Merge tag 'i3c/for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux
[linux-2.6-microblaze.git] / drivers / most / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * core.c - Implementation of core module of MOST Linux driver stack
4  *
5  * Copyright (C) 2013-2020 Microchip Technology Germany II GmbH & Co. KG
6  */
7
8 #include <linux/module.h>
9 #include <linux/fs.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/device.h>
13 #include <linux/list.h>
14 #include <linux/poll.h>
15 #include <linux/wait.h>
16 #include <linux/kobject.h>
17 #include <linux/mutex.h>
18 #include <linux/completion.h>
19 #include <linux/sysfs.h>
20 #include <linux/kthread.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/idr.h>
23 #include <linux/most.h>
24
25 #define MAX_CHANNELS    64
26 #define STRING_SIZE     80
27
28 static struct ida mdev_id;
29 static int dummy_num_buffers;
30 static struct list_head comp_list;
31
32 struct pipe {
33         struct most_component *comp;
34         int refs;
35         int num_buffers;
36 };
37
38 struct most_channel {
39         struct device dev;
40         struct completion cleanup;
41         atomic_t mbo_ref;
42         atomic_t mbo_nq_level;
43         u16 channel_id;
44         char name[STRING_SIZE];
45         bool is_poisoned;
46         struct mutex start_mutex; /* channel activation synchronization */
47         struct mutex nq_mutex; /* nq thread synchronization */
48         int is_starving;
49         struct most_interface *iface;
50         struct most_channel_config cfg;
51         bool keep_mbo;
52         bool enqueue_halt;
53         struct list_head fifo;
54         spinlock_t fifo_lock; /* fifo access synchronization */
55         struct list_head halt_fifo;
56         struct list_head list;
57         struct pipe pipe0;
58         struct pipe pipe1;
59         struct list_head trash_fifo;
60         struct task_struct *hdm_enqueue_task;
61         wait_queue_head_t hdm_fifo_wq;
62
63 };
64
65 #define to_channel(d) container_of(d, struct most_channel, dev)
66
67 struct interface_private {
68         int dev_id;
69         char name[STRING_SIZE];
70         struct most_channel *channel[MAX_CHANNELS];
71         struct list_head channel_list;
72 };
73
74 static const struct {
75         int most_ch_data_type;
76         const char *name;
77 } ch_data_type[] = {
78         { MOST_CH_CONTROL, "control" },
79         { MOST_CH_ASYNC, "async" },
80         { MOST_CH_SYNC, "sync" },
81         { MOST_CH_ISOC, "isoc"},
82         { MOST_CH_ISOC, "isoc_avp"},
83 };
84
85 /**
86  * list_pop_mbo - retrieves the first MBO of the list and removes it
87  * @ptr: the list head to grab the MBO from.
88  */
89 #define list_pop_mbo(ptr)                                               \
90 ({                                                                      \
91         struct mbo *_mbo = list_first_entry(ptr, struct mbo, list);     \
92         list_del(&_mbo->list);                                          \
93         _mbo;                                                           \
94 })
95
96 /**
97  * most_free_mbo_coherent - free an MBO and its coherent buffer
98  * @mbo: most buffer
99  */
100 static void most_free_mbo_coherent(struct mbo *mbo)
101 {
102         struct most_channel *c = mbo->context;
103         u16 const coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
104
105         if (c->iface->dma_free)
106                 c->iface->dma_free(mbo, coherent_buf_size);
107         else
108                 kfree(mbo->virt_address);
109         kfree(mbo);
110         if (atomic_sub_and_test(1, &c->mbo_ref))
111                 complete(&c->cleanup);
112 }
113
114 /**
115  * flush_channel_fifos - clear the channel fifos
116  * @c: pointer to channel object
117  */
118 static void flush_channel_fifos(struct most_channel *c)
119 {
120         unsigned long flags, hf_flags;
121         struct mbo *mbo, *tmp;
122
123         if (list_empty(&c->fifo) && list_empty(&c->halt_fifo))
124                 return;
125
126         spin_lock_irqsave(&c->fifo_lock, flags);
127         list_for_each_entry_safe(mbo, tmp, &c->fifo, list) {
128                 list_del(&mbo->list);
129                 spin_unlock_irqrestore(&c->fifo_lock, flags);
130                 most_free_mbo_coherent(mbo);
131                 spin_lock_irqsave(&c->fifo_lock, flags);
132         }
133         spin_unlock_irqrestore(&c->fifo_lock, flags);
134
135         spin_lock_irqsave(&c->fifo_lock, hf_flags);
136         list_for_each_entry_safe(mbo, tmp, &c->halt_fifo, list) {
137                 list_del(&mbo->list);
138                 spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
139                 most_free_mbo_coherent(mbo);
140                 spin_lock_irqsave(&c->fifo_lock, hf_flags);
141         }
142         spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
143
144         if (unlikely((!list_empty(&c->fifo) || !list_empty(&c->halt_fifo))))
145                 dev_warn(&c->dev, "Channel or trash fifo not empty\n");
146 }
147
148 /**
149  * flush_trash_fifo - clear the trash fifo
150  * @c: pointer to channel object
151  */
152 static int flush_trash_fifo(struct most_channel *c)
153 {
154         struct mbo *mbo, *tmp;
155         unsigned long flags;
156
157         spin_lock_irqsave(&c->fifo_lock, flags);
158         list_for_each_entry_safe(mbo, tmp, &c->trash_fifo, list) {
159                 list_del(&mbo->list);
160                 spin_unlock_irqrestore(&c->fifo_lock, flags);
161                 most_free_mbo_coherent(mbo);
162                 spin_lock_irqsave(&c->fifo_lock, flags);
163         }
164         spin_unlock_irqrestore(&c->fifo_lock, flags);
165         return 0;
166 }
167
168 static ssize_t available_directions_show(struct device *dev,
169                                          struct device_attribute *attr,
170                                          char *buf)
171 {
172         struct most_channel *c = to_channel(dev);
173         unsigned int i = c->channel_id;
174
175         strcpy(buf, "");
176         if (c->iface->channel_vector[i].direction & MOST_CH_RX)
177                 strcat(buf, "rx ");
178         if (c->iface->channel_vector[i].direction & MOST_CH_TX)
179                 strcat(buf, "tx ");
180         strcat(buf, "\n");
181         return strlen(buf);
182 }
183
184 static ssize_t available_datatypes_show(struct device *dev,
185                                         struct device_attribute *attr,
186                                         char *buf)
187 {
188         struct most_channel *c = to_channel(dev);
189         unsigned int i = c->channel_id;
190
191         strcpy(buf, "");
192         if (c->iface->channel_vector[i].data_type & MOST_CH_CONTROL)
193                 strcat(buf, "control ");
194         if (c->iface->channel_vector[i].data_type & MOST_CH_ASYNC)
195                 strcat(buf, "async ");
196         if (c->iface->channel_vector[i].data_type & MOST_CH_SYNC)
197                 strcat(buf, "sync ");
198         if (c->iface->channel_vector[i].data_type & MOST_CH_ISOC)
199                 strcat(buf, "isoc ");
200         strcat(buf, "\n");
201         return strlen(buf);
202 }
203
204 static ssize_t number_of_packet_buffers_show(struct device *dev,
205                                              struct device_attribute *attr,
206                                              char *buf)
207 {
208         struct most_channel *c = to_channel(dev);
209         unsigned int i = c->channel_id;
210
211         return snprintf(buf, PAGE_SIZE, "%d\n",
212                         c->iface->channel_vector[i].num_buffers_packet);
213 }
214
215 static ssize_t number_of_stream_buffers_show(struct device *dev,
216                                              struct device_attribute *attr,
217                                              char *buf)
218 {
219         struct most_channel *c = to_channel(dev);
220         unsigned int i = c->channel_id;
221
222         return snprintf(buf, PAGE_SIZE, "%d\n",
223                         c->iface->channel_vector[i].num_buffers_streaming);
224 }
225
226 static ssize_t size_of_packet_buffer_show(struct device *dev,
227                                           struct device_attribute *attr,
228                                           char *buf)
229 {
230         struct most_channel *c = to_channel(dev);
231         unsigned int i = c->channel_id;
232
233         return snprintf(buf, PAGE_SIZE, "%d\n",
234                         c->iface->channel_vector[i].buffer_size_packet);
235 }
236
237 static ssize_t size_of_stream_buffer_show(struct device *dev,
238                                           struct device_attribute *attr,
239                                           char *buf)
240 {
241         struct most_channel *c = to_channel(dev);
242         unsigned int i = c->channel_id;
243
244         return snprintf(buf, PAGE_SIZE, "%d\n",
245                         c->iface->channel_vector[i].buffer_size_streaming);
246 }
247
248 static ssize_t channel_starving_show(struct device *dev,
249                                      struct device_attribute *attr,
250                                      char *buf)
251 {
252         struct most_channel *c = to_channel(dev);
253
254         return snprintf(buf, PAGE_SIZE, "%d\n", c->is_starving);
255 }
256
257 static ssize_t set_number_of_buffers_show(struct device *dev,
258                                           struct device_attribute *attr,
259                                           char *buf)
260 {
261         struct most_channel *c = to_channel(dev);
262
263         return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.num_buffers);
264 }
265
266 static ssize_t set_buffer_size_show(struct device *dev,
267                                     struct device_attribute *attr,
268                                     char *buf)
269 {
270         struct most_channel *c = to_channel(dev);
271
272         return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.buffer_size);
273 }
274
275 static ssize_t set_direction_show(struct device *dev,
276                                   struct device_attribute *attr,
277                                   char *buf)
278 {
279         struct most_channel *c = to_channel(dev);
280
281         if (c->cfg.direction & MOST_CH_TX)
282                 return snprintf(buf, PAGE_SIZE, "tx\n");
283         else if (c->cfg.direction & MOST_CH_RX)
284                 return snprintf(buf, PAGE_SIZE, "rx\n");
285         return snprintf(buf, PAGE_SIZE, "unconfigured\n");
286 }
287
288 static ssize_t set_datatype_show(struct device *dev,
289                                  struct device_attribute *attr,
290                                  char *buf)
291 {
292         int i;
293         struct most_channel *c = to_channel(dev);
294
295         for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
296                 if (c->cfg.data_type & ch_data_type[i].most_ch_data_type)
297                         return snprintf(buf, PAGE_SIZE, "%s",
298                                         ch_data_type[i].name);
299         }
300         return snprintf(buf, PAGE_SIZE, "unconfigured\n");
301 }
302
303 static ssize_t set_subbuffer_size_show(struct device *dev,
304                                        struct device_attribute *attr,
305                                        char *buf)
306 {
307         struct most_channel *c = to_channel(dev);
308
309         return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.subbuffer_size);
310 }
311
312 static ssize_t set_packets_per_xact_show(struct device *dev,
313                                          struct device_attribute *attr,
314                                          char *buf)
315 {
316         struct most_channel *c = to_channel(dev);
317
318         return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.packets_per_xact);
319 }
320
321 static ssize_t set_dbr_size_show(struct device *dev,
322                                  struct device_attribute *attr, char *buf)
323 {
324         struct most_channel *c = to_channel(dev);
325
326         return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.dbr_size);
327 }
328
329 #define to_dev_attr(a) container_of(a, struct device_attribute, attr)
330 static umode_t channel_attr_is_visible(struct kobject *kobj,
331                                        struct attribute *attr, int index)
332 {
333         struct device_attribute *dev_attr = to_dev_attr(attr);
334         struct device *dev = kobj_to_dev(kobj);
335         struct most_channel *c = to_channel(dev);
336
337         if (!strcmp(dev_attr->attr.name, "set_dbr_size") &&
338             (c->iface->interface != ITYPE_MEDIALB_DIM2))
339                 return 0;
340         if (!strcmp(dev_attr->attr.name, "set_packets_per_xact") &&
341             (c->iface->interface != ITYPE_USB))
342                 return 0;
343
344         return attr->mode;
345 }
346
347 #define DEV_ATTR(_name)  (&dev_attr_##_name.attr)
348
349 static DEVICE_ATTR_RO(available_directions);
350 static DEVICE_ATTR_RO(available_datatypes);
351 static DEVICE_ATTR_RO(number_of_packet_buffers);
352 static DEVICE_ATTR_RO(number_of_stream_buffers);
353 static DEVICE_ATTR_RO(size_of_stream_buffer);
354 static DEVICE_ATTR_RO(size_of_packet_buffer);
355 static DEVICE_ATTR_RO(channel_starving);
356 static DEVICE_ATTR_RO(set_buffer_size);
357 static DEVICE_ATTR_RO(set_number_of_buffers);
358 static DEVICE_ATTR_RO(set_direction);
359 static DEVICE_ATTR_RO(set_datatype);
360 static DEVICE_ATTR_RO(set_subbuffer_size);
361 static DEVICE_ATTR_RO(set_packets_per_xact);
362 static DEVICE_ATTR_RO(set_dbr_size);
363
364 static struct attribute *channel_attrs[] = {
365         DEV_ATTR(available_directions),
366         DEV_ATTR(available_datatypes),
367         DEV_ATTR(number_of_packet_buffers),
368         DEV_ATTR(number_of_stream_buffers),
369         DEV_ATTR(size_of_stream_buffer),
370         DEV_ATTR(size_of_packet_buffer),
371         DEV_ATTR(channel_starving),
372         DEV_ATTR(set_buffer_size),
373         DEV_ATTR(set_number_of_buffers),
374         DEV_ATTR(set_direction),
375         DEV_ATTR(set_datatype),
376         DEV_ATTR(set_subbuffer_size),
377         DEV_ATTR(set_packets_per_xact),
378         DEV_ATTR(set_dbr_size),
379         NULL,
380 };
381
382 static const struct attribute_group channel_attr_group = {
383         .attrs = channel_attrs,
384         .is_visible = channel_attr_is_visible,
385 };
386
387 static const struct attribute_group *channel_attr_groups[] = {
388         &channel_attr_group,
389         NULL,
390 };
391
392 static ssize_t description_show(struct device *dev,
393                                 struct device_attribute *attr,
394                                 char *buf)
395 {
396         struct most_interface *iface = dev_get_drvdata(dev);
397
398         return snprintf(buf, PAGE_SIZE, "%s\n", iface->description);
399 }
400
401 static ssize_t interface_show(struct device *dev,
402                               struct device_attribute *attr,
403                               char *buf)
404 {
405         struct most_interface *iface = dev_get_drvdata(dev);
406
407         switch (iface->interface) {
408         case ITYPE_LOOPBACK:
409                 return snprintf(buf, PAGE_SIZE, "loopback\n");
410         case ITYPE_I2C:
411                 return snprintf(buf, PAGE_SIZE, "i2c\n");
412         case ITYPE_I2S:
413                 return snprintf(buf, PAGE_SIZE, "i2s\n");
414         case ITYPE_TSI:
415                 return snprintf(buf, PAGE_SIZE, "tsi\n");
416         case ITYPE_HBI:
417                 return snprintf(buf, PAGE_SIZE, "hbi\n");
418         case ITYPE_MEDIALB_DIM:
419                 return snprintf(buf, PAGE_SIZE, "mlb_dim\n");
420         case ITYPE_MEDIALB_DIM2:
421                 return snprintf(buf, PAGE_SIZE, "mlb_dim2\n");
422         case ITYPE_USB:
423                 return snprintf(buf, PAGE_SIZE, "usb\n");
424         case ITYPE_PCIE:
425                 return snprintf(buf, PAGE_SIZE, "pcie\n");
426         }
427         return snprintf(buf, PAGE_SIZE, "unknown\n");
428 }
429
430 static DEVICE_ATTR_RO(description);
431 static DEVICE_ATTR_RO(interface);
432
433 static struct attribute *interface_attrs[] = {
434         DEV_ATTR(description),
435         DEV_ATTR(interface),
436         NULL,
437 };
438
439 static const struct attribute_group interface_attr_group = {
440         .attrs = interface_attrs,
441 };
442
443 static const struct attribute_group *interface_attr_groups[] = {
444         &interface_attr_group,
445         NULL,
446 };
447
448 static struct most_component *match_component(char *name)
449 {
450         struct most_component *comp;
451
452         list_for_each_entry(comp, &comp_list, list) {
453                 if (!strcmp(comp->name, name))
454                         return comp;
455         }
456         return NULL;
457 }
458
459 struct show_links_data {
460         int offs;
461         char *buf;
462 };
463
464 static int print_links(struct device *dev, void *data)
465 {
466         struct show_links_data *d = data;
467         int offs = d->offs;
468         char *buf = d->buf;
469         struct most_channel *c;
470         struct most_interface *iface = dev_get_drvdata(dev);
471
472         list_for_each_entry(c, &iface->p->channel_list, list) {
473                 if (c->pipe0.comp) {
474                         offs += scnprintf(buf + offs,
475                                          PAGE_SIZE - offs,
476                                          "%s:%s:%s\n",
477                                          c->pipe0.comp->name,
478                                          dev_name(iface->dev),
479                                          dev_name(&c->dev));
480                 }
481                 if (c->pipe1.comp) {
482                         offs += scnprintf(buf + offs,
483                                          PAGE_SIZE - offs,
484                                          "%s:%s:%s\n",
485                                          c->pipe1.comp->name,
486                                          dev_name(iface->dev),
487                                          dev_name(&c->dev));
488                 }
489         }
490         d->offs = offs;
491         return 0;
492 }
493
494 static int most_match(struct device *dev, struct device_driver *drv)
495 {
496         if (!strcmp(dev_name(dev), "most"))
497                 return 0;
498         else
499                 return 1;
500 }
501
502 static struct bus_type mostbus = {
503         .name = "most",
504         .match = most_match,
505 };
506
507 static ssize_t links_show(struct device_driver *drv, char *buf)
508 {
509         struct show_links_data d = { .buf = buf };
510
511         bus_for_each_dev(&mostbus, NULL, &d, print_links);
512         return d.offs;
513 }
514
515 static ssize_t components_show(struct device_driver *drv, char *buf)
516 {
517         struct most_component *comp;
518         int offs = 0;
519
520         list_for_each_entry(comp, &comp_list, list) {
521                 offs += scnprintf(buf + offs, PAGE_SIZE - offs, "%s\n",
522                                  comp->name);
523         }
524         return offs;
525 }
526
527 /**
528  * get_channel - get pointer to channel
529  * @mdev: name of the device interface
530  * @mdev_ch: name of channel
531  */
532 static struct most_channel *get_channel(char *mdev, char *mdev_ch)
533 {
534         struct device *dev = NULL;
535         struct most_interface *iface;
536         struct most_channel *c, *tmp;
537
538         dev = bus_find_device_by_name(&mostbus, NULL, mdev);
539         if (!dev)
540                 return NULL;
541         put_device(dev);
542         iface = dev_get_drvdata(dev);
543         list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
544                 if (!strcmp(dev_name(&c->dev), mdev_ch))
545                         return c;
546         }
547         return NULL;
548 }
549
550 static
551 inline int link_channel_to_component(struct most_channel *c,
552                                      struct most_component *comp,
553                                      char *name,
554                                      char *comp_param)
555 {
556         int ret;
557         struct most_component **comp_ptr;
558
559         if (!c->pipe0.comp)
560                 comp_ptr = &c->pipe0.comp;
561         else if (!c->pipe1.comp)
562                 comp_ptr = &c->pipe1.comp;
563         else
564                 return -ENOSPC;
565
566         *comp_ptr = comp;
567         ret = comp->probe_channel(c->iface, c->channel_id, &c->cfg, name,
568                                   comp_param);
569         if (ret) {
570                 *comp_ptr = NULL;
571                 return ret;
572         }
573         return 0;
574 }
575
576 int most_set_cfg_buffer_size(char *mdev, char *mdev_ch, u16 val)
577 {
578         struct most_channel *c = get_channel(mdev, mdev_ch);
579
580         if (!c)
581                 return -ENODEV;
582         c->cfg.buffer_size = val;
583         return 0;
584 }
585
586 int most_set_cfg_subbuffer_size(char *mdev, char *mdev_ch, u16 val)
587 {
588         struct most_channel *c = get_channel(mdev, mdev_ch);
589
590         if (!c)
591                 return -ENODEV;
592         c->cfg.subbuffer_size = val;
593         return 0;
594 }
595
596 int most_set_cfg_dbr_size(char *mdev, char *mdev_ch, u16 val)
597 {
598         struct most_channel *c = get_channel(mdev, mdev_ch);
599
600         if (!c)
601                 return -ENODEV;
602         c->cfg.dbr_size = val;
603         return 0;
604 }
605
606 int most_set_cfg_num_buffers(char *mdev, char *mdev_ch, u16 val)
607 {
608         struct most_channel *c = get_channel(mdev, mdev_ch);
609
610         if (!c)
611                 return -ENODEV;
612         c->cfg.num_buffers = val;
613         return 0;
614 }
615
616 int most_set_cfg_datatype(char *mdev, char *mdev_ch, char *buf)
617 {
618         int i;
619         struct most_channel *c = get_channel(mdev, mdev_ch);
620
621         if (!c)
622                 return -ENODEV;
623         for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
624                 if (!strcmp(buf, ch_data_type[i].name)) {
625                         c->cfg.data_type = ch_data_type[i].most_ch_data_type;
626                         break;
627                 }
628         }
629
630         if (i == ARRAY_SIZE(ch_data_type))
631                 dev_warn(&c->dev, "Invalid attribute settings\n");
632         return 0;
633 }
634
635 int most_set_cfg_direction(char *mdev, char *mdev_ch, char *buf)
636 {
637         struct most_channel *c = get_channel(mdev, mdev_ch);
638
639         if (!c)
640                 return -ENODEV;
641         if (!strcmp(buf, "dir_rx")) {
642                 c->cfg.direction = MOST_CH_RX;
643         } else if (!strcmp(buf, "rx")) {
644                 c->cfg.direction = MOST_CH_RX;
645         } else if (!strcmp(buf, "dir_tx")) {
646                 c->cfg.direction = MOST_CH_TX;
647         } else if (!strcmp(buf, "tx")) {
648                 c->cfg.direction = MOST_CH_TX;
649         } else {
650                 dev_err(&c->dev, "Invalid direction\n");
651                 return -ENODATA;
652         }
653         return 0;
654 }
655
656 int most_set_cfg_packets_xact(char *mdev, char *mdev_ch, u16 val)
657 {
658         struct most_channel *c = get_channel(mdev, mdev_ch);
659
660         if (!c)
661                 return -ENODEV;
662         c->cfg.packets_per_xact = val;
663         return 0;
664 }
665
666 int most_cfg_complete(char *comp_name)
667 {
668         struct most_component *comp;
669
670         comp = match_component(comp_name);
671         if (!comp)
672                 return -ENODEV;
673
674         return comp->cfg_complete();
675 }
676
677 int most_add_link(char *mdev, char *mdev_ch, char *comp_name, char *link_name,
678                   char *comp_param)
679 {
680         struct most_channel *c = get_channel(mdev, mdev_ch);
681         struct most_component *comp = match_component(comp_name);
682
683         if (!c || !comp)
684                 return -ENODEV;
685
686         return link_channel_to_component(c, comp, link_name, comp_param);
687 }
688
689 int most_remove_link(char *mdev, char *mdev_ch, char *comp_name)
690 {
691         struct most_channel *c;
692         struct most_component *comp;
693
694         comp = match_component(comp_name);
695         if (!comp)
696                 return -ENODEV;
697         c = get_channel(mdev, mdev_ch);
698         if (!c)
699                 return -ENODEV;
700
701         if (comp->disconnect_channel(c->iface, c->channel_id))
702                 return -EIO;
703         if (c->pipe0.comp == comp)
704                 c->pipe0.comp = NULL;
705         if (c->pipe1.comp == comp)
706                 c->pipe1.comp = NULL;
707         return 0;
708 }
709
710 #define DRV_ATTR(_name)  (&driver_attr_##_name.attr)
711
712 static DRIVER_ATTR_RO(links);
713 static DRIVER_ATTR_RO(components);
714
715 static struct attribute *mc_attrs[] = {
716         DRV_ATTR(links),
717         DRV_ATTR(components),
718         NULL,
719 };
720
721 static const struct attribute_group mc_attr_group = {
722         .attrs = mc_attrs,
723 };
724
725 static const struct attribute_group *mc_attr_groups[] = {
726         &mc_attr_group,
727         NULL,
728 };
729
730 static struct device_driver mostbus_driver = {
731         .name = "most_core",
732         .bus = &mostbus,
733         .groups = mc_attr_groups,
734 };
735
736 static inline void trash_mbo(struct mbo *mbo)
737 {
738         unsigned long flags;
739         struct most_channel *c = mbo->context;
740
741         spin_lock_irqsave(&c->fifo_lock, flags);
742         list_add(&mbo->list, &c->trash_fifo);
743         spin_unlock_irqrestore(&c->fifo_lock, flags);
744 }
745
746 static bool hdm_mbo_ready(struct most_channel *c)
747 {
748         bool empty;
749
750         if (c->enqueue_halt)
751                 return false;
752
753         spin_lock_irq(&c->fifo_lock);
754         empty = list_empty(&c->halt_fifo);
755         spin_unlock_irq(&c->fifo_lock);
756
757         return !empty;
758 }
759
760 static void nq_hdm_mbo(struct mbo *mbo)
761 {
762         unsigned long flags;
763         struct most_channel *c = mbo->context;
764
765         spin_lock_irqsave(&c->fifo_lock, flags);
766         list_add_tail(&mbo->list, &c->halt_fifo);
767         spin_unlock_irqrestore(&c->fifo_lock, flags);
768         wake_up_interruptible(&c->hdm_fifo_wq);
769 }
770
771 static int hdm_enqueue_thread(void *data)
772 {
773         struct most_channel *c = data;
774         struct mbo *mbo;
775         int ret;
776         typeof(c->iface->enqueue) enqueue = c->iface->enqueue;
777
778         while (likely(!kthread_should_stop())) {
779                 wait_event_interruptible(c->hdm_fifo_wq,
780                                          hdm_mbo_ready(c) ||
781                                          kthread_should_stop());
782
783                 mutex_lock(&c->nq_mutex);
784                 spin_lock_irq(&c->fifo_lock);
785                 if (unlikely(c->enqueue_halt || list_empty(&c->halt_fifo))) {
786                         spin_unlock_irq(&c->fifo_lock);
787                         mutex_unlock(&c->nq_mutex);
788                         continue;
789                 }
790
791                 mbo = list_pop_mbo(&c->halt_fifo);
792                 spin_unlock_irq(&c->fifo_lock);
793
794                 if (c->cfg.direction == MOST_CH_RX)
795                         mbo->buffer_length = c->cfg.buffer_size;
796
797                 ret = enqueue(mbo->ifp, mbo->hdm_channel_id, mbo);
798                 mutex_unlock(&c->nq_mutex);
799
800                 if (unlikely(ret)) {
801                         dev_err(&c->dev, "Buffer enqueue failed\n");
802                         nq_hdm_mbo(mbo);
803                         c->hdm_enqueue_task = NULL;
804                         return 0;
805                 }
806         }
807
808         return 0;
809 }
810
811 static int run_enqueue_thread(struct most_channel *c, int channel_id)
812 {
813         struct task_struct *task =
814                 kthread_run(hdm_enqueue_thread, c, "hdm_fifo_%d",
815                             channel_id);
816
817         if (IS_ERR(task))
818                 return PTR_ERR(task);
819
820         c->hdm_enqueue_task = task;
821         return 0;
822 }
823
824 /**
825  * arm_mbo - recycle MBO for further usage
826  * @mbo: most buffer
827  *
828  * This puts an MBO back to the list to have it ready for up coming
829  * tx transactions.
830  *
831  * In case the MBO belongs to a channel that recently has been
832  * poisoned, the MBO is scheduled to be trashed.
833  * Calls the completion handler of an attached component.
834  */
835 static void arm_mbo(struct mbo *mbo)
836 {
837         unsigned long flags;
838         struct most_channel *c;
839
840         c = mbo->context;
841
842         if (c->is_poisoned) {
843                 trash_mbo(mbo);
844                 return;
845         }
846
847         spin_lock_irqsave(&c->fifo_lock, flags);
848         ++*mbo->num_buffers_ptr;
849         list_add_tail(&mbo->list, &c->fifo);
850         spin_unlock_irqrestore(&c->fifo_lock, flags);
851
852         if (c->pipe0.refs && c->pipe0.comp->tx_completion)
853                 c->pipe0.comp->tx_completion(c->iface, c->channel_id);
854
855         if (c->pipe1.refs && c->pipe1.comp->tx_completion)
856                 c->pipe1.comp->tx_completion(c->iface, c->channel_id);
857 }
858
859 /**
860  * arm_mbo_chain - helper function that arms an MBO chain for the HDM
861  * @c: pointer to interface channel
862  * @dir: direction of the channel
863  * @compl: pointer to completion function
864  *
865  * This allocates buffer objects including the containing DMA coherent
866  * buffer and puts them in the fifo.
867  * Buffers of Rx channels are put in the kthread fifo, hence immediately
868  * submitted to the HDM.
869  *
870  * Returns the number of allocated and enqueued MBOs.
871  */
872 static int arm_mbo_chain(struct most_channel *c, int dir,
873                          void (*compl)(struct mbo *))
874 {
875         unsigned int i;
876         struct mbo *mbo;
877         unsigned long flags;
878         u32 coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
879
880         atomic_set(&c->mbo_nq_level, 0);
881
882         for (i = 0; i < c->cfg.num_buffers; i++) {
883                 mbo = kzalloc(sizeof(*mbo), GFP_KERNEL);
884                 if (!mbo)
885                         goto flush_fifos;
886
887                 mbo->context = c;
888                 mbo->ifp = c->iface;
889                 mbo->hdm_channel_id = c->channel_id;
890                 if (c->iface->dma_alloc) {
891                         mbo->virt_address =
892                                 c->iface->dma_alloc(mbo, coherent_buf_size);
893                 } else {
894                         mbo->virt_address =
895                                 kzalloc(coherent_buf_size, GFP_KERNEL);
896                 }
897                 if (!mbo->virt_address)
898                         goto release_mbo;
899
900                 mbo->complete = compl;
901                 mbo->num_buffers_ptr = &dummy_num_buffers;
902                 if (dir == MOST_CH_RX) {
903                         nq_hdm_mbo(mbo);
904                         atomic_inc(&c->mbo_nq_level);
905                 } else {
906                         spin_lock_irqsave(&c->fifo_lock, flags);
907                         list_add_tail(&mbo->list, &c->fifo);
908                         spin_unlock_irqrestore(&c->fifo_lock, flags);
909                 }
910         }
911         return c->cfg.num_buffers;
912
913 release_mbo:
914         kfree(mbo);
915
916 flush_fifos:
917         flush_channel_fifos(c);
918         return 0;
919 }
920
921 /**
922  * most_submit_mbo - submits an MBO to fifo
923  * @mbo: most buffer
924  */
925 void most_submit_mbo(struct mbo *mbo)
926 {
927         if (WARN_ONCE(!mbo || !mbo->context,
928                       "Bad buffer or missing channel reference\n"))
929                 return;
930
931         nq_hdm_mbo(mbo);
932 }
933 EXPORT_SYMBOL_GPL(most_submit_mbo);
934
935 /**
936  * most_write_completion - write completion handler
937  * @mbo: most buffer
938  *
939  * This recycles the MBO for further usage. In case the channel has been
940  * poisoned, the MBO is scheduled to be trashed.
941  */
942 static void most_write_completion(struct mbo *mbo)
943 {
944         struct most_channel *c;
945
946         c = mbo->context;
947         if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE)))
948                 trash_mbo(mbo);
949         else
950                 arm_mbo(mbo);
951 }
952
953 int channel_has_mbo(struct most_interface *iface, int id,
954                     struct most_component *comp)
955 {
956         struct most_channel *c = iface->p->channel[id];
957         unsigned long flags;
958         int empty;
959
960         if (unlikely(!c))
961                 return -EINVAL;
962
963         if (c->pipe0.refs && c->pipe1.refs &&
964             ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
965              (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
966                 return 0;
967
968         spin_lock_irqsave(&c->fifo_lock, flags);
969         empty = list_empty(&c->fifo);
970         spin_unlock_irqrestore(&c->fifo_lock, flags);
971         return !empty;
972 }
973 EXPORT_SYMBOL_GPL(channel_has_mbo);
974
975 /**
976  * most_get_mbo - get pointer to an MBO of pool
977  * @iface: pointer to interface instance
978  * @id: channel ID
979  * @comp: driver component
980  *
981  * This attempts to get a free buffer out of the channel fifo.
982  * Returns a pointer to MBO on success or NULL otherwise.
983  */
984 struct mbo *most_get_mbo(struct most_interface *iface, int id,
985                          struct most_component *comp)
986 {
987         struct mbo *mbo;
988         struct most_channel *c;
989         unsigned long flags;
990         int *num_buffers_ptr;
991
992         c = iface->p->channel[id];
993         if (unlikely(!c))
994                 return NULL;
995
996         if (c->pipe0.refs && c->pipe1.refs &&
997             ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
998              (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
999                 return NULL;
1000
1001         if (comp == c->pipe0.comp)
1002                 num_buffers_ptr = &c->pipe0.num_buffers;
1003         else if (comp == c->pipe1.comp)
1004                 num_buffers_ptr = &c->pipe1.num_buffers;
1005         else
1006                 num_buffers_ptr = &dummy_num_buffers;
1007
1008         spin_lock_irqsave(&c->fifo_lock, flags);
1009         if (list_empty(&c->fifo)) {
1010                 spin_unlock_irqrestore(&c->fifo_lock, flags);
1011                 return NULL;
1012         }
1013         mbo = list_pop_mbo(&c->fifo);
1014         --*num_buffers_ptr;
1015         spin_unlock_irqrestore(&c->fifo_lock, flags);
1016
1017         mbo->num_buffers_ptr = num_buffers_ptr;
1018         mbo->buffer_length = c->cfg.buffer_size;
1019         return mbo;
1020 }
1021 EXPORT_SYMBOL_GPL(most_get_mbo);
1022
1023 /**
1024  * most_put_mbo - return buffer to pool
1025  * @mbo: most buffer
1026  */
1027 void most_put_mbo(struct mbo *mbo)
1028 {
1029         struct most_channel *c = mbo->context;
1030
1031         if (c->cfg.direction == MOST_CH_TX) {
1032                 arm_mbo(mbo);
1033                 return;
1034         }
1035         nq_hdm_mbo(mbo);
1036         atomic_inc(&c->mbo_nq_level);
1037 }
1038 EXPORT_SYMBOL_GPL(most_put_mbo);
1039
1040 /**
1041  * most_read_completion - read completion handler
1042  * @mbo: most buffer
1043  *
1044  * This function is called by the HDM when data has been received from the
1045  * hardware and copied to the buffer of the MBO.
1046  *
1047  * In case the channel has been poisoned it puts the buffer in the trash queue.
1048  * Otherwise, it passes the buffer to an component for further processing.
1049  */
1050 static void most_read_completion(struct mbo *mbo)
1051 {
1052         struct most_channel *c = mbo->context;
1053
1054         if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE))) {
1055                 trash_mbo(mbo);
1056                 return;
1057         }
1058
1059         if (mbo->status == MBO_E_INVAL) {
1060                 nq_hdm_mbo(mbo);
1061                 atomic_inc(&c->mbo_nq_level);
1062                 return;
1063         }
1064
1065         if (atomic_sub_and_test(1, &c->mbo_nq_level))
1066                 c->is_starving = 1;
1067
1068         if (c->pipe0.refs && c->pipe0.comp->rx_completion &&
1069             c->pipe0.comp->rx_completion(mbo) == 0)
1070                 return;
1071
1072         if (c->pipe1.refs && c->pipe1.comp->rx_completion &&
1073             c->pipe1.comp->rx_completion(mbo) == 0)
1074                 return;
1075
1076         most_put_mbo(mbo);
1077 }
1078
1079 /**
1080  * most_start_channel - prepares a channel for communication
1081  * @iface: pointer to interface instance
1082  * @id: channel ID
1083  * @comp: driver component
1084  *
1085  * This prepares the channel for usage. Cross-checks whether the
1086  * channel's been properly configured.
1087  *
1088  * Returns 0 on success or error code otherwise.
1089  */
1090 int most_start_channel(struct most_interface *iface, int id,
1091                        struct most_component *comp)
1092 {
1093         int num_buffer;
1094         int ret;
1095         struct most_channel *c = iface->p->channel[id];
1096
1097         if (unlikely(!c))
1098                 return -EINVAL;
1099
1100         mutex_lock(&c->start_mutex);
1101         if (c->pipe0.refs + c->pipe1.refs > 0)
1102                 goto out; /* already started by another component */
1103
1104         if (!try_module_get(iface->mod)) {
1105                 dev_err(&c->dev, "Failed to acquire HDM lock\n");
1106                 mutex_unlock(&c->start_mutex);
1107                 return -ENOLCK;
1108         }
1109
1110         c->cfg.extra_len = 0;
1111         if (c->iface->configure(c->iface, c->channel_id, &c->cfg)) {
1112                 dev_err(&c->dev, "Channel configuration failed. Go check settings...\n");
1113                 ret = -EINVAL;
1114                 goto err_put_module;
1115         }
1116
1117         init_waitqueue_head(&c->hdm_fifo_wq);
1118
1119         if (c->cfg.direction == MOST_CH_RX)
1120                 num_buffer = arm_mbo_chain(c, c->cfg.direction,
1121                                            most_read_completion);
1122         else
1123                 num_buffer = arm_mbo_chain(c, c->cfg.direction,
1124                                            most_write_completion);
1125         if (unlikely(!num_buffer)) {
1126                 ret = -ENOMEM;
1127                 goto err_put_module;
1128         }
1129
1130         ret = run_enqueue_thread(c, id);
1131         if (ret)
1132                 goto err_put_module;
1133
1134         c->is_starving = 0;
1135         c->pipe0.num_buffers = c->cfg.num_buffers / 2;
1136         c->pipe1.num_buffers = c->cfg.num_buffers - c->pipe0.num_buffers;
1137         atomic_set(&c->mbo_ref, num_buffer);
1138
1139 out:
1140         if (comp == c->pipe0.comp)
1141                 c->pipe0.refs++;
1142         if (comp == c->pipe1.comp)
1143                 c->pipe1.refs++;
1144         mutex_unlock(&c->start_mutex);
1145         return 0;
1146
1147 err_put_module:
1148         module_put(iface->mod);
1149         mutex_unlock(&c->start_mutex);
1150         return ret;
1151 }
1152 EXPORT_SYMBOL_GPL(most_start_channel);
1153
1154 /**
1155  * most_stop_channel - stops a running channel
1156  * @iface: pointer to interface instance
1157  * @id: channel ID
1158  * @comp: driver component
1159  */
1160 int most_stop_channel(struct most_interface *iface, int id,
1161                       struct most_component *comp)
1162 {
1163         struct most_channel *c;
1164
1165         if (unlikely((!iface) || (id >= iface->num_channels) || (id < 0))) {
1166                 pr_err("Bad interface or index out of range\n");
1167                 return -EINVAL;
1168         }
1169         c = iface->p->channel[id];
1170         if (unlikely(!c))
1171                 return -EINVAL;
1172
1173         mutex_lock(&c->start_mutex);
1174         if (c->pipe0.refs + c->pipe1.refs >= 2)
1175                 goto out;
1176
1177         if (c->hdm_enqueue_task)
1178                 kthread_stop(c->hdm_enqueue_task);
1179         c->hdm_enqueue_task = NULL;
1180
1181         if (iface->mod)
1182                 module_put(iface->mod);
1183
1184         c->is_poisoned = true;
1185         if (c->iface->poison_channel(c->iface, c->channel_id)) {
1186                 dev_err(&c->dev, "Failed to stop channel %d of interface %s\n", c->channel_id,
1187                         c->iface->description);
1188                 mutex_unlock(&c->start_mutex);
1189                 return -EAGAIN;
1190         }
1191         flush_trash_fifo(c);
1192         flush_channel_fifos(c);
1193
1194 #ifdef CMPL_INTERRUPTIBLE
1195         if (wait_for_completion_interruptible(&c->cleanup)) {
1196                 dev_err(&c->dev, "Interrupted while cleaning up channel %d\n", c->channel_id);
1197                 mutex_unlock(&c->start_mutex);
1198                 return -EINTR;
1199         }
1200 #else
1201         wait_for_completion(&c->cleanup);
1202 #endif
1203         c->is_poisoned = false;
1204
1205 out:
1206         if (comp == c->pipe0.comp)
1207                 c->pipe0.refs--;
1208         if (comp == c->pipe1.comp)
1209                 c->pipe1.refs--;
1210         mutex_unlock(&c->start_mutex);
1211         return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(most_stop_channel);
1214
1215 /**
1216  * most_register_component - registers a driver component with the core
1217  * @comp: driver component
1218  */
1219 int most_register_component(struct most_component *comp)
1220 {
1221         if (!comp) {
1222                 pr_err("Bad component\n");
1223                 return -EINVAL;
1224         }
1225         list_add_tail(&comp->list, &comp_list);
1226         return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(most_register_component);
1229
1230 static int disconnect_channels(struct device *dev, void *data)
1231 {
1232         struct most_interface *iface;
1233         struct most_channel *c, *tmp;
1234         struct most_component *comp = data;
1235
1236         iface = dev_get_drvdata(dev);
1237         list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
1238                 if (c->pipe0.comp == comp || c->pipe1.comp == comp)
1239                         comp->disconnect_channel(c->iface, c->channel_id);
1240                 if (c->pipe0.comp == comp)
1241                         c->pipe0.comp = NULL;
1242                 if (c->pipe1.comp == comp)
1243                         c->pipe1.comp = NULL;
1244         }
1245         return 0;
1246 }
1247
1248 /**
1249  * most_deregister_component - deregisters a driver component with the core
1250  * @comp: driver component
1251  */
1252 int most_deregister_component(struct most_component *comp)
1253 {
1254         if (!comp) {
1255                 pr_err("Bad component\n");
1256                 return -EINVAL;
1257         }
1258
1259         bus_for_each_dev(&mostbus, NULL, comp, disconnect_channels);
1260         list_del(&comp->list);
1261         return 0;
1262 }
1263 EXPORT_SYMBOL_GPL(most_deregister_component);
1264
1265 static void release_channel(struct device *dev)
1266 {
1267         struct most_channel *c = to_channel(dev);
1268
1269         kfree(c);
1270 }
1271
1272 /**
1273  * most_register_interface - registers an interface with core
1274  * @iface: device interface
1275  *
1276  * Allocates and initializes a new interface instance and all of its channels.
1277  * Returns a pointer to kobject or an error pointer.
1278  */
1279 int most_register_interface(struct most_interface *iface)
1280 {
1281         unsigned int i;
1282         int id;
1283         struct most_channel *c;
1284
1285         if (!iface || !iface->enqueue || !iface->configure ||
1286             !iface->poison_channel || (iface->num_channels > MAX_CHANNELS))
1287                 return -EINVAL;
1288
1289         id = ida_simple_get(&mdev_id, 0, 0, GFP_KERNEL);
1290         if (id < 0) {
1291                 dev_err(iface->dev, "Failed to allocate device ID\n");
1292                 return id;
1293         }
1294
1295         iface->p = kzalloc(sizeof(*iface->p), GFP_KERNEL);
1296         if (!iface->p) {
1297                 ida_simple_remove(&mdev_id, id);
1298                 return -ENOMEM;
1299         }
1300
1301         INIT_LIST_HEAD(&iface->p->channel_list);
1302         iface->p->dev_id = id;
1303         strscpy(iface->p->name, iface->description, sizeof(iface->p->name));
1304         iface->dev->bus = &mostbus;
1305         iface->dev->groups = interface_attr_groups;
1306         dev_set_drvdata(iface->dev, iface);
1307         if (device_register(iface->dev)) {
1308                 dev_err(iface->dev, "Failed to register interface device\n");
1309                 kfree(iface->p);
1310                 put_device(iface->dev);
1311                 ida_simple_remove(&mdev_id, id);
1312                 return -ENOMEM;
1313         }
1314
1315         for (i = 0; i < iface->num_channels; i++) {
1316                 const char *name_suffix = iface->channel_vector[i].name_suffix;
1317
1318                 c = kzalloc(sizeof(*c), GFP_KERNEL);
1319                 if (!c)
1320                         goto err_free_resources;
1321                 if (!name_suffix)
1322                         snprintf(c->name, STRING_SIZE, "ch%d", i);
1323                 else
1324                         snprintf(c->name, STRING_SIZE, "%s", name_suffix);
1325                 c->dev.init_name = c->name;
1326                 c->dev.parent = iface->dev;
1327                 c->dev.groups = channel_attr_groups;
1328                 c->dev.release = release_channel;
1329                 iface->p->channel[i] = c;
1330                 c->is_starving = 0;
1331                 c->iface = iface;
1332                 c->channel_id = i;
1333                 c->keep_mbo = false;
1334                 c->enqueue_halt = false;
1335                 c->is_poisoned = false;
1336                 c->cfg.direction = 0;
1337                 c->cfg.data_type = 0;
1338                 c->cfg.num_buffers = 0;
1339                 c->cfg.buffer_size = 0;
1340                 c->cfg.subbuffer_size = 0;
1341                 c->cfg.packets_per_xact = 0;
1342                 spin_lock_init(&c->fifo_lock);
1343                 INIT_LIST_HEAD(&c->fifo);
1344                 INIT_LIST_HEAD(&c->trash_fifo);
1345                 INIT_LIST_HEAD(&c->halt_fifo);
1346                 init_completion(&c->cleanup);
1347                 atomic_set(&c->mbo_ref, 0);
1348                 mutex_init(&c->start_mutex);
1349                 mutex_init(&c->nq_mutex);
1350                 list_add_tail(&c->list, &iface->p->channel_list);
1351                 if (device_register(&c->dev)) {
1352                         dev_err(&c->dev, "Failed to register channel device\n");
1353                         goto err_free_most_channel;
1354                 }
1355         }
1356         most_interface_register_notify(iface->description);
1357         return 0;
1358
1359 err_free_most_channel:
1360         put_device(&c->dev);
1361
1362 err_free_resources:
1363         while (i > 0) {
1364                 c = iface->p->channel[--i];
1365                 device_unregister(&c->dev);
1366         }
1367         kfree(iface->p);
1368         device_unregister(iface->dev);
1369         ida_simple_remove(&mdev_id, id);
1370         return -ENOMEM;
1371 }
1372 EXPORT_SYMBOL_GPL(most_register_interface);
1373
1374 /**
1375  * most_deregister_interface - deregisters an interface with core
1376  * @iface: device interface
1377  *
1378  * Before removing an interface instance from the list, all running
1379  * channels are stopped and poisoned.
1380  */
1381 void most_deregister_interface(struct most_interface *iface)
1382 {
1383         int i;
1384         struct most_channel *c;
1385
1386         for (i = 0; i < iface->num_channels; i++) {
1387                 c = iface->p->channel[i];
1388                 if (c->pipe0.comp)
1389                         c->pipe0.comp->disconnect_channel(c->iface,
1390                                                         c->channel_id);
1391                 if (c->pipe1.comp)
1392                         c->pipe1.comp->disconnect_channel(c->iface,
1393                                                         c->channel_id);
1394                 c->pipe0.comp = NULL;
1395                 c->pipe1.comp = NULL;
1396                 list_del(&c->list);
1397                 device_unregister(&c->dev);
1398         }
1399
1400         ida_simple_remove(&mdev_id, iface->p->dev_id);
1401         kfree(iface->p);
1402         device_unregister(iface->dev);
1403 }
1404 EXPORT_SYMBOL_GPL(most_deregister_interface);
1405
1406 /**
1407  * most_stop_enqueue - prevents core from enqueueing MBOs
1408  * @iface: pointer to interface
1409  * @id: channel id
1410  *
1411  * This is called by an HDM that _cannot_ attend to its duties and
1412  * is imminent to get run over by the core. The core is not going to
1413  * enqueue any further packets unless the flagging HDM calls
1414  * most_resume enqueue().
1415  */
1416 void most_stop_enqueue(struct most_interface *iface, int id)
1417 {
1418         struct most_channel *c = iface->p->channel[id];
1419
1420         if (!c)
1421                 return;
1422
1423         mutex_lock(&c->nq_mutex);
1424         c->enqueue_halt = true;
1425         mutex_unlock(&c->nq_mutex);
1426 }
1427 EXPORT_SYMBOL_GPL(most_stop_enqueue);
1428
1429 /**
1430  * most_resume_enqueue - allow core to enqueue MBOs again
1431  * @iface: pointer to interface
1432  * @id: channel id
1433  *
1434  * This clears the enqueue halt flag and enqueues all MBOs currently
1435  * sitting in the wait fifo.
1436  */
1437 void most_resume_enqueue(struct most_interface *iface, int id)
1438 {
1439         struct most_channel *c = iface->p->channel[id];
1440
1441         if (!c)
1442                 return;
1443
1444         mutex_lock(&c->nq_mutex);
1445         c->enqueue_halt = false;
1446         mutex_unlock(&c->nq_mutex);
1447
1448         wake_up_interruptible(&c->hdm_fifo_wq);
1449 }
1450 EXPORT_SYMBOL_GPL(most_resume_enqueue);
1451
1452 static int __init most_init(void)
1453 {
1454         int err;
1455
1456         INIT_LIST_HEAD(&comp_list);
1457         ida_init(&mdev_id);
1458
1459         err = bus_register(&mostbus);
1460         if (err) {
1461                 pr_err("Failed to register most bus\n");
1462                 return err;
1463         }
1464         err = driver_register(&mostbus_driver);
1465         if (err) {
1466                 pr_err("Failed to register core driver\n");
1467                 goto err_unregister_bus;
1468         }
1469         configfs_init();
1470         return 0;
1471
1472 err_unregister_bus:
1473         bus_unregister(&mostbus);
1474         return err;
1475 }
1476
1477 static void __exit most_exit(void)
1478 {
1479         driver_unregister(&mostbus_driver);
1480         bus_unregister(&mostbus);
1481         ida_destroy(&mdev_id);
1482 }
1483
1484 subsys_initcall(most_init);
1485 module_exit(most_exit);
1486 MODULE_LICENSE("GPL");
1487 MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1488 MODULE_DESCRIPTION("Core module of stacked MOST Linux driver");