Merge tag 'for-backlight-next-4.16' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / mtd / nand / atmel / nand-controller.c
1 /*
2  * Copyright 2017 ATMEL
3  * Copyright 2017 Free Electrons
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * Derived from the atmel_nand.c driver which contained the following
8  * copyrights:
9  *
10  *   Copyright 2003 Rick Bronson
11  *
12  *   Derived from drivers/mtd/nand/autcpu12.c
13  *      Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
14  *
15  *   Derived from drivers/mtd/spia.c
16  *      Copyright 2000 Steven J. Hill (sjhill@cotw.com)
17  *
18  *
19  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
20  *      Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
21  *
22  *   Derived from Das U-Boot source code
23  *      (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24  *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
25  *
26  *   Add Programmable Multibit ECC support for various AT91 SoC
27  *      Copyright 2012 ATMEL, Hong Xu
28  *
29  *   Add Nand Flash Controller support for SAMA5 SoC
30  *      Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
31  *
32  * This program is free software; you can redistribute it and/or modify
33  * it under the terms of the GNU General Public License version 2 as
34  * published by the Free Software Foundation.
35  *
36  * A few words about the naming convention in this file. This convention
37  * applies to structure and function names.
38  *
39  * Prefixes:
40  *
41  * - atmel_nand_: all generic structures/functions
42  * - atmel_smc_nand_: all structures/functions specific to the SMC interface
43  *                    (at91sam9 and avr32 SoCs)
44  * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
45  *                     (sama5 SoCs and later)
46  * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
47  *               that is available in the HSMC block
48  * - <soc>_nand_: all SoC specific structures/functions
49  */
50
51 #include <linux/clk.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/dmaengine.h>
54 #include <linux/genalloc.h>
55 #include <linux/gpio.h>
56 #include <linux/gpio/consumer.h>
57 #include <linux/interrupt.h>
58 #include <linux/mfd/syscon.h>
59 #include <linux/mfd/syscon/atmel-matrix.h>
60 #include <linux/mfd/syscon/atmel-smc.h>
61 #include <linux/module.h>
62 #include <linux/mtd/rawnand.h>
63 #include <linux/of_address.h>
64 #include <linux/of_irq.h>
65 #include <linux/of_platform.h>
66 #include <linux/iopoll.h>
67 #include <linux/platform_device.h>
68 #include <linux/regmap.h>
69
70 #include "pmecc.h"
71
72 #define ATMEL_HSMC_NFC_CFG                      0x0
73 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)         (((x) / 4) << 24)
74 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK       GENMASK(30, 24)
75 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)        (((cyc) << 16) | ((mul) << 20))
76 #define ATMEL_HSMC_NFC_CFG_DTO_MAX              GENMASK(22, 16)
77 #define ATMEL_HSMC_NFC_CFG_RBEDGE               BIT(13)
78 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE         BIT(12)
79 #define ATMEL_HSMC_NFC_CFG_RSPARE               BIT(9)
80 #define ATMEL_HSMC_NFC_CFG_WSPARE               BIT(8)
81 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK        GENMASK(2, 0)
82 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)          (fls((x) / 512) - 1)
83
84 #define ATMEL_HSMC_NFC_CTRL                     0x4
85 #define ATMEL_HSMC_NFC_CTRL_EN                  BIT(0)
86 #define ATMEL_HSMC_NFC_CTRL_DIS                 BIT(1)
87
88 #define ATMEL_HSMC_NFC_SR                       0x8
89 #define ATMEL_HSMC_NFC_IER                      0xc
90 #define ATMEL_HSMC_NFC_IDR                      0x10
91 #define ATMEL_HSMC_NFC_IMR                      0x14
92 #define ATMEL_HSMC_NFC_SR_ENABLED               BIT(1)
93 #define ATMEL_HSMC_NFC_SR_RB_RISE               BIT(4)
94 #define ATMEL_HSMC_NFC_SR_RB_FALL               BIT(5)
95 #define ATMEL_HSMC_NFC_SR_BUSY                  BIT(8)
96 #define ATMEL_HSMC_NFC_SR_WR                    BIT(11)
97 #define ATMEL_HSMC_NFC_SR_CSID                  GENMASK(14, 12)
98 #define ATMEL_HSMC_NFC_SR_XFRDONE               BIT(16)
99 #define ATMEL_HSMC_NFC_SR_CMDDONE               BIT(17)
100 #define ATMEL_HSMC_NFC_SR_DTOE                  BIT(20)
101 #define ATMEL_HSMC_NFC_SR_UNDEF                 BIT(21)
102 #define ATMEL_HSMC_NFC_SR_AWB                   BIT(22)
103 #define ATMEL_HSMC_NFC_SR_NFCASE                BIT(23)
104 #define ATMEL_HSMC_NFC_SR_ERRORS                (ATMEL_HSMC_NFC_SR_DTOE | \
105                                                  ATMEL_HSMC_NFC_SR_UNDEF | \
106                                                  ATMEL_HSMC_NFC_SR_AWB | \
107                                                  ATMEL_HSMC_NFC_SR_NFCASE)
108 #define ATMEL_HSMC_NFC_SR_RBEDGE(x)             BIT((x) + 24)
109
110 #define ATMEL_HSMC_NFC_ADDR                     0x18
111 #define ATMEL_HSMC_NFC_BANK                     0x1c
112
113 #define ATMEL_NFC_MAX_RB_ID                     7
114
115 #define ATMEL_NFC_SRAM_SIZE                     0x2400
116
117 #define ATMEL_NFC_CMD(pos, cmd)                 ((cmd) << (((pos) * 8) + 2))
118 #define ATMEL_NFC_VCMD2                         BIT(18)
119 #define ATMEL_NFC_ACYCLE(naddrs)                ((naddrs) << 19)
120 #define ATMEL_NFC_CSID(cs)                      ((cs) << 22)
121 #define ATMEL_NFC_DATAEN                        BIT(25)
122 #define ATMEL_NFC_NFCWR                         BIT(26)
123
124 #define ATMEL_NFC_MAX_ADDR_CYCLES               5
125
126 #define ATMEL_NAND_ALE_OFFSET                   BIT(21)
127 #define ATMEL_NAND_CLE_OFFSET                   BIT(22)
128
129 #define DEFAULT_TIMEOUT_MS                      1000
130 #define MIN_DMA_LEN                             128
131
132 enum atmel_nand_rb_type {
133         ATMEL_NAND_NO_RB,
134         ATMEL_NAND_NATIVE_RB,
135         ATMEL_NAND_GPIO_RB,
136 };
137
138 struct atmel_nand_rb {
139         enum atmel_nand_rb_type type;
140         union {
141                 struct gpio_desc *gpio;
142                 int id;
143         };
144 };
145
146 struct atmel_nand_cs {
147         int id;
148         struct atmel_nand_rb rb;
149         struct gpio_desc *csgpio;
150         struct {
151                 void __iomem *virt;
152                 dma_addr_t dma;
153         } io;
154
155         struct atmel_smc_cs_conf smcconf;
156 };
157
158 struct atmel_nand {
159         struct list_head node;
160         struct device *dev;
161         struct nand_chip base;
162         struct atmel_nand_cs *activecs;
163         struct atmel_pmecc_user *pmecc;
164         struct gpio_desc *cdgpio;
165         int numcs;
166         struct atmel_nand_cs cs[];
167 };
168
169 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
170 {
171         return container_of(chip, struct atmel_nand, base);
172 }
173
174 enum atmel_nfc_data_xfer {
175         ATMEL_NFC_NO_DATA,
176         ATMEL_NFC_READ_DATA,
177         ATMEL_NFC_WRITE_DATA,
178 };
179
180 struct atmel_nfc_op {
181         u8 cs;
182         u8 ncmds;
183         u8 cmds[2];
184         u8 naddrs;
185         u8 addrs[5];
186         enum atmel_nfc_data_xfer data;
187         u32 wait;
188         u32 errors;
189 };
190
191 struct atmel_nand_controller;
192 struct atmel_nand_controller_caps;
193
194 struct atmel_nand_controller_ops {
195         int (*probe)(struct platform_device *pdev,
196                      const struct atmel_nand_controller_caps *caps);
197         int (*remove)(struct atmel_nand_controller *nc);
198         void (*nand_init)(struct atmel_nand_controller *nc,
199                           struct atmel_nand *nand);
200         int (*ecc_init)(struct atmel_nand *nand);
201         int (*setup_data_interface)(struct atmel_nand *nand, int csline,
202                                     const struct nand_data_interface *conf);
203 };
204
205 struct atmel_nand_controller_caps {
206         bool has_dma;
207         bool legacy_of_bindings;
208         u32 ale_offs;
209         u32 cle_offs;
210         const struct atmel_nand_controller_ops *ops;
211 };
212
213 struct atmel_nand_controller {
214         struct nand_hw_control base;
215         const struct atmel_nand_controller_caps *caps;
216         struct device *dev;
217         struct regmap *smc;
218         struct dma_chan *dmac;
219         struct atmel_pmecc *pmecc;
220         struct list_head chips;
221         struct clk *mck;
222 };
223
224 static inline struct atmel_nand_controller *
225 to_nand_controller(struct nand_hw_control *ctl)
226 {
227         return container_of(ctl, struct atmel_nand_controller, base);
228 }
229
230 struct atmel_smc_nand_controller {
231         struct atmel_nand_controller base;
232         struct regmap *matrix;
233         unsigned int ebi_csa_offs;
234 };
235
236 static inline struct atmel_smc_nand_controller *
237 to_smc_nand_controller(struct nand_hw_control *ctl)
238 {
239         return container_of(to_nand_controller(ctl),
240                             struct atmel_smc_nand_controller, base);
241 }
242
243 struct atmel_hsmc_nand_controller {
244         struct atmel_nand_controller base;
245         struct {
246                 struct gen_pool *pool;
247                 void __iomem *virt;
248                 dma_addr_t dma;
249         } sram;
250         const struct atmel_hsmc_reg_layout *hsmc_layout;
251         struct regmap *io;
252         struct atmel_nfc_op op;
253         struct completion complete;
254         int irq;
255
256         /* Only used when instantiating from legacy DT bindings. */
257         struct clk *clk;
258 };
259
260 static inline struct atmel_hsmc_nand_controller *
261 to_hsmc_nand_controller(struct nand_hw_control *ctl)
262 {
263         return container_of(to_nand_controller(ctl),
264                             struct atmel_hsmc_nand_controller, base);
265 }
266
267 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
268 {
269         op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
270         op->wait ^= status & op->wait;
271
272         return !op->wait || op->errors;
273 }
274
275 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
276 {
277         struct atmel_hsmc_nand_controller *nc = data;
278         u32 sr, rcvd;
279         bool done;
280
281         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
282
283         rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
284         done = atmel_nfc_op_done(&nc->op, sr);
285
286         if (rcvd)
287                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
288
289         if (done)
290                 complete(&nc->complete);
291
292         return rcvd ? IRQ_HANDLED : IRQ_NONE;
293 }
294
295 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
296                           unsigned int timeout_ms)
297 {
298         int ret;
299
300         if (!timeout_ms)
301                 timeout_ms = DEFAULT_TIMEOUT_MS;
302
303         if (poll) {
304                 u32 status;
305
306                 ret = regmap_read_poll_timeout(nc->base.smc,
307                                                ATMEL_HSMC_NFC_SR, status,
308                                                atmel_nfc_op_done(&nc->op,
309                                                                  status),
310                                                0, timeout_ms * 1000);
311         } else {
312                 init_completion(&nc->complete);
313                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
314                              nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
315                 ret = wait_for_completion_timeout(&nc->complete,
316                                                 msecs_to_jiffies(timeout_ms));
317                 if (!ret)
318                         ret = -ETIMEDOUT;
319                 else
320                         ret = 0;
321
322                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
323         }
324
325         if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
326                 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
327                 ret = -ETIMEDOUT;
328         }
329
330         if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
331                 dev_err(nc->base.dev, "Access to an undefined area\n");
332                 ret = -EIO;
333         }
334
335         if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
336                 dev_err(nc->base.dev, "Access while busy\n");
337                 ret = -EIO;
338         }
339
340         if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
341                 dev_err(nc->base.dev, "Wrong access size\n");
342                 ret = -EIO;
343         }
344
345         return ret;
346 }
347
348 static void atmel_nand_dma_transfer_finished(void *data)
349 {
350         struct completion *finished = data;
351
352         complete(finished);
353 }
354
355 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
356                                    void *buf, dma_addr_t dev_dma, size_t len,
357                                    enum dma_data_direction dir)
358 {
359         DECLARE_COMPLETION_ONSTACK(finished);
360         dma_addr_t src_dma, dst_dma, buf_dma;
361         struct dma_async_tx_descriptor *tx;
362         dma_cookie_t cookie;
363
364         buf_dma = dma_map_single(nc->dev, buf, len, dir);
365         if (dma_mapping_error(nc->dev, dev_dma)) {
366                 dev_err(nc->dev,
367                         "Failed to prepare a buffer for DMA access\n");
368                 goto err;
369         }
370
371         if (dir == DMA_FROM_DEVICE) {
372                 src_dma = dev_dma;
373                 dst_dma = buf_dma;
374         } else {
375                 src_dma = buf_dma;
376                 dst_dma = dev_dma;
377         }
378
379         tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
380                                        DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
381         if (!tx) {
382                 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
383                 goto err_unmap;
384         }
385
386         tx->callback = atmel_nand_dma_transfer_finished;
387         tx->callback_param = &finished;
388
389         cookie = dmaengine_submit(tx);
390         if (dma_submit_error(cookie)) {
391                 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
392                 goto err_unmap;
393         }
394
395         dma_async_issue_pending(nc->dmac);
396         wait_for_completion(&finished);
397
398         return 0;
399
400 err_unmap:
401         dma_unmap_single(nc->dev, buf_dma, len, dir);
402
403 err:
404         dev_dbg(nc->dev, "Fall back to CPU I/O\n");
405
406         return -EIO;
407 }
408
409 static u8 atmel_nand_read_byte(struct mtd_info *mtd)
410 {
411         struct nand_chip *chip = mtd_to_nand(mtd);
412         struct atmel_nand *nand = to_atmel_nand(chip);
413
414         return ioread8(nand->activecs->io.virt);
415 }
416
417 static u16 atmel_nand_read_word(struct mtd_info *mtd)
418 {
419         struct nand_chip *chip = mtd_to_nand(mtd);
420         struct atmel_nand *nand = to_atmel_nand(chip);
421
422         return ioread16(nand->activecs->io.virt);
423 }
424
425 static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
426 {
427         struct nand_chip *chip = mtd_to_nand(mtd);
428         struct atmel_nand *nand = to_atmel_nand(chip);
429
430         if (chip->options & NAND_BUSWIDTH_16)
431                 iowrite16(byte | (byte << 8), nand->activecs->io.virt);
432         else
433                 iowrite8(byte, nand->activecs->io.virt);
434 }
435
436 static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
437 {
438         struct nand_chip *chip = mtd_to_nand(mtd);
439         struct atmel_nand *nand = to_atmel_nand(chip);
440         struct atmel_nand_controller *nc;
441
442         nc = to_nand_controller(chip->controller);
443
444         /*
445          * If the controller supports DMA, the buffer address is DMA-able and
446          * len is long enough to make DMA transfers profitable, let's trigger
447          * a DMA transfer. If it fails, fallback to PIO mode.
448          */
449         if (nc->dmac && virt_addr_valid(buf) &&
450             len >= MIN_DMA_LEN &&
451             !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
452                                      DMA_FROM_DEVICE))
453                 return;
454
455         if (chip->options & NAND_BUSWIDTH_16)
456                 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
457         else
458                 ioread8_rep(nand->activecs->io.virt, buf, len);
459 }
460
461 static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
462 {
463         struct nand_chip *chip = mtd_to_nand(mtd);
464         struct atmel_nand *nand = to_atmel_nand(chip);
465         struct atmel_nand_controller *nc;
466
467         nc = to_nand_controller(chip->controller);
468
469         /*
470          * If the controller supports DMA, the buffer address is DMA-able and
471          * len is long enough to make DMA transfers profitable, let's trigger
472          * a DMA transfer. If it fails, fallback to PIO mode.
473          */
474         if (nc->dmac && virt_addr_valid(buf) &&
475             len >= MIN_DMA_LEN &&
476             !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
477                                      len, DMA_TO_DEVICE))
478                 return;
479
480         if (chip->options & NAND_BUSWIDTH_16)
481                 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
482         else
483                 iowrite8_rep(nand->activecs->io.virt, buf, len);
484 }
485
486 static int atmel_nand_dev_ready(struct mtd_info *mtd)
487 {
488         struct nand_chip *chip = mtd_to_nand(mtd);
489         struct atmel_nand *nand = to_atmel_nand(chip);
490
491         return gpiod_get_value(nand->activecs->rb.gpio);
492 }
493
494 static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
495 {
496         struct nand_chip *chip = mtd_to_nand(mtd);
497         struct atmel_nand *nand = to_atmel_nand(chip);
498
499         if (cs < 0 || cs >= nand->numcs) {
500                 nand->activecs = NULL;
501                 chip->dev_ready = NULL;
502                 return;
503         }
504
505         nand->activecs = &nand->cs[cs];
506
507         if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
508                 chip->dev_ready = atmel_nand_dev_ready;
509 }
510
511 static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
512 {
513         struct nand_chip *chip = mtd_to_nand(mtd);
514         struct atmel_nand *nand = to_atmel_nand(chip);
515         struct atmel_hsmc_nand_controller *nc;
516         u32 status;
517
518         nc = to_hsmc_nand_controller(chip->controller);
519
520         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
521
522         return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
523 }
524
525 static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
526 {
527         struct nand_chip *chip = mtd_to_nand(mtd);
528         struct atmel_nand *nand = to_atmel_nand(chip);
529         struct atmel_hsmc_nand_controller *nc;
530
531         nc = to_hsmc_nand_controller(chip->controller);
532
533         atmel_nand_select_chip(mtd, cs);
534
535         if (!nand->activecs) {
536                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
537                              ATMEL_HSMC_NFC_CTRL_DIS);
538                 return;
539         }
540
541         if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
542                 chip->dev_ready = atmel_hsmc_nand_dev_ready;
543
544         regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
545                            ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
546                            ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
547                            ATMEL_HSMC_NFC_CFG_RSPARE |
548                            ATMEL_HSMC_NFC_CFG_WSPARE,
549                            ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
550                            ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
551                            ATMEL_HSMC_NFC_CFG_RSPARE);
552         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
553                      ATMEL_HSMC_NFC_CTRL_EN);
554 }
555
556 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
557 {
558         u8 *addrs = nc->op.addrs;
559         unsigned int op = 0;
560         u32 addr, val;
561         int i, ret;
562
563         nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
564
565         for (i = 0; i < nc->op.ncmds; i++)
566                 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
567
568         if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
569                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
570
571         op |= ATMEL_NFC_CSID(nc->op.cs) |
572               ATMEL_NFC_ACYCLE(nc->op.naddrs);
573
574         if (nc->op.ncmds > 1)
575                 op |= ATMEL_NFC_VCMD2;
576
577         addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
578                (addrs[3] << 24);
579
580         if (nc->op.data != ATMEL_NFC_NO_DATA) {
581                 op |= ATMEL_NFC_DATAEN;
582                 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
583
584                 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
585                         op |= ATMEL_NFC_NFCWR;
586         }
587
588         /* Clear all flags. */
589         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
590
591         /* Send the command. */
592         regmap_write(nc->io, op, addr);
593
594         ret = atmel_nfc_wait(nc, poll, 0);
595         if (ret)
596                 dev_err(nc->base.dev,
597                         "Failed to send NAND command (err = %d)!",
598                         ret);
599
600         /* Reset the op state. */
601         memset(&nc->op, 0, sizeof(nc->op));
602
603         return ret;
604 }
605
606 static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
607                                      unsigned int ctrl)
608 {
609         struct nand_chip *chip = mtd_to_nand(mtd);
610         struct atmel_nand *nand = to_atmel_nand(chip);
611         struct atmel_hsmc_nand_controller *nc;
612
613         nc = to_hsmc_nand_controller(chip->controller);
614
615         if (ctrl & NAND_ALE) {
616                 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
617                         return;
618
619                 nc->op.addrs[nc->op.naddrs++] = dat;
620         } else if (ctrl & NAND_CLE) {
621                 if (nc->op.ncmds > 1)
622                         return;
623
624                 nc->op.cmds[nc->op.ncmds++] = dat;
625         }
626
627         if (dat == NAND_CMD_NONE) {
628                 nc->op.cs = nand->activecs->id;
629                 atmel_nfc_exec_op(nc, true);
630         }
631 }
632
633 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
634                                 unsigned int ctrl)
635 {
636         struct nand_chip *chip = mtd_to_nand(mtd);
637         struct atmel_nand *nand = to_atmel_nand(chip);
638         struct atmel_nand_controller *nc;
639
640         nc = to_nand_controller(chip->controller);
641
642         if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
643                 if (ctrl & NAND_NCE)
644                         gpiod_set_value(nand->activecs->csgpio, 0);
645                 else
646                         gpiod_set_value(nand->activecs->csgpio, 1);
647         }
648
649         if (ctrl & NAND_ALE)
650                 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
651         else if (ctrl & NAND_CLE)
652                 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
653 }
654
655 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
656                                    bool oob_required)
657 {
658         struct mtd_info *mtd = nand_to_mtd(chip);
659         struct atmel_hsmc_nand_controller *nc;
660         int ret = -EIO;
661
662         nc = to_hsmc_nand_controller(chip->controller);
663
664         if (nc->base.dmac)
665                 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
666                                               nc->sram.dma, mtd->writesize,
667                                               DMA_TO_DEVICE);
668
669         /* Falling back to CPU copy. */
670         if (ret)
671                 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
672
673         if (oob_required)
674                 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
675                             mtd->oobsize);
676 }
677
678 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
679                                      bool oob_required)
680 {
681         struct mtd_info *mtd = nand_to_mtd(chip);
682         struct atmel_hsmc_nand_controller *nc;
683         int ret = -EIO;
684
685         nc = to_hsmc_nand_controller(chip->controller);
686
687         if (nc->base.dmac)
688                 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
689                                               mtd->writesize, DMA_FROM_DEVICE);
690
691         /* Falling back to CPU copy. */
692         if (ret)
693                 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
694
695         if (oob_required)
696                 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
697                               mtd->oobsize);
698 }
699
700 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
701 {
702         struct mtd_info *mtd = nand_to_mtd(chip);
703         struct atmel_hsmc_nand_controller *nc;
704
705         nc = to_hsmc_nand_controller(chip->controller);
706
707         if (column >= 0) {
708                 nc->op.addrs[nc->op.naddrs++] = column;
709
710                 /*
711                  * 2 address cycles for the column offset on large page NANDs.
712                  */
713                 if (mtd->writesize > 512)
714                         nc->op.addrs[nc->op.naddrs++] = column >> 8;
715         }
716
717         if (page >= 0) {
718                 nc->op.addrs[nc->op.naddrs++] = page;
719                 nc->op.addrs[nc->op.naddrs++] = page >> 8;
720
721                 if (chip->options & NAND_ROW_ADDR_3)
722                         nc->op.addrs[nc->op.naddrs++] = page >> 16;
723         }
724 }
725
726 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
727 {
728         struct atmel_nand *nand = to_atmel_nand(chip);
729         struct atmel_nand_controller *nc;
730         int ret;
731
732         nc = to_nand_controller(chip->controller);
733
734         if (raw)
735                 return 0;
736
737         ret = atmel_pmecc_enable(nand->pmecc, op);
738         if (ret)
739                 dev_err(nc->dev,
740                         "Failed to enable ECC engine (err = %d)\n", ret);
741
742         return ret;
743 }
744
745 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
746 {
747         struct atmel_nand *nand = to_atmel_nand(chip);
748
749         if (!raw)
750                 atmel_pmecc_disable(nand->pmecc);
751 }
752
753 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
754 {
755         struct atmel_nand *nand = to_atmel_nand(chip);
756         struct mtd_info *mtd = nand_to_mtd(chip);
757         struct atmel_nand_controller *nc;
758         struct mtd_oob_region oobregion;
759         void *eccbuf;
760         int ret, i;
761
762         nc = to_nand_controller(chip->controller);
763
764         if (raw)
765                 return 0;
766
767         ret = atmel_pmecc_wait_rdy(nand->pmecc);
768         if (ret) {
769                 dev_err(nc->dev,
770                         "Failed to transfer NAND page data (err = %d)\n",
771                         ret);
772                 return ret;
773         }
774
775         mtd_ooblayout_ecc(mtd, 0, &oobregion);
776         eccbuf = chip->oob_poi + oobregion.offset;
777
778         for (i = 0; i < chip->ecc.steps; i++) {
779                 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
780                                                    eccbuf);
781                 eccbuf += chip->ecc.bytes;
782         }
783
784         return 0;
785 }
786
787 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
788                                          bool raw)
789 {
790         struct atmel_nand *nand = to_atmel_nand(chip);
791         struct mtd_info *mtd = nand_to_mtd(chip);
792         struct atmel_nand_controller *nc;
793         struct mtd_oob_region oobregion;
794         int ret, i, max_bitflips = 0;
795         void *databuf, *eccbuf;
796
797         nc = to_nand_controller(chip->controller);
798
799         if (raw)
800                 return 0;
801
802         ret = atmel_pmecc_wait_rdy(nand->pmecc);
803         if (ret) {
804                 dev_err(nc->dev,
805                         "Failed to read NAND page data (err = %d)\n",
806                         ret);
807                 return ret;
808         }
809
810         mtd_ooblayout_ecc(mtd, 0, &oobregion);
811         eccbuf = chip->oob_poi + oobregion.offset;
812         databuf = buf;
813
814         for (i = 0; i < chip->ecc.steps; i++) {
815                 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
816                                                  eccbuf);
817                 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
818                         ret = nand_check_erased_ecc_chunk(databuf,
819                                                           chip->ecc.size,
820                                                           eccbuf,
821                                                           chip->ecc.bytes,
822                                                           NULL, 0,
823                                                           chip->ecc.strength);
824
825                 if (ret >= 0)
826                         max_bitflips = max(ret, max_bitflips);
827                 else
828                         mtd->ecc_stats.failed++;
829
830                 databuf += chip->ecc.size;
831                 eccbuf += chip->ecc.bytes;
832         }
833
834         return max_bitflips;
835 }
836
837 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
838                                      bool oob_required, int page, bool raw)
839 {
840         struct mtd_info *mtd = nand_to_mtd(chip);
841         struct atmel_nand *nand = to_atmel_nand(chip);
842         int ret;
843
844         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
845         if (ret)
846                 return ret;
847
848         atmel_nand_write_buf(mtd, buf, mtd->writesize);
849
850         ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
851         if (ret) {
852                 atmel_pmecc_disable(nand->pmecc);
853                 return ret;
854         }
855
856         atmel_nand_pmecc_disable(chip, raw);
857
858         atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
859
860         return 0;
861 }
862
863 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
864                                        struct nand_chip *chip, const u8 *buf,
865                                        int oob_required, int page)
866 {
867         return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
868 }
869
870 static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
871                                            struct nand_chip *chip,
872                                            const u8 *buf, int oob_required,
873                                            int page)
874 {
875         return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
876 }
877
878 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
879                                     bool oob_required, int page, bool raw)
880 {
881         struct mtd_info *mtd = nand_to_mtd(chip);
882         int ret;
883
884         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
885         if (ret)
886                 return ret;
887
888         atmel_nand_read_buf(mtd, buf, mtd->writesize);
889         atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
890
891         ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
892
893         atmel_nand_pmecc_disable(chip, raw);
894
895         return ret;
896 }
897
898 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
899                                       struct nand_chip *chip, u8 *buf,
900                                       int oob_required, int page)
901 {
902         return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
903 }
904
905 static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
906                                           struct nand_chip *chip, u8 *buf,
907                                           int oob_required, int page)
908 {
909         return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
910 }
911
912 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
913                                           const u8 *buf, bool oob_required,
914                                           int page, bool raw)
915 {
916         struct mtd_info *mtd = nand_to_mtd(chip);
917         struct atmel_nand *nand = to_atmel_nand(chip);
918         struct atmel_hsmc_nand_controller *nc;
919         int ret, status;
920
921         nc = to_hsmc_nand_controller(chip->controller);
922
923         atmel_nfc_copy_to_sram(chip, buf, false);
924
925         nc->op.cmds[0] = NAND_CMD_SEQIN;
926         nc->op.ncmds = 1;
927         atmel_nfc_set_op_addr(chip, page, 0x0);
928         nc->op.cs = nand->activecs->id;
929         nc->op.data = ATMEL_NFC_WRITE_DATA;
930
931         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
932         if (ret)
933                 return ret;
934
935         ret = atmel_nfc_exec_op(nc, false);
936         if (ret) {
937                 atmel_nand_pmecc_disable(chip, raw);
938                 dev_err(nc->base.dev,
939                         "Failed to transfer NAND page data (err = %d)\n",
940                         ret);
941                 return ret;
942         }
943
944         ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
945
946         atmel_nand_pmecc_disable(chip, raw);
947
948         if (ret)
949                 return ret;
950
951         atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
952
953         nc->op.cmds[0] = NAND_CMD_PAGEPROG;
954         nc->op.ncmds = 1;
955         nc->op.cs = nand->activecs->id;
956         ret = atmel_nfc_exec_op(nc, false);
957         if (ret)
958                 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
959                         ret);
960
961         status = chip->waitfunc(mtd, chip);
962         if (status & NAND_STATUS_FAIL)
963                 return -EIO;
964
965         return ret;
966 }
967
968 static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
969                                             struct nand_chip *chip,
970                                             const u8 *buf, int oob_required,
971                                             int page)
972 {
973         return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
974                                               false);
975 }
976
977 static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
978                                                 struct nand_chip *chip,
979                                                 const u8 *buf,
980                                                 int oob_required, int page)
981 {
982         return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
983                                               true);
984 }
985
986 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
987                                          bool oob_required, int page,
988                                          bool raw)
989 {
990         struct mtd_info *mtd = nand_to_mtd(chip);
991         struct atmel_nand *nand = to_atmel_nand(chip);
992         struct atmel_hsmc_nand_controller *nc;
993         int ret;
994
995         nc = to_hsmc_nand_controller(chip->controller);
996
997         /*
998          * Optimized read page accessors only work when the NAND R/B pin is
999          * connected to a native SoC R/B pin. If that's not the case, fallback
1000          * to the non-optimized one.
1001          */
1002         if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
1003                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1004
1005                 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1006                                                 raw);
1007         }
1008
1009         nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1010
1011         if (mtd->writesize > 512)
1012                 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1013
1014         atmel_nfc_set_op_addr(chip, page, 0x0);
1015         nc->op.cs = nand->activecs->id;
1016         nc->op.data = ATMEL_NFC_READ_DATA;
1017
1018         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1019         if (ret)
1020                 return ret;
1021
1022         ret = atmel_nfc_exec_op(nc, false);
1023         if (ret) {
1024                 atmel_nand_pmecc_disable(chip, raw);
1025                 dev_err(nc->base.dev,
1026                         "Failed to load NAND page data (err = %d)\n",
1027                         ret);
1028                 return ret;
1029         }
1030
1031         atmel_nfc_copy_from_sram(chip, buf, true);
1032
1033         ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1034
1035         atmel_nand_pmecc_disable(chip, raw);
1036
1037         return ret;
1038 }
1039
1040 static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
1041                                            struct nand_chip *chip, u8 *buf,
1042                                            int oob_required, int page)
1043 {
1044         return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1045                                              false);
1046 }
1047
1048 static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
1049                                                struct nand_chip *chip,
1050                                                u8 *buf, int oob_required,
1051                                                int page)
1052 {
1053         return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1054                                              true);
1055 }
1056
1057 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1058 {
1059         struct mtd_info *mtd = nand_to_mtd(chip);
1060         struct atmel_nand *nand = to_atmel_nand(chip);
1061         struct atmel_nand_controller *nc;
1062         struct atmel_pmecc_user_req req;
1063
1064         nc = to_nand_controller(chip->controller);
1065
1066         if (!nc->pmecc) {
1067                 dev_err(nc->dev, "HW ECC not supported\n");
1068                 return -ENOTSUPP;
1069         }
1070
1071         if (nc->caps->legacy_of_bindings) {
1072                 u32 val;
1073
1074                 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1075                                           &val))
1076                         chip->ecc.strength = val;
1077
1078                 if (!of_property_read_u32(nc->dev->of_node,
1079                                           "atmel,pmecc-sector-size",
1080                                           &val))
1081                         chip->ecc.size = val;
1082         }
1083
1084         if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1085                 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1086         else if (chip->ecc.strength)
1087                 req.ecc.strength = chip->ecc.strength;
1088         else if (chip->ecc_strength_ds)
1089                 req.ecc.strength = chip->ecc_strength_ds;
1090         else
1091                 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1092
1093         if (chip->ecc.size)
1094                 req.ecc.sectorsize = chip->ecc.size;
1095         else if (chip->ecc_step_ds)
1096                 req.ecc.sectorsize = chip->ecc_step_ds;
1097         else
1098                 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1099
1100         req.pagesize = mtd->writesize;
1101         req.oobsize = mtd->oobsize;
1102
1103         if (mtd->writesize <= 512) {
1104                 req.ecc.bytes = 4;
1105                 req.ecc.ooboffset = 0;
1106         } else {
1107                 req.ecc.bytes = mtd->oobsize - 2;
1108                 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1109         }
1110
1111         nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1112         if (IS_ERR(nand->pmecc))
1113                 return PTR_ERR(nand->pmecc);
1114
1115         chip->ecc.algo = NAND_ECC_BCH;
1116         chip->ecc.size = req.ecc.sectorsize;
1117         chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1118         chip->ecc.strength = req.ecc.strength;
1119
1120         chip->options |= NAND_NO_SUBPAGE_WRITE;
1121
1122         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1123
1124         return 0;
1125 }
1126
1127 static int atmel_nand_ecc_init(struct atmel_nand *nand)
1128 {
1129         struct nand_chip *chip = &nand->base;
1130         struct atmel_nand_controller *nc;
1131         int ret;
1132
1133         nc = to_nand_controller(chip->controller);
1134
1135         switch (chip->ecc.mode) {
1136         case NAND_ECC_NONE:
1137         case NAND_ECC_SOFT:
1138                 /*
1139                  * Nothing to do, the core will initialize everything for us.
1140                  */
1141                 break;
1142
1143         case NAND_ECC_HW:
1144                 ret = atmel_nand_pmecc_init(chip);
1145                 if (ret)
1146                         return ret;
1147
1148                 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1149                 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1150                 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1151                 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1152                 break;
1153
1154         default:
1155                 /* Other modes are not supported. */
1156                 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1157                         chip->ecc.mode);
1158                 return -ENOTSUPP;
1159         }
1160
1161         return 0;
1162 }
1163
1164 static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
1165 {
1166         struct nand_chip *chip = &nand->base;
1167         int ret;
1168
1169         ret = atmel_nand_ecc_init(nand);
1170         if (ret)
1171                 return ret;
1172
1173         if (chip->ecc.mode != NAND_ECC_HW)
1174                 return 0;
1175
1176         /* Adjust the ECC operations for the HSMC IP. */
1177         chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1178         chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1179         chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1180         chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1181         chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1182
1183         return 0;
1184 }
1185
1186 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1187                                         const struct nand_data_interface *conf,
1188                                         struct atmel_smc_cs_conf *smcconf)
1189 {
1190         u32 ncycles, totalcycles, timeps, mckperiodps;
1191         struct atmel_nand_controller *nc;
1192         int ret;
1193
1194         nc = to_nand_controller(nand->base.controller);
1195
1196         /* DDR interface not supported. */
1197         if (conf->type != NAND_SDR_IFACE)
1198                 return -ENOTSUPP;
1199
1200         /*
1201          * tRC < 30ns implies EDO mode. This controller does not support this
1202          * mode.
1203          */
1204         if (conf->timings.sdr.tRC_min < 30000)
1205                 return -ENOTSUPP;
1206
1207         atmel_smc_cs_conf_init(smcconf);
1208
1209         mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1210         mckperiodps *= 1000;
1211
1212         /*
1213          * Set write pulse timing. This one is easy to extract:
1214          *
1215          * NWE_PULSE = tWP
1216          */
1217         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1218         totalcycles = ncycles;
1219         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1220                                           ncycles);
1221         if (ret)
1222                 return ret;
1223
1224         /*
1225          * The write setup timing depends on the operation done on the NAND.
1226          * All operations goes through the same data bus, but the operation
1227          * type depends on the address we are writing to (ALE/CLE address
1228          * lines).
1229          * Since we have no way to differentiate the different operations at
1230          * the SMC level, we must consider the worst case (the biggest setup
1231          * time among all operation types):
1232          *
1233          * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1234          */
1235         timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1236                       conf->timings.sdr.tALS_min);
1237         timeps = max(timeps, conf->timings.sdr.tDS_min);
1238         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1239         ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1240         totalcycles += ncycles;
1241         ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1242                                           ncycles);
1243         if (ret)
1244                 return ret;
1245
1246         /*
1247          * As for the write setup timing, the write hold timing depends on the
1248          * operation done on the NAND:
1249          *
1250          * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1251          */
1252         timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1253                       conf->timings.sdr.tALH_min);
1254         timeps = max3(timeps, conf->timings.sdr.tDH_min,
1255                       conf->timings.sdr.tWH_min);
1256         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1257         totalcycles += ncycles;
1258
1259         /*
1260          * The write cycle timing is directly matching tWC, but is also
1261          * dependent on the other timings on the setup and hold timings we
1262          * calculated earlier, which gives:
1263          *
1264          * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1265          */
1266         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1267         ncycles = max(totalcycles, ncycles);
1268         ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1269                                           ncycles);
1270         if (ret)
1271                 return ret;
1272
1273         /*
1274          * We don't want the CS line to be toggled between each byte/word
1275          * transfer to the NAND. The only way to guarantee that is to have the
1276          * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1277          *
1278          * NCS_WR_PULSE = NWE_CYCLE
1279          */
1280         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1281                                           ncycles);
1282         if (ret)
1283                 return ret;
1284
1285         /*
1286          * As for the write setup timing, the read hold timing depends on the
1287          * operation done on the NAND:
1288          *
1289          * NRD_HOLD = max(tREH, tRHOH)
1290          */
1291         timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1292         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1293         totalcycles = ncycles;
1294
1295         /*
1296          * TDF = tRHZ - NRD_HOLD
1297          */
1298         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1299         ncycles -= totalcycles;
1300
1301         /*
1302          * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1303          * we might end up with a config that does not fit in the TDF field.
1304          * Just take the max value in this case and hope that the NAND is more
1305          * tolerant than advertised.
1306          */
1307         if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1308                 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1309         else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1310                 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1311
1312         smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1313                          ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1314
1315         /*
1316          * Read pulse timing directly matches tRP:
1317          *
1318          * NRD_PULSE = tRP
1319          */
1320         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1321         totalcycles += ncycles;
1322         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1323                                           ncycles);
1324         if (ret)
1325                 return ret;
1326
1327         /*
1328          * The write cycle timing is directly matching tWC, but is also
1329          * dependent on the setup and hold timings we calculated earlier,
1330          * which gives:
1331          *
1332          * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1333          *
1334          * NRD_SETUP is always 0.
1335          */
1336         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1337         ncycles = max(totalcycles, ncycles);
1338         ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1339                                           ncycles);
1340         if (ret)
1341                 return ret;
1342
1343         /*
1344          * We don't want the CS line to be toggled between each byte/word
1345          * transfer from the NAND. The only way to guarantee that is to have
1346          * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1347          *
1348          * NCS_RD_PULSE = NRD_CYCLE
1349          */
1350         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1351                                           ncycles);
1352         if (ret)
1353                 return ret;
1354
1355         /* Txxx timings are directly matching tXXX ones. */
1356         ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1357         ret = atmel_smc_cs_conf_set_timing(smcconf,
1358                                            ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1359                                            ncycles);
1360         if (ret)
1361                 return ret;
1362
1363         ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1364         ret = atmel_smc_cs_conf_set_timing(smcconf,
1365                                            ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1366                                            ncycles);
1367         /*
1368          * Version 4 of the ONFI spec mandates that tADL be at least 400
1369          * nanoseconds, but, depending on the master clock rate, 400 ns may not
1370          * fit in the tADL field of the SMC reg. We need to relax the check and
1371          * accept the -ERANGE return code.
1372          *
1373          * Note that previous versions of the ONFI spec had a lower tADL_min
1374          * (100 or 200 ns). It's not clear why this timing constraint got
1375          * increased but it seems most NANDs are fine with values lower than
1376          * 400ns, so we should be safe.
1377          */
1378         if (ret && ret != -ERANGE)
1379                 return ret;
1380
1381         ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1382         ret = atmel_smc_cs_conf_set_timing(smcconf,
1383                                            ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1384                                            ncycles);
1385         if (ret)
1386                 return ret;
1387
1388         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1389         ret = atmel_smc_cs_conf_set_timing(smcconf,
1390                                            ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1391                                            ncycles);
1392         if (ret)
1393                 return ret;
1394
1395         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1396         ret = atmel_smc_cs_conf_set_timing(smcconf,
1397                                            ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1398                                            ncycles);
1399         if (ret)
1400                 return ret;
1401
1402         /* Attach the CS line to the NFC logic. */
1403         smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1404
1405         /* Set the appropriate data bus width. */
1406         if (nand->base.options & NAND_BUSWIDTH_16)
1407                 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1408
1409         /* Operate in NRD/NWE READ/WRITEMODE. */
1410         smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1411                          ATMEL_SMC_MODE_WRITEMODE_NWE;
1412
1413         return 0;
1414 }
1415
1416 static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1417                                         int csline,
1418                                         const struct nand_data_interface *conf)
1419 {
1420         struct atmel_nand_controller *nc;
1421         struct atmel_smc_cs_conf smcconf;
1422         struct atmel_nand_cs *cs;
1423         int ret;
1424
1425         nc = to_nand_controller(nand->base.controller);
1426
1427         ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1428         if (ret)
1429                 return ret;
1430
1431         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1432                 return 0;
1433
1434         cs = &nand->cs[csline];
1435         cs->smcconf = smcconf;
1436         atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1437
1438         return 0;
1439 }
1440
1441 static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1442                                         int csline,
1443                                         const struct nand_data_interface *conf)
1444 {
1445         struct atmel_hsmc_nand_controller *nc;
1446         struct atmel_smc_cs_conf smcconf;
1447         struct atmel_nand_cs *cs;
1448         int ret;
1449
1450         nc = to_hsmc_nand_controller(nand->base.controller);
1451
1452         ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1453         if (ret)
1454                 return ret;
1455
1456         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1457                 return 0;
1458
1459         cs = &nand->cs[csline];
1460         cs->smcconf = smcconf;
1461
1462         if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1463                 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1464
1465         atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1466                                  &cs->smcconf);
1467
1468         return 0;
1469 }
1470
1471 static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
1472                                         const struct nand_data_interface *conf)
1473 {
1474         struct nand_chip *chip = mtd_to_nand(mtd);
1475         struct atmel_nand *nand = to_atmel_nand(chip);
1476         struct atmel_nand_controller *nc;
1477
1478         nc = to_nand_controller(nand->base.controller);
1479
1480         if (csline >= nand->numcs ||
1481             (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1482                 return -EINVAL;
1483
1484         return nc->caps->ops->setup_data_interface(nand, csline, conf);
1485 }
1486
1487 static void atmel_nand_init(struct atmel_nand_controller *nc,
1488                             struct atmel_nand *nand)
1489 {
1490         struct nand_chip *chip = &nand->base;
1491         struct mtd_info *mtd = nand_to_mtd(chip);
1492
1493         mtd->dev.parent = nc->dev;
1494         nand->base.controller = &nc->base;
1495
1496         chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1497         chip->read_byte = atmel_nand_read_byte;
1498         chip->read_word = atmel_nand_read_word;
1499         chip->write_byte = atmel_nand_write_byte;
1500         chip->read_buf = atmel_nand_read_buf;
1501         chip->write_buf = atmel_nand_write_buf;
1502         chip->select_chip = atmel_nand_select_chip;
1503
1504         if (nc->mck && nc->caps->ops->setup_data_interface)
1505                 chip->setup_data_interface = atmel_nand_setup_data_interface;
1506
1507         /* Some NANDs require a longer delay than the default one (20us). */
1508         chip->chip_delay = 40;
1509
1510         /*
1511          * Use a bounce buffer when the buffer passed by the MTD user is not
1512          * suitable for DMA.
1513          */
1514         if (nc->dmac)
1515                 chip->options |= NAND_USE_BOUNCE_BUFFER;
1516
1517         /* Default to HW ECC if pmecc is available. */
1518         if (nc->pmecc)
1519                 chip->ecc.mode = NAND_ECC_HW;
1520 }
1521
1522 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1523                                 struct atmel_nand *nand)
1524 {
1525         struct nand_chip *chip = &nand->base;
1526         struct atmel_smc_nand_controller *smc_nc;
1527         int i;
1528
1529         atmel_nand_init(nc, nand);
1530
1531         smc_nc = to_smc_nand_controller(chip->controller);
1532         if (!smc_nc->matrix)
1533                 return;
1534
1535         /* Attach the CS to the NAND Flash logic. */
1536         for (i = 0; i < nand->numcs; i++)
1537                 regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
1538                                    BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1539 }
1540
1541 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1542                                  struct atmel_nand *nand)
1543 {
1544         struct nand_chip *chip = &nand->base;
1545
1546         atmel_nand_init(nc, nand);
1547
1548         /* Overload some methods for the HSMC controller. */
1549         chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1550         chip->select_chip = atmel_hsmc_nand_select_chip;
1551 }
1552
1553 static int atmel_nand_detect(struct atmel_nand *nand)
1554 {
1555         struct nand_chip *chip = &nand->base;
1556         struct mtd_info *mtd = nand_to_mtd(chip);
1557         struct atmel_nand_controller *nc;
1558         int ret;
1559
1560         nc = to_nand_controller(chip->controller);
1561
1562         ret = nand_scan_ident(mtd, nand->numcs, NULL);
1563         if (ret)
1564                 dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
1565
1566         return ret;
1567 }
1568
1569 static int atmel_nand_unregister(struct atmel_nand *nand)
1570 {
1571         struct nand_chip *chip = &nand->base;
1572         struct mtd_info *mtd = nand_to_mtd(chip);
1573         int ret;
1574
1575         ret = mtd_device_unregister(mtd);
1576         if (ret)
1577                 return ret;
1578
1579         nand_cleanup(chip);
1580         list_del(&nand->node);
1581
1582         return 0;
1583 }
1584
1585 static int atmel_nand_register(struct atmel_nand *nand)
1586 {
1587         struct nand_chip *chip = &nand->base;
1588         struct mtd_info *mtd = nand_to_mtd(chip);
1589         struct atmel_nand_controller *nc;
1590         int ret;
1591
1592         nc = to_nand_controller(chip->controller);
1593
1594         if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1595                 /*
1596                  * We keep the MTD name unchanged to avoid breaking platforms
1597                  * where the MTD cmdline parser is used and the bootloader
1598                  * has not been updated to use the new naming scheme.
1599                  */
1600                 mtd->name = "atmel_nand";
1601         } else if (!mtd->name) {
1602                 /*
1603                  * If the new bindings are used and the bootloader has not been
1604                  * updated to pass a new mtdparts parameter on the cmdline, you
1605                  * should define the following property in your nand node:
1606                  *
1607                  *      label = "atmel_nand";
1608                  *
1609                  * This way, mtd->name will be set by the core when
1610                  * nand_set_flash_node() is called.
1611                  */
1612                 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
1613                                            "%s:nand.%d", dev_name(nc->dev),
1614                                            nand->cs[0].id);
1615                 if (!mtd->name) {
1616                         dev_err(nc->dev, "Failed to allocate mtd->name\n");
1617                         return -ENOMEM;
1618                 }
1619         }
1620
1621         ret = nand_scan_tail(mtd);
1622         if (ret) {
1623                 dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
1624                 return ret;
1625         }
1626
1627         ret = mtd_device_register(mtd, NULL, 0);
1628         if (ret) {
1629                 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1630                 nand_cleanup(chip);
1631                 return ret;
1632         }
1633
1634         list_add_tail(&nand->node, &nc->chips);
1635
1636         return 0;
1637 }
1638
1639 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1640                                             struct device_node *np,
1641                                             int reg_cells)
1642 {
1643         struct atmel_nand *nand;
1644         struct gpio_desc *gpio;
1645         int numcs, ret, i;
1646
1647         numcs = of_property_count_elems_of_size(np, "reg",
1648                                                 reg_cells * sizeof(u32));
1649         if (numcs < 1) {
1650                 dev_err(nc->dev, "Missing or invalid reg property\n");
1651                 return ERR_PTR(-EINVAL);
1652         }
1653
1654         nand = devm_kzalloc(nc->dev,
1655                             sizeof(*nand) + (numcs * sizeof(*nand->cs)),
1656                             GFP_KERNEL);
1657         if (!nand) {
1658                 dev_err(nc->dev, "Failed to allocate NAND object\n");
1659                 return ERR_PTR(-ENOMEM);
1660         }
1661
1662         nand->numcs = numcs;
1663
1664         gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
1665                                                       &np->fwnode, GPIOD_IN,
1666                                                       "nand-det");
1667         if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1668                 dev_err(nc->dev,
1669                         "Failed to get detect gpio (err = %ld)\n",
1670                         PTR_ERR(gpio));
1671                 return ERR_CAST(gpio);
1672         }
1673
1674         if (!IS_ERR(gpio))
1675                 nand->cdgpio = gpio;
1676
1677         for (i = 0; i < numcs; i++) {
1678                 struct resource res;
1679                 u32 val;
1680
1681                 ret = of_address_to_resource(np, 0, &res);
1682                 if (ret) {
1683                         dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1684                                 ret);
1685                         return ERR_PTR(ret);
1686                 }
1687
1688                 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1689                                                  &val);
1690                 if (ret) {
1691                         dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1692                                 ret);
1693                         return ERR_PTR(ret);
1694                 }
1695
1696                 nand->cs[i].id = val;
1697
1698                 nand->cs[i].io.dma = res.start;
1699                 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1700                 if (IS_ERR(nand->cs[i].io.virt))
1701                         return ERR_CAST(nand->cs[i].io.virt);
1702
1703                 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1704                         if (val > ATMEL_NFC_MAX_RB_ID)
1705                                 return ERR_PTR(-EINVAL);
1706
1707                         nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1708                         nand->cs[i].rb.id = val;
1709                 } else {
1710                         gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
1711                                                         "rb", i, &np->fwnode,
1712                                                         GPIOD_IN, "nand-rb");
1713                         if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1714                                 dev_err(nc->dev,
1715                                         "Failed to get R/B gpio (err = %ld)\n",
1716                                         PTR_ERR(gpio));
1717                                 return ERR_CAST(gpio);
1718                         }
1719
1720                         if (!IS_ERR(gpio)) {
1721                                 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1722                                 nand->cs[i].rb.gpio = gpio;
1723                         }
1724                 }
1725
1726                 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
1727                                                               i, &np->fwnode,
1728                                                               GPIOD_OUT_HIGH,
1729                                                               "nand-cs");
1730                 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1731                         dev_err(nc->dev,
1732                                 "Failed to get CS gpio (err = %ld)\n",
1733                                 PTR_ERR(gpio));
1734                         return ERR_CAST(gpio);
1735                 }
1736
1737                 if (!IS_ERR(gpio))
1738                         nand->cs[i].csgpio = gpio;
1739         }
1740
1741         nand_set_flash_node(&nand->base, np);
1742
1743         return nand;
1744 }
1745
1746 static int
1747 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1748                                struct atmel_nand *nand)
1749 {
1750         int ret;
1751
1752         /* No card inserted, skip this NAND. */
1753         if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1754                 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1755                 return 0;
1756         }
1757
1758         nc->caps->ops->nand_init(nc, nand);
1759
1760         ret = atmel_nand_detect(nand);
1761         if (ret)
1762                 return ret;
1763
1764         ret = nc->caps->ops->ecc_init(nand);
1765         if (ret)
1766                 return ret;
1767
1768         return atmel_nand_register(nand);
1769 }
1770
1771 static int
1772 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1773 {
1774         struct atmel_nand *nand, *tmp;
1775         int ret;
1776
1777         list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1778                 ret = atmel_nand_unregister(nand);
1779                 if (ret)
1780                         return ret;
1781         }
1782
1783         return 0;
1784 }
1785
1786 static int
1787 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1788 {
1789         struct device *dev = nc->dev;
1790         struct platform_device *pdev = to_platform_device(dev);
1791         struct atmel_nand *nand;
1792         struct gpio_desc *gpio;
1793         struct resource *res;
1794
1795         /*
1796          * Legacy bindings only allow connecting a single NAND with a unique CS
1797          * line to the controller.
1798          */
1799         nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1800                             GFP_KERNEL);
1801         if (!nand)
1802                 return -ENOMEM;
1803
1804         nand->numcs = 1;
1805
1806         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1807         nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1808         if (IS_ERR(nand->cs[0].io.virt))
1809                 return PTR_ERR(nand->cs[0].io.virt);
1810
1811         nand->cs[0].io.dma = res->start;
1812
1813         /*
1814          * The old driver was hardcoding the CS id to 3 for all sama5
1815          * controllers. Since this id is only meaningful for the sama5
1816          * controller we can safely assign this id to 3 no matter the
1817          * controller.
1818          * If one wants to connect a NAND to a different CS line, he will
1819          * have to use the new bindings.
1820          */
1821         nand->cs[0].id = 3;
1822
1823         /* R/B GPIO. */
1824         gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1825         if (IS_ERR(gpio)) {
1826                 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1827                         PTR_ERR(gpio));
1828                 return PTR_ERR(gpio);
1829         }
1830
1831         if (gpio) {
1832                 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1833                 nand->cs[0].rb.gpio = gpio;
1834         }
1835
1836         /* CS GPIO. */
1837         gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1838         if (IS_ERR(gpio)) {
1839                 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1840                         PTR_ERR(gpio));
1841                 return PTR_ERR(gpio);
1842         }
1843
1844         nand->cs[0].csgpio = gpio;
1845
1846         /* Card detect GPIO. */
1847         gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1848         if (IS_ERR(gpio)) {
1849                 dev_err(dev,
1850                         "Failed to get detect gpio (err = %ld)\n",
1851                         PTR_ERR(gpio));
1852                 return PTR_ERR(gpio);
1853         }
1854
1855         nand->cdgpio = gpio;
1856
1857         nand_set_flash_node(&nand->base, nc->dev->of_node);
1858
1859         return atmel_nand_controller_add_nand(nc, nand);
1860 }
1861
1862 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1863 {
1864         struct device_node *np, *nand_np;
1865         struct device *dev = nc->dev;
1866         int ret, reg_cells;
1867         u32 val;
1868
1869         /* We do not retrieve the SMC syscon when parsing old DTs. */
1870         if (nc->caps->legacy_of_bindings)
1871                 return atmel_nand_controller_legacy_add_nands(nc);
1872
1873         np = dev->of_node;
1874
1875         ret = of_property_read_u32(np, "#address-cells", &val);
1876         if (ret) {
1877                 dev_err(dev, "missing #address-cells property\n");
1878                 return ret;
1879         }
1880
1881         reg_cells = val;
1882
1883         ret = of_property_read_u32(np, "#size-cells", &val);
1884         if (ret) {
1885                 dev_err(dev, "missing #address-cells property\n");
1886                 return ret;
1887         }
1888
1889         reg_cells += val;
1890
1891         for_each_child_of_node(np, nand_np) {
1892                 struct atmel_nand *nand;
1893
1894                 nand = atmel_nand_create(nc, nand_np, reg_cells);
1895                 if (IS_ERR(nand)) {
1896                         ret = PTR_ERR(nand);
1897                         goto err;
1898                 }
1899
1900                 ret = atmel_nand_controller_add_nand(nc, nand);
1901                 if (ret)
1902                         goto err;
1903         }
1904
1905         return 0;
1906
1907 err:
1908         atmel_nand_controller_remove_nands(nc);
1909
1910         return ret;
1911 }
1912
1913 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1914 {
1915         if (nc->dmac)
1916                 dma_release_channel(nc->dmac);
1917
1918         clk_put(nc->mck);
1919 }
1920
1921 static const struct of_device_id atmel_matrix_of_ids[] = {
1922         {
1923                 .compatible = "atmel,at91sam9260-matrix",
1924                 .data = (void *)AT91SAM9260_MATRIX_EBICSA,
1925         },
1926         {
1927                 .compatible = "atmel,at91sam9261-matrix",
1928                 .data = (void *)AT91SAM9261_MATRIX_EBICSA,
1929         },
1930         {
1931                 .compatible = "atmel,at91sam9263-matrix",
1932                 .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
1933         },
1934         {
1935                 .compatible = "atmel,at91sam9rl-matrix",
1936                 .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
1937         },
1938         {
1939                 .compatible = "atmel,at91sam9g45-matrix",
1940                 .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
1941         },
1942         {
1943                 .compatible = "atmel,at91sam9n12-matrix",
1944                 .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
1945         },
1946         {
1947                 .compatible = "atmel,at91sam9x5-matrix",
1948                 .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
1949         },
1950         { /* sentinel */ },
1951 };
1952
1953 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
1954                                 struct platform_device *pdev,
1955                                 const struct atmel_nand_controller_caps *caps)
1956 {
1957         struct device *dev = &pdev->dev;
1958         struct device_node *np = dev->of_node;
1959         int ret;
1960
1961         nand_hw_control_init(&nc->base);
1962         INIT_LIST_HEAD(&nc->chips);
1963         nc->dev = dev;
1964         nc->caps = caps;
1965
1966         platform_set_drvdata(pdev, nc);
1967
1968         nc->pmecc = devm_atmel_pmecc_get(dev);
1969         if (IS_ERR(nc->pmecc)) {
1970                 ret = PTR_ERR(nc->pmecc);
1971                 if (ret != -EPROBE_DEFER)
1972                         dev_err(dev, "Could not get PMECC object (err = %d)\n",
1973                                 ret);
1974                 return ret;
1975         }
1976
1977         if (nc->caps->has_dma) {
1978                 dma_cap_mask_t mask;
1979
1980                 dma_cap_zero(mask);
1981                 dma_cap_set(DMA_MEMCPY, mask);
1982
1983                 nc->dmac = dma_request_channel(mask, NULL, NULL);
1984                 if (!nc->dmac)
1985                         dev_err(nc->dev, "Failed to request DMA channel\n");
1986         }
1987
1988         /* We do not retrieve the SMC syscon when parsing old DTs. */
1989         if (nc->caps->legacy_of_bindings)
1990                 return 0;
1991
1992         nc->mck = of_clk_get(dev->parent->of_node, 0);
1993         if (IS_ERR(nc->mck)) {
1994                 dev_err(dev, "Failed to retrieve MCK clk\n");
1995                 return PTR_ERR(nc->mck);
1996         }
1997
1998         np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
1999         if (!np) {
2000                 dev_err(dev, "Missing or invalid atmel,smc property\n");
2001                 return -EINVAL;
2002         }
2003
2004         nc->smc = syscon_node_to_regmap(np);
2005         of_node_put(np);
2006         if (IS_ERR(nc->smc)) {
2007                 ret = PTR_ERR(nc->smc);
2008                 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2009                 return ret;
2010         }
2011
2012         return 0;
2013 }
2014
2015 static int
2016 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2017 {
2018         struct device *dev = nc->base.dev;
2019         const struct of_device_id *match;
2020         struct device_node *np;
2021         int ret;
2022
2023         /* We do not retrieve the matrix syscon when parsing old DTs. */
2024         if (nc->base.caps->legacy_of_bindings)
2025                 return 0;
2026
2027         np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
2028         if (!np)
2029                 return 0;
2030
2031         match = of_match_node(atmel_matrix_of_ids, np);
2032         if (!match) {
2033                 of_node_put(np);
2034                 return 0;
2035         }
2036
2037         nc->matrix = syscon_node_to_regmap(np);
2038         of_node_put(np);
2039         if (IS_ERR(nc->matrix)) {
2040                 ret = PTR_ERR(nc->matrix);
2041                 dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
2042                 return ret;
2043         }
2044
2045         nc->ebi_csa_offs = (unsigned int)match->data;
2046
2047         /*
2048          * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2049          * add 4 to ->ebi_csa_offs.
2050          */
2051         if (of_device_is_compatible(dev->parent->of_node,
2052                                     "atmel,at91sam9263-ebi1"))
2053                 nc->ebi_csa_offs += 4;
2054
2055         return 0;
2056 }
2057
2058 static int
2059 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2060 {
2061         struct regmap_config regmap_conf = {
2062                 .reg_bits = 32,
2063                 .val_bits = 32,
2064                 .reg_stride = 4,
2065         };
2066
2067         struct device *dev = nc->base.dev;
2068         struct device_node *nand_np, *nfc_np;
2069         void __iomem *iomem;
2070         struct resource res;
2071         int ret;
2072
2073         nand_np = dev->of_node;
2074         nfc_np = of_find_compatible_node(dev->of_node, NULL,
2075                                          "atmel,sama5d3-nfc");
2076
2077         nc->clk = of_clk_get(nfc_np, 0);
2078         if (IS_ERR(nc->clk)) {
2079                 ret = PTR_ERR(nc->clk);
2080                 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2081                         ret);
2082                 goto out;
2083         }
2084
2085         ret = clk_prepare_enable(nc->clk);
2086         if (ret) {
2087                 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2088                         ret);
2089                 goto out;
2090         }
2091
2092         nc->irq = of_irq_get(nand_np, 0);
2093         if (nc->irq <= 0) {
2094                 ret = nc->irq ?: -ENXIO;
2095                 if (ret != -EPROBE_DEFER)
2096                         dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2097                                 ret);
2098                 goto out;
2099         }
2100
2101         ret = of_address_to_resource(nfc_np, 0, &res);
2102         if (ret) {
2103                 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2104                         ret);
2105                 goto out;
2106         }
2107
2108         iomem = devm_ioremap_resource(dev, &res);
2109         if (IS_ERR(iomem)) {
2110                 ret = PTR_ERR(iomem);
2111                 goto out;
2112         }
2113
2114         regmap_conf.name = "nfc-io";
2115         regmap_conf.max_register = resource_size(&res) - 4;
2116         nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2117         if (IS_ERR(nc->io)) {
2118                 ret = PTR_ERR(nc->io);
2119                 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2120                         ret);
2121                 goto out;
2122         }
2123
2124         ret = of_address_to_resource(nfc_np, 1, &res);
2125         if (ret) {
2126                 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2127                         ret);
2128                 goto out;
2129         }
2130
2131         iomem = devm_ioremap_resource(dev, &res);
2132         if (IS_ERR(iomem)) {
2133                 ret = PTR_ERR(iomem);
2134                 goto out;
2135         }
2136
2137         regmap_conf.name = "smc";
2138         regmap_conf.max_register = resource_size(&res) - 4;
2139         nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2140         if (IS_ERR(nc->base.smc)) {
2141                 ret = PTR_ERR(nc->base.smc);
2142                 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2143                         ret);
2144                 goto out;
2145         }
2146
2147         ret = of_address_to_resource(nfc_np, 2, &res);
2148         if (ret) {
2149                 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2150                         ret);
2151                 goto out;
2152         }
2153
2154         nc->sram.virt = devm_ioremap_resource(dev, &res);
2155         if (IS_ERR(nc->sram.virt)) {
2156                 ret = PTR_ERR(nc->sram.virt);
2157                 goto out;
2158         }
2159
2160         nc->sram.dma = res.start;
2161
2162 out:
2163         of_node_put(nfc_np);
2164
2165         return ret;
2166 }
2167
2168 static int
2169 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2170 {
2171         struct device *dev = nc->base.dev;
2172         struct device_node *np;
2173         int ret;
2174
2175         np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2176         if (!np) {
2177                 dev_err(dev, "Missing or invalid atmel,smc property\n");
2178                 return -EINVAL;
2179         }
2180
2181         nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2182
2183         nc->irq = of_irq_get(np, 0);
2184         of_node_put(np);
2185         if (nc->irq <= 0) {
2186                 ret = nc->irq ?: -ENXIO;
2187                 if (ret != -EPROBE_DEFER)
2188                         dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2189                                 ret);
2190                 return ret;
2191         }
2192
2193         np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2194         if (!np) {
2195                 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2196                 return -EINVAL;
2197         }
2198
2199         nc->io = syscon_node_to_regmap(np);
2200         of_node_put(np);
2201         if (IS_ERR(nc->io)) {
2202                 ret = PTR_ERR(nc->io);
2203                 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2204                 return ret;
2205         }
2206
2207         nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2208                                          "atmel,nfc-sram", 0);
2209         if (!nc->sram.pool) {
2210                 dev_err(nc->base.dev, "Missing SRAM\n");
2211                 return -ENOMEM;
2212         }
2213
2214         nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
2215                                             ATMEL_NFC_SRAM_SIZE,
2216                                             &nc->sram.dma);
2217         if (!nc->sram.virt) {
2218                 dev_err(nc->base.dev,
2219                         "Could not allocate memory from the NFC SRAM pool\n");
2220                 return -ENOMEM;
2221         }
2222
2223         return 0;
2224 }
2225
2226 static int
2227 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2228 {
2229         struct atmel_hsmc_nand_controller *hsmc_nc;
2230         int ret;
2231
2232         ret = atmel_nand_controller_remove_nands(nc);
2233         if (ret)
2234                 return ret;
2235
2236         hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2237         if (hsmc_nc->sram.pool)
2238                 gen_pool_free(hsmc_nc->sram.pool,
2239                               (unsigned long)hsmc_nc->sram.virt,
2240                               ATMEL_NFC_SRAM_SIZE);
2241
2242         if (hsmc_nc->clk) {
2243                 clk_disable_unprepare(hsmc_nc->clk);
2244                 clk_put(hsmc_nc->clk);
2245         }
2246
2247         atmel_nand_controller_cleanup(nc);
2248
2249         return 0;
2250 }
2251
2252 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2253                                 const struct atmel_nand_controller_caps *caps)
2254 {
2255         struct device *dev = &pdev->dev;
2256         struct atmel_hsmc_nand_controller *nc;
2257         int ret;
2258
2259         nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2260         if (!nc)
2261                 return -ENOMEM;
2262
2263         ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2264         if (ret)
2265                 return ret;
2266
2267         if (caps->legacy_of_bindings)
2268                 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2269         else
2270                 ret = atmel_hsmc_nand_controller_init(nc);
2271
2272         if (ret)
2273                 return ret;
2274
2275         /* Make sure all irqs are masked before registering our IRQ handler. */
2276         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2277         ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2278                                IRQF_SHARED, "nfc", nc);
2279         if (ret) {
2280                 dev_err(dev,
2281                         "Could not get register NFC interrupt handler (err = %d)\n",
2282                         ret);
2283                 goto err;
2284         }
2285
2286         /* Initial NFC configuration. */
2287         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2288                      ATMEL_HSMC_NFC_CFG_DTO_MAX);
2289
2290         ret = atmel_nand_controller_add_nands(&nc->base);
2291         if (ret)
2292                 goto err;
2293
2294         return 0;
2295
2296 err:
2297         atmel_hsmc_nand_controller_remove(&nc->base);
2298
2299         return ret;
2300 }
2301
2302 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2303         .probe = atmel_hsmc_nand_controller_probe,
2304         .remove = atmel_hsmc_nand_controller_remove,
2305         .ecc_init = atmel_hsmc_nand_ecc_init,
2306         .nand_init = atmel_hsmc_nand_init,
2307         .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2308 };
2309
2310 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2311         .has_dma = true,
2312         .ale_offs = BIT(21),
2313         .cle_offs = BIT(22),
2314         .ops = &atmel_hsmc_nc_ops,
2315 };
2316
2317 /* Only used to parse old bindings. */
2318 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2319         .has_dma = true,
2320         .ale_offs = BIT(21),
2321         .cle_offs = BIT(22),
2322         .ops = &atmel_hsmc_nc_ops,
2323         .legacy_of_bindings = true,
2324 };
2325
2326 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2327                                 const struct atmel_nand_controller_caps *caps)
2328 {
2329         struct device *dev = &pdev->dev;
2330         struct atmel_smc_nand_controller *nc;
2331         int ret;
2332
2333         nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2334         if (!nc)
2335                 return -ENOMEM;
2336
2337         ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2338         if (ret)
2339                 return ret;
2340
2341         ret = atmel_smc_nand_controller_init(nc);
2342         if (ret)
2343                 return ret;
2344
2345         return atmel_nand_controller_add_nands(&nc->base);
2346 }
2347
2348 static int
2349 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2350 {
2351         int ret;
2352
2353         ret = atmel_nand_controller_remove_nands(nc);
2354         if (ret)
2355                 return ret;
2356
2357         atmel_nand_controller_cleanup(nc);
2358
2359         return 0;
2360 }
2361
2362 /*
2363  * The SMC reg layout of at91rm9200 is completely different which prevents us
2364  * from re-using atmel_smc_nand_setup_data_interface() for the
2365  * ->setup_data_interface() hook.
2366  * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2367  * ->setup_data_interface() unassigned.
2368  */
2369 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2370         .probe = atmel_smc_nand_controller_probe,
2371         .remove = atmel_smc_nand_controller_remove,
2372         .ecc_init = atmel_nand_ecc_init,
2373         .nand_init = atmel_smc_nand_init,
2374 };
2375
2376 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2377         .ale_offs = BIT(21),
2378         .cle_offs = BIT(22),
2379         .ops = &at91rm9200_nc_ops,
2380 };
2381
2382 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2383         .probe = atmel_smc_nand_controller_probe,
2384         .remove = atmel_smc_nand_controller_remove,
2385         .ecc_init = atmel_nand_ecc_init,
2386         .nand_init = atmel_smc_nand_init,
2387         .setup_data_interface = atmel_smc_nand_setup_data_interface,
2388 };
2389
2390 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2391         .ale_offs = BIT(21),
2392         .cle_offs = BIT(22),
2393         .ops = &atmel_smc_nc_ops,
2394 };
2395
2396 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2397         .ale_offs = BIT(22),
2398         .cle_offs = BIT(21),
2399         .ops = &atmel_smc_nc_ops,
2400 };
2401
2402 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2403         .has_dma = true,
2404         .ale_offs = BIT(21),
2405         .cle_offs = BIT(22),
2406         .ops = &atmel_smc_nc_ops,
2407 };
2408
2409 /* Only used to parse old bindings. */
2410 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2411         .ale_offs = BIT(21),
2412         .cle_offs = BIT(22),
2413         .ops = &atmel_smc_nc_ops,
2414         .legacy_of_bindings = true,
2415 };
2416
2417 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2418         .ale_offs = BIT(22),
2419         .cle_offs = BIT(21),
2420         .ops = &atmel_smc_nc_ops,
2421         .legacy_of_bindings = true,
2422 };
2423
2424 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2425         .has_dma = true,
2426         .ale_offs = BIT(21),
2427         .cle_offs = BIT(22),
2428         .ops = &atmel_smc_nc_ops,
2429         .legacy_of_bindings = true,
2430 };
2431
2432 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2433         {
2434                 .compatible = "atmel,at91rm9200-nand-controller",
2435                 .data = &atmel_rm9200_nc_caps,
2436         },
2437         {
2438                 .compatible = "atmel,at91sam9260-nand-controller",
2439                 .data = &atmel_sam9260_nc_caps,
2440         },
2441         {
2442                 .compatible = "atmel,at91sam9261-nand-controller",
2443                 .data = &atmel_sam9261_nc_caps,
2444         },
2445         {
2446                 .compatible = "atmel,at91sam9g45-nand-controller",
2447                 .data = &atmel_sam9g45_nc_caps,
2448         },
2449         {
2450                 .compatible = "atmel,sama5d3-nand-controller",
2451                 .data = &atmel_sama5_nc_caps,
2452         },
2453         /* Support for old/deprecated bindings: */
2454         {
2455                 .compatible = "atmel,at91rm9200-nand",
2456                 .data = &atmel_rm9200_nand_caps,
2457         },
2458         {
2459                 .compatible = "atmel,sama5d4-nand",
2460                 .data = &atmel_rm9200_nand_caps,
2461         },
2462         {
2463                 .compatible = "atmel,sama5d2-nand",
2464                 .data = &atmel_rm9200_nand_caps,
2465         },
2466         { /* sentinel */ },
2467 };
2468 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2469
2470 static int atmel_nand_controller_probe(struct platform_device *pdev)
2471 {
2472         const struct atmel_nand_controller_caps *caps;
2473
2474         if (pdev->id_entry)
2475                 caps = (void *)pdev->id_entry->driver_data;
2476         else
2477                 caps = of_device_get_match_data(&pdev->dev);
2478
2479         if (!caps) {
2480                 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2481                 return -EINVAL;
2482         }
2483
2484         if (caps->legacy_of_bindings) {
2485                 u32 ale_offs = 21;
2486
2487                 /*
2488                  * If we are parsing legacy DT props and the DT contains a
2489                  * valid NFC node, forward the request to the sama5 logic.
2490                  */
2491                 if (of_find_compatible_node(pdev->dev.of_node, NULL,
2492                                             "atmel,sama5d3-nfc"))
2493                         caps = &atmel_sama5_nand_caps;
2494
2495                 /*
2496                  * Even if the compatible says we are dealing with an
2497                  * at91rm9200 controller, the atmel,nand-has-dma specify that
2498                  * this controller supports DMA, which means we are in fact
2499                  * dealing with an at91sam9g45+ controller.
2500                  */
2501                 if (!caps->has_dma &&
2502                     of_property_read_bool(pdev->dev.of_node,
2503                                           "atmel,nand-has-dma"))
2504                         caps = &atmel_sam9g45_nand_caps;
2505
2506                 /*
2507                  * All SoCs except the at91sam9261 are assigning ALE to A21 and
2508                  * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2509                  * actually dealing with an at91sam9261 controller.
2510                  */
2511                 of_property_read_u32(pdev->dev.of_node,
2512                                      "atmel,nand-addr-offset", &ale_offs);
2513                 if (ale_offs != 21)
2514                         caps = &atmel_sam9261_nand_caps;
2515         }
2516
2517         return caps->ops->probe(pdev, caps);
2518 }
2519
2520 static int atmel_nand_controller_remove(struct platform_device *pdev)
2521 {
2522         struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2523
2524         return nc->caps->ops->remove(nc);
2525 }
2526
2527 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2528 {
2529         struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2530         struct atmel_nand *nand;
2531
2532         if (nc->pmecc)
2533                 atmel_pmecc_reset(nc->pmecc);
2534
2535         list_for_each_entry(nand, &nc->chips, node) {
2536                 int i;
2537
2538                 for (i = 0; i < nand->numcs; i++)
2539                         nand_reset(&nand->base, i);
2540         }
2541
2542         return 0;
2543 }
2544
2545 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2546                          atmel_nand_controller_resume);
2547
2548 static struct platform_driver atmel_nand_controller_driver = {
2549         .driver = {
2550                 .name = "atmel-nand-controller",
2551                 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2552                 .pm = &atmel_nand_controller_pm_ops,
2553         },
2554         .probe = atmel_nand_controller_probe,
2555         .remove = atmel_nand_controller_remove,
2556 };
2557 module_platform_driver(atmel_nand_controller_driver);
2558
2559 MODULE_LICENSE("GPL");
2560 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2561 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2562 MODULE_ALIAS("platform:atmel-nand-controller");