Merge tag 'phy-for-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/phy/linux...
[linux-2.6-microblaze.git] / drivers / mmc / host / sh_mmcif.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
7  */
8
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/sh_mmcif.h>
47 #include <linux/mmc/slot-gpio.h>
48 #include <linux/mod_devicetable.h>
49 #include <linux/mutex.h>
50 #include <linux/of_device.h>
51 #include <linux/pagemap.h>
52 #include <linux/platform_device.h>
53 #include <linux/pm_qos.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/sh_dma.h>
56 #include <linux/spinlock.h>
57 #include <linux/module.h>
58
59 #define DRIVER_NAME     "sh_mmcif"
60
61 /* CE_CMD_SET */
62 #define CMD_MASK                0x3f000000
63 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
64 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
66 #define CMD_SET_RBSY            (1 << 21) /* R1b */
67 #define CMD_SET_CCSEN           (1 << 20)
68 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
69 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
70 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
71 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
72 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
73 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
74 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
75 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
76 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
77 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
79 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
80 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
81 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
82 #define CMD_SET_CCSH            (1 << 5)
83 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
84 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
85 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
86 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
87
88 /* CE_CMD_CTRL */
89 #define CMD_CTRL_BREAK          (1 << 0)
90
91 /* CE_BLOCK_SET */
92 #define BLOCK_SIZE_MASK         0x0000ffff
93
94 /* CE_INT */
95 #define INT_CCSDE               (1 << 29)
96 #define INT_CMD12DRE            (1 << 26)
97 #define INT_CMD12RBE            (1 << 25)
98 #define INT_CMD12CRE            (1 << 24)
99 #define INT_DTRANE              (1 << 23)
100 #define INT_BUFRE               (1 << 22)
101 #define INT_BUFWEN              (1 << 21)
102 #define INT_BUFREN              (1 << 20)
103 #define INT_CCSRCV              (1 << 19)
104 #define INT_RBSYE               (1 << 17)
105 #define INT_CRSPE               (1 << 16)
106 #define INT_CMDVIO              (1 << 15)
107 #define INT_BUFVIO              (1 << 14)
108 #define INT_WDATERR             (1 << 11)
109 #define INT_RDATERR             (1 << 10)
110 #define INT_RIDXERR             (1 << 9)
111 #define INT_RSPERR              (1 << 8)
112 #define INT_CCSTO               (1 << 5)
113 #define INT_CRCSTO              (1 << 4)
114 #define INT_WDATTO              (1 << 3)
115 #define INT_RDATTO              (1 << 2)
116 #define INT_RBSYTO              (1 << 1)
117 #define INT_RSPTO               (1 << 0)
118 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
119                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
121                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122
123 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
124                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126
127 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128
129 /* CE_INT_MASK */
130 #define MASK_ALL                0x00000000
131 #define MASK_MCCSDE             (1 << 29)
132 #define MASK_MCMD12DRE          (1 << 26)
133 #define MASK_MCMD12RBE          (1 << 25)
134 #define MASK_MCMD12CRE          (1 << 24)
135 #define MASK_MDTRANE            (1 << 23)
136 #define MASK_MBUFRE             (1 << 22)
137 #define MASK_MBUFWEN            (1 << 21)
138 #define MASK_MBUFREN            (1 << 20)
139 #define MASK_MCCSRCV            (1 << 19)
140 #define MASK_MRBSYE             (1 << 17)
141 #define MASK_MCRSPE             (1 << 16)
142 #define MASK_MCMDVIO            (1 << 15)
143 #define MASK_MBUFVIO            (1 << 14)
144 #define MASK_MWDATERR           (1 << 11)
145 #define MASK_MRDATERR           (1 << 10)
146 #define MASK_MRIDXERR           (1 << 9)
147 #define MASK_MRSPERR            (1 << 8)
148 #define MASK_MCCSTO             (1 << 5)
149 #define MASK_MCRCSTO            (1 << 4)
150 #define MASK_MWDATTO            (1 << 3)
151 #define MASK_MRDATTO            (1 << 2)
152 #define MASK_MRBSYTO            (1 << 1)
153 #define MASK_MRSPTO             (1 << 0)
154
155 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157                                  MASK_MCRCSTO | MASK_MWDATTO | \
158                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159
160 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
161                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
162                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
163                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
164
165 /* CE_HOST_STS1 */
166 #define STS1_CMDSEQ             (1 << 31)
167
168 /* CE_HOST_STS2 */
169 #define STS2_CRCSTE             (1 << 31)
170 #define STS2_CRC16E             (1 << 30)
171 #define STS2_AC12CRCE           (1 << 29)
172 #define STS2_RSPCRC7E           (1 << 28)
173 #define STS2_CRCSTEBE           (1 << 27)
174 #define STS2_RDATEBE            (1 << 26)
175 #define STS2_AC12REBE           (1 << 25)
176 #define STS2_RSPEBE             (1 << 24)
177 #define STS2_AC12IDXE           (1 << 23)
178 #define STS2_RSPIDXE            (1 << 22)
179 #define STS2_CCSTO              (1 << 15)
180 #define STS2_RDATTO             (1 << 14)
181 #define STS2_DATBSYTO           (1 << 13)
182 #define STS2_CRCSTTO            (1 << 12)
183 #define STS2_AC12BSYTO          (1 << 11)
184 #define STS2_RSPBSYTO           (1 << 10)
185 #define STS2_AC12RSPTO          (1 << 9)
186 #define STS2_RSPTO              (1 << 8)
187 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
188                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
190                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
191                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
192                                  STS2_AC12RSPTO | STS2_RSPTO)
193
194 #define CLKDEV_EMMC_DATA        52000000 /* 52 MHz */
195 #define CLKDEV_MMC_DATA         20000000 /* 20 MHz */
196 #define CLKDEV_INIT             400000   /* 400 kHz */
197
198 enum sh_mmcif_state {
199         STATE_IDLE,
200         STATE_REQUEST,
201         STATE_IOS,
202         STATE_TIMEOUT,
203 };
204
205 enum sh_mmcif_wait_for {
206         MMCIF_WAIT_FOR_REQUEST,
207         MMCIF_WAIT_FOR_CMD,
208         MMCIF_WAIT_FOR_MREAD,
209         MMCIF_WAIT_FOR_MWRITE,
210         MMCIF_WAIT_FOR_READ,
211         MMCIF_WAIT_FOR_WRITE,
212         MMCIF_WAIT_FOR_READ_END,
213         MMCIF_WAIT_FOR_WRITE_END,
214         MMCIF_WAIT_FOR_STOP,
215 };
216
217 /*
218  * difference for each SoC
219  */
220 struct sh_mmcif_host {
221         struct mmc_host *mmc;
222         struct mmc_request *mrq;
223         struct platform_device *pd;
224         struct clk *clk;
225         int bus_width;
226         unsigned char timing;
227         bool sd_error;
228         bool dying;
229         long timeout;
230         void __iomem *addr;
231         u32 *pio_ptr;
232         spinlock_t lock;                /* protect sh_mmcif_host::state */
233         enum sh_mmcif_state state;
234         enum sh_mmcif_wait_for wait_for;
235         struct delayed_work timeout_work;
236         size_t blocksize;
237         int sg_idx;
238         int sg_blkidx;
239         bool power;
240         bool ccs_enable;                /* Command Completion Signal support */
241         bool clk_ctrl2_enable;
242         struct mutex thread_lock;
243         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
244
245         /* DMA support */
246         struct dma_chan         *chan_rx;
247         struct dma_chan         *chan_tx;
248         struct completion       dma_complete;
249         bool                    dma_active;
250 };
251
252 static const struct of_device_id sh_mmcif_of_match[] = {
253         { .compatible = "renesas,sh-mmcif" },
254         { }
255 };
256 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
257
258 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
259
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261                                         unsigned int reg, u32 val)
262 {
263         writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267                                         unsigned int reg, u32 val)
268 {
269         writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271
272 static void sh_mmcif_dma_complete(void *arg)
273 {
274         struct sh_mmcif_host *host = arg;
275         struct mmc_request *mrq = host->mrq;
276         struct device *dev = sh_mmcif_host_to_dev(host);
277
278         dev_dbg(dev, "Command completed\n");
279
280         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281                  dev_name(dev)))
282                 return;
283
284         complete(&host->dma_complete);
285 }
286
287 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288 {
289         struct mmc_data *data = host->mrq->data;
290         struct scatterlist *sg = data->sg;
291         struct dma_async_tx_descriptor *desc = NULL;
292         struct dma_chan *chan = host->chan_rx;
293         struct device *dev = sh_mmcif_host_to_dev(host);
294         dma_cookie_t cookie = -EINVAL;
295         int ret;
296
297         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298                          DMA_FROM_DEVICE);
299         if (ret > 0) {
300                 host->dma_active = true;
301                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
302                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303         }
304
305         if (desc) {
306                 desc->callback = sh_mmcif_dma_complete;
307                 desc->callback_param = host;
308                 cookie = dmaengine_submit(desc);
309                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310                 dma_async_issue_pending(chan);
311         }
312         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313                 __func__, data->sg_len, ret, cookie);
314
315         if (!desc) {
316                 /* DMA failed, fall back to PIO */
317                 if (ret >= 0)
318                         ret = -EIO;
319                 host->chan_rx = NULL;
320                 host->dma_active = false;
321                 dma_release_channel(chan);
322                 /* Free the Tx channel too */
323                 chan = host->chan_tx;
324                 if (chan) {
325                         host->chan_tx = NULL;
326                         dma_release_channel(chan);
327                 }
328                 dev_warn(dev,
329                          "DMA failed: %d, falling back to PIO\n", ret);
330                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331         }
332
333         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334                 desc, cookie, data->sg_len);
335 }
336
337 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
338 {
339         struct mmc_data *data = host->mrq->data;
340         struct scatterlist *sg = data->sg;
341         struct dma_async_tx_descriptor *desc = NULL;
342         struct dma_chan *chan = host->chan_tx;
343         struct device *dev = sh_mmcif_host_to_dev(host);
344         dma_cookie_t cookie = -EINVAL;
345         int ret;
346
347         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348                          DMA_TO_DEVICE);
349         if (ret > 0) {
350                 host->dma_active = true;
351                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
352                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353         }
354
355         if (desc) {
356                 desc->callback = sh_mmcif_dma_complete;
357                 desc->callback_param = host;
358                 cookie = dmaengine_submit(desc);
359                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360                 dma_async_issue_pending(chan);
361         }
362         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363                 __func__, data->sg_len, ret, cookie);
364
365         if (!desc) {
366                 /* DMA failed, fall back to PIO */
367                 if (ret >= 0)
368                         ret = -EIO;
369                 host->chan_tx = NULL;
370                 host->dma_active = false;
371                 dma_release_channel(chan);
372                 /* Free the Rx channel too */
373                 chan = host->chan_rx;
374                 if (chan) {
375                         host->chan_rx = NULL;
376                         dma_release_channel(chan);
377                 }
378                 dev_warn(dev,
379                          "DMA failed: %d, falling back to PIO\n", ret);
380                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
381         }
382
383         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384                 desc, cookie);
385 }
386
387 static struct dma_chan *
388 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
389 {
390         dma_cap_mask_t mask;
391
392         dma_cap_zero(mask);
393         dma_cap_set(DMA_SLAVE, mask);
394         if (slave_id <= 0)
395                 return NULL;
396
397         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
398 }
399
400 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401                                      struct dma_chan *chan,
402                                      enum dma_transfer_direction direction)
403 {
404         struct resource *res;
405         struct dma_slave_config cfg = { 0, };
406
407         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408         if (!res)
409                 return -EINVAL;
410
411         cfg.direction = direction;
412
413         if (direction == DMA_DEV_TO_MEM) {
414                 cfg.src_addr = res->start + MMCIF_CE_DATA;
415                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416         } else {
417                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
418                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
419         }
420
421         return dmaengine_slave_config(chan, &cfg);
422 }
423
424 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
425 {
426         struct device *dev = sh_mmcif_host_to_dev(host);
427         host->dma_active = false;
428
429         /* We can only either use DMA for both Tx and Rx or not use it at all */
430         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
431                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
432
433                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
434                                                         pdata->slave_id_tx);
435                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
436                                                         pdata->slave_id_rx);
437         } else {
438                 host->chan_tx = dma_request_chan(dev, "tx");
439                 if (IS_ERR(host->chan_tx))
440                         host->chan_tx = NULL;
441                 host->chan_rx = dma_request_chan(dev, "rx");
442                 if (IS_ERR(host->chan_rx))
443                         host->chan_rx = NULL;
444         }
445         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
446                 host->chan_rx);
447
448         if (!host->chan_tx || !host->chan_rx ||
449             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
450             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
451                 goto error;
452
453         return;
454
455 error:
456         if (host->chan_tx)
457                 dma_release_channel(host->chan_tx);
458         if (host->chan_rx)
459                 dma_release_channel(host->chan_rx);
460         host->chan_tx = host->chan_rx = NULL;
461 }
462
463 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
464 {
465         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
466         /* Descriptors are freed automatically */
467         if (host->chan_tx) {
468                 struct dma_chan *chan = host->chan_tx;
469                 host->chan_tx = NULL;
470                 dma_release_channel(chan);
471         }
472         if (host->chan_rx) {
473                 struct dma_chan *chan = host->chan_rx;
474                 host->chan_rx = NULL;
475                 dma_release_channel(chan);
476         }
477
478         host->dma_active = false;
479 }
480
481 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
482 {
483         struct device *dev = sh_mmcif_host_to_dev(host);
484         struct sh_mmcif_plat_data *p = dev->platform_data;
485         bool sup_pclk = p ? p->sup_pclk : false;
486         unsigned int current_clk = clk_get_rate(host->clk);
487         unsigned int clkdiv;
488
489         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
490         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
491
492         if (!clk)
493                 return;
494
495         if (host->clkdiv_map) {
496                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
497                 int i;
498
499                 clkdiv = 0;
500                 diff_min = ~0;
501                 best_freq = 0;
502                 for (i = 31; i >= 0; i--) {
503                         if (!((1 << i) & host->clkdiv_map))
504                                 continue;
505
506                         /*
507                          * clk = parent_freq / div
508                          * -> parent_freq = clk x div
509                          */
510
511                         div = 1 << (i + 1);
512                         freq = clk_round_rate(host->clk, clk * div);
513                         myclk = freq / div;
514                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
515
516                         if (diff <= diff_min) {
517                                 best_freq = freq;
518                                 clkdiv = i;
519                                 diff_min = diff;
520                         }
521                 }
522
523                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
524                         (best_freq / (1 << (clkdiv + 1))), clk,
525                         best_freq, clkdiv);
526
527                 clk_set_rate(host->clk, best_freq);
528                 clkdiv = clkdiv << 16;
529         } else if (sup_pclk && clk == current_clk) {
530                 clkdiv = CLK_SUP_PCLK;
531         } else {
532                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
533         }
534
535         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
536         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
537 }
538
539 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
540 {
541         u32 tmp;
542
543         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
544
545         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
546         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
547         if (host->ccs_enable)
548                 tmp |= SCCSTO_29;
549         if (host->clk_ctrl2_enable)
550                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
551         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
552                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
553         /* byte swap on */
554         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
555 }
556
557 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
558 {
559         struct device *dev = sh_mmcif_host_to_dev(host);
560         u32 state1, state2;
561         int ret, timeout;
562
563         host->sd_error = false;
564
565         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
566         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
567         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
568         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
569
570         if (state1 & STS1_CMDSEQ) {
571                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
572                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
573                 for (timeout = 10000; timeout; timeout--) {
574                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
575                               & STS1_CMDSEQ))
576                                 break;
577                         mdelay(1);
578                 }
579                 if (!timeout) {
580                         dev_err(dev,
581                                 "Forced end of command sequence timeout err\n");
582                         return -EIO;
583                 }
584                 sh_mmcif_sync_reset(host);
585                 dev_dbg(dev, "Forced end of command sequence\n");
586                 return -EIO;
587         }
588
589         if (state2 & STS2_CRC_ERR) {
590                 dev_err(dev, " CRC error: state %u, wait %u\n",
591                         host->state, host->wait_for);
592                 ret = -EIO;
593         } else if (state2 & STS2_TIMEOUT_ERR) {
594                 dev_err(dev, " Timeout: state %u, wait %u\n",
595                         host->state, host->wait_for);
596                 ret = -ETIMEDOUT;
597         } else {
598                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
599                         host->state, host->wait_for);
600                 ret = -EIO;
601         }
602         return ret;
603 }
604
605 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
606 {
607         struct mmc_data *data = host->mrq->data;
608
609         host->sg_blkidx += host->blocksize;
610
611         /* data->sg->length must be a multiple of host->blocksize? */
612         BUG_ON(host->sg_blkidx > data->sg->length);
613
614         if (host->sg_blkidx == data->sg->length) {
615                 host->sg_blkidx = 0;
616                 if (++host->sg_idx < data->sg_len)
617                         host->pio_ptr = sg_virt(++data->sg);
618         } else {
619                 host->pio_ptr = p;
620         }
621
622         return host->sg_idx != data->sg_len;
623 }
624
625 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
626                                  struct mmc_request *mrq)
627 {
628         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
629                            BLOCK_SIZE_MASK) + 3;
630
631         host->wait_for = MMCIF_WAIT_FOR_READ;
632
633         /* buf read enable */
634         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
635 }
636
637 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
638 {
639         struct device *dev = sh_mmcif_host_to_dev(host);
640         struct mmc_data *data = host->mrq->data;
641         u32 *p = sg_virt(data->sg);
642         int i;
643
644         if (host->sd_error) {
645                 data->error = sh_mmcif_error_manage(host);
646                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
647                 return false;
648         }
649
650         for (i = 0; i < host->blocksize / 4; i++)
651                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
652
653         /* buffer read end */
654         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
655         host->wait_for = MMCIF_WAIT_FOR_READ_END;
656
657         return true;
658 }
659
660 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
661                                 struct mmc_request *mrq)
662 {
663         struct mmc_data *data = mrq->data;
664
665         if (!data->sg_len || !data->sg->length)
666                 return;
667
668         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
669                 BLOCK_SIZE_MASK;
670
671         host->wait_for = MMCIF_WAIT_FOR_MREAD;
672         host->sg_idx = 0;
673         host->sg_blkidx = 0;
674         host->pio_ptr = sg_virt(data->sg);
675
676         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
677 }
678
679 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
680 {
681         struct device *dev = sh_mmcif_host_to_dev(host);
682         struct mmc_data *data = host->mrq->data;
683         u32 *p = host->pio_ptr;
684         int i;
685
686         if (host->sd_error) {
687                 data->error = sh_mmcif_error_manage(host);
688                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
689                 return false;
690         }
691
692         BUG_ON(!data->sg->length);
693
694         for (i = 0; i < host->blocksize / 4; i++)
695                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
696
697         if (!sh_mmcif_next_block(host, p))
698                 return false;
699
700         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
701
702         return true;
703 }
704
705 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
706                                         struct mmc_request *mrq)
707 {
708         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
709                            BLOCK_SIZE_MASK) + 3;
710
711         host->wait_for = MMCIF_WAIT_FOR_WRITE;
712
713         /* buf write enable */
714         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
715 }
716
717 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
718 {
719         struct device *dev = sh_mmcif_host_to_dev(host);
720         struct mmc_data *data = host->mrq->data;
721         u32 *p = sg_virt(data->sg);
722         int i;
723
724         if (host->sd_error) {
725                 data->error = sh_mmcif_error_manage(host);
726                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
727                 return false;
728         }
729
730         for (i = 0; i < host->blocksize / 4; i++)
731                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
732
733         /* buffer write end */
734         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
735         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
736
737         return true;
738 }
739
740 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
741                                 struct mmc_request *mrq)
742 {
743         struct mmc_data *data = mrq->data;
744
745         if (!data->sg_len || !data->sg->length)
746                 return;
747
748         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
749                 BLOCK_SIZE_MASK;
750
751         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
752         host->sg_idx = 0;
753         host->sg_blkidx = 0;
754         host->pio_ptr = sg_virt(data->sg);
755
756         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
757 }
758
759 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
760 {
761         struct device *dev = sh_mmcif_host_to_dev(host);
762         struct mmc_data *data = host->mrq->data;
763         u32 *p = host->pio_ptr;
764         int i;
765
766         if (host->sd_error) {
767                 data->error = sh_mmcif_error_manage(host);
768                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
769                 return false;
770         }
771
772         BUG_ON(!data->sg->length);
773
774         for (i = 0; i < host->blocksize / 4; i++)
775                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
776
777         if (!sh_mmcif_next_block(host, p))
778                 return false;
779
780         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
781
782         return true;
783 }
784
785 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
786                                                 struct mmc_command *cmd)
787 {
788         if (cmd->flags & MMC_RSP_136) {
789                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
790                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
791                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
792                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
793         } else
794                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
795 }
796
797 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
798                                                 struct mmc_command *cmd)
799 {
800         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
801 }
802
803 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
804                             struct mmc_request *mrq)
805 {
806         struct device *dev = sh_mmcif_host_to_dev(host);
807         struct mmc_data *data = mrq->data;
808         struct mmc_command *cmd = mrq->cmd;
809         u32 opc = cmd->opcode;
810         u32 tmp = 0;
811
812         /* Response Type check */
813         switch (mmc_resp_type(cmd)) {
814         case MMC_RSP_NONE:
815                 tmp |= CMD_SET_RTYP_NO;
816                 break;
817         case MMC_RSP_R1:
818         case MMC_RSP_R3:
819                 tmp |= CMD_SET_RTYP_6B;
820                 break;
821         case MMC_RSP_R1B:
822                 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
823                 break;
824         case MMC_RSP_R2:
825                 tmp |= CMD_SET_RTYP_17B;
826                 break;
827         default:
828                 dev_err(dev, "Unsupported response type.\n");
829                 break;
830         }
831
832         /* WDAT / DATW */
833         if (data) {
834                 tmp |= CMD_SET_WDAT;
835                 switch (host->bus_width) {
836                 case MMC_BUS_WIDTH_1:
837                         tmp |= CMD_SET_DATW_1;
838                         break;
839                 case MMC_BUS_WIDTH_4:
840                         tmp |= CMD_SET_DATW_4;
841                         break;
842                 case MMC_BUS_WIDTH_8:
843                         tmp |= CMD_SET_DATW_8;
844                         break;
845                 default:
846                         dev_err(dev, "Unsupported bus width.\n");
847                         break;
848                 }
849                 switch (host->timing) {
850                 case MMC_TIMING_MMC_DDR52:
851                         /*
852                          * MMC core will only set this timing, if the host
853                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
854                          * capability. MMCIF implementations with this
855                          * capability, e.g. sh73a0, will have to set it
856                          * in their platform data.
857                          */
858                         tmp |= CMD_SET_DARS;
859                         break;
860                 }
861         }
862         /* DWEN */
863         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
864                 tmp |= CMD_SET_DWEN;
865         /* CMLTE/CMD12EN */
866         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
867                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
868                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
869                                 data->blocks << 16);
870         }
871         /* RIDXC[1:0] check bits */
872         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
873             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
874                 tmp |= CMD_SET_RIDXC_BITS;
875         /* RCRC7C[1:0] check bits */
876         if (opc == MMC_SEND_OP_COND)
877                 tmp |= CMD_SET_CRC7C_BITS;
878         /* RCRC7C[1:0] internal CRC7 */
879         if (opc == MMC_ALL_SEND_CID ||
880                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
881                 tmp |= CMD_SET_CRC7C_INTERNAL;
882
883         return (opc << 24) | tmp;
884 }
885
886 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
887                                struct mmc_request *mrq, u32 opc)
888 {
889         struct device *dev = sh_mmcif_host_to_dev(host);
890
891         switch (opc) {
892         case MMC_READ_MULTIPLE_BLOCK:
893                 sh_mmcif_multi_read(host, mrq);
894                 return 0;
895         case MMC_WRITE_MULTIPLE_BLOCK:
896                 sh_mmcif_multi_write(host, mrq);
897                 return 0;
898         case MMC_WRITE_BLOCK:
899                 sh_mmcif_single_write(host, mrq);
900                 return 0;
901         case MMC_READ_SINGLE_BLOCK:
902         case MMC_SEND_EXT_CSD:
903                 sh_mmcif_single_read(host, mrq);
904                 return 0;
905         default:
906                 dev_err(dev, "Unsupported CMD%d\n", opc);
907                 return -EINVAL;
908         }
909 }
910
911 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
912                                struct mmc_request *mrq)
913 {
914         struct mmc_command *cmd = mrq->cmd;
915         u32 opc;
916         u32 mask = 0;
917         unsigned long flags;
918
919         if (cmd->flags & MMC_RSP_BUSY)
920                 mask = MASK_START_CMD | MASK_MRBSYE;
921         else
922                 mask = MASK_START_CMD | MASK_MCRSPE;
923
924         if (host->ccs_enable)
925                 mask |= MASK_MCCSTO;
926
927         if (mrq->data) {
928                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
929                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
930                                 mrq->data->blksz);
931         }
932         opc = sh_mmcif_set_cmd(host, mrq);
933
934         if (host->ccs_enable)
935                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
936         else
937                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
938         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
939         /* set arg */
940         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
941         /* set cmd */
942         spin_lock_irqsave(&host->lock, flags);
943         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
944
945         host->wait_for = MMCIF_WAIT_FOR_CMD;
946         schedule_delayed_work(&host->timeout_work, host->timeout);
947         spin_unlock_irqrestore(&host->lock, flags);
948 }
949
950 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
951                               struct mmc_request *mrq)
952 {
953         struct device *dev = sh_mmcif_host_to_dev(host);
954
955         switch (mrq->cmd->opcode) {
956         case MMC_READ_MULTIPLE_BLOCK:
957                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
958                 break;
959         case MMC_WRITE_MULTIPLE_BLOCK:
960                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
961                 break;
962         default:
963                 dev_err(dev, "unsupported stop cmd\n");
964                 mrq->stop->error = sh_mmcif_error_manage(host);
965                 return;
966         }
967
968         host->wait_for = MMCIF_WAIT_FOR_STOP;
969 }
970
971 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
972 {
973         struct sh_mmcif_host *host = mmc_priv(mmc);
974         struct device *dev = sh_mmcif_host_to_dev(host);
975         unsigned long flags;
976
977         spin_lock_irqsave(&host->lock, flags);
978         if (host->state != STATE_IDLE) {
979                 dev_dbg(dev, "%s() rejected, state %u\n",
980                         __func__, host->state);
981                 spin_unlock_irqrestore(&host->lock, flags);
982                 mrq->cmd->error = -EAGAIN;
983                 mmc_request_done(mmc, mrq);
984                 return;
985         }
986
987         host->state = STATE_REQUEST;
988         spin_unlock_irqrestore(&host->lock, flags);
989
990         host->mrq = mrq;
991
992         sh_mmcif_start_cmd(host, mrq);
993 }
994
995 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
996 {
997         struct device *dev = sh_mmcif_host_to_dev(host);
998
999         if (host->mmc->f_max) {
1000                 unsigned int f_max, f_min = 0, f_min_old;
1001
1002                 f_max = host->mmc->f_max;
1003                 for (f_min_old = f_max; f_min_old > 2;) {
1004                         f_min = clk_round_rate(host->clk, f_min_old / 2);
1005                         if (f_min == f_min_old)
1006                                 break;
1007                         f_min_old = f_min;
1008                 }
1009
1010                 /*
1011                  * This driver assumes this SoC is R-Car Gen2 or later
1012                  */
1013                 host->clkdiv_map = 0x3ff;
1014
1015                 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1016                 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1017         } else {
1018                 unsigned int clk = clk_get_rate(host->clk);
1019
1020                 host->mmc->f_max = clk / 2;
1021                 host->mmc->f_min = clk / 512;
1022         }
1023
1024         dev_dbg(dev, "clk max/min = %d/%d\n",
1025                 host->mmc->f_max, host->mmc->f_min);
1026 }
1027
1028 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1029 {
1030         struct sh_mmcif_host *host = mmc_priv(mmc);
1031         struct device *dev = sh_mmcif_host_to_dev(host);
1032         unsigned long flags;
1033
1034         spin_lock_irqsave(&host->lock, flags);
1035         if (host->state != STATE_IDLE) {
1036                 dev_dbg(dev, "%s() rejected, state %u\n",
1037                         __func__, host->state);
1038                 spin_unlock_irqrestore(&host->lock, flags);
1039                 return;
1040         }
1041
1042         host->state = STATE_IOS;
1043         spin_unlock_irqrestore(&host->lock, flags);
1044
1045         switch (ios->power_mode) {
1046         case MMC_POWER_UP:
1047                 if (!IS_ERR(mmc->supply.vmmc))
1048                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1049                 if (!host->power) {
1050                         clk_prepare_enable(host->clk);
1051                         pm_runtime_get_sync(dev);
1052                         sh_mmcif_sync_reset(host);
1053                         sh_mmcif_request_dma(host);
1054                         host->power = true;
1055                 }
1056                 break;
1057         case MMC_POWER_OFF:
1058                 if (!IS_ERR(mmc->supply.vmmc))
1059                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1060                 if (host->power) {
1061                         sh_mmcif_clock_control(host, 0);
1062                         sh_mmcif_release_dma(host);
1063                         pm_runtime_put(dev);
1064                         clk_disable_unprepare(host->clk);
1065                         host->power = false;
1066                 }
1067                 break;
1068         case MMC_POWER_ON:
1069                 sh_mmcif_clock_control(host, ios->clock);
1070                 break;
1071         }
1072
1073         host->timing = ios->timing;
1074         host->bus_width = ios->bus_width;
1075         host->state = STATE_IDLE;
1076 }
1077
1078 static const struct mmc_host_ops sh_mmcif_ops = {
1079         .request        = sh_mmcif_request,
1080         .set_ios        = sh_mmcif_set_ios,
1081         .get_cd         = mmc_gpio_get_cd,
1082 };
1083
1084 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1085 {
1086         struct mmc_command *cmd = host->mrq->cmd;
1087         struct mmc_data *data = host->mrq->data;
1088         struct device *dev = sh_mmcif_host_to_dev(host);
1089         long time;
1090
1091         if (host->sd_error) {
1092                 switch (cmd->opcode) {
1093                 case MMC_ALL_SEND_CID:
1094                 case MMC_SELECT_CARD:
1095                 case MMC_APP_CMD:
1096                         cmd->error = -ETIMEDOUT;
1097                         break;
1098                 default:
1099                         cmd->error = sh_mmcif_error_manage(host);
1100                         break;
1101                 }
1102                 dev_dbg(dev, "CMD%d error %d\n",
1103                         cmd->opcode, cmd->error);
1104                 host->sd_error = false;
1105                 return false;
1106         }
1107         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1108                 cmd->error = 0;
1109                 return false;
1110         }
1111
1112         sh_mmcif_get_response(host, cmd);
1113
1114         if (!data)
1115                 return false;
1116
1117         /*
1118          * Completion can be signalled from DMA callback and error, so, have to
1119          * reset here, before setting .dma_active
1120          */
1121         init_completion(&host->dma_complete);
1122
1123         if (data->flags & MMC_DATA_READ) {
1124                 if (host->chan_rx)
1125                         sh_mmcif_start_dma_rx(host);
1126         } else {
1127                 if (host->chan_tx)
1128                         sh_mmcif_start_dma_tx(host);
1129         }
1130
1131         if (!host->dma_active) {
1132                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1133                 return !data->error;
1134         }
1135
1136         /* Running in the IRQ thread, can sleep */
1137         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1138                                                          host->timeout);
1139
1140         if (data->flags & MMC_DATA_READ)
1141                 dma_unmap_sg(host->chan_rx->device->dev,
1142                              data->sg, data->sg_len,
1143                              DMA_FROM_DEVICE);
1144         else
1145                 dma_unmap_sg(host->chan_tx->device->dev,
1146                              data->sg, data->sg_len,
1147                              DMA_TO_DEVICE);
1148
1149         if (host->sd_error) {
1150                 dev_err(host->mmc->parent,
1151                         "Error IRQ while waiting for DMA completion!\n");
1152                 /* Woken up by an error IRQ: abort DMA */
1153                 data->error = sh_mmcif_error_manage(host);
1154         } else if (!time) {
1155                 dev_err(host->mmc->parent, "DMA timeout!\n");
1156                 data->error = -ETIMEDOUT;
1157         } else if (time < 0) {
1158                 dev_err(host->mmc->parent,
1159                         "wait_for_completion_...() error %ld!\n", time);
1160                 data->error = time;
1161         }
1162         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1163                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1164         host->dma_active = false;
1165
1166         if (data->error) {
1167                 data->bytes_xfered = 0;
1168                 /* Abort DMA */
1169                 if (data->flags & MMC_DATA_READ)
1170                         dmaengine_terminate_sync(host->chan_rx);
1171                 else
1172                         dmaengine_terminate_sync(host->chan_tx);
1173         }
1174
1175         return false;
1176 }
1177
1178 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1179 {
1180         struct sh_mmcif_host *host = dev_id;
1181         struct mmc_request *mrq;
1182         struct device *dev = sh_mmcif_host_to_dev(host);
1183         bool wait = false;
1184         unsigned long flags;
1185         int wait_work;
1186
1187         spin_lock_irqsave(&host->lock, flags);
1188         wait_work = host->wait_for;
1189         spin_unlock_irqrestore(&host->lock, flags);
1190
1191         cancel_delayed_work_sync(&host->timeout_work);
1192
1193         mutex_lock(&host->thread_lock);
1194
1195         mrq = host->mrq;
1196         if (!mrq) {
1197                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1198                         host->state, host->wait_for);
1199                 mutex_unlock(&host->thread_lock);
1200                 return IRQ_HANDLED;
1201         }
1202
1203         /*
1204          * All handlers return true, if processing continues, and false, if the
1205          * request has to be completed - successfully or not
1206          */
1207         switch (wait_work) {
1208         case MMCIF_WAIT_FOR_REQUEST:
1209                 /* We're too late, the timeout has already kicked in */
1210                 mutex_unlock(&host->thread_lock);
1211                 return IRQ_HANDLED;
1212         case MMCIF_WAIT_FOR_CMD:
1213                 /* Wait for data? */
1214                 wait = sh_mmcif_end_cmd(host);
1215                 break;
1216         case MMCIF_WAIT_FOR_MREAD:
1217                 /* Wait for more data? */
1218                 wait = sh_mmcif_mread_block(host);
1219                 break;
1220         case MMCIF_WAIT_FOR_READ:
1221                 /* Wait for data end? */
1222                 wait = sh_mmcif_read_block(host);
1223                 break;
1224         case MMCIF_WAIT_FOR_MWRITE:
1225                 /* Wait data to write? */
1226                 wait = sh_mmcif_mwrite_block(host);
1227                 break;
1228         case MMCIF_WAIT_FOR_WRITE:
1229                 /* Wait for data end? */
1230                 wait = sh_mmcif_write_block(host);
1231                 break;
1232         case MMCIF_WAIT_FOR_STOP:
1233                 if (host->sd_error) {
1234                         mrq->stop->error = sh_mmcif_error_manage(host);
1235                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1236                         break;
1237                 }
1238                 sh_mmcif_get_cmd12response(host, mrq->stop);
1239                 mrq->stop->error = 0;
1240                 break;
1241         case MMCIF_WAIT_FOR_READ_END:
1242         case MMCIF_WAIT_FOR_WRITE_END:
1243                 if (host->sd_error) {
1244                         mrq->data->error = sh_mmcif_error_manage(host);
1245                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1246                 }
1247                 break;
1248         default:
1249                 BUG();
1250         }
1251
1252         if (wait) {
1253                 schedule_delayed_work(&host->timeout_work, host->timeout);
1254                 /* Wait for more data */
1255                 mutex_unlock(&host->thread_lock);
1256                 return IRQ_HANDLED;
1257         }
1258
1259         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1260                 struct mmc_data *data = mrq->data;
1261                 if (!mrq->cmd->error && data && !data->error)
1262                         data->bytes_xfered =
1263                                 data->blocks * data->blksz;
1264
1265                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1266                         sh_mmcif_stop_cmd(host, mrq);
1267                         if (!mrq->stop->error) {
1268                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1269                                 mutex_unlock(&host->thread_lock);
1270                                 return IRQ_HANDLED;
1271                         }
1272                 }
1273         }
1274
1275         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1276         host->state = STATE_IDLE;
1277         host->mrq = NULL;
1278         mmc_request_done(host->mmc, mrq);
1279
1280         mutex_unlock(&host->thread_lock);
1281
1282         return IRQ_HANDLED;
1283 }
1284
1285 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1286 {
1287         struct sh_mmcif_host *host = dev_id;
1288         struct device *dev = sh_mmcif_host_to_dev(host);
1289         u32 state, mask;
1290
1291         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1292         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1293         if (host->ccs_enable)
1294                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1295         else
1296                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1297         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1298
1299         if (state & ~MASK_CLEAN)
1300                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1301                         state);
1302
1303         if (state & INT_ERR_STS || state & ~INT_ALL) {
1304                 host->sd_error = true;
1305                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1306         }
1307         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1308                 if (!host->mrq)
1309                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1310                 if (!host->dma_active)
1311                         return IRQ_WAKE_THREAD;
1312                 else if (host->sd_error)
1313                         sh_mmcif_dma_complete(host);
1314         } else {
1315                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1316         }
1317
1318         return IRQ_HANDLED;
1319 }
1320
1321 static void sh_mmcif_timeout_work(struct work_struct *work)
1322 {
1323         struct delayed_work *d = to_delayed_work(work);
1324         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1325         struct mmc_request *mrq = host->mrq;
1326         struct device *dev = sh_mmcif_host_to_dev(host);
1327         unsigned long flags;
1328
1329         if (host->dying)
1330                 /* Don't run after mmc_remove_host() */
1331                 return;
1332
1333         spin_lock_irqsave(&host->lock, flags);
1334         if (host->state == STATE_IDLE) {
1335                 spin_unlock_irqrestore(&host->lock, flags);
1336                 return;
1337         }
1338
1339         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1340                 host->wait_for, mrq->cmd->opcode);
1341
1342         host->state = STATE_TIMEOUT;
1343         spin_unlock_irqrestore(&host->lock, flags);
1344
1345         /*
1346          * Handle races with cancel_delayed_work(), unless
1347          * cancel_delayed_work_sync() is used
1348          */
1349         switch (host->wait_for) {
1350         case MMCIF_WAIT_FOR_CMD:
1351                 mrq->cmd->error = sh_mmcif_error_manage(host);
1352                 break;
1353         case MMCIF_WAIT_FOR_STOP:
1354                 mrq->stop->error = sh_mmcif_error_manage(host);
1355                 break;
1356         case MMCIF_WAIT_FOR_MREAD:
1357         case MMCIF_WAIT_FOR_MWRITE:
1358         case MMCIF_WAIT_FOR_READ:
1359         case MMCIF_WAIT_FOR_WRITE:
1360         case MMCIF_WAIT_FOR_READ_END:
1361         case MMCIF_WAIT_FOR_WRITE_END:
1362                 mrq->data->error = sh_mmcif_error_manage(host);
1363                 break;
1364         default:
1365                 BUG();
1366         }
1367
1368         host->state = STATE_IDLE;
1369         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1370         host->mrq = NULL;
1371         mmc_request_done(host->mmc, mrq);
1372 }
1373
1374 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1375 {
1376         struct device *dev = sh_mmcif_host_to_dev(host);
1377         struct sh_mmcif_plat_data *pd = dev->platform_data;
1378         struct mmc_host *mmc = host->mmc;
1379
1380         mmc_regulator_get_supply(mmc);
1381
1382         if (!pd)
1383                 return;
1384
1385         if (!mmc->ocr_avail)
1386                 mmc->ocr_avail = pd->ocr;
1387         else if (pd->ocr)
1388                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1389 }
1390
1391 static int sh_mmcif_probe(struct platform_device *pdev)
1392 {
1393         int ret = 0, irq[2];
1394         struct mmc_host *mmc;
1395         struct sh_mmcif_host *host;
1396         struct device *dev = &pdev->dev;
1397         struct sh_mmcif_plat_data *pd = dev->platform_data;
1398         void __iomem *reg;
1399         const char *name;
1400
1401         irq[0] = platform_get_irq(pdev, 0);
1402         irq[1] = platform_get_irq_optional(pdev, 1);
1403         if (irq[0] < 0)
1404                 return -ENXIO;
1405
1406         reg = devm_platform_ioremap_resource(pdev, 0);
1407         if (IS_ERR(reg))
1408                 return PTR_ERR(reg);
1409
1410         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1411         if (!mmc)
1412                 return -ENOMEM;
1413
1414         ret = mmc_of_parse(mmc);
1415         if (ret < 0)
1416                 goto err_host;
1417
1418         host            = mmc_priv(mmc);
1419         host->mmc       = mmc;
1420         host->addr      = reg;
1421         host->timeout   = msecs_to_jiffies(10000);
1422         host->ccs_enable = true;
1423         host->clk_ctrl2_enable = false;
1424
1425         host->pd = pdev;
1426
1427         spin_lock_init(&host->lock);
1428
1429         mmc->ops = &sh_mmcif_ops;
1430         sh_mmcif_init_ocr(host);
1431
1432         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1433         mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1434         mmc->max_busy_timeout = 10000;
1435
1436         if (pd && pd->caps)
1437                 mmc->caps |= pd->caps;
1438         mmc->max_segs = 32;
1439         mmc->max_blk_size = 512;
1440         mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1441         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1442         mmc->max_seg_size = mmc->max_req_size;
1443
1444         platform_set_drvdata(pdev, host);
1445
1446         host->clk = devm_clk_get(dev, NULL);
1447         if (IS_ERR(host->clk)) {
1448                 ret = PTR_ERR(host->clk);
1449                 dev_err(dev, "cannot get clock: %d\n", ret);
1450                 goto err_host;
1451         }
1452
1453         ret = clk_prepare_enable(host->clk);
1454         if (ret < 0)
1455                 goto err_host;
1456
1457         sh_mmcif_clk_setup(host);
1458
1459         pm_runtime_enable(dev);
1460         host->power = false;
1461
1462         ret = pm_runtime_get_sync(dev);
1463         if (ret < 0)
1464                 goto err_clk;
1465
1466         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1467
1468         sh_mmcif_sync_reset(host);
1469         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1470
1471         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1472         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1473                                         sh_mmcif_irqt, 0, name, host);
1474         if (ret) {
1475                 dev_err(dev, "request_irq error (%s)\n", name);
1476                 goto err_clk;
1477         }
1478         if (irq[1] >= 0) {
1479                 ret = devm_request_threaded_irq(dev, irq[1],
1480                                                 sh_mmcif_intr, sh_mmcif_irqt,
1481                                                 0, "sh_mmc:int", host);
1482                 if (ret) {
1483                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1484                         goto err_clk;
1485                 }
1486         }
1487
1488         mutex_init(&host->thread_lock);
1489
1490         ret = mmc_add_host(mmc);
1491         if (ret < 0)
1492                 goto err_clk;
1493
1494         dev_pm_qos_expose_latency_limit(dev, 100);
1495
1496         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1497                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1498                  clk_get_rate(host->clk) / 1000000UL);
1499
1500         pm_runtime_put(dev);
1501         clk_disable_unprepare(host->clk);
1502         return ret;
1503
1504 err_clk:
1505         clk_disable_unprepare(host->clk);
1506         pm_runtime_put_sync(dev);
1507         pm_runtime_disable(dev);
1508 err_host:
1509         mmc_free_host(mmc);
1510         return ret;
1511 }
1512
1513 static int sh_mmcif_remove(struct platform_device *pdev)
1514 {
1515         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1516
1517         host->dying = true;
1518         clk_prepare_enable(host->clk);
1519         pm_runtime_get_sync(&pdev->dev);
1520
1521         dev_pm_qos_hide_latency_limit(&pdev->dev);
1522
1523         mmc_remove_host(host->mmc);
1524         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1525
1526         /*
1527          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1528          * mmc_remove_host() call above. But swapping order doesn't help either
1529          * (a query on the linux-mmc mailing list didn't bring any replies).
1530          */
1531         cancel_delayed_work_sync(&host->timeout_work);
1532
1533         clk_disable_unprepare(host->clk);
1534         mmc_free_host(host->mmc);
1535         pm_runtime_put_sync(&pdev->dev);
1536         pm_runtime_disable(&pdev->dev);
1537
1538         return 0;
1539 }
1540
1541 #ifdef CONFIG_PM_SLEEP
1542 static int sh_mmcif_suspend(struct device *dev)
1543 {
1544         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1545
1546         pm_runtime_get_sync(dev);
1547         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1548         pm_runtime_put(dev);
1549
1550         return 0;
1551 }
1552
1553 static int sh_mmcif_resume(struct device *dev)
1554 {
1555         return 0;
1556 }
1557 #endif
1558
1559 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1560         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1561 };
1562
1563 static struct platform_driver sh_mmcif_driver = {
1564         .probe          = sh_mmcif_probe,
1565         .remove         = sh_mmcif_remove,
1566         .driver         = {
1567                 .name   = DRIVER_NAME,
1568                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1569                 .pm     = &sh_mmcif_dev_pm_ops,
1570                 .of_match_table = sh_mmcif_of_match,
1571         },
1572 };
1573
1574 module_platform_driver(sh_mmcif_driver);
1575
1576 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1577 MODULE_LICENSE("GPL v2");
1578 MODULE_ALIAS("platform:" DRIVER_NAME);
1579 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");