Merge tag 'sfi-removal-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / nandsim.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NAND flash simulator.
4  *
5  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6  *
7  * Copyright (C) 2004 Nokia Corporation
8  *
9  * Note: NS means "NAND Simulator".
10  * Note: Input means input TO flash chip, output means output FROM chip.
11  */
12
13 #define pr_fmt(fmt)  "[nandsim]" fmt
14
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/vmalloc.h>
20 #include <linux/math64.h>
21 #include <linux/slab.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/delay.h>
28 #include <linux/list.h>
29 #include <linux/random.h>
30 #include <linux/sched.h>
31 #include <linux/sched/mm.h>
32 #include <linux/fs.h>
33 #include <linux/pagemap.h>
34 #include <linux/seq_file.h>
35 #include <linux/debugfs.h>
36
37 /* Default simulator parameters values */
38 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
39     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
40     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
41     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
42 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
43 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
44 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
45 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
46 #endif
47
48 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
49 #define CONFIG_NANDSIM_ACCESS_DELAY 25
50 #endif
51 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
52 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
53 #endif
54 #ifndef CONFIG_NANDSIM_ERASE_DELAY
55 #define CONFIG_NANDSIM_ERASE_DELAY 2
56 #endif
57 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
58 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
59 #endif
60 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
61 #define CONFIG_NANDSIM_INPUT_CYCLE  50
62 #endif
63 #ifndef CONFIG_NANDSIM_BUS_WIDTH
64 #define CONFIG_NANDSIM_BUS_WIDTH  8
65 #endif
66 #ifndef CONFIG_NANDSIM_DO_DELAYS
67 #define CONFIG_NANDSIM_DO_DELAYS  0
68 #endif
69 #ifndef CONFIG_NANDSIM_LOG
70 #define CONFIG_NANDSIM_LOG        0
71 #endif
72 #ifndef CONFIG_NANDSIM_DBG
73 #define CONFIG_NANDSIM_DBG        0
74 #endif
75 #ifndef CONFIG_NANDSIM_MAX_PARTS
76 #define CONFIG_NANDSIM_MAX_PARTS  32
77 #endif
78
79 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
80 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
81 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
82 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
83 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
84 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
85 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
86 static uint log            = CONFIG_NANDSIM_LOG;
87 static uint dbg            = CONFIG_NANDSIM_DBG;
88 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
89 static unsigned int parts_num;
90 static char *badblocks = NULL;
91 static char *weakblocks = NULL;
92 static char *weakpages = NULL;
93 static unsigned int bitflips = 0;
94 static char *gravepages = NULL;
95 static unsigned int overridesize = 0;
96 static char *cache_file = NULL;
97 static unsigned int bbt;
98 static unsigned int bch;
99 static u_char id_bytes[8] = {
100         [0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
101         [1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
102         [2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
103         [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
104         [4 ... 7] = 0xFF,
105 };
106
107 module_param_array(id_bytes, byte, NULL, 0400);
108 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
109 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
110 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
111 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
112 module_param(access_delay,   uint, 0400);
113 module_param(programm_delay, uint, 0400);
114 module_param(erase_delay,    uint, 0400);
115 module_param(output_cycle,   uint, 0400);
116 module_param(input_cycle,    uint, 0400);
117 module_param(bus_width,      uint, 0400);
118 module_param(do_delays,      uint, 0400);
119 module_param(log,            uint, 0400);
120 module_param(dbg,            uint, 0400);
121 module_param_array(parts, ulong, &parts_num, 0400);
122 module_param(badblocks,      charp, 0400);
123 module_param(weakblocks,     charp, 0400);
124 module_param(weakpages,      charp, 0400);
125 module_param(bitflips,       uint, 0400);
126 module_param(gravepages,     charp, 0400);
127 module_param(overridesize,   uint, 0400);
128 module_param(cache_file,     charp, 0400);
129 module_param(bbt,            uint, 0400);
130 module_param(bch,            uint, 0400);
131
132 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
133 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
134 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
135 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
136 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
137 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
138 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
139 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
140 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
141 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
142 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
143 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
144 MODULE_PARM_DESC(log,            "Perform logging if not zero");
145 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
146 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
147 /* Page and erase block positions for the following parameters are independent of any partitions */
148 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
149 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
150                                  " separated by commas e.g. 113:2 means eb 113"
151                                  " can be erased only twice before failing");
152 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
153                                  " separated by commas e.g. 1401:2 means page 1401"
154                                  " can be written only twice before failing");
155 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
156 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
157                                  " separated by commas e.g. 1401:2 means page 1401"
158                                  " can be read only twice before failing");
159 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
160                                  "The size is specified in erase blocks and as the exponent of a power of two"
161                                  " e.g. 5 means a size of 32 erase blocks");
162 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
163 MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
164 MODULE_PARM_DESC(bch,            "Enable BCH ecc and set how many bits should "
165                                  "be correctable in 512-byte blocks");
166
167 /* The largest possible page size */
168 #define NS_LARGEST_PAGE_SIZE    4096
169
170 /* Simulator's output macros (logging, debugging, warning, error) */
171 #define NS_LOG(args...) \
172         do { if (log) pr_debug(" log: " args); } while(0)
173 #define NS_DBG(args...) \
174         do { if (dbg) pr_debug(" debug: " args); } while(0)
175 #define NS_WARN(args...) \
176         do { pr_warn(" warning: " args); } while(0)
177 #define NS_ERR(args...) \
178         do { pr_err(" error: " args); } while(0)
179 #define NS_INFO(args...) \
180         do { pr_info(" " args); } while(0)
181
182 /* Busy-wait delay macros (microseconds, milliseconds) */
183 #define NS_UDELAY(us) \
184         do { if (do_delays) udelay(us); } while(0)
185 #define NS_MDELAY(us) \
186         do { if (do_delays) mdelay(us); } while(0)
187
188 /* Is the nandsim structure initialized ? */
189 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
190
191 /* Good operation completion status */
192 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
193
194 /* Operation failed completion status */
195 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
196
197 /* Calculate the page offset in flash RAM image by (row, column) address */
198 #define NS_RAW_OFFSET(ns) \
199         (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
200
201 /* Calculate the OOB offset in flash RAM image by (row, column) address */
202 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
203
204 /* After a command is input, the simulator goes to one of the following states */
205 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
206 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
207 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
208 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
209 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
210 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
211 #define STATE_CMD_STATUS       0x00000007 /* read status */
212 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
213 #define STATE_CMD_READID       0x0000000A /* read ID */
214 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
215 #define STATE_CMD_RESET        0x0000000C /* reset */
216 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
217 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
218 #define STATE_CMD_MASK         0x0000000F /* command states mask */
219
220 /* After an address is input, the simulator goes to one of these states */
221 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
222 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
223 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
224 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
225 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
226
227 /* During data input/output the simulator is in these states */
228 #define STATE_DATAIN           0x00000100 /* waiting for data input */
229 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
230
231 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
232 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
233 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
234 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
235
236 /* Previous operation is done, ready to accept new requests */
237 #define STATE_READY            0x00000000
238
239 /* This state is used to mark that the next state isn't known yet */
240 #define STATE_UNKNOWN          0x10000000
241
242 /* Simulator's actions bit masks */
243 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
244 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
245 #define ACTION_SECERASE  0x00300000 /* erase sector */
246 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
247 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
248 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
249 #define ACTION_MASK      0x00700000 /* action mask */
250
251 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
252 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
253
254 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
255 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
256 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
257 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
258 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
259 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
260 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
261
262 /* Remove action bits from state */
263 #define NS_STATE(x) ((x) & ~ACTION_MASK)
264
265 /*
266  * Maximum previous states which need to be saved. Currently saving is
267  * only needed for page program operation with preceded read command
268  * (which is only valid for 512-byte pages).
269  */
270 #define NS_MAX_PREVSTATES 1
271
272 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
273 #define NS_MAX_HELD_PAGES 16
274
275 /*
276  * A union to represent flash memory contents and flash buffer.
277  */
278 union ns_mem {
279         u_char *byte;    /* for byte access */
280         uint16_t *word;  /* for 16-bit word access */
281 };
282
283 /*
284  * The structure which describes all the internal simulator data.
285  */
286 struct nandsim {
287         struct nand_chip chip;
288         struct nand_controller base;
289         struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
290         unsigned int nbparts;
291
292         uint busw;              /* flash chip bus width (8 or 16) */
293         u_char ids[8];          /* chip's ID bytes */
294         uint32_t options;       /* chip's characteristic bits */
295         uint32_t state;         /* current chip state */
296         uint32_t nxstate;       /* next expected state */
297
298         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
299         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
300         uint16_t npstates;      /* number of previous states saved */
301         uint16_t stateidx;      /* current state index */
302
303         /* The simulated NAND flash pages array */
304         union ns_mem *pages;
305
306         /* Slab allocator for nand pages */
307         struct kmem_cache *nand_pages_slab;
308
309         /* Internal buffer of page + OOB size bytes */
310         union ns_mem buf;
311
312         /* NAND flash "geometry" */
313         struct {
314                 uint64_t totsz;     /* total flash size, bytes */
315                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
316                 uint pgsz;          /* NAND flash page size, bytes */
317                 uint oobsz;         /* page OOB area size, bytes */
318                 uint64_t totszoob;  /* total flash size including OOB, bytes */
319                 uint pgszoob;       /* page size including OOB , bytes*/
320                 uint secszoob;      /* sector size including OOB, bytes */
321                 uint pgnum;         /* total number of pages */
322                 uint pgsec;         /* number of pages per sector */
323                 uint secshift;      /* bits number in sector size */
324                 uint pgshift;       /* bits number in page size */
325                 uint pgaddrbytes;   /* bytes per page address */
326                 uint secaddrbytes;  /* bytes per sector address */
327                 uint idbytes;       /* the number ID bytes that this chip outputs */
328         } geom;
329
330         /* NAND flash internal registers */
331         struct {
332                 unsigned command; /* the command register */
333                 u_char   status;  /* the status register */
334                 uint     row;     /* the page number */
335                 uint     column;  /* the offset within page */
336                 uint     count;   /* internal counter */
337                 uint     num;     /* number of bytes which must be processed */
338                 uint     off;     /* fixed page offset */
339         } regs;
340
341         /* NAND flash lines state */
342         struct {
343                 int ce;  /* chip Enable */
344                 int cle; /* command Latch Enable */
345                 int ale; /* address Latch Enable */
346                 int wp;  /* write Protect */
347         } lines;
348
349         /* Fields needed when using a cache file */
350         struct file *cfile; /* Open file */
351         unsigned long *pages_written; /* Which pages have been written */
352         void *file_buf;
353         struct page *held_pages[NS_MAX_HELD_PAGES];
354         int held_cnt;
355
356         /* debugfs entry */
357         struct dentry *dent;
358 };
359
360 /*
361  * Operations array. To perform any operation the simulator must pass
362  * through the correspondent states chain.
363  */
364 static struct nandsim_operations {
365         uint32_t reqopts;  /* options which are required to perform the operation */
366         uint32_t states[NS_OPER_STATES]; /* operation's states */
367 } ops[NS_OPER_NUM] = {
368         /* Read page + OOB from the beginning */
369         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
370                         STATE_DATAOUT, STATE_READY}},
371         /* Read page + OOB from the second half */
372         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
373                         STATE_DATAOUT, STATE_READY}},
374         /* Read OOB */
375         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
376                         STATE_DATAOUT, STATE_READY}},
377         /* Program page starting from the beginning */
378         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
379                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
380         /* Program page starting from the beginning */
381         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
382                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
383         /* Program page starting from the second half */
384         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
385                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
386         /* Program OOB */
387         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
388                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389         /* Erase sector */
390         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
391         /* Read status */
392         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
393         /* Read ID */
394         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
395         /* Large page devices read page */
396         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
397                                STATE_DATAOUT, STATE_READY}},
398         /* Large page devices random page read */
399         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
400                                STATE_DATAOUT, STATE_READY}},
401 };
402
403 struct weak_block {
404         struct list_head list;
405         unsigned int erase_block_no;
406         unsigned int max_erases;
407         unsigned int erases_done;
408 };
409
410 static LIST_HEAD(weak_blocks);
411
412 struct weak_page {
413         struct list_head list;
414         unsigned int page_no;
415         unsigned int max_writes;
416         unsigned int writes_done;
417 };
418
419 static LIST_HEAD(weak_pages);
420
421 struct grave_page {
422         struct list_head list;
423         unsigned int page_no;
424         unsigned int max_reads;
425         unsigned int reads_done;
426 };
427
428 static LIST_HEAD(grave_pages);
429
430 static unsigned long *erase_block_wear = NULL;
431 static unsigned int wear_eb_count = 0;
432 static unsigned long total_wear = 0;
433
434 /* MTD structure for NAND controller */
435 static struct mtd_info *nsmtd;
436
437 static int ns_show(struct seq_file *m, void *private)
438 {
439         unsigned long wmin = -1, wmax = 0, avg;
440         unsigned long deciles[10], decile_max[10], tot = 0;
441         unsigned int i;
442
443         /* Calc wear stats */
444         for (i = 0; i < wear_eb_count; ++i) {
445                 unsigned long wear = erase_block_wear[i];
446                 if (wear < wmin)
447                         wmin = wear;
448                 if (wear > wmax)
449                         wmax = wear;
450                 tot += wear;
451         }
452
453         for (i = 0; i < 9; ++i) {
454                 deciles[i] = 0;
455                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
456         }
457         deciles[9] = 0;
458         decile_max[9] = wmax;
459         for (i = 0; i < wear_eb_count; ++i) {
460                 int d;
461                 unsigned long wear = erase_block_wear[i];
462                 for (d = 0; d < 10; ++d)
463                         if (wear <= decile_max[d]) {
464                                 deciles[d] += 1;
465                                 break;
466                         }
467         }
468         avg = tot / wear_eb_count;
469
470         /* Output wear report */
471         seq_printf(m, "Total numbers of erases:  %lu\n", tot);
472         seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
473         seq_printf(m, "Average number of erases: %lu\n", avg);
474         seq_printf(m, "Maximum number of erases: %lu\n", wmax);
475         seq_printf(m, "Minimum number of erases: %lu\n", wmin);
476         for (i = 0; i < 10; ++i) {
477                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
478                 if (from > decile_max[i])
479                         continue;
480                 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
481                         from,
482                         decile_max[i],
483                         deciles[i]);
484         }
485
486         return 0;
487 }
488 DEFINE_SHOW_ATTRIBUTE(ns);
489
490 /**
491  * ns_debugfs_create - initialize debugfs
492  * @ns: nandsim device description object
493  *
494  * This function creates all debugfs files for UBI device @ubi. Returns zero in
495  * case of success and a negative error code in case of failure.
496  */
497 static int ns_debugfs_create(struct nandsim *ns)
498 {
499         struct dentry *root = nsmtd->dbg.dfs_dir;
500
501         /*
502          * Just skip debugfs initialization when the debugfs directory is
503          * missing.
504          */
505         if (IS_ERR_OR_NULL(root)) {
506                 if (IS_ENABLED(CONFIG_DEBUG_FS) &&
507                     !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
508                         NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
509                 return 0;
510         }
511
512         ns->dent = debugfs_create_file("nandsim_wear_report", 0400, root, ns,
513                                        &ns_fops);
514         if (IS_ERR_OR_NULL(ns->dent)) {
515                 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
516                 return -1;
517         }
518
519         return 0;
520 }
521
522 static void ns_debugfs_remove(struct nandsim *ns)
523 {
524         debugfs_remove_recursive(ns->dent);
525 }
526
527 /*
528  * Allocate array of page pointers, create slab allocation for an array
529  * and initialize the array by NULL pointers.
530  *
531  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
532  */
533 static int __init ns_alloc_device(struct nandsim *ns)
534 {
535         struct file *cfile;
536         int i, err;
537
538         if (cache_file) {
539                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
540                 if (IS_ERR(cfile))
541                         return PTR_ERR(cfile);
542                 if (!(cfile->f_mode & FMODE_CAN_READ)) {
543                         NS_ERR("alloc_device: cache file not readable\n");
544                         err = -EINVAL;
545                         goto err_close_filp;
546                 }
547                 if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
548                         NS_ERR("alloc_device: cache file not writeable\n");
549                         err = -EINVAL;
550                         goto err_close_filp;
551                 }
552                 ns->pages_written =
553                         vzalloc(array_size(sizeof(unsigned long),
554                                            BITS_TO_LONGS(ns->geom.pgnum)));
555                 if (!ns->pages_written) {
556                         NS_ERR("alloc_device: unable to allocate pages written array\n");
557                         err = -ENOMEM;
558                         goto err_close_filp;
559                 }
560                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
561                 if (!ns->file_buf) {
562                         NS_ERR("alloc_device: unable to allocate file buf\n");
563                         err = -ENOMEM;
564                         goto err_free_pw;
565                 }
566                 ns->cfile = cfile;
567
568                 return 0;
569
570 err_free_pw:
571                 vfree(ns->pages_written);
572 err_close_filp:
573                 filp_close(cfile, NULL);
574
575                 return err;
576         }
577
578         ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum));
579         if (!ns->pages) {
580                 NS_ERR("alloc_device: unable to allocate page array\n");
581                 return -ENOMEM;
582         }
583         for (i = 0; i < ns->geom.pgnum; i++) {
584                 ns->pages[i].byte = NULL;
585         }
586         ns->nand_pages_slab = kmem_cache_create("nandsim",
587                                                 ns->geom.pgszoob, 0, 0, NULL);
588         if (!ns->nand_pages_slab) {
589                 NS_ERR("cache_create: unable to create kmem_cache\n");
590                 err = -ENOMEM;
591                 goto err_free_pg;
592         }
593
594         return 0;
595
596 err_free_pg:
597         vfree(ns->pages);
598
599         return err;
600 }
601
602 /*
603  * Free any allocated pages, and free the array of page pointers.
604  */
605 static void ns_free_device(struct nandsim *ns)
606 {
607         int i;
608
609         if (ns->cfile) {
610                 kfree(ns->file_buf);
611                 vfree(ns->pages_written);
612                 filp_close(ns->cfile, NULL);
613                 return;
614         }
615
616         if (ns->pages) {
617                 for (i = 0; i < ns->geom.pgnum; i++) {
618                         if (ns->pages[i].byte)
619                                 kmem_cache_free(ns->nand_pages_slab,
620                                                 ns->pages[i].byte);
621                 }
622                 kmem_cache_destroy(ns->nand_pages_slab);
623                 vfree(ns->pages);
624         }
625 }
626
627 static char __init *ns_get_partition_name(int i)
628 {
629         return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
630 }
631
632 /*
633  * Initialize the nandsim structure.
634  *
635  * RETURNS: 0 if success, -ERRNO if failure.
636  */
637 static int __init ns_init(struct mtd_info *mtd)
638 {
639         struct nand_chip *chip = mtd_to_nand(mtd);
640         struct nandsim   *ns   = nand_get_controller_data(chip);
641         int i, ret = 0;
642         uint64_t remains;
643         uint64_t next_offset;
644
645         if (NS_IS_INITIALIZED(ns)) {
646                 NS_ERR("init_nandsim: nandsim is already initialized\n");
647                 return -EIO;
648         }
649
650         /* Initialize the NAND flash parameters */
651         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
652         ns->geom.totsz    = mtd->size;
653         ns->geom.pgsz     = mtd->writesize;
654         ns->geom.oobsz    = mtd->oobsize;
655         ns->geom.secsz    = mtd->erasesize;
656         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
657         ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
658         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
659         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
660         ns->geom.pgshift  = chip->page_shift;
661         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
662         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
663         ns->options = 0;
664
665         if (ns->geom.pgsz == 512) {
666                 ns->options |= OPT_PAGE512;
667                 if (ns->busw == 8)
668                         ns->options |= OPT_PAGE512_8BIT;
669         } else if (ns->geom.pgsz == 2048) {
670                 ns->options |= OPT_PAGE2048;
671         } else if (ns->geom.pgsz == 4096) {
672                 ns->options |= OPT_PAGE4096;
673         } else {
674                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
675                 return -EIO;
676         }
677
678         if (ns->options & OPT_SMALLPAGE) {
679                 if (ns->geom.totsz <= (32 << 20)) {
680                         ns->geom.pgaddrbytes  = 3;
681                         ns->geom.secaddrbytes = 2;
682                 } else {
683                         ns->geom.pgaddrbytes  = 4;
684                         ns->geom.secaddrbytes = 3;
685                 }
686         } else {
687                 if (ns->geom.totsz <= (128 << 20)) {
688                         ns->geom.pgaddrbytes  = 4;
689                         ns->geom.secaddrbytes = 2;
690                 } else {
691                         ns->geom.pgaddrbytes  = 5;
692                         ns->geom.secaddrbytes = 3;
693                 }
694         }
695
696         /* Fill the partition_info structure */
697         if (parts_num > ARRAY_SIZE(ns->partitions)) {
698                 NS_ERR("too many partitions.\n");
699                 return -EINVAL;
700         }
701         remains = ns->geom.totsz;
702         next_offset = 0;
703         for (i = 0; i < parts_num; ++i) {
704                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
705
706                 if (!part_sz || part_sz > remains) {
707                         NS_ERR("bad partition size.\n");
708                         return -EINVAL;
709                 }
710                 ns->partitions[i].name = ns_get_partition_name(i);
711                 if (!ns->partitions[i].name) {
712                         NS_ERR("unable to allocate memory.\n");
713                         return -ENOMEM;
714                 }
715                 ns->partitions[i].offset = next_offset;
716                 ns->partitions[i].size   = part_sz;
717                 next_offset += ns->partitions[i].size;
718                 remains -= ns->partitions[i].size;
719         }
720         ns->nbparts = parts_num;
721         if (remains) {
722                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
723                         NS_ERR("too many partitions.\n");
724                         ret = -EINVAL;
725                         goto free_partition_names;
726                 }
727                 ns->partitions[i].name = ns_get_partition_name(i);
728                 if (!ns->partitions[i].name) {
729                         NS_ERR("unable to allocate memory.\n");
730                         ret = -ENOMEM;
731                         goto free_partition_names;
732                 }
733                 ns->partitions[i].offset = next_offset;
734                 ns->partitions[i].size   = remains;
735                 ns->nbparts += 1;
736         }
737
738         if (ns->busw == 16)
739                 NS_WARN("16-bit flashes support wasn't tested\n");
740
741         printk("flash size: %llu MiB\n",
742                         (unsigned long long)ns->geom.totsz >> 20);
743         printk("page size: %u bytes\n",         ns->geom.pgsz);
744         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
745         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
746         printk("pages number: %u\n",            ns->geom.pgnum);
747         printk("pages per sector: %u\n",        ns->geom.pgsec);
748         printk("bus width: %u\n",               ns->busw);
749         printk("bits in sector size: %u\n",     ns->geom.secshift);
750         printk("bits in page size: %u\n",       ns->geom.pgshift);
751         printk("bits in OOB size: %u\n",        ffs(ns->geom.oobsz) - 1);
752         printk("flash size with OOB: %llu KiB\n",
753                         (unsigned long long)ns->geom.totszoob >> 10);
754         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
755         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
756         printk("options: %#x\n",                ns->options);
757
758         ret = ns_alloc_device(ns);
759         if (ret)
760                 goto free_partition_names;
761
762         /* Allocate / initialize the internal buffer */
763         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
764         if (!ns->buf.byte) {
765                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
766                         ns->geom.pgszoob);
767                 ret = -ENOMEM;
768                 goto free_device;
769         }
770         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
771
772         return 0;
773
774 free_device:
775         ns_free_device(ns);
776 free_partition_names:
777         for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i)
778                 kfree(ns->partitions[i].name);
779
780         return ret;
781 }
782
783 /*
784  * Free the nandsim structure.
785  */
786 static void ns_free(struct nandsim *ns)
787 {
788         int i;
789
790         for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i)
791                 kfree(ns->partitions[i].name);
792
793         kfree(ns->buf.byte);
794         ns_free_device(ns);
795
796         return;
797 }
798
799 static int ns_parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
800 {
801         char *w;
802         int zero_ok;
803         unsigned int erase_block_no;
804         loff_t offset;
805
806         if (!badblocks)
807                 return 0;
808         w = badblocks;
809         do {
810                 zero_ok = (*w == '0' ? 1 : 0);
811                 erase_block_no = simple_strtoul(w, &w, 0);
812                 if (!zero_ok && !erase_block_no) {
813                         NS_ERR("invalid badblocks.\n");
814                         return -EINVAL;
815                 }
816                 offset = (loff_t)erase_block_no * ns->geom.secsz;
817                 if (mtd_block_markbad(mtd, offset)) {
818                         NS_ERR("invalid badblocks.\n");
819                         return -EINVAL;
820                 }
821                 if (*w == ',')
822                         w += 1;
823         } while (*w);
824         return 0;
825 }
826
827 static int ns_parse_weakblocks(void)
828 {
829         char *w;
830         int zero_ok;
831         unsigned int erase_block_no;
832         unsigned int max_erases;
833         struct weak_block *wb;
834
835         if (!weakblocks)
836                 return 0;
837         w = weakblocks;
838         do {
839                 zero_ok = (*w == '0' ? 1 : 0);
840                 erase_block_no = simple_strtoul(w, &w, 0);
841                 if (!zero_ok && !erase_block_no) {
842                         NS_ERR("invalid weakblocks.\n");
843                         return -EINVAL;
844                 }
845                 max_erases = 3;
846                 if (*w == ':') {
847                         w += 1;
848                         max_erases = simple_strtoul(w, &w, 0);
849                 }
850                 if (*w == ',')
851                         w += 1;
852                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
853                 if (!wb) {
854                         NS_ERR("unable to allocate memory.\n");
855                         return -ENOMEM;
856                 }
857                 wb->erase_block_no = erase_block_no;
858                 wb->max_erases = max_erases;
859                 list_add(&wb->list, &weak_blocks);
860         } while (*w);
861         return 0;
862 }
863
864 static int ns_erase_error(unsigned int erase_block_no)
865 {
866         struct weak_block *wb;
867
868         list_for_each_entry(wb, &weak_blocks, list)
869                 if (wb->erase_block_no == erase_block_no) {
870                         if (wb->erases_done >= wb->max_erases)
871                                 return 1;
872                         wb->erases_done += 1;
873                         return 0;
874                 }
875         return 0;
876 }
877
878 static int ns_parse_weakpages(void)
879 {
880         char *w;
881         int zero_ok;
882         unsigned int page_no;
883         unsigned int max_writes;
884         struct weak_page *wp;
885
886         if (!weakpages)
887                 return 0;
888         w = weakpages;
889         do {
890                 zero_ok = (*w == '0' ? 1 : 0);
891                 page_no = simple_strtoul(w, &w, 0);
892                 if (!zero_ok && !page_no) {
893                         NS_ERR("invalid weakpages.\n");
894                         return -EINVAL;
895                 }
896                 max_writes = 3;
897                 if (*w == ':') {
898                         w += 1;
899                         max_writes = simple_strtoul(w, &w, 0);
900                 }
901                 if (*w == ',')
902                         w += 1;
903                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
904                 if (!wp) {
905                         NS_ERR("unable to allocate memory.\n");
906                         return -ENOMEM;
907                 }
908                 wp->page_no = page_no;
909                 wp->max_writes = max_writes;
910                 list_add(&wp->list, &weak_pages);
911         } while (*w);
912         return 0;
913 }
914
915 static int ns_write_error(unsigned int page_no)
916 {
917         struct weak_page *wp;
918
919         list_for_each_entry(wp, &weak_pages, list)
920                 if (wp->page_no == page_no) {
921                         if (wp->writes_done >= wp->max_writes)
922                                 return 1;
923                         wp->writes_done += 1;
924                         return 0;
925                 }
926         return 0;
927 }
928
929 static int ns_parse_gravepages(void)
930 {
931         char *g;
932         int zero_ok;
933         unsigned int page_no;
934         unsigned int max_reads;
935         struct grave_page *gp;
936
937         if (!gravepages)
938                 return 0;
939         g = gravepages;
940         do {
941                 zero_ok = (*g == '0' ? 1 : 0);
942                 page_no = simple_strtoul(g, &g, 0);
943                 if (!zero_ok && !page_no) {
944                         NS_ERR("invalid gravepagess.\n");
945                         return -EINVAL;
946                 }
947                 max_reads = 3;
948                 if (*g == ':') {
949                         g += 1;
950                         max_reads = simple_strtoul(g, &g, 0);
951                 }
952                 if (*g == ',')
953                         g += 1;
954                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
955                 if (!gp) {
956                         NS_ERR("unable to allocate memory.\n");
957                         return -ENOMEM;
958                 }
959                 gp->page_no = page_no;
960                 gp->max_reads = max_reads;
961                 list_add(&gp->list, &grave_pages);
962         } while (*g);
963         return 0;
964 }
965
966 static int ns_read_error(unsigned int page_no)
967 {
968         struct grave_page *gp;
969
970         list_for_each_entry(gp, &grave_pages, list)
971                 if (gp->page_no == page_no) {
972                         if (gp->reads_done >= gp->max_reads)
973                                 return 1;
974                         gp->reads_done += 1;
975                         return 0;
976                 }
977         return 0;
978 }
979
980 static int ns_setup_wear_reporting(struct mtd_info *mtd)
981 {
982         size_t mem;
983
984         wear_eb_count = div_u64(mtd->size, mtd->erasesize);
985         mem = wear_eb_count * sizeof(unsigned long);
986         if (mem / sizeof(unsigned long) != wear_eb_count) {
987                 NS_ERR("Too many erase blocks for wear reporting\n");
988                 return -ENOMEM;
989         }
990         erase_block_wear = kzalloc(mem, GFP_KERNEL);
991         if (!erase_block_wear) {
992                 NS_ERR("Too many erase blocks for wear reporting\n");
993                 return -ENOMEM;
994         }
995         return 0;
996 }
997
998 static void ns_update_wear(unsigned int erase_block_no)
999 {
1000         if (!erase_block_wear)
1001                 return;
1002         total_wear += 1;
1003         /*
1004          * TODO: Notify this through a debugfs entry,
1005          * instead of showing an error message.
1006          */
1007         if (total_wear == 0)
1008                 NS_ERR("Erase counter total overflow\n");
1009         erase_block_wear[erase_block_no] += 1;
1010         if (erase_block_wear[erase_block_no] == 0)
1011                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1012 }
1013
1014 /*
1015  * Returns the string representation of 'state' state.
1016  */
1017 static char *ns_get_state_name(uint32_t state)
1018 {
1019         switch (NS_STATE(state)) {
1020                 case STATE_CMD_READ0:
1021                         return "STATE_CMD_READ0";
1022                 case STATE_CMD_READ1:
1023                         return "STATE_CMD_READ1";
1024                 case STATE_CMD_PAGEPROG:
1025                         return "STATE_CMD_PAGEPROG";
1026                 case STATE_CMD_READOOB:
1027                         return "STATE_CMD_READOOB";
1028                 case STATE_CMD_READSTART:
1029                         return "STATE_CMD_READSTART";
1030                 case STATE_CMD_ERASE1:
1031                         return "STATE_CMD_ERASE1";
1032                 case STATE_CMD_STATUS:
1033                         return "STATE_CMD_STATUS";
1034                 case STATE_CMD_SEQIN:
1035                         return "STATE_CMD_SEQIN";
1036                 case STATE_CMD_READID:
1037                         return "STATE_CMD_READID";
1038                 case STATE_CMD_ERASE2:
1039                         return "STATE_CMD_ERASE2";
1040                 case STATE_CMD_RESET:
1041                         return "STATE_CMD_RESET";
1042                 case STATE_CMD_RNDOUT:
1043                         return "STATE_CMD_RNDOUT";
1044                 case STATE_CMD_RNDOUTSTART:
1045                         return "STATE_CMD_RNDOUTSTART";
1046                 case STATE_ADDR_PAGE:
1047                         return "STATE_ADDR_PAGE";
1048                 case STATE_ADDR_SEC:
1049                         return "STATE_ADDR_SEC";
1050                 case STATE_ADDR_ZERO:
1051                         return "STATE_ADDR_ZERO";
1052                 case STATE_ADDR_COLUMN:
1053                         return "STATE_ADDR_COLUMN";
1054                 case STATE_DATAIN:
1055                         return "STATE_DATAIN";
1056                 case STATE_DATAOUT:
1057                         return "STATE_DATAOUT";
1058                 case STATE_DATAOUT_ID:
1059                         return "STATE_DATAOUT_ID";
1060                 case STATE_DATAOUT_STATUS:
1061                         return "STATE_DATAOUT_STATUS";
1062                 case STATE_READY:
1063                         return "STATE_READY";
1064                 case STATE_UNKNOWN:
1065                         return "STATE_UNKNOWN";
1066         }
1067
1068         NS_ERR("get_state_name: unknown state, BUG\n");
1069         return NULL;
1070 }
1071
1072 /*
1073  * Check if command is valid.
1074  *
1075  * RETURNS: 1 if wrong command, 0 if right.
1076  */
1077 static int ns_check_command(int cmd)
1078 {
1079         switch (cmd) {
1080
1081         case NAND_CMD_READ0:
1082         case NAND_CMD_READ1:
1083         case NAND_CMD_READSTART:
1084         case NAND_CMD_PAGEPROG:
1085         case NAND_CMD_READOOB:
1086         case NAND_CMD_ERASE1:
1087         case NAND_CMD_STATUS:
1088         case NAND_CMD_SEQIN:
1089         case NAND_CMD_READID:
1090         case NAND_CMD_ERASE2:
1091         case NAND_CMD_RESET:
1092         case NAND_CMD_RNDOUT:
1093         case NAND_CMD_RNDOUTSTART:
1094                 return 0;
1095
1096         default:
1097                 return 1;
1098         }
1099 }
1100
1101 /*
1102  * Returns state after command is accepted by command number.
1103  */
1104 static uint32_t ns_get_state_by_command(unsigned command)
1105 {
1106         switch (command) {
1107                 case NAND_CMD_READ0:
1108                         return STATE_CMD_READ0;
1109                 case NAND_CMD_READ1:
1110                         return STATE_CMD_READ1;
1111                 case NAND_CMD_PAGEPROG:
1112                         return STATE_CMD_PAGEPROG;
1113                 case NAND_CMD_READSTART:
1114                         return STATE_CMD_READSTART;
1115                 case NAND_CMD_READOOB:
1116                         return STATE_CMD_READOOB;
1117                 case NAND_CMD_ERASE1:
1118                         return STATE_CMD_ERASE1;
1119                 case NAND_CMD_STATUS:
1120                         return STATE_CMD_STATUS;
1121                 case NAND_CMD_SEQIN:
1122                         return STATE_CMD_SEQIN;
1123                 case NAND_CMD_READID:
1124                         return STATE_CMD_READID;
1125                 case NAND_CMD_ERASE2:
1126                         return STATE_CMD_ERASE2;
1127                 case NAND_CMD_RESET:
1128                         return STATE_CMD_RESET;
1129                 case NAND_CMD_RNDOUT:
1130                         return STATE_CMD_RNDOUT;
1131                 case NAND_CMD_RNDOUTSTART:
1132                         return STATE_CMD_RNDOUTSTART;
1133         }
1134
1135         NS_ERR("get_state_by_command: unknown command, BUG\n");
1136         return 0;
1137 }
1138
1139 /*
1140  * Move an address byte to the correspondent internal register.
1141  */
1142 static inline void ns_accept_addr_byte(struct nandsim *ns, u_char bt)
1143 {
1144         uint byte = (uint)bt;
1145
1146         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1147                 ns->regs.column |= (byte << 8 * ns->regs.count);
1148         else {
1149                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1150                                                 ns->geom.pgaddrbytes +
1151                                                 ns->geom.secaddrbytes));
1152         }
1153
1154         return;
1155 }
1156
1157 /*
1158  * Switch to STATE_READY state.
1159  */
1160 static inline void ns_switch_to_ready_state(struct nandsim *ns, u_char status)
1161 {
1162         NS_DBG("switch_to_ready_state: switch to %s state\n",
1163                ns_get_state_name(STATE_READY));
1164
1165         ns->state       = STATE_READY;
1166         ns->nxstate     = STATE_UNKNOWN;
1167         ns->op          = NULL;
1168         ns->npstates    = 0;
1169         ns->stateidx    = 0;
1170         ns->regs.num    = 0;
1171         ns->regs.count  = 0;
1172         ns->regs.off    = 0;
1173         ns->regs.row    = 0;
1174         ns->regs.column = 0;
1175         ns->regs.status = status;
1176 }
1177
1178 /*
1179  * If the operation isn't known yet, try to find it in the global array
1180  * of supported operations.
1181  *
1182  * Operation can be unknown because of the following.
1183  *   1. New command was accepted and this is the first call to find the
1184  *      correspondent states chain. In this case ns->npstates = 0;
1185  *   2. There are several operations which begin with the same command(s)
1186  *      (for example program from the second half and read from the
1187  *      second half operations both begin with the READ1 command). In this
1188  *      case the ns->pstates[] array contains previous states.
1189  *
1190  * Thus, the function tries to find operation containing the following
1191  * states (if the 'flag' parameter is 0):
1192  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1193  *
1194  * If (one and only one) matching operation is found, it is accepted (
1195  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1196  * zeroed).
1197  *
1198  * If there are several matches, the current state is pushed to the
1199  * ns->pstates.
1200  *
1201  * The operation can be unknown only while commands are input to the chip.
1202  * As soon as address command is accepted, the operation must be known.
1203  * In such situation the function is called with 'flag' != 0, and the
1204  * operation is searched using the following pattern:
1205  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1206  *
1207  * It is supposed that this pattern must either match one operation or
1208  * none. There can't be ambiguity in that case.
1209  *
1210  * If no matches found, the function does the following:
1211  *   1. if there are saved states present, try to ignore them and search
1212  *      again only using the last command. If nothing was found, switch
1213  *      to the STATE_READY state.
1214  *   2. if there are no saved states, switch to the STATE_READY state.
1215  *
1216  * RETURNS: -2 - no matched operations found.
1217  *          -1 - several matches.
1218  *           0 - operation is found.
1219  */
1220 static int ns_find_operation(struct nandsim *ns, uint32_t flag)
1221 {
1222         int opsfound = 0;
1223         int i, j, idx = 0;
1224
1225         for (i = 0; i < NS_OPER_NUM; i++) {
1226
1227                 int found = 1;
1228
1229                 if (!(ns->options & ops[i].reqopts))
1230                         /* Ignore operations we can't perform */
1231                         continue;
1232
1233                 if (flag) {
1234                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1235                                 continue;
1236                 } else {
1237                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1238                                 continue;
1239                 }
1240
1241                 for (j = 0; j < ns->npstates; j++)
1242                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1243                                 && (ns->options & ops[idx].reqopts)) {
1244                                 found = 0;
1245                                 break;
1246                         }
1247
1248                 if (found) {
1249                         idx = i;
1250                         opsfound += 1;
1251                 }
1252         }
1253
1254         if (opsfound == 1) {
1255                 /* Exact match */
1256                 ns->op = &ops[idx].states[0];
1257                 if (flag) {
1258                         /*
1259                          * In this case the find_operation function was
1260                          * called when address has just began input. But it isn't
1261                          * yet fully input and the current state must
1262                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1263                          * state must be the next state (ns->nxstate).
1264                          */
1265                         ns->stateidx = ns->npstates - 1;
1266                 } else {
1267                         ns->stateidx = ns->npstates;
1268                 }
1269                 ns->npstates = 0;
1270                 ns->state = ns->op[ns->stateidx];
1271                 ns->nxstate = ns->op[ns->stateidx + 1];
1272                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1273                        idx, ns_get_state_name(ns->state),
1274                        ns_get_state_name(ns->nxstate));
1275                 return 0;
1276         }
1277
1278         if (opsfound == 0) {
1279                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1280                 if (ns->npstates != 0) {
1281                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1282                                ns_get_state_name(ns->state));
1283                         ns->npstates = 0;
1284                         return ns_find_operation(ns, 0);
1285
1286                 }
1287                 NS_DBG("find_operation: no operations found\n");
1288                 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1289                 return -2;
1290         }
1291
1292         if (flag) {
1293                 /* This shouldn't happen */
1294                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1295                 return -2;
1296         }
1297
1298         NS_DBG("find_operation: there is still ambiguity\n");
1299
1300         ns->pstates[ns->npstates++] = ns->state;
1301
1302         return -1;
1303 }
1304
1305 static void ns_put_pages(struct nandsim *ns)
1306 {
1307         int i;
1308
1309         for (i = 0; i < ns->held_cnt; i++)
1310                 put_page(ns->held_pages[i]);
1311 }
1312
1313 /* Get page cache pages in advance to provide NOFS memory allocation */
1314 static int ns_get_pages(struct nandsim *ns, struct file *file, size_t count,
1315                         loff_t pos)
1316 {
1317         pgoff_t index, start_index, end_index;
1318         struct page *page;
1319         struct address_space *mapping = file->f_mapping;
1320
1321         start_index = pos >> PAGE_SHIFT;
1322         end_index = (pos + count - 1) >> PAGE_SHIFT;
1323         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1324                 return -EINVAL;
1325         ns->held_cnt = 0;
1326         for (index = start_index; index <= end_index; index++) {
1327                 page = find_get_page(mapping, index);
1328                 if (page == NULL) {
1329                         page = find_or_create_page(mapping, index, GFP_NOFS);
1330                         if (page == NULL) {
1331                                 write_inode_now(mapping->host, 1);
1332                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1333                         }
1334                         if (page == NULL) {
1335                                 ns_put_pages(ns);
1336                                 return -ENOMEM;
1337                         }
1338                         unlock_page(page);
1339                 }
1340                 ns->held_pages[ns->held_cnt++] = page;
1341         }
1342         return 0;
1343 }
1344
1345 static ssize_t ns_read_file(struct nandsim *ns, struct file *file, void *buf,
1346                             size_t count, loff_t pos)
1347 {
1348         ssize_t tx;
1349         int err;
1350         unsigned int noreclaim_flag;
1351
1352         err = ns_get_pages(ns, file, count, pos);
1353         if (err)
1354                 return err;
1355         noreclaim_flag = memalloc_noreclaim_save();
1356         tx = kernel_read(file, buf, count, &pos);
1357         memalloc_noreclaim_restore(noreclaim_flag);
1358         ns_put_pages(ns);
1359         return tx;
1360 }
1361
1362 static ssize_t ns_write_file(struct nandsim *ns, struct file *file, void *buf,
1363                              size_t count, loff_t pos)
1364 {
1365         ssize_t tx;
1366         int err;
1367         unsigned int noreclaim_flag;
1368
1369         err = ns_get_pages(ns, file, count, pos);
1370         if (err)
1371                 return err;
1372         noreclaim_flag = memalloc_noreclaim_save();
1373         tx = kernel_write(file, buf, count, &pos);
1374         memalloc_noreclaim_restore(noreclaim_flag);
1375         ns_put_pages(ns);
1376         return tx;
1377 }
1378
1379 /*
1380  * Returns a pointer to the current page.
1381  */
1382 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1383 {
1384         return &(ns->pages[ns->regs.row]);
1385 }
1386
1387 /*
1388  * Retuns a pointer to the current byte, within the current page.
1389  */
1390 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1391 {
1392         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1393 }
1394
1395 static int ns_do_read_error(struct nandsim *ns, int num)
1396 {
1397         unsigned int page_no = ns->regs.row;
1398
1399         if (ns_read_error(page_no)) {
1400                 prandom_bytes(ns->buf.byte, num);
1401                 NS_WARN("simulating read error in page %u\n", page_no);
1402                 return 1;
1403         }
1404         return 0;
1405 }
1406
1407 static void ns_do_bit_flips(struct nandsim *ns, int num)
1408 {
1409         if (bitflips && prandom_u32() < (1 << 22)) {
1410                 int flips = 1;
1411                 if (bitflips > 1)
1412                         flips = (prandom_u32() % (int) bitflips) + 1;
1413                 while (flips--) {
1414                         int pos = prandom_u32() % (num * 8);
1415                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1416                         NS_WARN("read_page: flipping bit %d in page %d "
1417                                 "reading from %d ecc: corrected=%u failed=%u\n",
1418                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1419                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1420                 }
1421         }
1422 }
1423
1424 /*
1425  * Fill the NAND buffer with data read from the specified page.
1426  */
1427 static void ns_read_page(struct nandsim *ns, int num)
1428 {
1429         union ns_mem *mypage;
1430
1431         if (ns->cfile) {
1432                 if (!test_bit(ns->regs.row, ns->pages_written)) {
1433                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1434                         memset(ns->buf.byte, 0xFF, num);
1435                 } else {
1436                         loff_t pos;
1437                         ssize_t tx;
1438
1439                         NS_DBG("read_page: page %d written, reading from %d\n",
1440                                 ns->regs.row, ns->regs.column + ns->regs.off);
1441                         if (ns_do_read_error(ns, num))
1442                                 return;
1443                         pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1444                         tx = ns_read_file(ns, ns->cfile, ns->buf.byte, num,
1445                                           pos);
1446                         if (tx != num) {
1447                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1448                                 return;
1449                         }
1450                         ns_do_bit_flips(ns, num);
1451                 }
1452                 return;
1453         }
1454
1455         mypage = NS_GET_PAGE(ns);
1456         if (mypage->byte == NULL) {
1457                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1458                 memset(ns->buf.byte, 0xFF, num);
1459         } else {
1460                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1461                         ns->regs.row, ns->regs.column + ns->regs.off);
1462                 if (ns_do_read_error(ns, num))
1463                         return;
1464                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1465                 ns_do_bit_flips(ns, num);
1466         }
1467 }
1468
1469 /*
1470  * Erase all pages in the specified sector.
1471  */
1472 static void ns_erase_sector(struct nandsim *ns)
1473 {
1474         union ns_mem *mypage;
1475         int i;
1476
1477         if (ns->cfile) {
1478                 for (i = 0; i < ns->geom.pgsec; i++)
1479                         if (__test_and_clear_bit(ns->regs.row + i,
1480                                                  ns->pages_written)) {
1481                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1482                         }
1483                 return;
1484         }
1485
1486         mypage = NS_GET_PAGE(ns);
1487         for (i = 0; i < ns->geom.pgsec; i++) {
1488                 if (mypage->byte != NULL) {
1489                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1490                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1491                         mypage->byte = NULL;
1492                 }
1493                 mypage++;
1494         }
1495 }
1496
1497 /*
1498  * Program the specified page with the contents from the NAND buffer.
1499  */
1500 static int ns_prog_page(struct nandsim *ns, int num)
1501 {
1502         int i;
1503         union ns_mem *mypage;
1504         u_char *pg_off;
1505
1506         if (ns->cfile) {
1507                 loff_t off;
1508                 ssize_t tx;
1509                 int all;
1510
1511                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1512                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1513                 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1514                 if (!test_bit(ns->regs.row, ns->pages_written)) {
1515                         all = 1;
1516                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1517                 } else {
1518                         all = 0;
1519                         tx = ns_read_file(ns, ns->cfile, pg_off, num, off);
1520                         if (tx != num) {
1521                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1522                                 return -1;
1523                         }
1524                 }
1525                 for (i = 0; i < num; i++)
1526                         pg_off[i] &= ns->buf.byte[i];
1527                 if (all) {
1528                         loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1529                         tx = ns_write_file(ns, ns->cfile, ns->file_buf,
1530                                            ns->geom.pgszoob, pos);
1531                         if (tx != ns->geom.pgszoob) {
1532                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1533                                 return -1;
1534                         }
1535                         __set_bit(ns->regs.row, ns->pages_written);
1536                 } else {
1537                         tx = ns_write_file(ns, ns->cfile, pg_off, num, off);
1538                         if (tx != num) {
1539                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1540                                 return -1;
1541                         }
1542                 }
1543                 return 0;
1544         }
1545
1546         mypage = NS_GET_PAGE(ns);
1547         if (mypage->byte == NULL) {
1548                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1549                 /*
1550                  * We allocate memory with GFP_NOFS because a flash FS may
1551                  * utilize this. If it is holding an FS lock, then gets here,
1552                  * then kernel memory alloc runs writeback which goes to the FS
1553                  * again and deadlocks. This was seen in practice.
1554                  */
1555                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1556                 if (mypage->byte == NULL) {
1557                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1558                         return -1;
1559                 }
1560                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1561         }
1562
1563         pg_off = NS_PAGE_BYTE_OFF(ns);
1564         for (i = 0; i < num; i++)
1565                 pg_off[i] &= ns->buf.byte[i];
1566
1567         return 0;
1568 }
1569
1570 /*
1571  * If state has any action bit, perform this action.
1572  *
1573  * RETURNS: 0 if success, -1 if error.
1574  */
1575 static int ns_do_state_action(struct nandsim *ns, uint32_t action)
1576 {
1577         int num;
1578         int busdiv = ns->busw == 8 ? 1 : 2;
1579         unsigned int erase_block_no, page_no;
1580
1581         action &= ACTION_MASK;
1582
1583         /* Check that page address input is correct */
1584         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1585                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1586                 return -1;
1587         }
1588
1589         switch (action) {
1590
1591         case ACTION_CPY:
1592                 /*
1593                  * Copy page data to the internal buffer.
1594                  */
1595
1596                 /* Column shouldn't be very large */
1597                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1598                         NS_ERR("do_state_action: column number is too large\n");
1599                         break;
1600                 }
1601                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1602                 ns_read_page(ns, num);
1603
1604                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1605                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1606
1607                 if (ns->regs.off == 0)
1608                         NS_LOG("read page %d\n", ns->regs.row);
1609                 else if (ns->regs.off < ns->geom.pgsz)
1610                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1611                 else
1612                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1613
1614                 NS_UDELAY(access_delay);
1615                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1616
1617                 break;
1618
1619         case ACTION_SECERASE:
1620                 /*
1621                  * Erase sector.
1622                  */
1623
1624                 if (ns->lines.wp) {
1625                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1626                         return -1;
1627                 }
1628
1629                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1630                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1631                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1632                         return -1;
1633                 }
1634
1635                 ns->regs.row = (ns->regs.row <<
1636                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1637                 ns->regs.column = 0;
1638
1639                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1640
1641                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1642                                 ns->regs.row, NS_RAW_OFFSET(ns));
1643                 NS_LOG("erase sector %u\n", erase_block_no);
1644
1645                 ns_erase_sector(ns);
1646
1647                 NS_MDELAY(erase_delay);
1648
1649                 if (erase_block_wear)
1650                         ns_update_wear(erase_block_no);
1651
1652                 if (ns_erase_error(erase_block_no)) {
1653                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1654                         return -1;
1655                 }
1656
1657                 break;
1658
1659         case ACTION_PRGPAGE:
1660                 /*
1661                  * Program page - move internal buffer data to the page.
1662                  */
1663
1664                 if (ns->lines.wp) {
1665                         NS_WARN("do_state_action: device is write-protected, programm\n");
1666                         return -1;
1667                 }
1668
1669                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1670                 if (num != ns->regs.count) {
1671                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1672                                         ns->regs.count, num);
1673                         return -1;
1674                 }
1675
1676                 if (ns_prog_page(ns, num) == -1)
1677                         return -1;
1678
1679                 page_no = ns->regs.row;
1680
1681                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1682                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1683                 NS_LOG("programm page %d\n", ns->regs.row);
1684
1685                 NS_UDELAY(programm_delay);
1686                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1687
1688                 if (ns_write_error(page_no)) {
1689                         NS_WARN("simulating write failure in page %u\n", page_no);
1690                         return -1;
1691                 }
1692
1693                 break;
1694
1695         case ACTION_ZEROOFF:
1696                 NS_DBG("do_state_action: set internal offset to 0\n");
1697                 ns->regs.off = 0;
1698                 break;
1699
1700         case ACTION_HALFOFF:
1701                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1702                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1703                                 "byte page size 8x chips\n");
1704                         return -1;
1705                 }
1706                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1707                 ns->regs.off = ns->geom.pgsz/2;
1708                 break;
1709
1710         case ACTION_OOBOFF:
1711                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1712                 ns->regs.off = ns->geom.pgsz;
1713                 break;
1714
1715         default:
1716                 NS_DBG("do_state_action: BUG! unknown action\n");
1717         }
1718
1719         return 0;
1720 }
1721
1722 /*
1723  * Switch simulator's state.
1724  */
1725 static void ns_switch_state(struct nandsim *ns)
1726 {
1727         if (ns->op) {
1728                 /*
1729                  * The current operation have already been identified.
1730                  * Just follow the states chain.
1731                  */
1732
1733                 ns->stateidx += 1;
1734                 ns->state = ns->nxstate;
1735                 ns->nxstate = ns->op[ns->stateidx + 1];
1736
1737                 NS_DBG("switch_state: operation is known, switch to the next state, "
1738                         "state: %s, nxstate: %s\n",
1739                        ns_get_state_name(ns->state),
1740                        ns_get_state_name(ns->nxstate));
1741
1742                 /* See, whether we need to do some action */
1743                 if ((ns->state & ACTION_MASK) &&
1744                     ns_do_state_action(ns, ns->state) < 0) {
1745                         ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1746                         return;
1747                 }
1748
1749         } else {
1750                 /*
1751                  * We don't yet know which operation we perform.
1752                  * Try to identify it.
1753                  */
1754
1755                 /*
1756                  *  The only event causing the switch_state function to
1757                  *  be called with yet unknown operation is new command.
1758                  */
1759                 ns->state = ns_get_state_by_command(ns->regs.command);
1760
1761                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1762
1763                 if (ns_find_operation(ns, 0))
1764                         return;
1765
1766                 if ((ns->state & ACTION_MASK) &&
1767                     ns_do_state_action(ns, ns->state) < 0) {
1768                         ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1769                         return;
1770                 }
1771         }
1772
1773         /* For 16x devices column means the page offset in words */
1774         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1775                 NS_DBG("switch_state: double the column number for 16x device\n");
1776                 ns->regs.column <<= 1;
1777         }
1778
1779         if (NS_STATE(ns->nxstate) == STATE_READY) {
1780                 /*
1781                  * The current state is the last. Return to STATE_READY
1782                  */
1783
1784                 u_char status = NS_STATUS_OK(ns);
1785
1786                 /* In case of data states, see if all bytes were input/output */
1787                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1788                         && ns->regs.count != ns->regs.num) {
1789                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1790                                         ns->regs.num - ns->regs.count);
1791                         status = NS_STATUS_FAILED(ns);
1792                 }
1793
1794                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1795
1796                 ns_switch_to_ready_state(ns, status);
1797
1798                 return;
1799         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1800                 /*
1801                  * If the next state is data input/output, switch to it now
1802                  */
1803
1804                 ns->state      = ns->nxstate;
1805                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1806                 ns->regs.num   = ns->regs.count = 0;
1807
1808                 NS_DBG("switch_state: the next state is data I/O, switch, "
1809                         "state: %s, nxstate: %s\n",
1810                        ns_get_state_name(ns->state),
1811                        ns_get_state_name(ns->nxstate));
1812
1813                 /*
1814                  * Set the internal register to the count of bytes which
1815                  * are expected to be input or output
1816                  */
1817                 switch (NS_STATE(ns->state)) {
1818                         case STATE_DATAIN:
1819                         case STATE_DATAOUT:
1820                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1821                                 break;
1822
1823                         case STATE_DATAOUT_ID:
1824                                 ns->regs.num = ns->geom.idbytes;
1825                                 break;
1826
1827                         case STATE_DATAOUT_STATUS:
1828                                 ns->regs.count = ns->regs.num = 0;
1829                                 break;
1830
1831                         default:
1832                                 NS_ERR("switch_state: BUG! unknown data state\n");
1833                 }
1834
1835         } else if (ns->nxstate & STATE_ADDR_MASK) {
1836                 /*
1837                  * If the next state is address input, set the internal
1838                  * register to the number of expected address bytes
1839                  */
1840
1841                 ns->regs.count = 0;
1842
1843                 switch (NS_STATE(ns->nxstate)) {
1844                         case STATE_ADDR_PAGE:
1845                                 ns->regs.num = ns->geom.pgaddrbytes;
1846
1847                                 break;
1848                         case STATE_ADDR_SEC:
1849                                 ns->regs.num = ns->geom.secaddrbytes;
1850                                 break;
1851
1852                         case STATE_ADDR_ZERO:
1853                                 ns->regs.num = 1;
1854                                 break;
1855
1856                         case STATE_ADDR_COLUMN:
1857                                 /* Column address is always 2 bytes */
1858                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1859                                 break;
1860
1861                         default:
1862                                 NS_ERR("switch_state: BUG! unknown address state\n");
1863                 }
1864         } else {
1865                 /*
1866                  * Just reset internal counters.
1867                  */
1868
1869                 ns->regs.num = 0;
1870                 ns->regs.count = 0;
1871         }
1872 }
1873
1874 static u_char ns_nand_read_byte(struct nand_chip *chip)
1875 {
1876         struct nandsim *ns = nand_get_controller_data(chip);
1877         u_char outb = 0x00;
1878
1879         /* Sanity and correctness checks */
1880         if (!ns->lines.ce) {
1881                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1882                 return outb;
1883         }
1884         if (ns->lines.ale || ns->lines.cle) {
1885                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1886                 return outb;
1887         }
1888         if (!(ns->state & STATE_DATAOUT_MASK)) {
1889                 NS_WARN("read_byte: unexpected data output cycle, state is %s return %#x\n",
1890                         ns_get_state_name(ns->state), (uint)outb);
1891                 return outb;
1892         }
1893
1894         /* Status register may be read as many times as it is wanted */
1895         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1896                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1897                 return ns->regs.status;
1898         }
1899
1900         /* Check if there is any data in the internal buffer which may be read */
1901         if (ns->regs.count == ns->regs.num) {
1902                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1903                 return outb;
1904         }
1905
1906         switch (NS_STATE(ns->state)) {
1907                 case STATE_DATAOUT:
1908                         if (ns->busw == 8) {
1909                                 outb = ns->buf.byte[ns->regs.count];
1910                                 ns->regs.count += 1;
1911                         } else {
1912                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1913                                 ns->regs.count += 2;
1914                         }
1915                         break;
1916                 case STATE_DATAOUT_ID:
1917                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1918                         outb = ns->ids[ns->regs.count];
1919                         ns->regs.count += 1;
1920                         break;
1921                 default:
1922                         BUG();
1923         }
1924
1925         if (ns->regs.count == ns->regs.num) {
1926                 NS_DBG("read_byte: all bytes were read\n");
1927
1928                 if (NS_STATE(ns->nxstate) == STATE_READY)
1929                         ns_switch_state(ns);
1930         }
1931
1932         return outb;
1933 }
1934
1935 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte)
1936 {
1937         struct nandsim *ns = nand_get_controller_data(chip);
1938
1939         /* Sanity and correctness checks */
1940         if (!ns->lines.ce) {
1941                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1942                 return;
1943         }
1944         if (ns->lines.ale && ns->lines.cle) {
1945                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1946                 return;
1947         }
1948
1949         if (ns->lines.cle == 1) {
1950                 /*
1951                  * The byte written is a command.
1952                  */
1953
1954                 if (byte == NAND_CMD_RESET) {
1955                         NS_LOG("reset chip\n");
1956                         ns_switch_to_ready_state(ns, NS_STATUS_OK(ns));
1957                         return;
1958                 }
1959
1960                 /* Check that the command byte is correct */
1961                 if (ns_check_command(byte)) {
1962                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1963                         return;
1964                 }
1965
1966                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1967                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1968                         int row = ns->regs.row;
1969
1970                         ns_switch_state(ns);
1971                         if (byte == NAND_CMD_RNDOUT)
1972                                 ns->regs.row = row;
1973                 }
1974
1975                 /* Check if chip is expecting command */
1976                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1977                         /* Do not warn if only 2 id bytes are read */
1978                         if (!(ns->regs.command == NAND_CMD_READID &&
1979                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1980                                 /*
1981                                  * We are in situation when something else (not command)
1982                                  * was expected but command was input. In this case ignore
1983                                  * previous command(s)/state(s) and accept the last one.
1984                                  */
1985                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, ignore previous states\n",
1986                                         (uint)byte,
1987                                         ns_get_state_name(ns->nxstate));
1988                         }
1989                         ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1990                 }
1991
1992                 NS_DBG("command byte corresponding to %s state accepted\n",
1993                         ns_get_state_name(ns_get_state_by_command(byte)));
1994                 ns->regs.command = byte;
1995                 ns_switch_state(ns);
1996
1997         } else if (ns->lines.ale == 1) {
1998                 /*
1999                  * The byte written is an address.
2000                  */
2001
2002                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2003
2004                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2005
2006                         if (ns_find_operation(ns, 1) < 0)
2007                                 return;
2008
2009                         if ((ns->state & ACTION_MASK) &&
2010                             ns_do_state_action(ns, ns->state) < 0) {
2011                                 ns_switch_to_ready_state(ns,
2012                                                          NS_STATUS_FAILED(ns));
2013                                 return;
2014                         }
2015
2016                         ns->regs.count = 0;
2017                         switch (NS_STATE(ns->nxstate)) {
2018                                 case STATE_ADDR_PAGE:
2019                                         ns->regs.num = ns->geom.pgaddrbytes;
2020                                         break;
2021                                 case STATE_ADDR_SEC:
2022                                         ns->regs.num = ns->geom.secaddrbytes;
2023                                         break;
2024                                 case STATE_ADDR_ZERO:
2025                                         ns->regs.num = 1;
2026                                         break;
2027                                 default:
2028                                         BUG();
2029                         }
2030                 }
2031
2032                 /* Check that chip is expecting address */
2033                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2034                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, switch to STATE_READY\n",
2035                                (uint)byte, ns_get_state_name(ns->nxstate));
2036                         ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2037                         return;
2038                 }
2039
2040                 /* Check if this is expected byte */
2041                 if (ns->regs.count == ns->regs.num) {
2042                         NS_ERR("write_byte: no more address bytes expected\n");
2043                         ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2044                         return;
2045                 }
2046
2047                 ns_accept_addr_byte(ns, byte);
2048
2049                 ns->regs.count += 1;
2050
2051                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2052                                 (uint)byte, ns->regs.count, ns->regs.num);
2053
2054                 if (ns->regs.count == ns->regs.num) {
2055                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2056                         ns_switch_state(ns);
2057                 }
2058
2059         } else {
2060                 /*
2061                  * The byte written is an input data.
2062                  */
2063
2064                 /* Check that chip is expecting data input */
2065                 if (!(ns->state & STATE_DATAIN_MASK)) {
2066                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, switch to %s\n",
2067                                (uint)byte, ns_get_state_name(ns->state),
2068                                ns_get_state_name(STATE_READY));
2069                         ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2070                         return;
2071                 }
2072
2073                 /* Check if this is expected byte */
2074                 if (ns->regs.count == ns->regs.num) {
2075                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2076                                         ns->regs.num);
2077                         return;
2078                 }
2079
2080                 if (ns->busw == 8) {
2081                         ns->buf.byte[ns->regs.count] = byte;
2082                         ns->regs.count += 1;
2083                 } else {
2084                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2085                         ns->regs.count += 2;
2086                 }
2087         }
2088
2089         return;
2090 }
2091
2092 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf,
2093                               int len)
2094 {
2095         struct nandsim *ns = nand_get_controller_data(chip);
2096
2097         /* Check that chip is expecting data input */
2098         if (!(ns->state & STATE_DATAIN_MASK)) {
2099                 NS_ERR("write_buf: data input isn't expected, state is %s, switch to STATE_READY\n",
2100                        ns_get_state_name(ns->state));
2101                 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2102                 return;
2103         }
2104
2105         /* Check if these are expected bytes */
2106         if (ns->regs.count + len > ns->regs.num) {
2107                 NS_ERR("write_buf: too many input bytes\n");
2108                 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2109                 return;
2110         }
2111
2112         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2113         ns->regs.count += len;
2114
2115         if (ns->regs.count == ns->regs.num) {
2116                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2117         }
2118 }
2119
2120 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
2121 {
2122         struct nandsim *ns = nand_get_controller_data(chip);
2123
2124         /* Sanity and correctness checks */
2125         if (!ns->lines.ce) {
2126                 NS_ERR("read_buf: chip is disabled\n");
2127                 return;
2128         }
2129         if (ns->lines.ale || ns->lines.cle) {
2130                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2131                 return;
2132         }
2133         if (!(ns->state & STATE_DATAOUT_MASK)) {
2134                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2135                         ns_get_state_name(ns->state));
2136                 return;
2137         }
2138
2139         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2140                 int i;
2141
2142                 for (i = 0; i < len; i++)
2143                         buf[i] = ns_nand_read_byte(chip);
2144
2145                 return;
2146         }
2147
2148         /* Check if these are expected bytes */
2149         if (ns->regs.count + len > ns->regs.num) {
2150                 NS_ERR("read_buf: too many bytes to read\n");
2151                 ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2152                 return;
2153         }
2154
2155         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2156         ns->regs.count += len;
2157
2158         if (ns->regs.count == ns->regs.num) {
2159                 if (NS_STATE(ns->nxstate) == STATE_READY)
2160                         ns_switch_state(ns);
2161         }
2162
2163         return;
2164 }
2165
2166 static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op,
2167                       bool check_only)
2168 {
2169         int i;
2170         unsigned int op_id;
2171         const struct nand_op_instr *instr = NULL;
2172         struct nandsim *ns = nand_get_controller_data(chip);
2173
2174         if (check_only)
2175                 return 0;
2176
2177         ns->lines.ce = 1;
2178
2179         for (op_id = 0; op_id < op->ninstrs; op_id++) {
2180                 instr = &op->instrs[op_id];
2181                 ns->lines.cle = 0;
2182                 ns->lines.ale = 0;
2183
2184                 switch (instr->type) {
2185                 case NAND_OP_CMD_INSTR:
2186                         ns->lines.cle = 1;
2187                         ns_nand_write_byte(chip, instr->ctx.cmd.opcode);
2188                         break;
2189                 case NAND_OP_ADDR_INSTR:
2190                         ns->lines.ale = 1;
2191                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
2192                                 ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]);
2193                         break;
2194                 case NAND_OP_DATA_IN_INSTR:
2195                         ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len);
2196                         break;
2197                 case NAND_OP_DATA_OUT_INSTR:
2198                         ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len);
2199                         break;
2200                 case NAND_OP_WAITRDY_INSTR:
2201                         /* we are always ready */
2202                         break;
2203                 }
2204         }
2205
2206         return 0;
2207 }
2208
2209 static int ns_attach_chip(struct nand_chip *chip)
2210 {
2211         unsigned int eccsteps, eccbytes;
2212
2213         chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
2214         chip->ecc.algo = bch ? NAND_ECC_ALGO_BCH : NAND_ECC_ALGO_HAMMING;
2215
2216         if (!bch)
2217                 return 0;
2218
2219         if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
2220                 NS_ERR("BCH ECC support is disabled\n");
2221                 return -EINVAL;
2222         }
2223
2224         /* Use 512-byte ecc blocks */
2225         eccsteps = nsmtd->writesize / 512;
2226         eccbytes = ((bch * 13) + 7) / 8;
2227
2228         /* Do not bother supporting small page devices */
2229         if (nsmtd->oobsize < 64 || !eccsteps) {
2230                 NS_ERR("BCH not available on small page devices\n");
2231                 return -EINVAL;
2232         }
2233
2234         if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) {
2235                 NS_ERR("Invalid BCH value %u\n", bch);
2236                 return -EINVAL;
2237         }
2238
2239         chip->ecc.size = 512;
2240         chip->ecc.strength = bch;
2241         chip->ecc.bytes = eccbytes;
2242
2243         NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2244
2245         return 0;
2246 }
2247
2248 static const struct nand_controller_ops ns_controller_ops = {
2249         .attach_chip = ns_attach_chip,
2250         .exec_op = ns_exec_op,
2251 };
2252
2253 /*
2254  * Module initialization function
2255  */
2256 static int __init ns_init_module(void)
2257 {
2258         struct list_head *pos, *n;
2259         struct nand_chip *chip;
2260         struct nandsim *ns;
2261         int ret;
2262
2263         if (bus_width != 8 && bus_width != 16) {
2264                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2265                 return -EINVAL;
2266         }
2267
2268         ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL);
2269         if (!ns) {
2270                 NS_ERR("unable to allocate core structures.\n");
2271                 return -ENOMEM;
2272         }
2273         chip        = &ns->chip;
2274         nsmtd       = nand_to_mtd(chip);
2275         nand_set_controller_data(chip, (void *)ns);
2276
2277         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2278         /* and 'badblocks' parameters to work */
2279         chip->options   |= NAND_SKIP_BBTSCAN;
2280
2281         switch (bbt) {
2282         case 2:
2283                 chip->bbt_options |= NAND_BBT_NO_OOB;
2284                 fallthrough;
2285         case 1:
2286                 chip->bbt_options |= NAND_BBT_USE_FLASH;
2287                 fallthrough;
2288         case 0:
2289                 break;
2290         default:
2291                 NS_ERR("bbt has to be 0..2\n");
2292                 ret = -EINVAL;
2293                 goto free_ns_struct;
2294         }
2295         /*
2296          * Perform minimum nandsim structure initialization to handle
2297          * the initial ID read command correctly
2298          */
2299         if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2300                 ns->geom.idbytes = 8;
2301         else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2302                 ns->geom.idbytes = 6;
2303         else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2304                 ns->geom.idbytes = 4;
2305         else
2306                 ns->geom.idbytes = 2;
2307         ns->regs.status = NS_STATUS_OK(ns);
2308         ns->nxstate = STATE_UNKNOWN;
2309         ns->options |= OPT_PAGE512; /* temporary value */
2310         memcpy(ns->ids, id_bytes, sizeof(ns->ids));
2311         if (bus_width == 16) {
2312                 ns->busw = 16;
2313                 chip->options |= NAND_BUSWIDTH_16;
2314         }
2315
2316         nsmtd->owner = THIS_MODULE;
2317
2318         ret = ns_parse_weakblocks();
2319         if (ret)
2320                 goto free_ns_struct;
2321
2322         ret = ns_parse_weakpages();
2323         if (ret)
2324                 goto free_wb_list;
2325
2326         ret = ns_parse_gravepages();
2327         if (ret)
2328                 goto free_wp_list;
2329
2330         nand_controller_init(&ns->base);
2331         ns->base.ops = &ns_controller_ops;
2332         chip->controller = &ns->base;
2333
2334         ret = nand_scan(chip, 1);
2335         if (ret) {
2336                 NS_ERR("Could not scan NAND Simulator device\n");
2337                 goto free_gp_list;
2338         }
2339
2340         if (overridesize) {
2341                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2342                 struct nand_memory_organization *memorg;
2343                 u64 targetsize;
2344
2345                 memorg = nanddev_get_memorg(&chip->base);
2346
2347                 if (new_size >> overridesize != nsmtd->erasesize) {
2348                         NS_ERR("overridesize is too big\n");
2349                         ret = -EINVAL;
2350                         goto cleanup_nand;
2351                 }
2352
2353                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2354                 nsmtd->size = new_size;
2355                 memorg->eraseblocks_per_lun = 1 << overridesize;
2356                 targetsize = nanddev_target_size(&chip->base);
2357                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2358                 chip->pagemask = (targetsize >> chip->page_shift) - 1;
2359         }
2360
2361         ret = ns_setup_wear_reporting(nsmtd);
2362         if (ret)
2363                 goto cleanup_nand;
2364
2365         ret = ns_init(nsmtd);
2366         if (ret)
2367                 goto free_ebw;
2368
2369         ret = nand_create_bbt(chip);
2370         if (ret)
2371                 goto free_ns_object;
2372
2373         ret = ns_parse_badblocks(ns, nsmtd);
2374         if (ret)
2375                 goto free_ns_object;
2376
2377         /* Register NAND partitions */
2378         ret = mtd_device_register(nsmtd, &ns->partitions[0], ns->nbparts);
2379         if (ret)
2380                 goto free_ns_object;
2381
2382         ret = ns_debugfs_create(ns);
2383         if (ret)
2384                 goto unregister_mtd;
2385
2386         return 0;
2387
2388 unregister_mtd:
2389         WARN_ON(mtd_device_unregister(nsmtd));
2390 free_ns_object:
2391         ns_free(ns);
2392 free_ebw:
2393         kfree(erase_block_wear);
2394 cleanup_nand:
2395         nand_cleanup(chip);
2396 free_gp_list:
2397         list_for_each_safe(pos, n, &grave_pages) {
2398                 list_del(pos);
2399                 kfree(list_entry(pos, struct grave_page, list));
2400         }
2401 free_wp_list:
2402         list_for_each_safe(pos, n, &weak_pages) {
2403                 list_del(pos);
2404                 kfree(list_entry(pos, struct weak_page, list));
2405         }
2406 free_wb_list:
2407         list_for_each_safe(pos, n, &weak_blocks) {
2408                 list_del(pos);
2409                 kfree(list_entry(pos, struct weak_block, list));
2410         }
2411 free_ns_struct:
2412         kfree(ns);
2413
2414         return ret;
2415 }
2416
2417 module_init(ns_init_module);
2418
2419 /*
2420  * Module clean-up function
2421  */
2422 static void __exit ns_cleanup_module(void)
2423 {
2424         struct nand_chip *chip = mtd_to_nand(nsmtd);
2425         struct nandsim *ns = nand_get_controller_data(chip);
2426         struct list_head *pos, *n;
2427
2428         ns_debugfs_remove(ns);
2429         WARN_ON(mtd_device_unregister(nsmtd));
2430         ns_free(ns);
2431         kfree(erase_block_wear);
2432         nand_cleanup(chip);
2433
2434         list_for_each_safe(pos, n, &grave_pages) {
2435                 list_del(pos);
2436                 kfree(list_entry(pos, struct grave_page, list));
2437         }
2438
2439         list_for_each_safe(pos, n, &weak_pages) {
2440                 list_del(pos);
2441                 kfree(list_entry(pos, struct weak_page, list));
2442         }
2443
2444         list_for_each_safe(pos, n, &weak_blocks) {
2445                 list_del(pos);
2446                 kfree(list_entry(pos, struct weak_block, list));
2447         }
2448
2449         kfree(ns);
2450 }
2451
2452 module_exit(ns_cleanup_module);
2453
2454 MODULE_LICENSE ("GPL");
2455 MODULE_AUTHOR ("Artem B. Bityuckiy");
2456 MODULE_DESCRIPTION ("The NAND flash simulator");