 ecc_needs_bch = false;
1773                 ecc_needs_elm = false;
1774                 break;
1775         }
1776
1777         if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1778                 dev_err(&info->pdev->dev,
1779                         "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1780                 return false;
1781         }
1782         if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1783                 dev_err(&info->pdev->dev,
1784                         "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1785                 return false;
1786         }
1787         if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1788                 dev_err(&info->pdev->dev, "ELM not available\n");
1789                 return false;
1790         }
1791
1792         return true;
1793 }
1794
1795 static const char * const nand_xfer_types[] = {
1796         [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1797         [NAND_OMAP_POLLED] = "polled",
1798         [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1799         [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1800 };
1801
1802 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1803 {
1804         struct device_node *child = dev->of_node;
1805         int i;
1806         const char *s;
1807         u32 cs;
1808
1809         if (of_property_read_u32(child, "reg", &cs) < 0) {
1810                 dev_err(dev, "reg not found in DT\n");
1811                 return -EINVAL;
1812         }
1813
1814         info->gpmc_cs = cs;
1815
1816         /* detect availability of ELM module. Won't be present pre-OMAP4 */
1817         info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1818         if (!info->elm_of_node) {
1819                 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1820                 if (!info->elm_of_node)
1821                         dev_dbg(dev, "ti,elm-id not in DT\n");
1822         }
1823
1824         /* select ecc-scheme for NAND */
1825         if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1826                 dev_err(dev, "ti,nand-ecc-opt not found\n");
1827                 return -EINVAL;
1828         }
1829
1830         if (!strcmp(s, "sw")) {
1831                 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1832         } else if (!strcmp(s, "ham1") ||
1833                    !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1834                 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1835         } else if (!strcmp(s, "bch4")) {
1836                 if (info->elm_of_node)
1837                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1838                 else
1839                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1840         } else if (!strcmp(s, "bch8")) {
1841                 if (info->elm_of_node)
1842                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1843                 else
1844                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1845         } else if (!strcmp(s, "bch16")) {
1846                 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1847         } else {
1848                 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1849                 return -EINVAL;
1850         }
1851
1852         /* select data transfer mode */
1853         if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1854                 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1855                         if (!strcasecmp(s, nand_xfer_types[i])) {
1856                                 info->xfer_type = i;
1857                                 return 0;
1858                         }
1859                 }
1860
1861                 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1862                 return -EINVAL;
1863         }
1864
1865         return 0;
1866 }
1867
1868 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1869                               struct mtd_oob_region *oobregion)
1870 {
1871         struct omap_nand_info *info = mtd_to_omap(mtd);
1872         struct nand_chip *chip = &info->nand;
1873         int off = BBM_LEN;
1874
1875         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1876             !(chip->options & NAND_BUSWIDTH_16))
1877                 off = 1;
1878
1879         if (section)
1880                 return -ERANGE;
1881
1882         oobregion->offset = off;
1883         oobregion->length = chip->ecc.total;
1884
1885         return 0;
1886 }
1887
1888 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1889                                struct mtd_oob_region *oobregion)
1890 {
1891         struct omap_nand_info *info = mtd_to_omap(mtd);
1892         struct nand_chip *chip = &info->nand;
1893         int off = BBM_LEN;
1894
1895         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1896             !(chip->options & NAND_BUSWIDTH_16))
1897                 off = 1;
1898
1899         if (section)
1900                 return -ERANGE;
1901
1902         off += chip->ecc.total;
1903         if (off >= mtd->oobsize)
1904                 return -ERANGE;
1905
1906         oobregion->offset = off;
1907         oobregion->length = mtd->oobsize - off;
1908
1909         return 0;
1910 }
1911
1912 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1913         .ecc = omap_ooblayout_ecc,
1914         .free = omap_ooblayout_free,
1915 };
1916
1917 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1918                                  struct mtd_oob_region *oobregion)
1919 {
1920         struct nand_device *nand = mtd_to_nanddev(mtd);
1921         unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1922         unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1923         int off = BBM_LEN;
1924
1925         if (section >= nsteps)
1926                 return -ERANGE;
1927
1928         /*
1929          * When SW correction is employed, one OMAP specific marker byte is
1930          * reserved after each ECC step.
1931          */
1932         oobregion->offset = off + (section * (ecc_bytes + 1));
1933         oobregion->length = ecc_bytes;
1934
1935         return 0;
1936 }
1937
1938 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1939                                   struct mtd_oob_region *oobregion)
1940 {
1941         struct nand_device *nand = mtd_to_nanddev(mtd);
1942         unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1943         unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1944         int off = BBM_LEN;
1945
1946         if (section)
1947                 return -ERANGE;
1948
1949         /*
1950          * When SW correction is employed, one OMAP specific marker byte is
1951          * reserved after each ECC step.
1952          */
1953         off += ((ecc_bytes + 1) * nsteps);
1954         if (off >= mtd->oobsize)
1955                 return -ERANGE;
1956
1957         oobregion->offset = off;
1958         oobregion->length = mtd->oobsize - off;
1959
1960         return 0;
1961 }
1962
1963 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1964         .ecc = omap_sw_ooblayout_ecc,
1965         .free = omap_sw_ooblayout_free,
1966 };
1967
1968 static int omap_nand_attach_chip(struct nand_chip *chip)
1969 {
1970         struct mtd_info *mtd = nand_to_mtd(chip);
1971         struct omap_nand_info *info = mtd_to_omap(mtd);
1972         struct device *dev = &info->pdev->dev;
1973         int min_oobbytes = BBM_LEN;
1974         int elm_bch_strength = -1;
1975         int oobbytes_per_step;
1976         dma_cap_mask_t mask;
1977         int err;
1978
1979         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1980                 chip->bbt_options |= NAND_BBT_NO_OOB;
1981         else
1982                 chip->options |= NAND_SKIP_BBTSCAN;
1983
1984         /* Re-populate low-level callbacks based on xfer modes */
1985         switch (info->xfer_type) {
1986         case NAND_OMAP_PREFETCH_POLLED:
1987                 chip->legacy.read_buf = omap_read_buf_pref;
1988                 chip->legacy.write_buf = omap_write_buf_pref;
1989                 break;
1990
1991         case NAND_OMAP_POLLED:
1992                 /* Use nand_base defaults for {read,write}_buf */
1993                 break;
1994
1995         case NAND_OMAP_PREFETCH_DMA:
1996                 dma_cap_zero(mask);
1997                 dma_cap_set(DMA_SLAVE, mask);
1998                 info->dma = dma_request_chan(dev->parent, "rxtx");
1999
2000                 if (IS_ERR(info->dma)) {
2001                         dev_err(dev, "DMA engine request failed\n");
2002                         return PTR_ERR(info->dma);
2003                 } else {
2004                         struct dma_slave_config cfg;
2005
2006                         memset(&cfg, 0, sizeof(cfg));
2007                         cfg.src_addr = info->phys_base;
2008                         cfg.dst_addr = info->phys_base;
2009                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2010                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2011                         cfg.src_maxburst = 16;
2012                         cfg.dst_maxburst = 16;
2013                         err = dmaengine_slave_config(info->dma, &cfg);
2014                         if (err) {
2015                                 dev_err(dev,
2016                                         "DMA engine slave config failed: %d\n",
2017                                         err);
2018                                 return err;
2019                         }
2020                         chip->legacy.read_buf = omap_read_buf_dma_pref;
2021                         chip->legacy.write_buf = omap_write_buf_dma_pref;
2022                 }
2023                 break;
2024
2025         case NAND_OMAP_PREFETCH_IRQ:
2026                 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
2027                 if (info->gpmc_irq_fifo <= 0)
2028                         return -ENODEV;
2029                 err = devm_request_irq(dev, info->gpmc_irq_fifo,
2030                                        omap_nand_irq, IRQF_SHARED,
2031                                        "gpmc-nand-fifo", info);
2032                 if (err) {
2033                         dev_err(dev, "Requesting IRQ %d, error %d\n",
2034                                 info->gpmc_irq_fifo, err);
2035                         info->gpmc_irq_fifo = 0;
2036                         return err;
2037                 }
2038
2039                 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
2040                 if (info->gpmc_irq_count <= 0)
2041                         return -ENODEV;
2042                 err = devm_request_irq(dev, info->gpmc_irq_count,
2043                                        omap_nand_irq, IRQF_SHARED,
2044                                        "gpmc-nand-count", info);
2045                 if (err) {
2046                         dev_err(dev, "Requesting IRQ %d, error %d\n",
2047                                 info->gpmc_irq_count, err);
2048                         info->gpmc_irq_count = 0;
2049                         return err;
2050                 }
2051
2052                 chip->legacy.read_buf = omap_read_buf_irq_pref;
2053                 chip->legacy.write_buf = omap_write_buf_irq_pref;
2054
2055                 break;
2056
2057         default:
2058                 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
2059                 return -EINVAL;
2060         }
2061
2062         if (!omap2_nand_ecc_check(info))
2063                 return -EINVAL;
2064
2065         /*
2066          * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
2067          * ooblayout instead of using ours.
2068          */
2069         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2070                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
2071                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2072                 return 0;
2073         }
2074
2075         /* Populate MTD interface based on ECC scheme */
2076         switch (info->ecc_opt) {
2077         case OMAP_ECC_HAM1_CODE_HW:
2078                 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2079                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2080                 chip->ecc.bytes         = 3;
2081                 chip->ecc.size          = 512;
2082                 chip->ecc.strength      = 1;
2083                 chip->ecc.calculate     = omap_calculate_ecc;
2084                 chip->ecc.hwctl         = omap_enable_hwecc;
2085                 chip->ecc.correct       = omap_correct_data;
2086                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2087                 oobbytes_per_step       = chip->ecc.bytes;
2088
2089                 if (!(chip->options & NAND_BUSWIDTH_16))
2090                         min_oobbytes    = 1;
2091
2092                 break;
2093
2094         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2095                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2096                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2097                 chip->ecc.size          = 512;
2098                 chip->ecc.bytes         = 7;
2099                 chip->ecc.strength      = 4;
2100                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2101                 chip->ecc.correct       = rawnand_sw_bch_correct;
2102                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2103                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2104                 /* Reserve one byte for the OMAP marker */
2105                 oobbytes_per_step       = chip->ecc.bytes + 1;
2106                 /* Software BCH library is used for locating errors */
2107                 err = rawnand_sw_bch_init(chip);
2108                 if (err) {
2109                         dev_err(dev, "Unable to use BCH library\n");
2110                         return err;
2111                 }
2112                 break;
2113
2114         case OMAP_ECC_BCH4_CODE_HW:
2115                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2116                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2117                 chip->ecc.size          = 512;
2118                 /* 14th bit is kept reserved for ROM-code compatibility */
2119                 chip->ecc.bytes         = 7 + 1;
2120                 chip->ecc.strength      = 4;
2121                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2122                 chip->ecc.correct       = omap_elm_correct_data;
2123                 chip->ecc.read_page     = omap_read_page_bch;
2124                 chip->ecc.write_page    = omap_write_page_bch;
2125                 chip->ecc.write_subpage = omap_write_subpage_bch;
2126                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2127                 oobbytes_per_step       = chip->ecc.bytes;
2128                 elm_bch_strength = BCH4_ECC;
2129                 break;
2130
2131         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2132                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2133                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2134                 chip->ecc.size          = 512;
2135                 chip->ecc.bytes         = 13;
2136                 chip->ecc.strength      = 8;
2137                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2138                 chip->ecc.correct       = rawnand_sw_bch_correct;
2139                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2140                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2141                 /* Reserve one byte for the OMAP marker */
2142                 oobbytes_per_step       = chip->ecc.bytes + 1;
2143                 /* Software BCH library is used for locating errors */
2144                 err = rawnand_sw_bch_init(chip);
2145                 if (err) {
2146                         dev_err(dev, "unable to use BCH library\n");
2147                         return err;
2148                 }
2149                 break;
2150
2151         case OMAP_ECC_BCH8_CODE_HW:
2152                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2153                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2154                 chip->ecc.size          = 512;
2155                 /* 14th bit is kept reserved for ROM-code compatibility */
2156                 chip->ecc.bytes         = 13 + 1;
2157                 chip->ecc.strength      = 8;
2158                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2159                 chip->ecc.correct       = omap_elm_correct_data;
2160                 chip->ecc.read_page     = omap_read_page_bch;
2161                 chip->ecc.write_page    = omap_write_page_bch;
2162                 chip->ecc.write_subpage = omap_write_subpage_bch;
2163                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2164                 oobbytes_per_step       = chip->ecc.bytes;
2165                 elm_bch_strength = BCH8_ECC;
2166                 break;
2167
2168         case OMAP_ECC_BCH16_CODE_HW:
2169                 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2170                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2171                 chip->ecc.size          = 512;
2172                 chip->ecc.bytes         = 26;
2173                 chip->ecc.strength      = 16;
2174                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2175                 chip->ecc.correct       = omap_elm_correct_data;
2176                 chip->ecc.read_page     = omap_read_page_bch;
2177                 chip->ecc.write_page    = omap_write_page_bch;
2178                 chip->ecc.write_subpage = omap_write_subpage_bch;
2179                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2180                 oobbytes_per_step       = chip->ecc.bytes;
2181                 elm_bch_strength = BCH16_ECC;
2182                 break;
2183         default:
2184                 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2185                 return -EINVAL;
2186         }
2187
2188         if (elm_bch_strength >= 0) {
2189                 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2190                 info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
2191                 if (info->neccpg) {
2192                         info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
2193                 } else {
2194                         info->neccpg = 1;
2195                         info->nsteps_per_eccpg = chip->ecc.steps;
2196                 }
2197                 info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
2198                 info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
2199
2200                 err = elm_config(info->elm_dev, elm_bch_strength,
2201                                  info->nsteps_per_eccpg, chip->ecc.size,
2202                                  chip->ecc.bytes);
2203                 if (err < 0)
2204                         return err;
2205         }
2206
2207         /* Check if NAND device's OOB is enough to store ECC signatures */
2208         min_oobbytes += (oobbytes_per_step *
2209                          (mtd->writesize / chip->ecc.size));
2210         if (mtd->oobsize < min_oobbytes) {
2211                 dev_err(dev,
2212                         "Not enough OOB bytes: required = %d, available=%d\n",
2213                         min_oobbytes, mtd->oobsize);
2214                 return -EINVAL;
2215         }
2216
2217         return 0;
2218 }
2219
2220 static const struct nand_controller_ops omap_nand_controller_ops = {
2221         .attach_chip = omap_nand_attach_chip,
2222 };
2223
2224 /* Shared among all NAND instances to synchronize access to the ECC Engine */
2225 static struct nand_controller omap_gpmc_controller;
2226 static bool omap_gpmc_controller_initialized;
2227
2228 static int omap_nand_probe(struct platform_device *pdev)
2229 {
2230         struct omap_nand_info           *info;
2231         struct mtd_info                 *mtd;
2232         struct nand_chip                *nand_chip;
2233         int                             err;
2234         struct resource                 *res;
2235         struct device                   *dev = &pdev->dev;
2236
2237         info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2238                                 GFP_KERNEL);
2239         if (!info)
2240                 return -ENOMEM;
2241
2242         info->pdev = pdev;
2243
2244         err = omap_get_dt_info(dev, info);
2245         if (err)
2246                 return err;
2247
2248         info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2249         if (!info->ops) {
2250                 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2251                 return -ENODEV;
2252         }
2253
2254         nand_chip               = &info->nand;
2255         mtd                     = nand_to_mtd(nand_chip);
2256         mtd->dev.parent         = &pdev->dev;
2257         nand_set_flash_node(nand_chip, dev->of_node);
2258
2259         if (!mtd->name) {
2260                 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2261                                            "omap2-nand.%d", info->gpmc_cs);
2262                 if (!mtd->name) {
2263                         dev_err(&pdev->dev, "Failed to set MTD name\n");
2264                         return -ENOMEM;
2265                 }
2266         }
2267
2268         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2269         nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
2270         if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
2271                 return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
2272
2273         info->phys_base = res->start;
2274
2275         if (!omap_gpmc_controller_initialized) {
2276                 omap_gpmc_controller.ops = &omap_nand_controller_ops;
2277                 nand_controller_init(&omap_gpmc_controller);
2278                 omap_gpmc_controller_initialized = true;
2279         }
2280
2281         nand_chip->controller = &omap_gpmc_controller;
2282
2283         nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
2284         nand_chip->legacy.cmd_ctrl  = omap_hwcontrol;
2285
2286         info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2287                                                     GPIOD_IN);
2288         if (IS_ERR(info->ready_gpiod)) {
2289                 dev_err(dev, "failed to get ready gpio\n");
2290                 return PTR_ERR(info->ready_gpiod);
2291         }
2292
2293         /*
2294          * If RDY/BSY line is connected to OMAP then use the omap ready
2295          * function and the generic nand_wait function which reads the status
2296          * register after monitoring the RDY/BSY line. Otherwise use a standard
2297          * chip delay which is slightly more than tR (AC Timing) of the NAND
2298          * device and read status register until you get a failure or success
2299          */
2300         if (info->ready_gpiod) {
2301                 nand_chip->legacy.dev_ready = omap_dev_ready;
2302                 nand_chip->legacy.chip_delay = 0;
2303         } else {
2304                 nand_chip->legacy.waitfunc = omap_wait;
2305                 nand_chip->legacy.chip_delay = 50;
2306         }
2307
2308         if (info->flash_bbt)
2309                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2310
2311         /* scan NAND device connected to chip controller */
2312         nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2313
2314         err = nand_scan(nand_chip, 1);
2315         if (err)
2316                 goto return_error;
2317
2318         err = mtd_device_register(mtd, NULL, 0);
2319         if (err)
2320                 goto cleanup_nand;
2321
2322         platform_set_drvdata(pdev, mtd);
2323
2324         return 0;
2325
2326 cleanup_nand:
2327         nand_cleanup(nand_chip);
2328
2329 return_error:
2330         if (!IS_ERR_OR_NULL(info->dma))
2331                 dma_release_channel(info->dma);
2332
2333         rawnand_sw_bch_cleanup(nand_chip);
2334
2335         return err;
2336 }
2337
2338 static int omap_nand_remove(struct platform_device *pdev)
2339 {
2340         struct mtd_info *mtd = platform_get_drvdata(pdev);
2341         struct nand_chip *nand_chip = mtd_to_nand(mtd);
2342         struct omap_nand_info *info = mtd_to_omap(mtd);
2343         int ret;
2344
2345         rawnand_sw_bch_cleanup(nand_chip);
2346
2347         if (info->dma)
2348                 dma_release_channel(info->dma);
2349         ret = mtd_device_unregister(mtd);
2350         WARN_ON(ret);
2351         nand_cleanup(nand_chip);
2352         return ret;
2353 }
2354
2355 static const struct of_device_id omap_nand_ids[] = {
2356         { .compatible = "ti,omap2-nand", },
2357         {},
2358 };
2359 MODULE_DEVICE_TABLE(of, omap_nand_ids);
2360
2361 static struct platform_driver omap_nand_driver = {
2362         .probe          = omap_nand_probe,
2363         .remove         = omap_nand_remove,
2364         .driver         = {
2365                 .name   = DRIVER_NAME,
2366                 .of_match_table = of_match_ptr(omap_nand_ids),
2367         },
2368 };
2369
2370 module_platform_driver(omap_nand_driver);
2371
2372 MODULE_ALIAS("platform:" DRIVER_NAME);
2373 MODULE_LICENSE("GPL");
2374 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");