Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / nand_legacy.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
4  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
5  *
6  *  Credits:
7  *      David Woodhouse for adding multichip support
8  *
9  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
10  *      rework for 2K page size chips
11  *
12  * This file contains all legacy helpers/code that should be removed
13  * at some point.
14  */
15
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/nmi.h>
19
20 #include "internals.h"
21
22 /**
23  * nand_read_byte - [DEFAULT] read one byte from the chip
24  * @chip: NAND chip object
25  *
26  * Default read function for 8bit buswidth
27  */
28 static uint8_t nand_read_byte(struct nand_chip *chip)
29 {
30         return readb(chip->legacy.IO_ADDR_R);
31 }
32
33 /**
34  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
35  * @chip: NAND chip object
36  *
37  * Default read function for 16bit buswidth with endianness conversion.
38  *
39  */
40 static uint8_t nand_read_byte16(struct nand_chip *chip)
41 {
42         return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R));
43 }
44
45 /**
46  * nand_select_chip - [DEFAULT] control CE line
47  * @chip: NAND chip object
48  * @chipnr: chipnumber to select, -1 for deselect
49  *
50  * Default select function for 1 chip devices.
51  */
52 static void nand_select_chip(struct nand_chip *chip, int chipnr)
53 {
54         switch (chipnr) {
55         case -1:
56                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
57                                       0 | NAND_CTRL_CHANGE);
58                 break;
59         case 0:
60                 break;
61
62         default:
63                 BUG();
64         }
65 }
66
67 /**
68  * nand_write_byte - [DEFAULT] write single byte to chip
69  * @chip: NAND chip object
70  * @byte: value to write
71  *
72  * Default function to write a byte to I/O[7:0]
73  */
74 static void nand_write_byte(struct nand_chip *chip, uint8_t byte)
75 {
76         chip->legacy.write_buf(chip, &byte, 1);
77 }
78
79 /**
80  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
81  * @chip: NAND chip object
82  * @byte: value to write
83  *
84  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
85  */
86 static void nand_write_byte16(struct nand_chip *chip, uint8_t byte)
87 {
88         uint16_t word = byte;
89
90         /*
91          * It's not entirely clear what should happen to I/O[15:8] when writing
92          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
93          *
94          *    When the host supports a 16-bit bus width, only data is
95          *    transferred at the 16-bit width. All address and command line
96          *    transfers shall use only the lower 8-bits of the data bus. During
97          *    command transfers, the host may place any value on the upper
98          *    8-bits of the data bus. During address transfers, the host shall
99          *    set the upper 8-bits of the data bus to 00h.
100          *
101          * One user of the write_byte callback is nand_set_features. The
102          * four parameters are specified to be written to I/O[7:0], but this is
103          * neither an address nor a command transfer. Let's assume a 0 on the
104          * upper I/O lines is OK.
105          */
106         chip->legacy.write_buf(chip, (uint8_t *)&word, 2);
107 }
108
109 /**
110  * nand_write_buf - [DEFAULT] write buffer to chip
111  * @chip: NAND chip object
112  * @buf: data buffer
113  * @len: number of bytes to write
114  *
115  * Default write function for 8bit buswidth.
116  */
117 static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
118 {
119         iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len);
120 }
121
122 /**
123  * nand_read_buf - [DEFAULT] read chip data into buffer
124  * @chip: NAND chip object
125  * @buf: buffer to store date
126  * @len: number of bytes to read
127  *
128  * Default read function for 8bit buswidth.
129  */
130 static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
131 {
132         ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
133 }
134
135 /**
136  * nand_write_buf16 - [DEFAULT] write buffer to chip
137  * @chip: NAND chip object
138  * @buf: data buffer
139  * @len: number of bytes to write
140  *
141  * Default write function for 16bit buswidth.
142  */
143 static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf,
144                              int len)
145 {
146         u16 *p = (u16 *) buf;
147
148         iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1);
149 }
150
151 /**
152  * nand_read_buf16 - [DEFAULT] read chip data into buffer
153  * @chip: NAND chip object
154  * @buf: buffer to store date
155  * @len: number of bytes to read
156  *
157  * Default read function for 16bit buswidth.
158  */
159 static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len)
160 {
161         u16 *p = (u16 *) buf;
162
163         ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1);
164 }
165
166 /**
167  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
168  * @chip: NAND chip object
169  * @timeo: Timeout
170  *
171  * Helper function for nand_wait_ready used when needing to wait in interrupt
172  * context.
173  */
174 static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo)
175 {
176         int i;
177
178         /* Wait for the device to get ready */
179         for (i = 0; i < timeo; i++) {
180                 if (chip->legacy.dev_ready(chip))
181                         break;
182                 touch_softlockup_watchdog();
183                 mdelay(1);
184         }
185 }
186
187 /**
188  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
189  * @chip: NAND chip object
190  *
191  * Wait for the ready pin after a command, and warn if a timeout occurs.
192  */
193 void nand_wait_ready(struct nand_chip *chip)
194 {
195         struct mtd_info *mtd = nand_to_mtd(chip);
196         unsigned long timeo = 400;
197
198         if (mtd->oops_panic_write)
199                 return panic_nand_wait_ready(chip, timeo);
200
201         /* Wait until command is processed or timeout occurs */
202         timeo = jiffies + msecs_to_jiffies(timeo);
203         do {
204                 if (chip->legacy.dev_ready(chip))
205                         return;
206                 cond_resched();
207         } while (time_before(jiffies, timeo));
208
209         if (!chip->legacy.dev_ready(chip))
210                 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
211 }
212 EXPORT_SYMBOL_GPL(nand_wait_ready);
213
214 /**
215  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
216  * @chip: NAND chip object
217  * @timeo: Timeout in ms
218  *
219  * Wait for status ready (i.e. command done) or timeout.
220  */
221 static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo)
222 {
223         int ret;
224
225         timeo = jiffies + msecs_to_jiffies(timeo);
226         do {
227                 u8 status;
228
229                 ret = nand_read_data_op(chip, &status, sizeof(status), true,
230                                         false);
231                 if (ret)
232                         return;
233
234                 if (status & NAND_STATUS_READY)
235                         break;
236                 touch_softlockup_watchdog();
237         } while (time_before(jiffies, timeo));
238 };
239
240 /**
241  * nand_command - [DEFAULT] Send command to NAND device
242  * @chip: NAND chip object
243  * @command: the command to be sent
244  * @column: the column address for this command, -1 if none
245  * @page_addr: the page address for this command, -1 if none
246  *
247  * Send command to NAND device. This function is used for small page devices
248  * (512 Bytes per page).
249  */
250 static void nand_command(struct nand_chip *chip, unsigned int command,
251                          int column, int page_addr)
252 {
253         struct mtd_info *mtd = nand_to_mtd(chip);
254         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
255
256         /* Write out the command to the device */
257         if (command == NAND_CMD_SEQIN) {
258                 int readcmd;
259
260                 if (column >= mtd->writesize) {
261                         /* OOB area */
262                         column -= mtd->writesize;
263                         readcmd = NAND_CMD_READOOB;
264                 } else if (column < 256) {
265                         /* First 256 bytes --> READ0 */
266                         readcmd = NAND_CMD_READ0;
267                 } else {
268                         column -= 256;
269                         readcmd = NAND_CMD_READ1;
270                 }
271                 chip->legacy.cmd_ctrl(chip, readcmd, ctrl);
272                 ctrl &= ~NAND_CTRL_CHANGE;
273         }
274         if (command != NAND_CMD_NONE)
275                 chip->legacy.cmd_ctrl(chip, command, ctrl);
276
277         /* Address cycle, when necessary */
278         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
279         /* Serially input address */
280         if (column != -1) {
281                 /* Adjust columns for 16 bit buswidth */
282                 if (chip->options & NAND_BUSWIDTH_16 &&
283                                 !nand_opcode_8bits(command))
284                         column >>= 1;
285                 chip->legacy.cmd_ctrl(chip, column, ctrl);
286                 ctrl &= ~NAND_CTRL_CHANGE;
287         }
288         if (page_addr != -1) {
289                 chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
290                 ctrl &= ~NAND_CTRL_CHANGE;
291                 chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl);
292                 if (chip->options & NAND_ROW_ADDR_3)
293                         chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl);
294         }
295         chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
296                               NAND_NCE | NAND_CTRL_CHANGE);
297
298         /*
299          * Program and erase have their own busy handlers status and sequential
300          * in needs no delay
301          */
302         switch (command) {
303
304         case NAND_CMD_NONE:
305         case NAND_CMD_PAGEPROG:
306         case NAND_CMD_ERASE1:
307         case NAND_CMD_ERASE2:
308         case NAND_CMD_SEQIN:
309         case NAND_CMD_STATUS:
310         case NAND_CMD_READID:
311         case NAND_CMD_SET_FEATURES:
312                 return;
313
314         case NAND_CMD_RESET:
315                 if (chip->legacy.dev_ready)
316                         break;
317                 udelay(chip->legacy.chip_delay);
318                 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
319                                       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
320                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
321                                       NAND_NCE | NAND_CTRL_CHANGE);
322                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
323                 nand_wait_status_ready(chip, 250);
324                 return;
325
326                 /* This applies to read commands */
327         case NAND_CMD_READ0:
328                 /*
329                  * READ0 is sometimes used to exit GET STATUS mode. When this
330                  * is the case no address cycles are requested, and we can use
331                  * this information to detect that we should not wait for the
332                  * device to be ready.
333                  */
334                 if (column == -1 && page_addr == -1)
335                         return;
336                 fallthrough;
337         default:
338                 /*
339                  * If we don't have access to the busy pin, we apply the given
340                  * command delay
341                  */
342                 if (!chip->legacy.dev_ready) {
343                         udelay(chip->legacy.chip_delay);
344                         return;
345                 }
346         }
347         /*
348          * Apply this short delay always to ensure that we do wait tWB in
349          * any case on any machine.
350          */
351         ndelay(100);
352
353         nand_wait_ready(chip);
354 }
355
356 static void nand_ccs_delay(struct nand_chip *chip)
357 {
358         const struct nand_sdr_timings *sdr =
359                 nand_get_sdr_timings(nand_get_interface_config(chip));
360
361         /*
362          * The controller already takes care of waiting for tCCS when the RNDIN
363          * or RNDOUT command is sent, return directly.
364          */
365         if (!(chip->options & NAND_WAIT_TCCS))
366                 return;
367
368         /*
369          * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
370          * (which should be safe for all NANDs).
371          */
372         if (nand_controller_can_setup_interface(chip))
373                 ndelay(sdr->tCCS_min / 1000);
374         else
375                 ndelay(500);
376 }
377
378 /**
379  * nand_command_lp - [DEFAULT] Send command to NAND large page device
380  * @chip: NAND chip object
381  * @command: the command to be sent
382  * @column: the column address for this command, -1 if none
383  * @page_addr: the page address for this command, -1 if none
384  *
385  * Send command to NAND device. This is the version for the new large page
386  * devices. We don't have the separate regions as we have in the small page
387  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
388  */
389 static void nand_command_lp(struct nand_chip *chip, unsigned int command,
390                             int column, int page_addr)
391 {
392         struct mtd_info *mtd = nand_to_mtd(chip);
393
394         /* Emulate NAND_CMD_READOOB */
395         if (command == NAND_CMD_READOOB) {
396                 column += mtd->writesize;
397                 command = NAND_CMD_READ0;
398         }
399
400         /* Command latch cycle */
401         if (command != NAND_CMD_NONE)
402                 chip->legacy.cmd_ctrl(chip, command,
403                                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
404
405         if (column != -1 || page_addr != -1) {
406                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
407
408                 /* Serially input address */
409                 if (column != -1) {
410                         /* Adjust columns for 16 bit buswidth */
411                         if (chip->options & NAND_BUSWIDTH_16 &&
412                                         !nand_opcode_8bits(command))
413                                 column >>= 1;
414                         chip->legacy.cmd_ctrl(chip, column, ctrl);
415                         ctrl &= ~NAND_CTRL_CHANGE;
416
417                         /* Only output a single addr cycle for 8bits opcodes. */
418                         if (!nand_opcode_8bits(command))
419                                 chip->legacy.cmd_ctrl(chip, column >> 8, ctrl);
420                 }
421                 if (page_addr != -1) {
422                         chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
423                         chip->legacy.cmd_ctrl(chip, page_addr >> 8,
424                                              NAND_NCE | NAND_ALE);
425                         if (chip->options & NAND_ROW_ADDR_3)
426                                 chip->legacy.cmd_ctrl(chip, page_addr >> 16,
427                                                       NAND_NCE | NAND_ALE);
428                 }
429         }
430         chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
431                               NAND_NCE | NAND_CTRL_CHANGE);
432
433         /*
434          * Program and erase have their own busy handlers status, sequential
435          * in and status need no delay.
436          */
437         switch (command) {
438
439         case NAND_CMD_NONE:
440         case NAND_CMD_CACHEDPROG:
441         case NAND_CMD_PAGEPROG:
442         case NAND_CMD_ERASE1:
443         case NAND_CMD_ERASE2:
444         case NAND_CMD_SEQIN:
445         case NAND_CMD_STATUS:
446         case NAND_CMD_READID:
447         case NAND_CMD_SET_FEATURES:
448                 return;
449
450         case NAND_CMD_RNDIN:
451                 nand_ccs_delay(chip);
452                 return;
453
454         case NAND_CMD_RESET:
455                 if (chip->legacy.dev_ready)
456                         break;
457                 udelay(chip->legacy.chip_delay);
458                 chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
459                                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
460                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
461                                       NAND_NCE | NAND_CTRL_CHANGE);
462                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
463                 nand_wait_status_ready(chip, 250);
464                 return;
465
466         case NAND_CMD_RNDOUT:
467                 /* No ready / busy check necessary */
468                 chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART,
469                                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
470                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
471                                       NAND_NCE | NAND_CTRL_CHANGE);
472
473                 nand_ccs_delay(chip);
474                 return;
475
476         case NAND_CMD_READ0:
477                 /*
478                  * READ0 is sometimes used to exit GET STATUS mode. When this
479                  * is the case no address cycles are requested, and we can use
480                  * this information to detect that READSTART should not be
481                  * issued.
482                  */
483                 if (column == -1 && page_addr == -1)
484                         return;
485
486                 chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART,
487                                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
488                 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
489                                       NAND_NCE | NAND_CTRL_CHANGE);
490                 fallthrough;    /* This applies to read commands */
491         default:
492                 /*
493                  * If we don't have access to the busy pin, we apply the given
494                  * command delay.
495                  */
496                 if (!chip->legacy.dev_ready) {
497                         udelay(chip->legacy.chip_delay);
498                         return;
499                 }
500         }
501
502         /*
503          * Apply this short delay always to ensure that we do wait tWB in
504          * any case on any machine.
505          */
506         ndelay(100);
507
508         nand_wait_ready(chip);
509 }
510
511 /**
512  * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
513  * @chip: nand chip info structure
514  * @addr: feature address.
515  * @subfeature_param: the subfeature parameters, a four bytes array.
516  *
517  * Should be used by NAND controller drivers that do not support the SET/GET
518  * FEATURES operations.
519  */
520 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
521                                   u8 *subfeature_param)
522 {
523         return -ENOTSUPP;
524 }
525 EXPORT_SYMBOL(nand_get_set_features_notsupp);
526
527 /**
528  * nand_wait - [DEFAULT] wait until the command is done
529  * @chip: NAND chip structure
530  *
531  * Wait for command done. This applies to erase and program only.
532  */
533 static int nand_wait(struct nand_chip *chip)
534 {
535         struct mtd_info *mtd = nand_to_mtd(chip);
536         unsigned long timeo = 400;
537         u8 status;
538         int ret;
539
540         /*
541          * Apply this short delay always to ensure that we do wait tWB in any
542          * case on any machine.
543          */
544         ndelay(100);
545
546         ret = nand_status_op(chip, NULL);
547         if (ret)
548                 return ret;
549
550         if (mtd->oops_panic_write) {
551                 panic_nand_wait(chip, timeo);
552         } else {
553                 timeo = jiffies + msecs_to_jiffies(timeo);
554                 do {
555                         if (chip->legacy.dev_ready) {
556                                 if (chip->legacy.dev_ready(chip))
557                                         break;
558                         } else {
559                                 ret = nand_read_data_op(chip, &status,
560                                                         sizeof(status), true,
561                                                         false);
562                                 if (ret)
563                                         return ret;
564
565                                 if (status & NAND_STATUS_READY)
566                                         break;
567                         }
568                         cond_resched();
569                 } while (time_before(jiffies, timeo));
570         }
571
572         ret = nand_read_data_op(chip, &status, sizeof(status), true, false);
573         if (ret)
574                 return ret;
575
576         /* This can happen if in case of timeout or buggy dev_ready */
577         WARN_ON(!(status & NAND_STATUS_READY));
578         return status;
579 }
580
581 void nand_legacy_set_defaults(struct nand_chip *chip)
582 {
583         unsigned int busw = chip->options & NAND_BUSWIDTH_16;
584
585         if (nand_has_exec_op(chip))
586                 return;
587
588         /* check for proper chip_delay setup, set 20us if not */
589         if (!chip->legacy.chip_delay)
590                 chip->legacy.chip_delay = 20;
591
592         /* check, if a user supplied command function given */
593         if (!chip->legacy.cmdfunc)
594                 chip->legacy.cmdfunc = nand_command;
595
596         /* check, if a user supplied wait function given */
597         if (chip->legacy.waitfunc == NULL)
598                 chip->legacy.waitfunc = nand_wait;
599
600         if (!chip->legacy.select_chip)
601                 chip->legacy.select_chip = nand_select_chip;
602
603         /* If called twice, pointers that depend on busw may need to be reset */
604         if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte)
605                 chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte;
606         if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf)
607                 chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf;
608         if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte)
609                 chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte;
610         if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf)
611                 chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf;
612 }
613
614 void nand_legacy_adjust_cmdfunc(struct nand_chip *chip)
615 {
616         struct mtd_info *mtd = nand_to_mtd(chip);
617
618         /* Do not replace user supplied command function! */
619         if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command)
620                 chip->legacy.cmdfunc = nand_command_lp;
621 }
622
623 int nand_legacy_check_hooks(struct nand_chip *chip)
624 {
625         /*
626          * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is
627          * not populated.
628          */
629         if (nand_has_exec_op(chip))
630                 return 0;
631
632         /*
633          * Default functions assigned for ->legacy.cmdfunc() and
634          * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be
635          *  populated.
636          */
637         if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) &&
638             !chip->legacy.cmd_ctrl) {
639                 pr_err("->legacy.cmd_ctrl() should be provided\n");
640                 return -EINVAL;
641         }
642
643         return 0;
644 }