Merge tag 'for-linus-20190524' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / cafe_nand.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4  *
5  * The data sheet for this device can be found at:
6  *    http://wiki.laptop.org/go/Datasheets 
7  *
8  * Copyright © 2006 Red Hat, Inc.
9  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
10  */
11
12 #define DEBUG
13
14 #include <linux/device.h>
15 #undef DEBUG
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/rslib.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/interrupt.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/slab.h>
25 #include <linux/module.h>
26 #include <asm/io.h>
27
28 #define CAFE_NAND_CTRL1         0x00
29 #define CAFE_NAND_CTRL2         0x04
30 #define CAFE_NAND_CTRL3         0x08
31 #define CAFE_NAND_STATUS        0x0c
32 #define CAFE_NAND_IRQ           0x10
33 #define CAFE_NAND_IRQ_MASK      0x14
34 #define CAFE_NAND_DATA_LEN      0x18
35 #define CAFE_NAND_ADDR1         0x1c
36 #define CAFE_NAND_ADDR2         0x20
37 #define CAFE_NAND_TIMING1       0x24
38 #define CAFE_NAND_TIMING2       0x28
39 #define CAFE_NAND_TIMING3       0x2c
40 #define CAFE_NAND_NONMEM        0x30
41 #define CAFE_NAND_ECC_RESULT    0x3C
42 #define CAFE_NAND_DMA_CTRL      0x40
43 #define CAFE_NAND_DMA_ADDR0     0x44
44 #define CAFE_NAND_DMA_ADDR1     0x48
45 #define CAFE_NAND_ECC_SYN01     0x50
46 #define CAFE_NAND_ECC_SYN23     0x54
47 #define CAFE_NAND_ECC_SYN45     0x58
48 #define CAFE_NAND_ECC_SYN67     0x5c
49 #define CAFE_NAND_READ_DATA     0x1000
50 #define CAFE_NAND_WRITE_DATA    0x2000
51
52 #define CAFE_GLOBAL_CTRL        0x3004
53 #define CAFE_GLOBAL_IRQ         0x3008
54 #define CAFE_GLOBAL_IRQ_MASK    0x300c
55 #define CAFE_NAND_RESET         0x3034
56
57 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
58 #define CTRL1_CHIPSELECT        (1<<19)
59
60 struct cafe_priv {
61         struct nand_chip nand;
62         struct pci_dev *pdev;
63         void __iomem *mmio;
64         struct rs_control *rs;
65         uint32_t ctl1;
66         uint32_t ctl2;
67         int datalen;
68         int nr_data;
69         int data_pos;
70         int page_addr;
71         bool usedma;
72         dma_addr_t dmaaddr;
73         unsigned char *dmabuf;
74 };
75
76 static int usedma = 1;
77 module_param(usedma, int, 0644);
78
79 static int skipbbt = 0;
80 module_param(skipbbt, int, 0644);
81
82 static int debug = 0;
83 module_param(debug, int, 0644);
84
85 static int regdebug = 0;
86 module_param(regdebug, int, 0644);
87
88 static int checkecc = 1;
89 module_param(checkecc, int, 0644);
90
91 static unsigned int numtimings;
92 static int timing[3];
93 module_param_array(timing, int, &numtimings, 0644);
94
95 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
96
97 /* Hrm. Why isn't this already conditional on something in the struct device? */
98 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
99
100 /* Make it easier to switch to PIO if we need to */
101 #define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
102 #define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
103
104 static int cafe_device_ready(struct nand_chip *chip)
105 {
106         struct cafe_priv *cafe = nand_get_controller_data(chip);
107         int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
108         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
109
110         cafe_writel(cafe, irqs, NAND_IRQ);
111
112         cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
113                 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
114                 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
115
116         return result;
117 }
118
119
120 static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
121 {
122         struct cafe_priv *cafe = nand_get_controller_data(chip);
123
124         if (cafe->usedma)
125                 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
126         else
127                 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
128
129         cafe->datalen += len;
130
131         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
132                 len, cafe->datalen);
133 }
134
135 static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
136 {
137         struct cafe_priv *cafe = nand_get_controller_data(chip);
138
139         if (cafe->usedma)
140                 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
141         else
142                 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
143
144         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
145                   len, cafe->datalen);
146         cafe->datalen += len;
147 }
148
149 static uint8_t cafe_read_byte(struct nand_chip *chip)
150 {
151         struct cafe_priv *cafe = nand_get_controller_data(chip);
152         uint8_t d;
153
154         cafe_read_buf(chip, &d, 1);
155         cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
156
157         return d;
158 }
159
160 static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command,
161                               int column, int page_addr)
162 {
163         struct mtd_info *mtd = nand_to_mtd(chip);
164         struct cafe_priv *cafe = nand_get_controller_data(chip);
165         int adrbytes = 0;
166         uint32_t ctl1;
167         uint32_t doneint = 0x80000000;
168
169         cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
170                 command, column, page_addr);
171
172         if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
173                 /* Second half of a command we already calculated */
174                 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
175                 ctl1 = cafe->ctl1;
176                 cafe->ctl2 &= ~(1<<30);
177                 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
178                           cafe->ctl1, cafe->nr_data);
179                 goto do_command;
180         }
181         /* Reset ECC engine */
182         cafe_writel(cafe, 0, NAND_CTRL2);
183
184         /* Emulate NAND_CMD_READOOB on large-page chips */
185         if (mtd->writesize > 512 &&
186             command == NAND_CMD_READOOB) {
187                 column += mtd->writesize;
188                 command = NAND_CMD_READ0;
189         }
190
191         /* FIXME: Do we need to send read command before sending data
192            for small-page chips, to position the buffer correctly? */
193
194         if (column != -1) {
195                 cafe_writel(cafe, column, NAND_ADDR1);
196                 adrbytes = 2;
197                 if (page_addr != -1)
198                         goto write_adr2;
199         } else if (page_addr != -1) {
200                 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
201                 page_addr >>= 16;
202         write_adr2:
203                 cafe_writel(cafe, page_addr, NAND_ADDR2);
204                 adrbytes += 2;
205                 if (mtd->size > mtd->writesize << 16)
206                         adrbytes++;
207         }
208
209         cafe->data_pos = cafe->datalen = 0;
210
211         /* Set command valid bit, mask in the chip select bit  */
212         ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
213
214         /* Set RD or WR bits as appropriate */
215         if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
216                 ctl1 |= (1<<26); /* rd */
217                 /* Always 5 bytes, for now */
218                 cafe->datalen = 4;
219                 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
220                 adrbytes = 1;
221         } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
222                    command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
223                 ctl1 |= 1<<26; /* rd */
224                 /* For now, assume just read to end of page */
225                 cafe->datalen = mtd->writesize + mtd->oobsize - column;
226         } else if (command == NAND_CMD_SEQIN)
227                 ctl1 |= 1<<25; /* wr */
228
229         /* Set number of address bytes */
230         if (adrbytes)
231                 ctl1 |= ((adrbytes-1)|8) << 27;
232
233         if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
234                 /* Ignore the first command of a pair; the hardware
235                    deals with them both at once, later */
236                 cafe->ctl1 = ctl1;
237                 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
238                           cafe->ctl1, cafe->datalen);
239                 return;
240         }
241         /* RNDOUT and READ0 commands need a following byte */
242         if (command == NAND_CMD_RNDOUT)
243                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
244         else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
245                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
246
247  do_command:
248         cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
249                 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
250
251         /* NB: The datasheet lies -- we really should be subtracting 1 here */
252         cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
253         cafe_writel(cafe, 0x90000000, NAND_IRQ);
254         if (cafe->usedma && (ctl1 & (3<<25))) {
255                 uint32_t dmactl = 0xc0000000 + cafe->datalen;
256                 /* If WR or RD bits set, set up DMA */
257                 if (ctl1 & (1<<26)) {
258                         /* It's a read */
259                         dmactl |= (1<<29);
260                         /* ... so it's done when the DMA is done, not just
261                            the command. */
262                         doneint = 0x10000000;
263                 }
264                 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
265         }
266         cafe->datalen = 0;
267
268         if (unlikely(regdebug)) {
269                 int i;
270                 printk("About to write command %08x to register 0\n", ctl1);
271                 for (i=4; i< 0x5c; i+=4)
272                         printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
273         }
274
275         cafe_writel(cafe, ctl1, NAND_CTRL1);
276         /* Apply this short delay always to ensure that we do wait tWB in
277          * any case on any machine. */
278         ndelay(100);
279
280         if (1) {
281                 int c;
282                 uint32_t irqs;
283
284                 for (c = 500000; c != 0; c--) {
285                         irqs = cafe_readl(cafe, NAND_IRQ);
286                         if (irqs & doneint)
287                                 break;
288                         udelay(1);
289                         if (!(c % 100000))
290                                 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
291                         cpu_relax();
292                 }
293                 cafe_writel(cafe, doneint, NAND_IRQ);
294                 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
295                              command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
296         }
297
298         WARN_ON(cafe->ctl2 & (1<<30));
299
300         switch (command) {
301
302         case NAND_CMD_CACHEDPROG:
303         case NAND_CMD_PAGEPROG:
304         case NAND_CMD_ERASE1:
305         case NAND_CMD_ERASE2:
306         case NAND_CMD_SEQIN:
307         case NAND_CMD_RNDIN:
308         case NAND_CMD_STATUS:
309         case NAND_CMD_RNDOUT:
310                 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
311                 return;
312         }
313         nand_wait_ready(chip);
314         cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
315 }
316
317 static void cafe_select_chip(struct nand_chip *chip, int chipnr)
318 {
319         struct cafe_priv *cafe = nand_get_controller_data(chip);
320
321         cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
322
323         /* Mask the appropriate bit into the stored value of ctl1
324            which will be used by cafe_nand_cmdfunc() */
325         if (chipnr)
326                 cafe->ctl1 |= CTRL1_CHIPSELECT;
327         else
328                 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
329 }
330
331 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
332 {
333         struct mtd_info *mtd = id;
334         struct nand_chip *chip = mtd_to_nand(mtd);
335         struct cafe_priv *cafe = nand_get_controller_data(chip);
336         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
337         cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
338         if (!irqs)
339                 return IRQ_NONE;
340
341         cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
342         return IRQ_HANDLED;
343 }
344
345 static int cafe_nand_write_oob(struct nand_chip *chip, int page)
346 {
347         struct mtd_info *mtd = nand_to_mtd(chip);
348
349         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
350                                  mtd->oobsize);
351 }
352
353 /* Don't use -- use nand_read_oob_std for now */
354 static int cafe_nand_read_oob(struct nand_chip *chip, int page)
355 {
356         struct mtd_info *mtd = nand_to_mtd(chip);
357
358         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
359 }
360 /**
361  * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
362  * @mtd:        mtd info structure
363  * @chip:       nand chip info structure
364  * @buf:        buffer to store read data
365  * @oob_required:       caller expects OOB data read to chip->oob_poi
366  *
367  * The hw generator calculates the error syndrome automatically. Therefore
368  * we need a special oob layout and handling.
369  */
370 static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf,
371                                int oob_required, int page)
372 {
373         struct mtd_info *mtd = nand_to_mtd(chip);
374         struct cafe_priv *cafe = nand_get_controller_data(chip);
375         unsigned int max_bitflips = 0;
376
377         cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
378                      cafe_readl(cafe, NAND_ECC_RESULT),
379                      cafe_readl(cafe, NAND_ECC_SYN01));
380
381         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
382         chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
383
384         if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
385                 unsigned short syn[8], pat[4];
386                 int pos[4];
387                 u8 *oob = chip->oob_poi;
388                 int i, n;
389
390                 for (i=0; i<8; i+=2) {
391                         uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
392
393                         syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
394                         syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
395                 }
396
397                 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
398                                 pat);
399
400                 for (i = 0; i < n; i++) {
401                         int p = pos[i];
402
403                         /* The 12-bit symbols are mapped to bytes here */
404
405                         if (p > 1374) {
406                                 /* out of range */
407                                 n = -1374;
408                         } else if (p == 0) {
409                                 /* high four bits do not correspond to data */
410                                 if (pat[i] > 0xff)
411                                         n = -2048;
412                                 else
413                                         buf[0] ^= pat[i];
414                         } else if (p == 1365) {
415                                 buf[2047] ^= pat[i] >> 4;
416                                 oob[0] ^= pat[i] << 4;
417                         } else if (p > 1365) {
418                                 if ((p & 1) == 1) {
419                                         oob[3*p/2 - 2048] ^= pat[i] >> 4;
420                                         oob[3*p/2 - 2047] ^= pat[i] << 4;
421                                 } else {
422                                         oob[3*p/2 - 2049] ^= pat[i] >> 8;
423                                         oob[3*p/2 - 2048] ^= pat[i];
424                                 }
425                         } else if ((p & 1) == 1) {
426                                 buf[3*p/2] ^= pat[i] >> 4;
427                                 buf[3*p/2 + 1] ^= pat[i] << 4;
428                         } else {
429                                 buf[3*p/2 - 1] ^= pat[i] >> 8;
430                                 buf[3*p/2] ^= pat[i];
431                         }
432                 }
433
434                 if (n < 0) {
435                         dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
436                                 cafe_readl(cafe, NAND_ADDR2) * 2048);
437                         for (i = 0; i < 0x5c; i += 4)
438                                 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
439                         mtd->ecc_stats.failed++;
440                 } else {
441                         dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
442                         mtd->ecc_stats.corrected += n;
443                         max_bitflips = max_t(unsigned int, max_bitflips, n);
444                 }
445         }
446
447         return max_bitflips;
448 }
449
450 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
451                               struct mtd_oob_region *oobregion)
452 {
453         struct nand_chip *chip = mtd_to_nand(mtd);
454
455         if (section)
456                 return -ERANGE;
457
458         oobregion->offset = 0;
459         oobregion->length = chip->ecc.total;
460
461         return 0;
462 }
463
464 static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
465                                struct mtd_oob_region *oobregion)
466 {
467         struct nand_chip *chip = mtd_to_nand(mtd);
468
469         if (section)
470                 return -ERANGE;
471
472         oobregion->offset = chip->ecc.total;
473         oobregion->length = mtd->oobsize - chip->ecc.total;
474
475         return 0;
476 }
477
478 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
479         .ecc = cafe_ooblayout_ecc,
480         .free = cafe_ooblayout_free,
481 };
482
483 /* Ick. The BBT code really ought to be able to work this bit out
484    for itself from the above, at least for the 2KiB case */
485 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
486 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
487
488 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
489 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
490
491
492 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
493         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
494                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
495         .offs = 14,
496         .len = 4,
497         .veroffs = 18,
498         .maxblocks = 4,
499         .pattern = cafe_bbt_pattern_2048
500 };
501
502 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
503         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
504                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
505         .offs = 14,
506         .len = 4,
507         .veroffs = 18,
508         .maxblocks = 4,
509         .pattern = cafe_mirror_pattern_2048
510 };
511
512 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
513         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
514                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
515         .offs = 14,
516         .len = 1,
517         .veroffs = 15,
518         .maxblocks = 4,
519         .pattern = cafe_bbt_pattern_512
520 };
521
522 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
523         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
524                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
525         .offs = 14,
526         .len = 1,
527         .veroffs = 15,
528         .maxblocks = 4,
529         .pattern = cafe_mirror_pattern_512
530 };
531
532
533 static int cafe_nand_write_page_lowlevel(struct nand_chip *chip,
534                                          const uint8_t *buf, int oob_required,
535                                          int page)
536 {
537         struct mtd_info *mtd = nand_to_mtd(chip);
538         struct cafe_priv *cafe = nand_get_controller_data(chip);
539
540         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
541         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
542
543         /* Set up ECC autogeneration */
544         cafe->ctl2 |= (1<<30);
545
546         return nand_prog_page_end_op(chip);
547 }
548
549 static int cafe_nand_block_bad(struct nand_chip *chip, loff_t ofs)
550 {
551         return 0;
552 }
553
554 /* F_2[X]/(X**6+X+1)  */
555 static unsigned short gf64_mul(u8 a, u8 b)
556 {
557         u8 c;
558         unsigned int i;
559
560         c = 0;
561         for (i = 0; i < 6; i++) {
562                 if (a & 1)
563                         c ^= b;
564                 a >>= 1;
565                 b <<= 1;
566                 if ((b & 0x40) != 0)
567                         b ^= 0x43;
568         }
569
570         return c;
571 }
572
573 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
574 static u16 gf4096_mul(u16 a, u16 b)
575 {
576         u8 ah, al, bh, bl, ch, cl;
577
578         ah = a >> 6;
579         al = a & 0x3f;
580         bh = b >> 6;
581         bl = b & 0x3f;
582
583         ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
584         cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
585
586         return (ch << 6) ^ cl;
587 }
588
589 static int cafe_mul(int x)
590 {
591         if (x == 0)
592                 return 1;
593         return gf4096_mul(x, 0xe01);
594 }
595
596 static int cafe_nand_attach_chip(struct nand_chip *chip)
597 {
598         struct mtd_info *mtd = nand_to_mtd(chip);
599         struct cafe_priv *cafe = nand_get_controller_data(chip);
600         int err = 0;
601
602         cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
603                                           &cafe->dmaaddr, GFP_KERNEL);
604         if (!cafe->dmabuf)
605                 return -ENOMEM;
606
607         /* Set up DMA address */
608         cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
609         cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
610
611         cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
612                      cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
613
614         /* Restore the DMA flag */
615         cafe->usedma = usedma;
616
617         cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
618         if (mtd->writesize == 2048)
619                 cafe->ctl2 |= BIT(29); /* 2KiB page size */
620
621         /* Set up ECC according to the type of chip we found */
622         mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
623         if (mtd->writesize == 2048) {
624                 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
625                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
626         } else if (mtd->writesize == 512) {
627                 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
628                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
629         } else {
630                 dev_warn(&cafe->pdev->dev,
631                          "Unexpected NAND flash writesize %d. Aborting\n",
632                          mtd->writesize);
633                 err = -ENOTSUPP;
634                 goto out_free_dma;
635         }
636
637         cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
638         cafe->nand.ecc.size = mtd->writesize;
639         cafe->nand.ecc.bytes = 14;
640         cafe->nand.ecc.strength = 4;
641         cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
642         cafe->nand.ecc.write_oob = cafe_nand_write_oob;
643         cafe->nand.ecc.read_page = cafe_nand_read_page;
644         cafe->nand.ecc.read_oob = cafe_nand_read_oob;
645
646         return 0;
647
648  out_free_dma:
649         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
650
651         return err;
652 }
653
654 static void cafe_nand_detach_chip(struct nand_chip *chip)
655 {
656         struct cafe_priv *cafe = nand_get_controller_data(chip);
657
658         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
659 }
660
661 static const struct nand_controller_ops cafe_nand_controller_ops = {
662         .attach_chip = cafe_nand_attach_chip,
663         .detach_chip = cafe_nand_detach_chip,
664 };
665
666 static int cafe_nand_probe(struct pci_dev *pdev,
667                                      const struct pci_device_id *ent)
668 {
669         struct mtd_info *mtd;
670         struct cafe_priv *cafe;
671         uint32_t ctrl;
672         int err = 0;
673
674         /* Very old versions shared the same PCI ident for all three
675            functions on the chip. Verify the class too... */
676         if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
677                 return -ENODEV;
678
679         err = pci_enable_device(pdev);
680         if (err)
681                 return err;
682
683         pci_set_master(pdev);
684
685         cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
686         if (!cafe)
687                 return  -ENOMEM;
688
689         mtd = nand_to_mtd(&cafe->nand);
690         mtd->dev.parent = &pdev->dev;
691         nand_set_controller_data(&cafe->nand, cafe);
692
693         cafe->pdev = pdev;
694         cafe->mmio = pci_iomap(pdev, 0, 0);
695         if (!cafe->mmio) {
696                 dev_warn(&pdev->dev, "failed to iomap\n");
697                 err = -ENOMEM;
698                 goto out_free_mtd;
699         }
700
701         cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
702         if (!cafe->rs) {
703                 err = -ENOMEM;
704                 goto out_ior;
705         }
706
707         cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc;
708         cafe->nand.legacy.dev_ready = cafe_device_ready;
709         cafe->nand.legacy.read_byte = cafe_read_byte;
710         cafe->nand.legacy.read_buf = cafe_read_buf;
711         cafe->nand.legacy.write_buf = cafe_write_buf;
712         cafe->nand.legacy.select_chip = cafe_select_chip;
713         cafe->nand.legacy.set_features = nand_get_set_features_notsupp;
714         cafe->nand.legacy.get_features = nand_get_set_features_notsupp;
715
716         cafe->nand.legacy.chip_delay = 0;
717
718         /* Enable the following for a flash based bad block table */
719         cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
720
721         if (skipbbt) {
722                 cafe->nand.options |= NAND_SKIP_BBTSCAN;
723                 cafe->nand.legacy.block_bad = cafe_nand_block_bad;
724         }
725
726         if (numtimings && numtimings != 3) {
727                 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
728         }
729
730         if (numtimings == 3) {
731                 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
732                              timing[0], timing[1], timing[2]);
733         } else {
734                 timing[0] = cafe_readl(cafe, NAND_TIMING1);
735                 timing[1] = cafe_readl(cafe, NAND_TIMING2);
736                 timing[2] = cafe_readl(cafe, NAND_TIMING3);
737
738                 if (timing[0] | timing[1] | timing[2]) {
739                         cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
740                                      timing[0], timing[1], timing[2]);
741                 } else {
742                         dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
743                         timing[0] = timing[1] = timing[2] = 0xffffffff;
744                 }
745         }
746
747         /* Start off by resetting the NAND controller completely */
748         cafe_writel(cafe, 1, NAND_RESET);
749         cafe_writel(cafe, 0, NAND_RESET);
750
751         cafe_writel(cafe, timing[0], NAND_TIMING1);
752         cafe_writel(cafe, timing[1], NAND_TIMING2);
753         cafe_writel(cafe, timing[2], NAND_TIMING3);
754
755         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
756         err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
757                           "CAFE NAND", mtd);
758         if (err) {
759                 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
760                 goto out_ior;
761         }
762
763         /* Disable master reset, enable NAND clock */
764         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
765         ctrl &= 0xffffeff0;
766         ctrl |= 0x00007000;
767         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
768         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
769         cafe_writel(cafe, 0, NAND_DMA_CTRL);
770
771         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
772         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
773
774         /* Enable NAND IRQ in global IRQ mask register */
775         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
776         cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
777                 cafe_readl(cafe, GLOBAL_CTRL),
778                 cafe_readl(cafe, GLOBAL_IRQ_MASK));
779
780         /* Do not use the DMA during the NAND identification */
781         cafe->usedma = 0;
782
783         /* Scan to find existence of the device */
784         cafe->nand.legacy.dummy_controller.ops = &cafe_nand_controller_ops;
785         err = nand_scan(&cafe->nand, 2);
786         if (err)
787                 goto out_irq;
788
789         pci_set_drvdata(pdev, mtd);
790
791         mtd->name = "cafe_nand";
792         err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
793         if (err)
794                 goto out_cleanup_nand;
795
796         goto out;
797
798  out_cleanup_nand:
799         nand_cleanup(&cafe->nand);
800  out_irq:
801         /* Disable NAND IRQ in global IRQ mask register */
802         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
803         free_irq(pdev->irq, mtd);
804  out_ior:
805         pci_iounmap(pdev, cafe->mmio);
806  out_free_mtd:
807         kfree(cafe);
808  out:
809         return err;
810 }
811
812 static void cafe_nand_remove(struct pci_dev *pdev)
813 {
814         struct mtd_info *mtd = pci_get_drvdata(pdev);
815         struct nand_chip *chip = mtd_to_nand(mtd);
816         struct cafe_priv *cafe = nand_get_controller_data(chip);
817
818         /* Disable NAND IRQ in global IRQ mask register */
819         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
820         free_irq(pdev->irq, mtd);
821         nand_release(chip);
822         free_rs(cafe->rs);
823         pci_iounmap(pdev, cafe->mmio);
824         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
825         kfree(cafe);
826 }
827
828 static const struct pci_device_id cafe_nand_tbl[] = {
829         { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
830           PCI_ANY_ID, PCI_ANY_ID },
831         { }
832 };
833
834 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
835
836 static int cafe_nand_resume(struct pci_dev *pdev)
837 {
838         uint32_t ctrl;
839         struct mtd_info *mtd = pci_get_drvdata(pdev);
840         struct nand_chip *chip = mtd_to_nand(mtd);
841         struct cafe_priv *cafe = nand_get_controller_data(chip);
842
843        /* Start off by resetting the NAND controller completely */
844         cafe_writel(cafe, 1, NAND_RESET);
845         cafe_writel(cafe, 0, NAND_RESET);
846         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
847
848         /* Restore timing configuration */
849         cafe_writel(cafe, timing[0], NAND_TIMING1);
850         cafe_writel(cafe, timing[1], NAND_TIMING2);
851         cafe_writel(cafe, timing[2], NAND_TIMING3);
852
853         /* Disable master reset, enable NAND clock */
854         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
855         ctrl &= 0xffffeff0;
856         ctrl |= 0x00007000;
857         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
858         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
859         cafe_writel(cafe, 0, NAND_DMA_CTRL);
860         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
861         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
862
863         /* Set up DMA address */
864         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
865         if (sizeof(cafe->dmaaddr) > 4)
866         /* Shift in two parts to shut the compiler up */
867                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
868         else
869                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
870
871         /* Enable NAND IRQ in global IRQ mask register */
872         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
873         return 0;
874 }
875
876 static struct pci_driver cafe_nand_pci_driver = {
877         .name = "CAFÉ NAND",
878         .id_table = cafe_nand_tbl,
879         .probe = cafe_nand_probe,
880         .remove = cafe_nand_remove,
881         .resume = cafe_nand_resume,
882 };
883
884 module_pci_driver(cafe_nand_pci_driver);
885
886 MODULE_LICENSE("GPL");
887 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
888 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");