Merge tag 'clone3-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner...
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / nand_base.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *      Additional technical information is available on
8  *      http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *      David Woodhouse for adding multichip support
15  *
16  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *      rework for 2K page size chips
18  *
19  *  TODO:
20  *      Enable cached programming for 2k page size chips
21  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *      if we have HW ECC support.
23  *      BBT table is not serialized, has to be fixed
24  */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand_ecc.h>
38 #include <linux/mtd/nand_bch.h>
39 #include <linux/interrupt.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/of.h>
44 #include <linux/gpio/consumer.h>
45
46 #include "internals.h"
47
48 /* Define default oob placement schemes for large and small page devices */
49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
50                                  struct mtd_oob_region *oobregion)
51 {
52         struct nand_chip *chip = mtd_to_nand(mtd);
53         struct nand_ecc_ctrl *ecc = &chip->ecc;
54
55         if (section > 1)
56                 return -ERANGE;
57
58         if (!section) {
59                 oobregion->offset = 0;
60                 if (mtd->oobsize == 16)
61                         oobregion->length = 4;
62                 else
63                         oobregion->length = 3;
64         } else {
65                 if (mtd->oobsize == 8)
66                         return -ERANGE;
67
68                 oobregion->offset = 6;
69                 oobregion->length = ecc->total - 4;
70         }
71
72         return 0;
73 }
74
75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
76                                   struct mtd_oob_region *oobregion)
77 {
78         if (section > 1)
79                 return -ERANGE;
80
81         if (mtd->oobsize == 16) {
82                 if (section)
83                         return -ERANGE;
84
85                 oobregion->length = 8;
86                 oobregion->offset = 8;
87         } else {
88                 oobregion->length = 2;
89                 if (!section)
90                         oobregion->offset = 3;
91                 else
92                         oobregion->offset = 6;
93         }
94
95         return 0;
96 }
97
98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
99         .ecc = nand_ooblayout_ecc_sp,
100         .free = nand_ooblayout_free_sp,
101 };
102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
103
104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
105                                  struct mtd_oob_region *oobregion)
106 {
107         struct nand_chip *chip = mtd_to_nand(mtd);
108         struct nand_ecc_ctrl *ecc = &chip->ecc;
109
110         if (section || !ecc->total)
111                 return -ERANGE;
112
113         oobregion->length = ecc->total;
114         oobregion->offset = mtd->oobsize - oobregion->length;
115
116         return 0;
117 }
118
119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
120                                   struct mtd_oob_region *oobregion)
121 {
122         struct nand_chip *chip = mtd_to_nand(mtd);
123         struct nand_ecc_ctrl *ecc = &chip->ecc;
124
125         if (section)
126                 return -ERANGE;
127
128         oobregion->length = mtd->oobsize - ecc->total - 2;
129         oobregion->offset = 2;
130
131         return 0;
132 }
133
134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
135         .ecc = nand_ooblayout_ecc_lp,
136         .free = nand_ooblayout_free_lp,
137 };
138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
139
140 /*
141  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
142  * are placed at a fixed offset.
143  */
144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
145                                          struct mtd_oob_region *oobregion)
146 {
147         struct nand_chip *chip = mtd_to_nand(mtd);
148         struct nand_ecc_ctrl *ecc = &chip->ecc;
149
150         if (section)
151                 return -ERANGE;
152
153         switch (mtd->oobsize) {
154         case 64:
155                 oobregion->offset = 40;
156                 break;
157         case 128:
158                 oobregion->offset = 80;
159                 break;
160         default:
161                 return -EINVAL;
162         }
163
164         oobregion->length = ecc->total;
165         if (oobregion->offset + oobregion->length > mtd->oobsize)
166                 return -ERANGE;
167
168         return 0;
169 }
170
171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
172                                           struct mtd_oob_region *oobregion)
173 {
174         struct nand_chip *chip = mtd_to_nand(mtd);
175         struct nand_ecc_ctrl *ecc = &chip->ecc;
176         int ecc_offset = 0;
177
178         if (section < 0 || section > 1)
179                 return -ERANGE;
180
181         switch (mtd->oobsize) {
182         case 64:
183                 ecc_offset = 40;
184                 break;
185         case 128:
186                 ecc_offset = 80;
187                 break;
188         default:
189                 return -EINVAL;
190         }
191
192         if (section == 0) {
193                 oobregion->offset = 2;
194                 oobregion->length = ecc_offset - 2;
195         } else {
196                 oobregion->offset = ecc_offset + ecc->total;
197                 oobregion->length = mtd->oobsize - oobregion->offset;
198         }
199
200         return 0;
201 }
202
203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
204         .ecc = nand_ooblayout_ecc_lp_hamming,
205         .free = nand_ooblayout_free_lp_hamming,
206 };
207
208 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
209 {
210         int ret = 0;
211
212         /* Start address must align on block boundary */
213         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
214                 pr_debug("%s: unaligned address\n", __func__);
215                 ret = -EINVAL;
216         }
217
218         /* Length must align on block boundary */
219         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
220                 pr_debug("%s: length not block aligned\n", __func__);
221                 ret = -EINVAL;
222         }
223
224         return ret;
225 }
226
227 /**
228  * nand_select_target() - Select a NAND target (A.K.A. die)
229  * @chip: NAND chip object
230  * @cs: the CS line to select. Note that this CS id is always from the chip
231  *      PoV, not the controller one
232  *
233  * Select a NAND target so that further operations executed on @chip go to the
234  * selected NAND target.
235  */
236 void nand_select_target(struct nand_chip *chip, unsigned int cs)
237 {
238         /*
239          * cs should always lie between 0 and nanddev_ntargets(), when that's
240          * not the case it's a bug and the caller should be fixed.
241          */
242         if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
243                 return;
244
245         chip->cur_cs = cs;
246
247         if (chip->legacy.select_chip)
248                 chip->legacy.select_chip(chip, cs);
249 }
250 EXPORT_SYMBOL_GPL(nand_select_target);
251
252 /**
253  * nand_deselect_target() - Deselect the currently selected target
254  * @chip: NAND chip object
255  *
256  * Deselect the currently selected NAND target. The result of operations
257  * executed on @chip after the target has been deselected is undefined.
258  */
259 void nand_deselect_target(struct nand_chip *chip)
260 {
261         if (chip->legacy.select_chip)
262                 chip->legacy.select_chip(chip, -1);
263
264         chip->cur_cs = -1;
265 }
266 EXPORT_SYMBOL_GPL(nand_deselect_target);
267
268 /**
269  * nand_release_device - [GENERIC] release chip
270  * @chip: NAND chip object
271  *
272  * Release chip lock and wake up anyone waiting on the device.
273  */
274 static void nand_release_device(struct nand_chip *chip)
275 {
276         /* Release the controller and the chip */
277         mutex_unlock(&chip->controller->lock);
278         mutex_unlock(&chip->lock);
279 }
280
281 /**
282  * nand_bbm_get_next_page - Get the next page for bad block markers
283  * @chip: NAND chip object
284  * @page: First page to start checking for bad block marker usage
285  *
286  * Returns an integer that corresponds to the page offset within a block, for
287  * a page that is used to store bad block markers. If no more pages are
288  * available, -EINVAL is returned.
289  */
290 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
291 {
292         struct mtd_info *mtd = nand_to_mtd(chip);
293         int last_page = ((mtd->erasesize - mtd->writesize) >>
294                          chip->page_shift) & chip->pagemask;
295
296         if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
297                 return 0;
298         else if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
299                 return 1;
300         else if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
301                 return last_page;
302
303         return -EINVAL;
304 }
305
306 /**
307  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
308  * @chip: NAND chip object
309  * @ofs: offset from device start
310  *
311  * Check, if the block is bad.
312  */
313 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
314 {
315         int first_page, page_offset;
316         int res;
317         u8 bad;
318
319         first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
320         page_offset = nand_bbm_get_next_page(chip, 0);
321
322         while (page_offset >= 0) {
323                 res = chip->ecc.read_oob(chip, first_page + page_offset);
324                 if (res < 0)
325                         return res;
326
327                 bad = chip->oob_poi[chip->badblockpos];
328
329                 if (likely(chip->badblockbits == 8))
330                         res = bad != 0xFF;
331                 else
332                         res = hweight8(bad) < chip->badblockbits;
333                 if (res)
334                         return res;
335
336                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
337         }
338
339         return 0;
340 }
341
342 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
343 {
344         if (chip->legacy.block_bad)
345                 return chip->legacy.block_bad(chip, ofs);
346
347         return nand_block_bad(chip, ofs);
348 }
349
350 /**
351  * nand_get_device - [GENERIC] Get chip for selected access
352  * @chip: NAND chip structure
353  *
354  * Lock the device and its controller for exclusive access
355  *
356  * Return: -EBUSY if the chip has been suspended, 0 otherwise
357  */
358 static int nand_get_device(struct nand_chip *chip)
359 {
360         mutex_lock(&chip->lock);
361         if (chip->suspended) {
362                 mutex_unlock(&chip->lock);
363                 return -EBUSY;
364         }
365         mutex_lock(&chip->controller->lock);
366
367         return 0;
368 }
369
370 /**
371  * nand_check_wp - [GENERIC] check if the chip is write protected
372  * @chip: NAND chip object
373  *
374  * Check, if the device is write protected. The function expects, that the
375  * device is already selected.
376  */
377 static int nand_check_wp(struct nand_chip *chip)
378 {
379         u8 status;
380         int ret;
381
382         /* Broken xD cards report WP despite being writable */
383         if (chip->options & NAND_BROKEN_XD)
384                 return 0;
385
386         /* Check the WP bit */
387         ret = nand_status_op(chip, &status);
388         if (ret)
389                 return ret;
390
391         return status & NAND_STATUS_WP ? 0 : 1;
392 }
393
394 /**
395  * nand_fill_oob - [INTERN] Transfer client buffer to oob
396  * @chip: NAND chip object
397  * @oob: oob data buffer
398  * @len: oob data write length
399  * @ops: oob ops structure
400  */
401 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
402                               struct mtd_oob_ops *ops)
403 {
404         struct mtd_info *mtd = nand_to_mtd(chip);
405         int ret;
406
407         /*
408          * Initialise to all 0xFF, to avoid the possibility of left over OOB
409          * data from a previous OOB read.
410          */
411         memset(chip->oob_poi, 0xff, mtd->oobsize);
412
413         switch (ops->mode) {
414
415         case MTD_OPS_PLACE_OOB:
416         case MTD_OPS_RAW:
417                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
418                 return oob + len;
419
420         case MTD_OPS_AUTO_OOB:
421                 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
422                                                   ops->ooboffs, len);
423                 BUG_ON(ret);
424                 return oob + len;
425
426         default:
427                 BUG();
428         }
429         return NULL;
430 }
431
432 /**
433  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
434  * @chip: NAND chip object
435  * @to: offset to write to
436  * @ops: oob operation description structure
437  *
438  * NAND write out-of-band.
439  */
440 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
441                              struct mtd_oob_ops *ops)
442 {
443         struct mtd_info *mtd = nand_to_mtd(chip);
444         int chipnr, page, status, len, ret;
445
446         pr_debug("%s: to = 0x%08x, len = %i\n",
447                          __func__, (unsigned int)to, (int)ops->ooblen);
448
449         len = mtd_oobavail(mtd, ops);
450
451         /* Do not allow write past end of page */
452         if ((ops->ooboffs + ops->ooblen) > len) {
453                 pr_debug("%s: attempt to write past end of page\n",
454                                 __func__);
455                 return -EINVAL;
456         }
457
458         chipnr = (int)(to >> chip->chip_shift);
459
460         /*
461          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
462          * of my DiskOnChip 2000 test units) will clear the whole data page too
463          * if we don't do this. I have no clue why, but I seem to have 'fixed'
464          * it in the doc2000 driver in August 1999.  dwmw2.
465          */
466         ret = nand_reset(chip, chipnr);
467         if (ret)
468                 return ret;
469
470         nand_select_target(chip, chipnr);
471
472         /* Shift to get page */
473         page = (int)(to >> chip->page_shift);
474
475         /* Check, if it is write protected */
476         if (nand_check_wp(chip)) {
477                 nand_deselect_target(chip);
478                 return -EROFS;
479         }
480
481         /* Invalidate the page cache, if we write to the cached page */
482         if (page == chip->pagecache.page)
483                 chip->pagecache.page = -1;
484
485         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
486
487         if (ops->mode == MTD_OPS_RAW)
488                 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
489         else
490                 status = chip->ecc.write_oob(chip, page & chip->pagemask);
491
492         nand_deselect_target(chip);
493
494         if (status)
495                 return status;
496
497         ops->oobretlen = ops->ooblen;
498
499         return 0;
500 }
501
502 /**
503  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
504  * @chip: NAND chip object
505  * @ofs: offset from device start
506  *
507  * This is the default implementation, which can be overridden by a hardware
508  * specific driver. It provides the details for writing a bad block marker to a
509  * block.
510  */
511 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
512 {
513         struct mtd_info *mtd = nand_to_mtd(chip);
514         struct mtd_oob_ops ops;
515         uint8_t buf[2] = { 0, 0 };
516         int ret = 0, res, page_offset;
517
518         memset(&ops, 0, sizeof(ops));
519         ops.oobbuf = buf;
520         ops.ooboffs = chip->badblockpos;
521         if (chip->options & NAND_BUSWIDTH_16) {
522                 ops.ooboffs &= ~0x01;
523                 ops.len = ops.ooblen = 2;
524         } else {
525                 ops.len = ops.ooblen = 1;
526         }
527         ops.mode = MTD_OPS_PLACE_OOB;
528
529         page_offset = nand_bbm_get_next_page(chip, 0);
530
531         while (page_offset >= 0) {
532                 res = nand_do_write_oob(chip,
533                                         ofs + (page_offset * mtd->writesize),
534                                         &ops);
535
536                 if (!ret)
537                         ret = res;
538
539                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
540         }
541
542         return ret;
543 }
544
545 /**
546  * nand_markbad_bbm - mark a block by updating the BBM
547  * @chip: NAND chip object
548  * @ofs: offset of the block to mark bad
549  */
550 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
551 {
552         if (chip->legacy.block_markbad)
553                 return chip->legacy.block_markbad(chip, ofs);
554
555         return nand_default_block_markbad(chip, ofs);
556 }
557
558 /**
559  * nand_block_markbad_lowlevel - mark a block bad
560  * @chip: NAND chip object
561  * @ofs: offset from device start
562  *
563  * This function performs the generic NAND bad block marking steps (i.e., bad
564  * block table(s) and/or marker(s)). We only allow the hardware driver to
565  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
566  *
567  * We try operations in the following order:
568  *
569  *  (1) erase the affected block, to allow OOB marker to be written cleanly
570  *  (2) write bad block marker to OOB area of affected block (unless flag
571  *      NAND_BBT_NO_OOB_BBM is present)
572  *  (3) update the BBT
573  *
574  * Note that we retain the first error encountered in (2) or (3), finish the
575  * procedures, and dump the error in the end.
576 */
577 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
578 {
579         struct mtd_info *mtd = nand_to_mtd(chip);
580         int res, ret = 0;
581
582         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
583                 struct erase_info einfo;
584
585                 /* Attempt erase before marking OOB */
586                 memset(&einfo, 0, sizeof(einfo));
587                 einfo.addr = ofs;
588                 einfo.len = 1ULL << chip->phys_erase_shift;
589                 nand_erase_nand(chip, &einfo, 0);
590
591                 /* Write bad block marker to OOB */
592                 ret = nand_get_device(chip);
593                 if (ret)
594                         return ret;
595
596                 ret = nand_markbad_bbm(chip, ofs);
597                 nand_release_device(chip);
598         }
599
600         /* Mark block bad in BBT */
601         if (chip->bbt) {
602                 res = nand_markbad_bbt(chip, ofs);
603                 if (!ret)
604                         ret = res;
605         }
606
607         if (!ret)
608                 mtd->ecc_stats.badblocks++;
609
610         return ret;
611 }
612
613 /**
614  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
615  * @mtd: MTD device structure
616  * @ofs: offset from device start
617  *
618  * Check if the block is marked as reserved.
619  */
620 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
621 {
622         struct nand_chip *chip = mtd_to_nand(mtd);
623
624         if (!chip->bbt)
625                 return 0;
626         /* Return info from the table */
627         return nand_isreserved_bbt(chip, ofs);
628 }
629
630 /**
631  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
632  * @chip: NAND chip object
633  * @ofs: offset from device start
634  * @allowbbt: 1, if its allowed to access the bbt area
635  *
636  * Check, if the block is bad. Either by reading the bad block table or
637  * calling of the scan function.
638  */
639 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
640 {
641         /* Return info from the table */
642         if (chip->bbt)
643                 return nand_isbad_bbt(chip, ofs, allowbbt);
644
645         return nand_isbad_bbm(chip, ofs);
646 }
647
648 /**
649  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
650  * @chip: NAND chip structure
651  * @timeout_ms: Timeout in ms
652  *
653  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
654  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
655  * returned.
656  *
657  * This helper is intended to be used when the controller does not have access
658  * to the NAND R/B pin.
659  *
660  * Be aware that calling this helper from an ->exec_op() implementation means
661  * ->exec_op() must be re-entrant.
662  *
663  * Return 0 if the NAND chip is ready, a negative error otherwise.
664  */
665 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
666 {
667         const struct nand_sdr_timings *timings;
668         u8 status = 0;
669         int ret;
670
671         if (!nand_has_exec_op(chip))
672                 return -ENOTSUPP;
673
674         /* Wait tWB before polling the STATUS reg. */
675         timings = nand_get_sdr_timings(&chip->data_interface);
676         ndelay(PSEC_TO_NSEC(timings->tWB_max));
677
678         ret = nand_status_op(chip, NULL);
679         if (ret)
680                 return ret;
681
682         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
683         do {
684                 ret = nand_read_data_op(chip, &status, sizeof(status), true);
685                 if (ret)
686                         break;
687
688                 if (status & NAND_STATUS_READY)
689                         break;
690
691                 /*
692                  * Typical lowest execution time for a tR on most NANDs is 10us,
693                  * use this as polling delay before doing something smarter (ie.
694                  * deriving a delay from the timeout value, timeout_ms/ratio).
695                  */
696                 udelay(10);
697         } while (time_before(jiffies, timeout_ms));
698
699         /*
700          * We have to exit READ_STATUS mode in order to read real data on the
701          * bus in case the WAITRDY instruction is preceding a DATA_IN
702          * instruction.
703          */
704         nand_exit_status_op(chip);
705
706         if (ret)
707                 return ret;
708
709         return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
710 };
711 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
712
713 /**
714  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
715  * @chip: NAND chip structure
716  * @gpiod: GPIO descriptor of R/B pin
717  * @timeout_ms: Timeout in ms
718  *
719  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
720  * whitin the specified timeout, -ETIMEDOUT is returned.
721  *
722  * This helper is intended to be used when the controller has access to the
723  * NAND R/B pin over GPIO.
724  *
725  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
726  */
727 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
728                       unsigned long timeout_ms)
729 {
730         /* Wait until R/B pin indicates chip is ready or timeout occurs */
731         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
732         do {
733                 if (gpiod_get_value_cansleep(gpiod))
734                         return 0;
735
736                 cond_resched();
737         } while (time_before(jiffies, timeout_ms));
738
739         return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
740 };
741 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
742
743 /**
744  * panic_nand_wait - [GENERIC] wait until the command is done
745  * @chip: NAND chip structure
746  * @timeo: timeout
747  *
748  * Wait for command done. This is a helper function for nand_wait used when
749  * we are in interrupt context. May happen when in panic and trying to write
750  * an oops through mtdoops.
751  */
752 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
753 {
754         int i;
755         for (i = 0; i < timeo; i++) {
756                 if (chip->legacy.dev_ready) {
757                         if (chip->legacy.dev_ready(chip))
758                                 break;
759                 } else {
760                         int ret;
761                         u8 status;
762
763                         ret = nand_read_data_op(chip, &status, sizeof(status),
764                                                 true);
765                         if (ret)
766                                 return;
767
768                         if (status & NAND_STATUS_READY)
769                                 break;
770                 }
771                 mdelay(1);
772         }
773 }
774
775 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
776 {
777         return (chip->parameters.supports_set_get_features &&
778                 test_bit(addr, chip->parameters.get_feature_list));
779 }
780
781 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
782 {
783         return (chip->parameters.supports_set_get_features &&
784                 test_bit(addr, chip->parameters.set_feature_list));
785 }
786
787 /**
788  * nand_reset_data_interface - Reset data interface and timings
789  * @chip: The NAND chip
790  * @chipnr: Internal die id
791  *
792  * Reset the Data interface and timings to ONFI mode 0.
793  *
794  * Returns 0 for success or negative error code otherwise.
795  */
796 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
797 {
798         int ret;
799
800         if (!nand_has_setup_data_iface(chip))
801                 return 0;
802
803         /*
804          * The ONFI specification says:
805          * "
806          * To transition from NV-DDR or NV-DDR2 to the SDR data
807          * interface, the host shall use the Reset (FFh) command
808          * using SDR timing mode 0. A device in any timing mode is
809          * required to recognize Reset (FFh) command issued in SDR
810          * timing mode 0.
811          * "
812          *
813          * Configure the data interface in SDR mode and set the
814          * timings to timing mode 0.
815          */
816
817         onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
818         ret = chip->controller->ops->setup_data_interface(chip, chipnr,
819                                                         &chip->data_interface);
820         if (ret)
821                 pr_err("Failed to configure data interface to SDR timing mode 0\n");
822
823         return ret;
824 }
825
826 /**
827  * nand_setup_data_interface - Setup the best data interface and timings
828  * @chip: The NAND chip
829  * @chipnr: Internal die id
830  *
831  * Find and configure the best data interface and NAND timings supported by
832  * the chip and the driver.
833  * First tries to retrieve supported timing modes from ONFI information,
834  * and if the NAND chip does not support ONFI, relies on the
835  * ->onfi_timing_mode_default specified in the nand_ids table.
836  *
837  * Returns 0 for success or negative error code otherwise.
838  */
839 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
840 {
841         u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
842                 chip->onfi_timing_mode_default,
843         };
844         int ret;
845
846         if (!nand_has_setup_data_iface(chip))
847                 return 0;
848
849         /* Change the mode on the chip side (if supported by the NAND chip) */
850         if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
851                 nand_select_target(chip, chipnr);
852                 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
853                                         tmode_param);
854                 nand_deselect_target(chip);
855                 if (ret)
856                         return ret;
857         }
858
859         /* Change the mode on the controller side */
860         ret = chip->controller->ops->setup_data_interface(chip, chipnr,
861                                                         &chip->data_interface);
862         if (ret)
863                 return ret;
864
865         /* Check the mode has been accepted by the chip, if supported */
866         if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
867                 return 0;
868
869         memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
870         nand_select_target(chip, chipnr);
871         ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
872                                 tmode_param);
873         nand_deselect_target(chip);
874         if (ret)
875                 goto err_reset_chip;
876
877         if (tmode_param[0] != chip->onfi_timing_mode_default) {
878                 pr_warn("timing mode %d not acknowledged by the NAND chip\n",
879                         chip->onfi_timing_mode_default);
880                 goto err_reset_chip;
881         }
882
883         return 0;
884
885 err_reset_chip:
886         /*
887          * Fallback to mode 0 if the chip explicitly did not ack the chosen
888          * timing mode.
889          */
890         nand_reset_data_interface(chip, chipnr);
891         nand_select_target(chip, chipnr);
892         nand_reset_op(chip);
893         nand_deselect_target(chip);
894
895         return ret;
896 }
897
898 /**
899  * nand_init_data_interface - find the best data interface and timings
900  * @chip: The NAND chip
901  *
902  * Find the best data interface and NAND timings supported by the chip
903  * and the driver.
904  * First tries to retrieve supported timing modes from ONFI information,
905  * and if the NAND chip does not support ONFI, relies on the
906  * ->onfi_timing_mode_default specified in the nand_ids table. After this
907  * function nand_chip->data_interface is initialized with the best timing mode
908  * available.
909  *
910  * Returns 0 for success or negative error code otherwise.
911  */
912 static int nand_init_data_interface(struct nand_chip *chip)
913 {
914         int modes, mode, ret;
915
916         if (!nand_has_setup_data_iface(chip))
917                 return 0;
918
919         /*
920          * First try to identify the best timings from ONFI parameters and
921          * if the NAND does not support ONFI, fallback to the default ONFI
922          * timing mode.
923          */
924         if (chip->parameters.onfi) {
925                 modes = chip->parameters.onfi->async_timing_mode;
926         } else {
927                 if (!chip->onfi_timing_mode_default)
928                         return 0;
929
930                 modes = GENMASK(chip->onfi_timing_mode_default, 0);
931         }
932
933         for (mode = fls(modes) - 1; mode >= 0; mode--) {
934                 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
935                 if (ret)
936                         continue;
937
938                 /*
939                  * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
940                  * controller supports the requested timings.
941                  */
942                 ret = chip->controller->ops->setup_data_interface(chip,
943                                                  NAND_DATA_IFACE_CHECK_ONLY,
944                                                  &chip->data_interface);
945                 if (!ret) {
946                         chip->onfi_timing_mode_default = mode;
947                         break;
948                 }
949         }
950
951         return 0;
952 }
953
954 /**
955  * nand_fill_column_cycles - fill the column cycles of an address
956  * @chip: The NAND chip
957  * @addrs: Array of address cycles to fill
958  * @offset_in_page: The offset in the page
959  *
960  * Fills the first or the first two bytes of the @addrs field depending
961  * on the NAND bus width and the page size.
962  *
963  * Returns the number of cycles needed to encode the column, or a negative
964  * error code in case one of the arguments is invalid.
965  */
966 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
967                                    unsigned int offset_in_page)
968 {
969         struct mtd_info *mtd = nand_to_mtd(chip);
970
971         /* Make sure the offset is less than the actual page size. */
972         if (offset_in_page > mtd->writesize + mtd->oobsize)
973                 return -EINVAL;
974
975         /*
976          * On small page NANDs, there's a dedicated command to access the OOB
977          * area, and the column address is relative to the start of the OOB
978          * area, not the start of the page. Asjust the address accordingly.
979          */
980         if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
981                 offset_in_page -= mtd->writesize;
982
983         /*
984          * The offset in page is expressed in bytes, if the NAND bus is 16-bit
985          * wide, then it must be divided by 2.
986          */
987         if (chip->options & NAND_BUSWIDTH_16) {
988                 if (WARN_ON(offset_in_page % 2))
989                         return -EINVAL;
990
991                 offset_in_page /= 2;
992         }
993
994         addrs[0] = offset_in_page;
995
996         /*
997          * Small page NANDs use 1 cycle for the columns, while large page NANDs
998          * need 2
999          */
1000         if (mtd->writesize <= 512)
1001                 return 1;
1002
1003         addrs[1] = offset_in_page >> 8;
1004
1005         return 2;
1006 }
1007
1008 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1009                                      unsigned int offset_in_page, void *buf,
1010                                      unsigned int len)
1011 {
1012         struct mtd_info *mtd = nand_to_mtd(chip);
1013         const struct nand_sdr_timings *sdr =
1014                 nand_get_sdr_timings(&chip->data_interface);
1015         u8 addrs[4];
1016         struct nand_op_instr instrs[] = {
1017                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1018                 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1019                 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1020                                  PSEC_TO_NSEC(sdr->tRR_min)),
1021                 NAND_OP_DATA_IN(len, buf, 0),
1022         };
1023         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1024         int ret;
1025
1026         /* Drop the DATA_IN instruction if len is set to 0. */
1027         if (!len)
1028                 op.ninstrs--;
1029
1030         if (offset_in_page >= mtd->writesize)
1031                 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1032         else if (offset_in_page >= 256 &&
1033                  !(chip->options & NAND_BUSWIDTH_16))
1034                 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1035
1036         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1037         if (ret < 0)
1038                 return ret;
1039
1040         addrs[1] = page;
1041         addrs[2] = page >> 8;
1042
1043         if (chip->options & NAND_ROW_ADDR_3) {
1044                 addrs[3] = page >> 16;
1045                 instrs[1].ctx.addr.naddrs++;
1046         }
1047
1048         return nand_exec_op(chip, &op);
1049 }
1050
1051 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1052                                      unsigned int offset_in_page, void *buf,
1053                                      unsigned int len)
1054 {
1055         const struct nand_sdr_timings *sdr =
1056                 nand_get_sdr_timings(&chip->data_interface);
1057         u8 addrs[5];
1058         struct nand_op_instr instrs[] = {
1059                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1060                 NAND_OP_ADDR(4, addrs, 0),
1061                 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1062                 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1063                                  PSEC_TO_NSEC(sdr->tRR_min)),
1064                 NAND_OP_DATA_IN(len, buf, 0),
1065         };
1066         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1067         int ret;
1068
1069         /* Drop the DATA_IN instruction if len is set to 0. */
1070         if (!len)
1071                 op.ninstrs--;
1072
1073         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1074         if (ret < 0)
1075                 return ret;
1076
1077         addrs[2] = page;
1078         addrs[3] = page >> 8;
1079
1080         if (chip->options & NAND_ROW_ADDR_3) {
1081                 addrs[4] = page >> 16;
1082                 instrs[1].ctx.addr.naddrs++;
1083         }
1084
1085         return nand_exec_op(chip, &op);
1086 }
1087
1088 /**
1089  * nand_read_page_op - Do a READ PAGE operation
1090  * @chip: The NAND chip
1091  * @page: page to read
1092  * @offset_in_page: offset within the page
1093  * @buf: buffer used to store the data
1094  * @len: length of the buffer
1095  *
1096  * This function issues a READ PAGE operation.
1097  * This function does not select/unselect the CS line.
1098  *
1099  * Returns 0 on success, a negative error code otherwise.
1100  */
1101 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1102                       unsigned int offset_in_page, void *buf, unsigned int len)
1103 {
1104         struct mtd_info *mtd = nand_to_mtd(chip);
1105
1106         if (len && !buf)
1107                 return -EINVAL;
1108
1109         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1110                 return -EINVAL;
1111
1112         if (nand_has_exec_op(chip)) {
1113                 if (mtd->writesize > 512)
1114                         return nand_lp_exec_read_page_op(chip, page,
1115                                                          offset_in_page, buf,
1116                                                          len);
1117
1118                 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1119                                                  buf, len);
1120         }
1121
1122         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1123         if (len)
1124                 chip->legacy.read_buf(chip, buf, len);
1125
1126         return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(nand_read_page_op);
1129
1130 /**
1131  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1132  * @chip: The NAND chip
1133  * @page: parameter page to read
1134  * @buf: buffer used to store the data
1135  * @len: length of the buffer
1136  *
1137  * This function issues a READ PARAMETER PAGE operation.
1138  * This function does not select/unselect the CS line.
1139  *
1140  * Returns 0 on success, a negative error code otherwise.
1141  */
1142 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1143                             unsigned int len)
1144 {
1145         unsigned int i;
1146         u8 *p = buf;
1147
1148         if (len && !buf)
1149                 return -EINVAL;
1150
1151         if (nand_has_exec_op(chip)) {
1152                 const struct nand_sdr_timings *sdr =
1153                         nand_get_sdr_timings(&chip->data_interface);
1154                 struct nand_op_instr instrs[] = {
1155                         NAND_OP_CMD(NAND_CMD_PARAM, 0),
1156                         NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1157                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1158                                          PSEC_TO_NSEC(sdr->tRR_min)),
1159                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1160                 };
1161                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1162
1163                 /* Drop the DATA_IN instruction if len is set to 0. */
1164                 if (!len)
1165                         op.ninstrs--;
1166
1167                 return nand_exec_op(chip, &op);
1168         }
1169
1170         chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1171         for (i = 0; i < len; i++)
1172                 p[i] = chip->legacy.read_byte(chip);
1173
1174         return 0;
1175 }
1176
1177 /**
1178  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1179  * @chip: The NAND chip
1180  * @offset_in_page: offset within the page
1181  * @buf: buffer used to store the data
1182  * @len: length of the buffer
1183  * @force_8bit: force 8-bit bus access
1184  *
1185  * This function issues a CHANGE READ COLUMN operation.
1186  * This function does not select/unselect the CS line.
1187  *
1188  * Returns 0 on success, a negative error code otherwise.
1189  */
1190 int nand_change_read_column_op(struct nand_chip *chip,
1191                                unsigned int offset_in_page, void *buf,
1192                                unsigned int len, bool force_8bit)
1193 {
1194         struct mtd_info *mtd = nand_to_mtd(chip);
1195
1196         if (len && !buf)
1197                 return -EINVAL;
1198
1199         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1200                 return -EINVAL;
1201
1202         /* Small page NANDs do not support column change. */
1203         if (mtd->writesize <= 512)
1204                 return -ENOTSUPP;
1205
1206         if (nand_has_exec_op(chip)) {
1207                 const struct nand_sdr_timings *sdr =
1208                         nand_get_sdr_timings(&chip->data_interface);
1209                 u8 addrs[2] = {};
1210                 struct nand_op_instr instrs[] = {
1211                         NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1212                         NAND_OP_ADDR(2, addrs, 0),
1213                         NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1214                                     PSEC_TO_NSEC(sdr->tCCS_min)),
1215                         NAND_OP_DATA_IN(len, buf, 0),
1216                 };
1217                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1218                 int ret;
1219
1220                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1221                 if (ret < 0)
1222                         return ret;
1223
1224                 /* Drop the DATA_IN instruction if len is set to 0. */
1225                 if (!len)
1226                         op.ninstrs--;
1227
1228                 instrs[3].ctx.data.force_8bit = force_8bit;
1229
1230                 return nand_exec_op(chip, &op);
1231         }
1232
1233         chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1234         if (len)
1235                 chip->legacy.read_buf(chip, buf, len);
1236
1237         return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1240
1241 /**
1242  * nand_read_oob_op - Do a READ OOB operation
1243  * @chip: The NAND chip
1244  * @page: page to read
1245  * @offset_in_oob: offset within the OOB area
1246  * @buf: buffer used to store the data
1247  * @len: length of the buffer
1248  *
1249  * This function issues a READ OOB operation.
1250  * This function does not select/unselect the CS line.
1251  *
1252  * Returns 0 on success, a negative error code otherwise.
1253  */
1254 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1255                      unsigned int offset_in_oob, void *buf, unsigned int len)
1256 {
1257         struct mtd_info *mtd = nand_to_mtd(chip);
1258
1259         if (len && !buf)
1260                 return -EINVAL;
1261
1262         if (offset_in_oob + len > mtd->oobsize)
1263                 return -EINVAL;
1264
1265         if (nand_has_exec_op(chip))
1266                 return nand_read_page_op(chip, page,
1267                                          mtd->writesize + offset_in_oob,
1268                                          buf, len);
1269
1270         chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1271         if (len)
1272                 chip->legacy.read_buf(chip, buf, len);
1273
1274         return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1277
1278 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1279                                   unsigned int offset_in_page, const void *buf,
1280                                   unsigned int len, bool prog)
1281 {
1282         struct mtd_info *mtd = nand_to_mtd(chip);
1283         const struct nand_sdr_timings *sdr =
1284                 nand_get_sdr_timings(&chip->data_interface);
1285         u8 addrs[5] = {};
1286         struct nand_op_instr instrs[] = {
1287                 /*
1288                  * The first instruction will be dropped if we're dealing
1289                  * with a large page NAND and adjusted if we're dealing
1290                  * with a small page NAND and the page offset is > 255.
1291                  */
1292                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1293                 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1294                 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1295                 NAND_OP_DATA_OUT(len, buf, 0),
1296                 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1297                 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1298         };
1299         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1300         int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1301         int ret;
1302         u8 status;
1303
1304         if (naddrs < 0)
1305                 return naddrs;
1306
1307         addrs[naddrs++] = page;
1308         addrs[naddrs++] = page >> 8;
1309         if (chip->options & NAND_ROW_ADDR_3)
1310                 addrs[naddrs++] = page >> 16;
1311
1312         instrs[2].ctx.addr.naddrs = naddrs;
1313
1314         /* Drop the last two instructions if we're not programming the page. */
1315         if (!prog) {
1316                 op.ninstrs -= 2;
1317                 /* Also drop the DATA_OUT instruction if empty. */
1318                 if (!len)
1319                         op.ninstrs--;
1320         }
1321
1322         if (mtd->writesize <= 512) {
1323                 /*
1324                  * Small pages need some more tweaking: we have to adjust the
1325                  * first instruction depending on the page offset we're trying
1326                  * to access.
1327                  */
1328                 if (offset_in_page >= mtd->writesize)
1329                         instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1330                 else if (offset_in_page >= 256 &&
1331                          !(chip->options & NAND_BUSWIDTH_16))
1332                         instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1333         } else {
1334                 /*
1335                  * Drop the first command if we're dealing with a large page
1336                  * NAND.
1337                  */
1338                 op.instrs++;
1339                 op.ninstrs--;
1340         }
1341
1342         ret = nand_exec_op(chip, &op);
1343         if (!prog || ret)
1344                 return ret;
1345
1346         ret = nand_status_op(chip, &status);
1347         if (ret)
1348                 return ret;
1349
1350         return status;
1351 }
1352
1353 /**
1354  * nand_prog_page_begin_op - starts a PROG PAGE operation
1355  * @chip: The NAND chip
1356  * @page: page to write
1357  * @offset_in_page: offset within the page
1358  * @buf: buffer containing the data to write to the page
1359  * @len: length of the buffer
1360  *
1361  * This function issues the first half of a PROG PAGE operation.
1362  * This function does not select/unselect the CS line.
1363  *
1364  * Returns 0 on success, a negative error code otherwise.
1365  */
1366 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1367                             unsigned int offset_in_page, const void *buf,
1368                             unsigned int len)
1369 {
1370         struct mtd_info *mtd = nand_to_mtd(chip);
1371
1372         if (len && !buf)
1373                 return -EINVAL;
1374
1375         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1376                 return -EINVAL;
1377
1378         if (nand_has_exec_op(chip))
1379                 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1380                                               len, false);
1381
1382         chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1383
1384         if (buf)
1385                 chip->legacy.write_buf(chip, buf, len);
1386
1387         return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1390
1391 /**
1392  * nand_prog_page_end_op - ends a PROG PAGE operation
1393  * @chip: The NAND chip
1394  *
1395  * This function issues the second half of a PROG PAGE operation.
1396  * This function does not select/unselect the CS line.
1397  *
1398  * Returns 0 on success, a negative error code otherwise.
1399  */
1400 int nand_prog_page_end_op(struct nand_chip *chip)
1401 {
1402         int ret;
1403         u8 status;
1404
1405         if (nand_has_exec_op(chip)) {
1406                 const struct nand_sdr_timings *sdr =
1407                         nand_get_sdr_timings(&chip->data_interface);
1408                 struct nand_op_instr instrs[] = {
1409                         NAND_OP_CMD(NAND_CMD_PAGEPROG,
1410                                     PSEC_TO_NSEC(sdr->tWB_max)),
1411                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1412                 };
1413                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1414
1415                 ret = nand_exec_op(chip, &op);
1416                 if (ret)
1417                         return ret;
1418
1419                 ret = nand_status_op(chip, &status);
1420                 if (ret)
1421                         return ret;
1422         } else {
1423                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1424                 ret = chip->legacy.waitfunc(chip);
1425                 if (ret < 0)
1426                         return ret;
1427
1428                 status = ret;
1429         }
1430
1431         if (status & NAND_STATUS_FAIL)
1432                 return -EIO;
1433
1434         return 0;
1435 }
1436 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1437
1438 /**
1439  * nand_prog_page_op - Do a full PROG PAGE operation
1440  * @chip: The NAND chip
1441  * @page: page to write
1442  * @offset_in_page: offset within the page
1443  * @buf: buffer containing the data to write to the page
1444  * @len: length of the buffer
1445  *
1446  * This function issues a full PROG PAGE operation.
1447  * This function does not select/unselect the CS line.
1448  *
1449  * Returns 0 on success, a negative error code otherwise.
1450  */
1451 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1452                       unsigned int offset_in_page, const void *buf,
1453                       unsigned int len)
1454 {
1455         struct mtd_info *mtd = nand_to_mtd(chip);
1456         int status;
1457
1458         if (!len || !buf)
1459                 return -EINVAL;
1460
1461         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1462                 return -EINVAL;
1463
1464         if (nand_has_exec_op(chip)) {
1465                 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1466                                                 len, true);
1467         } else {
1468                 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1469                                      page);
1470                 chip->legacy.write_buf(chip, buf, len);
1471                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1472                 status = chip->legacy.waitfunc(chip);
1473         }
1474
1475         if (status & NAND_STATUS_FAIL)
1476                 return -EIO;
1477
1478         return 0;
1479 }
1480 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1481
1482 /**
1483  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1484  * @chip: The NAND chip
1485  * @offset_in_page: offset within the page
1486  * @buf: buffer containing the data to send to the NAND
1487  * @len: length of the buffer
1488  * @force_8bit: force 8-bit bus access
1489  *
1490  * This function issues a CHANGE WRITE COLUMN operation.
1491  * This function does not select/unselect the CS line.
1492  *
1493  * Returns 0 on success, a negative error code otherwise.
1494  */
1495 int nand_change_write_column_op(struct nand_chip *chip,
1496                                 unsigned int offset_in_page,
1497                                 const void *buf, unsigned int len,
1498                                 bool force_8bit)
1499 {
1500         struct mtd_info *mtd = nand_to_mtd(chip);
1501
1502         if (len && !buf)
1503                 return -EINVAL;
1504
1505         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1506                 return -EINVAL;
1507
1508         /* Small page NANDs do not support column change. */
1509         if (mtd->writesize <= 512)
1510                 return -ENOTSUPP;
1511
1512         if (nand_has_exec_op(chip)) {
1513                 const struct nand_sdr_timings *sdr =
1514                         nand_get_sdr_timings(&chip->data_interface);
1515                 u8 addrs[2];
1516                 struct nand_op_instr instrs[] = {
1517                         NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1518                         NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1519                         NAND_OP_DATA_OUT(len, buf, 0),
1520                 };
1521                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1522                 int ret;
1523
1524                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1525                 if (ret < 0)
1526                         return ret;
1527
1528                 instrs[2].ctx.data.force_8bit = force_8bit;
1529
1530                 /* Drop the DATA_OUT instruction if len is set to 0. */
1531                 if (!len)
1532                         op.ninstrs--;
1533
1534                 return nand_exec_op(chip, &op);
1535         }
1536
1537         chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1538         if (len)
1539                 chip->legacy.write_buf(chip, buf, len);
1540
1541         return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1544
1545 /**
1546  * nand_readid_op - Do a READID operation
1547  * @chip: The NAND chip
1548  * @addr: address cycle to pass after the READID command
1549  * @buf: buffer used to store the ID
1550  * @len: length of the buffer
1551  *
1552  * This function sends a READID command and reads back the ID returned by the
1553  * NAND.
1554  * This function does not select/unselect the CS line.
1555  *
1556  * Returns 0 on success, a negative error code otherwise.
1557  */
1558 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1559                    unsigned int len)
1560 {
1561         unsigned int i;
1562         u8 *id = buf;
1563
1564         if (len && !buf)
1565                 return -EINVAL;
1566
1567         if (nand_has_exec_op(chip)) {
1568                 const struct nand_sdr_timings *sdr =
1569                         nand_get_sdr_timings(&chip->data_interface);
1570                 struct nand_op_instr instrs[] = {
1571                         NAND_OP_CMD(NAND_CMD_READID, 0),
1572                         NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1573                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1574                 };
1575                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1576
1577                 /* Drop the DATA_IN instruction if len is set to 0. */
1578                 if (!len)
1579                         op.ninstrs--;
1580
1581                 return nand_exec_op(chip, &op);
1582         }
1583
1584         chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1585
1586         for (i = 0; i < len; i++)
1587                 id[i] = chip->legacy.read_byte(chip);
1588
1589         return 0;
1590 }
1591 EXPORT_SYMBOL_GPL(nand_readid_op);
1592
1593 /**
1594  * nand_status_op - Do a STATUS operation
1595  * @chip: The NAND chip
1596  * @status: out variable to store the NAND status
1597  *
1598  * This function sends a STATUS command and reads back the status returned by
1599  * the NAND.
1600  * This function does not select/unselect the CS line.
1601  *
1602  * Returns 0 on success, a negative error code otherwise.
1603  */
1604 int nand_status_op(struct nand_chip *chip, u8 *status)
1605 {
1606         if (nand_has_exec_op(chip)) {
1607                 const struct nand_sdr_timings *sdr =
1608                         nand_get_sdr_timings(&chip->data_interface);
1609                 struct nand_op_instr instrs[] = {
1610                         NAND_OP_CMD(NAND_CMD_STATUS,
1611                                     PSEC_TO_NSEC(sdr->tADL_min)),
1612                         NAND_OP_8BIT_DATA_IN(1, status, 0),
1613                 };
1614                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1615
1616                 if (!status)
1617                         op.ninstrs--;
1618
1619                 return nand_exec_op(chip, &op);
1620         }
1621
1622         chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1623         if (status)
1624                 *status = chip->legacy.read_byte(chip);
1625
1626         return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(nand_status_op);
1629
1630 /**
1631  * nand_exit_status_op - Exit a STATUS operation
1632  * @chip: The NAND chip
1633  *
1634  * This function sends a READ0 command to cancel the effect of the STATUS
1635  * command to avoid reading only the status until a new read command is sent.
1636  *
1637  * This function does not select/unselect the CS line.
1638  *
1639  * Returns 0 on success, a negative error code otherwise.
1640  */
1641 int nand_exit_status_op(struct nand_chip *chip)
1642 {
1643         if (nand_has_exec_op(chip)) {
1644                 struct nand_op_instr instrs[] = {
1645                         NAND_OP_CMD(NAND_CMD_READ0, 0),
1646                 };
1647                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1648
1649                 return nand_exec_op(chip, &op);
1650         }
1651
1652         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1653
1654         return 0;
1655 }
1656
1657 /**
1658  * nand_erase_op - Do an erase operation
1659  * @chip: The NAND chip
1660  * @eraseblock: block to erase
1661  *
1662  * This function sends an ERASE command and waits for the NAND to be ready
1663  * before returning.
1664  * This function does not select/unselect the CS line.
1665  *
1666  * Returns 0 on success, a negative error code otherwise.
1667  */
1668 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1669 {
1670         unsigned int page = eraseblock <<
1671                             (chip->phys_erase_shift - chip->page_shift);
1672         int ret;
1673         u8 status;
1674
1675         if (nand_has_exec_op(chip)) {
1676                 const struct nand_sdr_timings *sdr =
1677                         nand_get_sdr_timings(&chip->data_interface);
1678                 u8 addrs[3] = { page, page >> 8, page >> 16 };
1679                 struct nand_op_instr instrs[] = {
1680                         NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1681                         NAND_OP_ADDR(2, addrs, 0),
1682                         NAND_OP_CMD(NAND_CMD_ERASE2,
1683                                     PSEC_TO_MSEC(sdr->tWB_max)),
1684                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1685                 };
1686                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1687
1688                 if (chip->options & NAND_ROW_ADDR_3)
1689                         instrs[1].ctx.addr.naddrs++;
1690
1691                 ret = nand_exec_op(chip, &op);
1692                 if (ret)
1693                         return ret;
1694
1695                 ret = nand_status_op(chip, &status);
1696                 if (ret)
1697                         return ret;
1698         } else {
1699                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1700                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1701
1702                 ret = chip->legacy.waitfunc(chip);
1703                 if (ret < 0)
1704                         return ret;
1705
1706                 status = ret;
1707         }
1708
1709         if (status & NAND_STATUS_FAIL)
1710                 return -EIO;
1711
1712         return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(nand_erase_op);
1715
1716 /**
1717  * nand_set_features_op - Do a SET FEATURES operation
1718  * @chip: The NAND chip
1719  * @feature: feature id
1720  * @data: 4 bytes of data
1721  *
1722  * This function sends a SET FEATURES command and waits for the NAND to be
1723  * ready before returning.
1724  * This function does not select/unselect the CS line.
1725  *
1726  * Returns 0 on success, a negative error code otherwise.
1727  */
1728 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1729                                 const void *data)
1730 {
1731         const u8 *params = data;
1732         int i, ret;
1733
1734         if (nand_has_exec_op(chip)) {
1735                 const struct nand_sdr_timings *sdr =
1736                         nand_get_sdr_timings(&chip->data_interface);
1737                 struct nand_op_instr instrs[] = {
1738                         NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1739                         NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1740                         NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1741                                               PSEC_TO_NSEC(sdr->tWB_max)),
1742                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1743                 };
1744                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1745
1746                 return nand_exec_op(chip, &op);
1747         }
1748
1749         chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1750         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1751                 chip->legacy.write_byte(chip, params[i]);
1752
1753         ret = chip->legacy.waitfunc(chip);
1754         if (ret < 0)
1755                 return ret;
1756
1757         if (ret & NAND_STATUS_FAIL)
1758                 return -EIO;
1759
1760         return 0;
1761 }
1762
1763 /**
1764  * nand_get_features_op - Do a GET FEATURES operation
1765  * @chip: The NAND chip
1766  * @feature: feature id
1767  * @data: 4 bytes of data
1768  *
1769  * This function sends a GET FEATURES command and waits for the NAND to be
1770  * ready before returning.
1771  * This function does not select/unselect the CS line.
1772  *
1773  * Returns 0 on success, a negative error code otherwise.
1774  */
1775 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1776                                 void *data)
1777 {
1778         u8 *params = data;
1779         int i;
1780
1781         if (nand_has_exec_op(chip)) {
1782                 const struct nand_sdr_timings *sdr =
1783                         nand_get_sdr_timings(&chip->data_interface);
1784                 struct nand_op_instr instrs[] = {
1785                         NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1786                         NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1787                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1788                                          PSEC_TO_NSEC(sdr->tRR_min)),
1789                         NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1790                                              data, 0),
1791                 };
1792                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1793
1794                 return nand_exec_op(chip, &op);
1795         }
1796
1797         chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1798         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1799                 params[i] = chip->legacy.read_byte(chip);
1800
1801         return 0;
1802 }
1803
1804 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1805                             unsigned int delay_ns)
1806 {
1807         if (nand_has_exec_op(chip)) {
1808                 struct nand_op_instr instrs[] = {
1809                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1810                                          PSEC_TO_NSEC(delay_ns)),
1811                 };
1812                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1813
1814                 return nand_exec_op(chip, &op);
1815         }
1816
1817         /* Apply delay or wait for ready/busy pin */
1818         if (!chip->legacy.dev_ready)
1819                 udelay(chip->legacy.chip_delay);
1820         else
1821                 nand_wait_ready(chip);
1822
1823         return 0;
1824 }
1825
1826 /**
1827  * nand_reset_op - Do a reset operation
1828  * @chip: The NAND chip
1829  *
1830  * This function sends a RESET command and waits for the NAND to be ready
1831  * before returning.
1832  * This function does not select/unselect the CS line.
1833  *
1834  * Returns 0 on success, a negative error code otherwise.
1835  */
1836 int nand_reset_op(struct nand_chip *chip)
1837 {
1838         if (nand_has_exec_op(chip)) {
1839                 const struct nand_sdr_timings *sdr =
1840                         nand_get_sdr_timings(&chip->data_interface);
1841                 struct nand_op_instr instrs[] = {
1842                         NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1843                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1844                 };
1845                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1846
1847                 return nand_exec_op(chip, &op);
1848         }
1849
1850         chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1851
1852         return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(nand_reset_op);
1855
1856 /**
1857  * nand_read_data_op - Read data from the NAND
1858  * @chip: The NAND chip
1859  * @buf: buffer used to store the data
1860  * @len: length of the buffer
1861  * @force_8bit: force 8-bit bus access
1862  *
1863  * This function does a raw data read on the bus. Usually used after launching
1864  * another NAND operation like nand_read_page_op().
1865  * This function does not select/unselect the CS line.
1866  *
1867  * Returns 0 on success, a negative error code otherwise.
1868  */
1869 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1870                       bool force_8bit)
1871 {
1872         if (!len || !buf)
1873                 return -EINVAL;
1874
1875         if (nand_has_exec_op(chip)) {
1876                 struct nand_op_instr instrs[] = {
1877                         NAND_OP_DATA_IN(len, buf, 0),
1878                 };
1879                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1880
1881                 instrs[0].ctx.data.force_8bit = force_8bit;
1882
1883                 return nand_exec_op(chip, &op);
1884         }
1885
1886         if (force_8bit) {
1887                 u8 *p = buf;
1888                 unsigned int i;
1889
1890                 for (i = 0; i < len; i++)
1891                         p[i] = chip->legacy.read_byte(chip);
1892         } else {
1893                 chip->legacy.read_buf(chip, buf, len);
1894         }
1895
1896         return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(nand_read_data_op);
1899
1900 /**
1901  * nand_write_data_op - Write data from the NAND
1902  * @chip: The NAND chip
1903  * @buf: buffer containing the data to send on the bus
1904  * @len: length of the buffer
1905  * @force_8bit: force 8-bit bus access
1906  *
1907  * This function does a raw data write on the bus. Usually used after launching
1908  * another NAND operation like nand_write_page_begin_op().
1909  * This function does not select/unselect the CS line.
1910  *
1911  * Returns 0 on success, a negative error code otherwise.
1912  */
1913 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1914                        unsigned int len, bool force_8bit)
1915 {
1916         if (!len || !buf)
1917                 return -EINVAL;
1918
1919         if (nand_has_exec_op(chip)) {
1920                 struct nand_op_instr instrs[] = {
1921                         NAND_OP_DATA_OUT(len, buf, 0),
1922                 };
1923                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1924
1925                 instrs[0].ctx.data.force_8bit = force_8bit;
1926
1927                 return nand_exec_op(chip, &op);
1928         }
1929
1930         if (force_8bit) {
1931                 const u8 *p = buf;
1932                 unsigned int i;
1933
1934                 for (i = 0; i < len; i++)
1935                         chip->legacy.write_byte(chip, p[i]);
1936         } else {
1937                 chip->legacy.write_buf(chip, buf, len);
1938         }
1939
1940         return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(nand_write_data_op);
1943
1944 /**
1945  * struct nand_op_parser_ctx - Context used by the parser
1946  * @instrs: array of all the instructions that must be addressed
1947  * @ninstrs: length of the @instrs array
1948  * @subop: Sub-operation to be passed to the NAND controller
1949  *
1950  * This structure is used by the core to split NAND operations into
1951  * sub-operations that can be handled by the NAND controller.
1952  */
1953 struct nand_op_parser_ctx {
1954         const struct nand_op_instr *instrs;
1955         unsigned int ninstrs;
1956         struct nand_subop subop;
1957 };
1958
1959 /**
1960  * nand_op_parser_must_split_instr - Checks if an instruction must be split
1961  * @pat: the parser pattern element that matches @instr
1962  * @instr: pointer to the instruction to check
1963  * @start_offset: this is an in/out parameter. If @instr has already been
1964  *                split, then @start_offset is the offset from which to start
1965  *                (either an address cycle or an offset in the data buffer).
1966  *                Conversely, if the function returns true (ie. instr must be
1967  *                split), this parameter is updated to point to the first
1968  *                data/address cycle that has not been taken care of.
1969  *
1970  * Some NAND controllers are limited and cannot send X address cycles with a
1971  * unique operation, or cannot read/write more than Y bytes at the same time.
1972  * In this case, split the instruction that does not fit in a single
1973  * controller-operation into two or more chunks.
1974  *
1975  * Returns true if the instruction must be split, false otherwise.
1976  * The @start_offset parameter is also updated to the offset at which the next
1977  * bundle of instruction must start (if an address or a data instruction).
1978  */
1979 static bool
1980 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
1981                                 const struct nand_op_instr *instr,
1982                                 unsigned int *start_offset)
1983 {
1984         switch (pat->type) {
1985         case NAND_OP_ADDR_INSTR:
1986                 if (!pat->ctx.addr.maxcycles)
1987                         break;
1988
1989                 if (instr->ctx.addr.naddrs - *start_offset >
1990                     pat->ctx.addr.maxcycles) {
1991                         *start_offset += pat->ctx.addr.maxcycles;
1992                         return true;
1993                 }
1994                 break;
1995
1996         case NAND_OP_DATA_IN_INSTR:
1997         case NAND_OP_DATA_OUT_INSTR:
1998                 if (!pat->ctx.data.maxlen)
1999                         break;
2000
2001                 if (instr->ctx.data.len - *start_offset >
2002                     pat->ctx.data.maxlen) {
2003                         *start_offset += pat->ctx.data.maxlen;
2004                         return true;
2005                 }
2006                 break;
2007
2008         default:
2009                 break;
2010         }
2011
2012         return false;
2013 }
2014
2015 /**
2016  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2017  *                            remaining in the parser context
2018  * @pat: the pattern to test
2019  * @ctx: the parser context structure to match with the pattern @pat
2020  *
2021  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2022  * Returns true if this is the case, false ortherwise. When true is returned,
2023  * @ctx->subop is updated with the set of instructions to be passed to the
2024  * controller driver.
2025  */
2026 static bool
2027 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2028                          struct nand_op_parser_ctx *ctx)
2029 {
2030         unsigned int instr_offset = ctx->subop.first_instr_start_off;
2031         const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2032         const struct nand_op_instr *instr = ctx->subop.instrs;
2033         unsigned int i, ninstrs;
2034
2035         for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2036                 /*
2037                  * The pattern instruction does not match the operation
2038                  * instruction. If the instruction is marked optional in the
2039                  * pattern definition, we skip the pattern element and continue
2040                  * to the next one. If the element is mandatory, there's no
2041                  * match and we can return false directly.
2042                  */
2043                 if (instr->type != pat->elems[i].type) {
2044                         if (!pat->elems[i].optional)
2045                                 return false;
2046
2047                         continue;
2048                 }
2049
2050                 /*
2051                  * Now check the pattern element constraints. If the pattern is
2052                  * not able to handle the whole instruction in a single step,
2053                  * we have to split it.
2054                  * The last_instr_end_off value comes back updated to point to
2055                  * the position where we have to split the instruction (the
2056                  * start of the next subop chunk).
2057                  */
2058                 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2059                                                     &instr_offset)) {
2060                         ninstrs++;
2061                         i++;
2062                         break;
2063                 }
2064
2065                 instr++;
2066                 ninstrs++;
2067                 instr_offset = 0;
2068         }
2069
2070         /*
2071          * This can happen if all instructions of a pattern are optional.
2072          * Still, if there's not at least one instruction handled by this
2073          * pattern, this is not a match, and we should try the next one (if
2074          * any).
2075          */
2076         if (!ninstrs)
2077                 return false;
2078
2079         /*
2080          * We had a match on the pattern head, but the pattern may be longer
2081          * than the instructions we're asked to execute. We need to make sure
2082          * there's no mandatory elements in the pattern tail.
2083          */
2084         for (; i < pat->nelems; i++) {
2085                 if (!pat->elems[i].optional)
2086                         return false;
2087         }
2088
2089         /*
2090          * We have a match: update the subop structure accordingly and return
2091          * true.
2092          */
2093         ctx->subop.ninstrs = ninstrs;
2094         ctx->subop.last_instr_end_off = instr_offset;
2095
2096         return true;
2097 }
2098
2099 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2100 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2101 {
2102         const struct nand_op_instr *instr;
2103         char *prefix = "      ";
2104         unsigned int i;
2105
2106         pr_debug("executing subop:\n");
2107
2108         for (i = 0; i < ctx->ninstrs; i++) {
2109                 instr = &ctx->instrs[i];
2110
2111                 if (instr == &ctx->subop.instrs[0])
2112                         prefix = "    ->";
2113
2114                 switch (instr->type) {
2115                 case NAND_OP_CMD_INSTR:
2116                         pr_debug("%sCMD      [0x%02x]\n", prefix,
2117                                  instr->ctx.cmd.opcode);
2118                         break;
2119                 case NAND_OP_ADDR_INSTR:
2120                         pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
2121                                  instr->ctx.addr.naddrs,
2122                                  instr->ctx.addr.naddrs < 64 ?
2123                                  instr->ctx.addr.naddrs : 64,
2124                                  instr->ctx.addr.addrs);
2125                         break;
2126                 case NAND_OP_DATA_IN_INSTR:
2127                         pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
2128                                  instr->ctx.data.len,
2129                                  instr->ctx.data.force_8bit ?
2130                                  ", force 8-bit" : "");
2131                         break;
2132                 case NAND_OP_DATA_OUT_INSTR:
2133                         pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
2134                                  instr->ctx.data.len,
2135                                  instr->ctx.data.force_8bit ?
2136                                  ", force 8-bit" : "");
2137                         break;
2138                 case NAND_OP_WAITRDY_INSTR:
2139                         pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
2140                                  instr->ctx.waitrdy.timeout_ms);
2141                         break;
2142                 }
2143
2144                 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2145                         prefix = "      ";
2146         }
2147 }
2148 #else
2149 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2150 {
2151         /* NOP */
2152 }
2153 #endif
2154
2155 /**
2156  * nand_op_parser_exec_op - exec_op parser
2157  * @chip: the NAND chip
2158  * @parser: patterns description provided by the controller driver
2159  * @op: the NAND operation to address
2160  * @check_only: when true, the function only checks if @op can be handled but
2161  *              does not execute the operation
2162  *
2163  * Helper function designed to ease integration of NAND controller drivers that
2164  * only support a limited set of instruction sequences. The supported sequences
2165  * are described in @parser, and the framework takes care of splitting @op into
2166  * multiple sub-operations (if required) and pass them back to the ->exec()
2167  * callback of the matching pattern if @check_only is set to false.
2168  *
2169  * NAND controller drivers should call this function from their own ->exec_op()
2170  * implementation.
2171  *
2172  * Returns 0 on success, a negative error code otherwise. A failure can be
2173  * caused by an unsupported operation (none of the supported patterns is able
2174  * to handle the requested operation), or an error returned by one of the
2175  * matching pattern->exec() hook.
2176  */
2177 int nand_op_parser_exec_op(struct nand_chip *chip,
2178                            const struct nand_op_parser *parser,
2179                            const struct nand_operation *op, bool check_only)
2180 {
2181         struct nand_op_parser_ctx ctx = {
2182                 .subop.instrs = op->instrs,
2183                 .instrs = op->instrs,
2184                 .ninstrs = op->ninstrs,
2185         };
2186         unsigned int i;
2187
2188         while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2189                 int ret;
2190
2191                 for (i = 0; i < parser->npatterns; i++) {
2192                         const struct nand_op_parser_pattern *pattern;
2193
2194                         pattern = &parser->patterns[i];
2195                         if (!nand_op_parser_match_pat(pattern, &ctx))
2196                                 continue;
2197
2198                         nand_op_parser_trace(&ctx);
2199
2200                         if (check_only)
2201                                 break;
2202
2203                         ret = pattern->exec(chip, &ctx.subop);
2204                         if (ret)
2205                                 return ret;
2206
2207                         break;
2208                 }
2209
2210                 if (i == parser->npatterns) {
2211                         pr_debug("->exec_op() parser: pattern not found!\n");
2212                         return -ENOTSUPP;
2213                 }
2214
2215                 /*
2216                  * Update the context structure by pointing to the start of the
2217                  * next subop.
2218                  */
2219                 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2220                 if (ctx.subop.last_instr_end_off)
2221                         ctx.subop.instrs -= 1;
2222
2223                 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2224         }
2225
2226         return 0;
2227 }
2228 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2229
2230 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2231 {
2232         return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2233                          instr->type == NAND_OP_DATA_OUT_INSTR);
2234 }
2235
2236 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2237                                       unsigned int instr_idx)
2238 {
2239         return subop && instr_idx < subop->ninstrs;
2240 }
2241
2242 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2243                                              unsigned int instr_idx)
2244 {
2245         if (instr_idx)
2246                 return 0;
2247
2248         return subop->first_instr_start_off;
2249 }
2250
2251 /**
2252  * nand_subop_get_addr_start_off - Get the start offset in an address array
2253  * @subop: The entire sub-operation
2254  * @instr_idx: Index of the instruction inside the sub-operation
2255  *
2256  * During driver development, one could be tempted to directly use the
2257  * ->addr.addrs field of address instructions. This is wrong as address
2258  * instructions might be split.
2259  *
2260  * Given an address instruction, returns the offset of the first cycle to issue.
2261  */
2262 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2263                                            unsigned int instr_idx)
2264 {
2265         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2266                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2267                 return 0;
2268
2269         return nand_subop_get_start_off(subop, instr_idx);
2270 }
2271 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2272
2273 /**
2274  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2275  * @subop: The entire sub-operation
2276  * @instr_idx: Index of the instruction inside the sub-operation
2277  *
2278  * During driver development, one could be tempted to directly use the
2279  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2280  * might be split.
2281  *
2282  * Given an address instruction, returns the number of address cycle to issue.
2283  */
2284 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2285                                          unsigned int instr_idx)
2286 {
2287         int start_off, end_off;
2288
2289         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2290                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2291                 return 0;
2292
2293         start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2294
2295         if (instr_idx == subop->ninstrs - 1 &&
2296             subop->last_instr_end_off)
2297                 end_off = subop->last_instr_end_off;
2298         else
2299                 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2300
2301         return end_off - start_off;
2302 }
2303 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2304
2305 /**
2306  * nand_subop_get_data_start_off - Get the start offset in a data array
2307  * @subop: The entire sub-operation
2308  * @instr_idx: Index of the instruction inside the sub-operation
2309  *
2310  * During driver development, one could be tempted to directly use the
2311  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2312  * instructions might be split.
2313  *
2314  * Given a data instruction, returns the offset to start from.
2315  */
2316 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2317                                            unsigned int instr_idx)
2318 {
2319         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2320                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2321                 return 0;
2322
2323         return nand_subop_get_start_off(subop, instr_idx);
2324 }
2325 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2326
2327 /**
2328  * nand_subop_get_data_len - Get the number of bytes to retrieve
2329  * @subop: The entire sub-operation
2330  * @instr_idx: Index of the instruction inside the sub-operation
2331  *
2332  * During driver development, one could be tempted to directly use the
2333  * ->data->len field of a data instruction. This is wrong as data instructions
2334  * might be split.
2335  *
2336  * Returns the length of the chunk of data to send/receive.
2337  */
2338 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2339                                      unsigned int instr_idx)
2340 {
2341         int start_off = 0, end_off;
2342
2343         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2344                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2345                 return 0;
2346
2347         start_off = nand_subop_get_data_start_off(subop, instr_idx);
2348
2349         if (instr_idx == subop->ninstrs - 1 &&
2350             subop->last_instr_end_off)
2351                 end_off = subop->last_instr_end_off;
2352         else
2353                 end_off = subop->instrs[instr_idx].ctx.data.len;
2354
2355         return end_off - start_off;
2356 }
2357 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2358
2359 /**
2360  * nand_reset - Reset and initialize a NAND device
2361  * @chip: The NAND chip
2362  * @chipnr: Internal die id
2363  *
2364  * Save the timings data structure, then apply SDR timings mode 0 (see
2365  * nand_reset_data_interface for details), do the reset operation, and
2366  * apply back the previous timings.
2367  *
2368  * Returns 0 on success, a negative error code otherwise.
2369  */
2370 int nand_reset(struct nand_chip *chip, int chipnr)
2371 {
2372         struct nand_data_interface saved_data_intf = chip->data_interface;
2373         int ret;
2374
2375         ret = nand_reset_data_interface(chip, chipnr);
2376         if (ret)
2377                 return ret;
2378
2379         /*
2380          * The CS line has to be released before we can apply the new NAND
2381          * interface settings, hence this weird nand_select_target()
2382          * nand_deselect_target() dance.
2383          */
2384         nand_select_target(chip, chipnr);
2385         ret = nand_reset_op(chip);
2386         nand_deselect_target(chip);
2387         if (ret)
2388                 return ret;
2389
2390         /*
2391          * A nand_reset_data_interface() put both the NAND chip and the NAND
2392          * controller in timings mode 0. If the default mode for this chip is
2393          * also 0, no need to proceed to the change again. Plus, at probe time,
2394          * nand_setup_data_interface() uses ->set/get_features() which would
2395          * fail anyway as the parameter page is not available yet.
2396          */
2397         if (!chip->onfi_timing_mode_default)
2398                 return 0;
2399
2400         chip->data_interface = saved_data_intf;
2401         ret = nand_setup_data_interface(chip, chipnr);
2402         if (ret)
2403                 return ret;
2404
2405         return 0;
2406 }
2407 EXPORT_SYMBOL_GPL(nand_reset);
2408
2409 /**
2410  * nand_get_features - wrapper to perform a GET_FEATURE
2411  * @chip: NAND chip info structure
2412  * @addr: feature address
2413  * @subfeature_param: the subfeature parameters, a four bytes array
2414  *
2415  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2416  * operation cannot be handled.
2417  */
2418 int nand_get_features(struct nand_chip *chip, int addr,
2419                       u8 *subfeature_param)
2420 {
2421         if (!nand_supports_get_features(chip, addr))
2422                 return -ENOTSUPP;
2423
2424         if (chip->legacy.get_features)
2425                 return chip->legacy.get_features(chip, addr, subfeature_param);
2426
2427         return nand_get_features_op(chip, addr, subfeature_param);
2428 }
2429
2430 /**
2431  * nand_set_features - wrapper to perform a SET_FEATURE
2432  * @chip: NAND chip info structure
2433  * @addr: feature address
2434  * @subfeature_param: the subfeature parameters, a four bytes array
2435  *
2436  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2437  * operation cannot be handled.
2438  */
2439 int nand_set_features(struct nand_chip *chip, int addr,
2440                       u8 *subfeature_param)
2441 {
2442         if (!nand_supports_set_features(chip, addr))
2443                 return -ENOTSUPP;
2444
2445         if (chip->legacy.set_features)
2446                 return chip->legacy.set_features(chip, addr, subfeature_param);
2447
2448         return nand_set_features_op(chip, addr, subfeature_param);
2449 }
2450
2451 /**
2452  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2453  * @buf: buffer to test
2454  * @len: buffer length
2455  * @bitflips_threshold: maximum number of bitflips
2456  *
2457  * Check if a buffer contains only 0xff, which means the underlying region
2458  * has been erased and is ready to be programmed.
2459  * The bitflips_threshold specify the maximum number of bitflips before
2460  * considering the region is not erased.
2461  * Note: The logic of this function has been extracted from the memweight
2462  * implementation, except that nand_check_erased_buf function exit before
2463  * testing the whole buffer if the number of bitflips exceed the
2464  * bitflips_threshold value.
2465  *
2466  * Returns a positive number of bitflips less than or equal to
2467  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2468  * threshold.
2469  */
2470 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2471 {
2472         const unsigned char *bitmap = buf;
2473         int bitflips = 0;
2474         int weight;
2475
2476         for (; len && ((uintptr_t)bitmap) % sizeof(long);
2477              len--, bitmap++) {
2478                 weight = hweight8(*bitmap);
2479                 bitflips += BITS_PER_BYTE - weight;
2480                 if (unlikely(bitflips > bitflips_threshold))
2481                         return -EBADMSG;
2482         }
2483
2484         for (; len >= sizeof(long);
2485              len -= sizeof(long), bitmap += sizeof(long)) {
2486                 unsigned long d = *((unsigned long *)bitmap);
2487                 if (d == ~0UL)
2488                         continue;
2489                 weight = hweight_long(d);
2490                 bitflips += BITS_PER_LONG - weight;
2491                 if (unlikely(bitflips > bitflips_threshold))
2492                         return -EBADMSG;
2493         }
2494
2495         for (; len > 0; len--, bitmap++) {
2496                 weight = hweight8(*bitmap);
2497                 bitflips += BITS_PER_BYTE - weight;
2498                 if (unlikely(bitflips > bitflips_threshold))
2499                         return -EBADMSG;
2500         }
2501
2502         return bitflips;
2503 }
2504
2505 /**
2506  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2507  *                               0xff data
2508  * @data: data buffer to test
2509  * @datalen: data length
2510  * @ecc: ECC buffer
2511  * @ecclen: ECC length
2512  * @extraoob: extra OOB buffer
2513  * @extraooblen: extra OOB length
2514  * @bitflips_threshold: maximum number of bitflips
2515  *
2516  * Check if a data buffer and its associated ECC and OOB data contains only
2517  * 0xff pattern, which means the underlying region has been erased and is
2518  * ready to be programmed.
2519  * The bitflips_threshold specify the maximum number of bitflips before
2520  * considering the region as not erased.
2521  *
2522  * Note:
2523  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2524  *    different from the NAND page size. When fixing bitflips, ECC engines will
2525  *    report the number of errors per chunk, and the NAND core infrastructure
2526  *    expect you to return the maximum number of bitflips for the whole page.
2527  *    This is why you should always use this function on a single chunk and
2528  *    not on the whole page. After checking each chunk you should update your
2529  *    max_bitflips value accordingly.
2530  * 2/ When checking for bitflips in erased pages you should not only check
2531  *    the payload data but also their associated ECC data, because a user might
2532  *    have programmed almost all bits to 1 but a few. In this case, we
2533  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2534  *    this case.
2535  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2536  *    data are protected by the ECC engine.
2537  *    It could also be used if you support subpages and want to attach some
2538  *    extra OOB data to an ECC chunk.
2539  *
2540  * Returns a positive number of bitflips less than or equal to
2541  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2542  * threshold. In case of success, the passed buffers are filled with 0xff.
2543  */
2544 int nand_check_erased_ecc_chunk(void *data, int datalen,
2545                                 void *ecc, int ecclen,
2546                                 void *extraoob, int extraooblen,
2547                                 int bitflips_threshold)
2548 {
2549         int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2550
2551         data_bitflips = nand_check_erased_buf(data, datalen,
2552                                               bitflips_threshold);
2553         if (data_bitflips < 0)
2554                 return data_bitflips;
2555
2556         bitflips_threshold -= data_bitflips;
2557
2558         ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2559         if (ecc_bitflips < 0)
2560                 return ecc_bitflips;
2561
2562         bitflips_threshold -= ecc_bitflips;
2563
2564         extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2565                                                   bitflips_threshold);
2566         if (extraoob_bitflips < 0)
2567                 return extraoob_bitflips;
2568
2569         if (data_bitflips)
2570                 memset(data, 0xff, datalen);
2571
2572         if (ecc_bitflips)
2573                 memset(ecc, 0xff, ecclen);
2574
2575         if (extraoob_bitflips)
2576                 memset(extraoob, 0xff, extraooblen);
2577
2578         return data_bitflips + ecc_bitflips + extraoob_bitflips;
2579 }
2580 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2581
2582 /**
2583  * nand_read_page_raw_notsupp - dummy read raw page function
2584  * @chip: nand chip info structure
2585  * @buf: buffer to store read data
2586  * @oob_required: caller requires OOB data read to chip->oob_poi
2587  * @page: page number to read
2588  *
2589  * Returns -ENOTSUPP unconditionally.
2590  */
2591 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2592                                int oob_required, int page)
2593 {
2594         return -ENOTSUPP;
2595 }
2596
2597 /**
2598  * nand_read_page_raw - [INTERN] read raw page data without ecc
2599  * @chip: nand chip info structure
2600  * @buf: buffer to store read data
2601  * @oob_required: caller requires OOB data read to chip->oob_poi
2602  * @page: page number to read
2603  *
2604  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2605  */
2606 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2607                        int page)
2608 {
2609         struct mtd_info *mtd = nand_to_mtd(chip);
2610         int ret;
2611
2612         ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2613         if (ret)
2614                 return ret;
2615
2616         if (oob_required) {
2617                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2618                                         false);
2619                 if (ret)
2620                         return ret;
2621         }
2622
2623         return 0;
2624 }
2625 EXPORT_SYMBOL(nand_read_page_raw);
2626
2627 /**
2628  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2629  * @chip: nand chip info structure
2630  * @buf: buffer to store read data
2631  * @oob_required: caller requires OOB data read to chip->oob_poi
2632  * @page: page number to read
2633  *
2634  * We need a special oob layout and handling even when OOB isn't used.
2635  */
2636 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2637                                        int oob_required, int page)
2638 {
2639         struct mtd_info *mtd = nand_to_mtd(chip);
2640         int eccsize = chip->ecc.size;
2641         int eccbytes = chip->ecc.bytes;
2642         uint8_t *oob = chip->oob_poi;
2643         int steps, size, ret;
2644
2645         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2646         if (ret)
2647                 return ret;
2648
2649         for (steps = chip->ecc.steps; steps > 0; steps--) {
2650                 ret = nand_read_data_op(chip, buf, eccsize, false);
2651                 if (ret)
2652                         return ret;
2653
2654                 buf += eccsize;
2655
2656                 if (chip->ecc.prepad) {
2657                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2658                                                 false);
2659                         if (ret)
2660                                 return ret;
2661
2662                         oob += chip->ecc.prepad;
2663                 }
2664
2665                 ret = nand_read_data_op(chip, oob, eccbytes, false);
2666                 if (ret)
2667                         return ret;
2668
2669                 oob += eccbytes;
2670
2671                 if (chip->ecc.postpad) {
2672                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2673                                                 false);
2674                         if (ret)
2675                                 return ret;
2676
2677                         oob += chip->ecc.postpad;
2678                 }
2679         }
2680
2681         size = mtd->oobsize - (oob - chip->oob_poi);
2682         if (size) {
2683                 ret = nand_read_data_op(chip, oob, size, false);
2684                 if (ret)
2685                         return ret;
2686         }
2687
2688         return 0;
2689 }
2690
2691 /**
2692  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2693  * @chip: nand chip info structure
2694  * @buf: buffer to store read data
2695  * @oob_required: caller requires OOB data read to chip->oob_poi
2696  * @page: page number to read
2697  */
2698 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2699                                 int oob_required, int page)
2700 {
2701         struct mtd_info *mtd = nand_to_mtd(chip);
2702         int i, eccsize = chip->ecc.size, ret;
2703         int eccbytes = chip->ecc.bytes;
2704         int eccsteps = chip->ecc.steps;
2705         uint8_t *p = buf;
2706         uint8_t *ecc_calc = chip->ecc.calc_buf;
2707         uint8_t *ecc_code = chip->ecc.code_buf;
2708         unsigned int max_bitflips = 0;
2709
2710         chip->ecc.read_page_raw(chip, buf, 1, page);
2711
2712         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2713                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2714
2715         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2716                                          chip->ecc.total);
2717         if (ret)
2718                 return ret;
2719
2720         eccsteps = chip->ecc.steps;
2721         p = buf;
2722
2723         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2724                 int stat;
2725
2726                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2727                 if (stat < 0) {
2728                         mtd->ecc_stats.failed++;
2729                 } else {
2730                         mtd->ecc_stats.corrected += stat;
2731                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
2732                 }
2733         }
2734         return max_bitflips;
2735 }
2736
2737 /**
2738  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2739  * @chip: nand chip info structure
2740  * @data_offs: offset of requested data within the page
2741  * @readlen: data length
2742  * @bufpoi: buffer to store read data
2743  * @page: page number to read
2744  */
2745 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2746                              uint32_t readlen, uint8_t *bufpoi, int page)
2747 {
2748         struct mtd_info *mtd = nand_to_mtd(chip);
2749         int start_step, end_step, num_steps, ret;
2750         uint8_t *p;
2751         int data_col_addr, i, gaps = 0;
2752         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2753         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2754         int index, section = 0;
2755         unsigned int max_bitflips = 0;
2756         struct mtd_oob_region oobregion = { };
2757
2758         /* Column address within the page aligned to ECC size (256bytes) */
2759         start_step = data_offs / chip->ecc.size;
2760         end_step = (data_offs + readlen - 1) / chip->ecc.size;
2761         num_steps = end_step - start_step + 1;
2762         index = start_step * chip->ecc.bytes;
2763
2764         /* Data size aligned to ECC ecc.size */
2765         datafrag_len = num_steps * chip->ecc.size;
2766         eccfrag_len = num_steps * chip->ecc.bytes;
2767
2768         data_col_addr = start_step * chip->ecc.size;
2769         /* If we read not a page aligned data */
2770         p = bufpoi + data_col_addr;
2771         ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2772         if (ret)
2773                 return ret;
2774
2775         /* Calculate ECC */
2776         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2777                 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2778
2779         /*
2780          * The performance is faster if we position offsets according to
2781          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2782          */
2783         ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2784         if (ret)
2785                 return ret;
2786
2787         if (oobregion.length < eccfrag_len)
2788                 gaps = 1;
2789
2790         if (gaps) {
2791                 ret = nand_change_read_column_op(chip, mtd->writesize,
2792                                                  chip->oob_poi, mtd->oobsize,
2793                                                  false);
2794                 if (ret)
2795                         return ret;
2796         } else {
2797                 /*
2798                  * Send the command to read the particular ECC bytes take care
2799                  * about buswidth alignment in read_buf.
2800                  */
2801                 aligned_pos = oobregion.offset & ~(busw - 1);
2802                 aligned_len = eccfrag_len;
2803                 if (oobregion.offset & (busw - 1))
2804                         aligned_len++;
2805                 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2806                     (busw - 1))
2807                         aligned_len++;
2808
2809                 ret = nand_change_read_column_op(chip,
2810                                                  mtd->writesize + aligned_pos,
2811                                                  &chip->oob_poi[aligned_pos],
2812                                                  aligned_len, false);
2813                 if (ret)
2814                         return ret;
2815         }
2816
2817         ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2818                                          chip->oob_poi, index, eccfrag_len);
2819         if (ret)
2820                 return ret;
2821
2822         p = bufpoi + data_col_addr;
2823         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2824                 int stat;
2825
2826                 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2827                                          &chip->ecc.calc_buf[i]);
2828                 if (stat == -EBADMSG &&
2829                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2830                         /* check for empty pages with bitflips */
2831                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2832                                                 &chip->ecc.code_buf[i],
2833                                                 chip->ecc.bytes,
2834                                                 NULL, 0,
2835                                                 chip->ecc.strength);
2836                 }
2837
2838                 if (stat < 0) {
2839                         mtd->ecc_stats.failed++;
2840                 } else {
2841                         mtd->ecc_stats.corrected += stat;
2842                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
2843                 }
2844         }
2845         return max_bitflips;
2846 }
2847
2848 /**
2849  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2850  * @chip: nand chip info structure
2851  * @buf: buffer to store read data
2852  * @oob_required: caller requires OOB data read to chip->oob_poi
2853  * @page: page number to read
2854  *
2855  * Not for syndrome calculating ECC controllers which need a special oob layout.
2856  */
2857 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2858                                 int oob_required, int page)
2859 {
2860         struct mtd_info *mtd = nand_to_mtd(chip);
2861         int i, eccsize = chip->ecc.size, ret;
2862         int eccbytes = chip->ecc.bytes;
2863         int eccsteps = chip->ecc.steps;
2864         uint8_t *p = buf;
2865         uint8_t *ecc_calc = chip->ecc.calc_buf;
2866         uint8_t *ecc_code = chip->ecc.code_buf;
2867         unsigned int max_bitflips = 0;
2868
2869         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2870         if (ret)
2871                 return ret;
2872
2873         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2874                 chip->ecc.hwctl(chip, NAND_ECC_READ);
2875
2876                 ret = nand_read_data_op(chip, p, eccsize, false);
2877                 if (ret)
2878                         return ret;
2879
2880                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2881         }
2882
2883         ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2884         if (ret)
2885                 return ret;
2886
2887         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2888                                          chip->ecc.total);
2889         if (ret)
2890                 return ret;
2891
2892         eccsteps = chip->ecc.steps;
2893         p = buf;
2894
2895         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2896                 int stat;
2897
2898                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2899                 if (stat == -EBADMSG &&
2900                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2901                         /* check for empty pages with bitflips */
2902                         stat = nand_check_erased_ecc_chunk(p, eccsize,
2903                                                 &ecc_code[i], eccbytes,
2904                                                 NULL, 0,
2905                                                 chip->ecc.strength);
2906                 }
2907
2908                 if (stat < 0) {
2909                         mtd->ecc_stats.failed++;
2910                 } else {
2911                         mtd->ecc_stats.corrected += stat;
2912                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
2913                 }
2914         }
2915         return max_bitflips;
2916 }
2917
2918 /**
2919  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
2920  * @chip: nand chip info structure
2921  * @buf: buffer to store read data
2922  * @oob_required: caller requires OOB data read to chip->oob_poi
2923  * @page: page number to read
2924  *
2925  * Hardware ECC for large page chips, require OOB to be read first. For this
2926  * ECC mode, the write_page method is re-used from ECC_HW. These methods
2927  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
2928  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
2929  * the data area, by overwriting the NAND manufacturer bad block markings.
2930  */
2931 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
2932                                           int oob_required, int page)
2933 {
2934         struct mtd_info *mtd = nand_to_mtd(chip);
2935         int i, eccsize = chip->ecc.size, ret;
2936         int eccbytes = chip->ecc.bytes;
2937         int eccsteps = chip->ecc.steps;
2938         uint8_t *p = buf;
2939         uint8_t *ecc_code = chip->ecc.code_buf;
2940         uint8_t *ecc_calc = chip->ecc.calc_buf;
2941         unsigned int max_bitflips = 0;
2942
2943         /* Read the OOB area first */
2944         ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2945         if (ret)
2946                 return ret;
2947
2948         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2949         if (ret)
2950                 return ret;
2951
2952         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2953                                          chip->ecc.total);
2954         if (ret)
2955                 return ret;
2956
2957         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2958                 int stat;
2959
2960                 chip->ecc.hwctl(chip, NAND_ECC_READ);
2961
2962                 ret = nand_read_data_op(chip, p, eccsize, false);
2963                 if (ret)
2964                         return ret;
2965
2966                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2967
2968                 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
2969                 if (stat == -EBADMSG &&
2970                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2971                         /* check for empty pages with bitflips */
2972                         stat = nand_check_erased_ecc_chunk(p, eccsize,
2973                                                 &ecc_code[i], eccbytes,
2974                                                 NULL, 0,
2975                                                 chip->ecc.strength);
2976                 }
2977
2978                 if (stat < 0) {
2979                         mtd->ecc_stats.failed++;
2980                 } else {
2981                         mtd->ecc_stats.corrected += stat;
2982                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
2983                 }
2984         }
2985         return max_bitflips;
2986 }
2987
2988 /**
2989  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
2990  * @chip: nand chip info structure
2991  * @buf: buffer to store read data
2992  * @oob_required: caller requires OOB data read to chip->oob_poi
2993  * @page: page number to read
2994  *
2995  * The hw generator calculates the error syndrome automatically. Therefore we
2996  * need a special oob layout and handling.
2997  */
2998 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
2999                                    int oob_required, int page)
3000 {
3001         struct mtd_info *mtd = nand_to_mtd(chip);
3002         int ret, i, eccsize = chip->ecc.size;
3003         int eccbytes = chip->ecc.bytes;
3004         int eccsteps = chip->ecc.steps;
3005         int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3006         uint8_t *p = buf;
3007         uint8_t *oob = chip->oob_poi;
3008         unsigned int max_bitflips = 0;
3009
3010         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3011         if (ret)
3012                 return ret;
3013
3014         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3015                 int stat;
3016
3017                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3018
3019                 ret = nand_read_data_op(chip, p, eccsize, false);
3020                 if (ret)
3021                         return ret;
3022
3023                 if (chip->ecc.prepad) {
3024                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3025                                                 false);
3026                         if (ret)
3027                                 return ret;
3028
3029                         oob += chip->ecc.prepad;
3030                 }
3031
3032                 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3033
3034                 ret = nand_read_data_op(chip, oob, eccbytes, false);
3035                 if (ret)
3036                         return ret;
3037
3038                 stat = chip->ecc.correct(chip, p, oob, NULL);
3039
3040                 oob += eccbytes;
3041
3042                 if (chip->ecc.postpad) {
3043                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3044                                                 false);
3045                         if (ret)
3046                                 return ret;
3047
3048                         oob += chip->ecc.postpad;
3049                 }
3050
3051                 if (stat == -EBADMSG &&
3052                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3053                         /* check for empty pages with bitflips */
3054                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3055                                                            oob - eccpadbytes,
3056                                                            eccpadbytes,
3057                                                            NULL, 0,
3058                                                            chip->ecc.strength);
3059                 }
3060
3061                 if (stat < 0) {
3062                         mtd->ecc_stats.failed++;
3063                 } else {
3064                         mtd->ecc_stats.corrected += stat;
3065                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3066                 }
3067         }
3068
3069         /* Calculate remaining oob bytes */
3070         i = mtd->oobsize - (oob - chip->oob_poi);
3071         if (i) {
3072                 ret = nand_read_data_op(chip, oob, i, false);
3073                 if (ret)
3074                         return ret;
3075         }
3076
3077         return max_bitflips;
3078 }
3079
3080 /**
3081  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3082  * @chip: NAND chip object
3083  * @oob: oob destination address
3084  * @ops: oob ops structure
3085  * @len: size of oob to transfer
3086  */
3087 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3088                                   struct mtd_oob_ops *ops, size_t len)
3089 {
3090         struct mtd_info *mtd = nand_to_mtd(chip);
3091         int ret;
3092
3093         switch (ops->mode) {
3094
3095         case MTD_OPS_PLACE_OOB:
3096         case MTD_OPS_RAW:
3097                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3098                 return oob + len;
3099
3100         case MTD_OPS_AUTO_OOB:
3101                 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3102                                                   ops->ooboffs, len);
3103                 BUG_ON(ret);
3104                 return oob + len;
3105
3106         default:
3107                 BUG();
3108         }
3109         return NULL;
3110 }
3111
3112 /**
3113  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3114  * @chip: NAND chip object
3115  * @retry_mode: the retry mode to use
3116  *
3117  * Some vendors supply a special command to shift the Vt threshold, to be used
3118  * when there are too many bitflips in a page (i.e., ECC error). After setting
3119  * a new threshold, the host should retry reading the page.
3120  */
3121 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3122 {
3123         pr_debug("setting READ RETRY mode %d\n", retry_mode);
3124
3125         if (retry_mode >= chip->read_retries)
3126                 return -EINVAL;
3127
3128         if (!chip->setup_read_retry)
3129                 return -EOPNOTSUPP;
3130
3131         return chip->setup_read_retry(chip, retry_mode);
3132 }
3133
3134 static void nand_wait_readrdy(struct nand_chip *chip)
3135 {
3136         const struct nand_sdr_timings *sdr;
3137
3138         if (!(chip->options & NAND_NEED_READRDY))
3139                 return;
3140
3141         sdr = nand_get_sdr_timings(&chip->data_interface);
3142         WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3143 }
3144
3145 /**
3146  * nand_do_read_ops - [INTERN] Read data with ECC
3147  * @chip: NAND chip object
3148  * @from: offset to read from
3149  * @ops: oob ops structure
3150  *
3151  * Internal function. Called with chip held.
3152  */
3153 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3154                             struct mtd_oob_ops *ops)
3155 {
3156         int chipnr, page, realpage, col, bytes, aligned, oob_required;
3157         struct mtd_info *mtd = nand_to_mtd(chip);
3158         int ret = 0;
3159         uint32_t readlen = ops->len;
3160         uint32_t oobreadlen = ops->ooblen;
3161         uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3162
3163         uint8_t *bufpoi, *oob, *buf;
3164         int use_bufpoi;
3165         unsigned int max_bitflips = 0;
3166         int retry_mode = 0;
3167         bool ecc_fail = false;
3168
3169         chipnr = (int)(from >> chip->chip_shift);
3170         nand_select_target(chip, chipnr);
3171
3172         realpage = (int)(from >> chip->page_shift);
3173         page = realpage & chip->pagemask;
3174
3175         col = (int)(from & (mtd->writesize - 1));
3176
3177         buf = ops->datbuf;
3178         oob = ops->oobbuf;
3179         oob_required = oob ? 1 : 0;
3180
3181         while (1) {
3182                 unsigned int ecc_failures = mtd->ecc_stats.failed;
3183
3184                 bytes = min(mtd->writesize - col, readlen);
3185                 aligned = (bytes == mtd->writesize);
3186
3187                 if (!aligned)
3188                         use_bufpoi = 1;
3189                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3190                         use_bufpoi = !virt_addr_valid(buf) ||
3191                                      !IS_ALIGNED((unsigned long)buf,
3192                                                  chip->buf_align);
3193                 else
3194                         use_bufpoi = 0;
3195
3196                 /* Is the current page in the buffer? */
3197                 if (realpage != chip->pagecache.page || oob) {
3198                         bufpoi = use_bufpoi ? chip->data_buf : buf;
3199
3200                         if (use_bufpoi && aligned)
3201                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
3202                                                  __func__, buf);
3203
3204 read_retry:
3205                         /*
3206                          * Now read the page into the buffer.  Absent an error,
3207                          * the read methods return max bitflips per ecc step.
3208                          */
3209                         if (unlikely(ops->mode == MTD_OPS_RAW))
3210                                 ret = chip->ecc.read_page_raw(chip, bufpoi,
3211                                                               oob_required,
3212                                                               page);
3213                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3214                                  !oob)
3215                                 ret = chip->ecc.read_subpage(chip, col, bytes,
3216                                                              bufpoi, page);
3217                         else
3218                                 ret = chip->ecc.read_page(chip, bufpoi,
3219                                                           oob_required, page);
3220                         if (ret < 0) {
3221                                 if (use_bufpoi)
3222                                         /* Invalidate page cache */
3223                                         chip->pagecache.page = -1;
3224                                 break;
3225                         }
3226
3227                         /* Transfer not aligned data */
3228                         if (use_bufpoi) {
3229                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3230                                     !(mtd->ecc_stats.failed - ecc_failures) &&
3231                                     (ops->mode != MTD_OPS_RAW)) {
3232                                         chip->pagecache.page = realpage;
3233                                         chip->pagecache.bitflips = ret;
3234                                 } else {
3235                                         /* Invalidate page cache */
3236                                         chip->pagecache.page = -1;
3237                                 }
3238                                 memcpy(buf, chip->data_buf + col, bytes);
3239                         }
3240
3241                         if (unlikely(oob)) {
3242                                 int toread = min(oobreadlen, max_oobsize);
3243
3244                                 if (toread) {
3245                                         oob = nand_transfer_oob(chip, oob, ops,
3246                                                                 toread);
3247                                         oobreadlen -= toread;
3248                                 }
3249                         }
3250
3251                         nand_wait_readrdy(chip);
3252
3253                         if (mtd->ecc_stats.failed - ecc_failures) {
3254                                 if (retry_mode + 1 < chip->read_retries) {
3255                                         retry_mode++;
3256                                         ret = nand_setup_read_retry(chip,
3257                                                         retry_mode);
3258                                         if (ret < 0)
3259                                                 break;
3260
3261                                         /* Reset failures; retry */
3262                                         mtd->ecc_stats.failed = ecc_failures;
3263                                         goto read_retry;
3264                                 } else {
3265                                         /* No more retry modes; real failure */
3266                                         ecc_fail = true;
3267                                 }
3268                         }
3269
3270                         buf += bytes;
3271                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
3272                 } else {
3273                         memcpy(buf, chip->data_buf + col, bytes);
3274                         buf += bytes;
3275                         max_bitflips = max_t(unsigned int, max_bitflips,
3276                                              chip->pagecache.bitflips);
3277                 }
3278
3279                 readlen -= bytes;
3280
3281                 /* Reset to retry mode 0 */
3282                 if (retry_mode) {
3283                         ret = nand_setup_read_retry(chip, 0);
3284                         if (ret < 0)
3285                                 break;
3286                         retry_mode = 0;
3287                 }
3288
3289                 if (!readlen)
3290                         break;
3291
3292                 /* For subsequent reads align to page boundary */
3293                 col = 0;
3294                 /* Increment page address */
3295                 realpage++;
3296
3297                 page = realpage & chip->pagemask;
3298                 /* Check, if we cross a chip boundary */
3299                 if (!page) {
3300                         chipnr++;
3301                         nand_deselect_target(chip);
3302                         nand_select_target(chip, chipnr);
3303                 }
3304         }
3305         nand_deselect_target(chip);
3306
3307         ops->retlen = ops->len - (size_t) readlen;
3308         if (oob)
3309                 ops->oobretlen = ops->ooblen - oobreadlen;
3310
3311         if (ret < 0)
3312                 return ret;
3313
3314         if (ecc_fail)
3315                 return -EBADMSG;
3316
3317         return max_bitflips;
3318 }
3319
3320 /**
3321  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3322  * @chip: nand chip info structure
3323  * @page: page number to read
3324  */
3325 int nand_read_oob_std(struct nand_chip *chip, int page)
3326 {
3327         struct mtd_info *mtd = nand_to_mtd(chip);
3328
3329         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3330 }
3331 EXPORT_SYMBOL(nand_read_oob_std);
3332
3333 /**
3334  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3335  *                          with syndromes
3336  * @chip: nand chip info structure
3337  * @page: page number to read
3338  */
3339 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3340 {
3341         struct mtd_info *mtd = nand_to_mtd(chip);
3342         int length = mtd->oobsize;
3343         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3344         int eccsize = chip->ecc.size;
3345         uint8_t *bufpoi = chip->oob_poi;
3346         int i, toread, sndrnd = 0, pos, ret;
3347
3348         ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3349         if (ret)
3350                 return ret;
3351
3352         for (i = 0; i < chip->ecc.steps; i++) {
3353                 if (sndrnd) {
3354                         int ret;
3355
3356                         pos = eccsize + i * (eccsize + chunk);
3357                         if (mtd->writesize > 512)
3358                                 ret = nand_change_read_column_op(chip, pos,
3359                                                                  NULL, 0,
3360                                                                  false);
3361                         else
3362                                 ret = nand_read_page_op(chip, page, pos, NULL,
3363                                                         0);
3364
3365                         if (ret)
3366                                 return ret;
3367                 } else
3368                         sndrnd = 1;
3369                 toread = min_t(int, length, chunk);
3370
3371                 ret = nand_read_data_op(chip, bufpoi, toread, false);
3372                 if (ret)
3373                         return ret;
3374
3375                 bufpoi += toread;
3376                 length -= toread;
3377         }
3378         if (length > 0) {
3379                 ret = nand_read_data_op(chip, bufpoi, length, false);
3380                 if (ret)
3381                         return ret;
3382         }
3383
3384         return 0;
3385 }
3386
3387 /**
3388  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3389  * @chip: nand chip info structure
3390  * @page: page number to write
3391  */
3392 int nand_write_oob_std(struct nand_chip *chip, int page)
3393 {
3394         struct mtd_info *mtd = nand_to_mtd(chip);
3395
3396         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3397                                  mtd->oobsize);
3398 }
3399 EXPORT_SYMBOL(nand_write_oob_std);
3400
3401 /**
3402  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3403  *                           with syndrome - only for large page flash
3404  * @chip: nand chip info structure
3405  * @page: page number to write
3406  */
3407 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3408 {
3409         struct mtd_info *mtd = nand_to_mtd(chip);
3410         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3411         int eccsize = chip->ecc.size, length = mtd->oobsize;
3412         int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3413         const uint8_t *bufpoi = chip->oob_poi;
3414
3415         /*
3416          * data-ecc-data-ecc ... ecc-oob
3417          * or
3418          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3419          */
3420         if (!chip->ecc.prepad && !chip->ecc.postpad) {
3421                 pos = steps * (eccsize + chunk);
3422                 steps = 0;
3423         } else
3424                 pos = eccsize;
3425
3426         ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3427         if (ret)
3428                 return ret;
3429
3430         for (i = 0; i < steps; i++) {
3431                 if (sndcmd) {
3432                         if (mtd->writesize <= 512) {
3433                                 uint32_t fill = 0xFFFFFFFF;
3434
3435                                 len = eccsize;
3436                                 while (len > 0) {
3437                                         int num = min_t(int, len, 4);
3438
3439                                         ret = nand_write_data_op(chip, &fill,
3440                                                                  num, false);
3441                                         if (ret)
3442                                                 return ret;
3443
3444                                         len -= num;
3445                                 }
3446                         } else {
3447                                 pos = eccsize + i * (eccsize + chunk);
3448                                 ret = nand_change_write_column_op(chip, pos,
3449                                                                   NULL, 0,
3450                                                                   false);
3451                                 if (ret)
3452                                         return ret;
3453                         }
3454                 } else
3455                         sndcmd = 1;
3456                 len = min_t(int, length, chunk);
3457
3458                 ret = nand_write_data_op(chip, bufpoi, len, false);
3459                 if (ret)
3460                         return ret;
3461
3462                 bufpoi += len;
3463                 length -= len;
3464         }
3465         if (length > 0) {
3466                 ret = nand_write_data_op(chip, bufpoi, length, false);
3467                 if (ret)
3468                         return ret;
3469         }
3470
3471         return nand_prog_page_end_op(chip);
3472 }
3473
3474 /**
3475  * nand_do_read_oob - [INTERN] NAND read out-of-band
3476  * @chip: NAND chip object
3477  * @from: offset to read from
3478  * @ops: oob operations description structure
3479  *
3480  * NAND read out-of-band data from the spare area.
3481  */
3482 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3483                             struct mtd_oob_ops *ops)
3484 {
3485         struct mtd_info *mtd = nand_to_mtd(chip);
3486         unsigned int max_bitflips = 0;
3487         int page, realpage, chipnr;
3488         struct mtd_ecc_stats stats;
3489         int readlen = ops->ooblen;
3490         int len;
3491         uint8_t *buf = ops->oobbuf;
3492         int ret = 0;
3493
3494         pr_debug("%s: from = 0x%08Lx, len = %i\n",
3495                         __func__, (unsigned long long)from, readlen);
3496
3497         stats = mtd->ecc_stats;
3498
3499         len = mtd_oobavail(mtd, ops);
3500
3501         chipnr = (int)(from >> chip->chip_shift);
3502         nand_select_target(chip, chipnr);
3503
3504         /* Shift to get page */
3505         realpage = (int)(from >> chip->page_shift);
3506         page = realpage & chip->pagemask;
3507
3508         while (1) {
3509                 if (ops->mode == MTD_OPS_RAW)
3510                         ret = chip->ecc.read_oob_raw(chip, page);
3511                 else
3512                         ret = chip->ecc.read_oob(chip, page);
3513
3514                 if (ret < 0)
3515                         break;
3516
3517                 len = min(len, readlen);
3518                 buf = nand_transfer_oob(chip, buf, ops, len);
3519
3520                 nand_wait_readrdy(chip);
3521
3522                 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3523
3524                 readlen -= len;
3525                 if (!readlen)
3526                         break;
3527
3528                 /* Increment page address */
3529                 realpage++;
3530
3531                 page = realpage & chip->pagemask;
3532                 /* Check, if we cross a chip boundary */
3533                 if (!page) {
3534                         chipnr++;
3535                         nand_deselect_target(chip);
3536                         nand_select_target(chip, chipnr);
3537                 }
3538         }
3539         nand_deselect_target(chip);
3540
3541         ops->oobretlen = ops->ooblen - readlen;
3542
3543         if (ret < 0)
3544                 return ret;
3545
3546         if (mtd->ecc_stats.failed - stats.failed)
3547                 return -EBADMSG;
3548
3549         return max_bitflips;
3550 }
3551
3552 /**
3553  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3554  * @mtd: MTD device structure
3555  * @from: offset to read from
3556  * @ops: oob operation description structure
3557  *
3558  * NAND read data and/or out-of-band data.
3559  */
3560 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3561                          struct mtd_oob_ops *ops)
3562 {
3563         struct nand_chip *chip = mtd_to_nand(mtd);
3564         int ret;
3565
3566         ops->retlen = 0;
3567
3568         if (ops->mode != MTD_OPS_PLACE_OOB &&
3569             ops->mode != MTD_OPS_AUTO_OOB &&
3570             ops->mode != MTD_OPS_RAW)
3571                 return -ENOTSUPP;
3572
3573         ret = nand_get_device(chip);
3574         if (ret)
3575                 return ret;
3576
3577         if (!ops->datbuf)
3578                 ret = nand_do_read_oob(chip, from, ops);
3579         else
3580                 ret = nand_do_read_ops(chip, from, ops);
3581
3582         nand_release_device(chip);
3583         return ret;
3584 }
3585
3586 /**
3587  * nand_write_page_raw_notsupp - dummy raw page write function
3588  * @chip: nand chip info structure
3589  * @buf: data buffer
3590  * @oob_required: must write chip->oob_poi to OOB
3591  * @page: page number to write
3592  *
3593  * Returns -ENOTSUPP unconditionally.
3594  */
3595 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3596                                 int oob_required, int page)
3597 {
3598         return -ENOTSUPP;
3599 }
3600
3601 /**
3602  * nand_write_page_raw - [INTERN] raw page write function
3603  * @chip: nand chip info structure
3604  * @buf: data buffer
3605  * @oob_required: must write chip->oob_poi to OOB
3606  * @page: page number to write
3607  *
3608  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3609  */
3610 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3611                         int oob_required, int page)
3612 {
3613         struct mtd_info *mtd = nand_to_mtd(chip);
3614         int ret;
3615
3616         ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3617         if (ret)
3618                 return ret;
3619
3620         if (oob_required) {
3621                 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3622                                          false);
3623                 if (ret)
3624                         return ret;
3625         }
3626
3627         return nand_prog_page_end_op(chip);
3628 }
3629 EXPORT_SYMBOL(nand_write_page_raw);
3630
3631 /**
3632  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3633  * @chip: nand chip info structure
3634  * @buf: data buffer
3635  * @oob_required: must write chip->oob_poi to OOB
3636  * @page: page number to write
3637  *
3638  * We need a special oob layout and handling even when ECC isn't checked.
3639  */
3640 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3641                                         const uint8_t *buf, int oob_required,
3642                                         int page)
3643 {
3644         struct mtd_info *mtd = nand_to_mtd(chip);
3645         int eccsize = chip->ecc.size;
3646         int eccbytes = chip->ecc.bytes;
3647         uint8_t *oob = chip->oob_poi;
3648         int steps, size, ret;
3649
3650         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3651         if (ret)
3652                 return ret;
3653
3654         for (steps = chip->ecc.steps; steps > 0; steps--) {
3655                 ret = nand_write_data_op(chip, buf, eccsize, false);
3656                 if (ret)
3657                         return ret;
3658
3659                 buf += eccsize;
3660
3661                 if (chip->ecc.prepad) {
3662                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3663                                                  false);
3664                         if (ret)
3665                                 return ret;
3666
3667                         oob += chip->ecc.prepad;
3668                 }
3669
3670                 ret = nand_write_data_op(chip, oob, eccbytes, false);
3671                 if (ret)
3672                         return ret;
3673
3674                 oob += eccbytes;
3675
3676                 if (chip->ecc.postpad) {
3677                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3678                                                  false);
3679                         if (ret)
3680                                 return ret;
3681
3682                         oob += chip->ecc.postpad;
3683                 }
3684         }
3685
3686         size = mtd->oobsize - (oob - chip->oob_poi);
3687         if (size) {
3688                 ret = nand_write_data_op(chip, oob, size, false);
3689                 if (ret)
3690                         return ret;
3691         }
3692
3693         return nand_prog_page_end_op(chip);
3694 }
3695 /**
3696  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3697  * @chip: nand chip info structure
3698  * @buf: data buffer
3699  * @oob_required: must write chip->oob_poi to OOB
3700  * @page: page number to write
3701  */
3702 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3703                                  int oob_required, int page)
3704 {
3705         struct mtd_info *mtd = nand_to_mtd(chip);
3706         int i, eccsize = chip->ecc.size, ret;
3707         int eccbytes = chip->ecc.bytes;
3708         int eccsteps = chip->ecc.steps;
3709         uint8_t *ecc_calc = chip->ecc.calc_buf;
3710         const uint8_t *p = buf;
3711
3712         /* Software ECC calculation */
3713         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3714                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3715
3716         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3717                                          chip->ecc.total);
3718         if (ret)
3719                 return ret;
3720
3721         return chip->ecc.write_page_raw(chip, buf, 1, page);
3722 }
3723
3724 /**
3725  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3726  * @chip: nand chip info structure
3727  * @buf: data buffer
3728  * @oob_required: must write chip->oob_poi to OOB
3729  * @page: page number to write
3730  */
3731 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3732                                  int oob_required, int page)
3733 {
3734         struct mtd_info *mtd = nand_to_mtd(chip);
3735         int i, eccsize = chip->ecc.size, ret;
3736         int eccbytes = chip->ecc.bytes;
3737         int eccsteps = chip->ecc.steps;
3738         uint8_t *ecc_calc = chip->ecc.calc_buf;
3739         const uint8_t *p = buf;
3740
3741         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3742         if (ret)
3743                 return ret;
3744
3745         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3746                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3747
3748                 ret = nand_write_data_op(chip, p, eccsize, false);
3749                 if (ret)
3750                         return ret;
3751
3752                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3753         }
3754
3755         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3756                                          chip->ecc.total);
3757         if (ret)
3758                 return ret;
3759
3760         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3761         if (ret)
3762                 return ret;
3763
3764         return nand_prog_page_end_op(chip);
3765 }
3766
3767
3768 /**
3769  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3770  * @chip:       nand chip info structure
3771  * @offset:     column address of subpage within the page
3772  * @data_len:   data length
3773  * @buf:        data buffer
3774  * @oob_required: must write chip->oob_poi to OOB
3775  * @page: page number to write
3776  */
3777 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3778                                     uint32_t data_len, const uint8_t *buf,
3779                                     int oob_required, int page)
3780 {
3781         struct mtd_info *mtd = nand_to_mtd(chip);
3782         uint8_t *oob_buf  = chip->oob_poi;
3783         uint8_t *ecc_calc = chip->ecc.calc_buf;
3784         int ecc_size      = chip->ecc.size;
3785         int ecc_bytes     = chip->ecc.bytes;
3786         int ecc_steps     = chip->ecc.steps;
3787         uint32_t start_step = offset / ecc_size;
3788         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3789         int oob_bytes       = mtd->oobsize / ecc_steps;
3790         int step, ret;
3791
3792         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3793         if (ret)
3794                 return ret;
3795
3796         for (step = 0; step < ecc_steps; step++) {
3797                 /* configure controller for WRITE access */
3798                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3799
3800                 /* write data (untouched subpages already masked by 0xFF) */
3801                 ret = nand_write_data_op(chip, buf, ecc_size, false);
3802                 if (ret)
3803                         return ret;
3804
3805                 /* mask ECC of un-touched subpages by padding 0xFF */
3806                 if ((step < start_step) || (step > end_step))
3807                         memset(ecc_calc, 0xff, ecc_bytes);
3808                 else
3809                         chip->ecc.calculate(chip, buf, ecc_calc);
3810
3811                 /* mask OOB of un-touched subpages by padding 0xFF */
3812                 /* if oob_required, preserve OOB metadata of written subpage */
3813                 if (!oob_required || (step < start_step) || (step > end_step))
3814                         memset(oob_buf, 0xff, oob_bytes);
3815
3816                 buf += ecc_size;
3817                 ecc_calc += ecc_bytes;
3818                 oob_buf  += oob_bytes;
3819         }
3820
3821         /* copy calculated ECC for whole page to chip->buffer->oob */
3822         /* this include masked-value(0xFF) for unwritten subpages */
3823         ecc_calc = chip->ecc.calc_buf;
3824         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3825                                          chip->ecc.total);
3826         if (ret)
3827                 return ret;
3828
3829         /* write OOB buffer to NAND device */
3830         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3831         if (ret)
3832                 return ret;
3833
3834         return nand_prog_page_end_op(chip);
3835 }
3836
3837
3838 /**
3839  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3840  * @chip: nand chip info structure
3841  * @buf: data buffer
3842  * @oob_required: must write chip->oob_poi to OOB
3843  * @page: page number to write
3844  *
3845  * The hw generator calculates the error syndrome automatically. Therefore we
3846  * need a special oob layout and handling.
3847  */
3848 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3849                                     int oob_required, int page)
3850 {
3851         struct mtd_info *mtd = nand_to_mtd(chip);
3852         int i, eccsize = chip->ecc.size;
3853         int eccbytes = chip->ecc.bytes;
3854         int eccsteps = chip->ecc.steps;
3855         const uint8_t *p = buf;
3856         uint8_t *oob = chip->oob_poi;
3857         int ret;
3858
3859         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3860         if (ret)
3861                 return ret;
3862
3863         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3864                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3865
3866                 ret = nand_write_data_op(chip, p, eccsize, false);
3867                 if (ret)
3868                         return ret;
3869
3870                 if (chip->ecc.prepad) {
3871                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3872                                                  false);
3873                         if (ret)
3874                                 return ret;
3875
3876                         oob += chip->ecc.prepad;
3877                 }
3878
3879                 chip->ecc.calculate(chip, p, oob);
3880
3881                 ret = nand_write_data_op(chip, oob, eccbytes, false);
3882                 if (ret)
3883                         return ret;
3884
3885                 oob += eccbytes;
3886
3887                 if (chip->ecc.postpad) {
3888                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3889                                                  false);
3890                         if (ret)
3891                                 return ret;
3892
3893                         oob += chip->ecc.postpad;
3894                 }
3895         }
3896
3897         /* Calculate remaining oob bytes */
3898         i = mtd->oobsize - (oob - chip->oob_poi);
3899         if (i) {
3900                 ret = nand_write_data_op(chip, oob, i, false);
3901                 if (ret)
3902                         return ret;
3903         }
3904
3905         return nand_prog_page_end_op(chip);
3906 }
3907
3908 /**
3909  * nand_write_page - write one page
3910  * @chip: NAND chip descriptor
3911  * @offset: address offset within the page
3912  * @data_len: length of actual data to be written
3913  * @buf: the data to write
3914  * @oob_required: must write chip->oob_poi to OOB
3915  * @page: page number to write
3916  * @raw: use _raw version of write_page
3917  */
3918 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
3919                            int data_len, const uint8_t *buf, int oob_required,
3920                            int page, int raw)
3921 {
3922         struct mtd_info *mtd = nand_to_mtd(chip);
3923         int status, subpage;
3924
3925         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3926                 chip->ecc.write_subpage)
3927                 subpage = offset || (data_len < mtd->writesize);
3928         else
3929                 subpage = 0;
3930
3931         if (unlikely(raw))
3932                 status = chip->ecc.write_page_raw(chip, buf, oob_required,
3933                                                   page);
3934         else if (subpage)
3935                 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
3936                                                  oob_required, page);
3937         else
3938                 status = chip->ecc.write_page(chip, buf, oob_required, page);
3939
3940         if (status < 0)
3941                 return status;
3942
3943         return 0;
3944 }
3945
3946 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
3947
3948 /**
3949  * nand_do_write_ops - [INTERN] NAND write with ECC
3950  * @chip: NAND chip object
3951  * @to: offset to write to
3952  * @ops: oob operations description structure
3953  *
3954  * NAND write with ECC.
3955  */
3956 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
3957                              struct mtd_oob_ops *ops)
3958 {
3959         struct mtd_info *mtd = nand_to_mtd(chip);
3960         int chipnr, realpage, page, column;
3961         uint32_t writelen = ops->len;
3962
3963         uint32_t oobwritelen = ops->ooblen;
3964         uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
3965
3966         uint8_t *oob = ops->oobbuf;
3967         uint8_t *buf = ops->datbuf;
3968         int ret;
3969         int oob_required = oob ? 1 : 0;
3970
3971         ops->retlen = 0;
3972         if (!writelen)
3973                 return 0;
3974
3975         /* Reject writes, which are not page aligned */
3976         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
3977                 pr_notice("%s: attempt to write non page aligned data\n",
3978                            __func__);
3979                 return -EINVAL;
3980         }
3981
3982         column = to & (mtd->writesize - 1);
3983
3984         chipnr = (int)(to >> chip->chip_shift);
3985         nand_select_target(chip, chipnr);
3986
3987         /* Check, if it is write protected */
3988         if (nand_check_wp(chip)) {
3989                 ret = -EIO;
3990                 goto err_out;
3991         }
3992
3993         realpage = (int)(to >> chip->page_shift);
3994         page = realpage & chip->pagemask;
3995
3996         /* Invalidate the page cache, when we write to the cached page */
3997         if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
3998             ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
3999                 chip->pagecache.page = -1;
4000
4001         /* Don't allow multipage oob writes with offset */
4002         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4003                 ret = -EINVAL;
4004                 goto err_out;
4005         }
4006
4007         while (1) {
4008                 int bytes = mtd->writesize;
4009                 uint8_t *wbuf = buf;
4010                 int use_bufpoi;
4011                 int part_pagewr = (column || writelen < mtd->writesize);
4012
4013                 if (part_pagewr)
4014                         use_bufpoi = 1;
4015                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
4016                         use_bufpoi = !virt_addr_valid(buf) ||
4017                                      !IS_ALIGNED((unsigned long)buf,
4018                                                  chip->buf_align);
4019                 else
4020                         use_bufpoi = 0;
4021
4022                 /* Partial page write?, or need to use bounce buffer */
4023                 if (use_bufpoi) {
4024                         pr_debug("%s: using write bounce buffer for buf@%p\n",
4025                                          __func__, buf);
4026                         if (part_pagewr)
4027                                 bytes = min_t(int, bytes - column, writelen);
4028                         wbuf = nand_get_data_buf(chip);
4029                         memset(wbuf, 0xff, mtd->writesize);
4030                         memcpy(&wbuf[column], buf, bytes);
4031                 }
4032
4033                 if (unlikely(oob)) {
4034                         size_t len = min(oobwritelen, oobmaxlen);
4035                         oob = nand_fill_oob(chip, oob, len, ops);
4036                         oobwritelen -= len;
4037                 } else {
4038                         /* We still need to erase leftover OOB data */
4039                         memset(chip->oob_poi, 0xff, mtd->oobsize);
4040                 }
4041
4042                 ret = nand_write_page(chip, column, bytes, wbuf,
4043                                       oob_required, page,
4044                                       (ops->mode == MTD_OPS_RAW));
4045                 if (ret)
4046                         break;
4047
4048                 writelen -= bytes;
4049                 if (!writelen)
4050                         break;
4051
4052                 column = 0;
4053                 buf += bytes;
4054                 realpage++;
4055
4056                 page = realpage & chip->pagemask;
4057                 /* Check, if we cross a chip boundary */
4058                 if (!page) {
4059                         chipnr++;
4060                         nand_deselect_target(chip);
4061                         nand_select_target(chip, chipnr);
4062                 }
4063         }
4064
4065         ops->retlen = ops->len - writelen;
4066         if (unlikely(oob))
4067                 ops->oobretlen = ops->ooblen;
4068
4069 err_out:
4070         nand_deselect_target(chip);
4071         return ret;
4072 }
4073
4074 /**
4075  * panic_nand_write - [MTD Interface] NAND write with ECC
4076  * @mtd: MTD device structure
4077  * @to: offset to write to
4078  * @len: number of bytes to write
4079  * @retlen: pointer to variable to store the number of written bytes
4080  * @buf: the data to write
4081  *
4082  * NAND write with ECC. Used when performing writes in interrupt context, this
4083  * may for example be called by mtdoops when writing an oops while in panic.
4084  */
4085 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4086                             size_t *retlen, const uint8_t *buf)
4087 {
4088         struct nand_chip *chip = mtd_to_nand(mtd);
4089         int chipnr = (int)(to >> chip->chip_shift);
4090         struct mtd_oob_ops ops;
4091         int ret;
4092
4093         nand_select_target(chip, chipnr);
4094
4095         /* Wait for the device to get ready */
4096         panic_nand_wait(chip, 400);
4097
4098         memset(&ops, 0, sizeof(ops));
4099         ops.len = len;
4100         ops.datbuf = (uint8_t *)buf;
4101         ops.mode = MTD_OPS_PLACE_OOB;
4102
4103         ret = nand_do_write_ops(chip, to, &ops);
4104
4105         *retlen = ops.retlen;
4106         return ret;
4107 }
4108
4109 /**
4110  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4111  * @mtd: MTD device structure
4112  * @to: offset to write to
4113  * @ops: oob operation description structure
4114  */
4115 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4116                           struct mtd_oob_ops *ops)
4117 {
4118         struct nand_chip *chip = mtd_to_nand(mtd);
4119         int ret = -ENOTSUPP;
4120
4121         ops->retlen = 0;
4122
4123         ret = nand_get_device(chip);
4124         if (ret)
4125                 return ret;
4126
4127         switch (ops->mode) {
4128         case MTD_OPS_PLACE_OOB:
4129         case MTD_OPS_AUTO_OOB:
4130         case MTD_OPS_RAW:
4131                 break;
4132
4133         default:
4134                 goto out;
4135         }
4136
4137         if (!ops->datbuf)
4138                 ret = nand_do_write_oob(chip, to, ops);
4139         else
4140                 ret = nand_do_write_ops(chip, to, ops);
4141
4142 out:
4143         nand_release_device(chip);
4144         return ret;
4145 }
4146
4147 /**
4148  * nand_erase - [MTD Interface] erase block(s)
4149  * @mtd: MTD device structure
4150  * @instr: erase instruction
4151  *
4152  * Erase one ore more blocks.
4153  */
4154 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4155 {
4156         return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4157 }
4158
4159 /**
4160  * nand_erase_nand - [INTERN] erase block(s)
4161  * @chip: NAND chip object
4162  * @instr: erase instruction
4163  * @allowbbt: allow erasing the bbt area
4164  *
4165  * Erase one ore more blocks.
4166  */
4167 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4168                     int allowbbt)
4169 {
4170         int page, pages_per_block, ret, chipnr;
4171         loff_t len;
4172
4173         pr_debug("%s: start = 0x%012llx, len = %llu\n",
4174                         __func__, (unsigned long long)instr->addr,
4175                         (unsigned long long)instr->len);
4176
4177         if (check_offs_len(chip, instr->addr, instr->len))
4178                 return -EINVAL;
4179
4180         /* Grab the lock and see if the device is available */
4181         ret = nand_get_device(chip);
4182         if (ret)
4183                 return ret;
4184
4185         /* Shift to get first page */
4186         page = (int)(instr->addr >> chip->page_shift);
4187         chipnr = (int)(instr->addr >> chip->chip_shift);
4188
4189         /* Calculate pages in each block */
4190         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4191
4192         /* Select the NAND device */
4193         nand_select_target(chip, chipnr);
4194
4195         /* Check, if it is write protected */
4196         if (nand_check_wp(chip)) {
4197                 pr_debug("%s: device is write protected!\n",
4198                                 __func__);
4199                 ret = -EIO;
4200                 goto erase_exit;
4201         }
4202
4203         /* Loop through the pages */
4204         len = instr->len;
4205
4206         while (len) {
4207                 /* Check if we have a bad block, we do not erase bad blocks! */
4208                 if (nand_block_checkbad(chip, ((loff_t) page) <<
4209                                         chip->page_shift, allowbbt)) {
4210                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4211                                     __func__, page);
4212                         ret = -EIO;
4213                         goto erase_exit;
4214                 }
4215
4216                 /*
4217                  * Invalidate the page cache, if we erase the block which
4218                  * contains the current cached page.
4219                  */
4220                 if (page <= chip->pagecache.page && chip->pagecache.page <
4221                     (page + pages_per_block))
4222                         chip->pagecache.page = -1;
4223
4224                 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4225                                     (chip->phys_erase_shift - chip->page_shift));
4226                 if (ret) {
4227                         pr_debug("%s: failed erase, page 0x%08x\n",
4228                                         __func__, page);
4229                         instr->fail_addr =
4230                                 ((loff_t)page << chip->page_shift);
4231                         goto erase_exit;
4232                 }
4233
4234                 /* Increment page address and decrement length */
4235                 len -= (1ULL << chip->phys_erase_shift);
4236                 page += pages_per_block;
4237
4238                 /* Check, if we cross a chip boundary */
4239                 if (len && !(page & chip->pagemask)) {
4240                         chipnr++;
4241                         nand_deselect_target(chip);
4242                         nand_select_target(chip, chipnr);
4243                 }
4244         }
4245
4246         ret = 0;
4247 erase_exit:
4248
4249         /* Deselect and wake up anyone waiting on the device */
4250         nand_deselect_target(chip);
4251         nand_release_device(chip);
4252
4253         /* Return more or less happy */
4254         return ret;
4255 }
4256
4257 /**
4258  * nand_sync - [MTD Interface] sync
4259  * @mtd: MTD device structure
4260  *
4261  * Sync is actually a wait for chip ready function.
4262  */
4263 static void nand_sync(struct mtd_info *mtd)
4264 {
4265         struct nand_chip *chip = mtd_to_nand(mtd);
4266
4267         pr_debug("%s: called\n", __func__);
4268
4269         /* Grab the lock and see if the device is available */
4270         WARN_ON(nand_get_device(chip));
4271         /* Release it and go back */
4272         nand_release_device(chip);
4273 }
4274
4275 /**
4276  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4277  * @mtd: MTD device structure
4278  * @offs: offset relative to mtd start
4279  */
4280 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4281 {
4282         struct nand_chip *chip = mtd_to_nand(mtd);
4283         int chipnr = (int)(offs >> chip->chip_shift);
4284         int ret;
4285
4286         /* Select the NAND device */
4287         ret = nand_get_device(chip);
4288         if (ret)
4289                 return ret;
4290
4291         nand_select_target(chip, chipnr);
4292
4293         ret = nand_block_checkbad(chip, offs, 0);
4294
4295         nand_deselect_target(chip);
4296         nand_release_device(chip);
4297
4298         return ret;
4299 }
4300
4301 /**
4302  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4303  * @mtd: MTD device structure
4304  * @ofs: offset relative to mtd start
4305  */
4306 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4307 {
4308         int ret;
4309
4310         ret = nand_block_isbad(mtd, ofs);
4311         if (ret) {
4312                 /* If it was bad already, return success and do nothing */
4313                 if (ret > 0)
4314                         return 0;
4315                 return ret;
4316         }
4317
4318         return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4319 }
4320
4321 /**
4322  * nand_suspend - [MTD Interface] Suspend the NAND flash
4323  * @mtd: MTD device structure
4324  */
4325 static int nand_suspend(struct mtd_info *mtd)
4326 {
4327         struct nand_chip *chip = mtd_to_nand(mtd);
4328
4329         mutex_lock(&chip->lock);
4330         chip->suspended = 1;
4331         mutex_unlock(&chip->lock);
4332
4333         return 0;
4334 }
4335
4336 /**
4337  * nand_resume - [MTD Interface] Resume the NAND flash
4338  * @mtd: MTD device structure
4339  */
4340 static void nand_resume(struct mtd_info *mtd)
4341 {
4342         struct nand_chip *chip = mtd_to_nand(mtd);
4343
4344         mutex_lock(&chip->lock);
4345         if (chip->suspended)
4346                 chip->suspended = 0;
4347         else
4348                 pr_err("%s called for a chip which is not in suspended state\n",
4349                         __func__);
4350         mutex_unlock(&chip->lock);
4351 }
4352
4353 /**
4354  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4355  *                 prevent further operations
4356  * @mtd: MTD device structure
4357  */
4358 static void nand_shutdown(struct mtd_info *mtd)
4359 {
4360         nand_suspend(mtd);
4361 }
4362
4363 /* Set default functions */
4364 static void nand_set_defaults(struct nand_chip *chip)
4365 {
4366         /* If no controller is provided, use the dummy, legacy one. */
4367         if (!chip->controller) {
4368                 chip->controller = &chip->legacy.dummy_controller;
4369                 nand_controller_init(chip->controller);
4370         }
4371
4372         nand_legacy_set_defaults(chip);
4373
4374         if (!chip->buf_align)
4375                 chip->buf_align = 1;
4376 }
4377
4378 /* Sanitize ONFI strings so we can safely print them */
4379 void sanitize_string(uint8_t *s, size_t len)
4380 {
4381         ssize_t i;
4382
4383         /* Null terminate */
4384         s[len - 1] = 0;
4385
4386         /* Remove non printable chars */
4387         for (i = 0; i < len - 1; i++) {
4388                 if (s[i] < ' ' || s[i] > 127)
4389                         s[i] = '?';
4390         }
4391
4392         /* Remove trailing spaces */
4393         strim(s);
4394 }
4395
4396 /*
4397  * nand_id_has_period - Check if an ID string has a given wraparound period
4398  * @id_data: the ID string
4399  * @arrlen: the length of the @id_data array
4400  * @period: the period of repitition
4401  *
4402  * Check if an ID string is repeated within a given sequence of bytes at
4403  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4404  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4405  * if the repetition has a period of @period; otherwise, returns zero.
4406  */
4407 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4408 {
4409         int i, j;
4410         for (i = 0; i < period; i++)
4411                 for (j = i + period; j < arrlen; j += period)
4412                         if (id_data[i] != id_data[j])
4413                                 return 0;
4414         return 1;
4415 }
4416
4417 /*
4418  * nand_id_len - Get the length of an ID string returned by CMD_READID
4419  * @id_data: the ID string
4420  * @arrlen: the length of the @id_data array
4421
4422  * Returns the length of the ID string, according to known wraparound/trailing
4423  * zero patterns. If no pattern exists, returns the length of the array.
4424  */
4425 static int nand_id_len(u8 *id_data, int arrlen)
4426 {
4427         int last_nonzero, period;
4428
4429         /* Find last non-zero byte */
4430         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4431                 if (id_data[last_nonzero])
4432                         break;
4433
4434         /* All zeros */
4435         if (last_nonzero < 0)
4436                 return 0;
4437
4438         /* Calculate wraparound period */
4439         for (period = 1; period < arrlen; period++)
4440                 if (nand_id_has_period(id_data, arrlen, period))
4441                         break;
4442
4443         /* There's a repeated pattern */
4444         if (period < arrlen)
4445                 return period;
4446
4447         /* There are trailing zeros */
4448         if (last_nonzero < arrlen - 1)
4449                 return last_nonzero + 1;
4450
4451         /* No pattern detected */
4452         return arrlen;
4453 }
4454
4455 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4456 static int nand_get_bits_per_cell(u8 cellinfo)
4457 {
4458         int bits;
4459
4460         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4461         bits >>= NAND_CI_CELLTYPE_SHIFT;
4462         return bits + 1;
4463 }
4464
4465 /*
4466  * Many new NAND share similar device ID codes, which represent the size of the
4467  * chip. The rest of the parameters must be decoded according to generic or
4468  * manufacturer-specific "extended ID" decoding patterns.
4469  */
4470 void nand_decode_ext_id(struct nand_chip *chip)
4471 {
4472         struct nand_memory_organization *memorg;
4473         struct mtd_info *mtd = nand_to_mtd(chip);
4474         int extid;
4475         u8 *id_data = chip->id.data;
4476
4477         memorg = nanddev_get_memorg(&chip->base);
4478
4479         /* The 3rd id byte holds MLC / multichip data */
4480         memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4481         /* The 4th id byte is the important one */
4482         extid = id_data[3];
4483
4484         /* Calc pagesize */
4485         memorg->pagesize = 1024 << (extid & 0x03);
4486         mtd->writesize = memorg->pagesize;
4487         extid >>= 2;
4488         /* Calc oobsize */
4489         memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4490         mtd->oobsize = memorg->oobsize;
4491         extid >>= 2;
4492         /* Calc blocksize. Blocksize is multiples of 64KiB */
4493         memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4494                                        memorg->pagesize;
4495         mtd->erasesize = (64 * 1024) << (extid & 0x03);
4496         extid >>= 2;
4497         /* Get buswidth information */
4498         if (extid & 0x1)
4499                 chip->options |= NAND_BUSWIDTH_16;
4500 }
4501 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4502
4503 /*
4504  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4505  * decodes a matching ID table entry and assigns the MTD size parameters for
4506  * the chip.
4507  */
4508 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4509 {
4510         struct mtd_info *mtd = nand_to_mtd(chip);
4511         struct nand_memory_organization *memorg;
4512
4513         memorg = nanddev_get_memorg(&chip->base);
4514
4515         memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4516         mtd->erasesize = type->erasesize;
4517         memorg->pagesize = type->pagesize;
4518         mtd->writesize = memorg->pagesize;
4519         memorg->oobsize = memorg->pagesize / 32;
4520         mtd->oobsize = memorg->oobsize;
4521
4522         /* All legacy ID NAND are small-page, SLC */
4523         memorg->bits_per_cell = 1;
4524 }
4525
4526 /*
4527  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4528  * heuristic patterns using various detected parameters (e.g., manufacturer,
4529  * page size, cell-type information).
4530  */
4531 static void nand_decode_bbm_options(struct nand_chip *chip)
4532 {
4533         struct mtd_info *mtd = nand_to_mtd(chip);
4534
4535         /* Set the bad block position */
4536         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4537                 chip->badblockpos = NAND_BBM_POS_LARGE;
4538         else
4539                 chip->badblockpos = NAND_BBM_POS_SMALL;
4540 }
4541
4542 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4543 {
4544         return type->id_len;
4545 }
4546
4547 static bool find_full_id_nand(struct nand_chip *chip,
4548                               struct nand_flash_dev *type)
4549 {
4550         struct mtd_info *mtd = nand_to_mtd(chip);
4551         struct nand_memory_organization *memorg;
4552         u8 *id_data = chip->id.data;
4553
4554         memorg = nanddev_get_memorg(&chip->base);
4555
4556         if (!strncmp(type->id, id_data, type->id_len)) {
4557                 memorg->pagesize = type->pagesize;
4558                 mtd->writesize = memorg->pagesize;
4559                 memorg->pages_per_eraseblock = type->erasesize /
4560                                                type->pagesize;
4561                 mtd->erasesize = type->erasesize;
4562                 memorg->oobsize = type->oobsize;
4563                 mtd->oobsize = memorg->oobsize;
4564
4565                 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4566                 memorg->eraseblocks_per_lun =
4567                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4568                                            memorg->pagesize *
4569                                            memorg->pages_per_eraseblock);
4570                 chip->options |= type->options;
4571                 chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
4572                 chip->base.eccreq.step_size = NAND_ECC_STEP(type);
4573                 chip->onfi_timing_mode_default =
4574                                         type->onfi_timing_mode_default;
4575
4576                 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4577                 if (!chip->parameters.model)
4578                         return false;
4579
4580                 return true;
4581         }
4582         return false;
4583 }
4584
4585 /*
4586  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4587  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4588  * table.
4589  */
4590 static void nand_manufacturer_detect(struct nand_chip *chip)
4591 {
4592         /*
4593          * Try manufacturer detection if available and use
4594          * nand_decode_ext_id() otherwise.
4595          */
4596         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4597             chip->manufacturer.desc->ops->detect) {
4598                 struct nand_memory_organization *memorg;
4599
4600                 memorg = nanddev_get_memorg(&chip->base);
4601
4602                 /* The 3rd id byte holds MLC / multichip data */
4603                 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4604                 chip->manufacturer.desc->ops->detect(chip);
4605         } else {
4606                 nand_decode_ext_id(chip);
4607         }
4608 }
4609
4610 /*
4611  * Manufacturer initialization. This function is called for all NANDs including
4612  * ONFI and JEDEC compliant ones.
4613  * Manufacturer drivers should put all their specific initialization code in
4614  * their ->init() hook.
4615  */
4616 static int nand_manufacturer_init(struct nand_chip *chip)
4617 {
4618         if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4619             !chip->manufacturer.desc->ops->init)
4620                 return 0;
4621
4622         return chip->manufacturer.desc->ops->init(chip);
4623 }
4624
4625 /*
4626  * Manufacturer cleanup. This function is called for all NANDs including
4627  * ONFI and JEDEC compliant ones.
4628  * Manufacturer drivers should put all their specific cleanup code in their
4629  * ->cleanup() hook.
4630  */
4631 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4632 {
4633         /* Release manufacturer private data */
4634         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4635             chip->manufacturer.desc->ops->cleanup)
4636                 chip->manufacturer.desc->ops->cleanup(chip);
4637 }
4638
4639 static const char *
4640 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
4641 {
4642         return manufacturer ? manufacturer->name : "Unknown";
4643 }
4644
4645 /*
4646  * Get the flash and manufacturer id and lookup if the type is supported.
4647  */
4648 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4649 {
4650         const struct nand_manufacturer *manufacturer;
4651         struct mtd_info *mtd = nand_to_mtd(chip);
4652         struct nand_memory_organization *memorg;
4653         int busw, ret;
4654         u8 *id_data = chip->id.data;
4655         u8 maf_id, dev_id;
4656         u64 targetsize;
4657
4658         /*
4659          * Let's start by initializing memorg fields that might be left
4660          * unassigned by the ID-based detection logic.
4661          */
4662         memorg = nanddev_get_memorg(&chip->base);
4663         memorg->planes_per_lun = 1;
4664         memorg->luns_per_target = 1;
4665
4666         /*
4667          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4668          * after power-up.
4669          */
4670         ret = nand_reset(chip, 0);
4671         if (ret)
4672                 return ret;
4673
4674         /* Select the device */
4675         nand_select_target(chip, 0);
4676
4677         /* Send the command for reading device ID */
4678         ret = nand_readid_op(chip, 0, id_data, 2);
4679         if (ret)
4680                 return ret;
4681
4682         /* Read manufacturer and device IDs */
4683         maf_id = id_data[0];
4684         dev_id = id_data[1];
4685
4686         /*
4687          * Try again to make sure, as some systems the bus-hold or other
4688          * interface concerns can cause random data which looks like a
4689          * possibly credible NAND flash to appear. If the two results do
4690          * not match, ignore the device completely.
4691          */
4692
4693         /* Read entire ID string */
4694         ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4695         if (ret)
4696                 return ret;
4697
4698         if (id_data[0] != maf_id || id_data[1] != dev_id) {
4699                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4700                         maf_id, dev_id, id_data[0], id_data[1]);
4701                 return -ENODEV;
4702         }
4703
4704         chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4705
4706         /* Try to identify manufacturer */
4707         manufacturer = nand_get_manufacturer(maf_id);
4708         chip->manufacturer.desc = manufacturer;
4709
4710         if (!type)
4711                 type = nand_flash_ids;
4712
4713         /*
4714          * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4715          * override it.
4716          * This is required to make sure initial NAND bus width set by the
4717          * NAND controller driver is coherent with the real NAND bus width
4718          * (extracted by auto-detection code).
4719          */
4720         busw = chip->options & NAND_BUSWIDTH_16;
4721
4722         /*
4723          * The flag is only set (never cleared), reset it to its default value
4724          * before starting auto-detection.
4725          */
4726         chip->options &= ~NAND_BUSWIDTH_16;
4727
4728         for (; type->name != NULL; type++) {
4729                 if (is_full_id_nand(type)) {
4730                         if (find_full_id_nand(chip, type))
4731                                 goto ident_done;
4732                 } else if (dev_id == type->dev_id) {
4733                         break;
4734                 }
4735         }
4736
4737         if (!type->name || !type->pagesize) {
4738                 /* Check if the chip is ONFI compliant */
4739                 ret = nand_onfi_detect(chip);
4740                 if (ret < 0)
4741                         return ret;
4742                 else if (ret)
4743                         goto ident_done;
4744
4745                 /* Check if the chip is JEDEC compliant */
4746                 ret = nand_jedec_detect(chip);
4747                 if (ret < 0)
4748                         return ret;
4749                 else if (ret)
4750                         goto ident_done;
4751         }
4752
4753         if (!type->name)
4754                 return -ENODEV;
4755
4756         chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4757         if (!chip->parameters.model)
4758                 return -ENOMEM;
4759
4760         if (!type->pagesize)
4761                 nand_manufacturer_detect(chip);
4762         else
4763                 nand_decode_id(chip, type);
4764
4765         /* Get chip options */
4766         chip->options |= type->options;
4767
4768         memorg->eraseblocks_per_lun =
4769                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4770                                            memorg->pagesize *
4771                                            memorg->pages_per_eraseblock);
4772
4773 ident_done:
4774         if (!mtd->name)
4775                 mtd->name = chip->parameters.model;
4776
4777         if (chip->options & NAND_BUSWIDTH_AUTO) {
4778                 WARN_ON(busw & NAND_BUSWIDTH_16);
4779                 nand_set_defaults(chip);
4780         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4781                 /*
4782                  * Check, if buswidth is correct. Hardware drivers should set
4783                  * chip correct!
4784                  */
4785                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4786                         maf_id, dev_id);
4787                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4788                         mtd->name);
4789                 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4790                         (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4791                 ret = -EINVAL;
4792
4793                 goto free_detect_allocation;
4794         }
4795
4796         nand_decode_bbm_options(chip);
4797
4798         /* Calculate the address shift from the page size */
4799         chip->page_shift = ffs(mtd->writesize) - 1;
4800         /* Convert chipsize to number of pages per chip -1 */
4801         targetsize = nanddev_target_size(&chip->base);
4802         chip->pagemask = (targetsize >> chip->page_shift) - 1;
4803
4804         chip->bbt_erase_shift = chip->phys_erase_shift =
4805                 ffs(mtd->erasesize) - 1;
4806         if (targetsize & 0xffffffff)
4807                 chip->chip_shift = ffs((unsigned)targetsize) - 1;
4808         else {
4809                 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
4810                 chip->chip_shift += 32 - 1;
4811         }
4812
4813         if (chip->chip_shift - chip->page_shift > 16)
4814                 chip->options |= NAND_ROW_ADDR_3;
4815
4816         chip->badblockbits = 8;
4817
4818         nand_legacy_adjust_cmdfunc(chip);
4819
4820         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4821                 maf_id, dev_id);
4822         pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4823                 chip->parameters.model);
4824         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4825                 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4826                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4827         return 0;
4828
4829 free_detect_allocation:
4830         kfree(chip->parameters.model);
4831
4832         return ret;
4833 }
4834
4835 static const char * const nand_ecc_modes[] = {
4836         [NAND_ECC_NONE]         = "none",
4837         [NAND_ECC_SOFT]         = "soft",
4838         [NAND_ECC_HW]           = "hw",
4839         [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
4840         [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
4841         [NAND_ECC_ON_DIE]       = "on-die",
4842 };
4843
4844 static int of_get_nand_ecc_mode(struct device_node *np)
4845 {
4846         const char *pm;
4847         int err, i;
4848
4849         err = of_property_read_string(np, "nand-ecc-mode", &pm);
4850         if (err < 0)
4851                 return err;
4852
4853         for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4854                 if (!strcasecmp(pm, nand_ecc_modes[i]))
4855                         return i;
4856
4857         /*
4858          * For backward compatibility we support few obsoleted values that don't
4859          * have their mappings into nand_ecc_modes_t anymore (they were merged
4860          * with other enums).
4861          */
4862         if (!strcasecmp(pm, "soft_bch"))
4863                 return NAND_ECC_SOFT;
4864
4865         return -ENODEV;
4866 }
4867
4868 static const char * const nand_ecc_algos[] = {
4869         [NAND_ECC_HAMMING]      = "hamming",
4870         [NAND_ECC_BCH]          = "bch",
4871         [NAND_ECC_RS]           = "rs",
4872 };
4873
4874 static int of_get_nand_ecc_algo(struct device_node *np)
4875 {
4876         const char *pm;
4877         int err, i;
4878
4879         err = of_property_read_string(np, "nand-ecc-algo", &pm);
4880         if (!err) {
4881                 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4882                         if (!strcasecmp(pm, nand_ecc_algos[i]))
4883                                 return i;
4884                 return -ENODEV;
4885         }
4886
4887         /*
4888          * For backward compatibility we also read "nand-ecc-mode" checking
4889          * for some obsoleted values that were specifying ECC algorithm.
4890          */
4891         err = of_property_read_string(np, "nand-ecc-mode", &pm);
4892         if (err < 0)
4893                 return err;
4894
4895         if (!strcasecmp(pm, "soft"))
4896                 return NAND_ECC_HAMMING;
4897         else if (!strcasecmp(pm, "soft_bch"))
4898                 return NAND_ECC_BCH;
4899
4900         return -ENODEV;
4901 }
4902
4903 static int of_get_nand_ecc_step_size(struct device_node *np)
4904 {
4905         int ret;
4906         u32 val;
4907
4908         ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4909         return ret ? ret : val;
4910 }
4911
4912 static int of_get_nand_ecc_strength(struct device_node *np)
4913 {
4914         int ret;
4915         u32 val;
4916
4917         ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4918         return ret ? ret : val;
4919 }
4920
4921 static int of_get_nand_bus_width(struct device_node *np)
4922 {
4923         u32 val;
4924
4925         if (of_property_read_u32(np, "nand-bus-width", &val))
4926                 return 8;
4927
4928         switch (val) {
4929         case 8:
4930         case 16:
4931                 return val;
4932         default:
4933                 return -EIO;
4934         }
4935 }
4936
4937 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4938 {
4939         return of_property_read_bool(np, "nand-on-flash-bbt");
4940 }
4941
4942 static int nand_dt_init(struct nand_chip *chip)
4943 {
4944         struct device_node *dn = nand_get_flash_node(chip);
4945         int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4946
4947         if (!dn)
4948                 return 0;
4949
4950         if (of_get_nand_bus_width(dn) == 16)
4951                 chip->options |= NAND_BUSWIDTH_16;
4952
4953         if (of_property_read_bool(dn, "nand-is-boot-medium"))
4954                 chip->options |= NAND_IS_BOOT_MEDIUM;
4955
4956         if (of_get_nand_on_flash_bbt(dn))
4957                 chip->bbt_options |= NAND_BBT_USE_FLASH;
4958
4959         ecc_mode = of_get_nand_ecc_mode(dn);
4960         ecc_algo = of_get_nand_ecc_algo(dn);
4961         ecc_strength = of_get_nand_ecc_strength(dn);
4962         ecc_step = of_get_nand_ecc_step_size(dn);
4963
4964         if (ecc_mode >= 0)
4965                 chip->ecc.mode = ecc_mode;
4966
4967         if (ecc_algo >= 0)
4968                 chip->ecc.algo = ecc_algo;
4969
4970         if (ecc_strength >= 0)
4971                 chip->ecc.strength = ecc_strength;
4972
4973         if (ecc_step > 0)
4974                 chip->ecc.size = ecc_step;
4975
4976         if (of_property_read_bool(dn, "nand-ecc-maximize"))
4977                 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4978
4979         return 0;
4980 }
4981
4982 /**
4983  * nand_scan_ident - Scan for the NAND device
4984  * @chip: NAND chip object
4985  * @maxchips: number of chips to scan for
4986  * @table: alternative NAND ID table
4987  *
4988  * This is the first phase of the normal nand_scan() function. It reads the
4989  * flash ID and sets up MTD fields accordingly.
4990  *
4991  * This helper used to be called directly from controller drivers that needed
4992  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
4993  * prevented dynamic allocations during this phase which was unconvenient and
4994  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
4995  */
4996 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
4997                            struct nand_flash_dev *table)
4998 {
4999         struct mtd_info *mtd = nand_to_mtd(chip);
5000         struct nand_memory_organization *memorg;
5001         int nand_maf_id, nand_dev_id;
5002         unsigned int i;
5003         int ret;
5004
5005         memorg = nanddev_get_memorg(&chip->base);
5006
5007         /* Assume all dies are deselected when we enter nand_scan_ident(). */
5008         chip->cur_cs = -1;
5009
5010         mutex_init(&chip->lock);
5011
5012         /* Enforce the right timings for reset/detection */
5013         onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5014
5015         ret = nand_dt_init(chip);
5016         if (ret)
5017                 return ret;
5018
5019         if (!mtd->name && mtd->dev.parent)
5020                 mtd->name = dev_name(mtd->dev.parent);
5021
5022         /* Set the default functions */
5023         nand_set_defaults(chip);
5024
5025         ret = nand_legacy_check_hooks(chip);
5026         if (ret)
5027                 return ret;
5028
5029         memorg->ntargets = maxchips;
5030
5031         /* Read the flash type */
5032         ret = nand_detect(chip, table);
5033         if (ret) {
5034                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5035                         pr_warn("No NAND device found\n");
5036                 nand_deselect_target(chip);
5037                 return ret;
5038         }
5039
5040         nand_maf_id = chip->id.data[0];
5041         nand_dev_id = chip->id.data[1];
5042
5043         nand_deselect_target(chip);
5044
5045         /* Check for a chip array */
5046         for (i = 1; i < maxchips; i++) {
5047                 u8 id[2];
5048
5049                 /* See comment in nand_get_flash_type for reset */
5050                 ret = nand_reset(chip, i);
5051                 if (ret)
5052                         break;
5053
5054                 nand_select_target(chip, i);
5055                 /* Send the command for reading device ID */
5056                 ret = nand_readid_op(chip, 0, id, sizeof(id));
5057                 if (ret)
5058                         break;
5059                 /* Read manufacturer and device IDs */
5060                 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5061                         nand_deselect_target(chip);
5062                         break;
5063                 }
5064                 nand_deselect_target(chip);
5065         }
5066         if (i > 1)
5067                 pr_info("%d chips detected\n", i);
5068
5069         /* Store the number of chips and calc total size for mtd */
5070         memorg->ntargets = i;
5071         mtd->size = i * nanddev_target_size(&chip->base);
5072
5073         return 0;
5074 }
5075
5076 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5077 {
5078         kfree(chip->parameters.model);
5079         kfree(chip->parameters.onfi);
5080 }
5081
5082 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5083 {
5084         struct mtd_info *mtd = nand_to_mtd(chip);
5085         struct nand_ecc_ctrl *ecc = &chip->ecc;
5086
5087         if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5088                 return -EINVAL;
5089
5090         switch (ecc->algo) {
5091         case NAND_ECC_HAMMING:
5092                 ecc->calculate = nand_calculate_ecc;
5093                 ecc->correct = nand_correct_data;
5094                 ecc->read_page = nand_read_page_swecc;
5095                 ecc->read_subpage = nand_read_subpage;
5096                 ecc->write_page = nand_write_page_swecc;
5097                 ecc->read_page_raw = nand_read_page_raw;
5098                 ecc->write_page_raw = nand_write_page_raw;
5099                 ecc->read_oob = nand_read_oob_std;
5100                 ecc->write_oob = nand_write_oob_std;
5101                 if (!ecc->size)
5102                         ecc->size = 256;
5103                 ecc->bytes = 3;
5104                 ecc->strength = 1;
5105
5106                 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5107                         ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5108
5109                 return 0;
5110         case NAND_ECC_BCH:
5111                 if (!mtd_nand_has_bch()) {
5112                         WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5113                         return -EINVAL;
5114                 }
5115                 ecc->calculate = nand_bch_calculate_ecc;
5116                 ecc->correct = nand_bch_correct_data;
5117                 ecc->read_page = nand_read_page_swecc;
5118                 ecc->read_subpage = nand_read_subpage;
5119                 ecc->write_page = nand_write_page_swecc;
5120                 ecc->read_page_raw = nand_read_page_raw;
5121                 ecc->write_page_raw = nand_write_page_raw;
5122                 ecc->read_oob = nand_read_oob_std;
5123                 ecc->write_oob = nand_write_oob_std;
5124
5125                 /*
5126                 * Board driver should supply ecc.size and ecc.strength
5127                 * values to select how many bits are correctable.
5128                 * Otherwise, default to 4 bits for large page devices.
5129                 */
5130                 if (!ecc->size && (mtd->oobsize >= 64)) {
5131                         ecc->size = 512;
5132                         ecc->strength = 4;
5133                 }
5134
5135                 /*
5136                  * if no ecc placement scheme was provided pickup the default
5137                  * large page one.
5138                  */
5139                 if (!mtd->ooblayout) {
5140                         /* handle large page devices only */
5141                         if (mtd->oobsize < 64) {
5142                                 WARN(1, "OOB layout is required when using software BCH on small pages\n");
5143                                 return -EINVAL;
5144                         }
5145
5146                         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5147
5148                 }
5149
5150                 /*
5151                  * We can only maximize ECC config when the default layout is
5152                  * used, otherwise we don't know how many bytes can really be
5153                  * used.
5154                  */
5155                 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5156                     ecc->options & NAND_ECC_MAXIMIZE) {
5157                         int steps, bytes;
5158
5159                         /* Always prefer 1k blocks over 512bytes ones */
5160                         ecc->size = 1024;
5161                         steps = mtd->writesize / ecc->size;
5162
5163                         /* Reserve 2 bytes for the BBM */
5164                         bytes = (mtd->oobsize - 2) / steps;
5165                         ecc->strength = bytes * 8 / fls(8 * ecc->size);
5166                 }
5167
5168                 /* See nand_bch_init() for details. */
5169                 ecc->bytes = 0;
5170                 ecc->priv = nand_bch_init(mtd);
5171                 if (!ecc->priv) {
5172                         WARN(1, "BCH ECC initialization failed!\n");
5173                         return -EINVAL;
5174                 }
5175                 return 0;
5176         default:
5177                 WARN(1, "Unsupported ECC algorithm!\n");
5178                 return -EINVAL;
5179         }
5180 }
5181
5182 /**
5183  * nand_check_ecc_caps - check the sanity of preset ECC settings
5184  * @chip: nand chip info structure
5185  * @caps: ECC caps info structure
5186  * @oobavail: OOB size that the ECC engine can use
5187  *
5188  * When ECC step size and strength are already set, check if they are supported
5189  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5190  * On success, the calculated ECC bytes is set.
5191  */
5192 static int
5193 nand_check_ecc_caps(struct nand_chip *chip,
5194                     const struct nand_ecc_caps *caps, int oobavail)
5195 {
5196         struct mtd_info *mtd = nand_to_mtd(chip);
5197         const struct nand_ecc_step_info *stepinfo;
5198         int preset_step = chip->ecc.size;
5199         int preset_strength = chip->ecc.strength;
5200         int ecc_bytes, nsteps = mtd->writesize / preset_step;
5201         int i, j;
5202
5203         for (i = 0; i < caps->nstepinfos; i++) {
5204                 stepinfo = &caps->stepinfos[i];
5205
5206                 if (stepinfo->stepsize != preset_step)
5207                         continue;
5208
5209                 for (j = 0; j < stepinfo->nstrengths; j++) {
5210                         if (stepinfo->strengths[j] != preset_strength)
5211                                 continue;
5212
5213                         ecc_bytes = caps->calc_ecc_bytes(preset_step,
5214                                                          preset_strength);
5215                         if (WARN_ON_ONCE(ecc_bytes < 0))
5216                                 return ecc_bytes;
5217
5218                         if (ecc_bytes * nsteps > oobavail) {
5219                                 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5220                                        preset_step, preset_strength);
5221                                 return -ENOSPC;
5222                         }
5223
5224                         chip->ecc.bytes = ecc_bytes;
5225
5226                         return 0;
5227                 }
5228         }
5229
5230         pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5231                preset_step, preset_strength);
5232
5233         return -ENOTSUPP;
5234 }
5235
5236 /**
5237  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5238  * @chip: nand chip info structure
5239  * @caps: ECC engine caps info structure
5240  * @oobavail: OOB size that the ECC engine can use
5241  *
5242  * If a chip's ECC requirement is provided, try to meet it with the least
5243  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5244  * On success, the chosen ECC settings are set.
5245  */
5246 static int
5247 nand_match_ecc_req(struct nand_chip *chip,
5248                    const struct nand_ecc_caps *caps, int oobavail)
5249 {
5250         struct mtd_info *mtd = nand_to_mtd(chip);
5251         const struct nand_ecc_step_info *stepinfo;
5252         int req_step = chip->base.eccreq.step_size;
5253         int req_strength = chip->base.eccreq.strength;
5254         int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5255         int best_step, best_strength, best_ecc_bytes;
5256         int best_ecc_bytes_total = INT_MAX;
5257         int i, j;
5258
5259         /* No information provided by the NAND chip */
5260         if (!req_step || !req_strength)
5261                 return -ENOTSUPP;
5262
5263         /* number of correctable bits the chip requires in a page */
5264         req_corr = mtd->writesize / req_step * req_strength;
5265
5266         for (i = 0; i < caps->nstepinfos; i++) {
5267                 stepinfo = &caps->stepinfos[i];
5268                 step_size = stepinfo->stepsize;
5269
5270                 for (j = 0; j < stepinfo->nstrengths; j++) {
5271                         strength = stepinfo->strengths[j];
5272
5273                         /*
5274                          * If both step size and strength are smaller than the
5275                          * chip's requirement, it is not easy to compare the
5276                          * resulted reliability.
5277                          */
5278                         if (step_size < req_step && strength < req_strength)
5279                                 continue;
5280
5281                         if (mtd->writesize % step_size)
5282                                 continue;
5283
5284                         nsteps = mtd->writesize / step_size;
5285
5286                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5287                         if (WARN_ON_ONCE(ecc_bytes < 0))
5288                                 continue;
5289                         ecc_bytes_total = ecc_bytes * nsteps;
5290
5291                         if (ecc_bytes_total > oobavail ||
5292                             strength * nsteps < req_corr)
5293                                 continue;
5294
5295                         /*
5296                          * We assume the best is to meet the chip's requrement
5297                          * with the least number of ECC bytes.
5298                          */
5299                         if (ecc_bytes_total < best_ecc_bytes_total) {
5300                                 best_ecc_bytes_total = ecc_bytes_total;
5301                                 best_step = step_size;
5302                                 best_strength = strength;
5303                                 best_ecc_bytes = ecc_bytes;
5304                         }
5305                 }
5306         }
5307
5308         if (best_ecc_bytes_total == INT_MAX)
5309                 return -ENOTSUPP;
5310
5311         chip->ecc.size = best_step;
5312         chip->ecc.strength = best_strength;
5313         chip->ecc.bytes = best_ecc_bytes;
5314
5315         return 0;
5316 }
5317
5318 /**
5319  * nand_maximize_ecc - choose the max ECC strength available
5320  * @chip: nand chip info structure
5321  * @caps: ECC engine caps info structure
5322  * @oobavail: OOB size that the ECC engine can use
5323  *
5324  * Choose the max ECC strength that is supported on the controller, and can fit
5325  * within the chip's OOB.  On success, the chosen ECC settings are set.
5326  */
5327 static int
5328 nand_maximize_ecc(struct nand_chip *chip,
5329                   const struct nand_ecc_caps *caps, int oobavail)
5330 {
5331         struct mtd_info *mtd = nand_to_mtd(chip);
5332         const struct nand_ecc_step_info *stepinfo;
5333         int step_size, strength, nsteps, ecc_bytes, corr;
5334         int best_corr = 0;
5335         int best_step = 0;
5336         int best_strength, best_ecc_bytes;
5337         int i, j;
5338
5339         for (i = 0; i < caps->nstepinfos; i++) {
5340                 stepinfo = &caps->stepinfos[i];
5341                 step_size = stepinfo->stepsize;
5342
5343                 /* If chip->ecc.size is already set, respect it */
5344                 if (chip->ecc.size && step_size != chip->ecc.size)
5345                         continue;
5346
5347                 for (j = 0; j < stepinfo->nstrengths; j++) {
5348                         strength = stepinfo->strengths[j];
5349
5350                         if (mtd->writesize % step_size)
5351                                 continue;
5352
5353                         nsteps = mtd->writesize / step_size;
5354
5355                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5356                         if (WARN_ON_ONCE(ecc_bytes < 0))
5357                                 continue;
5358
5359                         if (ecc_bytes * nsteps > oobavail)
5360                                 continue;
5361
5362                         corr = strength * nsteps;
5363
5364                         /*
5365                          * If the number of correctable bits is the same,
5366                          * bigger step_size has more reliability.
5367                          */
5368                         if (corr > best_corr ||
5369                             (corr == best_corr && step_size > best_step)) {
5370                                 best_corr = corr;
5371                                 best_step = step_size;
5372                                 best_strength = strength;
5373                                 best_ecc_bytes = ecc_bytes;
5374                         }
5375                 }
5376         }
5377
5378         if (!best_corr)
5379                 return -ENOTSUPP;
5380
5381         chip->ecc.size = best_step;
5382         chip->ecc.strength = best_strength;
5383         chip->ecc.bytes = best_ecc_bytes;
5384
5385         return 0;
5386 }
5387
5388 /**
5389  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5390  * @chip: nand chip info structure
5391  * @caps: ECC engine caps info structure
5392  * @oobavail: OOB size that the ECC engine can use
5393  *
5394  * Choose the ECC configuration according to following logic
5395  *
5396  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5397  *    then check if it is supported by this controller.
5398  * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5399  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5400  *    to the chip's requirement. If available OOB size can't fit the chip
5401  *    requirement then fallback to the maximum ECC step size and ECC strength.
5402  *
5403  * On success, the chosen ECC settings are set.
5404  */
5405 int nand_ecc_choose_conf(struct nand_chip *chip,
5406                          const struct nand_ecc_caps *caps, int oobavail)
5407 {
5408         struct mtd_info *mtd = nand_to_mtd(chip);
5409
5410         if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5411                 return -EINVAL;
5412
5413         if (chip->ecc.size && chip->ecc.strength)
5414                 return nand_check_ecc_caps(chip, caps, oobavail);
5415
5416         if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5417                 return nand_maximize_ecc(chip, caps, oobavail);
5418
5419         if (!nand_match_ecc_req(chip, caps, oobavail))
5420                 return 0;
5421
5422         return nand_maximize_ecc(chip, caps, oobavail);
5423 }
5424 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5425
5426 /*
5427  * Check if the chip configuration meet the datasheet requirements.
5428
5429  * If our configuration corrects A bits per B bytes and the minimum
5430  * required correction level is X bits per Y bytes, then we must ensure
5431  * both of the following are true:
5432  *
5433  * (1) A / B >= X / Y
5434  * (2) A >= X
5435  *
5436  * Requirement (1) ensures we can correct for the required bitflip density.
5437  * Requirement (2) ensures we can correct even when all bitflips are clumped
5438  * in the same sector.
5439  */
5440 static bool nand_ecc_strength_good(struct nand_chip *chip)
5441 {
5442         struct mtd_info *mtd = nand_to_mtd(chip);
5443         struct nand_ecc_ctrl *ecc = &chip->ecc;
5444         int corr, ds_corr;
5445
5446         if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
5447                 /* Not enough information */
5448                 return true;
5449
5450         /*
5451          * We get the number of corrected bits per page to compare
5452          * the correction density.
5453          */
5454         corr = (mtd->writesize * ecc->strength) / ecc->size;
5455         ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
5456                   chip->base.eccreq.step_size;
5457
5458         return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
5459 }
5460
5461 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5462 {
5463         struct nand_chip *chip = container_of(nand, struct nand_chip,
5464                                               base);
5465         unsigned int eb = nanddev_pos_to_row(nand, pos);
5466         int ret;
5467
5468         eb >>= nand->rowconv.eraseblock_addr_shift;
5469
5470         nand_select_target(chip, pos->target);
5471         ret = nand_erase_op(chip, eb);
5472         nand_deselect_target(chip);
5473
5474         return ret;
5475 }
5476
5477 static int rawnand_markbad(struct nand_device *nand,
5478                            const struct nand_pos *pos)
5479 {
5480         struct nand_chip *chip = container_of(nand, struct nand_chip,
5481                                               base);
5482
5483         return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5484 }
5485
5486 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5487 {
5488         struct nand_chip *chip = container_of(nand, struct nand_chip,
5489                                               base);
5490         int ret;
5491
5492         nand_select_target(chip, pos->target);
5493         ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5494         nand_deselect_target(chip);
5495
5496         return ret;
5497 }
5498
5499 static const struct nand_ops rawnand_ops = {
5500         .erase = rawnand_erase,
5501         .markbad = rawnand_markbad,
5502         .isbad = rawnand_isbad,
5503 };
5504
5505 /**
5506  * nand_scan_tail - Scan for the NAND device
5507  * @chip: NAND chip object
5508  *
5509  * This is the second phase of the normal nand_scan() function. It fills out
5510  * all the uninitialized function pointers with the defaults and scans for a
5511  * bad block table if appropriate.
5512  */
5513 static int nand_scan_tail(struct nand_chip *chip)
5514 {
5515         struct mtd_info *mtd = nand_to_mtd(chip);
5516         struct nand_ecc_ctrl *ecc = &chip->ecc;
5517         int ret, i;
5518
5519         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
5520         if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5521                    !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5522                 return -EINVAL;
5523         }
5524
5525         chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5526         if (!chip->data_buf)
5527                 return -ENOMEM;
5528
5529         /*
5530          * FIXME: some NAND manufacturer drivers expect the first die to be
5531          * selected when manufacturer->init() is called. They should be fixed
5532          * to explictly select the relevant die when interacting with the NAND
5533          * chip.
5534          */
5535         nand_select_target(chip, 0);
5536         ret = nand_manufacturer_init(chip);
5537         nand_deselect_target(chip);
5538         if (ret)
5539                 goto err_free_buf;
5540
5541         /* Set the internal oob buffer location, just after the page data */
5542         chip->oob_poi = chip->data_buf + mtd->writesize;
5543
5544         /*
5545          * If no default placement scheme is given, select an appropriate one.
5546          */
5547         if (!mtd->ooblayout &&
5548             !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5549                 switch (mtd->oobsize) {
5550                 case 8:
5551                 case 16:
5552                         mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5553                         break;
5554                 case 64:
5555                 case 128:
5556                         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5557                         break;
5558                 default:
5559                         /*
5560                          * Expose the whole OOB area to users if ECC_NONE
5561                          * is passed. We could do that for all kind of
5562                          * ->oobsize, but we must keep the old large/small
5563                          * page with ECC layout when ->oobsize <= 128 for
5564                          * compatibility reasons.
5565                          */
5566                         if (ecc->mode == NAND_ECC_NONE) {
5567                                 mtd_set_ooblayout(mtd,
5568                                                 &nand_ooblayout_lp_ops);
5569                                 break;
5570                         }
5571
5572                         WARN(1, "No oob scheme defined for oobsize %d\n",
5573                                 mtd->oobsize);
5574                         ret = -EINVAL;
5575                         goto err_nand_manuf_cleanup;
5576                 }
5577         }
5578
5579         /*
5580          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5581          * selected and we have 256 byte pagesize fallback to software ECC
5582          */
5583
5584         switch (ecc->mode) {
5585         case NAND_ECC_HW_OOB_FIRST:
5586                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
5587                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5588                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5589                         ret = -EINVAL;
5590                         goto err_nand_manuf_cleanup;
5591                 }
5592                 if (!ecc->read_page)
5593                         ecc->read_page = nand_read_page_hwecc_oob_first;
5594                 /* fall through */
5595
5596         case NAND_ECC_HW:
5597                 /* Use standard hwecc read page function? */
5598                 if (!ecc->read_page)
5599                         ecc->read_page = nand_read_page_hwecc;
5600                 if (!ecc->write_page)
5601                         ecc->write_page = nand_write_page_hwecc;
5602                 if (!ecc->read_page_raw)
5603                         ecc->read_page_raw = nand_read_page_raw;
5604                 if (!ecc->write_page_raw)
5605                         ecc->write_page_raw = nand_write_page_raw;
5606                 if (!ecc->read_oob)
5607                         ecc->read_oob = nand_read_oob_std;
5608                 if (!ecc->write_oob)
5609                         ecc->write_oob = nand_write_oob_std;
5610                 if (!ecc->read_subpage)
5611                         ecc->read_subpage = nand_read_subpage;
5612                 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5613                         ecc->write_subpage = nand_write_subpage_hwecc;
5614                 /* fall through */
5615
5616         case NAND_ECC_HW_SYNDROME:
5617                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5618                     (!ecc->read_page ||
5619                      ecc->read_page == nand_read_page_hwecc ||
5620                      !ecc->write_page ||
5621                      ecc->write_page == nand_write_page_hwecc)) {
5622                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5623                         ret = -EINVAL;
5624                         goto err_nand_manuf_cleanup;
5625                 }
5626                 /* Use standard syndrome read/write page function? */
5627                 if (!ecc->read_page)
5628                         ecc->read_page = nand_read_page_syndrome;
5629                 if (!ecc->write_page)
5630                         ecc->write_page = nand_write_page_syndrome;
5631                 if (!ecc->read_page_raw)
5632                         ecc->read_page_raw = nand_read_page_raw_syndrome;
5633                 if (!ecc->write_page_raw)
5634                         ecc->write_page_raw = nand_write_page_raw_syndrome;
5635                 if (!ecc->read_oob)
5636                         ecc->read_oob = nand_read_oob_syndrome;
5637                 if (!ecc->write_oob)
5638                         ecc->write_oob = nand_write_oob_syndrome;
5639
5640                 if (mtd->writesize >= ecc->size) {
5641                         if (!ecc->strength) {
5642                                 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5643                                 ret = -EINVAL;
5644                                 goto err_nand_manuf_cleanup;
5645                         }
5646                         break;
5647                 }
5648                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5649                         ecc->size, mtd->writesize);
5650                 ecc->mode = NAND_ECC_SOFT;
5651                 ecc->algo = NAND_ECC_HAMMING;
5652                 /* fall through */
5653
5654         case NAND_ECC_SOFT:
5655                 ret = nand_set_ecc_soft_ops(chip);
5656                 if (ret) {
5657                         ret = -EINVAL;
5658                         goto err_nand_manuf_cleanup;
5659                 }
5660                 break;
5661
5662         case NAND_ECC_ON_DIE:
5663                 if (!ecc->read_page || !ecc->write_page) {
5664                         WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5665                         ret = -EINVAL;
5666                         goto err_nand_manuf_cleanup;
5667                 }
5668                 if (!ecc->read_oob)
5669                         ecc->read_oob = nand_read_oob_std;
5670                 if (!ecc->write_oob)
5671                         ecc->write_oob = nand_write_oob_std;
5672                 break;
5673
5674         case NAND_ECC_NONE:
5675                 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5676                 ecc->read_page = nand_read_page_raw;
5677                 ecc->write_page = nand_write_page_raw;
5678                 ecc->read_oob = nand_read_oob_std;
5679                 ecc->read_page_raw = nand_read_page_raw;
5680                 ecc->write_page_raw = nand_write_page_raw;
5681                 ecc->write_oob = nand_write_oob_std;
5682                 ecc->size = mtd->writesize;
5683                 ecc->bytes = 0;
5684                 ecc->strength = 0;
5685                 break;
5686
5687         default:
5688                 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5689                 ret = -EINVAL;
5690                 goto err_nand_manuf_cleanup;
5691         }
5692
5693         if (ecc->correct || ecc->calculate) {
5694                 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5695                 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5696                 if (!ecc->calc_buf || !ecc->code_buf) {
5697                         ret = -ENOMEM;
5698                         goto err_nand_manuf_cleanup;
5699                 }
5700         }
5701
5702         /* For many systems, the standard OOB write also works for raw */
5703         if (!ecc->read_oob_raw)
5704                 ecc->read_oob_raw = ecc->read_oob;
5705         if (!ecc->write_oob_raw)
5706                 ecc->write_oob_raw = ecc->write_oob;
5707
5708         /* propagate ecc info to mtd_info */
5709         mtd->ecc_strength = ecc->strength;
5710         mtd->ecc_step_size = ecc->size;
5711
5712         /*
5713          * Set the number of read / write steps for one page depending on ECC
5714          * mode.
5715          */
5716         ecc->steps = mtd->writesize / ecc->size;
5717         if (ecc->steps * ecc->size != mtd->writesize) {
5718                 WARN(1, "Invalid ECC parameters\n");
5719                 ret = -EINVAL;
5720                 goto err_nand_manuf_cleanup;
5721         }
5722         ecc->total = ecc->steps * ecc->bytes;
5723         if (ecc->total > mtd->oobsize) {
5724                 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5725                 ret = -EINVAL;
5726                 goto err_nand_manuf_cleanup;
5727         }
5728
5729         /*
5730          * The number of bytes available for a client to place data into
5731          * the out of band area.
5732          */
5733         ret = mtd_ooblayout_count_freebytes(mtd);
5734         if (ret < 0)
5735                 ret = 0;
5736
5737         mtd->oobavail = ret;
5738
5739         /* ECC sanity check: warn if it's too weak */
5740         if (!nand_ecc_strength_good(chip))
5741                 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5742                         mtd->name);
5743
5744         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5745         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5746                 switch (ecc->steps) {
5747                 case 2:
5748                         mtd->subpage_sft = 1;
5749                         break;
5750                 case 4:
5751                 case 8:
5752                 case 16:
5753                         mtd->subpage_sft = 2;
5754                         break;
5755                 }
5756         }
5757         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5758
5759         /* Invalidate the pagebuffer reference */
5760         chip->pagecache.page = -1;
5761
5762         /* Large page NAND with SOFT_ECC should support subpage reads */
5763         switch (ecc->mode) {
5764         case NAND_ECC_SOFT:
5765                 if (chip->page_shift > 9)
5766                         chip->options |= NAND_SUBPAGE_READ;
5767                 break;
5768
5769         default:
5770                 break;
5771         }
5772
5773         ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5774         if (ret)
5775                 goto err_nand_manuf_cleanup;
5776
5777         /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5778         if (chip->options & NAND_ROM)
5779                 mtd->flags = MTD_CAP_ROM;
5780
5781         /* Fill in remaining MTD driver data */
5782         mtd->_erase = nand_erase;
5783         mtd->_point = NULL;
5784         mtd->_unpoint = NULL;
5785         mtd->_panic_write = panic_nand_write;
5786         mtd->_read_oob = nand_read_oob;
5787         mtd->_write_oob = nand_write_oob;
5788         mtd->_sync = nand_sync;
5789         mtd->_lock = NULL;
5790         mtd->_unlock = NULL;
5791         mtd->_suspend = nand_suspend;
5792         mtd->_resume = nand_resume;
5793         mtd->_reboot = nand_shutdown;
5794         mtd->_block_isreserved = nand_block_isreserved;
5795         mtd->_block_isbad = nand_block_isbad;
5796         mtd->_block_markbad = nand_block_markbad;
5797         mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
5798
5799         /*
5800          * Initialize bitflip_threshold to its default prior scan_bbt() call.
5801          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5802          * properly set.
5803          */
5804         if (!mtd->bitflip_threshold)
5805                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5806
5807         /* Initialize the ->data_interface field. */
5808         ret = nand_init_data_interface(chip);
5809         if (ret)
5810                 goto err_nanddev_cleanup;
5811
5812         /* Enter fastest possible mode on all dies. */
5813         for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
5814                 ret = nand_setup_data_interface(chip, i);
5815                 if (ret)
5816                         goto err_nanddev_cleanup;
5817         }
5818
5819         /* Check, if we should skip the bad block table scan */
5820         if (chip->options & NAND_SKIP_BBTSCAN)
5821                 return 0;
5822
5823         /* Build bad block table */
5824         ret = nand_create_bbt(chip);
5825         if (ret)
5826                 goto err_nanddev_cleanup;
5827
5828         return 0;
5829
5830
5831 err_nanddev_cleanup:
5832         nanddev_cleanup(&chip->base);
5833
5834 err_nand_manuf_cleanup:
5835         nand_manufacturer_cleanup(chip);
5836
5837 err_free_buf:
5838         kfree(chip->data_buf);
5839         kfree(ecc->code_buf);
5840         kfree(ecc->calc_buf);
5841
5842         return ret;
5843 }
5844
5845 static int nand_attach(struct nand_chip *chip)
5846 {
5847         if (chip->controller->ops && chip->controller->ops->attach_chip)
5848                 return chip->controller->ops->attach_chip(chip);
5849
5850         return 0;
5851 }
5852
5853 static void nand_detach(struct nand_chip *chip)
5854 {
5855         if (chip->controller->ops && chip->controller->ops->detach_chip)
5856                 chip->controller->ops->detach_chip(chip);
5857 }
5858
5859 /**
5860  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
5861  * @chip: NAND chip object
5862  * @maxchips: number of chips to scan for.
5863  * @ids: optional flash IDs table
5864  *
5865  * This fills out all the uninitialized function pointers with the defaults.
5866  * The flash ID is read and the mtd/chip structures are filled with the
5867  * appropriate values.
5868  */
5869 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
5870                        struct nand_flash_dev *ids)
5871 {
5872         int ret;
5873
5874         if (!maxchips)
5875                 return -EINVAL;
5876
5877         ret = nand_scan_ident(chip, maxchips, ids);
5878         if (ret)
5879                 return ret;
5880
5881         ret = nand_attach(chip);
5882         if (ret)
5883                 goto cleanup_ident;
5884
5885         ret = nand_scan_tail(chip);
5886         if (ret)
5887                 goto detach_chip;
5888
5889         return 0;
5890
5891 detach_chip:
5892         nand_detach(chip);
5893 cleanup_ident:
5894         nand_scan_ident_cleanup(chip);
5895
5896         return ret;
5897 }
5898 EXPORT_SYMBOL(nand_scan_with_ids);
5899
5900 /**
5901  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5902  * @chip: NAND chip object
5903  */
5904 void nand_cleanup(struct nand_chip *chip)
5905 {
5906         if (chip->ecc.mode == NAND_ECC_SOFT &&
5907             chip->ecc.algo == NAND_ECC_BCH)
5908                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5909
5910         /* Free bad block table memory */
5911         kfree(chip->bbt);
5912         kfree(chip->data_buf);
5913         kfree(chip->ecc.code_buf);
5914         kfree(chip->ecc.calc_buf);
5915
5916         /* Free bad block descriptor memory */
5917         if (chip->badblock_pattern && chip->badblock_pattern->options
5918                         & NAND_BBT_DYNAMICSTRUCT)
5919                 kfree(chip->badblock_pattern);
5920
5921         /* Free manufacturer priv data. */
5922         nand_manufacturer_cleanup(chip);
5923
5924         /* Free controller specific allocations after chip identification */
5925         nand_detach(chip);
5926
5927         /* Free identification phase allocations */
5928         nand_scan_ident_cleanup(chip);
5929 }
5930
5931 EXPORT_SYMBOL_GPL(nand_cleanup);
5932
5933 /**
5934  * nand_release - [NAND Interface] Unregister the MTD device and free resources
5935  *                held by the NAND device
5936  * @chip: NAND chip object
5937  */
5938 void nand_release(struct nand_chip *chip)
5939 {
5940         mtd_device_unregister(nand_to_mtd(chip));
5941         nand_cleanup(chip);
5942 }
5943 EXPORT_SYMBOL_GPL(nand_release);
5944
5945 MODULE_LICENSE("GPL");
5946 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5947 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5948 MODULE_DESCRIPTION("Generic NAND flash driver code");