Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / gpmi-nand / gpmi-nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30
31 #define MXS_SET_ADDR            0x4
32 #define MXS_CLR_ADDR            0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40         int timeout = 0x400;
41
42         /* clear the bit */
43         writel(mask, addr + MXS_CLR_ADDR);
44
45         /*
46          * SFTRST needs 3 GPMI clocks to settle, the reference manual
47          * recommends to wait 1us.
48          */
49         udelay(1);
50
51         /* poll the bit becoming clear */
52         while ((readl(addr) & mask) && --timeout)
53                 /* nothing */;
54
55         return !timeout;
56 }
57
58 #define MODULE_CLKGATE          (1 << 30)
59 #define MODULE_SFTRST           (1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79         int ret;
80         int timeout = 0x400;
81
82         /* clear and poll SFTRST */
83         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84         if (unlikely(ret))
85                 goto error;
86
87         /* clear CLKGATE */
88         writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89
90         if (!just_enable) {
91                 /* set SFTRST to reset the block */
92                 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93                 udelay(1);
94
95                 /* poll CLKGATE becoming set */
96                 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97                         /* nothing */;
98                 if (unlikely(!timeout))
99                         goto error;
100         }
101
102         /* clear and poll SFTRST */
103         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104         if (unlikely(ret))
105                 goto error;
106
107         /* clear and poll CLKGATE */
108         ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109         if (unlikely(ret))
110                 goto error;
111
112         return 0;
113
114 error:
115         pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116         return -ETIMEDOUT;
117 }
118
119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121         struct clk *clk;
122         int ret;
123         int i;
124
125         for (i = 0; i < GPMI_CLK_MAX; i++) {
126                 clk = this->resources.clock[i];
127                 if (!clk)
128                         break;
129
130                 if (v) {
131                         ret = clk_prepare_enable(clk);
132                         if (ret)
133                                 goto err_clk;
134                 } else {
135                         clk_disable_unprepare(clk);
136                 }
137         }
138         return 0;
139
140 err_clk:
141         for (; i > 0; i--)
142                 clk_disable_unprepare(this->resources.clock[i - 1]);
143         return ret;
144 }
145
146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148         struct resources *r = &this->resources;
149         int ret;
150
151         ret = pm_runtime_get_sync(this->dev);
152         if (ret < 0) {
153                 pm_runtime_put_noidle(this->dev);
154                 return ret;
155         }
156
157         ret = gpmi_reset_block(r->gpmi_regs, false);
158         if (ret)
159                 goto err_out;
160
161         /*
162          * Reset BCH here, too. We got failures otherwise :(
163          * See later BCH reset for explanation of MX23 and MX28 handling
164          */
165         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
166         if (ret)
167                 goto err_out;
168
169         /* Choose NAND mode. */
170         writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
171
172         /* Set the IRQ polarity. */
173         writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
174                                 r->gpmi_regs + HW_GPMI_CTRL1_SET);
175
176         /* Disable Write-Protection. */
177         writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
178
179         /* Select BCH ECC. */
180         writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
181
182         /*
183          * Decouple the chip select from dma channel. We use dma0 for all
184          * the chips, force all NAND RDY_BUSY inputs to be sourced from
185          * RDY_BUSY0.
186          */
187         writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
188                r->gpmi_regs + HW_GPMI_CTRL1_SET);
189
190 err_out:
191         pm_runtime_mark_last_busy(this->dev);
192         pm_runtime_put_autosuspend(this->dev);
193         return ret;
194 }
195
196 /* This function is very useful. It is called only when the bug occur. */
197 static void gpmi_dump_info(struct gpmi_nand_data *this)
198 {
199         struct resources *r = &this->resources;
200         struct bch_geometry *geo = &this->bch_geometry;
201         u32 reg;
202         int i;
203
204         dev_err(this->dev, "Show GPMI registers :\n");
205         for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
206                 reg = readl(r->gpmi_regs + i * 0x10);
207                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
208         }
209
210         /* start to print out the BCH info */
211         dev_err(this->dev, "Show BCH registers :\n");
212         for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
213                 reg = readl(r->bch_regs + i * 0x10);
214                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
215         }
216         dev_err(this->dev, "BCH Geometry :\n"
217                 "GF length              : %u\n"
218                 "ECC Strength           : %u\n"
219                 "Page Size in Bytes     : %u\n"
220                 "Metadata Size in Bytes : %u\n"
221                 "ECC0 Chunk Size in Bytes: %u\n"
222                 "ECCn Chunk Size in Bytes: %u\n"
223                 "ECC Chunk Count        : %u\n"
224                 "Payload Size in Bytes  : %u\n"
225                 "Auxiliary Size in Bytes: %u\n"
226                 "Auxiliary Status Offset: %u\n"
227                 "Block Mark Byte Offset : %u\n"
228                 "Block Mark Bit Offset  : %u\n",
229                 geo->gf_len,
230                 geo->ecc_strength,
231                 geo->page_size,
232                 geo->metadata_size,
233                 geo->ecc0_chunk_size,
234                 geo->eccn_chunk_size,
235                 geo->ecc_chunk_count,
236                 geo->payload_size,
237                 geo->auxiliary_size,
238                 geo->auxiliary_status_offset,
239                 geo->block_mark_byte_offset,
240                 geo->block_mark_bit_offset);
241 }
242
243 static bool gpmi_check_ecc(struct gpmi_nand_data *this)
244 {
245         struct nand_chip *chip = &this->nand;
246         struct bch_geometry *geo = &this->bch_geometry;
247         struct nand_device *nand = &chip->base;
248         struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
249
250         conf->step_size = geo->eccn_chunk_size;
251         conf->strength = geo->ecc_strength;
252
253         /* Do the sanity check. */
254         if (GPMI_IS_MXS(this)) {
255                 /* The mx23/mx28 only support the GF13. */
256                 if (geo->gf_len == 14)
257                         return false;
258         }
259
260         if (geo->ecc_strength > this->devdata->bch_max_ecc_strength)
261                 return false;
262
263         if (!nand_ecc_is_strong_enough(nand))
264                 return false;
265
266         return true;
267 }
268
269 /* check if bbm locates in data chunk rather than ecc chunk */
270 static bool bbm_in_data_chunk(struct gpmi_nand_data *this,
271                         unsigned int *chunk_num)
272 {
273         struct bch_geometry *geo = &this->bch_geometry;
274         struct nand_chip *chip = &this->nand;
275         struct mtd_info *mtd = nand_to_mtd(chip);
276         unsigned int i, j;
277
278         if (geo->ecc0_chunk_size != geo->eccn_chunk_size) {
279                 dev_err(this->dev,
280                         "The size of ecc0_chunk must equal to eccn_chunk\n");
281                 return false;
282         }
283
284         i = (mtd->writesize * 8 - geo->metadata_size * 8) /
285                 (geo->gf_len * geo->ecc_strength +
286                         geo->eccn_chunk_size * 8);
287
288         j = (mtd->writesize * 8 - geo->metadata_size * 8) -
289                 (geo->gf_len * geo->ecc_strength +
290                         geo->eccn_chunk_size * 8) * i;
291
292         if (j < geo->eccn_chunk_size * 8) {
293                 *chunk_num = i+1;
294                 dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n",
295                                 geo->ecc_strength, *chunk_num);
296                 return true;
297         }
298
299         return false;
300 }
301
302 /*
303  * If we can get the ECC information from the nand chip, we do not
304  * need to calculate them ourselves.
305  *
306  * We may have available oob space in this case.
307  */
308 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
309                                     unsigned int ecc_strength,
310                                     unsigned int ecc_step)
311 {
312         struct bch_geometry *geo = &this->bch_geometry;
313         struct nand_chip *chip = &this->nand;
314         struct mtd_info *mtd = nand_to_mtd(chip);
315         unsigned int block_mark_bit_offset;
316
317         switch (ecc_step) {
318         case SZ_512:
319                 geo->gf_len = 13;
320                 break;
321         case SZ_1K:
322                 geo->gf_len = 14;
323                 break;
324         default:
325                 dev_err(this->dev,
326                         "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
327                         nanddev_get_ecc_requirements(&chip->base)->strength,
328                         nanddev_get_ecc_requirements(&chip->base)->step_size);
329                 return -EINVAL;
330         }
331         geo->ecc0_chunk_size = ecc_step;
332         geo->eccn_chunk_size = ecc_step;
333         geo->ecc_strength = round_up(ecc_strength, 2);
334         if (!gpmi_check_ecc(this))
335                 return -EINVAL;
336
337         /* Keep the C >= O */
338         if (geo->eccn_chunk_size < mtd->oobsize) {
339                 dev_err(this->dev,
340                         "unsupported nand chip. ecc size: %d, oob size : %d\n",
341                         ecc_step, mtd->oobsize);
342                 return -EINVAL;
343         }
344
345         /* The default value, see comment in the legacy_set_geometry(). */
346         geo->metadata_size = 10;
347
348         geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
349
350         /*
351          * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
352          *
353          *    |                          P                            |
354          *    |<----------------------------------------------------->|
355          *    |                                                       |
356          *    |                                        (Block Mark)   |
357          *    |                      P'                      |      | |     |
358          *    |<-------------------------------------------->|  D   | |  O' |
359          *    |                                              |<---->| |<--->|
360          *    V                                              V      V V     V
361          *    +---+----------+-+----------+-+----------+-+----------+-+-----+
362          *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
363          *    +---+----------+-+----------+-+----------+-+----------+-+-----+
364          *                                                   ^              ^
365          *                                                   |      O       |
366          *                                                   |<------------>|
367          *                                                   |              |
368          *
369          *      P : the page size for BCH module.
370          *      E : The ECC strength.
371          *      G : the length of Galois Field.
372          *      N : The chunk count of per page.
373          *      M : the metasize of per page.
374          *      C : the ecc chunk size, aka the "data" above.
375          *      P': the nand chip's page size.
376          *      O : the nand chip's oob size.
377          *      O': the free oob.
378          *
379          *      The formula for P is :
380          *
381          *                  E * G * N
382          *             P = ------------ + P' + M
383          *                      8
384          *
385          * The position of block mark moves forward in the ECC-based view
386          * of page, and the delta is:
387          *
388          *                   E * G * (N - 1)
389          *             D = (---------------- + M)
390          *                          8
391          *
392          * Please see the comment in legacy_set_geometry().
393          * With the condition C >= O , we still can get same result.
394          * So the bit position of the physical block mark within the ECC-based
395          * view of the page is :
396          *             (P' - D) * 8
397          */
398         geo->page_size = mtd->writesize + geo->metadata_size +
399                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
400
401         geo->payload_size = mtd->writesize;
402
403         geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
404         geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
405                                 + ALIGN(geo->ecc_chunk_count, 4);
406
407         if (!this->swap_block_mark)
408                 return 0;
409
410         /* For bit swap. */
411         block_mark_bit_offset = mtd->writesize * 8 -
412                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
413                                 + geo->metadata_size * 8);
414
415         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
416         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
417         return 0;
418 }
419
420 /*
421  *  Calculate the ECC strength by hand:
422  *      E : The ECC strength.
423  *      G : the length of Galois Field.
424  *      N : The chunk count of per page.
425  *      O : the oobsize of the NAND chip.
426  *      M : the metasize of per page.
427  *
428  *      The formula is :
429  *              E * G * N
430  *            ------------ <= (O - M)
431  *                  8
432  *
433  *      So, we get E by:
434  *                    (O - M) * 8
435  *              E <= -------------
436  *                       G * N
437  */
438 static inline int get_ecc_strength(struct gpmi_nand_data *this)
439 {
440         struct bch_geometry *geo = &this->bch_geometry;
441         struct mtd_info *mtd = nand_to_mtd(&this->nand);
442         int ecc_strength;
443
444         ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
445                         / (geo->gf_len * geo->ecc_chunk_count);
446
447         /* We need the minor even number. */
448         return round_down(ecc_strength, 2);
449 }
450
451 static int set_geometry_for_large_oob(struct gpmi_nand_data *this)
452 {
453         struct bch_geometry *geo = &this->bch_geometry;
454         struct nand_chip *chip = &this->nand;
455         struct mtd_info *mtd = nand_to_mtd(chip);
456         const struct nand_ecc_props *requirements =
457                 nanddev_get_ecc_requirements(&chip->base);
458         unsigned int block_mark_bit_offset;
459         unsigned int max_ecc;
460         unsigned int bbm_chunk;
461         unsigned int i;
462
463         /* sanity check for the minimum ecc nand required */
464         if (!(requirements->strength > 0 &&
465               requirements->step_size > 0))
466                 return -EINVAL;
467         geo->ecc_strength = requirements->strength;
468
469         /* check if platform can support this nand */
470         if (!gpmi_check_ecc(this)) {
471                 dev_err(this->dev,
472                         "unsupported NAND chip, minimum ecc required %d\n",
473                         geo->ecc_strength);
474                 return -EINVAL;
475         }
476
477         /* calculate the maximum ecc platform can support*/
478         geo->metadata_size = 10;
479         geo->gf_len = 14;
480         geo->ecc0_chunk_size = 1024;
481         geo->eccn_chunk_size = 1024;
482         geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
483         max_ecc = min(get_ecc_strength(this),
484                       this->devdata->bch_max_ecc_strength);
485
486         /*
487          * search a supported ecc strength that makes bbm
488          * located in data chunk
489          */
490         geo->ecc_strength = max_ecc;
491         while (!(geo->ecc_strength < requirements->strength)) {
492                 if (bbm_in_data_chunk(this, &bbm_chunk))
493                         goto geo_setting;
494                 geo->ecc_strength -= 2;
495         }
496
497         /* if none of them works, keep using the minimum ecc */
498         /* nand required but changing ecc page layout  */
499         geo->ecc_strength = requirements->strength;
500         /* add extra ecc for meta data */
501         geo->ecc0_chunk_size = 0;
502         geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1;
503         geo->ecc_for_meta = 1;
504         /* check if oob can afford this extra ecc chunk */
505         if (mtd->oobsize * 8 < geo->metadata_size * 8 +
506             geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) {
507                 dev_err(this->dev, "unsupported NAND chip with new layout\n");
508                 return -EINVAL;
509         }
510
511         /* calculate in which chunk bbm located */
512         bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 -
513                      geo->gf_len * geo->ecc_strength) /
514                      (geo->gf_len * geo->ecc_strength +
515                      geo->eccn_chunk_size * 8) + 1;
516
517 geo_setting:
518
519         geo->page_size = mtd->writesize + geo->metadata_size +
520                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
521         geo->payload_size = mtd->writesize;
522
523         /*
524          * The auxiliary buffer contains the metadata and the ECC status. The
525          * metadata is padded to the nearest 32-bit boundary. The ECC status
526          * contains one byte for every ECC chunk, and is also padded to the
527          * nearest 32-bit boundary.
528          */
529         geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
530         geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
531                                     + ALIGN(geo->ecc_chunk_count, 4);
532
533         if (!this->swap_block_mark)
534                 return 0;
535
536         /* calculate the number of ecc chunk behind the bbm */
537         i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1;
538
539         block_mark_bit_offset = mtd->writesize * 8 -
540                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
541                 + geo->metadata_size * 8);
542
543         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
544         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
545
546         dev_dbg(this->dev, "BCH Geometry :\n"
547                 "GF length              : %u\n"
548                 "ECC Strength           : %u\n"
549                 "Page Size in Bytes     : %u\n"
550                 "Metadata Size in Bytes : %u\n"
551                 "ECC0 Chunk Size in Bytes: %u\n"
552                 "ECCn Chunk Size in Bytes: %u\n"
553                 "ECC Chunk Count        : %u\n"
554                 "Payload Size in Bytes  : %u\n"
555                 "Auxiliary Size in Bytes: %u\n"
556                 "Auxiliary Status Offset: %u\n"
557                 "Block Mark Byte Offset : %u\n"
558                 "Block Mark Bit Offset  : %u\n"
559                 "Block Mark in chunk    : %u\n"
560                 "Ecc for Meta data      : %u\n",
561                 geo->gf_len,
562                 geo->ecc_strength,
563                 geo->page_size,
564                 geo->metadata_size,
565                 geo->ecc0_chunk_size,
566                 geo->eccn_chunk_size,
567                 geo->ecc_chunk_count,
568                 geo->payload_size,
569                 geo->auxiliary_size,
570                 geo->auxiliary_status_offset,
571                 geo->block_mark_byte_offset,
572                 geo->block_mark_bit_offset,
573                 bbm_chunk,
574                 geo->ecc_for_meta);
575
576         return 0;
577 }
578
579 static int legacy_set_geometry(struct gpmi_nand_data *this)
580 {
581         struct bch_geometry *geo = &this->bch_geometry;
582         struct mtd_info *mtd = nand_to_mtd(&this->nand);
583         unsigned int metadata_size;
584         unsigned int status_size;
585         unsigned int block_mark_bit_offset;
586
587         /*
588          * The size of the metadata can be changed, though we set it to 10
589          * bytes now. But it can't be too large, because we have to save
590          * enough space for BCH.
591          */
592         geo->metadata_size = 10;
593
594         /* The default for the length of Galois Field. */
595         geo->gf_len = 13;
596
597         /* The default for chunk size. */
598         geo->ecc0_chunk_size = 512;
599         geo->eccn_chunk_size = 512;
600         while (geo->eccn_chunk_size < mtd->oobsize) {
601                 geo->ecc0_chunk_size *= 2; /* keep C >= O */
602                 geo->eccn_chunk_size *= 2; /* keep C >= O */
603                 geo->gf_len = 14;
604         }
605
606         geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
607
608         /* We use the same ECC strength for all chunks. */
609         geo->ecc_strength = get_ecc_strength(this);
610         if (!gpmi_check_ecc(this)) {
611                 dev_err(this->dev,
612                         "ecc strength: %d cannot be supported by the controller (%d)\n"
613                         "try to use minimum ecc strength that NAND chip required\n",
614                         geo->ecc_strength,
615                         this->devdata->bch_max_ecc_strength);
616                 return -EINVAL;
617         }
618
619         geo->page_size = mtd->writesize + geo->metadata_size +
620                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
621         geo->payload_size = mtd->writesize;
622
623         /*
624          * The auxiliary buffer contains the metadata and the ECC status. The
625          * metadata is padded to the nearest 32-bit boundary. The ECC status
626          * contains one byte for every ECC chunk, and is also padded to the
627          * nearest 32-bit boundary.
628          */
629         metadata_size = ALIGN(geo->metadata_size, 4);
630         status_size   = ALIGN(geo->ecc_chunk_count, 4);
631
632         geo->auxiliary_size = metadata_size + status_size;
633         geo->auxiliary_status_offset = metadata_size;
634
635         if (!this->swap_block_mark)
636                 return 0;
637
638         /*
639          * We need to compute the byte and bit offsets of
640          * the physical block mark within the ECC-based view of the page.
641          *
642          * NAND chip with 2K page shows below:
643          *                                             (Block Mark)
644          *                                                   |      |
645          *                                                   |  D   |
646          *                                                   |<---->|
647          *                                                   V      V
648          *    +---+----------+-+----------+-+----------+-+----------+-+
649          *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
650          *    +---+----------+-+----------+-+----------+-+----------+-+
651          *
652          * The position of block mark moves forward in the ECC-based view
653          * of page, and the delta is:
654          *
655          *                   E * G * (N - 1)
656          *             D = (---------------- + M)
657          *                          8
658          *
659          * With the formula to compute the ECC strength, and the condition
660          *       : C >= O         (C is the ecc chunk size)
661          *
662          * It's easy to deduce to the following result:
663          *
664          *         E * G       (O - M)      C - M         C - M
665          *      ----------- <= ------- <=  --------  <  ---------
666          *           8            N           N          (N - 1)
667          *
668          *  So, we get:
669          *
670          *                   E * G * (N - 1)
671          *             D = (---------------- + M) < C
672          *                          8
673          *
674          *  The above inequality means the position of block mark
675          *  within the ECC-based view of the page is still in the data chunk,
676          *  and it's NOT in the ECC bits of the chunk.
677          *
678          *  Use the following to compute the bit position of the
679          *  physical block mark within the ECC-based view of the page:
680          *          (page_size - D) * 8
681          *
682          *  --Huang Shijie
683          */
684         block_mark_bit_offset = mtd->writesize * 8 -
685                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
686                                 + geo->metadata_size * 8);
687
688         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
689         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
690         return 0;
691 }
692
693 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
694 {
695         struct nand_chip *chip = &this->nand;
696         struct mtd_info *mtd = nand_to_mtd(&this->nand);
697         const struct nand_ecc_props *requirements =
698                 nanddev_get_ecc_requirements(&chip->base);
699         bool use_minimun_ecc;
700         int err;
701
702         use_minimun_ecc = of_property_read_bool(this->dev->of_node,
703                                                 "fsl,use-minimum-ecc");
704
705         /* use legacy bch geometry settings by default*/
706         if ((!use_minimun_ecc && mtd->oobsize < 1024) ||
707             !(requirements->strength > 0 && requirements->step_size > 0)) {
708                 dev_dbg(this->dev, "use legacy bch geometry\n");
709                 err = legacy_set_geometry(this);
710                 if (!err)
711                         return 0;
712         }
713
714         /* for large oob nand */
715         if (mtd->oobsize > 1024) {
716                 dev_dbg(this->dev, "use large oob bch geometry\n");
717                 err = set_geometry_for_large_oob(this);
718                 if (!err)
719                         return 0;
720         }
721
722         /* otherwise use the minimum ecc nand chip required */
723         dev_dbg(this->dev, "use minimum ecc bch geometry\n");
724         err = set_geometry_by_ecc_info(this, requirements->strength,
725                                         requirements->step_size);
726         if (err)
727                 dev_err(this->dev, "none of the bch geometry setting works\n");
728
729         return err;
730 }
731
732 /* Configures the geometry for BCH.  */
733 static int bch_set_geometry(struct gpmi_nand_data *this)
734 {
735         struct resources *r = &this->resources;
736         int ret;
737
738         ret = common_nfc_set_geometry(this);
739         if (ret)
740                 return ret;
741
742         ret = pm_runtime_get_sync(this->dev);
743         if (ret < 0) {
744                 pm_runtime_put_autosuspend(this->dev);
745                 return ret;
746         }
747
748         /*
749         * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
750         * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
751         * and MX28.
752         */
753         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
754         if (ret)
755                 goto err_out;
756
757         /* Set *all* chip selects to use layout 0. */
758         writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
759
760         ret = 0;
761 err_out:
762         pm_runtime_mark_last_busy(this->dev);
763         pm_runtime_put_autosuspend(this->dev);
764
765         return ret;
766 }
767
768 /*
769  * <1> Firstly, we should know what's the GPMI-clock means.
770  *     The GPMI-clock is the internal clock in the gpmi nand controller.
771  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
772  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
773  *
774  * <2> Secondly, we should know what's the frequency on the nand chip pins.
775  *     The frequency on the nand chip pins is derived from the GPMI-clock.
776  *     We can get it from the following equation:
777  *
778  *         F = G / (DS + DH)
779  *
780  *         F  : the frequency on the nand chip pins.
781  *         G  : the GPMI clock, such as 100MHz.
782  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
783  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
784  *
785  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
786  *     the nand EDO(extended Data Out) timing could be applied.
787  *     The GPMI implements a feedback read strobe to sample the read data.
788  *     The feedback read strobe can be delayed to support the nand EDO timing
789  *     where the read strobe may deasserts before the read data is valid, and
790  *     read data is valid for some time after read strobe.
791  *
792  *     The following figure illustrates some aspects of a NAND Flash read:
793  *
794  *                   |<---tREA---->|
795  *                   |             |
796  *                   |         |   |
797  *                   |<--tRP-->|   |
798  *                   |         |   |
799  *                  __          ___|__________________________________
800  *     RDN            \________/   |
801  *                                 |
802  *                                 /---------\
803  *     Read Data    --------------<           >---------
804  *                                 \---------/
805  *                                |     |
806  *                                |<-D->|
807  *     FeedbackRDN  ________             ____________
808  *                          \___________/
809  *
810  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
811  *
812  *
813  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
814  *
815  *  4.1) From the aspect of the nand chip pins:
816  *        Delay = (tREA + C - tRP)               {1}
817  *
818  *        tREA : the maximum read access time.
819  *        C    : a constant to adjust the delay. default is 4000ps.
820  *        tRP  : the read pulse width, which is exactly:
821  *                   tRP = (GPMI-clock-period) * DATA_SETUP
822  *
823  *  4.2) From the aspect of the GPMI nand controller:
824  *         Delay = RDN_DELAY * 0.125 * RP        {2}
825  *
826  *         RP   : the DLL reference period.
827  *            if (GPMI-clock-period > DLL_THRETHOLD)
828  *                   RP = GPMI-clock-period / 2;
829  *            else
830  *                   RP = GPMI-clock-period;
831  *
832  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
833  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
834  *            is 16000ps, but in mx6q, we use 12000ps.
835  *
836  *  4.3) since {1} equals {2}, we get:
837  *
838  *                     (tREA + 4000 - tRP) * 8
839  *         RDN_DELAY = -----------------------     {3}
840  *                           RP
841  */
842 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
843                                     const struct nand_sdr_timings *sdr)
844 {
845         struct gpmi_nfc_hardware_timing *hw = &this->hw;
846         struct resources *r = &this->resources;
847         unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
848         unsigned int period_ps, reference_period_ps;
849         unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
850         unsigned int tRP_ps;
851         bool use_half_period;
852         int sample_delay_ps, sample_delay_factor;
853         unsigned int busy_timeout_cycles;
854         u8 wrn_dly_sel;
855         unsigned long clk_rate, min_rate;
856         u64 busy_timeout_ps;
857
858         if (sdr->tRC_min >= 30000) {
859                 /* ONFI non-EDO modes [0-3] */
860                 hw->clk_rate = 22000000;
861                 min_rate = 0;
862                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
863         } else if (sdr->tRC_min >= 25000) {
864                 /* ONFI EDO mode 4 */
865                 hw->clk_rate = 80000000;
866                 min_rate = 22000000;
867                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
868         } else {
869                 /* ONFI EDO mode 5 */
870                 hw->clk_rate = 100000000;
871                 min_rate = 80000000;
872                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
873         }
874
875         clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
876         if (clk_rate <= min_rate) {
877                 dev_err(this->dev, "clock setting: expected %ld, got %ld\n",
878                         hw->clk_rate, clk_rate);
879                 return -ENOTSUPP;
880         }
881
882         hw->clk_rate = clk_rate;
883         /* SDR core timings are given in picoseconds */
884         period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
885
886         addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
887         data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
888         data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
889         busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max);
890         busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps);
891
892         hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
893                       BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
894                       BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
895         hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096));
896
897         /*
898          * Derive NFC ideal delay from {3}:
899          *
900          *                     (tREA + 4000 - tRP) * 8
901          *         RDN_DELAY = -----------------------
902          *                                RP
903          */
904         if (period_ps > dll_threshold_ps) {
905                 use_half_period = true;
906                 reference_period_ps = period_ps / 2;
907         } else {
908                 use_half_period = false;
909                 reference_period_ps = period_ps;
910         }
911
912         tRP_ps = data_setup_cycles * period_ps;
913         sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
914         if (sample_delay_ps > 0)
915                 sample_delay_factor = sample_delay_ps / reference_period_ps;
916         else
917                 sample_delay_factor = 0;
918
919         hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
920         if (sample_delay_factor)
921                 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
922                               BM_GPMI_CTRL1_DLL_ENABLE |
923                               (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
924         return 0;
925 }
926
927 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
928 {
929         struct gpmi_nfc_hardware_timing *hw = &this->hw;
930         struct resources *r = &this->resources;
931         void __iomem *gpmi_regs = r->gpmi_regs;
932         unsigned int dll_wait_time_us;
933         int ret;
934
935         /* Clock dividers do NOT guarantee a clean clock signal on its output
936          * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
937          * all clock dividers provide these guarantee.
938          */
939         if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
940                 clk_disable_unprepare(r->clock[0]);
941
942         ret = clk_set_rate(r->clock[0], hw->clk_rate);
943         if (ret) {
944                 dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
945                 return ret;
946         }
947
948         if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
949                 ret = clk_prepare_enable(r->clock[0]);
950                 if (ret)
951                         return ret;
952         }
953
954         writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
955         writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
956
957         /*
958          * Clear several CTRL1 fields, DLL must be disabled when setting
959          * RDN_DELAY or HALF_PERIOD.
960          */
961         writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
962         writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
963
964         /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
965         dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
966         if (!dll_wait_time_us)
967                 dll_wait_time_us = 1;
968
969         /* Wait for the DLL to settle. */
970         udelay(dll_wait_time_us);
971
972         return 0;
973 }
974
975 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
976                                 const struct nand_interface_config *conf)
977 {
978         struct gpmi_nand_data *this = nand_get_controller_data(chip);
979         const struct nand_sdr_timings *sdr;
980         int ret;
981
982         /* Retrieve required NAND timings */
983         sdr = nand_get_sdr_timings(conf);
984         if (IS_ERR(sdr))
985                 return PTR_ERR(sdr);
986
987         /* Only MX28/MX6 GPMI controller can reach EDO timings */
988         if (sdr->tRC_min <= 25000 && !GPMI_IS_MX28(this) && !GPMI_IS_MX6(this))
989                 return -ENOTSUPP;
990
991         /* Stop here if this call was just a check */
992         if (chipnr < 0)
993                 return 0;
994
995         /* Do the actual derivation of the controller timings */
996         ret = gpmi_nfc_compute_timings(this, sdr);
997         if (ret)
998                 return ret;
999
1000         this->hw.must_apply_timings = true;
1001
1002         return 0;
1003 }
1004
1005 /* Clears a BCH interrupt. */
1006 static void gpmi_clear_bch(struct gpmi_nand_data *this)
1007 {
1008         struct resources *r = &this->resources;
1009         writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1010 }
1011
1012 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
1013 {
1014         /* We use the DMA channel 0 to access all the nand chips. */
1015         return this->dma_chans[0];
1016 }
1017
1018 /* This will be called after the DMA operation is finished. */
1019 static void dma_irq_callback(void *param)
1020 {
1021         struct gpmi_nand_data *this = param;
1022         struct completion *dma_c = &this->dma_done;
1023
1024         complete(dma_c);
1025 }
1026
1027 static irqreturn_t bch_irq(int irq, void *cookie)
1028 {
1029         struct gpmi_nand_data *this = cookie;
1030
1031         gpmi_clear_bch(this);
1032         complete(&this->bch_done);
1033         return IRQ_HANDLED;
1034 }
1035
1036 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
1037 {
1038         /*
1039          * raw_len is the length to read/write including bch data which
1040          * we are passed in exec_op. Calculate the data length from it.
1041          */
1042         if (this->bch)
1043                 return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size);
1044         else
1045                 return raw_len;
1046 }
1047
1048 /* Can we use the upper's buffer directly for DMA? */
1049 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
1050                              int raw_len, struct scatterlist *sgl,
1051                              enum dma_data_direction dr)
1052 {
1053         int ret;
1054         int len = gpmi_raw_len_to_len(this, raw_len);
1055
1056         /* first try to map the upper buffer directly */
1057         if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
1058                 sg_init_one(sgl, buf, len);
1059                 ret = dma_map_sg(this->dev, sgl, 1, dr);
1060                 if (ret == 0)
1061                         goto map_fail;
1062
1063                 return true;
1064         }
1065
1066 map_fail:
1067         /* We have to use our own DMA buffer. */
1068         sg_init_one(sgl, this->data_buffer_dma, len);
1069
1070         if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
1071                 memcpy(this->data_buffer_dma, buf, len);
1072
1073         dma_map_sg(this->dev, sgl, 1, dr);
1074
1075         return false;
1076 }
1077
1078 /* add our owner bbt descriptor */
1079 static uint8_t scan_ff_pattern[] = { 0xff };
1080 static struct nand_bbt_descr gpmi_bbt_descr = {
1081         .options        = 0,
1082         .offs           = 0,
1083         .len            = 1,
1084         .pattern        = scan_ff_pattern
1085 };
1086
1087 /*
1088  * We may change the layout if we can get the ECC info from the datasheet,
1089  * else we will use all the (page + OOB).
1090  */
1091 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
1092                               struct mtd_oob_region *oobregion)
1093 {
1094         struct nand_chip *chip = mtd_to_nand(mtd);
1095         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1096         struct bch_geometry *geo = &this->bch_geometry;
1097
1098         if (section)
1099                 return -ERANGE;
1100
1101         oobregion->offset = 0;
1102         oobregion->length = geo->page_size - mtd->writesize;
1103
1104         return 0;
1105 }
1106
1107 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1108                                struct mtd_oob_region *oobregion)
1109 {
1110         struct nand_chip *chip = mtd_to_nand(mtd);
1111         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1112         struct bch_geometry *geo = &this->bch_geometry;
1113
1114         if (section)
1115                 return -ERANGE;
1116
1117         /* The available oob size we have. */
1118         if (geo->page_size < mtd->writesize + mtd->oobsize) {
1119                 oobregion->offset = geo->page_size - mtd->writesize;
1120                 oobregion->length = mtd->oobsize - oobregion->offset;
1121         }
1122
1123         return 0;
1124 }
1125
1126 static const char * const gpmi_clks_for_mx2x[] = {
1127         "gpmi_io",
1128 };
1129
1130 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1131         .ecc = gpmi_ooblayout_ecc,
1132         .free = gpmi_ooblayout_free,
1133 };
1134
1135 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1136         .type = IS_MX23,
1137         .bch_max_ecc_strength = 20,
1138         .max_chain_delay = 16000,
1139         .clks = gpmi_clks_for_mx2x,
1140         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1141 };
1142
1143 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1144         .type = IS_MX28,
1145         .bch_max_ecc_strength = 20,
1146         .max_chain_delay = 16000,
1147         .clks = gpmi_clks_for_mx2x,
1148         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1149 };
1150
1151 static const char * const gpmi_clks_for_mx6[] = {
1152         "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1153 };
1154
1155 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1156         .type = IS_MX6Q,
1157         .bch_max_ecc_strength = 40,
1158         .max_chain_delay = 12000,
1159         .clks = gpmi_clks_for_mx6,
1160         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1161 };
1162
1163 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1164         .type = IS_MX6SX,
1165         .bch_max_ecc_strength = 62,
1166         .max_chain_delay = 12000,
1167         .clks = gpmi_clks_for_mx6,
1168         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1169 };
1170
1171 static const char * const gpmi_clks_for_mx7d[] = {
1172         "gpmi_io", "gpmi_bch_apb",
1173 };
1174
1175 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1176         .type = IS_MX7D,
1177         .bch_max_ecc_strength = 62,
1178         .max_chain_delay = 12000,
1179         .clks = gpmi_clks_for_mx7d,
1180         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1181 };
1182
1183 static int acquire_register_block(struct gpmi_nand_data *this,
1184                                   const char *res_name)
1185 {
1186         struct platform_device *pdev = this->pdev;
1187         struct resources *res = &this->resources;
1188         void __iomem *p;
1189
1190         p = devm_platform_ioremap_resource_byname(pdev, res_name);
1191         if (IS_ERR(p))
1192                 return PTR_ERR(p);
1193
1194         if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1195                 res->gpmi_regs = p;
1196         else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1197                 res->bch_regs = p;
1198         else
1199                 dev_err(this->dev, "unknown resource name : %s\n", res_name);
1200
1201         return 0;
1202 }
1203
1204 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1205 {
1206         struct platform_device *pdev = this->pdev;
1207         const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1208         int err;
1209
1210         err = platform_get_irq_byname(pdev, res_name);
1211         if (err < 0)
1212                 return err;
1213
1214         err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this);
1215         if (err)
1216                 dev_err(this->dev, "error requesting BCH IRQ\n");
1217
1218         return err;
1219 }
1220
1221 static void release_dma_channels(struct gpmi_nand_data *this)
1222 {
1223         unsigned int i;
1224         for (i = 0; i < DMA_CHANS; i++)
1225                 if (this->dma_chans[i]) {
1226                         dma_release_channel(this->dma_chans[i]);
1227                         this->dma_chans[i] = NULL;
1228                 }
1229 }
1230
1231 static int acquire_dma_channels(struct gpmi_nand_data *this)
1232 {
1233         struct platform_device *pdev = this->pdev;
1234         struct dma_chan *dma_chan;
1235         int ret = 0;
1236
1237         /* request dma channel */
1238         dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1239         if (IS_ERR(dma_chan)) {
1240                 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1241                                     "DMA channel request failed\n");
1242                 release_dma_channels(this);
1243         } else {
1244                 this->dma_chans[0] = dma_chan;
1245         }
1246
1247         return ret;
1248 }
1249
1250 static int gpmi_get_clks(struct gpmi_nand_data *this)
1251 {
1252         struct resources *r = &this->resources;
1253         struct clk *clk;
1254         int err, i;
1255
1256         for (i = 0; i < this->devdata->clks_count; i++) {
1257                 clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1258                 if (IS_ERR(clk)) {
1259                         err = PTR_ERR(clk);
1260                         goto err_clock;
1261                 }
1262
1263                 r->clock[i] = clk;
1264         }
1265
1266         return 0;
1267
1268 err_clock:
1269         dev_dbg(this->dev, "failed in finding the clocks.\n");
1270         return err;
1271 }
1272
1273 static int acquire_resources(struct gpmi_nand_data *this)
1274 {
1275         int ret;
1276
1277         ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1278         if (ret)
1279                 goto exit_regs;
1280
1281         ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1282         if (ret)
1283                 goto exit_regs;
1284
1285         ret = acquire_bch_irq(this, bch_irq);
1286         if (ret)
1287                 goto exit_regs;
1288
1289         ret = acquire_dma_channels(this);
1290         if (ret)
1291                 goto exit_regs;
1292
1293         ret = gpmi_get_clks(this);
1294         if (ret)
1295                 goto exit_clock;
1296         return 0;
1297
1298 exit_clock:
1299         release_dma_channels(this);
1300 exit_regs:
1301         return ret;
1302 }
1303
1304 static void release_resources(struct gpmi_nand_data *this)
1305 {
1306         release_dma_channels(this);
1307 }
1308
1309 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1310 {
1311         struct device *dev = this->dev;
1312         struct bch_geometry *geo = &this->bch_geometry;
1313
1314         if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1315                 dma_free_coherent(dev, geo->auxiliary_size,
1316                                         this->auxiliary_virt,
1317                                         this->auxiliary_phys);
1318         kfree(this->data_buffer_dma);
1319         kfree(this->raw_buffer);
1320
1321         this->data_buffer_dma   = NULL;
1322         this->raw_buffer        = NULL;
1323 }
1324
1325 /* Allocate the DMA buffers */
1326 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1327 {
1328         struct bch_geometry *geo = &this->bch_geometry;
1329         struct device *dev = this->dev;
1330         struct mtd_info *mtd = nand_to_mtd(&this->nand);
1331
1332         /*
1333          * [2] Allocate a read/write data buffer.
1334          *     The gpmi_alloc_dma_buffer can be called twice.
1335          *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1336          *     is called before the NAND identification; and we allocate a
1337          *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1338          *     is called after.
1339          */
1340         this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1341                                         GFP_DMA | GFP_KERNEL);
1342         if (this->data_buffer_dma == NULL)
1343                 goto error_alloc;
1344
1345         this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1346                                         &this->auxiliary_phys, GFP_DMA);
1347         if (!this->auxiliary_virt)
1348                 goto error_alloc;
1349
1350         this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1351         if (!this->raw_buffer)
1352                 goto error_alloc;
1353
1354         return 0;
1355
1356 error_alloc:
1357         gpmi_free_dma_buffer(this);
1358         return -ENOMEM;
1359 }
1360
1361 /*
1362  * Handles block mark swapping.
1363  * It can be called in swapping the block mark, or swapping it back,
1364  * because the the operations are the same.
1365  */
1366 static void block_mark_swapping(struct gpmi_nand_data *this,
1367                                 void *payload, void *auxiliary)
1368 {
1369         struct bch_geometry *nfc_geo = &this->bch_geometry;
1370         unsigned char *p;
1371         unsigned char *a;
1372         unsigned int  bit;
1373         unsigned char mask;
1374         unsigned char from_data;
1375         unsigned char from_oob;
1376
1377         if (!this->swap_block_mark)
1378                 return;
1379
1380         /*
1381          * If control arrives here, we're swapping. Make some convenience
1382          * variables.
1383          */
1384         bit = nfc_geo->block_mark_bit_offset;
1385         p   = payload + nfc_geo->block_mark_byte_offset;
1386         a   = auxiliary;
1387
1388         /*
1389          * Get the byte from the data area that overlays the block mark. Since
1390          * the ECC engine applies its own view to the bits in the page, the
1391          * physical block mark won't (in general) appear on a byte boundary in
1392          * the data.
1393          */
1394         from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1395
1396         /* Get the byte from the OOB. */
1397         from_oob = a[0];
1398
1399         /* Swap them. */
1400         a[0] = from_data;
1401
1402         mask = (0x1 << bit) - 1;
1403         p[0] = (p[0] & mask) | (from_oob << bit);
1404
1405         mask = ~0 << bit;
1406         p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1407 }
1408
1409 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1410                                int last, int meta)
1411 {
1412         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1413         struct bch_geometry *nfc_geo = &this->bch_geometry;
1414         struct mtd_info *mtd = nand_to_mtd(chip);
1415         int i;
1416         unsigned char *status;
1417         unsigned int max_bitflips = 0;
1418
1419         /* Loop over status bytes, accumulating ECC status. */
1420         status = this->auxiliary_virt + ALIGN(meta, 4);
1421
1422         for (i = first; i < last; i++, status++) {
1423                 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1424                         continue;
1425
1426                 if (*status == STATUS_UNCORRECTABLE) {
1427                         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1428                         u8 *eccbuf = this->raw_buffer;
1429                         int offset, bitoffset;
1430                         int eccbytes;
1431                         int flips;
1432
1433                         /* Read ECC bytes into our internal raw_buffer */
1434                         offset = nfc_geo->metadata_size * 8;
1435                         offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1);
1436                         offset -= eccbits;
1437                         bitoffset = offset % 8;
1438                         eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1439                         offset /= 8;
1440                         eccbytes -= offset;
1441                         nand_change_read_column_op(chip, offset, eccbuf,
1442                                                    eccbytes, false);
1443
1444                         /*
1445                          * ECC data are not byte aligned and we may have
1446                          * in-band data in the first and last byte of
1447                          * eccbuf. Set non-eccbits to one so that
1448                          * nand_check_erased_ecc_chunk() does not count them
1449                          * as bitflips.
1450                          */
1451                         if (bitoffset)
1452                                 eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1453
1454                         bitoffset = (bitoffset + eccbits) % 8;
1455                         if (bitoffset)
1456                                 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1457
1458                         /*
1459                          * The ECC hardware has an uncorrectable ECC status
1460                          * code in case we have bitflips in an erased page. As
1461                          * nothing was written into this subpage the ECC is
1462                          * obviously wrong and we can not trust it. We assume
1463                          * at this point that we are reading an erased page and
1464                          * try to correct the bitflips in buffer up to
1465                          * ecc_strength bitflips. If this is a page with random
1466                          * data, we exceed this number of bitflips and have a
1467                          * ECC failure. Otherwise we use the corrected buffer.
1468                          */
1469                         if (i == 0) {
1470                                 /* The first block includes metadata */
1471                                 flips = nand_check_erased_ecc_chunk(
1472                                                 buf + i * nfc_geo->eccn_chunk_size,
1473                                                 nfc_geo->eccn_chunk_size,
1474                                                 eccbuf, eccbytes,
1475                                                 this->auxiliary_virt,
1476                                                 nfc_geo->metadata_size,
1477                                                 nfc_geo->ecc_strength);
1478                         } else {
1479                                 flips = nand_check_erased_ecc_chunk(
1480                                                 buf + i * nfc_geo->eccn_chunk_size,
1481                                                 nfc_geo->eccn_chunk_size,
1482                                                 eccbuf, eccbytes,
1483                                                 NULL, 0,
1484                                                 nfc_geo->ecc_strength);
1485                         }
1486
1487                         if (flips > 0) {
1488                                 max_bitflips = max_t(unsigned int, max_bitflips,
1489                                                      flips);
1490                                 mtd->ecc_stats.corrected += flips;
1491                                 continue;
1492                         }
1493
1494                         mtd->ecc_stats.failed++;
1495                         continue;
1496                 }
1497
1498                 mtd->ecc_stats.corrected += *status;
1499                 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1500         }
1501
1502         return max_bitflips;
1503 }
1504
1505 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1506 {
1507         struct bch_geometry *geo = &this->bch_geometry;
1508         unsigned int ecc_strength = geo->ecc_strength >> 1;
1509         unsigned int gf_len = geo->gf_len;
1510         unsigned int block0_size = geo->ecc0_chunk_size;
1511         unsigned int blockn_size = geo->eccn_chunk_size;
1512
1513         this->bch_flashlayout0 =
1514                 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1515                 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1516                 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1517                 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1518                 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this);
1519
1520         this->bch_flashlayout1 =
1521                 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1522                 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1523                 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1524                 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this);
1525 }
1526
1527 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1528                               int oob_required, int page)
1529 {
1530         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1531         struct mtd_info *mtd = nand_to_mtd(chip);
1532         struct bch_geometry *geo = &this->bch_geometry;
1533         unsigned int max_bitflips;
1534         int ret;
1535
1536         gpmi_bch_layout_std(this);
1537         this->bch = true;
1538
1539         ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1540         if (ret)
1541                 return ret;
1542
1543         max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1544                                            geo->ecc_chunk_count,
1545                                            geo->auxiliary_status_offset);
1546
1547         /* handle the block mark swapping */
1548         block_mark_swapping(this, buf, this->auxiliary_virt);
1549
1550         if (oob_required) {
1551                 /*
1552                  * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1553                  * for details about our policy for delivering the OOB.
1554                  *
1555                  * We fill the caller's buffer with set bits, and then copy the
1556                  * block mark to th caller's buffer. Note that, if block mark
1557                  * swapping was necessary, it has already been done, so we can
1558                  * rely on the first byte of the auxiliary buffer to contain
1559                  * the block mark.
1560                  */
1561                 memset(chip->oob_poi, ~0, mtd->oobsize);
1562                 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1563         }
1564
1565         return max_bitflips;
1566 }
1567
1568 /* Fake a virtual small page for the subpage read */
1569 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1570                                  uint32_t len, uint8_t *buf, int page)
1571 {
1572         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1573         struct bch_geometry *geo = &this->bch_geometry;
1574         int size = chip->ecc.size; /* ECC chunk size */
1575         int meta, n, page_size;
1576         unsigned int max_bitflips;
1577         unsigned int ecc_strength;
1578         int first, last, marker_pos;
1579         int ecc_parity_size;
1580         int col = 0;
1581         int ret;
1582
1583         /* The size of ECC parity */
1584         ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1585
1586         /* Align it with the chunk size */
1587         first = offs / size;
1588         last = (offs + len - 1) / size;
1589
1590         if (this->swap_block_mark) {
1591                 /*
1592                  * Find the chunk which contains the Block Marker.
1593                  * If this chunk is in the range of [first, last],
1594                  * we have to read out the whole page.
1595                  * Why? since we had swapped the data at the position of Block
1596                  * Marker to the metadata which is bound with the chunk 0.
1597                  */
1598                 marker_pos = geo->block_mark_byte_offset / size;
1599                 if (last >= marker_pos && first <= marker_pos) {
1600                         dev_dbg(this->dev,
1601                                 "page:%d, first:%d, last:%d, marker at:%d\n",
1602                                 page, first, last, marker_pos);
1603                         return gpmi_ecc_read_page(chip, buf, 0, page);
1604                 }
1605         }
1606
1607         /*
1608          * if there is an ECC dedicate for meta:
1609          * - need to add an extra ECC size when calculating col and page_size,
1610          *   if the meta size is NOT zero.
1611          * - ecc0_chunk size need to set to the same size as other chunks,
1612          *   if the meta size is zero.
1613          */
1614
1615         meta = geo->metadata_size;
1616         if (first) {
1617                 if (geo->ecc_for_meta)
1618                         col = meta + ecc_parity_size
1619                                 + (size + ecc_parity_size) * first;
1620                 else
1621                         col = meta + (size + ecc_parity_size) * first;
1622
1623                 meta = 0;
1624                 buf = buf + first * size;
1625         }
1626
1627         ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1628         n = last - first + 1;
1629
1630         if (geo->ecc_for_meta && meta)
1631                 page_size = meta + ecc_parity_size
1632                             + (size + ecc_parity_size) * n;
1633         else
1634                 page_size = meta + (size + ecc_parity_size) * n;
1635
1636         ecc_strength = geo->ecc_strength >> 1;
1637
1638         this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(
1639                 (geo->ecc_for_meta ? n : n - 1)) |
1640                 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1641                 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1642                 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1643                 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ?
1644                 0 : geo->ecc0_chunk_size), this);
1645
1646         this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1647                 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1648                 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1649                 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this);
1650
1651         this->bch = true;
1652
1653         ret = nand_read_page_op(chip, page, col, buf, page_size);
1654         if (ret)
1655                 return ret;
1656
1657         dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1658                 page, offs, len, col, first, n, page_size);
1659
1660         max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1661
1662         return max_bitflips;
1663 }
1664
1665 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1666                                int oob_required, int page)
1667 {
1668         struct mtd_info *mtd = nand_to_mtd(chip);
1669         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1670         struct bch_geometry *nfc_geo = &this->bch_geometry;
1671
1672         dev_dbg(this->dev, "ecc write page.\n");
1673
1674         gpmi_bch_layout_std(this);
1675         this->bch = true;
1676
1677         memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1678
1679         if (this->swap_block_mark) {
1680                 /*
1681                  * When doing bad block marker swapping we must always copy the
1682                  * input buffer as we can't modify the const buffer.
1683                  */
1684                 memcpy(this->data_buffer_dma, buf, mtd->writesize);
1685                 buf = this->data_buffer_dma;
1686                 block_mark_swapping(this, this->data_buffer_dma,
1687                                     this->auxiliary_virt);
1688         }
1689
1690         return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1691 }
1692
1693 /*
1694  * There are several places in this driver where we have to handle the OOB and
1695  * block marks. This is the function where things are the most complicated, so
1696  * this is where we try to explain it all. All the other places refer back to
1697  * here.
1698  *
1699  * These are the rules, in order of decreasing importance:
1700  *
1701  * 1) Nothing the caller does can be allowed to imperil the block mark.
1702  *
1703  * 2) In read operations, the first byte of the OOB we return must reflect the
1704  *    true state of the block mark, no matter where that block mark appears in
1705  *    the physical page.
1706  *
1707  * 3) ECC-based read operations return an OOB full of set bits (since we never
1708  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1709  *    return).
1710  *
1711  * 4) "Raw" read operations return a direct view of the physical bytes in the
1712  *    page, using the conventional definition of which bytes are data and which
1713  *    are OOB. This gives the caller a way to see the actual, physical bytes
1714  *    in the page, without the distortions applied by our ECC engine.
1715  *
1716  *
1717  * What we do for this specific read operation depends on two questions:
1718  *
1719  * 1) Are we doing a "raw" read, or an ECC-based read?
1720  *
1721  * 2) Are we using block mark swapping or transcription?
1722  *
1723  * There are four cases, illustrated by the following Karnaugh map:
1724  *
1725  *                    |           Raw           |         ECC-based       |
1726  *       -------------+-------------------------+-------------------------+
1727  *                    | Read the conventional   |                         |
1728  *                    | OOB at the end of the   |                         |
1729  *       Swapping     | page and return it. It  |                         |
1730  *                    | contains exactly what   |                         |
1731  *                    | we want.                | Read the block mark and |
1732  *       -------------+-------------------------+ return it in a buffer   |
1733  *                    | Read the conventional   | full of set bits.       |
1734  *                    | OOB at the end of the   |                         |
1735  *                    | page and also the block |                         |
1736  *       Transcribing | mark in the metadata.   |                         |
1737  *                    | Copy the block mark     |                         |
1738  *                    | into the first byte of  |                         |
1739  *                    | the OOB.                |                         |
1740  *       -------------+-------------------------+-------------------------+
1741  *
1742  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1743  * giving an accurate view of the actual, physical bytes in the page (we're
1744  * overwriting the block mark). That's OK because it's more important to follow
1745  * rule #2.
1746  *
1747  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1748  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1749  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1750  * ECC-based or raw view of the page is implicit in which function it calls
1751  * (there is a similar pair of ECC-based/raw functions for writing).
1752  */
1753 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1754 {
1755         struct mtd_info *mtd = nand_to_mtd(chip);
1756         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1757         int ret;
1758
1759         /* clear the OOB buffer */
1760         memset(chip->oob_poi, ~0, mtd->oobsize);
1761
1762         /* Read out the conventional OOB. */
1763         ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1764                                 mtd->oobsize);
1765         if (ret)
1766                 return ret;
1767
1768         /*
1769          * Now, we want to make sure the block mark is correct. In the
1770          * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1771          * Otherwise, we need to explicitly read it.
1772          */
1773         if (GPMI_IS_MX23(this)) {
1774                 /* Read the block mark into the first byte of the OOB buffer. */
1775                 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1776                 if (ret)
1777                         return ret;
1778         }
1779
1780         return 0;
1781 }
1782
1783 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1784 {
1785         struct mtd_info *mtd = nand_to_mtd(chip);
1786         struct mtd_oob_region of = { };
1787
1788         /* Do we have available oob area? */
1789         mtd_ooblayout_free(mtd, 0, &of);
1790         if (!of.length)
1791                 return -EPERM;
1792
1793         if (!nand_is_slc(chip))
1794                 return -EPERM;
1795
1796         return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1797                                  chip->oob_poi + of.offset, of.length);
1798 }
1799
1800 /*
1801  * This function reads a NAND page without involving the ECC engine (no HW
1802  * ECC correction).
1803  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1804  * inline (interleaved with payload DATA), and do not align data chunk on
1805  * byte boundaries.
1806  * We thus need to take care moving the payload data and ECC bits stored in the
1807  * page into the provided buffers, which is why we're using nand_extract_bits().
1808  *
1809  * See set_geometry_by_ecc_info inline comments to have a full description
1810  * of the layout used by the GPMI controller.
1811  */
1812 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1813                                   int oob_required, int page)
1814 {
1815         struct mtd_info *mtd = nand_to_mtd(chip);
1816         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1817         struct bch_geometry *nfc_geo = &this->bch_geometry;
1818         int eccsize = nfc_geo->eccn_chunk_size;
1819         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1820         u8 *tmp_buf = this->raw_buffer;
1821         size_t src_bit_off;
1822         size_t oob_bit_off;
1823         size_t oob_byte_off;
1824         uint8_t *oob = chip->oob_poi;
1825         int step;
1826         int ret;
1827
1828         ret = nand_read_page_op(chip, page, 0, tmp_buf,
1829                                 mtd->writesize + mtd->oobsize);
1830         if (ret)
1831                 return ret;
1832
1833         /*
1834          * If required, swap the bad block marker and the data stored in the
1835          * metadata section, so that we don't wrongly consider a block as bad.
1836          *
1837          * See the layout description for a detailed explanation on why this
1838          * is needed.
1839          */
1840         if (this->swap_block_mark)
1841                 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1842
1843         /*
1844          * Copy the metadata section into the oob buffer (this section is
1845          * guaranteed to be aligned on a byte boundary).
1846          */
1847         if (oob_required)
1848                 memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1849
1850         oob_bit_off = nfc_geo->metadata_size * 8;
1851         src_bit_off = oob_bit_off;
1852
1853         /* Extract interleaved payload data and ECC bits */
1854         for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1855                 if (buf)
1856                         nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
1857                                           src_bit_off, eccsize * 8);
1858                 src_bit_off += eccsize * 8;
1859
1860                 /* Align last ECC block to align a byte boundary */
1861                 if (step == nfc_geo->ecc_chunk_count - 1 &&
1862                     (oob_bit_off + eccbits) % 8)
1863                         eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1864
1865                 if (oob_required)
1866                         nand_extract_bits(oob, oob_bit_off, tmp_buf,
1867                                           src_bit_off, eccbits);
1868
1869                 src_bit_off += eccbits;
1870                 oob_bit_off += eccbits;
1871         }
1872
1873         if (oob_required) {
1874                 oob_byte_off = oob_bit_off / 8;
1875
1876                 if (oob_byte_off < mtd->oobsize)
1877                         memcpy(oob + oob_byte_off,
1878                                tmp_buf + mtd->writesize + oob_byte_off,
1879                                mtd->oobsize - oob_byte_off);
1880         }
1881
1882         return 0;
1883 }
1884
1885 /*
1886  * This function writes a NAND page without involving the ECC engine (no HW
1887  * ECC generation).
1888  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1889  * inline (interleaved with payload DATA), and do not align data chunk on
1890  * byte boundaries.
1891  * We thus need to take care moving the OOB area at the right place in the
1892  * final page, which is why we're using nand_extract_bits().
1893  *
1894  * See set_geometry_by_ecc_info inline comments to have a full description
1895  * of the layout used by the GPMI controller.
1896  */
1897 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1898                                    int oob_required, int page)
1899 {
1900         struct mtd_info *mtd = nand_to_mtd(chip);
1901         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1902         struct bch_geometry *nfc_geo = &this->bch_geometry;
1903         int eccsize = nfc_geo->eccn_chunk_size;
1904         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1905         u8 *tmp_buf = this->raw_buffer;
1906         uint8_t *oob = chip->oob_poi;
1907         size_t dst_bit_off;
1908         size_t oob_bit_off;
1909         size_t oob_byte_off;
1910         int step;
1911
1912         /*
1913          * Initialize all bits to 1 in case we don't have a buffer for the
1914          * payload or oob data in order to leave unspecified bits of data
1915          * to their initial state.
1916          */
1917         if (!buf || !oob_required)
1918                 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1919
1920         /*
1921          * First copy the metadata section (stored in oob buffer) at the
1922          * beginning of the page, as imposed by the GPMI layout.
1923          */
1924         memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1925         oob_bit_off = nfc_geo->metadata_size * 8;
1926         dst_bit_off = oob_bit_off;
1927
1928         /* Interleave payload data and ECC bits */
1929         for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1930                 if (buf)
1931                         nand_extract_bits(tmp_buf, dst_bit_off, buf,
1932                                           step * eccsize * 8, eccsize * 8);
1933                 dst_bit_off += eccsize * 8;
1934
1935                 /* Align last ECC block to align a byte boundary */
1936                 if (step == nfc_geo->ecc_chunk_count - 1 &&
1937                     (oob_bit_off + eccbits) % 8)
1938                         eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1939
1940                 if (oob_required)
1941                         nand_extract_bits(tmp_buf, dst_bit_off, oob,
1942                                           oob_bit_off, eccbits);
1943
1944                 dst_bit_off += eccbits;
1945                 oob_bit_off += eccbits;
1946         }
1947
1948         oob_byte_off = oob_bit_off / 8;
1949
1950         if (oob_required && oob_byte_off < mtd->oobsize)
1951                 memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1952                        oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1953
1954         /*
1955          * If required, swap the bad block marker and the first byte of the
1956          * metadata section, so that we don't modify the bad block marker.
1957          *
1958          * See the layout description for a detailed explanation on why this
1959          * is needed.
1960          */
1961         if (this->swap_block_mark)
1962                 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1963
1964         return nand_prog_page_op(chip, page, 0, tmp_buf,
1965                                  mtd->writesize + mtd->oobsize);
1966 }
1967
1968 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1969 {
1970         return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1971 }
1972
1973 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1974 {
1975         return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1976 }
1977
1978 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1979 {
1980         struct mtd_info *mtd = nand_to_mtd(chip);
1981         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1982         int ret = 0;
1983         uint8_t *block_mark;
1984         int column, page, chipnr;
1985
1986         chipnr = (int)(ofs >> chip->chip_shift);
1987         nand_select_target(chip, chipnr);
1988
1989         column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1990
1991         /* Write the block mark. */
1992         block_mark = this->data_buffer_dma;
1993         block_mark[0] = 0; /* bad block marker */
1994
1995         /* Shift to get page */
1996         page = (int)(ofs >> chip->page_shift);
1997
1998         ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1999
2000         nand_deselect_target(chip);
2001
2002         return ret;
2003 }
2004
2005 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
2006 {
2007         struct boot_rom_geometry *geometry = &this->rom_geometry;
2008
2009         /*
2010          * Set the boot block stride size.
2011          *
2012          * In principle, we should be reading this from the OTP bits, since
2013          * that's where the ROM is going to get it. In fact, we don't have any
2014          * way to read the OTP bits, so we go with the default and hope for the
2015          * best.
2016          */
2017         geometry->stride_size_in_pages = 64;
2018
2019         /*
2020          * Set the search area stride exponent.
2021          *
2022          * In principle, we should be reading this from the OTP bits, since
2023          * that's where the ROM is going to get it. In fact, we don't have any
2024          * way to read the OTP bits, so we go with the default and hope for the
2025          * best.
2026          */
2027         geometry->search_area_stride_exponent = 2;
2028         return 0;
2029 }
2030
2031 static const char  *fingerprint = "STMP";
2032 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
2033 {
2034         struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2035         struct device *dev = this->dev;
2036         struct nand_chip *chip = &this->nand;
2037         unsigned int search_area_size_in_strides;
2038         unsigned int stride;
2039         unsigned int page;
2040         u8 *buffer = nand_get_data_buf(chip);
2041         int found_an_ncb_fingerprint = false;
2042         int ret;
2043
2044         /* Compute the number of strides in a search area. */
2045         search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2046
2047         nand_select_target(chip, 0);
2048
2049         /*
2050          * Loop through the first search area, looking for the NCB fingerprint.
2051          */
2052         dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
2053
2054         for (stride = 0; stride < search_area_size_in_strides; stride++) {
2055                 /* Compute the page addresses. */
2056                 page = stride * rom_geo->stride_size_in_pages;
2057
2058                 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
2059
2060                 /*
2061                  * Read the NCB fingerprint. The fingerprint is four bytes long
2062                  * and starts in the 12th byte of the page.
2063                  */
2064                 ret = nand_read_page_op(chip, page, 12, buffer,
2065                                         strlen(fingerprint));
2066                 if (ret)
2067                         continue;
2068
2069                 /* Look for the fingerprint. */
2070                 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
2071                         found_an_ncb_fingerprint = true;
2072                         break;
2073                 }
2074
2075         }
2076
2077         nand_deselect_target(chip);
2078
2079         if (found_an_ncb_fingerprint)
2080                 dev_dbg(dev, "\tFound a fingerprint\n");
2081         else
2082                 dev_dbg(dev, "\tNo fingerprint found\n");
2083         return found_an_ncb_fingerprint;
2084 }
2085
2086 /* Writes a transcription stamp. */
2087 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
2088 {
2089         struct device *dev = this->dev;
2090         struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2091         struct nand_chip *chip = &this->nand;
2092         struct mtd_info *mtd = nand_to_mtd(chip);
2093         unsigned int block_size_in_pages;
2094         unsigned int search_area_size_in_strides;
2095         unsigned int search_area_size_in_pages;
2096         unsigned int search_area_size_in_blocks;
2097         unsigned int block;
2098         unsigned int stride;
2099         unsigned int page;
2100         u8 *buffer = nand_get_data_buf(chip);
2101         int status;
2102
2103         /* Compute the search area geometry. */
2104         block_size_in_pages = mtd->erasesize / mtd->writesize;
2105         search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2106         search_area_size_in_pages = search_area_size_in_strides *
2107                                         rom_geo->stride_size_in_pages;
2108         search_area_size_in_blocks =
2109                   (search_area_size_in_pages + (block_size_in_pages - 1)) /
2110                                     block_size_in_pages;
2111
2112         dev_dbg(dev, "Search Area Geometry :\n");
2113         dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2114         dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2115         dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
2116
2117         nand_select_target(chip, 0);
2118
2119         /* Loop over blocks in the first search area, erasing them. */
2120         dev_dbg(dev, "Erasing the search area...\n");
2121
2122         for (block = 0; block < search_area_size_in_blocks; block++) {
2123                 /* Erase this block. */
2124                 dev_dbg(dev, "\tErasing block 0x%x\n", block);
2125                 status = nand_erase_op(chip, block);
2126                 if (status)
2127                         dev_err(dev, "[%s] Erase failed.\n", __func__);
2128         }
2129
2130         /* Write the NCB fingerprint into the page buffer. */
2131         memset(buffer, ~0, mtd->writesize);
2132         memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2133
2134         /* Loop through the first search area, writing NCB fingerprints. */
2135         dev_dbg(dev, "Writing NCB fingerprints...\n");
2136         for (stride = 0; stride < search_area_size_in_strides; stride++) {
2137                 /* Compute the page addresses. */
2138                 page = stride * rom_geo->stride_size_in_pages;
2139
2140                 /* Write the first page of the current stride. */
2141                 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2142
2143                 status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2144                 if (status)
2145                         dev_err(dev, "[%s] Write failed.\n", __func__);
2146         }
2147
2148         nand_deselect_target(chip);
2149
2150         return 0;
2151 }
2152
2153 static int mx23_boot_init(struct gpmi_nand_data  *this)
2154 {
2155         struct device *dev = this->dev;
2156         struct nand_chip *chip = &this->nand;
2157         struct mtd_info *mtd = nand_to_mtd(chip);
2158         unsigned int block_count;
2159         unsigned int block;
2160         int     chipnr;
2161         int     page;
2162         loff_t  byte;
2163         uint8_t block_mark;
2164         int     ret = 0;
2165
2166         /*
2167          * If control arrives here, we can't use block mark swapping, which
2168          * means we're forced to use transcription. First, scan for the
2169          * transcription stamp. If we find it, then we don't have to do
2170          * anything -- the block marks are already transcribed.
2171          */
2172         if (mx23_check_transcription_stamp(this))
2173                 return 0;
2174
2175         /*
2176          * If control arrives here, we couldn't find a transcription stamp, so
2177          * so we presume the block marks are in the conventional location.
2178          */
2179         dev_dbg(dev, "Transcribing bad block marks...\n");
2180
2181         /* Compute the number of blocks in the entire medium. */
2182         block_count = nanddev_eraseblocks_per_target(&chip->base);
2183
2184         /*
2185          * Loop over all the blocks in the medium, transcribing block marks as
2186          * we go.
2187          */
2188         for (block = 0; block < block_count; block++) {
2189                 /*
2190                  * Compute the chip, page and byte addresses for this block's
2191                  * conventional mark.
2192                  */
2193                 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2194                 page = block << (chip->phys_erase_shift - chip->page_shift);
2195                 byte = block <<  chip->phys_erase_shift;
2196
2197                 /* Send the command to read the conventional block mark. */
2198                 nand_select_target(chip, chipnr);
2199                 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2200                                         1);
2201                 nand_deselect_target(chip);
2202
2203                 if (ret)
2204                         continue;
2205
2206                 /*
2207                  * Check if the block is marked bad. If so, we need to mark it
2208                  * again, but this time the result will be a mark in the
2209                  * location where we transcribe block marks.
2210                  */
2211                 if (block_mark != 0xff) {
2212                         dev_dbg(dev, "Transcribing mark in block %u\n", block);
2213                         ret = chip->legacy.block_markbad(chip, byte);
2214                         if (ret)
2215                                 dev_err(dev,
2216                                         "Failed to mark block bad with ret %d\n",
2217                                         ret);
2218                 }
2219         }
2220
2221         /* Write the stamp that indicates we've transcribed the block marks. */
2222         mx23_write_transcription_stamp(this);
2223         return 0;
2224 }
2225
2226 static int nand_boot_init(struct gpmi_nand_data  *this)
2227 {
2228         nand_boot_set_geometry(this);
2229
2230         /* This is ROM arch-specific initilization before the BBT scanning. */
2231         if (GPMI_IS_MX23(this))
2232                 return mx23_boot_init(this);
2233         return 0;
2234 }
2235
2236 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2237 {
2238         int ret;
2239
2240         /* Free the temporary DMA memory for reading ID. */
2241         gpmi_free_dma_buffer(this);
2242
2243         /* Set up the NFC geometry which is used by BCH. */
2244         ret = bch_set_geometry(this);
2245         if (ret) {
2246                 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2247                 return ret;
2248         }
2249
2250         /* Alloc the new DMA buffers according to the pagesize and oobsize */
2251         return gpmi_alloc_dma_buffer(this);
2252 }
2253
2254 static int gpmi_init_last(struct gpmi_nand_data *this)
2255 {
2256         struct nand_chip *chip = &this->nand;
2257         struct mtd_info *mtd = nand_to_mtd(chip);
2258         struct nand_ecc_ctrl *ecc = &chip->ecc;
2259         struct bch_geometry *bch_geo = &this->bch_geometry;
2260         int ret;
2261
2262         /* Set up the medium geometry */
2263         ret = gpmi_set_geometry(this);
2264         if (ret)
2265                 return ret;
2266
2267         /* Init the nand_ecc_ctrl{} */
2268         ecc->read_page  = gpmi_ecc_read_page;
2269         ecc->write_page = gpmi_ecc_write_page;
2270         ecc->read_oob   = gpmi_ecc_read_oob;
2271         ecc->write_oob  = gpmi_ecc_write_oob;
2272         ecc->read_page_raw = gpmi_ecc_read_page_raw;
2273         ecc->write_page_raw = gpmi_ecc_write_page_raw;
2274         ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2275         ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2276         ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2277         ecc->size       = bch_geo->eccn_chunk_size;
2278         ecc->strength   = bch_geo->ecc_strength;
2279         mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2280
2281         /*
2282          * We only enable the subpage read when:
2283          *  (1) the chip is imx6, and
2284          *  (2) the size of the ECC parity is byte aligned.
2285          */
2286         if (GPMI_IS_MX6(this) &&
2287                 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2288                 ecc->read_subpage = gpmi_ecc_read_subpage;
2289                 chip->options |= NAND_SUBPAGE_READ;
2290         }
2291
2292         return 0;
2293 }
2294
2295 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2296 {
2297         struct gpmi_nand_data *this = nand_get_controller_data(chip);
2298         int ret;
2299
2300         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2301                 chip->bbt_options |= NAND_BBT_NO_OOB;
2302
2303                 if (of_property_read_bool(this->dev->of_node,
2304                                           "fsl,no-blockmark-swap"))
2305                         this->swap_block_mark = false;
2306         }
2307         dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2308                 this->swap_block_mark ? "en" : "dis");
2309
2310         ret = gpmi_init_last(this);
2311         if (ret)
2312                 return ret;
2313
2314         chip->options |= NAND_SKIP_BBTSCAN;
2315
2316         return 0;
2317 }
2318
2319 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2320 {
2321         struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2322
2323         this->ntransfers++;
2324
2325         if (this->ntransfers == GPMI_MAX_TRANSFERS)
2326                 return NULL;
2327
2328         return transfer;
2329 }
2330
2331 static struct dma_async_tx_descriptor *gpmi_chain_command(
2332         struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2333 {
2334         struct dma_chan *channel = get_dma_chan(this);
2335         struct dma_async_tx_descriptor *desc;
2336         struct gpmi_transfer *transfer;
2337         int chip = this->nand.cur_cs;
2338         u32 pio[3];
2339
2340         /* [1] send out the PIO words */
2341         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2342                 | BM_GPMI_CTRL0_WORD_LENGTH
2343                 | BF_GPMI_CTRL0_CS(chip, this)
2344                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2345                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2346                 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
2347                 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2348         pio[1] = 0;
2349         pio[2] = 0;
2350         desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2351                                       DMA_TRANS_NONE, 0);
2352         if (!desc)
2353                 return NULL;
2354
2355         transfer = get_next_transfer(this);
2356         if (!transfer)
2357                 return NULL;
2358
2359         transfer->cmdbuf[0] = cmd;
2360         if (naddr)
2361                 memcpy(&transfer->cmdbuf[1], addr, naddr);
2362
2363         sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2364         dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2365
2366         transfer->direction = DMA_TO_DEVICE;
2367
2368         desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2369                                        MXS_DMA_CTRL_WAIT4END);
2370         return desc;
2371 }
2372
2373 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2374         struct gpmi_nand_data *this)
2375 {
2376         struct dma_chan *channel = get_dma_chan(this);
2377         u32 pio[2];
2378
2379         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2380                 | BM_GPMI_CTRL0_WORD_LENGTH
2381                 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2382                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2383                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2384                 | BF_GPMI_CTRL0_XFER_COUNT(0);
2385         pio[1] = 0;
2386
2387         return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2388                                 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2389 }
2390
2391 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2392         struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2393 {
2394         struct dma_async_tx_descriptor *desc;
2395         struct dma_chan *channel = get_dma_chan(this);
2396         struct gpmi_transfer *transfer;
2397         u32 pio[6] = {};
2398
2399         transfer = get_next_transfer(this);
2400         if (!transfer)
2401                 return NULL;
2402
2403         transfer->direction = DMA_FROM_DEVICE;
2404
2405         *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2406                                    DMA_FROM_DEVICE);
2407
2408         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2409                 | BM_GPMI_CTRL0_WORD_LENGTH
2410                 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2411                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2412                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2413                 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2414
2415         if (this->bch) {
2416                 pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2417                         | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2418                         | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2419                                 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2420                 pio[3] = raw_len;
2421                 pio[4] = transfer->sgl.dma_address;
2422                 pio[5] = this->auxiliary_phys;
2423         }
2424
2425         desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2426                                       DMA_TRANS_NONE, 0);
2427         if (!desc)
2428                 return NULL;
2429
2430         if (!this->bch)
2431                 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2432                                              DMA_DEV_TO_MEM,
2433                                              MXS_DMA_CTRL_WAIT4END);
2434
2435         return desc;
2436 }
2437
2438 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2439         struct gpmi_nand_data *this, const void *buf, int raw_len)
2440 {
2441         struct dma_chan *channel = get_dma_chan(this);
2442         struct dma_async_tx_descriptor *desc;
2443         struct gpmi_transfer *transfer;
2444         u32 pio[6] = {};
2445
2446         transfer = get_next_transfer(this);
2447         if (!transfer)
2448                 return NULL;
2449
2450         transfer->direction = DMA_TO_DEVICE;
2451
2452         prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2453
2454         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2455                 | BM_GPMI_CTRL0_WORD_LENGTH
2456                 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2457                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2458                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2459                 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2460
2461         if (this->bch) {
2462                 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2463                         | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2464                         | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2465                                         BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2466                 pio[3] = raw_len;
2467                 pio[4] = transfer->sgl.dma_address;
2468                 pio[5] = this->auxiliary_phys;
2469         }
2470
2471         desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2472                                       DMA_TRANS_NONE,
2473                                       (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2474         if (!desc)
2475                 return NULL;
2476
2477         if (!this->bch)
2478                 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2479                                                DMA_MEM_TO_DEV,
2480                                                MXS_DMA_CTRL_WAIT4END);
2481
2482         return desc;
2483 }
2484
2485 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2486                              const struct nand_operation *op,
2487                              bool check_only)
2488 {
2489         const struct nand_op_instr *instr;
2490         struct gpmi_nand_data *this = nand_get_controller_data(chip);
2491         struct dma_async_tx_descriptor *desc = NULL;
2492         int i, ret, buf_len = 0, nbufs = 0;
2493         u8 cmd = 0;
2494         void *buf_read = NULL;
2495         const void *buf_write = NULL;
2496         bool direct = false;
2497         struct completion *dma_completion, *bch_completion;
2498         unsigned long to;
2499
2500         if (check_only)
2501                 return 0;
2502
2503         this->ntransfers = 0;
2504         for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2505                 this->transfers[i].direction = DMA_NONE;
2506
2507         ret = pm_runtime_get_sync(this->dev);
2508         if (ret < 0) {
2509                 pm_runtime_put_noidle(this->dev);
2510                 return ret;
2511         }
2512
2513         /*
2514          * This driver currently supports only one NAND chip. Plus, dies share
2515          * the same configuration. So once timings have been applied on the
2516          * controller side, they will not change anymore. When the time will
2517          * come, the check on must_apply_timings will have to be dropped.
2518          */
2519         if (this->hw.must_apply_timings) {
2520                 this->hw.must_apply_timings = false;
2521                 ret = gpmi_nfc_apply_timings(this);
2522                 if (ret)
2523                         goto out_pm;
2524         }
2525
2526         dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2527
2528         for (i = 0; i < op->ninstrs; i++) {
2529                 instr = &op->instrs[i];
2530
2531                 nand_op_trace("  ", instr);
2532
2533                 switch (instr->type) {
2534                 case NAND_OP_WAITRDY_INSTR:
2535                         desc = gpmi_chain_wait_ready(this);
2536                         break;
2537                 case NAND_OP_CMD_INSTR:
2538                         cmd = instr->ctx.cmd.opcode;
2539
2540                         /*
2541                          * When this command has an address cycle chain it
2542                          * together with the address cycle
2543                          */
2544                         if (i + 1 != op->ninstrs &&
2545                             op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2546                                 continue;
2547
2548                         desc = gpmi_chain_command(this, cmd, NULL, 0);
2549
2550                         break;
2551                 case NAND_OP_ADDR_INSTR:
2552                         desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2553                                                   instr->ctx.addr.naddrs);
2554                         break;
2555                 case NAND_OP_DATA_OUT_INSTR:
2556                         buf_write = instr->ctx.data.buf.out;
2557                         buf_len = instr->ctx.data.len;
2558                         nbufs++;
2559
2560                         desc = gpmi_chain_data_write(this, buf_write, buf_len);
2561
2562                         break;
2563                 case NAND_OP_DATA_IN_INSTR:
2564                         if (!instr->ctx.data.len)
2565                                 break;
2566                         buf_read = instr->ctx.data.buf.in;
2567                         buf_len = instr->ctx.data.len;
2568                         nbufs++;
2569
2570                         desc = gpmi_chain_data_read(this, buf_read, buf_len,
2571                                                    &direct);
2572                         break;
2573                 }
2574
2575                 if (!desc) {
2576                         ret = -ENXIO;
2577                         goto unmap;
2578                 }
2579         }
2580
2581         dev_dbg(this->dev, "%s setup done\n", __func__);
2582
2583         if (nbufs > 1) {
2584                 dev_err(this->dev, "Multiple data instructions not supported\n");
2585                 ret = -EINVAL;
2586                 goto unmap;
2587         }
2588
2589         if (this->bch) {
2590                 writel(this->bch_flashlayout0,
2591                        this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2592                 writel(this->bch_flashlayout1,
2593                        this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2594         }
2595
2596         desc->callback = dma_irq_callback;
2597         desc->callback_param = this;
2598         dma_completion = &this->dma_done;
2599         bch_completion = NULL;
2600
2601         init_completion(dma_completion);
2602
2603         if (this->bch && buf_read) {
2604                 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2605                        this->resources.bch_regs + HW_BCH_CTRL_SET);
2606                 bch_completion = &this->bch_done;
2607                 init_completion(bch_completion);
2608         }
2609
2610         dmaengine_submit(desc);
2611         dma_async_issue_pending(get_dma_chan(this));
2612
2613         to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2614         if (!to) {
2615                 dev_err(this->dev, "DMA timeout, last DMA\n");
2616                 gpmi_dump_info(this);
2617                 ret = -ETIMEDOUT;
2618                 goto unmap;
2619         }
2620
2621         if (this->bch && buf_read) {
2622                 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2623                 if (!to) {
2624                         dev_err(this->dev, "BCH timeout, last DMA\n");
2625                         gpmi_dump_info(this);
2626                         ret = -ETIMEDOUT;
2627                         goto unmap;
2628                 }
2629         }
2630
2631         writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2632                this->resources.bch_regs + HW_BCH_CTRL_CLR);
2633         gpmi_clear_bch(this);
2634
2635         ret = 0;
2636
2637 unmap:
2638         for (i = 0; i < this->ntransfers; i++) {
2639                 struct gpmi_transfer *transfer = &this->transfers[i];
2640
2641                 if (transfer->direction != DMA_NONE)
2642                         dma_unmap_sg(this->dev, &transfer->sgl, 1,
2643                                      transfer->direction);
2644         }
2645
2646         if (!ret && buf_read && !direct)
2647                 memcpy(buf_read, this->data_buffer_dma,
2648                        gpmi_raw_len_to_len(this, buf_len));
2649
2650         this->bch = false;
2651
2652 out_pm:
2653         pm_runtime_mark_last_busy(this->dev);
2654         pm_runtime_put_autosuspend(this->dev);
2655
2656         return ret;
2657 }
2658
2659 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2660         .attach_chip = gpmi_nand_attach_chip,
2661         .setup_interface = gpmi_setup_interface,
2662         .exec_op = gpmi_nfc_exec_op,
2663 };
2664
2665 static int gpmi_nand_init(struct gpmi_nand_data *this)
2666 {
2667         struct nand_chip *chip = &this->nand;
2668         struct mtd_info  *mtd = nand_to_mtd(chip);
2669         int ret;
2670
2671         /* init the MTD data structures */
2672         mtd->name               = "gpmi-nand";
2673         mtd->dev.parent         = this->dev;
2674
2675         /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2676         nand_set_controller_data(chip, this);
2677         nand_set_flash_node(chip, this->pdev->dev.of_node);
2678         chip->legacy.block_markbad = gpmi_block_markbad;
2679         chip->badblock_pattern  = &gpmi_bbt_descr;
2680         chip->options           |= NAND_NO_SUBPAGE_WRITE;
2681
2682         /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2683         this->swap_block_mark = !GPMI_IS_MX23(this);
2684
2685         /*
2686          * Allocate a temporary DMA buffer for reading ID in the
2687          * nand_scan_ident().
2688          */
2689         this->bch_geometry.payload_size = 1024;
2690         this->bch_geometry.auxiliary_size = 128;
2691         ret = gpmi_alloc_dma_buffer(this);
2692         if (ret)
2693                 return ret;
2694
2695         nand_controller_init(&this->base);
2696         this->base.ops = &gpmi_nand_controller_ops;
2697         chip->controller = &this->base;
2698
2699         ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2700         if (ret)
2701                 goto err_out;
2702
2703         ret = nand_boot_init(this);
2704         if (ret)
2705                 goto err_nand_cleanup;
2706         ret = nand_create_bbt(chip);
2707         if (ret)
2708                 goto err_nand_cleanup;
2709
2710         ret = mtd_device_register(mtd, NULL, 0);
2711         if (ret)
2712                 goto err_nand_cleanup;
2713         return 0;
2714
2715 err_nand_cleanup:
2716         nand_cleanup(chip);
2717 err_out:
2718         gpmi_free_dma_buffer(this);
2719         return ret;
2720 }
2721
2722 static const struct of_device_id gpmi_nand_id_table[] = {
2723         { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
2724         { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
2725         { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
2726         { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
2727         { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
2728         {}
2729 };
2730 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2731
2732 static int gpmi_nand_probe(struct platform_device *pdev)
2733 {
2734         struct gpmi_nand_data *this;
2735         int ret;
2736
2737         this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2738         if (!this)
2739                 return -ENOMEM;
2740
2741         this->devdata = of_device_get_match_data(&pdev->dev);
2742         platform_set_drvdata(pdev, this);
2743         this->pdev  = pdev;
2744         this->dev   = &pdev->dev;
2745
2746         ret = acquire_resources(this);
2747         if (ret)
2748                 goto exit_acquire_resources;
2749
2750         ret = __gpmi_enable_clk(this, true);
2751         if (ret)
2752                 goto exit_acquire_resources;
2753
2754         pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2755         pm_runtime_use_autosuspend(&pdev->dev);
2756         pm_runtime_set_active(&pdev->dev);
2757         pm_runtime_enable(&pdev->dev);
2758         pm_runtime_get_sync(&pdev->dev);
2759
2760         ret = gpmi_init(this);
2761         if (ret)
2762                 goto exit_nfc_init;
2763
2764         ret = gpmi_nand_init(this);
2765         if (ret)
2766                 goto exit_nfc_init;
2767
2768         pm_runtime_mark_last_busy(&pdev->dev);
2769         pm_runtime_put_autosuspend(&pdev->dev);
2770
2771         dev_info(this->dev, "driver registered.\n");
2772
2773         return 0;
2774
2775 exit_nfc_init:
2776         pm_runtime_put(&pdev->dev);
2777         pm_runtime_disable(&pdev->dev);
2778         release_resources(this);
2779 exit_acquire_resources:
2780
2781         return ret;
2782 }
2783
2784 static int gpmi_nand_remove(struct platform_device *pdev)
2785 {
2786         struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2787         struct nand_chip *chip = &this->nand;
2788         int ret;
2789
2790         pm_runtime_put_sync(&pdev->dev);
2791         pm_runtime_disable(&pdev->dev);
2792
2793         ret = mtd_device_unregister(nand_to_mtd(chip));
2794         WARN_ON(ret);
2795         nand_cleanup(chip);
2796         gpmi_free_dma_buffer(this);
2797         release_resources(this);
2798         return 0;
2799 }
2800
2801 #ifdef CONFIG_PM_SLEEP
2802 static int gpmi_pm_suspend(struct device *dev)
2803 {
2804         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2805
2806         release_dma_channels(this);
2807         return 0;
2808 }
2809
2810 static int gpmi_pm_resume(struct device *dev)
2811 {
2812         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2813         int ret;
2814
2815         ret = acquire_dma_channels(this);
2816         if (ret < 0)
2817                 return ret;
2818
2819         /* re-init the GPMI registers */
2820         ret = gpmi_init(this);
2821         if (ret) {
2822                 dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2823                 return ret;
2824         }
2825
2826         /* Set flag to get timing setup restored for next exec_op */
2827         if (this->hw.clk_rate)
2828                 this->hw.must_apply_timings = true;
2829
2830         /* re-init the BCH registers */
2831         ret = bch_set_geometry(this);
2832         if (ret) {
2833                 dev_err(this->dev, "Error setting BCH : %d\n", ret);
2834                 return ret;
2835         }
2836
2837         return 0;
2838 }
2839 #endif /* CONFIG_PM_SLEEP */
2840
2841 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2842 {
2843         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2844
2845         return __gpmi_enable_clk(this, false);
2846 }
2847
2848 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2849 {
2850         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2851
2852         return __gpmi_enable_clk(this, true);
2853 }
2854
2855 static const struct dev_pm_ops gpmi_pm_ops = {
2856         SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2857         SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2858 };
2859
2860 static struct platform_driver gpmi_nand_driver = {
2861         .driver = {
2862                 .name = "gpmi-nand",
2863                 .pm = &gpmi_pm_ops,
2864                 .of_match_table = gpmi_nand_id_table,
2865         },
2866         .probe   = gpmi_nand_probe,
2867         .remove  = gpmi_nand_remove,
2868 };
2869 module_platform_driver(gpmi_nand_driver);
2870
2871 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2872 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2873 MODULE_LICENSE("GPL");