Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / fsl_upm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale UPM NAND driver.
4  *
5  * Copyright © 2007-2008  MontaVista Software, Inc.
6  *
7  * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
8  */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/mtd/rawnand.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/of_platform.h>
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/fsl_lbc.h>
20
21 struct fsl_upm_nand {
22         struct nand_controller base;
23         struct device *dev;
24         struct nand_chip chip;
25         struct fsl_upm upm;
26         uint8_t upm_addr_offset;
27         uint8_t upm_cmd_offset;
28         void __iomem *io_base;
29         struct gpio_desc *rnb_gpio[NAND_MAX_CHIPS];
30         uint32_t mchip_offsets[NAND_MAX_CHIPS];
31         uint32_t mchip_count;
32         uint32_t mchip_number;
33 };
34
35 static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
36 {
37         return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
38                             chip);
39 }
40
41 static int fun_chip_init(struct fsl_upm_nand *fun,
42                          const struct device_node *upm_np,
43                          const struct resource *io_res)
44 {
45         struct mtd_info *mtd = nand_to_mtd(&fun->chip);
46         int ret;
47         struct device_node *flash_np;
48
49         fun->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
50         fun->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
51         fun->chip.controller = &fun->base;
52         mtd->dev.parent = fun->dev;
53
54         flash_np = of_get_next_child(upm_np, NULL);
55         if (!flash_np)
56                 return -ENODEV;
57
58         nand_set_flash_node(&fun->chip, flash_np);
59         mtd->name = devm_kasprintf(fun->dev, GFP_KERNEL, "0x%llx.%pOFn",
60                                    (u64)io_res->start,
61                                    flash_np);
62         if (!mtd->name) {
63                 ret = -ENOMEM;
64                 goto err;
65         }
66
67         ret = nand_scan(&fun->chip, fun->mchip_count);
68         if (ret)
69                 goto err;
70
71         ret = mtd_device_register(mtd, NULL, 0);
72 err:
73         of_node_put(flash_np);
74         return ret;
75 }
76
77 static int func_exec_instr(struct nand_chip *chip,
78                            const struct nand_op_instr *instr)
79 {
80         struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
81         u32 mar, reg_offs = fun->mchip_offsets[fun->mchip_number];
82         unsigned int i;
83         const u8 *out;
84         u8 *in;
85
86         switch (instr->type) {
87         case NAND_OP_CMD_INSTR:
88                 fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
89                 mar = (instr->ctx.cmd.opcode << (32 - fun->upm.width)) |
90                       reg_offs;
91                 fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
92                 fsl_upm_end_pattern(&fun->upm);
93                 return 0;
94
95         case NAND_OP_ADDR_INSTR:
96                 fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
97                 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
98                         mar = (instr->ctx.addr.addrs[i] << (32 - fun->upm.width)) |
99                               reg_offs;
100                         fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
101                 }
102                 fsl_upm_end_pattern(&fun->upm);
103                 return 0;
104
105         case NAND_OP_DATA_IN_INSTR:
106                 in = instr->ctx.data.buf.in;
107                 for (i = 0; i < instr->ctx.data.len; i++)
108                         in[i] = in_8(fun->io_base + reg_offs);
109                 return 0;
110
111         case NAND_OP_DATA_OUT_INSTR:
112                 out = instr->ctx.data.buf.out;
113                 for (i = 0; i < instr->ctx.data.len; i++)
114                         out_8(fun->io_base + reg_offs, out[i]);
115                 return 0;
116
117         case NAND_OP_WAITRDY_INSTR:
118                 if (!fun->rnb_gpio[fun->mchip_number])
119                         return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
120
121                 return nand_gpio_waitrdy(chip, fun->rnb_gpio[fun->mchip_number],
122                                          instr->ctx.waitrdy.timeout_ms);
123
124         default:
125                 return -EINVAL;
126         }
127
128         return 0;
129 }
130
131 static int fun_exec_op(struct nand_chip *chip, const struct nand_operation *op,
132                        bool check_only)
133 {
134         struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
135         unsigned int i;
136         int ret;
137
138         if (op->cs > NAND_MAX_CHIPS)
139                 return -EINVAL;
140
141         if (check_only)
142                 return 0;
143
144         fun->mchip_number = op->cs;
145
146         for (i = 0; i < op->ninstrs; i++) {
147                 ret = func_exec_instr(chip, &op->instrs[i]);
148                 if (ret)
149                         return ret;
150
151                 if (op->instrs[i].delay_ns)
152                         ndelay(op->instrs[i].delay_ns);
153         }
154
155         return 0;
156 }
157
158 static const struct nand_controller_ops fun_ops = {
159         .exec_op = fun_exec_op,
160 };
161
162 static int fun_probe(struct platform_device *ofdev)
163 {
164         struct fsl_upm_nand *fun;
165         struct resource *io_res;
166         const __be32 *prop;
167         int ret;
168         int size;
169         int i;
170
171         fun = devm_kzalloc(&ofdev->dev, sizeof(*fun), GFP_KERNEL);
172         if (!fun)
173                 return -ENOMEM;
174
175         io_res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
176         fun->io_base = devm_ioremap_resource(&ofdev->dev, io_res);
177         if (IS_ERR(fun->io_base))
178                 return PTR_ERR(fun->io_base);
179
180         ret = fsl_upm_find(io_res->start, &fun->upm);
181         if (ret) {
182                 dev_err(&ofdev->dev, "can't find UPM\n");
183                 return ret;
184         }
185
186         prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
187                                &size);
188         if (!prop || size != sizeof(uint32_t)) {
189                 dev_err(&ofdev->dev, "can't get UPM address offset\n");
190                 return -EINVAL;
191         }
192         fun->upm_addr_offset = *prop;
193
194         prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
195         if (!prop || size != sizeof(uint32_t)) {
196                 dev_err(&ofdev->dev, "can't get UPM command offset\n");
197                 return -EINVAL;
198         }
199         fun->upm_cmd_offset = *prop;
200
201         prop = of_get_property(ofdev->dev.of_node,
202                                "fsl,upm-addr-line-cs-offsets", &size);
203         if (prop && (size / sizeof(uint32_t)) > 0) {
204                 fun->mchip_count = size / sizeof(uint32_t);
205                 if (fun->mchip_count >= NAND_MAX_CHIPS) {
206                         dev_err(&ofdev->dev, "too much multiple chips\n");
207                         return -EINVAL;
208                 }
209                 for (i = 0; i < fun->mchip_count; i++)
210                         fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
211         } else {
212                 fun->mchip_count = 1;
213         }
214
215         for (i = 0; i < fun->mchip_count; i++) {
216                 fun->rnb_gpio[i] = devm_gpiod_get_index_optional(&ofdev->dev,
217                                                                  NULL, i,
218                                                                  GPIOD_IN);
219                 if (IS_ERR(fun->rnb_gpio[i])) {
220                         dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
221                         return PTR_ERR(fun->rnb_gpio[i]);
222                 }
223         }
224
225         nand_controller_init(&fun->base);
226         fun->base.ops = &fun_ops;
227         fun->dev = &ofdev->dev;
228
229         ret = fun_chip_init(fun, ofdev->dev.of_node, io_res);
230         if (ret)
231                 return ret;
232
233         dev_set_drvdata(&ofdev->dev, fun);
234
235         return 0;
236 }
237
238 static int fun_remove(struct platform_device *ofdev)
239 {
240         struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
241         struct nand_chip *chip = &fun->chip;
242         struct mtd_info *mtd = nand_to_mtd(chip);
243         int ret;
244
245         ret = mtd_device_unregister(mtd);
246         WARN_ON(ret);
247         nand_cleanup(chip);
248
249         return 0;
250 }
251
252 static const struct of_device_id of_fun_match[] = {
253         { .compatible = "fsl,upm-nand" },
254         {},
255 };
256 MODULE_DEVICE_TABLE(of, of_fun_match);
257
258 static struct platform_driver of_fun_driver = {
259         .driver = {
260                 .name = "fsl,upm-nand",
261                 .of_match_table = of_fun_match,
262         },
263         .probe          = fun_probe,
264         .remove         = fun_remove,
265 };
266
267 module_platform_driver(of_fun_driver);
268
269 MODULE_LICENSE("GPL");
270 MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
271 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
272                    "LocalBus User-Programmable Machine");