mtd/drivers/nand: use HZ macros
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / fsmc_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ST Microelectronics
4  * Flexible Static Memory Controller (FSMC)
5  * Driver for NAND portions
6  *
7  * Copyright © 2010 ST Microelectronics
8  * Vipin Kumar <vipin.kumar@st.com>
9  * Ashish Priyadarshi
10  *
11  * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
12  *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
13  *  Copyright © 2009 Alessandro Rubini
14  */
15
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-direction.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/resource.h>
25 #include <linux/sched.h>
26 #include <linux/types.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/nand-ecc-sw-hamming.h>
29 #include <linux/mtd/rawnand.h>
30 #include <linux/platform_device.h>
31 #include <linux/of.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/io.h>
34 #include <linux/slab.h>
35 #include <linux/amba/bus.h>
36 #include <mtd/mtd-abi.h>
37
38 /* fsmc controller registers for NOR flash */
39 #define CTRL                    0x0
40         /* ctrl register definitions */
41         #define BANK_ENABLE             BIT(0)
42         #define MUXED                   BIT(1)
43         #define NOR_DEV                 (2 << 2)
44         #define WIDTH_16                BIT(4)
45         #define RSTPWRDWN               BIT(6)
46         #define WPROT                   BIT(7)
47         #define WRT_ENABLE              BIT(12)
48         #define WAIT_ENB                BIT(13)
49
50 #define CTRL_TIM                0x4
51         /* ctrl_tim register definitions */
52
53 #define FSMC_NOR_BANK_SZ        0x8
54 #define FSMC_NOR_REG_SIZE       0x40
55
56 #define FSMC_NOR_REG(base, bank, reg)   ((base) +                       \
57                                          (FSMC_NOR_BANK_SZ * (bank)) +  \
58                                          (reg))
59
60 /* fsmc controller registers for NAND flash */
61 #define FSMC_PC                 0x00
62         /* pc register definitions */
63         #define FSMC_RESET              BIT(0)
64         #define FSMC_WAITON             BIT(1)
65         #define FSMC_ENABLE             BIT(2)
66         #define FSMC_DEVTYPE_NAND       BIT(3)
67         #define FSMC_DEVWID_16          BIT(4)
68         #define FSMC_ECCEN              BIT(6)
69         #define FSMC_ECCPLEN_256        BIT(7)
70         #define FSMC_TCLR_SHIFT         (9)
71         #define FSMC_TCLR_MASK          (0xF)
72         #define FSMC_TAR_SHIFT          (13)
73         #define FSMC_TAR_MASK           (0xF)
74 #define STS                     0x04
75         /* sts register definitions */
76         #define FSMC_CODE_RDY           BIT(15)
77 #define COMM                    0x08
78         /* comm register definitions */
79         #define FSMC_TSET_SHIFT         0
80         #define FSMC_TSET_MASK          0xFF
81         #define FSMC_TWAIT_SHIFT        8
82         #define FSMC_TWAIT_MASK         0xFF
83         #define FSMC_THOLD_SHIFT        16
84         #define FSMC_THOLD_MASK         0xFF
85         #define FSMC_THIZ_SHIFT         24
86         #define FSMC_THIZ_MASK          0xFF
87 #define ATTRIB                  0x0C
88 #define IOATA                   0x10
89 #define ECC1                    0x14
90 #define ECC2                    0x18
91 #define ECC3                    0x1C
92 #define FSMC_NAND_BANK_SZ       0x20
93
94 #define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
95
96 struct fsmc_nand_timings {
97         u8 tclr;
98         u8 tar;
99         u8 thiz;
100         u8 thold;
101         u8 twait;
102         u8 tset;
103 };
104
105 enum access_mode {
106         USE_DMA_ACCESS = 1,
107         USE_WORD_ACCESS,
108 };
109
110 /**
111  * struct fsmc_nand_data - structure for FSMC NAND device state
112  *
113  * @base:               Inherit from the nand_controller struct
114  * @pid:                Part ID on the AMBA PrimeCell format
115  * @nand:               Chip related info for a NAND flash.
116  *
117  * @bank:               Bank number for probed device.
118  * @dev:                Parent device
119  * @mode:               Access mode
120  * @clk:                Clock structure for FSMC.
121  *
122  * @read_dma_chan:      DMA channel for read access
123  * @write_dma_chan:     DMA channel for write access to NAND
124  * @dma_access_complete: Completion structure
125  *
126  * @dev_timings:        NAND timings
127  *
128  * @data_pa:            NAND Physical port for Data.
129  * @data_va:            NAND port for Data.
130  * @cmd_va:             NAND port for Command.
131  * @addr_va:            NAND port for Address.
132  * @regs_va:            Registers base address for a given bank.
133  */
134 struct fsmc_nand_data {
135         struct nand_controller  base;
136         u32                     pid;
137         struct nand_chip        nand;
138
139         unsigned int            bank;
140         struct device           *dev;
141         enum access_mode        mode;
142         struct clk              *clk;
143
144         /* DMA related objects */
145         struct dma_chan         *read_dma_chan;
146         struct dma_chan         *write_dma_chan;
147         struct completion       dma_access_complete;
148
149         struct fsmc_nand_timings *dev_timings;
150
151         dma_addr_t              data_pa;
152         void __iomem            *data_va;
153         void __iomem            *cmd_va;
154         void __iomem            *addr_va;
155         void __iomem            *regs_va;
156 };
157
158 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
159                                    struct mtd_oob_region *oobregion)
160 {
161         struct nand_chip *chip = mtd_to_nand(mtd);
162
163         if (section >= chip->ecc.steps)
164                 return -ERANGE;
165
166         oobregion->offset = (section * 16) + 2;
167         oobregion->length = 3;
168
169         return 0;
170 }
171
172 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
173                                     struct mtd_oob_region *oobregion)
174 {
175         struct nand_chip *chip = mtd_to_nand(mtd);
176
177         if (section >= chip->ecc.steps)
178                 return -ERANGE;
179
180         oobregion->offset = (section * 16) + 8;
181
182         if (section < chip->ecc.steps - 1)
183                 oobregion->length = 8;
184         else
185                 oobregion->length = mtd->oobsize - oobregion->offset;
186
187         return 0;
188 }
189
190 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
191         .ecc = fsmc_ecc1_ooblayout_ecc,
192         .free = fsmc_ecc1_ooblayout_free,
193 };
194
195 /*
196  * ECC placement definitions in oobfree type format.
197  * There are 13 bytes of ecc for every 512 byte block and it has to be read
198  * consecutively and immediately after the 512 byte data block for hardware to
199  * generate the error bit offsets in 512 byte data.
200  */
201 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
202                                    struct mtd_oob_region *oobregion)
203 {
204         struct nand_chip *chip = mtd_to_nand(mtd);
205
206         if (section >= chip->ecc.steps)
207                 return -ERANGE;
208
209         oobregion->length = chip->ecc.bytes;
210
211         if (!section && mtd->writesize <= 512)
212                 oobregion->offset = 0;
213         else
214                 oobregion->offset = (section * 16) + 2;
215
216         return 0;
217 }
218
219 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
220                                     struct mtd_oob_region *oobregion)
221 {
222         struct nand_chip *chip = mtd_to_nand(mtd);
223
224         if (section >= chip->ecc.steps)
225                 return -ERANGE;
226
227         oobregion->offset = (section * 16) + 15;
228
229         if (section < chip->ecc.steps - 1)
230                 oobregion->length = 3;
231         else
232                 oobregion->length = mtd->oobsize - oobregion->offset;
233
234         return 0;
235 }
236
237 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
238         .ecc = fsmc_ecc4_ooblayout_ecc,
239         .free = fsmc_ecc4_ooblayout_free,
240 };
241
242 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
243 {
244         return container_of(chip, struct fsmc_nand_data, nand);
245 }
246
247 /*
248  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
249  *
250  * This routine initializes timing parameters related to NAND memory access in
251  * FSMC registers
252  */
253 static void fsmc_nand_setup(struct fsmc_nand_data *host,
254                             struct fsmc_nand_timings *tims)
255 {
256         u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
257         u32 tclr, tar, thiz, thold, twait, tset;
258
259         tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
260         tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
261         thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
262         thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
263         twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
264         tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
265
266         if (host->nand.options & NAND_BUSWIDTH_16)
267                 value |= FSMC_DEVWID_16;
268
269         writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
270         writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
271         writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
272 }
273
274 static int fsmc_calc_timings(struct fsmc_nand_data *host,
275                              const struct nand_sdr_timings *sdrt,
276                              struct fsmc_nand_timings *tims)
277 {
278         unsigned long hclk = clk_get_rate(host->clk);
279         unsigned long hclkn = NSEC_PER_SEC / hclk;
280         u32 thiz, thold, twait, tset;
281
282         if (sdrt->tRC_min < 30000)
283                 return -EOPNOTSUPP;
284
285         tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
286         if (tims->tar > FSMC_TAR_MASK)
287                 tims->tar = FSMC_TAR_MASK;
288         tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
289         if (tims->tclr > FSMC_TCLR_MASK)
290                 tims->tclr = FSMC_TCLR_MASK;
291
292         thiz = sdrt->tCS_min - sdrt->tWP_min;
293         tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
294
295         thold = sdrt->tDH_min;
296         if (thold < sdrt->tCH_min)
297                 thold = sdrt->tCH_min;
298         if (thold < sdrt->tCLH_min)
299                 thold = sdrt->tCLH_min;
300         if (thold < sdrt->tWH_min)
301                 thold = sdrt->tWH_min;
302         if (thold < sdrt->tALH_min)
303                 thold = sdrt->tALH_min;
304         if (thold < sdrt->tREH_min)
305                 thold = sdrt->tREH_min;
306         tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
307         if (tims->thold == 0)
308                 tims->thold = 1;
309         else if (tims->thold > FSMC_THOLD_MASK)
310                 tims->thold = FSMC_THOLD_MASK;
311
312         twait = max(sdrt->tRP_min, sdrt->tWP_min);
313         tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
314         if (tims->twait == 0)
315                 tims->twait = 1;
316         else if (tims->twait > FSMC_TWAIT_MASK)
317                 tims->twait = FSMC_TWAIT_MASK;
318
319         tset = max(sdrt->tCS_min - sdrt->tWP_min,
320                    sdrt->tCEA_max - sdrt->tREA_max);
321         tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
322         if (tims->tset == 0)
323                 tims->tset = 1;
324         else if (tims->tset > FSMC_TSET_MASK)
325                 tims->tset = FSMC_TSET_MASK;
326
327         return 0;
328 }
329
330 static int fsmc_setup_interface(struct nand_chip *nand, int csline,
331                                 const struct nand_interface_config *conf)
332 {
333         struct fsmc_nand_data *host = nand_to_fsmc(nand);
334         struct fsmc_nand_timings tims;
335         const struct nand_sdr_timings *sdrt;
336         int ret;
337
338         sdrt = nand_get_sdr_timings(conf);
339         if (IS_ERR(sdrt))
340                 return PTR_ERR(sdrt);
341
342         ret = fsmc_calc_timings(host, sdrt, &tims);
343         if (ret)
344                 return ret;
345
346         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
347                 return 0;
348
349         fsmc_nand_setup(host, &tims);
350
351         return 0;
352 }
353
354 /*
355  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
356  */
357 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
358 {
359         struct fsmc_nand_data *host = nand_to_fsmc(chip);
360
361         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
362                        host->regs_va + FSMC_PC);
363         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
364                        host->regs_va + FSMC_PC);
365         writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
366                        host->regs_va + FSMC_PC);
367 }
368
369 /*
370  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
371  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
372  * max of 8-bits)
373  */
374 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
375                                 u8 *ecc)
376 {
377         struct fsmc_nand_data *host = nand_to_fsmc(chip);
378         u32 ecc_tmp;
379         unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
380
381         do {
382                 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
383                         break;
384
385                 cond_resched();
386         } while (!time_after_eq(jiffies, deadline));
387
388         if (time_after_eq(jiffies, deadline)) {
389                 dev_err(host->dev, "calculate ecc timed out\n");
390                 return -ETIMEDOUT;
391         }
392
393         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
394         ecc[0] = ecc_tmp;
395         ecc[1] = ecc_tmp >> 8;
396         ecc[2] = ecc_tmp >> 16;
397         ecc[3] = ecc_tmp >> 24;
398
399         ecc_tmp = readl_relaxed(host->regs_va + ECC2);
400         ecc[4] = ecc_tmp;
401         ecc[5] = ecc_tmp >> 8;
402         ecc[6] = ecc_tmp >> 16;
403         ecc[7] = ecc_tmp >> 24;
404
405         ecc_tmp = readl_relaxed(host->regs_va + ECC3);
406         ecc[8] = ecc_tmp;
407         ecc[9] = ecc_tmp >> 8;
408         ecc[10] = ecc_tmp >> 16;
409         ecc[11] = ecc_tmp >> 24;
410
411         ecc_tmp = readl_relaxed(host->regs_va + STS);
412         ecc[12] = ecc_tmp >> 16;
413
414         return 0;
415 }
416
417 /*
418  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
419  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
420  * max of 1-bit)
421  */
422 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
423                                 u8 *ecc)
424 {
425         struct fsmc_nand_data *host = nand_to_fsmc(chip);
426         u32 ecc_tmp;
427
428         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
429         ecc[0] = ecc_tmp;
430         ecc[1] = ecc_tmp >> 8;
431         ecc[2] = ecc_tmp >> 16;
432
433         return 0;
434 }
435
436 static int fsmc_correct_ecc1(struct nand_chip *chip,
437                              unsigned char *buf,
438                              unsigned char *read_ecc,
439                              unsigned char *calc_ecc)
440 {
441         return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc,
442                                       chip->ecc.size, false);
443 }
444
445 /* Count the number of 0's in buff upto a max of max_bits */
446 static int count_written_bits(u8 *buff, int size, int max_bits)
447 {
448         int k, written_bits = 0;
449
450         for (k = 0; k < size; k++) {
451                 written_bits += hweight8(~buff[k]);
452                 if (written_bits > max_bits)
453                         break;
454         }
455
456         return written_bits;
457 }
458
459 static void dma_complete(void *param)
460 {
461         struct fsmc_nand_data *host = param;
462
463         complete(&host->dma_access_complete);
464 }
465
466 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
467                     enum dma_data_direction direction)
468 {
469         struct dma_chan *chan;
470         struct dma_device *dma_dev;
471         struct dma_async_tx_descriptor *tx;
472         dma_addr_t dma_dst, dma_src, dma_addr;
473         dma_cookie_t cookie;
474         unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
475         int ret;
476         unsigned long time_left;
477
478         if (direction == DMA_TO_DEVICE)
479                 chan = host->write_dma_chan;
480         else if (direction == DMA_FROM_DEVICE)
481                 chan = host->read_dma_chan;
482         else
483                 return -EINVAL;
484
485         dma_dev = chan->device;
486         dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
487
488         if (direction == DMA_TO_DEVICE) {
489                 dma_src = dma_addr;
490                 dma_dst = host->data_pa;
491         } else {
492                 dma_src = host->data_pa;
493                 dma_dst = dma_addr;
494         }
495
496         tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
497                         len, flags);
498         if (!tx) {
499                 dev_err(host->dev, "device_prep_dma_memcpy error\n");
500                 ret = -EIO;
501                 goto unmap_dma;
502         }
503
504         tx->callback = dma_complete;
505         tx->callback_param = host;
506         cookie = tx->tx_submit(tx);
507
508         ret = dma_submit_error(cookie);
509         if (ret) {
510                 dev_err(host->dev, "dma_submit_error %d\n", cookie);
511                 goto unmap_dma;
512         }
513
514         dma_async_issue_pending(chan);
515
516         time_left =
517         wait_for_completion_timeout(&host->dma_access_complete,
518                                     msecs_to_jiffies(3000));
519         if (time_left == 0) {
520                 dmaengine_terminate_all(chan);
521                 dev_err(host->dev, "wait_for_completion_timeout\n");
522                 ret = -ETIMEDOUT;
523                 goto unmap_dma;
524         }
525
526         ret = 0;
527
528 unmap_dma:
529         dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
530
531         return ret;
532 }
533
534 /*
535  * fsmc_write_buf - write buffer to chip
536  * @host:       FSMC NAND controller
537  * @buf:        data buffer
538  * @len:        number of bytes to write
539  */
540 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
541                            int len)
542 {
543         int i;
544
545         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
546             IS_ALIGNED(len, sizeof(u32))) {
547                 u32 *p = (u32 *)buf;
548
549                 len = len >> 2;
550                 for (i = 0; i < len; i++)
551                         writel_relaxed(p[i], host->data_va);
552         } else {
553                 for (i = 0; i < len; i++)
554                         writeb_relaxed(buf[i], host->data_va);
555         }
556 }
557
558 /*
559  * fsmc_read_buf - read chip data into buffer
560  * @host:       FSMC NAND controller
561  * @buf:        buffer to store date
562  * @len:        number of bytes to read
563  */
564 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
565 {
566         int i;
567
568         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
569             IS_ALIGNED(len, sizeof(u32))) {
570                 u32 *p = (u32 *)buf;
571
572                 len = len >> 2;
573                 for (i = 0; i < len; i++)
574                         p[i] = readl_relaxed(host->data_va);
575         } else {
576                 for (i = 0; i < len; i++)
577                         buf[i] = readb_relaxed(host->data_va);
578         }
579 }
580
581 /*
582  * fsmc_read_buf_dma - read chip data into buffer
583  * @host:       FSMC NAND controller
584  * @buf:        buffer to store date
585  * @len:        number of bytes to read
586  */
587 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
588                               int len)
589 {
590         dma_xfer(host, buf, len, DMA_FROM_DEVICE);
591 }
592
593 /*
594  * fsmc_write_buf_dma - write buffer to chip
595  * @host:       FSMC NAND controller
596  * @buf:        data buffer
597  * @len:        number of bytes to write
598  */
599 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
600                                int len)
601 {
602         dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
603 }
604
605 /*
606  * fsmc_exec_op - hook called by the core to execute NAND operations
607  *
608  * This controller is simple enough and thus does not need to use the parser
609  * provided by the core, instead, handle every situation here.
610  */
611 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
612                         bool check_only)
613 {
614         struct fsmc_nand_data *host = nand_to_fsmc(chip);
615         const struct nand_op_instr *instr = NULL;
616         int ret = 0;
617         unsigned int op_id;
618         int i;
619
620         if (check_only)
621                 return 0;
622
623         pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
624
625         for (op_id = 0; op_id < op->ninstrs; op_id++) {
626                 instr = &op->instrs[op_id];
627
628                 nand_op_trace("  ", instr);
629
630                 switch (instr->type) {
631                 case NAND_OP_CMD_INSTR:
632                         writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
633                         break;
634
635                 case NAND_OP_ADDR_INSTR:
636                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
637                                 writeb_relaxed(instr->ctx.addr.addrs[i],
638                                                host->addr_va);
639                         break;
640
641                 case NAND_OP_DATA_IN_INSTR:
642                         if (host->mode == USE_DMA_ACCESS)
643                                 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
644                                                   instr->ctx.data.len);
645                         else
646                                 fsmc_read_buf(host, instr->ctx.data.buf.in,
647                                               instr->ctx.data.len);
648                         break;
649
650                 case NAND_OP_DATA_OUT_INSTR:
651                         if (host->mode == USE_DMA_ACCESS)
652                                 fsmc_write_buf_dma(host,
653                                                    instr->ctx.data.buf.out,
654                                                    instr->ctx.data.len);
655                         else
656                                 fsmc_write_buf(host, instr->ctx.data.buf.out,
657                                                instr->ctx.data.len);
658                         break;
659
660                 case NAND_OP_WAITRDY_INSTR:
661                         ret = nand_soft_waitrdy(chip,
662                                                 instr->ctx.waitrdy.timeout_ms);
663                         break;
664                 }
665         }
666
667         return ret;
668 }
669
670 /*
671  * fsmc_read_page_hwecc
672  * @chip:       nand chip info structure
673  * @buf:        buffer to store read data
674  * @oob_required:       caller expects OOB data read to chip->oob_poi
675  * @page:       page number to read
676  *
677  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
678  * performed in a strict sequence as follows:
679  * data(512 byte) -> ecc(13 byte)
680  * After this read, fsmc hardware generates and reports error data bits(up to a
681  * max of 8 bits)
682  */
683 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
684                                 int oob_required, int page)
685 {
686         struct mtd_info *mtd = nand_to_mtd(chip);
687         int i, j, s, stat, eccsize = chip->ecc.size;
688         int eccbytes = chip->ecc.bytes;
689         int eccsteps = chip->ecc.steps;
690         u8 *p = buf;
691         u8 *ecc_calc = chip->ecc.calc_buf;
692         u8 *ecc_code = chip->ecc.code_buf;
693         int off, len, ret, group = 0;
694         /*
695          * ecc_oob is intentionally taken as u16. In 16bit devices, we
696          * end up reading 14 bytes (7 words) from oob. The local array is
697          * to maintain word alignment
698          */
699         u16 ecc_oob[7];
700         u8 *oob = (u8 *)&ecc_oob[0];
701         unsigned int max_bitflips = 0;
702
703         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
704                 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
705                 chip->ecc.hwctl(chip, NAND_ECC_READ);
706                 ret = nand_read_data_op(chip, p, eccsize, false, false);
707                 if (ret)
708                         return ret;
709
710                 for (j = 0; j < eccbytes;) {
711                         struct mtd_oob_region oobregion;
712
713                         ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
714                         if (ret)
715                                 return ret;
716
717                         off = oobregion.offset;
718                         len = oobregion.length;
719
720                         /*
721                          * length is intentionally kept a higher multiple of 2
722                          * to read at least 13 bytes even in case of 16 bit NAND
723                          * devices
724                          */
725                         if (chip->options & NAND_BUSWIDTH_16)
726                                 len = roundup(len, 2);
727
728                         nand_read_oob_op(chip, page, off, oob + j, len);
729                         j += len;
730                 }
731
732                 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
733                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
734
735                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
736                 if (stat < 0) {
737                         mtd->ecc_stats.failed++;
738                 } else {
739                         mtd->ecc_stats.corrected += stat;
740                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
741                 }
742         }
743
744         return max_bitflips;
745 }
746
747 /*
748  * fsmc_bch8_correct_data
749  * @mtd:        mtd info structure
750  * @dat:        buffer of read data
751  * @read_ecc:   ecc read from device spare area
752  * @calc_ecc:   ecc calculated from read data
753  *
754  * calc_ecc is a 104 bit information containing maximum of 8 error
755  * offset information of 13 bits each in 512 bytes of read data.
756  */
757 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
758                                   u8 *read_ecc, u8 *calc_ecc)
759 {
760         struct fsmc_nand_data *host = nand_to_fsmc(chip);
761         u32 err_idx[8];
762         u32 num_err, i;
763         u32 ecc1, ecc2, ecc3, ecc4;
764
765         num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
766
767         /* no bit flipping */
768         if (likely(num_err == 0))
769                 return 0;
770
771         /* too many errors */
772         if (unlikely(num_err > 8)) {
773                 /*
774                  * This is a temporary erase check. A newly erased page read
775                  * would result in an ecc error because the oob data is also
776                  * erased to FF and the calculated ecc for an FF data is not
777                  * FF..FF.
778                  * This is a workaround to skip performing correction in case
779                  * data is FF..FF
780                  *
781                  * Logic:
782                  * For every page, each bit written as 0 is counted until these
783                  * number of bits are greater than 8 (the maximum correction
784                  * capability of FSMC for each 512 + 13 bytes)
785                  */
786
787                 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
788                 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
789
790                 if ((bits_ecc + bits_data) <= 8) {
791                         if (bits_data)
792                                 memset(dat, 0xff, chip->ecc.size);
793                         return bits_data;
794                 }
795
796                 return -EBADMSG;
797         }
798
799         /*
800          * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
801          * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
802          *
803          * calc_ecc is a 104 bit information containing maximum of 8 error
804          * offset information of 13 bits each. calc_ecc is copied into a
805          * u64 array and error offset indexes are populated in err_idx
806          * array
807          */
808         ecc1 = readl_relaxed(host->regs_va + ECC1);
809         ecc2 = readl_relaxed(host->regs_va + ECC2);
810         ecc3 = readl_relaxed(host->regs_va + ECC3);
811         ecc4 = readl_relaxed(host->regs_va + STS);
812
813         err_idx[0] = (ecc1 >> 0) & 0x1FFF;
814         err_idx[1] = (ecc1 >> 13) & 0x1FFF;
815         err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
816         err_idx[3] = (ecc2 >> 7) & 0x1FFF;
817         err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
818         err_idx[5] = (ecc3 >> 1) & 0x1FFF;
819         err_idx[6] = (ecc3 >> 14) & 0x1FFF;
820         err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
821
822         i = 0;
823         while (num_err--) {
824                 err_idx[i] ^= 3;
825
826                 if (err_idx[i] < chip->ecc.size * 8) {
827                         int err = err_idx[i];
828
829                         dat[err >> 3] ^= BIT(err & 7);
830                         i++;
831                 }
832         }
833         return i;
834 }
835
836 static bool filter(struct dma_chan *chan, void *slave)
837 {
838         chan->private = slave;
839         return true;
840 }
841
842 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
843                                      struct fsmc_nand_data *host,
844                                      struct nand_chip *nand)
845 {
846         struct device_node *np = pdev->dev.of_node;
847         u32 val;
848         int ret;
849
850         nand->options = 0;
851
852         if (!of_property_read_u32(np, "bank-width", &val)) {
853                 if (val == 2) {
854                         nand->options |= NAND_BUSWIDTH_16;
855                 } else if (val != 1) {
856                         dev_err(&pdev->dev, "invalid bank-width %u\n", val);
857                         return -EINVAL;
858                 }
859         }
860
861         if (of_get_property(np, "nand-skip-bbtscan", NULL))
862                 nand->options |= NAND_SKIP_BBTSCAN;
863
864         host->dev_timings = devm_kzalloc(&pdev->dev,
865                                          sizeof(*host->dev_timings),
866                                          GFP_KERNEL);
867         if (!host->dev_timings)
868                 return -ENOMEM;
869
870         ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
871                                         sizeof(*host->dev_timings));
872         if (ret)
873                 host->dev_timings = NULL;
874
875         /* Set default NAND bank to 0 */
876         host->bank = 0;
877         if (!of_property_read_u32(np, "bank", &val)) {
878                 if (val > 3) {
879                         dev_err(&pdev->dev, "invalid bank %u\n", val);
880                         return -EINVAL;
881                 }
882                 host->bank = val;
883         }
884         return 0;
885 }
886
887 static int fsmc_nand_attach_chip(struct nand_chip *nand)
888 {
889         struct mtd_info *mtd = nand_to_mtd(nand);
890         struct fsmc_nand_data *host = nand_to_fsmc(nand);
891
892         if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
893                 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
894
895         if (!nand->ecc.size)
896                 nand->ecc.size = 512;
897
898         if (AMBA_REV_BITS(host->pid) >= 8) {
899                 nand->ecc.read_page = fsmc_read_page_hwecc;
900                 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
901                 nand->ecc.correct = fsmc_bch8_correct_data;
902                 nand->ecc.bytes = 13;
903                 nand->ecc.strength = 8;
904         }
905
906         if (AMBA_REV_BITS(host->pid) >= 8) {
907                 switch (mtd->oobsize) {
908                 case 16:
909                 case 64:
910                 case 128:
911                 case 224:
912                 case 256:
913                         break;
914                 default:
915                         dev_warn(host->dev,
916                                  "No oob scheme defined for oobsize %d\n",
917                                  mtd->oobsize);
918                         return -EINVAL;
919                 }
920
921                 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
922
923                 return 0;
924         }
925
926         switch (nand->ecc.engine_type) {
927         case NAND_ECC_ENGINE_TYPE_ON_HOST:
928                 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
929                 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
930                 nand->ecc.correct = fsmc_correct_ecc1;
931                 nand->ecc.hwctl = fsmc_enable_hwecc;
932                 nand->ecc.bytes = 3;
933                 nand->ecc.strength = 1;
934                 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
935                 break;
936
937         case NAND_ECC_ENGINE_TYPE_SOFT:
938                 if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
939                         dev_info(host->dev,
940                                  "Using 4-bit SW BCH ECC scheme\n");
941                         break;
942                 }
943                 break;
944
945         case NAND_ECC_ENGINE_TYPE_ON_DIE:
946                 break;
947
948         default:
949                 dev_err(host->dev, "Unsupported ECC mode!\n");
950                 return -ENOTSUPP;
951         }
952
953         /*
954          * Don't set layout for BCH4 SW ECC. This will be
955          * generated later during BCH initialization.
956          */
957         if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
958                 switch (mtd->oobsize) {
959                 case 16:
960                 case 64:
961                 case 128:
962                         mtd_set_ooblayout(mtd,
963                                           &fsmc_ecc1_ooblayout_ops);
964                         break;
965                 default:
966                         dev_warn(host->dev,
967                                  "No oob scheme defined for oobsize %d\n",
968                                  mtd->oobsize);
969                         return -EINVAL;
970                 }
971         }
972
973         return 0;
974 }
975
976 static const struct nand_controller_ops fsmc_nand_controller_ops = {
977         .attach_chip = fsmc_nand_attach_chip,
978         .exec_op = fsmc_exec_op,
979         .setup_interface = fsmc_setup_interface,
980 };
981
982 /**
983  * fsmc_nand_disable() - Disables the NAND bank
984  * @host: The instance to disable
985  */
986 static void fsmc_nand_disable(struct fsmc_nand_data *host)
987 {
988         u32 val;
989
990         val = readl(host->regs_va + FSMC_PC);
991         val &= ~FSMC_ENABLE;
992         writel(val, host->regs_va + FSMC_PC);
993 }
994
995 /*
996  * fsmc_nand_probe - Probe function
997  * @pdev:       platform device structure
998  */
999 static int __init fsmc_nand_probe(struct platform_device *pdev)
1000 {
1001         struct fsmc_nand_data *host;
1002         struct mtd_info *mtd;
1003         struct nand_chip *nand;
1004         struct resource *res;
1005         void __iomem *base;
1006         dma_cap_mask_t mask;
1007         int ret = 0;
1008         u32 pid;
1009         int i;
1010
1011         /* Allocate memory for the device structure (and zero it) */
1012         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1013         if (!host)
1014                 return -ENOMEM;
1015
1016         nand = &host->nand;
1017
1018         ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1019         if (ret)
1020                 return ret;
1021
1022         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1023         host->data_va = devm_ioremap_resource(&pdev->dev, res);
1024         if (IS_ERR(host->data_va))
1025                 return PTR_ERR(host->data_va);
1026
1027         host->data_pa = (dma_addr_t)res->start;
1028
1029         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1030         host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1031         if (IS_ERR(host->addr_va))
1032                 return PTR_ERR(host->addr_va);
1033
1034         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1035         host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1036         if (IS_ERR(host->cmd_va))
1037                 return PTR_ERR(host->cmd_va);
1038
1039         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1040         base = devm_ioremap_resource(&pdev->dev, res);
1041         if (IS_ERR(base))
1042                 return PTR_ERR(base);
1043
1044         host->regs_va = base + FSMC_NOR_REG_SIZE +
1045                 (host->bank * FSMC_NAND_BANK_SZ);
1046
1047         host->clk = devm_clk_get(&pdev->dev, NULL);
1048         if (IS_ERR(host->clk)) {
1049                 dev_err(&pdev->dev, "failed to fetch block clock\n");
1050                 return PTR_ERR(host->clk);
1051         }
1052
1053         ret = clk_prepare_enable(host->clk);
1054         if (ret)
1055                 return ret;
1056
1057         /*
1058          * This device ID is actually a common AMBA ID as used on the
1059          * AMBA PrimeCell bus. However it is not a PrimeCell.
1060          */
1061         for (pid = 0, i = 0; i < 4; i++)
1062                 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1063                         255) << (i * 8);
1064
1065         host->pid = pid;
1066
1067         dev_info(&pdev->dev,
1068                  "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1069                  AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1070                  AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1071
1072         host->dev = &pdev->dev;
1073
1074         if (host->mode == USE_DMA_ACCESS)
1075                 init_completion(&host->dma_access_complete);
1076
1077         /* Link all private pointers */
1078         mtd = nand_to_mtd(&host->nand);
1079         nand_set_flash_node(nand, pdev->dev.of_node);
1080
1081         mtd->dev.parent = &pdev->dev;
1082
1083         nand->badblockbits = 7;
1084
1085         if (host->mode == USE_DMA_ACCESS) {
1086                 dma_cap_zero(mask);
1087                 dma_cap_set(DMA_MEMCPY, mask);
1088                 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1089                 if (!host->read_dma_chan) {
1090                         dev_err(&pdev->dev, "Unable to get read dma channel\n");
1091                         ret = -ENODEV;
1092                         goto disable_clk;
1093                 }
1094                 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1095                 if (!host->write_dma_chan) {
1096                         dev_err(&pdev->dev, "Unable to get write dma channel\n");
1097                         ret = -ENODEV;
1098                         goto release_dma_read_chan;
1099                 }
1100         }
1101
1102         if (host->dev_timings) {
1103                 fsmc_nand_setup(host, host->dev_timings);
1104                 nand->options |= NAND_KEEP_TIMINGS;
1105         }
1106
1107         nand_controller_init(&host->base);
1108         host->base.ops = &fsmc_nand_controller_ops;
1109         nand->controller = &host->base;
1110
1111         /*
1112          * Scan to find existence of the device
1113          */
1114         ret = nand_scan(nand, 1);
1115         if (ret)
1116                 goto release_dma_write_chan;
1117
1118         mtd->name = "nand";
1119         ret = mtd_device_register(mtd, NULL, 0);
1120         if (ret)
1121                 goto cleanup_nand;
1122
1123         platform_set_drvdata(pdev, host);
1124         dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1125
1126         return 0;
1127
1128 cleanup_nand:
1129         nand_cleanup(nand);
1130 release_dma_write_chan:
1131         if (host->mode == USE_DMA_ACCESS)
1132                 dma_release_channel(host->write_dma_chan);
1133 release_dma_read_chan:
1134         if (host->mode == USE_DMA_ACCESS)
1135                 dma_release_channel(host->read_dma_chan);
1136 disable_clk:
1137         fsmc_nand_disable(host);
1138         clk_disable_unprepare(host->clk);
1139
1140         return ret;
1141 }
1142
1143 /*
1144  * Clean up routine
1145  */
1146 static int fsmc_nand_remove(struct platform_device *pdev)
1147 {
1148         struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1149
1150         if (host) {
1151                 struct nand_chip *chip = &host->nand;
1152                 int ret;
1153
1154                 ret = mtd_device_unregister(nand_to_mtd(chip));
1155                 WARN_ON(ret);
1156                 nand_cleanup(chip);
1157                 fsmc_nand_disable(host);
1158
1159                 if (host->mode == USE_DMA_ACCESS) {
1160                         dma_release_channel(host->write_dma_chan);
1161                         dma_release_channel(host->read_dma_chan);
1162                 }
1163                 clk_disable_unprepare(host->clk);
1164         }
1165
1166         return 0;
1167 }
1168
1169 #ifdef CONFIG_PM_SLEEP
1170 static int fsmc_nand_suspend(struct device *dev)
1171 {
1172         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1173
1174         if (host)
1175                 clk_disable_unprepare(host->clk);
1176
1177         return 0;
1178 }
1179
1180 static int fsmc_nand_resume(struct device *dev)
1181 {
1182         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1183
1184         if (host) {
1185                 clk_prepare_enable(host->clk);
1186                 if (host->dev_timings)
1187                         fsmc_nand_setup(host, host->dev_timings);
1188                 nand_reset(&host->nand, 0);
1189         }
1190
1191         return 0;
1192 }
1193 #endif
1194
1195 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1196
1197 static const struct of_device_id fsmc_nand_id_table[] = {
1198         { .compatible = "st,spear600-fsmc-nand" },
1199         { .compatible = "stericsson,fsmc-nand" },
1200         {}
1201 };
1202 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1203
1204 static struct platform_driver fsmc_nand_driver = {
1205         .remove = fsmc_nand_remove,
1206         .driver = {
1207                 .name = "fsmc-nand",
1208                 .of_match_table = fsmc_nand_id_table,
1209                 .pm = &fsmc_nand_pm_ops,
1210         },
1211 };
1212
1213 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1214
1215 MODULE_LICENSE("GPL v2");
1216 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1217 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");