Merge tag 'sfi-removal-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / fsl_ifc_nand.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale Integrated Flash Controller NAND driver
4  *
5  * Copyright 2011-2012 Freescale Semiconductor, Inc
6  *
7  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8  */
9
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/kernel.h>
13 #include <linux/of_address.h>
14 #include <linux/slab.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/fsl_ifc.h>
19 #include <linux/iopoll.h>
20
21 #define ERR_BYTE                0xFF /* Value returned for read
22                                         bytes when read failed  */
23 #define IFC_TIMEOUT_MSECS       500  /* Maximum number of mSecs to wait
24                                         for IFC NAND Machine    */
25
26 struct fsl_ifc_ctrl;
27
28 /* mtd information per set */
29 struct fsl_ifc_mtd {
30         struct nand_chip chip;
31         struct fsl_ifc_ctrl *ctrl;
32
33         struct device *dev;
34         int bank;               /* Chip select bank number              */
35         unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
36         u8 __iomem *vbase;      /* Chip select base virtual address     */
37 };
38
39 /* overview of the fsl ifc controller */
40 struct fsl_ifc_nand_ctrl {
41         struct nand_controller controller;
42         struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
43
44         void __iomem *addr;     /* Address of assigned IFC buffer       */
45         unsigned int page;      /* Last page written to / read from     */
46         unsigned int read_bytes;/* Number of bytes read during command  */
47         unsigned int column;    /* Saved column from SEQIN              */
48         unsigned int index;     /* Pointer to next byte to 'read'       */
49         unsigned int oob;       /* Non zero if operating on OOB data    */
50         unsigned int eccread;   /* Non zero for a full-page ECC read    */
51         unsigned int counter;   /* counter for the initializations      */
52         unsigned int max_bitflips;  /* Saved during READ0 cmd           */
53 };
54
55 static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
56
57 /*
58  * Generic flash bbt descriptors
59  */
60 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
61 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
62
63 static struct nand_bbt_descr bbt_main_descr = {
64         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
65                    NAND_BBT_2BIT | NAND_BBT_VERSION,
66         .offs = 2, /* 0 on 8-bit small page */
67         .len = 4,
68         .veroffs = 6,
69         .maxblocks = 4,
70         .pattern = bbt_pattern,
71 };
72
73 static struct nand_bbt_descr bbt_mirror_descr = {
74         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
75                    NAND_BBT_2BIT | NAND_BBT_VERSION,
76         .offs = 2, /* 0 on 8-bit small page */
77         .len = 4,
78         .veroffs = 6,
79         .maxblocks = 4,
80         .pattern = mirror_pattern,
81 };
82
83 static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
84                                  struct mtd_oob_region *oobregion)
85 {
86         struct nand_chip *chip = mtd_to_nand(mtd);
87
88         if (section)
89                 return -ERANGE;
90
91         oobregion->offset = 8;
92         oobregion->length = chip->ecc.total;
93
94         return 0;
95 }
96
97 static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
98                                   struct mtd_oob_region *oobregion)
99 {
100         struct nand_chip *chip = mtd_to_nand(mtd);
101
102         if (section > 1)
103                 return -ERANGE;
104
105         if (mtd->writesize == 512 &&
106             !(chip->options & NAND_BUSWIDTH_16)) {
107                 if (!section) {
108                         oobregion->offset = 0;
109                         oobregion->length = 5;
110                 } else {
111                         oobregion->offset = 6;
112                         oobregion->length = 2;
113                 }
114
115                 return 0;
116         }
117
118         if (!section) {
119                 oobregion->offset = 2;
120                 oobregion->length = 6;
121         } else {
122                 oobregion->offset = chip->ecc.total + 8;
123                 oobregion->length = mtd->oobsize - oobregion->offset;
124         }
125
126         return 0;
127 }
128
129 static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
130         .ecc = fsl_ifc_ooblayout_ecc,
131         .free = fsl_ifc_ooblayout_free,
132 };
133
134 /*
135  * Set up the IFC hardware block and page address fields, and the ifc nand
136  * structure addr field to point to the correct IFC buffer in memory
137  */
138 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
139 {
140         struct nand_chip *chip = mtd_to_nand(mtd);
141         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
142         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
143         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
144         int buf_num;
145
146         ifc_nand_ctrl->page = page_addr;
147         /* Program ROW0/COL0 */
148         ifc_out32(page_addr, &ifc->ifc_nand.row0);
149         ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
150
151         buf_num = page_addr & priv->bufnum_mask;
152
153         ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
154         ifc_nand_ctrl->index = column;
155
156         /* for OOB data point to the second half of the buffer */
157         if (oob)
158                 ifc_nand_ctrl->index += mtd->writesize;
159 }
160
161 /* returns nonzero if entire page is blank */
162 static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
163                           u32 eccstat, unsigned int bufnum)
164 {
165         return  (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
166 }
167
168 /*
169  * execute IFC NAND command and wait for it to complete
170  */
171 static void fsl_ifc_run_command(struct mtd_info *mtd)
172 {
173         struct nand_chip *chip = mtd_to_nand(mtd);
174         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
175         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
176         struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
177         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
178         u32 eccstat;
179         int i;
180
181         /* set the chip select for NAND Transaction */
182         ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
183                   &ifc->ifc_nand.nand_csel);
184
185         dev_vdbg(priv->dev,
186                         "%s: fir0=%08x fcr0=%08x\n",
187                         __func__,
188                         ifc_in32(&ifc->ifc_nand.nand_fir0),
189                         ifc_in32(&ifc->ifc_nand.nand_fcr0));
190
191         ctrl->nand_stat = 0;
192
193         /* start read/write seq */
194         ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
195
196         /* wait for command complete flag or timeout */
197         wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
198                            msecs_to_jiffies(IFC_TIMEOUT_MSECS));
199
200         /* ctrl->nand_stat will be updated from IRQ context */
201         if (!ctrl->nand_stat)
202                 dev_err(priv->dev, "Controller is not responding\n");
203         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
204                 dev_err(priv->dev, "NAND Flash Timeout Error\n");
205         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
206                 dev_err(priv->dev, "NAND Flash Write Protect Error\n");
207
208         nctrl->max_bitflips = 0;
209
210         if (nctrl->eccread) {
211                 int errors;
212                 int bufnum = nctrl->page & priv->bufnum_mask;
213                 int sector_start = bufnum * chip->ecc.steps;
214                 int sector_end = sector_start + chip->ecc.steps - 1;
215                 __be32 __iomem *eccstat_regs;
216
217                 eccstat_regs = ifc->ifc_nand.nand_eccstat;
218                 eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
219
220                 for (i = sector_start; i <= sector_end; i++) {
221                         if (i != sector_start && !(i % 4))
222                                 eccstat = ifc_in32(&eccstat_regs[i / 4]);
223
224                         errors = check_read_ecc(mtd, ctrl, eccstat, i);
225
226                         if (errors == 15) {
227                                 /*
228                                  * Uncorrectable error.
229                                  * We'll check for blank pages later.
230                                  *
231                                  * We disable ECCER reporting due to...
232                                  * erratum IFC-A002770 -- so report it now if we
233                                  * see an uncorrectable error in ECCSTAT.
234                                  */
235                                 ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
236                                 continue;
237                         }
238
239                         mtd->ecc_stats.corrected += errors;
240                         nctrl->max_bitflips = max_t(unsigned int,
241                                                     nctrl->max_bitflips,
242                                                     errors);
243                 }
244
245                 nctrl->eccread = 0;
246         }
247 }
248
249 static void fsl_ifc_do_read(struct nand_chip *chip,
250                             int oob,
251                             struct mtd_info *mtd)
252 {
253         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
254         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
255         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
256
257         /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
258         if (mtd->writesize > 512) {
259                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
260                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
261                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
262                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
263                           (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
264                           &ifc->ifc_nand.nand_fir0);
265                 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
266
267                 ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
268                           (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
269                           &ifc->ifc_nand.nand_fcr0);
270         } else {
271                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
272                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
273                           (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
274                           (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
275                           &ifc->ifc_nand.nand_fir0);
276                 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
277
278                 if (oob)
279                         ifc_out32(NAND_CMD_READOOB <<
280                                   IFC_NAND_FCR0_CMD0_SHIFT,
281                                   &ifc->ifc_nand.nand_fcr0);
282                 else
283                         ifc_out32(NAND_CMD_READ0 <<
284                                   IFC_NAND_FCR0_CMD0_SHIFT,
285                                   &ifc->ifc_nand.nand_fcr0);
286         }
287 }
288
289 /* cmdfunc send commands to the IFC NAND Machine */
290 static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command,
291                             int column, int page_addr) {
292         struct mtd_info *mtd = nand_to_mtd(chip);
293         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
294         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
295         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
296
297         /* clear the read buffer */
298         ifc_nand_ctrl->read_bytes = 0;
299         if (command != NAND_CMD_PAGEPROG)
300                 ifc_nand_ctrl->index = 0;
301
302         switch (command) {
303         /* READ0 read the entire buffer to use hardware ECC. */
304         case NAND_CMD_READ0:
305                 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
306                 set_addr(mtd, 0, page_addr, 0);
307
308                 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
309                 ifc_nand_ctrl->index += column;
310
311                 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
312                         ifc_nand_ctrl->eccread = 1;
313
314                 fsl_ifc_do_read(chip, 0, mtd);
315                 fsl_ifc_run_command(mtd);
316                 return;
317
318         /* READOOB reads only the OOB because no ECC is performed. */
319         case NAND_CMD_READOOB:
320                 ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
321                 set_addr(mtd, column, page_addr, 1);
322
323                 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
324
325                 fsl_ifc_do_read(chip, 1, mtd);
326                 fsl_ifc_run_command(mtd);
327
328                 return;
329
330         case NAND_CMD_READID:
331         case NAND_CMD_PARAM: {
332                 /*
333                  * For READID, read 8 bytes that are currently used.
334                  * For PARAM, read all 3 copies of 256-bytes pages.
335                  */
336                 int len = 8;
337                 int timing = IFC_FIR_OP_RB;
338                 if (command == NAND_CMD_PARAM) {
339                         timing = IFC_FIR_OP_RBCD;
340                         len = 256 * 3;
341                 }
342
343                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
344                           (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
345                           (timing << IFC_NAND_FIR0_OP2_SHIFT),
346                           &ifc->ifc_nand.nand_fir0);
347                 ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
348                           &ifc->ifc_nand.nand_fcr0);
349                 ifc_out32(column, &ifc->ifc_nand.row3);
350
351                 ifc_out32(len, &ifc->ifc_nand.nand_fbcr);
352                 ifc_nand_ctrl->read_bytes = len;
353
354                 set_addr(mtd, 0, 0, 0);
355                 fsl_ifc_run_command(mtd);
356                 return;
357         }
358
359         /* ERASE1 stores the block and page address */
360         case NAND_CMD_ERASE1:
361                 set_addr(mtd, 0, page_addr, 0);
362                 return;
363
364         /* ERASE2 uses the block and page address from ERASE1 */
365         case NAND_CMD_ERASE2:
366                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
367                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
368                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
369                           &ifc->ifc_nand.nand_fir0);
370
371                 ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
372                           (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
373                           &ifc->ifc_nand.nand_fcr0);
374
375                 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
376                 ifc_nand_ctrl->read_bytes = 0;
377                 fsl_ifc_run_command(mtd);
378                 return;
379
380         /* SEQIN sets up the addr buffer and all registers except the length */
381         case NAND_CMD_SEQIN: {
382                 u32 nand_fcr0;
383                 ifc_nand_ctrl->column = column;
384                 ifc_nand_ctrl->oob = 0;
385
386                 if (mtd->writesize > 512) {
387                         nand_fcr0 =
388                                 (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
389                                 (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
390                                 (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
391
392                         ifc_out32(
393                                 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
394                                 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
395                                 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
396                                 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
397                                 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
398                                 &ifc->ifc_nand.nand_fir0);
399                         ifc_out32(
400                                 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
401                                 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
402                                 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
403                                 &ifc->ifc_nand.nand_fir1);
404                 } else {
405                         nand_fcr0 = ((NAND_CMD_PAGEPROG <<
406                                         IFC_NAND_FCR0_CMD1_SHIFT) |
407                                     (NAND_CMD_SEQIN <<
408                                         IFC_NAND_FCR0_CMD2_SHIFT) |
409                                     (NAND_CMD_STATUS <<
410                                         IFC_NAND_FCR0_CMD3_SHIFT));
411
412                         ifc_out32(
413                                 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
414                                 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
415                                 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
416                                 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
417                                 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
418                                 &ifc->ifc_nand.nand_fir0);
419                         ifc_out32(
420                                 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
421                                 (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
422                                 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
423                                 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
424                                 &ifc->ifc_nand.nand_fir1);
425
426                         if (column >= mtd->writesize)
427                                 nand_fcr0 |=
428                                 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
429                         else
430                                 nand_fcr0 |=
431                                 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
432                 }
433
434                 if (column >= mtd->writesize) {
435                         /* OOB area --> READOOB */
436                         column -= mtd->writesize;
437                         ifc_nand_ctrl->oob = 1;
438                 }
439                 ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
440                 set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
441                 return;
442         }
443
444         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
445         case NAND_CMD_PAGEPROG: {
446                 if (ifc_nand_ctrl->oob) {
447                         ifc_out32(ifc_nand_ctrl->index -
448                                   ifc_nand_ctrl->column,
449                                   &ifc->ifc_nand.nand_fbcr);
450                 } else {
451                         ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
452                 }
453
454                 fsl_ifc_run_command(mtd);
455                 return;
456         }
457
458         case NAND_CMD_STATUS: {
459                 void __iomem *addr;
460
461                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
462                           (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
463                           &ifc->ifc_nand.nand_fir0);
464                 ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
465                           &ifc->ifc_nand.nand_fcr0);
466                 ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
467                 set_addr(mtd, 0, 0, 0);
468                 ifc_nand_ctrl->read_bytes = 1;
469
470                 fsl_ifc_run_command(mtd);
471
472                 /*
473                  * The chip always seems to report that it is
474                  * write-protected, even when it is not.
475                  */
476                 addr = ifc_nand_ctrl->addr;
477                 if (chip->options & NAND_BUSWIDTH_16)
478                         ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
479                 else
480                         ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
481                 return;
482         }
483
484         case NAND_CMD_RESET:
485                 ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
486                           &ifc->ifc_nand.nand_fir0);
487                 ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
488                           &ifc->ifc_nand.nand_fcr0);
489                 fsl_ifc_run_command(mtd);
490                 return;
491
492         default:
493                 dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
494                                         __func__, command);
495         }
496 }
497
498 static void fsl_ifc_select_chip(struct nand_chip *chip, int cs)
499 {
500         /* The hardware does not seem to support multiple
501          * chips per bank.
502          */
503 }
504
505 /*
506  * Write buf to the IFC NAND Controller Data Buffer
507  */
508 static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
509 {
510         struct mtd_info *mtd = nand_to_mtd(chip);
511         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
512         unsigned int bufsize = mtd->writesize + mtd->oobsize;
513
514         if (len <= 0) {
515                 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
516                 return;
517         }
518
519         if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
520                 dev_err(priv->dev,
521                         "%s: beyond end of buffer (%d requested, %u available)\n",
522                         __func__, len, bufsize - ifc_nand_ctrl->index);
523                 len = bufsize - ifc_nand_ctrl->index;
524         }
525
526         memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
527         ifc_nand_ctrl->index += len;
528 }
529
530 /*
531  * Read a byte from either the IFC hardware buffer
532  * read function for 8-bit buswidth
533  */
534 static uint8_t fsl_ifc_read_byte(struct nand_chip *chip)
535 {
536         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
537         unsigned int offset;
538
539         /*
540          * If there are still bytes in the IFC buffer, then use the
541          * next byte.
542          */
543         if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
544                 offset = ifc_nand_ctrl->index++;
545                 return ifc_in8(ifc_nand_ctrl->addr + offset);
546         }
547
548         dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
549         return ERR_BYTE;
550 }
551
552 /*
553  * Read two bytes from the IFC hardware buffer
554  * read function for 16-bit buswith
555  */
556 static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip)
557 {
558         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
559         uint16_t data;
560
561         /*
562          * If there are still bytes in the IFC buffer, then use the
563          * next byte.
564          */
565         if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
566                 data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
567                 ifc_nand_ctrl->index += 2;
568                 return (uint8_t) data;
569         }
570
571         dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
572         return ERR_BYTE;
573 }
574
575 /*
576  * Read from the IFC Controller Data Buffer
577  */
578 static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len)
579 {
580         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
581         int avail;
582
583         if (len < 0) {
584                 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
585                 return;
586         }
587
588         avail = min((unsigned int)len,
589                         ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
590         memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
591         ifc_nand_ctrl->index += avail;
592
593         if (len > avail)
594                 dev_err(priv->dev,
595                         "%s: beyond end of buffer (%d requested, %d available)\n",
596                         __func__, len, avail);
597 }
598
599 /*
600  * This function is called after Program and Erase Operations to
601  * check for success or failure.
602  */
603 static int fsl_ifc_wait(struct nand_chip *chip)
604 {
605         struct mtd_info *mtd = nand_to_mtd(chip);
606         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
607         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
608         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
609         u32 nand_fsr;
610         int status;
611
612         /* Use READ_STATUS command, but wait for the device to be ready */
613         ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
614                   (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
615                   &ifc->ifc_nand.nand_fir0);
616         ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
617                   &ifc->ifc_nand.nand_fcr0);
618         ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
619         set_addr(mtd, 0, 0, 0);
620         ifc_nand_ctrl->read_bytes = 1;
621
622         fsl_ifc_run_command(mtd);
623
624         nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
625         status = nand_fsr >> 24;
626         /*
627          * The chip always seems to report that it is
628          * write-protected, even when it is not.
629          */
630         return status | NAND_STATUS_WP;
631 }
632
633 /*
634  * The controller does not check for bitflips in erased pages,
635  * therefore software must check instead.
636  */
637 static int check_erased_page(struct nand_chip *chip, u8 *buf)
638 {
639         struct mtd_info *mtd = nand_to_mtd(chip);
640         u8 *ecc = chip->oob_poi;
641         const int ecc_size = chip->ecc.bytes;
642         const int pkt_size = chip->ecc.size;
643         int i, res, bitflips = 0;
644         struct mtd_oob_region oobregion = { };
645
646         mtd_ooblayout_ecc(mtd, 0, &oobregion);
647         ecc += oobregion.offset;
648
649         for (i = 0; i < chip->ecc.steps; ++i) {
650                 res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
651                                                   NULL, 0,
652                                                   chip->ecc.strength);
653                 if (res < 0)
654                         mtd->ecc_stats.failed++;
655                 else
656                         mtd->ecc_stats.corrected += res;
657
658                 bitflips = max(res, bitflips);
659                 buf += pkt_size;
660                 ecc += ecc_size;
661         }
662
663         return bitflips;
664 }
665
666 static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf,
667                              int oob_required, int page)
668 {
669         struct mtd_info *mtd = nand_to_mtd(chip);
670         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
671         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
672         struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
673
674         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
675         if (oob_required)
676                 fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
677
678         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
679                 if (!oob_required)
680                         fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
681
682                 return check_erased_page(chip, buf);
683         }
684
685         if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
686                 mtd->ecc_stats.failed++;
687
688         return nctrl->max_bitflips;
689 }
690
691 /* ECC will be calculated automatically, and errors will be detected in
692  * waitfunc.
693  */
694 static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf,
695                               int oob_required, int page)
696 {
697         struct mtd_info *mtd = nand_to_mtd(chip);
698
699         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
700         fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize);
701
702         return nand_prog_page_end_op(chip);
703 }
704
705 static int fsl_ifc_attach_chip(struct nand_chip *chip)
706 {
707         struct mtd_info *mtd = nand_to_mtd(chip);
708         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
709         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
710         struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
711         u32 csor;
712
713         csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
714
715         /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
716         if (csor & CSOR_NAND_ECC_DEC_EN) {
717                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
718                 mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
719
720                 /* Hardware generates ECC per 512 Bytes */
721                 chip->ecc.size = 512;
722                 if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
723                         chip->ecc.bytes = 8;
724                         chip->ecc.strength = 4;
725                 } else {
726                         chip->ecc.bytes = 16;
727                         chip->ecc.strength = 8;
728                 }
729         } else {
730                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
731                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
732         }
733
734         dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
735                 nanddev_ntargets(&chip->base));
736         dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
737                 nanddev_target_size(&chip->base));
738         dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
739                                                         chip->pagemask);
740         dev_dbg(priv->dev, "%s: nand->legacy.chip_delay = %d\n", __func__,
741                 chip->legacy.chip_delay);
742         dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
743                                                         chip->badblockpos);
744         dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
745                                                         chip->chip_shift);
746         dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
747                                                         chip->page_shift);
748         dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
749                                                         chip->phys_erase_shift);
750         dev_dbg(priv->dev, "%s: nand->ecc.engine_type = %d\n", __func__,
751                                                         chip->ecc.engine_type);
752         dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
753                                                         chip->ecc.steps);
754         dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
755                                                         chip->ecc.bytes);
756         dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
757                                                         chip->ecc.total);
758         dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
759                                                         mtd->ooblayout);
760         dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
761         dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
762         dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
763                                                         mtd->erasesize);
764         dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
765                                                         mtd->writesize);
766         dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
767                                                         mtd->oobsize);
768
769         return 0;
770 }
771
772 static const struct nand_controller_ops fsl_ifc_controller_ops = {
773         .attach_chip = fsl_ifc_attach_chip,
774 };
775
776 static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
777 {
778         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
779         struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
780         struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
781         uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
782         uint32_t cs = priv->bank;
783
784         if (ctrl->version < FSL_IFC_VERSION_1_1_0)
785                 return 0;
786
787         if (ctrl->version > FSL_IFC_VERSION_1_1_0) {
788                 u32 ncfgr, status;
789                 int ret;
790
791                 /* Trigger auto initialization */
792                 ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr);
793                 ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr);
794
795                 /* Wait until done */
796                 ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr,
797                                          status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN),
798                                          10, IFC_TIMEOUT_MSECS * 1000);
799                 if (ret)
800                         dev_err(priv->dev, "Failed to initialize SRAM!\n");
801
802                 return ret;
803         }
804
805         /* Save CSOR and CSOR_ext */
806         csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
807         csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
808
809         /* chage PageSize 8K and SpareSize 1K*/
810         csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
811         ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
812         ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
813
814         /* READID */
815         ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
816                     (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
817                     (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
818                     &ifc_runtime->ifc_nand.nand_fir0);
819         ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
820                     &ifc_runtime->ifc_nand.nand_fcr0);
821         ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
822
823         ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
824
825         /* Program ROW0/COL0 */
826         ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
827         ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
828
829         /* set the chip select for NAND Transaction */
830         ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
831                 &ifc_runtime->ifc_nand.nand_csel);
832
833         /* start read seq */
834         ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
835                 &ifc_runtime->ifc_nand.nandseq_strt);
836
837         /* wait for command complete flag or timeout */
838         wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
839                            msecs_to_jiffies(IFC_TIMEOUT_MSECS));
840
841         if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) {
842                 pr_err("fsl-ifc: Failed to Initialise SRAM\n");
843                 return -ETIMEDOUT;
844         }
845
846         /* Restore CSOR and CSOR_ext */
847         ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
848         ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
849
850         return 0;
851 }
852
853 static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
854 {
855         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
856         struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
857         struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
858         struct nand_chip *chip = &priv->chip;
859         struct mtd_info *mtd = nand_to_mtd(&priv->chip);
860         u32 csor;
861         int ret;
862
863         /* Fill in fsl_ifc_mtd structure */
864         mtd->dev.parent = priv->dev;
865         nand_set_flash_node(chip, priv->dev->of_node);
866
867         /* fill in nand_chip structure */
868         /* set up function call table */
869         if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
870                 & CSPR_PORT_SIZE_16)
871                 chip->legacy.read_byte = fsl_ifc_read_byte16;
872         else
873                 chip->legacy.read_byte = fsl_ifc_read_byte;
874
875         chip->legacy.write_buf = fsl_ifc_write_buf;
876         chip->legacy.read_buf = fsl_ifc_read_buf;
877         chip->legacy.select_chip = fsl_ifc_select_chip;
878         chip->legacy.cmdfunc = fsl_ifc_cmdfunc;
879         chip->legacy.waitfunc = fsl_ifc_wait;
880         chip->legacy.set_features = nand_get_set_features_notsupp;
881         chip->legacy.get_features = nand_get_set_features_notsupp;
882
883         chip->bbt_td = &bbt_main_descr;
884         chip->bbt_md = &bbt_mirror_descr;
885
886         ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
887
888         /* set up nand options */
889         chip->bbt_options = NAND_BBT_USE_FLASH;
890         chip->options = NAND_NO_SUBPAGE_WRITE;
891
892         if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
893                 & CSPR_PORT_SIZE_16) {
894                 chip->legacy.read_byte = fsl_ifc_read_byte16;
895                 chip->options |= NAND_BUSWIDTH_16;
896         } else {
897                 chip->legacy.read_byte = fsl_ifc_read_byte;
898         }
899
900         chip->controller = &ifc_nand_ctrl->controller;
901         nand_set_controller_data(chip, priv);
902
903         chip->ecc.read_page = fsl_ifc_read_page;
904         chip->ecc.write_page = fsl_ifc_write_page;
905
906         csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
907
908         switch (csor & CSOR_NAND_PGS_MASK) {
909         case CSOR_NAND_PGS_512:
910                 if (!(chip->options & NAND_BUSWIDTH_16)) {
911                         /* Avoid conflict with bad block marker */
912                         bbt_main_descr.offs = 0;
913                         bbt_mirror_descr.offs = 0;
914                 }
915
916                 priv->bufnum_mask = 15;
917                 break;
918
919         case CSOR_NAND_PGS_2K:
920                 priv->bufnum_mask = 3;
921                 break;
922
923         case CSOR_NAND_PGS_4K:
924                 priv->bufnum_mask = 1;
925                 break;
926
927         case CSOR_NAND_PGS_8K:
928                 priv->bufnum_mask = 0;
929                 break;
930
931         default:
932                 dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
933                 return -ENODEV;
934         }
935
936         ret = fsl_ifc_sram_init(priv);
937         if (ret)
938                 return ret;
939
940         /*
941          * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
942          * versions which had 8KB. Hence bufnum mask needs to be updated.
943          */
944         if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
945                 priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
946
947         return 0;
948 }
949
950 static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
951 {
952         struct mtd_info *mtd = nand_to_mtd(&priv->chip);
953
954         kfree(mtd->name);
955
956         if (priv->vbase)
957                 iounmap(priv->vbase);
958
959         ifc_nand_ctrl->chips[priv->bank] = NULL;
960
961         return 0;
962 }
963
964 static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
965                       phys_addr_t addr)
966 {
967         u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
968
969         if (!(cspr & CSPR_V))
970                 return 0;
971         if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
972                 return 0;
973
974         return (cspr & CSPR_BA) == convert_ifc_address(addr);
975 }
976
977 static DEFINE_MUTEX(fsl_ifc_nand_mutex);
978
979 static int fsl_ifc_nand_probe(struct platform_device *dev)
980 {
981         struct fsl_ifc_runtime __iomem *ifc;
982         struct fsl_ifc_mtd *priv;
983         struct resource res;
984         static const char *part_probe_types[]
985                 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
986         int ret;
987         int bank;
988         struct device_node *node = dev->dev.of_node;
989         struct mtd_info *mtd;
990
991         if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
992                 return -ENODEV;
993         ifc = fsl_ifc_ctrl_dev->rregs;
994
995         /* get, allocate and map the memory resource */
996         ret = of_address_to_resource(node, 0, &res);
997         if (ret) {
998                 dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
999                 return ret;
1000         }
1001
1002         /* find which chip select it is connected to */
1003         for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
1004                 if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
1005                         break;
1006         }
1007
1008         if (bank >= fsl_ifc_ctrl_dev->banks) {
1009                 dev_err(&dev->dev, "%s: address did not match any chip selects\n",
1010                         __func__);
1011                 return -ENODEV;
1012         }
1013
1014         priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
1015         if (!priv)
1016                 return -ENOMEM;
1017
1018         mutex_lock(&fsl_ifc_nand_mutex);
1019         if (!fsl_ifc_ctrl_dev->nand) {
1020                 ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
1021                 if (!ifc_nand_ctrl) {
1022                         mutex_unlock(&fsl_ifc_nand_mutex);
1023                         return -ENOMEM;
1024                 }
1025
1026                 ifc_nand_ctrl->read_bytes = 0;
1027                 ifc_nand_ctrl->index = 0;
1028                 ifc_nand_ctrl->addr = NULL;
1029                 fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
1030
1031                 nand_controller_init(&ifc_nand_ctrl->controller);
1032         } else {
1033                 ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
1034         }
1035         mutex_unlock(&fsl_ifc_nand_mutex);
1036
1037         ifc_nand_ctrl->chips[bank] = priv;
1038         priv->bank = bank;
1039         priv->ctrl = fsl_ifc_ctrl_dev;
1040         priv->dev = &dev->dev;
1041
1042         priv->vbase = ioremap(res.start, resource_size(&res));
1043         if (!priv->vbase) {
1044                 dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1045                 ret = -ENOMEM;
1046                 goto err;
1047         }
1048
1049         dev_set_drvdata(priv->dev, priv);
1050
1051         ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1052                   IFC_NAND_EVTER_EN_FTOER_EN |
1053                   IFC_NAND_EVTER_EN_WPER_EN,
1054                   &ifc->ifc_nand.nand_evter_en);
1055
1056         /* enable NAND Machine Interrupts */
1057         ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1058                   IFC_NAND_EVTER_INTR_FTOERIR_EN |
1059                   IFC_NAND_EVTER_INTR_WPERIR_EN,
1060                   &ifc->ifc_nand.nand_evter_intr_en);
1061
1062         mtd = nand_to_mtd(&priv->chip);
1063         mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1064         if (!mtd->name) {
1065                 ret = -ENOMEM;
1066                 goto err;
1067         }
1068
1069         ret = fsl_ifc_chip_init(priv);
1070         if (ret)
1071                 goto err;
1072
1073         priv->chip.controller->ops = &fsl_ifc_controller_ops;
1074         ret = nand_scan(&priv->chip, 1);
1075         if (ret)
1076                 goto err;
1077
1078         /* First look for RedBoot table or partitions on the command
1079          * line, these take precedence over device tree information */
1080         ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1081         if (ret)
1082                 goto cleanup_nand;
1083
1084         dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1085                  (unsigned long long)res.start, priv->bank);
1086
1087         return 0;
1088
1089 cleanup_nand:
1090         nand_cleanup(&priv->chip);
1091 err:
1092         fsl_ifc_chip_remove(priv);
1093
1094         return ret;
1095 }
1096
1097 static int fsl_ifc_nand_remove(struct platform_device *dev)
1098 {
1099         struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1100         struct nand_chip *chip = &priv->chip;
1101         int ret;
1102
1103         ret = mtd_device_unregister(nand_to_mtd(chip));
1104         WARN_ON(ret);
1105         nand_cleanup(chip);
1106
1107         fsl_ifc_chip_remove(priv);
1108
1109         mutex_lock(&fsl_ifc_nand_mutex);
1110         ifc_nand_ctrl->counter--;
1111         if (!ifc_nand_ctrl->counter) {
1112                 fsl_ifc_ctrl_dev->nand = NULL;
1113                 kfree(ifc_nand_ctrl);
1114         }
1115         mutex_unlock(&fsl_ifc_nand_mutex);
1116
1117         return 0;
1118 }
1119
1120 static const struct of_device_id fsl_ifc_nand_match[] = {
1121         {
1122                 .compatible = "fsl,ifc-nand",
1123         },
1124         {}
1125 };
1126 MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1127
1128 static struct platform_driver fsl_ifc_nand_driver = {
1129         .driver = {
1130                 .name   = "fsl,ifc-nand",
1131                 .of_match_table = fsl_ifc_nand_match,
1132         },
1133         .probe       = fsl_ifc_nand_probe,
1134         .remove      = fsl_ifc_nand_remove,
1135 };
1136
1137 module_platform_driver(fsl_ifc_nand_driver);
1138
1139 MODULE_LICENSE("GPL");
1140 MODULE_AUTHOR("Freescale");
1141 MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");