Merge tag 'compiler-attributes-for-linus-v5.11' of git://github.com/ojeda/linux
[linux-2.6-microblaze.git] / drivers / mtd / nand / ecc.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Generic Error-Correcting Code (ECC) engine
4  *
5  * Copyright (C) 2019 Macronix
6  * Author:
7  *     Miquèl RAYNAL <miquel.raynal@bootlin.com>
8  *
9  *
10  * This file describes the abstraction of any NAND ECC engine. It has been
11  * designed to fit most cases, including parallel NANDs and SPI-NANDs.
12  *
13  * There are three main situations where instantiating this ECC engine makes
14  * sense:
15  *   - external: The ECC engine is outside the NAND pipeline, typically this
16  *               is a software ECC engine, or an hardware engine that is
17  *               outside the NAND controller pipeline.
18  *   - pipelined: The ECC engine is inside the NAND pipeline, ie. on the
19  *                controller's side. This is the case of most of the raw NAND
20  *                controllers. In the pipeline case, the ECC bytes are
21  *                generated/data corrected on the fly when a page is
22  *                written/read.
23  *   - ondie: The ECC engine is inside the NAND pipeline, on the chip's side.
24  *            Some NAND chips can correct themselves the data.
25  *
26  * Besides the initial setup and final cleanups, the interfaces are rather
27  * simple:
28  *   - prepare: Prepare an I/O request. Enable/disable the ECC engine based on
29  *              the I/O request type. In case of software correction or external
30  *              engine, this step may involve to derive the ECC bytes and place
31  *              them in the OOB area before a write.
32  *   - finish: Finish an I/O request. Correct the data in case of a read
33  *             request and report the number of corrected bits/uncorrectable
34  *             errors. Most likely empty for write operations, unless you have
35  *             hardware specific stuff to do, like shutting down the engine to
36  *             save power.
37  *
38  * The I/O request should be enclosed in a prepare()/finish() pair of calls
39  * and will behave differently depending on the requested I/O type:
40  *   - raw: Correction disabled
41  *   - ecc: Correction enabled
42  *
43  * The request direction is impacting the logic as well:
44  *   - read: Load data from the NAND chip
45  *   - write: Store data in the NAND chip
46  *
47  * Mixing all this combinations together gives the following behavior.
48  * Those are just examples, drivers are free to add custom steps in their
49  * prepare/finish hook.
50  *
51  * [external ECC engine]
52  *   - external + prepare + raw + read: do nothing
53  *   - external + finish  + raw + read: do nothing
54  *   - external + prepare + raw + write: do nothing
55  *   - external + finish  + raw + write: do nothing
56  *   - external + prepare + ecc + read: do nothing
57  *   - external + finish  + ecc + read: calculate expected ECC bytes, extract
58  *                                      ECC bytes from OOB buffer, correct
59  *                                      and report any bitflip/error
60  *   - external + prepare + ecc + write: calculate ECC bytes and store them at
61  *                                       the right place in the OOB buffer based
62  *                                       on the OOB layout
63  *   - external + finish  + ecc + write: do nothing
64  *
65  * [pipelined ECC engine]
66  *   - pipelined + prepare + raw + read: disable the controller's ECC engine if
67  *                                       activated
68  *   - pipelined + finish  + raw + read: do nothing
69  *   - pipelined + prepare + raw + write: disable the controller's ECC engine if
70  *                                        activated
71  *   - pipelined + finish  + raw + write: do nothing
72  *   - pipelined + prepare + ecc + read: enable the controller's ECC engine if
73  *                                       deactivated
74  *   - pipelined + finish  + ecc + read: check the status, report any
75  *                                       error/bitflip
76  *   - pipelined + prepare + ecc + write: enable the controller's ECC engine if
77  *                                        deactivated
78  *   - pipelined + finish  + ecc + write: do nothing
79  *
80  * [ondie ECC engine]
81  *   - ondie + prepare + raw + read: send commands to disable the on-chip ECC
82  *                                   engine if activated
83  *   - ondie + finish  + raw + read: do nothing
84  *   - ondie + prepare + raw + write: send commands to disable the on-chip ECC
85  *                                    engine if activated
86  *   - ondie + finish  + raw + write: do nothing
87  *   - ondie + prepare + ecc + read: send commands to enable the on-chip ECC
88  *                                   engine if deactivated
89  *   - ondie + finish  + ecc + read: send commands to check the status, report
90  *                                   any error/bitflip
91  *   - ondie + prepare + ecc + write: send commands to enable the on-chip ECC
92  *                                    engine if deactivated
93  *   - ondie + finish  + ecc + write: do nothing
94  */
95
96 #include <linux/module.h>
97 #include <linux/mtd/nand.h>
98 #include <linux/slab.h>
99
100 /**
101  * nand_ecc_init_ctx - Init the ECC engine context
102  * @nand: the NAND device
103  *
104  * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx().
105  */
106 int nand_ecc_init_ctx(struct nand_device *nand)
107 {
108         if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx)
109                 return 0;
110
111         return nand->ecc.engine->ops->init_ctx(nand);
112 }
113 EXPORT_SYMBOL(nand_ecc_init_ctx);
114
115 /**
116  * nand_ecc_cleanup_ctx - Cleanup the ECC engine context
117  * @nand: the NAND device
118  */
119 void nand_ecc_cleanup_ctx(struct nand_device *nand)
120 {
121         if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx)
122                 nand->ecc.engine->ops->cleanup_ctx(nand);
123 }
124 EXPORT_SYMBOL(nand_ecc_cleanup_ctx);
125
126 /**
127  * nand_ecc_prepare_io_req - Prepare an I/O request
128  * @nand: the NAND device
129  * @req: the I/O request
130  */
131 int nand_ecc_prepare_io_req(struct nand_device *nand,
132                             struct nand_page_io_req *req)
133 {
134         if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req)
135                 return 0;
136
137         return nand->ecc.engine->ops->prepare_io_req(nand, req);
138 }
139 EXPORT_SYMBOL(nand_ecc_prepare_io_req);
140
141 /**
142  * nand_ecc_finish_io_req - Finish an I/O request
143  * @nand: the NAND device
144  * @req: the I/O request
145  */
146 int nand_ecc_finish_io_req(struct nand_device *nand,
147                            struct nand_page_io_req *req)
148 {
149         if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req)
150                 return 0;
151
152         return nand->ecc.engine->ops->finish_io_req(nand, req);
153 }
154 EXPORT_SYMBOL(nand_ecc_finish_io_req);
155
156 /* Define default OOB placement schemes for large and small page devices */
157 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
158                                  struct mtd_oob_region *oobregion)
159 {
160         struct nand_device *nand = mtd_to_nanddev(mtd);
161         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
162
163         if (section > 1)
164                 return -ERANGE;
165
166         if (!section) {
167                 oobregion->offset = 0;
168                 if (mtd->oobsize == 16)
169                         oobregion->length = 4;
170                 else
171                         oobregion->length = 3;
172         } else {
173                 if (mtd->oobsize == 8)
174                         return -ERANGE;
175
176                 oobregion->offset = 6;
177                 oobregion->length = total_ecc_bytes - 4;
178         }
179
180         return 0;
181 }
182
183 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
184                                   struct mtd_oob_region *oobregion)
185 {
186         if (section > 1)
187                 return -ERANGE;
188
189         if (mtd->oobsize == 16) {
190                 if (section)
191                         return -ERANGE;
192
193                 oobregion->length = 8;
194                 oobregion->offset = 8;
195         } else {
196                 oobregion->length = 2;
197                 if (!section)
198                         oobregion->offset = 3;
199                 else
200                         oobregion->offset = 6;
201         }
202
203         return 0;
204 }
205
206 static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
207         .ecc = nand_ooblayout_ecc_sp,
208         .free = nand_ooblayout_free_sp,
209 };
210
211 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void)
212 {
213         return &nand_ooblayout_sp_ops;
214 }
215 EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout);
216
217 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
218                                  struct mtd_oob_region *oobregion)
219 {
220         struct nand_device *nand = mtd_to_nanddev(mtd);
221         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
222
223         if (section || !total_ecc_bytes)
224                 return -ERANGE;
225
226         oobregion->length = total_ecc_bytes;
227         oobregion->offset = mtd->oobsize - oobregion->length;
228
229         return 0;
230 }
231
232 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
233                                   struct mtd_oob_region *oobregion)
234 {
235         struct nand_device *nand = mtd_to_nanddev(mtd);
236         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
237
238         if (section)
239                 return -ERANGE;
240
241         oobregion->length = mtd->oobsize - total_ecc_bytes - 2;
242         oobregion->offset = 2;
243
244         return 0;
245 }
246
247 static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
248         .ecc = nand_ooblayout_ecc_lp,
249         .free = nand_ooblayout_free_lp,
250 };
251
252 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
253 {
254         return &nand_ooblayout_lp_ops;
255 }
256 EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout);
257
258 /*
259  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
260  * are placed at a fixed offset.
261  */
262 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
263                                          struct mtd_oob_region *oobregion)
264 {
265         struct nand_device *nand = mtd_to_nanddev(mtd);
266         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
267
268         if (section)
269                 return -ERANGE;
270
271         switch (mtd->oobsize) {
272         case 64:
273                 oobregion->offset = 40;
274                 break;
275         case 128:
276                 oobregion->offset = 80;
277                 break;
278         default:
279                 return -EINVAL;
280         }
281
282         oobregion->length = total_ecc_bytes;
283         if (oobregion->offset + oobregion->length > mtd->oobsize)
284                 return -ERANGE;
285
286         return 0;
287 }
288
289 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
290                                           struct mtd_oob_region *oobregion)
291 {
292         struct nand_device *nand = mtd_to_nanddev(mtd);
293         unsigned int total_ecc_bytes = nand->ecc.ctx.total;
294         int ecc_offset = 0;
295
296         if (section < 0 || section > 1)
297                 return -ERANGE;
298
299         switch (mtd->oobsize) {
300         case 64:
301                 ecc_offset = 40;
302                 break;
303         case 128:
304                 ecc_offset = 80;
305                 break;
306         default:
307                 return -EINVAL;
308         }
309
310         if (section == 0) {
311                 oobregion->offset = 2;
312                 oobregion->length = ecc_offset - 2;
313         } else {
314                 oobregion->offset = ecc_offset + total_ecc_bytes;
315                 oobregion->length = mtd->oobsize - oobregion->offset;
316         }
317
318         return 0;
319 }
320
321 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
322         .ecc = nand_ooblayout_ecc_lp_hamming,
323         .free = nand_ooblayout_free_lp_hamming,
324 };
325
326 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void)
327 {
328         return &nand_ooblayout_lp_hamming_ops;
329 }
330 EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout);
331
332 static enum nand_ecc_engine_type
333 of_get_nand_ecc_engine_type(struct device_node *np)
334 {
335         struct device_node *eng_np;
336
337         if (of_property_read_bool(np, "nand-no-ecc-engine"))
338                 return NAND_ECC_ENGINE_TYPE_NONE;
339
340         if (of_property_read_bool(np, "nand-use-soft-ecc-engine"))
341                 return NAND_ECC_ENGINE_TYPE_SOFT;
342
343         eng_np = of_parse_phandle(np, "nand-ecc-engine", 0);
344         of_node_put(eng_np);
345
346         if (eng_np) {
347                 if (eng_np == np)
348                         return NAND_ECC_ENGINE_TYPE_ON_DIE;
349                 else
350                         return NAND_ECC_ENGINE_TYPE_ON_HOST;
351         }
352
353         return NAND_ECC_ENGINE_TYPE_INVALID;
354 }
355
356 static const char * const nand_ecc_placement[] = {
357         [NAND_ECC_PLACEMENT_OOB] = "oob",
358         [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved",
359 };
360
361 static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np)
362 {
363         enum nand_ecc_placement placement;
364         const char *pm;
365         int err;
366
367         err = of_property_read_string(np, "nand-ecc-placement", &pm);
368         if (!err) {
369                 for (placement = NAND_ECC_PLACEMENT_OOB;
370                      placement < ARRAY_SIZE(nand_ecc_placement); placement++) {
371                         if (!strcasecmp(pm, nand_ecc_placement[placement]))
372                                 return placement;
373                 }
374         }
375
376         return NAND_ECC_PLACEMENT_UNKNOWN;
377 }
378
379 static const char * const nand_ecc_algos[] = {
380         [NAND_ECC_ALGO_HAMMING] = "hamming",
381         [NAND_ECC_ALGO_BCH] = "bch",
382         [NAND_ECC_ALGO_RS] = "rs",
383 };
384
385 static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
386 {
387         enum nand_ecc_algo ecc_algo;
388         const char *pm;
389         int err;
390
391         err = of_property_read_string(np, "nand-ecc-algo", &pm);
392         if (!err) {
393                 for (ecc_algo = NAND_ECC_ALGO_HAMMING;
394                      ecc_algo < ARRAY_SIZE(nand_ecc_algos);
395                      ecc_algo++) {
396                         if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
397                                 return ecc_algo;
398                 }
399         }
400
401         return NAND_ECC_ALGO_UNKNOWN;
402 }
403
404 static int of_get_nand_ecc_step_size(struct device_node *np)
405 {
406         int ret;
407         u32 val;
408
409         ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
410         return ret ? ret : val;
411 }
412
413 static int of_get_nand_ecc_strength(struct device_node *np)
414 {
415         int ret;
416         u32 val;
417
418         ret = of_property_read_u32(np, "nand-ecc-strength", &val);
419         return ret ? ret : val;
420 }
421
422 void of_get_nand_ecc_user_config(struct nand_device *nand)
423 {
424         struct device_node *dn = nanddev_get_of_node(nand);
425         int strength, size;
426
427         nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn);
428         nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn);
429         nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn);
430
431         strength = of_get_nand_ecc_strength(dn);
432         if (strength >= 0)
433                 nand->ecc.user_conf.strength = strength;
434
435         size = of_get_nand_ecc_step_size(dn);
436         if (size >= 0)
437                 nand->ecc.user_conf.step_size = size;
438
439         if (of_property_read_bool(dn, "nand-ecc-maximize"))
440                 nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH;
441 }
442 EXPORT_SYMBOL(of_get_nand_ecc_user_config);
443
444 /**
445  * nand_ecc_is_strong_enough - Check if the chip configuration meets the
446  *                             datasheet requirements.
447  *
448  * @nand: Device to check
449  *
450  * If our configuration corrects A bits per B bytes and the minimum
451  * required correction level is X bits per Y bytes, then we must ensure
452  * both of the following are true:
453  *
454  * (1) A / B >= X / Y
455  * (2) A >= X
456  *
457  * Requirement (1) ensures we can correct for the required bitflip density.
458  * Requirement (2) ensures we can correct even when all bitflips are clumped
459  * in the same sector.
460  */
461 bool nand_ecc_is_strong_enough(struct nand_device *nand)
462 {
463         const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand);
464         const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand);
465         struct mtd_info *mtd = nanddev_to_mtd(nand);
466         int corr, ds_corr;
467
468         if (conf->step_size == 0 || reqs->step_size == 0)
469                 /* Not enough information */
470                 return true;
471
472         /*
473          * We get the number of corrected bits per page to compare
474          * the correction density.
475          */
476         corr = (mtd->writesize * conf->strength) / conf->step_size;
477         ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size;
478
479         return corr >= ds_corr && conf->strength >= reqs->strength;
480 }
481 EXPORT_SYMBOL(nand_ecc_is_strong_enough);
482
483 /* ECC engine driver internal helpers */
484 int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
485                                struct nand_device *nand)
486 {
487         unsigned int total_buffer_size;
488
489         ctx->nand = nand;
490
491         /* Let the user decide the exact length of each buffer */
492         if (!ctx->page_buffer_size)
493                 ctx->page_buffer_size = nanddev_page_size(nand);
494         if (!ctx->oob_buffer_size)
495                 ctx->oob_buffer_size = nanddev_per_page_oobsize(nand);
496
497         total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size;
498
499         ctx->spare_databuf = kzalloc(total_buffer_size, GFP_KERNEL);
500         if (!ctx->spare_databuf)
501                 return -ENOMEM;
502
503         ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size;
504
505         return 0;
506 }
507 EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking);
508
509 void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx)
510 {
511         kfree(ctx->spare_databuf);
512 }
513 EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking);
514
515 /*
516  * Ensure data and OOB area is fully read/written otherwise the correction might
517  * not work as expected.
518  */
519 void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
520                         struct nand_page_io_req *req)
521 {
522         struct nand_device *nand = ctx->nand;
523         struct nand_page_io_req *orig, *tweak;
524
525         /* Save the original request */
526         ctx->orig_req = *req;
527         ctx->bounce_data = false;
528         ctx->bounce_oob = false;
529         orig = &ctx->orig_req;
530         tweak = req;
531
532         /* Ensure the request covers the entire page */
533         if (orig->datalen < nanddev_page_size(nand)) {
534                 ctx->bounce_data = true;
535                 tweak->dataoffs = 0;
536                 tweak->datalen = nanddev_page_size(nand);
537                 tweak->databuf.in = ctx->spare_databuf;
538                 memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size);
539         }
540
541         if (orig->ooblen < nanddev_per_page_oobsize(nand)) {
542                 ctx->bounce_oob = true;
543                 tweak->ooboffs = 0;
544                 tweak->ooblen = nanddev_per_page_oobsize(nand);
545                 tweak->oobbuf.in = ctx->spare_oobbuf;
546                 memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size);
547         }
548
549         /* Copy the data that must be writen in the bounce buffers, if needed */
550         if (orig->type == NAND_PAGE_WRITE) {
551                 if (ctx->bounce_data)
552                         memcpy((void *)tweak->databuf.out + orig->dataoffs,
553                                orig->databuf.out, orig->datalen);
554
555                 if (ctx->bounce_oob)
556                         memcpy((void *)tweak->oobbuf.out + orig->ooboffs,
557                                orig->oobbuf.out, orig->ooblen);
558         }
559 }
560 EXPORT_SYMBOL_GPL(nand_ecc_tweak_req);
561
562 void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
563                           struct nand_page_io_req *req)
564 {
565         struct nand_page_io_req *orig, *tweak;
566
567         orig = &ctx->orig_req;
568         tweak = req;
569
570         /* Restore the data read from the bounce buffers, if needed */
571         if (orig->type == NAND_PAGE_READ) {
572                 if (ctx->bounce_data)
573                         memcpy(orig->databuf.in,
574                                tweak->databuf.in + orig->dataoffs,
575                                orig->datalen);
576
577                 if (ctx->bounce_oob)
578                         memcpy(orig->oobbuf.in,
579                                tweak->oobbuf.in + orig->ooboffs,
580                                orig->ooblen);
581         }
582
583         /* Ensure the original request is restored */
584         *req = *orig;
585 }
586 EXPORT_SYMBOL_GPL(nand_ecc_restore_req);
587
588 struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand)
589 {
590         unsigned int algo = nand->ecc.user_conf.algo;
591
592         if (algo == NAND_ECC_ALGO_UNKNOWN)
593                 algo = nand->ecc.defaults.algo;
594
595         switch (algo) {
596         case NAND_ECC_ALGO_HAMMING:
597                 return nand_ecc_sw_hamming_get_engine();
598         case NAND_ECC_ALGO_BCH:
599                 return nand_ecc_sw_bch_get_engine();
600         default:
601                 break;
602         }
603
604         return NULL;
605 }
606 EXPORT_SYMBOL(nand_ecc_get_sw_engine);
607
608 struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand)
609 {
610         return nand->ecc.ondie_engine;
611 }
612 EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine);
613
614 MODULE_LICENSE("GPL");
615 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
616 MODULE_DESCRIPTION("Generic ECC engine");