net: cdns,macb: use correct xlnx prefix for Xilinx
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / gpmi-nand / gpmi-nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30
31 #define MXS_SET_ADDR            0x4
32 #define MXS_CLR_ADDR            0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40         int timeout = 0x400;
41
42         /* clear the bit */
43         writel(mask, addr + MXS_CLR_ADDR);
44
45         /*
46          * SFTRST needs 3 GPMI clocks to settle, the reference manual
47          * recommends to wait 1us.
48          */
49         udelay(1);
50
51         /* poll the bit becoming clear */
52         while ((readl(addr) & mask) && --timeout)
53                 /* nothing */;
54
55         return !timeout;
56 }
57
58 #define MODULE_CLKGATE          (1 << 30)
59 #define MODULE_SFTRST           (1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79         int ret;
80         int timeout = 0x400;
81
82         /* clear and poll SFTRST */
83         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84         if (unlikely(ret))
85                 goto error;
86
87         /* clear CLKGATE */
88         writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89
90         if (!just_enable) {
91                 /* set SFTRST to reset the block */
92                 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93                 udelay(1);
94
95                 /* poll CLKGATE becoming set */
96                 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97                         /* nothing */;
98                 if (unlikely(!timeout))
99                         goto error;
100         }
101
102         /* clear and poll SFTRST */
103         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104         if (unlikely(ret))
105                 goto error;
106
107         /* clear and poll CLKGATE */
108         ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109         if (unlikely(ret))
110                 goto error;
111
112         return 0;
113
114 error:
115         pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116         return -ETIMEDOUT;
117 }
118
119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121         struct clk *clk;
122         int ret;
123         int i;
124
125         for (i = 0; i < GPMI_CLK_MAX; i++) {
126                 clk = this->resources.clock[i];
127                 if (!clk)
128                         break;
129
130                 if (v) {
131                         ret = clk_prepare_enable(clk);
132                         if (ret)
133                                 goto err_clk;
134                 } else {
135                         clk_disable_unprepare(clk);
136                 }
137         }
138         return 0;
139
140 err_clk:
141         for (; i > 0; i--)
142                 clk_disable_unprepare(this->resources.clock[i - 1]);
143         return ret;
144 }
145
146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148         struct resources *r = &this->resources;
149         int ret;
150
151         ret = pm_runtime_get_sync(this->dev);
152         if (ret < 0) {
153                 pm_runtime_put_noidle(this->dev);
154                 return ret;
155         }
156
157         ret = gpmi_reset_block(r->gpmi_regs, false);
158         if (ret)
159                 goto err_out;
160
161         /*
162          * Reset BCH here, too. We got failures otherwise :(
163          * See later BCH reset for explanation of MX23 and MX28 handling
164          */
165         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
166         if (ret)
167                 goto err_out;
168
169         /* Choose NAND mode. */
170         writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
171
172         /* Set the IRQ polarity. */
173         writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
174                                 r->gpmi_regs + HW_GPMI_CTRL1_SET);
175
176         /* Disable Write-Protection. */
177         writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
178
179         /* Select BCH ECC. */
180         writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
181
182         /*
183          * Decouple the chip select from dma channel. We use dma0 for all
184          * the chips, force all NAND RDY_BUSY inputs to be sourced from
185          * RDY_BUSY0.
186          */
187         writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
188                r->gpmi_regs + HW_GPMI_CTRL1_SET);
189
190 err_out:
191         pm_runtime_mark_last_busy(this->dev);
192         pm_runtime_put_autosuspend(this->dev);
193         return ret;
194 }
195
196 /* This function is very useful. It is called only when the bug occur. */
197 static void gpmi_dump_info(struct gpmi_nand_data *this)
198 {
199         struct resources *r = &this->resources;
200         struct bch_geometry *geo = &this->bch_geometry;
201         u32 reg;
202         int i;
203
204         dev_err(this->dev, "Show GPMI registers :\n");
205         for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
206                 reg = readl(r->gpmi_regs + i * 0x10);
207                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
208         }
209
210         /* start to print out the BCH info */
211         dev_err(this->dev, "Show BCH registers :\n");
212         for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
213                 reg = readl(r->bch_regs + i * 0x10);
214                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
215         }
216         dev_err(this->dev, "BCH Geometry :\n"
217                 "GF length              : %u\n"
218                 "ECC Strength           : %u\n"
219                 "Page Size in Bytes     : %u\n"
220                 "Metadata Size in Bytes : %u\n"
221                 "ECC0 Chunk Size in Bytes: %u\n"
222                 "ECCn Chunk Size in Bytes: %u\n"
223                 "ECC Chunk Count        : %u\n"
224                 "Payload Size in Bytes  : %u\n"
225                 "Auxiliary Size in Bytes: %u\n"
226                 "Auxiliary Status Offset: %u\n"
227                 "Block Mark Byte Offset : %u\n"
228                 "Block Mark Bit Offset  : %u\n",
229                 geo->gf_len,
230                 geo->ecc_strength,
231                 geo->page_size,
232                 geo->metadata_size,
233                 geo->ecc0_chunk_size,
234                 geo->eccn_chunk_size,
235                 geo->ecc_chunk_count,
236                 geo->payload_size,
237                 geo->auxiliary_size,
238                 geo->auxiliary_status_offset,
239                 geo->block_mark_byte_offset,
240                 geo->block_mark_bit_offset);
241 }
242
243 static bool gpmi_check_ecc(struct gpmi_nand_data *this)
244 {
245         struct nand_chip *chip = &this->nand;
246         struct bch_geometry *geo = &this->bch_geometry;
247         struct nand_device *nand = &chip->base;
248         struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
249
250         conf->step_size = geo->eccn_chunk_size;
251         conf->strength = geo->ecc_strength;
252
253         /* Do the sanity check. */
254         if (GPMI_IS_MXS(this)) {
255                 /* The mx23/mx28 only support the GF13. */
256                 if (geo->gf_len == 14)
257                         return false;
258         }
259
260         if (geo->ecc_strength > this->devdata->bch_max_ecc_strength)
261                 return false;
262
263         if (!nand_ecc_is_strong_enough(nand))
264                 return false;
265
266         return true;
267 }
268
269 /* check if bbm locates in data chunk rather than ecc chunk */
270 static bool bbm_in_data_chunk(struct gpmi_nand_data *this,
271                         unsigned int *chunk_num)
272 {
273         struct bch_geometry *geo = &this->bch_geometry;
274         struct nand_chip *chip = &this->nand;
275         struct mtd_info *mtd = nand_to_mtd(chip);
276         unsigned int i, j;
277
278         if (geo->ecc0_chunk_size != geo->eccn_chunk_size) {
279                 dev_err(this->dev,
280                         "The size of ecc0_chunk must equal to eccn_chunk\n");
281                 return false;
282         }
283
284         i = (mtd->writesize * 8 - geo->metadata_size * 8) /
285                 (geo->gf_len * geo->ecc_strength +
286                         geo->eccn_chunk_size * 8);
287
288         j = (mtd->writesize * 8 - geo->metadata_size * 8) -
289                 (geo->gf_len * geo->ecc_strength +
290                         geo->eccn_chunk_size * 8) * i;
291
292         if (j < geo->eccn_chunk_size * 8) {
293                 *chunk_num = i+1;
294                 dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n",
295                                 geo->ecc_strength, *chunk_num);
296                 return true;
297         }
298
299         return false;
300 }
301
302 /*
303  * If we can get the ECC information from the nand chip, we do not
304  * need to calculate them ourselves.
305  *
306  * We may have available oob space in this case.
307  */
308 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
309                                     unsigned int ecc_strength,
310                                     unsigned int ecc_step)
311 {
312         struct bch_geometry *geo = &this->bch_geometry;
313         struct nand_chip *chip = &this->nand;
314         struct mtd_info *mtd = nand_to_mtd(chip);
315         unsigned int block_mark_bit_offset;
316
317         switch (ecc_step) {
318         case SZ_512:
319                 geo->gf_len = 13;
320                 break;
321         case SZ_1K:
322                 geo->gf_len = 14;
323                 break;
324         default:
325                 dev_err(this->dev,
326                         "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
327                         nanddev_get_ecc_requirements(&chip->base)->strength,
328                         nanddev_get_ecc_requirements(&chip->base)->step_size);
329                 return -EINVAL;
330         }
331         geo->ecc0_chunk_size = ecc_step;
332         geo->eccn_chunk_size = ecc_step;
333         geo->ecc_strength = round_up(ecc_strength, 2);
334         if (!gpmi_check_ecc(this))
335                 return -EINVAL;
336
337         /* Keep the C >= O */
338         if (geo->eccn_chunk_size < mtd->oobsize) {
339                 dev_err(this->dev,
340                         "unsupported nand chip. ecc size: %d, oob size : %d\n",
341                         ecc_step, mtd->oobsize);
342                 return -EINVAL;
343         }
344
345         /* The default value, see comment in the legacy_set_geometry(). */
346         geo->metadata_size = 10;
347
348         geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
349
350         /*
351          * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
352          *
353          *    |                          P                            |
354          *    |<----------------------------------------------------->|
355          *    |                                                       |
356          *    |                                        (Block Mark)   |
357          *    |                      P'                      |      | |     |
358          *    |<-------------------------------------------->|  D   | |  O' |
359          *    |                                              |<---->| |<--->|
360          *    V                                              V      V V     V
361          *    +---+----------+-+----------+-+----------+-+----------+-+-----+
362          *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
363          *    +---+----------+-+----------+-+----------+-+----------+-+-----+
364          *                                                   ^              ^
365          *                                                   |      O       |
366          *                                                   |<------------>|
367          *                                                   |              |
368          *
369          *      P : the page size for BCH module.
370          *      E : The ECC strength.
371          *      G : the length of Galois Field.
372          *      N : The chunk count of per page.
373          *      M : the metasize of per page.
374          *      C : the ecc chunk size, aka the "data" above.
375          *      P': the nand chip's page size.
376          *      O : the nand chip's oob size.
377          *      O': the free oob.
378          *
379          *      The formula for P is :
380          *
381          *                  E * G * N
382          *             P = ------------ + P' + M
383          *                      8
384          *
385          * The position of block mark moves forward in the ECC-based view
386          * of page, and the delta is:
387          *
388          *                   E * G * (N - 1)
389          *             D = (---------------- + M)
390          *                          8
391          *
392          * Please see the comment in legacy_set_geometry().
393          * With the condition C >= O , we still can get same result.
394          * So the bit position of the physical block mark within the ECC-based
395          * view of the page is :
396          *             (P' - D) * 8
397          */
398         geo->page_size = mtd->writesize + geo->metadata_size +
399                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
400
401         geo->payload_size = mtd->writesize;
402
403         geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
404         geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
405                                 + ALIGN(geo->ecc_chunk_count, 4);
406
407         if (!this->swap_block_mark)
408                 return 0;
409
410         /* For bit swap. */
411         block_mark_bit_offset = mtd->writesize * 8 -
412                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
413                                 + geo->metadata_size * 8);
414
415         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
416         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
417         return 0;
418 }
419
420 /*
421  *  Calculate the ECC strength by hand:
422  *      E : The ECC strength.
423  *      G : the length of Galois Field.
424  *      N : The chunk count of per page.
425  *      O : the oobsize of the NAND chip.
426  *      M : the metasize of per page.
427  *
428  *      The formula is :
429  *              E * G * N
430  *            ------------ <= (O - M)
431  *                  8
432  *
433  *      So, we get E by:
434  *                    (O - M) * 8
435  *              E <= -------------
436  *                       G * N
437  */
438 static inline int get_ecc_strength(struct gpmi_nand_data *this)
439 {
440         struct bch_geometry *geo = &this->bch_geometry;
441         struct mtd_info *mtd = nand_to_mtd(&this->nand);
442         int ecc_strength;
443
444         ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
445                         / (geo->gf_len * geo->ecc_chunk_count);
446
447         /* We need the minor even number. */
448         return round_down(ecc_strength, 2);
449 }
450
451 static int set_geometry_for_large_oob(struct gpmi_nand_data *this)
452 {
453         struct bch_geometry *geo = &this->bch_geometry;
454         struct nand_chip *chip = &this->nand;
455         struct mtd_info *mtd = nand_to_mtd(chip);
456         const struct nand_ecc_props *requirements =
457                 nanddev_get_ecc_requirements(&chip->base);
458         unsigned int block_mark_bit_offset;
459         unsigned int max_ecc;
460         unsigned int bbm_chunk;
461         unsigned int i;
462
463         /* sanity check for the minimum ecc nand required */
464         if (!(requirements->strength > 0 &&
465               requirements->step_size > 0))
466                 return -EINVAL;
467         geo->ecc_strength = requirements->strength;
468
469         /* check if platform can support this nand */
470         if (!gpmi_check_ecc(this)) {
471                 dev_err(this->dev,
472                         "unsupported NAND chip, minimum ecc required %d\n",
473                         geo->ecc_strength);
474                 return -EINVAL;
475         }
476
477         /* calculate the maximum ecc platform can support*/
478         geo->metadata_size = 10;
479         geo->gf_len = 14;
480         geo->ecc0_chunk_size = 1024;
481         geo->eccn_chunk_size = 1024;
482         geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
483         max_ecc = min(get_ecc_strength(this),
484                       this->devdata->bch_max_ecc_strength);
485
486         /*
487          * search a supported ecc strength that makes bbm
488          * located in data chunk
489          */
490         geo->ecc_strength = max_ecc;
491         while (!(geo->ecc_strength < requirements->strength)) {
492                 if (bbm_in_data_chunk(this, &bbm_chunk))
493                         goto geo_setting;
494                 geo->ecc_strength -= 2;
495         }
496
497         /* if none of them works, keep using the minimum ecc */
498         /* nand required but changing ecc page layout  */
499         geo->ecc_strength = requirements->strength;
500         /* add extra ecc for meta data */
501         geo->ecc0_chunk_size = 0;
502         geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1;
503         geo->ecc_for_meta = 1;
504         /* check if oob can afford this extra ecc chunk */
505         if (mtd->oobsize * 8 < geo->metadata_size * 8 +
506             geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) {
507                 dev_err(this->dev, "unsupported NAND chip with new layout\n");
508                 return -EINVAL;
509         }
510
511         /* calculate in which chunk bbm located */
512         bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 -
513                      geo->gf_len * geo->ecc_strength) /
514                      (geo->gf_len * geo->ecc_strength +
515                      geo->eccn_chunk_size * 8) + 1;
516
517 geo_setting:
518
519         geo->page_size = mtd->writesize + geo->metadata_size +
520                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
521         geo->payload_size = mtd->writesize;
522
523         /*
524          * The auxiliary buffer contains the metadata and the ECC status. The
525          * metadata is padded to the nearest 32-bit boundary. The ECC status
526          * contains one byte for every ECC chunk, and is also padded to the
527          * nearest 32-bit boundary.
528          */
529         geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
530         geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
531                                     + ALIGN(geo->ecc_chunk_count, 4);
532
533         if (!this->swap_block_mark)
534                 return 0;
535
536         /* calculate the number of ecc chunk behind the bbm */
537         i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1;
538
539         block_mark_bit_offset = mtd->writesize * 8 -
540                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
541                 + geo->metadata_size * 8);
542
543         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
544         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
545
546         dev_dbg(this->dev, "BCH Geometry :\n"
547                 "GF length              : %u\n"
548                 "ECC Strength           : %u\n"
549                 "Page Size in Bytes     : %u\n"
550                 "Metadata Size in Bytes : %u\n"
551                 "ECC0 Chunk Size in Bytes: %u\n"
552                 "ECCn Chunk Size in Bytes: %u\n"
553                 "ECC Chunk Count        : %u\n"
554                 "Payload Size in Bytes  : %u\n"
555                 "Auxiliary Size in Bytes: %u\n"
556                 "Auxiliary Status Offset: %u\n"
557                 "Block Mark Byte Offset : %u\n"
558                 "Block Mark Bit Offset  : %u\n"
559                 "Block Mark in chunk    : %u\n"
560                 "Ecc for Meta data      : %u\n",
561                 geo->gf_len,
562                 geo->ecc_strength,
563                 geo->page_size,
564                 geo->metadata_size,
565                 geo->ecc0_chunk_size,
566                 geo->eccn_chunk_size,
567                 geo->ecc_chunk_count,
568                 geo->payload_size,
569                 geo->auxiliary_size,
570                 geo->auxiliary_status_offset,
571                 geo->block_mark_byte_offset,
572                 geo->block_mark_bit_offset,
573                 bbm_chunk,
574                 geo->ecc_for_meta);
575
576         return 0;
577 }
578
579 static int legacy_set_geometry(struct gpmi_nand_data *this)
580 {
581         struct bch_geometry *geo = &this->bch_geometry;
582         struct mtd_info *mtd = nand_to_mtd(&this->nand);
583         unsigned int metadata_size;
584         unsigned int status_size;
585         unsigned int block_mark_bit_offset;
586
587         /*
588          * The size of the metadata can be changed, though we set it to 10
589          * bytes now. But it can't be too large, because we have to save
590          * enough space for BCH.
591          */
592         geo->metadata_size = 10;
593
594         /* The default for the length of Galois Field. */
595         geo->gf_len = 13;
596
597         /* The default for chunk size. */
598         geo->ecc0_chunk_size = 512;
599         geo->eccn_chunk_size = 512;
600         while (geo->eccn_chunk_size < mtd->oobsize) {
601                 geo->ecc0_chunk_size *= 2; /* keep C >= O */
602                 geo->eccn_chunk_size *= 2; /* keep C >= O */
603                 geo->gf_len = 14;
604         }
605
606         geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
607
608         /* We use the same ECC strength for all chunks. */
609         geo->ecc_strength = get_ecc_strength(this);
610         if (!gpmi_check_ecc(this)) {
611                 dev_err(this->dev,
612                         "ecc strength: %d cannot be supported by the controller (%d)\n"
613                         "try to use minimum ecc strength that NAND chip required\n",
614                         geo->ecc_strength,
615                         this->devdata->bch_max_ecc_strength);
616                 return -EINVAL;
617         }
618
619         geo->page_size = mtd->writesize + geo->metadata_size +
620                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
621         geo->payload_size = mtd->writesize;
622
623         /*
624          * The auxiliary buffer contains the metadata and the ECC status. The
625          * metadata is padded to the nearest 32-bit boundary. The ECC status
626          * contains one byte for every ECC chunk, and is also padded to the
627          * nearest 32-bit boundary.
628          */
629         metadata_size = ALIGN(geo->metadata_size, 4);
630         status_size   = ALIGN(geo->ecc_chunk_count, 4);
631
632         geo->auxiliary_size = metadata_size + status_size;
633         geo->auxiliary_status_offset = metadata_size;
634
635         if (!this->swap_block_mark)
636                 return 0;
637
638         /*
639          * We need to compute the byte and bit offsets of
640          * the physical block mark within the ECC-based view of the page.
641          *
642          * NAND chip with 2K page shows below:
643          *                                             (Block Mark)
644          *                                                   |      |
645          *                                                   |  D   |
646          *                                                   |<---->|
647          *                                                   V      V
648          *    +---+----------+-+----------+-+----------+-+----------+-+
649          *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
650          *    +---+----------+-+----------+-+----------+-+----------+-+
651          *
652          * The position of block mark moves forward in the ECC-based view
653          * of page, and the delta is:
654          *
655          *                   E * G * (N - 1)
656          *             D = (---------------- + M)
657          *                          8
658          *
659          * With the formula to compute the ECC strength, and the condition
660          *       : C >= O         (C is the ecc chunk size)
661          *
662          * It's easy to deduce to the following result:
663          *
664          *         E * G       (O - M)      C - M         C - M
665          *      ----------- <= ------- <=  --------  <  ---------
666          *           8            N           N          (N - 1)
667          *
668          *  So, we get:
669          *
670          *                   E * G * (N - 1)
671          *             D = (---------------- + M) < C
672          *                          8
673          *
674          *  The above inequality means the position of block mark
675          *  within the ECC-based view of the page is still in the data chunk,
676          *  and it's NOT in the ECC bits of the chunk.
677          *
678          *  Use the following to compute the bit position of the
679          *  physical block mark within the ECC-based view of the page:
680          *          (page_size - D) * 8
681          *
682          *  --Huang Shijie
683          */
684         block_mark_bit_offset = mtd->writesize * 8 -
685                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
686                                 + geo->metadata_size * 8);
687
688         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
689         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
690         return 0;
691 }
692
693 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
694 {
695         struct nand_chip *chip = &this->nand;
696         struct mtd_info *mtd = nand_to_mtd(&this->nand);
697         const struct nand_ecc_props *requirements =
698                 nanddev_get_ecc_requirements(&chip->base);
699         bool use_minimun_ecc;
700         int err;
701
702         use_minimun_ecc = of_property_read_bool(this->dev->of_node,
703                                                 "fsl,use-minimum-ecc");
704
705         /* use legacy bch geometry settings by default*/
706         if ((!use_minimun_ecc && mtd->oobsize < 1024) ||
707             !(requirements->strength > 0 && requirements->step_size > 0)) {
708                 dev_dbg(this->dev, "use legacy bch geometry\n");
709                 err = legacy_set_geometry(this);
710                 if (!err)
711                         return 0;
712         }
713
714         /* for large oob nand */
715         if (mtd->oobsize > 1024) {
716                 dev_dbg(this->dev, "use large oob bch geometry\n");
717                 err = set_geometry_for_large_oob(this);
718                 if (!err)
719                         return 0;
720         }
721
722         /* otherwise use the minimum ecc nand chip required */
723         dev_dbg(this->dev, "use minimum ecc bch geometry\n");
724         err = set_geometry_by_ecc_info(this, requirements->strength,
725                                         requirements->step_size);
726         if (err)
727                 dev_err(this->dev, "none of the bch geometry setting works\n");
728
729         return err;
730 }
731
732 /* Configures the geometry for BCH.  */
733 static int bch_set_geometry(struct gpmi_nand_data *this)
734 {
735         struct resources *r = &this->resources;
736         int ret;
737
738         ret = common_nfc_set_geometry(this);
739         if (ret)
740                 return ret;
741
742         ret = pm_runtime_get_sync(this->dev);
743         if (ret < 0) {
744                 pm_runtime_put_autosuspend(this->dev);
745                 return ret;
746         }
747
748         /*
749         * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
750         * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
751         * and MX28.
752         */
753         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
754         if (ret)
755                 goto err_out;
756
757         /* Set *all* chip selects to use layout 0. */
758         writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
759
760         ret = 0;
761 err_out:
762         pm_runtime_mark_last_busy(this->dev);
763         pm_runtime_put_autosuspend(this->dev);
764
765         return ret;
766 }
767
768 /*
769  * <1> Firstly, we should know what's the GPMI-clock means.
770  *     The GPMI-clock is the internal clock in the gpmi nand controller.
771  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
772  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
773  *
774  * <2> Secondly, we should know what's the frequency on the nand chip pins.
775  *     The frequency on the nand chip pins is derived from the GPMI-clock.
776  *     We can get it from the following equation:
777  *
778  *         F = G / (DS + DH)
779  *
780  *         F  : the frequency on the nand chip pins.
781  *         G  : the GPMI clock, such as 100MHz.
782  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
783  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
784  *
785  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
786  *     the nand EDO(extended Data Out) timing could be applied.
787  *     The GPMI implements a feedback read strobe to sample the read data.
788  *     The feedback read strobe can be delayed to support the nand EDO timing
789  *     where the read strobe may deasserts before the read data is valid, and
790  *     read data is valid for some time after read strobe.
791  *
792  *     The following figure illustrates some aspects of a NAND Flash read:
793  *
794  *                   |<---tREA---->|
795  *                   |             |
796  *                   |         |   |
797  *                   |<--tRP-->|   |
798  *                   |         |   |
799  *                  __          ___|__________________________________
800  *     RDN            \________/   |
801  *                                 |
802  *                                 /---------\
803  *     Read Data    --------------<           >---------
804  *                                 \---------/
805  *                                |     |
806  *                                |<-D->|
807  *     FeedbackRDN  ________             ____________
808  *                          \___________/
809  *
810  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
811  *
812  *
813  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
814  *
815  *  4.1) From the aspect of the nand chip pins:
816  *        Delay = (tREA + C - tRP)               {1}
817  *
818  *        tREA : the maximum read access time.
819  *        C    : a constant to adjust the delay. default is 4000ps.
820  *        tRP  : the read pulse width, which is exactly:
821  *                   tRP = (GPMI-clock-period) * DATA_SETUP
822  *
823  *  4.2) From the aspect of the GPMI nand controller:
824  *         Delay = RDN_DELAY * 0.125 * RP        {2}
825  *
826  *         RP   : the DLL reference period.
827  *            if (GPMI-clock-period > DLL_THRETHOLD)
828  *                   RP = GPMI-clock-period / 2;
829  *            else
830  *                   RP = GPMI-clock-period;
831  *
832  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
833  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
834  *            is 16000ps, but in mx6q, we use 12000ps.
835  *
836  *  4.3) since {1} equals {2}, we get:
837  *
838  *                     (tREA + 4000 - tRP) * 8
839  *         RDN_DELAY = -----------------------     {3}
840  *                           RP
841  */
842 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
843                                     const struct nand_sdr_timings *sdr)
844 {
845         struct gpmi_nfc_hardware_timing *hw = &this->hw;
846         struct resources *r = &this->resources;
847         unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
848         unsigned int period_ps, reference_period_ps;
849         unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
850         unsigned int tRP_ps;
851         bool use_half_period;
852         int sample_delay_ps, sample_delay_factor;
853         u16 busy_timeout_cycles;
854         u8 wrn_dly_sel;
855         unsigned long clk_rate, min_rate;
856
857         if (sdr->tRC_min >= 30000) {
858                 /* ONFI non-EDO modes [0-3] */
859                 hw->clk_rate = 22000000;
860                 min_rate = 0;
861                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
862         } else if (sdr->tRC_min >= 25000) {
863                 /* ONFI EDO mode 4 */
864                 hw->clk_rate = 80000000;
865                 min_rate = 22000000;
866                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
867         } else {
868                 /* ONFI EDO mode 5 */
869                 hw->clk_rate = 100000000;
870                 min_rate = 80000000;
871                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
872         }
873
874         clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
875         if (clk_rate <= min_rate) {
876                 dev_err(this->dev, "clock setting: expected %ld, got %ld\n",
877                         hw->clk_rate, clk_rate);
878                 return -ENOTSUPP;
879         }
880
881         hw->clk_rate = clk_rate;
882         /* SDR core timings are given in picoseconds */
883         period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
884
885         addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
886         data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
887         data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
888         busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
889
890         hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
891                       BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
892                       BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
893         hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096));
894
895         /*
896          * Derive NFC ideal delay from {3}:
897          *
898          *                     (tREA + 4000 - tRP) * 8
899          *         RDN_DELAY = -----------------------
900          *                                RP
901          */
902         if (period_ps > dll_threshold_ps) {
903                 use_half_period = true;
904                 reference_period_ps = period_ps / 2;
905         } else {
906                 use_half_period = false;
907                 reference_period_ps = period_ps;
908         }
909
910         tRP_ps = data_setup_cycles * period_ps;
911         sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
912         if (sample_delay_ps > 0)
913                 sample_delay_factor = sample_delay_ps / reference_period_ps;
914         else
915                 sample_delay_factor = 0;
916
917         hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
918         if (sample_delay_factor)
919                 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
920                               BM_GPMI_CTRL1_DLL_ENABLE |
921                               (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
922         return 0;
923 }
924
925 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
926 {
927         struct gpmi_nfc_hardware_timing *hw = &this->hw;
928         struct resources *r = &this->resources;
929         void __iomem *gpmi_regs = r->gpmi_regs;
930         unsigned int dll_wait_time_us;
931         int ret;
932
933         /* Clock dividers do NOT guarantee a clean clock signal on its output
934          * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
935          * all clock dividers provide these guarantee.
936          */
937         if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
938                 clk_disable_unprepare(r->clock[0]);
939
940         ret = clk_set_rate(r->clock[0], hw->clk_rate);
941         if (ret) {
942                 dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
943                 return ret;
944         }
945
946         if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
947                 ret = clk_prepare_enable(r->clock[0]);
948                 if (ret)
949                         return ret;
950         }
951
952         writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
953         writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
954
955         /*
956          * Clear several CTRL1 fields, DLL must be disabled when setting
957          * RDN_DELAY or HALF_PERIOD.
958          */
959         writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
960         writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
961
962         /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
963         dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
964         if (!dll_wait_time_us)
965                 dll_wait_time_us = 1;
966
967         /* Wait for the DLL to settle. */
968         udelay(dll_wait_time_us);
969
970         return 0;
971 }
972
973 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
974                                 const struct nand_interface_config *conf)
975 {
976         struct gpmi_nand_data *this = nand_get_controller_data(chip);
977         const struct nand_sdr_timings *sdr;
978         int ret;
979
980         /* Retrieve required NAND timings */
981         sdr = nand_get_sdr_timings(conf);
982         if (IS_ERR(sdr))
983                 return PTR_ERR(sdr);
984
985         /* Only MX28/MX6 GPMI controller can reach EDO timings */
986         if (sdr->tRC_min <= 25000 && !GPMI_IS_MX28(this) && !GPMI_IS_MX6(this))
987                 return -ENOTSUPP;
988
989         /* Stop here if this call was just a check */
990         if (chipnr < 0)
991                 return 0;
992
993         /* Do the actual derivation of the controller timings */
994         ret = gpmi_nfc_compute_timings(this, sdr);
995         if (ret)
996                 return ret;
997
998         this->hw.must_apply_timings = true;
999
1000         return 0;
1001 }
1002
1003 /* Clears a BCH interrupt. */
1004 static void gpmi_clear_bch(struct gpmi_nand_data *this)
1005 {
1006         struct resources *r = &this->resources;
1007         writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1008 }
1009
1010 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
1011 {
1012         /* We use the DMA channel 0 to access all the nand chips. */
1013         return this->dma_chans[0];
1014 }
1015
1016 /* This will be called after the DMA operation is finished. */
1017 static void dma_irq_callback(void *param)
1018 {
1019         struct gpmi_nand_data *this = param;
1020         struct completion *dma_c = &this->dma_done;
1021
1022         complete(dma_c);
1023 }
1024
1025 static irqreturn_t bch_irq(int irq, void *cookie)
1026 {
1027         struct gpmi_nand_data *this = cookie;
1028
1029         gpmi_clear_bch(this);
1030         complete(&this->bch_done);
1031         return IRQ_HANDLED;
1032 }
1033
1034 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
1035 {
1036         /*
1037          * raw_len is the length to read/write including bch data which
1038          * we are passed in exec_op. Calculate the data length from it.
1039          */
1040         if (this->bch)
1041                 return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size);
1042         else
1043                 return raw_len;
1044 }
1045
1046 /* Can we use the upper's buffer directly for DMA? */
1047 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
1048                              int raw_len, struct scatterlist *sgl,
1049                              enum dma_data_direction dr)
1050 {
1051         int ret;
1052         int len = gpmi_raw_len_to_len(this, raw_len);
1053
1054         /* first try to map the upper buffer directly */
1055         if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
1056                 sg_init_one(sgl, buf, len);
1057                 ret = dma_map_sg(this->dev, sgl, 1, dr);
1058                 if (ret == 0)
1059                         goto map_fail;
1060
1061                 return true;
1062         }
1063
1064 map_fail:
1065         /* We have to use our own DMA buffer. */
1066         sg_init_one(sgl, this->data_buffer_dma, len);
1067
1068         if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
1069                 memcpy(this->data_buffer_dma, buf, len);
1070
1071         dma_map_sg(this->dev, sgl, 1, dr);
1072
1073         return false;
1074 }
1075
1076 /* add our owner bbt descriptor */
1077 static uint8_t scan_ff_pattern[] = { 0xff };
1078 static struct nand_bbt_descr gpmi_bbt_descr = {
1079         .options        = 0,
1080         .offs           = 0,
1081         .len            = 1,
1082         .pattern        = scan_ff_pattern
1083 };
1084
1085 /*
1086  * We may change the layout if we can get the ECC info from the datasheet,
1087  * else we will use all the (page + OOB).
1088  */
1089 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
1090                               struct mtd_oob_region *oobregion)
1091 {
1092         struct nand_chip *chip = mtd_to_nand(mtd);
1093         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1094         struct bch_geometry *geo = &this->bch_geometry;
1095
1096         if (section)
1097                 return -ERANGE;
1098
1099         oobregion->offset = 0;
1100         oobregion->length = geo->page_size - mtd->writesize;
1101
1102         return 0;
1103 }
1104
1105 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1106                                struct mtd_oob_region *oobregion)
1107 {
1108         struct nand_chip *chip = mtd_to_nand(mtd);
1109         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1110         struct bch_geometry *geo = &this->bch_geometry;
1111
1112         if (section)
1113                 return -ERANGE;
1114
1115         /* The available oob size we have. */
1116         if (geo->page_size < mtd->writesize + mtd->oobsize) {
1117                 oobregion->offset = geo->page_size - mtd->writesize;
1118                 oobregion->length = mtd->oobsize - oobregion->offset;
1119         }
1120
1121         return 0;
1122 }
1123
1124 static const char * const gpmi_clks_for_mx2x[] = {
1125         "gpmi_io",
1126 };
1127
1128 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1129         .ecc = gpmi_ooblayout_ecc,
1130         .free = gpmi_ooblayout_free,
1131 };
1132
1133 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1134         .type = IS_MX23,
1135         .bch_max_ecc_strength = 20,
1136         .max_chain_delay = 16000,
1137         .clks = gpmi_clks_for_mx2x,
1138         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1139 };
1140
1141 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1142         .type = IS_MX28,
1143         .bch_max_ecc_strength = 20,
1144         .max_chain_delay = 16000,
1145         .clks = gpmi_clks_for_mx2x,
1146         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1147 };
1148
1149 static const char * const gpmi_clks_for_mx6[] = {
1150         "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1151 };
1152
1153 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1154         .type = IS_MX6Q,
1155         .bch_max_ecc_strength = 40,
1156         .max_chain_delay = 12000,
1157         .clks = gpmi_clks_for_mx6,
1158         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1159 };
1160
1161 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1162         .type = IS_MX6SX,
1163         .bch_max_ecc_strength = 62,
1164         .max_chain_delay = 12000,
1165         .clks = gpmi_clks_for_mx6,
1166         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1167 };
1168
1169 static const char * const gpmi_clks_for_mx7d[] = {
1170         "gpmi_io", "gpmi_bch_apb",
1171 };
1172
1173 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1174         .type = IS_MX7D,
1175         .bch_max_ecc_strength = 62,
1176         .max_chain_delay = 12000,
1177         .clks = gpmi_clks_for_mx7d,
1178         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1179 };
1180
1181 static int acquire_register_block(struct gpmi_nand_data *this,
1182                                   const char *res_name)
1183 {
1184         struct platform_device *pdev = this->pdev;
1185         struct resources *res = &this->resources;
1186         void __iomem *p;
1187
1188         p = devm_platform_ioremap_resource_byname(pdev, res_name);
1189         if (IS_ERR(p))
1190                 return PTR_ERR(p);
1191
1192         if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1193                 res->gpmi_regs = p;
1194         else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1195                 res->bch_regs = p;
1196         else
1197                 dev_err(this->dev, "unknown resource name : %s\n", res_name);
1198
1199         return 0;
1200 }
1201
1202 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1203 {
1204         struct platform_device *pdev = this->pdev;
1205         const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1206         int err;
1207
1208         err = platform_get_irq_byname(pdev, res_name);
1209         if (err < 0)
1210                 return err;
1211
1212         err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this);
1213         if (err)
1214                 dev_err(this->dev, "error requesting BCH IRQ\n");
1215
1216         return err;
1217 }
1218
1219 static void release_dma_channels(struct gpmi_nand_data *this)
1220 {
1221         unsigned int i;
1222         for (i = 0; i < DMA_CHANS; i++)
1223                 if (this->dma_chans[i]) {
1224                         dma_release_channel(this->dma_chans[i]);
1225                         this->dma_chans[i] = NULL;
1226                 }
1227 }
1228
1229 static int acquire_dma_channels(struct gpmi_nand_data *this)
1230 {
1231         struct platform_device *pdev = this->pdev;
1232         struct dma_chan *dma_chan;
1233         int ret = 0;
1234
1235         /* request dma channel */
1236         dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1237         if (IS_ERR(dma_chan)) {
1238                 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1239                                     "DMA channel request failed\n");
1240                 release_dma_channels(this);
1241         } else {
1242                 this->dma_chans[0] = dma_chan;
1243         }
1244
1245         return ret;
1246 }
1247
1248 static int gpmi_get_clks(struct gpmi_nand_data *this)
1249 {
1250         struct resources *r = &this->resources;
1251         struct clk *clk;
1252         int err, i;
1253
1254         for (i = 0; i < this->devdata->clks_count; i++) {
1255                 clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1256                 if (IS_ERR(clk)) {
1257                         err = PTR_ERR(clk);
1258                         goto err_clock;
1259                 }
1260
1261                 r->clock[i] = clk;
1262         }
1263
1264         return 0;
1265
1266 err_clock:
1267         dev_dbg(this->dev, "failed in finding the clocks.\n");
1268         return err;
1269 }
1270
1271 static int acquire_resources(struct gpmi_nand_data *this)
1272 {
1273         int ret;
1274
1275         ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1276         if (ret)
1277                 goto exit_regs;
1278
1279         ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1280         if (ret)
1281                 goto exit_regs;
1282
1283         ret = acquire_bch_irq(this, bch_irq);
1284         if (ret)
1285                 goto exit_regs;
1286
1287         ret = acquire_dma_channels(this);
1288         if (ret)
1289                 goto exit_regs;
1290
1291         ret = gpmi_get_clks(this);
1292         if (ret)
1293                 goto exit_clock;
1294         return 0;
1295
1296 exit_clock:
1297         release_dma_channels(this);
1298 exit_regs:
1299         return ret;
1300 }
1301
1302 static void release_resources(struct gpmi_nand_data *this)
1303 {
1304         release_dma_channels(this);
1305 }
1306
1307 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1308 {
1309         struct device *dev = this->dev;
1310         struct bch_geometry *geo = &this->bch_geometry;
1311
1312         if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1313                 dma_free_coherent(dev, geo->auxiliary_size,
1314                                         this->auxiliary_virt,
1315                                         this->auxiliary_phys);
1316         kfree(this->data_buffer_dma);
1317         kfree(this->raw_buffer);
1318
1319         this->data_buffer_dma   = NULL;
1320         this->raw_buffer        = NULL;
1321 }
1322
1323 /* Allocate the DMA buffers */
1324 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1325 {
1326         struct bch_geometry *geo = &this->bch_geometry;
1327         struct device *dev = this->dev;
1328         struct mtd_info *mtd = nand_to_mtd(&this->nand);
1329
1330         /*
1331          * [2] Allocate a read/write data buffer.
1332          *     The gpmi_alloc_dma_buffer can be called twice.
1333          *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1334          *     is called before the NAND identification; and we allocate a
1335          *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1336          *     is called after.
1337          */
1338         this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1339                                         GFP_DMA | GFP_KERNEL);
1340         if (this->data_buffer_dma == NULL)
1341                 goto error_alloc;
1342
1343         this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1344                                         &this->auxiliary_phys, GFP_DMA);
1345         if (!this->auxiliary_virt)
1346                 goto error_alloc;
1347
1348         this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1349         if (!this->raw_buffer)
1350                 goto error_alloc;
1351
1352         return 0;
1353
1354 error_alloc:
1355         gpmi_free_dma_buffer(this);
1356         return -ENOMEM;
1357 }
1358
1359 /*
1360  * Handles block mark swapping.
1361  * It can be called in swapping the block mark, or swapping it back,
1362  * because the the operations are the same.
1363  */
1364 static void block_mark_swapping(struct gpmi_nand_data *this,
1365                                 void *payload, void *auxiliary)
1366 {
1367         struct bch_geometry *nfc_geo = &this->bch_geometry;
1368         unsigned char *p;
1369         unsigned char *a;
1370         unsigned int  bit;
1371         unsigned char mask;
1372         unsigned char from_data;
1373         unsigned char from_oob;
1374
1375         if (!this->swap_block_mark)
1376                 return;
1377
1378         /*
1379          * If control arrives here, we're swapping. Make some convenience
1380          * variables.
1381          */
1382         bit = nfc_geo->block_mark_bit_offset;
1383         p   = payload + nfc_geo->block_mark_byte_offset;
1384         a   = auxiliary;
1385
1386         /*
1387          * Get the byte from the data area that overlays the block mark. Since
1388          * the ECC engine applies its own view to the bits in the page, the
1389          * physical block mark won't (in general) appear on a byte boundary in
1390          * the data.
1391          */
1392         from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1393
1394         /* Get the byte from the OOB. */
1395         from_oob = a[0];
1396
1397         /* Swap them. */
1398         a[0] = from_data;
1399
1400         mask = (0x1 << bit) - 1;
1401         p[0] = (p[0] & mask) | (from_oob << bit);
1402
1403         mask = ~0 << bit;
1404         p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1405 }
1406
1407 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1408                                int last, int meta)
1409 {
1410         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1411         struct bch_geometry *nfc_geo = &this->bch_geometry;
1412         struct mtd_info *mtd = nand_to_mtd(chip);
1413         int i;
1414         unsigned char *status;
1415         unsigned int max_bitflips = 0;
1416
1417         /* Loop over status bytes, accumulating ECC status. */
1418         status = this->auxiliary_virt + ALIGN(meta, 4);
1419
1420         for (i = first; i < last; i++, status++) {
1421                 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1422                         continue;
1423
1424                 if (*status == STATUS_UNCORRECTABLE) {
1425                         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1426                         u8 *eccbuf = this->raw_buffer;
1427                         int offset, bitoffset;
1428                         int eccbytes;
1429                         int flips;
1430
1431                         /* Read ECC bytes into our internal raw_buffer */
1432                         offset = nfc_geo->metadata_size * 8;
1433                         offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1);
1434                         offset -= eccbits;
1435                         bitoffset = offset % 8;
1436                         eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1437                         offset /= 8;
1438                         eccbytes -= offset;
1439                         nand_change_read_column_op(chip, offset, eccbuf,
1440                                                    eccbytes, false);
1441
1442                         /*
1443                          * ECC data are not byte aligned and we may have
1444                          * in-band data in the first and last byte of
1445                          * eccbuf. Set non-eccbits to one so that
1446                          * nand_check_erased_ecc_chunk() does not count them
1447                          * as bitflips.
1448                          */
1449                         if (bitoffset)
1450                                 eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1451
1452                         bitoffset = (bitoffset + eccbits) % 8;
1453                         if (bitoffset)
1454                                 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1455
1456                         /*
1457                          * The ECC hardware has an uncorrectable ECC status
1458                          * code in case we have bitflips in an erased page. As
1459                          * nothing was written into this subpage the ECC is
1460                          * obviously wrong and we can not trust it. We assume
1461                          * at this point that we are reading an erased page and
1462                          * try to correct the bitflips in buffer up to
1463                          * ecc_strength bitflips. If this is a page with random
1464                          * data, we exceed this number of bitflips and have a
1465                          * ECC failure. Otherwise we use the corrected buffer.
1466                          */
1467                         if (i == 0) {
1468                                 /* The first block includes metadata */
1469                                 flips = nand_check_erased_ecc_chunk(
1470                                                 buf + i * nfc_geo->eccn_chunk_size,
1471                                                 nfc_geo->eccn_chunk_size,
1472                                                 eccbuf, eccbytes,
1473                                                 this->auxiliary_virt,
1474                                                 nfc_geo->metadata_size,
1475                                                 nfc_geo->ecc_strength);
1476                         } else {
1477                                 flips = nand_check_erased_ecc_chunk(
1478                                                 buf + i * nfc_geo->eccn_chunk_size,
1479                                                 nfc_geo->eccn_chunk_size,
1480                                                 eccbuf, eccbytes,
1481                                                 NULL, 0,
1482                                                 nfc_geo->ecc_strength);
1483                         }
1484
1485                         if (flips > 0) {
1486                                 max_bitflips = max_t(unsigned int, max_bitflips,
1487                                                      flips);
1488                                 mtd->ecc_stats.corrected += flips;
1489                                 continue;
1490                         }
1491
1492                         mtd->ecc_stats.failed++;
1493                         continue;
1494                 }
1495
1496                 mtd->ecc_stats.corrected += *status;
1497                 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1498         }
1499
1500         return max_bitflips;
1501 }
1502
1503 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1504 {
1505         struct bch_geometry *geo = &this->bch_geometry;
1506         unsigned int ecc_strength = geo->ecc_strength >> 1;
1507         unsigned int gf_len = geo->gf_len;
1508         unsigned int block0_size = geo->ecc0_chunk_size;
1509         unsigned int blockn_size = geo->eccn_chunk_size;
1510
1511         this->bch_flashlayout0 =
1512                 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1513                 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1514                 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1515                 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1516                 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this);
1517
1518         this->bch_flashlayout1 =
1519                 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1520                 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1521                 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1522                 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this);
1523 }
1524
1525 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1526                               int oob_required, int page)
1527 {
1528         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1529         struct mtd_info *mtd = nand_to_mtd(chip);
1530         struct bch_geometry *geo = &this->bch_geometry;
1531         unsigned int max_bitflips;
1532         int ret;
1533
1534         gpmi_bch_layout_std(this);
1535         this->bch = true;
1536
1537         ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1538         if (ret)
1539                 return ret;
1540
1541         max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1542                                            geo->ecc_chunk_count,
1543                                            geo->auxiliary_status_offset);
1544
1545         /* handle the block mark swapping */
1546         block_mark_swapping(this, buf, this->auxiliary_virt);
1547
1548         if (oob_required) {
1549                 /*
1550                  * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1551                  * for details about our policy for delivering the OOB.
1552                  *
1553                  * We fill the caller's buffer with set bits, and then copy the
1554                  * block mark to th caller's buffer. Note that, if block mark
1555                  * swapping was necessary, it has already been done, so we can
1556                  * rely on the first byte of the auxiliary buffer to contain
1557                  * the block mark.
1558                  */
1559                 memset(chip->oob_poi, ~0, mtd->oobsize);
1560                 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1561         }
1562
1563         return max_bitflips;
1564 }
1565
1566 /* Fake a virtual small page for the subpage read */
1567 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1568                                  uint32_t len, uint8_t *buf, int page)
1569 {
1570         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1571         struct bch_geometry *geo = &this->bch_geometry;
1572         int size = chip->ecc.size; /* ECC chunk size */
1573         int meta, n, page_size;
1574         unsigned int max_bitflips;
1575         unsigned int ecc_strength;
1576         int first, last, marker_pos;
1577         int ecc_parity_size;
1578         int col = 0;
1579         int ret;
1580
1581         /* The size of ECC parity */
1582         ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1583
1584         /* Align it with the chunk size */
1585         first = offs / size;
1586         last = (offs + len - 1) / size;
1587
1588         if (this->swap_block_mark) {
1589                 /*
1590                  * Find the chunk which contains the Block Marker.
1591                  * If this chunk is in the range of [first, last],
1592                  * we have to read out the whole page.
1593                  * Why? since we had swapped the data at the position of Block
1594                  * Marker to the metadata which is bound with the chunk 0.
1595                  */
1596                 marker_pos = geo->block_mark_byte_offset / size;
1597                 if (last >= marker_pos && first <= marker_pos) {
1598                         dev_dbg(this->dev,
1599                                 "page:%d, first:%d, last:%d, marker at:%d\n",
1600                                 page, first, last, marker_pos);
1601                         return gpmi_ecc_read_page(chip, buf, 0, page);
1602                 }
1603         }
1604
1605         /*
1606          * if there is an ECC dedicate for meta:
1607          * - need to add an extra ECC size when calculating col and page_size,
1608          *   if the meta size is NOT zero.
1609          * - ecc0_chunk size need to set to the same size as other chunks,
1610          *   if the meta size is zero.
1611          */
1612
1613         meta = geo->metadata_size;
1614         if (first) {
1615                 if (geo->ecc_for_meta)
1616                         col = meta + ecc_parity_size
1617                                 + (size + ecc_parity_size) * first;
1618                 else
1619                         col = meta + (size + ecc_parity_size) * first;
1620
1621                 meta = 0;
1622                 buf = buf + first * size;
1623         }
1624
1625         ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1626         n = last - first + 1;
1627
1628         if (geo->ecc_for_meta && meta)
1629                 page_size = meta + ecc_parity_size
1630                             + (size + ecc_parity_size) * n;
1631         else
1632                 page_size = meta + (size + ecc_parity_size) * n;
1633
1634         ecc_strength = geo->ecc_strength >> 1;
1635
1636         this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(
1637                 (geo->ecc_for_meta ? n : n - 1)) |
1638                 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1639                 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1640                 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1641                 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ?
1642                 0 : geo->ecc0_chunk_size), this);
1643
1644         this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1645                 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1646                 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1647                 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this);
1648
1649         this->bch = true;
1650
1651         ret = nand_read_page_op(chip, page, col, buf, page_size);
1652         if (ret)
1653                 return ret;
1654
1655         dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1656                 page, offs, len, col, first, n, page_size);
1657
1658         max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1659
1660         return max_bitflips;
1661 }
1662
1663 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1664                                int oob_required, int page)
1665 {
1666         struct mtd_info *mtd = nand_to_mtd(chip);
1667         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1668         struct bch_geometry *nfc_geo = &this->bch_geometry;
1669
1670         dev_dbg(this->dev, "ecc write page.\n");
1671
1672         gpmi_bch_layout_std(this);
1673         this->bch = true;
1674
1675         memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1676
1677         if (this->swap_block_mark) {
1678                 /*
1679                  * When doing bad block marker swapping we must always copy the
1680                  * input buffer as we can't modify the const buffer.
1681                  */
1682                 memcpy(this->data_buffer_dma, buf, mtd->writesize);
1683                 buf = this->data_buffer_dma;
1684                 block_mark_swapping(this, this->data_buffer_dma,
1685                                     this->auxiliary_virt);
1686         }
1687
1688         return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1689 }
1690
1691 /*
1692  * There are several places in this driver where we have to handle the OOB and
1693  * block marks. This is the function where things are the most complicated, so
1694  * this is where we try to explain it all. All the other places refer back to
1695  * here.
1696  *
1697  * These are the rules, in order of decreasing importance:
1698  *
1699  * 1) Nothing the caller does can be allowed to imperil the block mark.
1700  *
1701  * 2) In read operations, the first byte of the OOB we return must reflect the
1702  *    true state of the block mark, no matter where that block mark appears in
1703  *    the physical page.
1704  *
1705  * 3) ECC-based read operations return an OOB full of set bits (since we never
1706  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1707  *    return).
1708  *
1709  * 4) "Raw" read operations return a direct view of the physical bytes in the
1710  *    page, using the conventional definition of which bytes are data and which
1711  *    are OOB. This gives the caller a way to see the actual, physical bytes
1712  *    in the page, without the distortions applied by our ECC engine.
1713  *
1714  *
1715  * What we do for this specific read operation depends on two questions:
1716  *
1717  * 1) Are we doing a "raw" read, or an ECC-based read?
1718  *
1719  * 2) Are we using block mark swapping or transcription?
1720  *
1721  * There are four cases, illustrated by the following Karnaugh map:
1722  *
1723  *                    |           Raw           |         ECC-based       |
1724  *       -------------+-------------------------+-------------------------+
1725  *                    | Read the conventional   |                         |
1726  *                    | OOB at the end of the   |                         |
1727  *       Swapping     | page and return it. It  |                         |
1728  *                    | contains exactly what   |                         |
1729  *                    | we want.                | Read the block mark and |
1730  *       -------------+-------------------------+ return it in a buffer   |
1731  *                    | Read the conventional   | full of set bits.       |
1732  *                    | OOB at the end of the   |                         |
1733  *                    | page and also the block |                         |
1734  *       Transcribing | mark in the metadata.   |                         |
1735  *                    | Copy the block mark     |                         |
1736  *                    | into the first byte of  |                         |
1737  *                    | the OOB.                |                         |
1738  *       -------------+-------------------------+-------------------------+
1739  *
1740  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1741  * giving an accurate view of the actual, physical bytes in the page (we're
1742  * overwriting the block mark). That's OK because it's more important to follow
1743  * rule #2.
1744  *
1745  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1746  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1747  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1748  * ECC-based or raw view of the page is implicit in which function it calls
1749  * (there is a similar pair of ECC-based/raw functions for writing).
1750  */
1751 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1752 {
1753         struct mtd_info *mtd = nand_to_mtd(chip);
1754         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1755         int ret;
1756
1757         /* clear the OOB buffer */
1758         memset(chip->oob_poi, ~0, mtd->oobsize);
1759
1760         /* Read out the conventional OOB. */
1761         ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1762                                 mtd->oobsize);
1763         if (ret)
1764                 return ret;
1765
1766         /*
1767          * Now, we want to make sure the block mark is correct. In the
1768          * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1769          * Otherwise, we need to explicitly read it.
1770          */
1771         if (GPMI_IS_MX23(this)) {
1772                 /* Read the block mark into the first byte of the OOB buffer. */
1773                 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1774                 if (ret)
1775                         return ret;
1776         }
1777
1778         return 0;
1779 }
1780
1781 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1782 {
1783         struct mtd_info *mtd = nand_to_mtd(chip);
1784         struct mtd_oob_region of = { };
1785
1786         /* Do we have available oob area? */
1787         mtd_ooblayout_free(mtd, 0, &of);
1788         if (!of.length)
1789                 return -EPERM;
1790
1791         if (!nand_is_slc(chip))
1792                 return -EPERM;
1793
1794         return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1795                                  chip->oob_poi + of.offset, of.length);
1796 }
1797
1798 /*
1799  * This function reads a NAND page without involving the ECC engine (no HW
1800  * ECC correction).
1801  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1802  * inline (interleaved with payload DATA), and do not align data chunk on
1803  * byte boundaries.
1804  * We thus need to take care moving the payload data and ECC bits stored in the
1805  * page into the provided buffers, which is why we're using nand_extract_bits().
1806  *
1807  * See set_geometry_by_ecc_info inline comments to have a full description
1808  * of the layout used by the GPMI controller.
1809  */
1810 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1811                                   int oob_required, int page)
1812 {
1813         struct mtd_info *mtd = nand_to_mtd(chip);
1814         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1815         struct bch_geometry *nfc_geo = &this->bch_geometry;
1816         int eccsize = nfc_geo->eccn_chunk_size;
1817         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1818         u8 *tmp_buf = this->raw_buffer;
1819         size_t src_bit_off;
1820         size_t oob_bit_off;
1821         size_t oob_byte_off;
1822         uint8_t *oob = chip->oob_poi;
1823         int step;
1824         int ret;
1825
1826         ret = nand_read_page_op(chip, page, 0, tmp_buf,
1827                                 mtd->writesize + mtd->oobsize);
1828         if (ret)
1829                 return ret;
1830
1831         /*
1832          * If required, swap the bad block marker and the data stored in the
1833          * metadata section, so that we don't wrongly consider a block as bad.
1834          *
1835          * See the layout description for a detailed explanation on why this
1836          * is needed.
1837          */
1838         if (this->swap_block_mark)
1839                 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1840
1841         /*
1842          * Copy the metadata section into the oob buffer (this section is
1843          * guaranteed to be aligned on a byte boundary).
1844          */
1845         if (oob_required)
1846                 memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1847
1848         oob_bit_off = nfc_geo->metadata_size * 8;
1849         src_bit_off = oob_bit_off;
1850
1851         /* Extract interleaved payload data and ECC bits */
1852         for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1853                 if (buf)
1854                         nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
1855                                           src_bit_off, eccsize * 8);
1856                 src_bit_off += eccsize * 8;
1857
1858                 /* Align last ECC block to align a byte boundary */
1859                 if (step == nfc_geo->ecc_chunk_count - 1 &&
1860                     (oob_bit_off + eccbits) % 8)
1861                         eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1862
1863                 if (oob_required)
1864                         nand_extract_bits(oob, oob_bit_off, tmp_buf,
1865                                           src_bit_off, eccbits);
1866
1867                 src_bit_off += eccbits;
1868                 oob_bit_off += eccbits;
1869         }
1870
1871         if (oob_required) {
1872                 oob_byte_off = oob_bit_off / 8;
1873
1874                 if (oob_byte_off < mtd->oobsize)
1875                         memcpy(oob + oob_byte_off,
1876                                tmp_buf + mtd->writesize + oob_byte_off,
1877                                mtd->oobsize - oob_byte_off);
1878         }
1879
1880         return 0;
1881 }
1882
1883 /*
1884  * This function writes a NAND page without involving the ECC engine (no HW
1885  * ECC generation).
1886  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1887  * inline (interleaved with payload DATA), and do not align data chunk on
1888  * byte boundaries.
1889  * We thus need to take care moving the OOB area at the right place in the
1890  * final page, which is why we're using nand_extract_bits().
1891  *
1892  * See set_geometry_by_ecc_info inline comments to have a full description
1893  * of the layout used by the GPMI controller.
1894  */
1895 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1896                                    int oob_required, int page)
1897 {
1898         struct mtd_info *mtd = nand_to_mtd(chip);
1899         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1900         struct bch_geometry *nfc_geo = &this->bch_geometry;
1901         int eccsize = nfc_geo->eccn_chunk_size;
1902         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1903         u8 *tmp_buf = this->raw_buffer;
1904         uint8_t *oob = chip->oob_poi;
1905         size_t dst_bit_off;
1906         size_t oob_bit_off;
1907         size_t oob_byte_off;
1908         int step;
1909
1910         /*
1911          * Initialize all bits to 1 in case we don't have a buffer for the
1912          * payload or oob data in order to leave unspecified bits of data
1913          * to their initial state.
1914          */
1915         if (!buf || !oob_required)
1916                 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1917
1918         /*
1919          * First copy the metadata section (stored in oob buffer) at the
1920          * beginning of the page, as imposed by the GPMI layout.
1921          */
1922         memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1923         oob_bit_off = nfc_geo->metadata_size * 8;
1924         dst_bit_off = oob_bit_off;
1925
1926         /* Interleave payload data and ECC bits */
1927         for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1928                 if (buf)
1929                         nand_extract_bits(tmp_buf, dst_bit_off, buf,
1930                                           step * eccsize * 8, eccsize * 8);
1931                 dst_bit_off += eccsize * 8;
1932
1933                 /* Align last ECC block to align a byte boundary */
1934                 if (step == nfc_geo->ecc_chunk_count - 1 &&
1935                     (oob_bit_off + eccbits) % 8)
1936                         eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1937
1938                 if (oob_required)
1939                         nand_extract_bits(tmp_buf, dst_bit_off, oob,
1940                                           oob_bit_off, eccbits);
1941
1942                 dst_bit_off += eccbits;
1943                 oob_bit_off += eccbits;
1944         }
1945
1946         oob_byte_off = oob_bit_off / 8;
1947
1948         if (oob_required && oob_byte_off < mtd->oobsize)
1949                 memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1950                        oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1951
1952         /*
1953          * If required, swap the bad block marker and the first byte of the
1954          * metadata section, so that we don't modify the bad block marker.
1955          *
1956          * See the layout description for a detailed explanation on why this
1957          * is needed.
1958          */
1959         if (this->swap_block_mark)
1960                 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1961
1962         return nand_prog_page_op(chip, page, 0, tmp_buf,
1963                                  mtd->writesize + mtd->oobsize);
1964 }
1965
1966 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1967 {
1968         return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1969 }
1970
1971 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1972 {
1973         return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1974 }
1975
1976 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1977 {
1978         struct mtd_info *mtd = nand_to_mtd(chip);
1979         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1980         int ret = 0;
1981         uint8_t *block_mark;
1982         int column, page, chipnr;
1983
1984         chipnr = (int)(ofs >> chip->chip_shift);
1985         nand_select_target(chip, chipnr);
1986
1987         column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1988
1989         /* Write the block mark. */
1990         block_mark = this->data_buffer_dma;
1991         block_mark[0] = 0; /* bad block marker */
1992
1993         /* Shift to get page */
1994         page = (int)(ofs >> chip->page_shift);
1995
1996         ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1997
1998         nand_deselect_target(chip);
1999
2000         return ret;
2001 }
2002
2003 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
2004 {
2005         struct boot_rom_geometry *geometry = &this->rom_geometry;
2006
2007         /*
2008          * Set the boot block stride size.
2009          *
2010          * In principle, we should be reading this from the OTP bits, since
2011          * that's where the ROM is going to get it. In fact, we don't have any
2012          * way to read the OTP bits, so we go with the default and hope for the
2013          * best.
2014          */
2015         geometry->stride_size_in_pages = 64;
2016
2017         /*
2018          * Set the search area stride exponent.
2019          *
2020          * In principle, we should be reading this from the OTP bits, since
2021          * that's where the ROM is going to get it. In fact, we don't have any
2022          * way to read the OTP bits, so we go with the default and hope for the
2023          * best.
2024          */
2025         geometry->search_area_stride_exponent = 2;
2026         return 0;
2027 }
2028
2029 static const char  *fingerprint = "STMP";
2030 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
2031 {
2032         struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2033         struct device *dev = this->dev;
2034         struct nand_chip *chip = &this->nand;
2035         unsigned int search_area_size_in_strides;
2036         unsigned int stride;
2037         unsigned int page;
2038         u8 *buffer = nand_get_data_buf(chip);
2039         int found_an_ncb_fingerprint = false;
2040         int ret;
2041
2042         /* Compute the number of strides in a search area. */
2043         search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2044
2045         nand_select_target(chip, 0);
2046
2047         /*
2048          * Loop through the first search area, looking for the NCB fingerprint.
2049          */
2050         dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
2051
2052         for (stride = 0; stride < search_area_size_in_strides; stride++) {
2053                 /* Compute the page addresses. */
2054                 page = stride * rom_geo->stride_size_in_pages;
2055
2056                 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
2057
2058                 /*
2059                  * Read the NCB fingerprint. The fingerprint is four bytes long
2060                  * and starts in the 12th byte of the page.
2061                  */
2062                 ret = nand_read_page_op(chip, page, 12, buffer,
2063                                         strlen(fingerprint));
2064                 if (ret)
2065                         continue;
2066
2067                 /* Look for the fingerprint. */
2068                 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
2069                         found_an_ncb_fingerprint = true;
2070                         break;
2071                 }
2072
2073         }
2074
2075         nand_deselect_target(chip);
2076
2077         if (found_an_ncb_fingerprint)
2078                 dev_dbg(dev, "\tFound a fingerprint\n");
2079         else
2080                 dev_dbg(dev, "\tNo fingerprint found\n");
2081         return found_an_ncb_fingerprint;
2082 }
2083
2084 /* Writes a transcription stamp. */
2085 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
2086 {
2087         struct device *dev = this->dev;
2088         struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2089         struct nand_chip *chip = &this->nand;
2090         struct mtd_info *mtd = nand_to_mtd(chip);
2091         unsigned int block_size_in_pages;
2092         unsigned int search_area_size_in_strides;
2093         unsigned int search_area_size_in_pages;
2094         unsigned int search_area_size_in_blocks;
2095         unsigned int block;
2096         unsigned int stride;
2097         unsigned int page;
2098         u8 *buffer = nand_get_data_buf(chip);
2099         int status;
2100
2101         /* Compute the search area geometry. */
2102         block_size_in_pages = mtd->erasesize / mtd->writesize;
2103         search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2104         search_area_size_in_pages = search_area_size_in_strides *
2105                                         rom_geo->stride_size_in_pages;
2106         search_area_size_in_blocks =
2107                   (search_area_size_in_pages + (block_size_in_pages - 1)) /
2108                                     block_size_in_pages;
2109
2110         dev_dbg(dev, "Search Area Geometry :\n");
2111         dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2112         dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2113         dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
2114
2115         nand_select_target(chip, 0);
2116
2117         /* Loop over blocks in the first search area, erasing them. */
2118         dev_dbg(dev, "Erasing the search area...\n");
2119
2120         for (block = 0; block < search_area_size_in_blocks; block++) {
2121                 /* Erase this block. */
2122                 dev_dbg(dev, "\tErasing block 0x%x\n", block);
2123                 status = nand_erase_op(chip, block);
2124                 if (status)
2125                         dev_err(dev, "[%s] Erase failed.\n", __func__);
2126         }
2127
2128         /* Write the NCB fingerprint into the page buffer. */
2129         memset(buffer, ~0, mtd->writesize);
2130         memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2131
2132         /* Loop through the first search area, writing NCB fingerprints. */
2133         dev_dbg(dev, "Writing NCB fingerprints...\n");
2134         for (stride = 0; stride < search_area_size_in_strides; stride++) {
2135                 /* Compute the page addresses. */
2136                 page = stride * rom_geo->stride_size_in_pages;
2137
2138                 /* Write the first page of the current stride. */
2139                 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2140
2141                 status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2142                 if (status)
2143                         dev_err(dev, "[%s] Write failed.\n", __func__);
2144         }
2145
2146         nand_deselect_target(chip);
2147
2148         return 0;
2149 }
2150
2151 static int mx23_boot_init(struct gpmi_nand_data  *this)
2152 {
2153         struct device *dev = this->dev;
2154         struct nand_chip *chip = &this->nand;
2155         struct mtd_info *mtd = nand_to_mtd(chip);
2156         unsigned int block_count;
2157         unsigned int block;
2158         int     chipnr;
2159         int     page;
2160         loff_t  byte;
2161         uint8_t block_mark;
2162         int     ret = 0;
2163
2164         /*
2165          * If control arrives here, we can't use block mark swapping, which
2166          * means we're forced to use transcription. First, scan for the
2167          * transcription stamp. If we find it, then we don't have to do
2168          * anything -- the block marks are already transcribed.
2169          */
2170         if (mx23_check_transcription_stamp(this))
2171                 return 0;
2172
2173         /*
2174          * If control arrives here, we couldn't find a transcription stamp, so
2175          * so we presume the block marks are in the conventional location.
2176          */
2177         dev_dbg(dev, "Transcribing bad block marks...\n");
2178
2179         /* Compute the number of blocks in the entire medium. */
2180         block_count = nanddev_eraseblocks_per_target(&chip->base);
2181
2182         /*
2183          * Loop over all the blocks in the medium, transcribing block marks as
2184          * we go.
2185          */
2186         for (block = 0; block < block_count; block++) {
2187                 /*
2188                  * Compute the chip, page and byte addresses for this block's
2189                  * conventional mark.
2190                  */
2191                 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2192                 page = block << (chip->phys_erase_shift - chip->page_shift);
2193                 byte = block <<  chip->phys_erase_shift;
2194
2195                 /* Send the command to read the conventional block mark. */
2196                 nand_select_target(chip, chipnr);
2197                 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2198                                         1);
2199                 nand_deselect_target(chip);
2200
2201                 if (ret)
2202                         continue;
2203
2204                 /*
2205                  * Check if the block is marked bad. If so, we need to mark it
2206                  * again, but this time the result will be a mark in the
2207                  * location where we transcribe block marks.
2208                  */
2209                 if (block_mark != 0xff) {
2210                         dev_dbg(dev, "Transcribing mark in block %u\n", block);
2211                         ret = chip->legacy.block_markbad(chip, byte);
2212                         if (ret)
2213                                 dev_err(dev,
2214                                         "Failed to mark block bad with ret %d\n",
2215                                         ret);
2216                 }
2217         }
2218
2219         /* Write the stamp that indicates we've transcribed the block marks. */
2220         mx23_write_transcription_stamp(this);
2221         return 0;
2222 }
2223
2224 static int nand_boot_init(struct gpmi_nand_data  *this)
2225 {
2226         nand_boot_set_geometry(this);
2227
2228         /* This is ROM arch-specific initilization before the BBT scanning. */
2229         if (GPMI_IS_MX23(this))
2230                 return mx23_boot_init(this);
2231         return 0;
2232 }
2233
2234 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2235 {
2236         int ret;
2237
2238         /* Free the temporary DMA memory for reading ID. */
2239         gpmi_free_dma_buffer(this);
2240
2241         /* Set up the NFC geometry which is used by BCH. */
2242         ret = bch_set_geometry(this);
2243         if (ret) {
2244                 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2245                 return ret;
2246         }
2247
2248         /* Alloc the new DMA buffers according to the pagesize and oobsize */
2249         return gpmi_alloc_dma_buffer(this);
2250 }
2251
2252 static int gpmi_init_last(struct gpmi_nand_data *this)
2253 {
2254         struct nand_chip *chip = &this->nand;
2255         struct mtd_info *mtd = nand_to_mtd(chip);
2256         struct nand_ecc_ctrl *ecc = &chip->ecc;
2257         struct bch_geometry *bch_geo = &this->bch_geometry;
2258         int ret;
2259
2260         /* Set up the medium geometry */
2261         ret = gpmi_set_geometry(this);
2262         if (ret)
2263                 return ret;
2264
2265         /* Init the nand_ecc_ctrl{} */
2266         ecc->read_page  = gpmi_ecc_read_page;
2267         ecc->write_page = gpmi_ecc_write_page;
2268         ecc->read_oob   = gpmi_ecc_read_oob;
2269         ecc->write_oob  = gpmi_ecc_write_oob;
2270         ecc->read_page_raw = gpmi_ecc_read_page_raw;
2271         ecc->write_page_raw = gpmi_ecc_write_page_raw;
2272         ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2273         ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2274         ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2275         ecc->size       = bch_geo->eccn_chunk_size;
2276         ecc->strength   = bch_geo->ecc_strength;
2277         mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2278
2279         /*
2280          * We only enable the subpage read when:
2281          *  (1) the chip is imx6, and
2282          *  (2) the size of the ECC parity is byte aligned.
2283          */
2284         if (GPMI_IS_MX6(this) &&
2285                 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2286                 ecc->read_subpage = gpmi_ecc_read_subpage;
2287                 chip->options |= NAND_SUBPAGE_READ;
2288         }
2289
2290         return 0;
2291 }
2292
2293 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2294 {
2295         struct gpmi_nand_data *this = nand_get_controller_data(chip);
2296         int ret;
2297
2298         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2299                 chip->bbt_options |= NAND_BBT_NO_OOB;
2300
2301                 if (of_property_read_bool(this->dev->of_node,
2302                                           "fsl,no-blockmark-swap"))
2303                         this->swap_block_mark = false;
2304         }
2305         dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2306                 this->swap_block_mark ? "en" : "dis");
2307
2308         ret = gpmi_init_last(this);
2309         if (ret)
2310                 return ret;
2311
2312         chip->options |= NAND_SKIP_BBTSCAN;
2313
2314         return 0;
2315 }
2316
2317 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2318 {
2319         struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2320
2321         this->ntransfers++;
2322
2323         if (this->ntransfers == GPMI_MAX_TRANSFERS)
2324                 return NULL;
2325
2326         return transfer;
2327 }
2328
2329 static struct dma_async_tx_descriptor *gpmi_chain_command(
2330         struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2331 {
2332         struct dma_chan *channel = get_dma_chan(this);
2333         struct dma_async_tx_descriptor *desc;
2334         struct gpmi_transfer *transfer;
2335         int chip = this->nand.cur_cs;
2336         u32 pio[3];
2337
2338         /* [1] send out the PIO words */
2339         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2340                 | BM_GPMI_CTRL0_WORD_LENGTH
2341                 | BF_GPMI_CTRL0_CS(chip, this)
2342                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2343                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2344                 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
2345                 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2346         pio[1] = 0;
2347         pio[2] = 0;
2348         desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2349                                       DMA_TRANS_NONE, 0);
2350         if (!desc)
2351                 return NULL;
2352
2353         transfer = get_next_transfer(this);
2354         if (!transfer)
2355                 return NULL;
2356
2357         transfer->cmdbuf[0] = cmd;
2358         if (naddr)
2359                 memcpy(&transfer->cmdbuf[1], addr, naddr);
2360
2361         sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2362         dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2363
2364         transfer->direction = DMA_TO_DEVICE;
2365
2366         desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2367                                        MXS_DMA_CTRL_WAIT4END);
2368         return desc;
2369 }
2370
2371 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2372         struct gpmi_nand_data *this)
2373 {
2374         struct dma_chan *channel = get_dma_chan(this);
2375         u32 pio[2];
2376
2377         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2378                 | BM_GPMI_CTRL0_WORD_LENGTH
2379                 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2380                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2381                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2382                 | BF_GPMI_CTRL0_XFER_COUNT(0);
2383         pio[1] = 0;
2384
2385         return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2386                                 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2387 }
2388
2389 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2390         struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2391 {
2392         struct dma_async_tx_descriptor *desc;
2393         struct dma_chan *channel = get_dma_chan(this);
2394         struct gpmi_transfer *transfer;
2395         u32 pio[6] = {};
2396
2397         transfer = get_next_transfer(this);
2398         if (!transfer)
2399                 return NULL;
2400
2401         transfer->direction = DMA_FROM_DEVICE;
2402
2403         *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2404                                    DMA_FROM_DEVICE);
2405
2406         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2407                 | BM_GPMI_CTRL0_WORD_LENGTH
2408                 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2409                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2410                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2411                 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2412
2413         if (this->bch) {
2414                 pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2415                         | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2416                         | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2417                                 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2418                 pio[3] = raw_len;
2419                 pio[4] = transfer->sgl.dma_address;
2420                 pio[5] = this->auxiliary_phys;
2421         }
2422
2423         desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2424                                       DMA_TRANS_NONE, 0);
2425         if (!desc)
2426                 return NULL;
2427
2428         if (!this->bch)
2429                 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2430                                              DMA_DEV_TO_MEM,
2431                                              MXS_DMA_CTRL_WAIT4END);
2432
2433         return desc;
2434 }
2435
2436 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2437         struct gpmi_nand_data *this, const void *buf, int raw_len)
2438 {
2439         struct dma_chan *channel = get_dma_chan(this);
2440         struct dma_async_tx_descriptor *desc;
2441         struct gpmi_transfer *transfer;
2442         u32 pio[6] = {};
2443
2444         transfer = get_next_transfer(this);
2445         if (!transfer)
2446                 return NULL;
2447
2448         transfer->direction = DMA_TO_DEVICE;
2449
2450         prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2451
2452         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2453                 | BM_GPMI_CTRL0_WORD_LENGTH
2454                 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2455                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2456                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2457                 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2458
2459         if (this->bch) {
2460                 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2461                         | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2462                         | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2463                                         BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2464                 pio[3] = raw_len;
2465                 pio[4] = transfer->sgl.dma_address;
2466                 pio[5] = this->auxiliary_phys;
2467         }
2468
2469         desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2470                                       DMA_TRANS_NONE,
2471                                       (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2472         if (!desc)
2473                 return NULL;
2474
2475         if (!this->bch)
2476                 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2477                                                DMA_MEM_TO_DEV,
2478                                                MXS_DMA_CTRL_WAIT4END);
2479
2480         return desc;
2481 }
2482
2483 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2484                              const struct nand_operation *op,
2485                              bool check_only)
2486 {
2487         const struct nand_op_instr *instr;
2488         struct gpmi_nand_data *this = nand_get_controller_data(chip);
2489         struct dma_async_tx_descriptor *desc = NULL;
2490         int i, ret, buf_len = 0, nbufs = 0;
2491         u8 cmd = 0;
2492         void *buf_read = NULL;
2493         const void *buf_write = NULL;
2494         bool direct = false;
2495         struct completion *dma_completion, *bch_completion;
2496         unsigned long to;
2497
2498         if (check_only)
2499                 return 0;
2500
2501         this->ntransfers = 0;
2502         for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2503                 this->transfers[i].direction = DMA_NONE;
2504
2505         ret = pm_runtime_get_sync(this->dev);
2506         if (ret < 0) {
2507                 pm_runtime_put_noidle(this->dev);
2508                 return ret;
2509         }
2510
2511         /*
2512          * This driver currently supports only one NAND chip. Plus, dies share
2513          * the same configuration. So once timings have been applied on the
2514          * controller side, they will not change anymore. When the time will
2515          * come, the check on must_apply_timings will have to be dropped.
2516          */
2517         if (this->hw.must_apply_timings) {
2518                 this->hw.must_apply_timings = false;
2519                 ret = gpmi_nfc_apply_timings(this);
2520                 if (ret)
2521                         goto out_pm;
2522         }
2523
2524         dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2525
2526         for (i = 0; i < op->ninstrs; i++) {
2527                 instr = &op->instrs[i];
2528
2529                 nand_op_trace("  ", instr);
2530
2531                 switch (instr->type) {
2532                 case NAND_OP_WAITRDY_INSTR:
2533                         desc = gpmi_chain_wait_ready(this);
2534                         break;
2535                 case NAND_OP_CMD_INSTR:
2536                         cmd = instr->ctx.cmd.opcode;
2537
2538                         /*
2539                          * When this command has an address cycle chain it
2540                          * together with the address cycle
2541                          */
2542                         if (i + 1 != op->ninstrs &&
2543                             op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2544                                 continue;
2545
2546                         desc = gpmi_chain_command(this, cmd, NULL, 0);
2547
2548                         break;
2549                 case NAND_OP_ADDR_INSTR:
2550                         desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2551                                                   instr->ctx.addr.naddrs);
2552                         break;
2553                 case NAND_OP_DATA_OUT_INSTR:
2554                         buf_write = instr->ctx.data.buf.out;
2555                         buf_len = instr->ctx.data.len;
2556                         nbufs++;
2557
2558                         desc = gpmi_chain_data_write(this, buf_write, buf_len);
2559
2560                         break;
2561                 case NAND_OP_DATA_IN_INSTR:
2562                         if (!instr->ctx.data.len)
2563                                 break;
2564                         buf_read = instr->ctx.data.buf.in;
2565                         buf_len = instr->ctx.data.len;
2566                         nbufs++;
2567
2568                         desc = gpmi_chain_data_read(this, buf_read, buf_len,
2569                                                    &direct);
2570                         break;
2571                 }
2572
2573                 if (!desc) {
2574                         ret = -ENXIO;
2575                         goto unmap;
2576                 }
2577         }
2578
2579         dev_dbg(this->dev, "%s setup done\n", __func__);
2580
2581         if (nbufs > 1) {
2582                 dev_err(this->dev, "Multiple data instructions not supported\n");
2583                 ret = -EINVAL;
2584                 goto unmap;
2585         }
2586
2587         if (this->bch) {
2588                 writel(this->bch_flashlayout0,
2589                        this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2590                 writel(this->bch_flashlayout1,
2591                        this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2592         }
2593
2594         desc->callback = dma_irq_callback;
2595         desc->callback_param = this;
2596         dma_completion = &this->dma_done;
2597         bch_completion = NULL;
2598
2599         init_completion(dma_completion);
2600
2601         if (this->bch && buf_read) {
2602                 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2603                        this->resources.bch_regs + HW_BCH_CTRL_SET);
2604                 bch_completion = &this->bch_done;
2605                 init_completion(bch_completion);
2606         }
2607
2608         dmaengine_submit(desc);
2609         dma_async_issue_pending(get_dma_chan(this));
2610
2611         to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2612         if (!to) {
2613                 dev_err(this->dev, "DMA timeout, last DMA\n");
2614                 gpmi_dump_info(this);
2615                 ret = -ETIMEDOUT;
2616                 goto unmap;
2617         }
2618
2619         if (this->bch && buf_read) {
2620                 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2621                 if (!to) {
2622                         dev_err(this->dev, "BCH timeout, last DMA\n");
2623                         gpmi_dump_info(this);
2624                         ret = -ETIMEDOUT;
2625                         goto unmap;
2626                 }
2627         }
2628
2629         writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2630                this->resources.bch_regs + HW_BCH_CTRL_CLR);
2631         gpmi_clear_bch(this);
2632
2633         ret = 0;
2634
2635 unmap:
2636         for (i = 0; i < this->ntransfers; i++) {
2637                 struct gpmi_transfer *transfer = &this->transfers[i];
2638
2639                 if (transfer->direction != DMA_NONE)
2640                         dma_unmap_sg(this->dev, &transfer->sgl, 1,
2641                                      transfer->direction);
2642         }
2643
2644         if (!ret && buf_read && !direct)
2645                 memcpy(buf_read, this->data_buffer_dma,
2646                        gpmi_raw_len_to_len(this, buf_len));
2647
2648         this->bch = false;
2649
2650 out_pm:
2651         pm_runtime_mark_last_busy(this->dev);
2652         pm_runtime_put_autosuspend(this->dev);
2653
2654         return ret;
2655 }
2656
2657 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2658         .attach_chip = gpmi_nand_attach_chip,
2659         .setup_interface = gpmi_setup_interface,
2660         .exec_op = gpmi_nfc_exec_op,
2661 };
2662
2663 static int gpmi_nand_init(struct gpmi_nand_data *this)
2664 {
2665         struct nand_chip *chip = &this->nand;
2666         struct mtd_info  *mtd = nand_to_mtd(chip);
2667         int ret;
2668
2669         /* init the MTD data structures */
2670         mtd->name               = "gpmi-nand";
2671         mtd->dev.parent         = this->dev;
2672
2673         /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2674         nand_set_controller_data(chip, this);
2675         nand_set_flash_node(chip, this->pdev->dev.of_node);
2676         chip->legacy.block_markbad = gpmi_block_markbad;
2677         chip->badblock_pattern  = &gpmi_bbt_descr;
2678         chip->options           |= NAND_NO_SUBPAGE_WRITE;
2679
2680         /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2681         this->swap_block_mark = !GPMI_IS_MX23(this);
2682
2683         /*
2684          * Allocate a temporary DMA buffer for reading ID in the
2685          * nand_scan_ident().
2686          */
2687         this->bch_geometry.payload_size = 1024;
2688         this->bch_geometry.auxiliary_size = 128;
2689         ret = gpmi_alloc_dma_buffer(this);
2690         if (ret)
2691                 return ret;
2692
2693         nand_controller_init(&this->base);
2694         this->base.ops = &gpmi_nand_controller_ops;
2695         chip->controller = &this->base;
2696
2697         ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2698         if (ret)
2699                 goto err_out;
2700
2701         ret = nand_boot_init(this);
2702         if (ret)
2703                 goto err_nand_cleanup;
2704         ret = nand_create_bbt(chip);
2705         if (ret)
2706                 goto err_nand_cleanup;
2707
2708         ret = mtd_device_register(mtd, NULL, 0);
2709         if (ret)
2710                 goto err_nand_cleanup;
2711         return 0;
2712
2713 err_nand_cleanup:
2714         nand_cleanup(chip);
2715 err_out:
2716         gpmi_free_dma_buffer(this);
2717         return ret;
2718 }
2719
2720 static const struct of_device_id gpmi_nand_id_table[] = {
2721         { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
2722         { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
2723         { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
2724         { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
2725         { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
2726         {}
2727 };
2728 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2729
2730 static int gpmi_nand_probe(struct platform_device *pdev)
2731 {
2732         struct gpmi_nand_data *this;
2733         int ret;
2734
2735         this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2736         if (!this)
2737                 return -ENOMEM;
2738
2739         this->devdata = of_device_get_match_data(&pdev->dev);
2740         platform_set_drvdata(pdev, this);
2741         this->pdev  = pdev;
2742         this->dev   = &pdev->dev;
2743
2744         ret = acquire_resources(this);
2745         if (ret)
2746                 goto exit_acquire_resources;
2747
2748         ret = __gpmi_enable_clk(this, true);
2749         if (ret)
2750                 goto exit_acquire_resources;
2751
2752         pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2753         pm_runtime_use_autosuspend(&pdev->dev);
2754         pm_runtime_set_active(&pdev->dev);
2755         pm_runtime_enable(&pdev->dev);
2756         pm_runtime_get_sync(&pdev->dev);
2757
2758         ret = gpmi_init(this);
2759         if (ret)
2760                 goto exit_nfc_init;
2761
2762         ret = gpmi_nand_init(this);
2763         if (ret)
2764                 goto exit_nfc_init;
2765
2766         pm_runtime_mark_last_busy(&pdev->dev);
2767         pm_runtime_put_autosuspend(&pdev->dev);
2768
2769         dev_info(this->dev, "driver registered.\n");
2770
2771         return 0;
2772
2773 exit_nfc_init:
2774         pm_runtime_put(&pdev->dev);
2775         pm_runtime_disable(&pdev->dev);
2776         release_resources(this);
2777 exit_acquire_resources:
2778
2779         return ret;
2780 }
2781
2782 static int gpmi_nand_remove(struct platform_device *pdev)
2783 {
2784         struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2785         struct nand_chip *chip = &this->nand;
2786         int ret;
2787
2788         pm_runtime_put_sync(&pdev->dev);
2789         pm_runtime_disable(&pdev->dev);
2790
2791         ret = mtd_device_unregister(nand_to_mtd(chip));
2792         WARN_ON(ret);
2793         nand_cleanup(chip);
2794         gpmi_free_dma_buffer(this);
2795         release_resources(this);
2796         return 0;
2797 }
2798
2799 #ifdef CONFIG_PM_SLEEP
2800 static int gpmi_pm_suspend(struct device *dev)
2801 {
2802         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2803
2804         release_dma_channels(this);
2805         return 0;
2806 }
2807
2808 static int gpmi_pm_resume(struct device *dev)
2809 {
2810         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2811         int ret;
2812
2813         ret = acquire_dma_channels(this);
2814         if (ret < 0)
2815                 return ret;
2816
2817         /* re-init the GPMI registers */
2818         ret = gpmi_init(this);
2819         if (ret) {
2820                 dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2821                 return ret;
2822         }
2823
2824         /* Set flag to get timing setup restored for next exec_op */
2825         if (this->hw.clk_rate)
2826                 this->hw.must_apply_timings = true;
2827
2828         /* re-init the BCH registers */
2829         ret = bch_set_geometry(this);
2830         if (ret) {
2831                 dev_err(this->dev, "Error setting BCH : %d\n", ret);
2832                 return ret;
2833         }
2834
2835         return 0;
2836 }
2837 #endif /* CONFIG_PM_SLEEP */
2838
2839 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2840 {
2841         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2842
2843         return __gpmi_enable_clk(this, false);
2844 }
2845
2846 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2847 {
2848         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2849
2850         return __gpmi_enable_clk(this, true);
2851 }
2852
2853 static const struct dev_pm_ops gpmi_pm_ops = {
2854         SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2855         SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2856 };
2857
2858 static struct platform_driver gpmi_nand_driver = {
2859         .driver = {
2860                 .name = "gpmi-nand",
2861                 .pm = &gpmi_pm_ops,
2862                 .of_match_table = gpmi_nand_id_table,
2863         },
2864         .probe   = gpmi_nand_probe,
2865         .remove  = gpmi_nand_remove,
2866 };
2867 module_platform_driver(gpmi_nand_driver);
2868
2869 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2870 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2871 MODULE_LICENSE("GPL");