clk: mediatek: using CLK_MUX_ROUND_CLOSEST for the clock of dpi1_sel
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / gpmi-nand / gpmi-lib.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/delay.h>
9 #include <linux/clk.h>
10 #include <linux/slab.h>
11
12 #include "gpmi-nand.h"
13 #include "gpmi-regs.h"
14 #include "bch-regs.h"
15
16 /* Converts time to clock cycles */
17 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
18
19 #define MXS_SET_ADDR            0x4
20 #define MXS_CLR_ADDR            0x8
21 /*
22  * Clear the bit and poll it cleared.  This is usually called with
23  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
24  * (bit 30).
25  */
26 static int clear_poll_bit(void __iomem *addr, u32 mask)
27 {
28         int timeout = 0x400;
29
30         /* clear the bit */
31         writel(mask, addr + MXS_CLR_ADDR);
32
33         /*
34          * SFTRST needs 3 GPMI clocks to settle, the reference manual
35          * recommends to wait 1us.
36          */
37         udelay(1);
38
39         /* poll the bit becoming clear */
40         while ((readl(addr) & mask) && --timeout)
41                 /* nothing */;
42
43         return !timeout;
44 }
45
46 #define MODULE_CLKGATE          (1 << 30)
47 #define MODULE_SFTRST           (1 << 31)
48 /*
49  * The current mxs_reset_block() will do two things:
50  *  [1] enable the module.
51  *  [2] reset the module.
52  *
53  * In most of the cases, it's ok.
54  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
55  * If you try to soft reset the BCH block, it becomes unusable until
56  * the next hard reset. This case occurs in the NAND boot mode. When the board
57  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
58  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
59  * You will see a DMA timeout in this case. The bug has been fixed
60  * in the following chips, such as MX28.
61  *
62  * To avoid this bug, just add a new parameter `just_enable` for
63  * the mxs_reset_block(), and rewrite it here.
64  */
65 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
66 {
67         int ret;
68         int timeout = 0x400;
69
70         /* clear and poll SFTRST */
71         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
72         if (unlikely(ret))
73                 goto error;
74
75         /* clear CLKGATE */
76         writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
77
78         if (!just_enable) {
79                 /* set SFTRST to reset the block */
80                 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
81                 udelay(1);
82
83                 /* poll CLKGATE becoming set */
84                 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
85                         /* nothing */;
86                 if (unlikely(!timeout))
87                         goto error;
88         }
89
90         /* clear and poll SFTRST */
91         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92         if (unlikely(ret))
93                 goto error;
94
95         /* clear and poll CLKGATE */
96         ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
97         if (unlikely(ret))
98                 goto error;
99
100         return 0;
101
102 error:
103         pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
104         return -ETIMEDOUT;
105 }
106
107 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
108 {
109         struct clk *clk;
110         int ret;
111         int i;
112
113         for (i = 0; i < GPMI_CLK_MAX; i++) {
114                 clk = this->resources.clock[i];
115                 if (!clk)
116                         break;
117
118                 if (v) {
119                         ret = clk_prepare_enable(clk);
120                         if (ret)
121                                 goto err_clk;
122                 } else {
123                         clk_disable_unprepare(clk);
124                 }
125         }
126         return 0;
127
128 err_clk:
129         for (; i > 0; i--)
130                 clk_disable_unprepare(this->resources.clock[i - 1]);
131         return ret;
132 }
133
134 int gpmi_enable_clk(struct gpmi_nand_data *this)
135 {
136         return __gpmi_enable_clk(this, true);
137 }
138
139 int gpmi_disable_clk(struct gpmi_nand_data *this)
140 {
141         return __gpmi_enable_clk(this, false);
142 }
143
144 int gpmi_init(struct gpmi_nand_data *this)
145 {
146         struct resources *r = &this->resources;
147         int ret;
148
149         ret = gpmi_enable_clk(this);
150         if (ret)
151                 return ret;
152         ret = gpmi_reset_block(r->gpmi_regs, false);
153         if (ret)
154                 goto err_out;
155
156         /*
157          * Reset BCH here, too. We got failures otherwise :(
158          * See later BCH reset for explanation of MX23 handling
159          */
160         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
161         if (ret)
162                 goto err_out;
163
164         /* Choose NAND mode. */
165         writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
166
167         /* Set the IRQ polarity. */
168         writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
169                                 r->gpmi_regs + HW_GPMI_CTRL1_SET);
170
171         /* Disable Write-Protection. */
172         writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
173
174         /* Select BCH ECC. */
175         writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
176
177         /*
178          * Decouple the chip select from dma channel. We use dma0 for all
179          * the chips.
180          */
181         writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
182
183         gpmi_disable_clk(this);
184         return 0;
185 err_out:
186         gpmi_disable_clk(this);
187         return ret;
188 }
189
190 /* This function is very useful. It is called only when the bug occur. */
191 void gpmi_dump_info(struct gpmi_nand_data *this)
192 {
193         struct resources *r = &this->resources;
194         struct bch_geometry *geo = &this->bch_geometry;
195         u32 reg;
196         int i;
197
198         dev_err(this->dev, "Show GPMI registers :\n");
199         for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
200                 reg = readl(r->gpmi_regs + i * 0x10);
201                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
202         }
203
204         /* start to print out the BCH info */
205         dev_err(this->dev, "Show BCH registers :\n");
206         for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
207                 reg = readl(r->bch_regs + i * 0x10);
208                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
209         }
210         dev_err(this->dev, "BCH Geometry :\n"
211                 "GF length              : %u\n"
212                 "ECC Strength           : %u\n"
213                 "Page Size in Bytes     : %u\n"
214                 "Metadata Size in Bytes : %u\n"
215                 "ECC Chunk Size in Bytes: %u\n"
216                 "ECC Chunk Count        : %u\n"
217                 "Payload Size in Bytes  : %u\n"
218                 "Auxiliary Size in Bytes: %u\n"
219                 "Auxiliary Status Offset: %u\n"
220                 "Block Mark Byte Offset : %u\n"
221                 "Block Mark Bit Offset  : %u\n",
222                 geo->gf_len,
223                 geo->ecc_strength,
224                 geo->page_size,
225                 geo->metadata_size,
226                 geo->ecc_chunk_size,
227                 geo->ecc_chunk_count,
228                 geo->payload_size,
229                 geo->auxiliary_size,
230                 geo->auxiliary_status_offset,
231                 geo->block_mark_byte_offset,
232                 geo->block_mark_bit_offset);
233 }
234
235 /* Configures the geometry for BCH.  */
236 int bch_set_geometry(struct gpmi_nand_data *this)
237 {
238         struct resources *r = &this->resources;
239         struct bch_geometry *bch_geo = &this->bch_geometry;
240         unsigned int block_count;
241         unsigned int block_size;
242         unsigned int metadata_size;
243         unsigned int ecc_strength;
244         unsigned int page_size;
245         unsigned int gf_len;
246         int ret;
247
248         ret = common_nfc_set_geometry(this);
249         if (ret)
250                 return ret;
251
252         block_count   = bch_geo->ecc_chunk_count - 1;
253         block_size    = bch_geo->ecc_chunk_size;
254         metadata_size = bch_geo->metadata_size;
255         ecc_strength  = bch_geo->ecc_strength >> 1;
256         page_size     = bch_geo->page_size;
257         gf_len        = bch_geo->gf_len;
258
259         ret = gpmi_enable_clk(this);
260         if (ret)
261                 return ret;
262
263         /*
264         * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
265         * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
266         * On the other hand, the MX28 needs the reset, because one case has been
267         * seen where the BCH produced ECC errors constantly after 10000
268         * consecutive reboots. The latter case has not been seen on the MX23
269         * yet, still we don't know if it could happen there as well.
270         */
271         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
272         if (ret)
273                 goto err_out;
274
275         /* Configure layout 0. */
276         writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
277                         | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
278                         | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
279                         | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
280                         | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
281                         r->bch_regs + HW_BCH_FLASH0LAYOUT0);
282
283         writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
284                         | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
285                         | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
286                         | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
287                         r->bch_regs + HW_BCH_FLASH0LAYOUT1);
288
289         /* Set *all* chip selects to use layout 0. */
290         writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
291
292         /* Enable interrupts. */
293         writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
294                                 r->bch_regs + HW_BCH_CTRL_SET);
295
296         gpmi_disable_clk(this);
297         return 0;
298 err_out:
299         gpmi_disable_clk(this);
300         return ret;
301 }
302
303 /*
304  * <1> Firstly, we should know what's the GPMI-clock means.
305  *     The GPMI-clock is the internal clock in the gpmi nand controller.
306  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
307  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
308  *
309  * <2> Secondly, we should know what's the frequency on the nand chip pins.
310  *     The frequency on the nand chip pins is derived from the GPMI-clock.
311  *     We can get it from the following equation:
312  *
313  *         F = G / (DS + DH)
314  *
315  *         F  : the frequency on the nand chip pins.
316  *         G  : the GPMI clock, such as 100MHz.
317  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
318  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
319  *
320  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
321  *     the nand EDO(extended Data Out) timing could be applied.
322  *     The GPMI implements a feedback read strobe to sample the read data.
323  *     The feedback read strobe can be delayed to support the nand EDO timing
324  *     where the read strobe may deasserts before the read data is valid, and
325  *     read data is valid for some time after read strobe.
326  *
327  *     The following figure illustrates some aspects of a NAND Flash read:
328  *
329  *                   |<---tREA---->|
330  *                   |             |
331  *                   |         |   |
332  *                   |<--tRP-->|   |
333  *                   |         |   |
334  *                  __          ___|__________________________________
335  *     RDN            \________/   |
336  *                                 |
337  *                                 /---------\
338  *     Read Data    --------------<           >---------
339  *                                 \---------/
340  *                                |     |
341  *                                |<-D->|
342  *     FeedbackRDN  ________             ____________
343  *                          \___________/
344  *
345  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
346  *
347  *
348  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
349  *
350  *  4.1) From the aspect of the nand chip pins:
351  *        Delay = (tREA + C - tRP)               {1}
352  *
353  *        tREA : the maximum read access time.
354  *        C    : a constant to adjust the delay. default is 4000ps.
355  *        tRP  : the read pulse width, which is exactly:
356  *                   tRP = (GPMI-clock-period) * DATA_SETUP
357  *
358  *  4.2) From the aspect of the GPMI nand controller:
359  *         Delay = RDN_DELAY * 0.125 * RP        {2}
360  *
361  *         RP   : the DLL reference period.
362  *            if (GPMI-clock-period > DLL_THRETHOLD)
363  *                   RP = GPMI-clock-period / 2;
364  *            else
365  *                   RP = GPMI-clock-period;
366  *
367  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
368  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
369  *            is 16000ps, but in mx6q, we use 12000ps.
370  *
371  *  4.3) since {1} equals {2}, we get:
372  *
373  *                     (tREA + 4000 - tRP) * 8
374  *         RDN_DELAY = -----------------------     {3}
375  *                           RP
376  */
377 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
378                                      const struct nand_sdr_timings *sdr)
379 {
380         struct gpmi_nfc_hardware_timing *hw = &this->hw;
381         unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
382         unsigned int period_ps, reference_period_ps;
383         unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
384         unsigned int tRP_ps;
385         bool use_half_period;
386         int sample_delay_ps, sample_delay_factor;
387         u16 busy_timeout_cycles;
388         u8 wrn_dly_sel;
389
390         if (sdr->tRC_min >= 30000) {
391                 /* ONFI non-EDO modes [0-3] */
392                 hw->clk_rate = 22000000;
393                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
394         } else if (sdr->tRC_min >= 25000) {
395                 /* ONFI EDO mode 4 */
396                 hw->clk_rate = 80000000;
397                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
398         } else {
399                 /* ONFI EDO mode 5 */
400                 hw->clk_rate = 100000000;
401                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
402         }
403
404         /* SDR core timings are given in picoseconds */
405         period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
406
407         addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
408         data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
409         data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
410         busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
411
412         hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
413                       BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
414                       BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
415         hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
416
417         /*
418          * Derive NFC ideal delay from {3}:
419          *
420          *                     (tREA + 4000 - tRP) * 8
421          *         RDN_DELAY = -----------------------
422          *                                RP
423          */
424         if (period_ps > dll_threshold_ps) {
425                 use_half_period = true;
426                 reference_period_ps = period_ps / 2;
427         } else {
428                 use_half_period = false;
429                 reference_period_ps = period_ps;
430         }
431
432         tRP_ps = data_setup_cycles * period_ps;
433         sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
434         if (sample_delay_ps > 0)
435                 sample_delay_factor = sample_delay_ps / reference_period_ps;
436         else
437                 sample_delay_factor = 0;
438
439         hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
440         if (sample_delay_factor)
441                 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
442                               BM_GPMI_CTRL1_DLL_ENABLE |
443                               (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
444 }
445
446 void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
447 {
448         struct gpmi_nfc_hardware_timing *hw = &this->hw;
449         struct resources *r = &this->resources;
450         void __iomem *gpmi_regs = r->gpmi_regs;
451         unsigned int dll_wait_time_us;
452
453         clk_set_rate(r->clock[0], hw->clk_rate);
454
455         writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
456         writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
457
458         /*
459          * Clear several CTRL1 fields, DLL must be disabled when setting
460          * RDN_DELAY or HALF_PERIOD.
461          */
462         writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
463         writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
464
465         /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
466         dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
467         if (!dll_wait_time_us)
468                 dll_wait_time_us = 1;
469
470         /* Wait for the DLL to settle. */
471         udelay(dll_wait_time_us);
472 }
473
474 int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
475                               const struct nand_data_interface *conf)
476 {
477         struct gpmi_nand_data *this = nand_get_controller_data(chip);
478         const struct nand_sdr_timings *sdr;
479
480         /* Retrieve required NAND timings */
481         sdr = nand_get_sdr_timings(conf);
482         if (IS_ERR(sdr))
483                 return PTR_ERR(sdr);
484
485         /* Only MX6 GPMI controller can reach EDO timings */
486         if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
487                 return -ENOTSUPP;
488
489         /* Stop here if this call was just a check */
490         if (chipnr < 0)
491                 return 0;
492
493         /* Do the actual derivation of the controller timings */
494         gpmi_nfc_compute_timings(this, sdr);
495
496         this->hw.must_apply_timings = true;
497
498         return 0;
499 }
500
501 /* Clears a BCH interrupt. */
502 void gpmi_clear_bch(struct gpmi_nand_data *this)
503 {
504         struct resources *r = &this->resources;
505         writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
506 }
507
508 /* Returns the Ready/Busy status of the given chip. */
509 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
510 {
511         struct resources *r = &this->resources;
512         uint32_t mask = 0;
513         uint32_t reg = 0;
514
515         if (GPMI_IS_MX23(this)) {
516                 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
517                 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
518         } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
519                 /*
520                  * In the imx6, all the ready/busy pins are bound
521                  * together. So we only need to check chip 0.
522                  */
523                 if (GPMI_IS_MX6(this))
524                         chip = 0;
525
526                 /* MX28 shares the same R/B register as MX6Q. */
527                 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
528                 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
529         } else
530                 dev_err(this->dev, "unknown arch.\n");
531         return reg & mask;
532 }
533
534 int gpmi_send_command(struct gpmi_nand_data *this)
535 {
536         struct dma_chan *channel = get_dma_chan(this);
537         struct dma_async_tx_descriptor *desc;
538         struct scatterlist *sgl;
539         int chip = this->current_chip;
540         int ret;
541         u32 pio[3];
542
543         /* [1] send out the PIO words */
544         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
545                 | BM_GPMI_CTRL0_WORD_LENGTH
546                 | BF_GPMI_CTRL0_CS(chip, this)
547                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
548                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
549                 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
550                 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
551         pio[1] = pio[2] = 0;
552         desc = dmaengine_prep_slave_sg(channel,
553                                         (struct scatterlist *)pio,
554                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
555         if (!desc)
556                 return -EINVAL;
557
558         /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
559         sgl = &this->cmd_sgl;
560
561         sg_init_one(sgl, this->cmd_buffer, this->command_length);
562         dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
563         desc = dmaengine_prep_slave_sg(channel,
564                                 sgl, 1, DMA_MEM_TO_DEV,
565                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
566         if (!desc)
567                 return -EINVAL;
568
569         /* [3] submit the DMA */
570         ret = start_dma_without_bch_irq(this, desc);
571
572         dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
573
574         return ret;
575 }
576
577 int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len)
578 {
579         struct dma_async_tx_descriptor *desc;
580         struct dma_chan *channel = get_dma_chan(this);
581         int chip = this->current_chip;
582         int ret;
583         uint32_t command_mode;
584         uint32_t address;
585         u32 pio[2];
586
587         /* [1] PIO */
588         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
589         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
590
591         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
592                 | BM_GPMI_CTRL0_WORD_LENGTH
593                 | BF_GPMI_CTRL0_CS(chip, this)
594                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
595                 | BF_GPMI_CTRL0_ADDRESS(address)
596                 | BF_GPMI_CTRL0_XFER_COUNT(len);
597         pio[1] = 0;
598         desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
599                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
600         if (!desc)
601                 return -EINVAL;
602
603         /* [2] send DMA request */
604         prepare_data_dma(this, buf, len, DMA_TO_DEVICE);
605         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
606                                         1, DMA_MEM_TO_DEV,
607                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
608         if (!desc)
609                 return -EINVAL;
610
611         /* [3] submit the DMA */
612         ret = start_dma_without_bch_irq(this, desc);
613
614         dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
615
616         return ret;
617 }
618
619 int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len)
620 {
621         struct dma_async_tx_descriptor *desc;
622         struct dma_chan *channel = get_dma_chan(this);
623         int chip = this->current_chip;
624         int ret;
625         u32 pio[2];
626         bool direct;
627
628         /* [1] : send PIO */
629         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
630                 | BM_GPMI_CTRL0_WORD_LENGTH
631                 | BF_GPMI_CTRL0_CS(chip, this)
632                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
633                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
634                 | BF_GPMI_CTRL0_XFER_COUNT(len);
635         pio[1] = 0;
636         desc = dmaengine_prep_slave_sg(channel,
637                                         (struct scatterlist *)pio,
638                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
639         if (!desc)
640                 return -EINVAL;
641
642         /* [2] : send DMA request */
643         direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE);
644         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
645                                         1, DMA_DEV_TO_MEM,
646                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
647         if (!desc)
648                 return -EINVAL;
649
650         /* [3] : submit the DMA */
651
652         ret = start_dma_without_bch_irq(this, desc);
653
654         dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
655         if (!direct)
656                 memcpy(buf, this->data_buffer_dma, len);
657
658         return ret;
659 }
660
661 int gpmi_send_page(struct gpmi_nand_data *this,
662                         dma_addr_t payload, dma_addr_t auxiliary)
663 {
664         struct bch_geometry *geo = &this->bch_geometry;
665         uint32_t command_mode;
666         uint32_t address;
667         uint32_t ecc_command;
668         uint32_t buffer_mask;
669         struct dma_async_tx_descriptor *desc;
670         struct dma_chan *channel = get_dma_chan(this);
671         int chip = this->current_chip;
672         u32 pio[6];
673
674         /* A DMA descriptor that does an ECC page read. */
675         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
676         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
677         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
678         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
679                                 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
680
681         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
682                 | BM_GPMI_CTRL0_WORD_LENGTH
683                 | BF_GPMI_CTRL0_CS(chip, this)
684                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
685                 | BF_GPMI_CTRL0_ADDRESS(address)
686                 | BF_GPMI_CTRL0_XFER_COUNT(0);
687         pio[1] = 0;
688         pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
689                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
690                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
691         pio[3] = geo->page_size;
692         pio[4] = payload;
693         pio[5] = auxiliary;
694
695         desc = dmaengine_prep_slave_sg(channel,
696                                         (struct scatterlist *)pio,
697                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
698                                         DMA_CTRL_ACK);
699         if (!desc)
700                 return -EINVAL;
701
702         return start_dma_with_bch_irq(this, desc);
703 }
704
705 int gpmi_read_page(struct gpmi_nand_data *this,
706                                 dma_addr_t payload, dma_addr_t auxiliary)
707 {
708         struct bch_geometry *geo = &this->bch_geometry;
709         uint32_t command_mode;
710         uint32_t address;
711         uint32_t ecc_command;
712         uint32_t buffer_mask;
713         struct dma_async_tx_descriptor *desc;
714         struct dma_chan *channel = get_dma_chan(this);
715         int chip = this->current_chip;
716         u32 pio[6];
717
718         /* [1] Wait for the chip to report ready. */
719         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
720         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
721
722         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
723                 | BM_GPMI_CTRL0_WORD_LENGTH
724                 | BF_GPMI_CTRL0_CS(chip, this)
725                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
726                 | BF_GPMI_CTRL0_ADDRESS(address)
727                 | BF_GPMI_CTRL0_XFER_COUNT(0);
728         pio[1] = 0;
729         desc = dmaengine_prep_slave_sg(channel,
730                                 (struct scatterlist *)pio, 2,
731                                 DMA_TRANS_NONE, 0);
732         if (!desc)
733                 return -EINVAL;
734
735         /* [2] Enable the BCH block and read. */
736         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
737         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
738         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
739         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
740                         | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
741
742         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
743                 | BM_GPMI_CTRL0_WORD_LENGTH
744                 | BF_GPMI_CTRL0_CS(chip, this)
745                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
746                 | BF_GPMI_CTRL0_ADDRESS(address)
747                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
748
749         pio[1] = 0;
750         pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
751                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
752                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
753         pio[3] = geo->page_size;
754         pio[4] = payload;
755         pio[5] = auxiliary;
756         desc = dmaengine_prep_slave_sg(channel,
757                                         (struct scatterlist *)pio,
758                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
759                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
760         if (!desc)
761                 return -EINVAL;
762
763         /* [3] Disable the BCH block */
764         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
765         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
766
767         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
768                 | BM_GPMI_CTRL0_WORD_LENGTH
769                 | BF_GPMI_CTRL0_CS(chip, this)
770                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
771                 | BF_GPMI_CTRL0_ADDRESS(address)
772                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
773         pio[1] = 0;
774         pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
775         desc = dmaengine_prep_slave_sg(channel,
776                                 (struct scatterlist *)pio, 3,
777                                 DMA_TRANS_NONE,
778                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
779         if (!desc)
780                 return -EINVAL;
781
782         /* [4] submit the DMA */
783         return start_dma_with_bch_irq(this, desc);
784 }
785
786 /**
787  * gpmi_copy_bits - copy bits from one memory region to another
788  * @dst: destination buffer
789  * @dst_bit_off: bit offset we're starting to write at
790  * @src: source buffer
791  * @src_bit_off: bit offset we're starting to read from
792  * @nbits: number of bits to copy
793  *
794  * This functions copies bits from one memory region to another, and is used by
795  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
796  * aligned.
797  *
798  * src and dst should not overlap.
799  *
800  */
801 void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
802                     const u8 *src, size_t src_bit_off,
803                     size_t nbits)
804 {
805         size_t i;
806         size_t nbytes;
807         u32 src_buffer = 0;
808         size_t bits_in_src_buffer = 0;
809
810         if (!nbits)
811                 return;
812
813         /*
814          * Move src and dst pointers to the closest byte pointer and store bit
815          * offsets within a byte.
816          */
817         src += src_bit_off / 8;
818         src_bit_off %= 8;
819
820         dst += dst_bit_off / 8;
821         dst_bit_off %= 8;
822
823         /*
824          * Initialize the src_buffer value with bits available in the first
825          * byte of data so that we end up with a byte aligned src pointer.
826          */
827         if (src_bit_off) {
828                 src_buffer = src[0] >> src_bit_off;
829                 if (nbits >= (8 - src_bit_off)) {
830                         bits_in_src_buffer += 8 - src_bit_off;
831                 } else {
832                         src_buffer &= GENMASK(nbits - 1, 0);
833                         bits_in_src_buffer += nbits;
834                 }
835                 nbits -= bits_in_src_buffer;
836                 src++;
837         }
838
839         /* Calculate the number of bytes that can be copied from src to dst. */
840         nbytes = nbits / 8;
841
842         /* Try to align dst to a byte boundary. */
843         if (dst_bit_off) {
844                 if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
845                         src_buffer |= src[0] << bits_in_src_buffer;
846                         bits_in_src_buffer += 8;
847                         src++;
848                         nbytes--;
849                 }
850
851                 if (bits_in_src_buffer >= (8 - dst_bit_off)) {
852                         dst[0] &= GENMASK(dst_bit_off - 1, 0);
853                         dst[0] |= src_buffer << dst_bit_off;
854                         src_buffer >>= (8 - dst_bit_off);
855                         bits_in_src_buffer -= (8 - dst_bit_off);
856                         dst_bit_off = 0;
857                         dst++;
858                         if (bits_in_src_buffer > 7) {
859                                 bits_in_src_buffer -= 8;
860                                 dst[0] = src_buffer;
861                                 dst++;
862                                 src_buffer >>= 8;
863                         }
864                 }
865         }
866
867         if (!bits_in_src_buffer && !dst_bit_off) {
868                 /*
869                  * Both src and dst pointers are byte aligned, thus we can
870                  * just use the optimized memcpy function.
871                  */
872                 if (nbytes)
873                         memcpy(dst, src, nbytes);
874         } else {
875                 /*
876                  * src buffer is not byte aligned, hence we have to copy each
877                  * src byte to the src_buffer variable before extracting a byte
878                  * to store in dst.
879                  */
880                 for (i = 0; i < nbytes; i++) {
881                         src_buffer |= src[i] << bits_in_src_buffer;
882                         dst[i] = src_buffer;
883                         src_buffer >>= 8;
884                 }
885         }
886         /* Update dst and src pointers */
887         dst += nbytes;
888         src += nbytes;
889
890         /*
891          * nbits is the number of remaining bits. It should not exceed 8 as
892          * we've already copied as much bytes as possible.
893          */
894         nbits %= 8;
895
896         /*
897          * If there's no more bits to copy to the destination and src buffer
898          * was already byte aligned, then we're done.
899          */
900         if (!nbits && !bits_in_src_buffer)
901                 return;
902
903         /* Copy the remaining bits to src_buffer */
904         if (nbits)
905                 src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
906                               bits_in_src_buffer;
907         bits_in_src_buffer += nbits;
908
909         /*
910          * In case there were not enough bits to get a byte aligned dst buffer
911          * prepare the src_buffer variable to match the dst organization (shift
912          * src_buffer by dst_bit_off and retrieve the least significant bits
913          * from dst).
914          */
915         if (dst_bit_off)
916                 src_buffer = (src_buffer << dst_bit_off) |
917                              (*dst & GENMASK(dst_bit_off - 1, 0));
918         bits_in_src_buffer += dst_bit_off;
919
920         /*
921          * Keep most significant bits from dst if we end up with an unaligned
922          * number of bits.
923          */
924         nbytes = bits_in_src_buffer / 8;
925         if (bits_in_src_buffer % 8) {
926                 src_buffer |= (dst[nbytes] &
927                                GENMASK(7, bits_in_src_buffer % 8)) <<
928                               (nbytes * 8);
929                 nbytes++;
930         }
931
932         /* Copy the remaining bytes to dst */
933         for (i = 0; i < nbytes; i++) {
934                 dst[i] = src_buffer;
935                 src_buffer >>= 8;
936         }
937 }