power: supply: core: Fix parsing of battery chemistry/technology
[linux-2.6-microblaze.git] / drivers / mmc / host / mmci_stm32_sdmmc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4  * Author: Ludovic.barre@st.com for STMicroelectronics.
5  */
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/iopoll.h>
10 #include <linux/mmc/host.h>
11 #include <linux/mmc/card.h>
12 #include <linux/of_address.h>
13 #include <linux/reset.h>
14 #include <linux/scatterlist.h>
15 #include "mmci.h"
16
17 #define SDMMC_LLI_BUF_LEN       PAGE_SIZE
18 #define SDMMC_IDMA_BURST        BIT(MMCI_STM32_IDMABNDT_SHIFT)
19
20 #define DLYB_CR                 0x0
21 #define DLYB_CR_DEN             BIT(0)
22 #define DLYB_CR_SEN             BIT(1)
23
24 #define DLYB_CFGR               0x4
25 #define DLYB_CFGR_SEL_MASK      GENMASK(3, 0)
26 #define DLYB_CFGR_UNIT_MASK     GENMASK(14, 8)
27 #define DLYB_CFGR_LNG_MASK      GENMASK(27, 16)
28 #define DLYB_CFGR_LNGF          BIT(31)
29
30 #define DLYB_NB_DELAY           11
31 #define DLYB_CFGR_SEL_MAX       (DLYB_NB_DELAY + 1)
32 #define DLYB_CFGR_UNIT_MAX      127
33
34 #define DLYB_LNG_TIMEOUT_US     1000
35 #define SDMMC_VSWEND_TIMEOUT_US 10000
36
37 struct sdmmc_lli_desc {
38         u32 idmalar;
39         u32 idmabase;
40         u32 idmasize;
41 };
42
43 struct sdmmc_idma {
44         dma_addr_t sg_dma;
45         void *sg_cpu;
46 };
47
48 struct sdmmc_dlyb {
49         void __iomem *base;
50         u32 unit;
51         u32 max;
52 };
53
54 static int sdmmc_idma_validate_data(struct mmci_host *host,
55                                     struct mmc_data *data)
56 {
57         struct scatterlist *sg;
58         int i;
59
60         /*
61          * idma has constraints on idmabase & idmasize for each element
62          * excepted the last element which has no constraint on idmasize
63          */
64         for_each_sg(data->sg, sg, data->sg_len - 1, i) {
65                 if (!IS_ALIGNED(data->sg->offset, sizeof(u32)) ||
66                     !IS_ALIGNED(data->sg->length, SDMMC_IDMA_BURST)) {
67                         dev_err(mmc_dev(host->mmc),
68                                 "unaligned scatterlist: ofst:%x length:%d\n",
69                                 data->sg->offset, data->sg->length);
70                         return -EINVAL;
71                 }
72         }
73
74         if (!IS_ALIGNED(data->sg->offset, sizeof(u32))) {
75                 dev_err(mmc_dev(host->mmc),
76                         "unaligned last scatterlist: ofst:%x length:%d\n",
77                         data->sg->offset, data->sg->length);
78                 return -EINVAL;
79         }
80
81         return 0;
82 }
83
84 static int _sdmmc_idma_prep_data(struct mmci_host *host,
85                                  struct mmc_data *data)
86 {
87         int n_elem;
88
89         n_elem = dma_map_sg(mmc_dev(host->mmc),
90                             data->sg,
91                             data->sg_len,
92                             mmc_get_dma_dir(data));
93
94         if (!n_elem) {
95                 dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
96                 return -EINVAL;
97         }
98
99         return 0;
100 }
101
102 static int sdmmc_idma_prep_data(struct mmci_host *host,
103                                 struct mmc_data *data, bool next)
104 {
105         /* Check if job is already prepared. */
106         if (!next && data->host_cookie == host->next_cookie)
107                 return 0;
108
109         return _sdmmc_idma_prep_data(host, data);
110 }
111
112 static void sdmmc_idma_unprep_data(struct mmci_host *host,
113                                    struct mmc_data *data, int err)
114 {
115         dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
116                      mmc_get_dma_dir(data));
117 }
118
119 static int sdmmc_idma_setup(struct mmci_host *host)
120 {
121         struct sdmmc_idma *idma;
122         struct device *dev = mmc_dev(host->mmc);
123
124         idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
125         if (!idma)
126                 return -ENOMEM;
127
128         host->dma_priv = idma;
129
130         if (host->variant->dma_lli) {
131                 idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
132                                                    &idma->sg_dma, GFP_KERNEL);
133                 if (!idma->sg_cpu) {
134                         dev_err(dev, "Failed to alloc IDMA descriptor\n");
135                         return -ENOMEM;
136                 }
137                 host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
138                         sizeof(struct sdmmc_lli_desc);
139                 host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
140         } else {
141                 host->mmc->max_segs = 1;
142                 host->mmc->max_seg_size = host->mmc->max_req_size;
143         }
144
145         return dma_set_max_seg_size(dev, host->mmc->max_seg_size);
146 }
147
148 static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
149
150 {
151         struct sdmmc_idma *idma = host->dma_priv;
152         struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
153         struct mmc_data *data = host->data;
154         struct scatterlist *sg;
155         int i;
156
157         if (!host->variant->dma_lli || data->sg_len == 1) {
158                 writel_relaxed(sg_dma_address(data->sg),
159                                host->base + MMCI_STM32_IDMABASE0R);
160                 writel_relaxed(MMCI_STM32_IDMAEN,
161                                host->base + MMCI_STM32_IDMACTRLR);
162                 return 0;
163         }
164
165         for_each_sg(data->sg, sg, data->sg_len, i) {
166                 desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
167                 desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
168                         | MMCI_STM32_ABR;
169                 desc[i].idmabase = sg_dma_address(sg);
170                 desc[i].idmasize = sg_dma_len(sg);
171         }
172
173         /* notice the end of link list */
174         desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
175
176         dma_wmb();
177         writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
178         writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
179         writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
180         writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
181         writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
182                        host->base + MMCI_STM32_IDMACTRLR);
183
184         return 0;
185 }
186
187 static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
188 {
189         writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
190
191         if (!data->host_cookie)
192                 sdmmc_idma_unprep_data(host, data, 0);
193 }
194
195 static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
196 {
197         unsigned int clk = 0, ddr = 0;
198
199         if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
200             host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
201                 ddr = MCI_STM32_CLK_DDR;
202
203         /*
204          * cclk = mclk / (2 * clkdiv)
205          * clkdiv 0 => bypass
206          * in ddr mode bypass is not possible
207          */
208         if (desired) {
209                 if (desired >= host->mclk && !ddr) {
210                         host->cclk = host->mclk;
211                 } else {
212                         clk = DIV_ROUND_UP(host->mclk, 2 * desired);
213                         if (clk > MCI_STM32_CLK_CLKDIV_MSK)
214                                 clk = MCI_STM32_CLK_CLKDIV_MSK;
215                         host->cclk = host->mclk / (2 * clk);
216                 }
217         } else {
218                 /*
219                  * while power-on phase the clock can't be define to 0,
220                  * Only power-off and power-cyc deactivate the clock.
221                  * if desired clock is 0, set max divider
222                  */
223                 clk = MCI_STM32_CLK_CLKDIV_MSK;
224                 host->cclk = host->mclk / (2 * clk);
225         }
226
227         /* Set actual clock for debug */
228         if (host->mmc->ios.power_mode == MMC_POWER_ON)
229                 host->mmc->actual_clock = host->cclk;
230         else
231                 host->mmc->actual_clock = 0;
232
233         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
234                 clk |= MCI_STM32_CLK_WIDEBUS_4;
235         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
236                 clk |= MCI_STM32_CLK_WIDEBUS_8;
237
238         clk |= MCI_STM32_CLK_HWFCEN;
239         clk |= host->clk_reg_add;
240         clk |= ddr;
241
242         /*
243          * SDMMC_FBCK is selected when an external Delay Block is needed
244          * with SDR104.
245          */
246         if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) {
247                 clk |= MCI_STM32_CLK_BUSSPEED;
248                 if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104) {
249                         clk &= ~MCI_STM32_CLK_SEL_MSK;
250                         clk |= MCI_STM32_CLK_SELFBCK;
251                 }
252         }
253
254         mmci_write_clkreg(host, clk);
255 }
256
257 static void sdmmc_dlyb_input_ck(struct sdmmc_dlyb *dlyb)
258 {
259         if (!dlyb || !dlyb->base)
260                 return;
261
262         /* Output clock = Input clock */
263         writel_relaxed(0, dlyb->base + DLYB_CR);
264 }
265
266 static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
267 {
268         struct mmc_ios ios = host->mmc->ios;
269         struct sdmmc_dlyb *dlyb = host->variant_priv;
270
271         /* adds OF options */
272         pwr = host->pwr_reg_add;
273
274         sdmmc_dlyb_input_ck(dlyb);
275
276         if (ios.power_mode == MMC_POWER_OFF) {
277                 /* Only a reset could power-off sdmmc */
278                 reset_control_assert(host->rst);
279                 udelay(2);
280                 reset_control_deassert(host->rst);
281
282                 /*
283                  * Set the SDMMC in Power-cycle state.
284                  * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
285                  * are driven low, to prevent the Card from being supplied
286                  * through the signal lines.
287                  */
288                 mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
289         } else if (ios.power_mode == MMC_POWER_ON) {
290                 /*
291                  * After power-off (reset): the irq mask defined in probe
292                  * functionis lost
293                  * ault irq mask (probe) must be activated
294                  */
295                 writel(MCI_IRQENABLE | host->variant->start_err,
296                        host->base + MMCIMASK0);
297
298                 /* preserves voltage switch bits */
299                 pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
300                                         MCI_STM32_VSWITCH);
301
302                 /*
303                  * After a power-cycle state, we must set the SDMMC in
304                  * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
305                  * driven high. Then we can set the SDMMC to Power-on state
306                  */
307                 mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
308                 mdelay(1);
309                 mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
310         }
311 }
312
313 static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
314 {
315         u32 datactrl;
316
317         datactrl = mmci_dctrl_blksz(host);
318
319         if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
320             host->data->blocks == 1)
321                 datactrl |= MCI_DPSM_STM32_MODE_SDIO;
322         else if (host->data->stop && !host->mrq->sbc)
323                 datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
324         else
325                 datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
326
327         return datactrl;
328 }
329
330 static bool sdmmc_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
331 {
332         void __iomem *base = host->base;
333         u32 busy_d0, busy_d0end, mask, sdmmc_status;
334
335         mask = readl_relaxed(base + MMCIMASK0);
336         sdmmc_status = readl_relaxed(base + MMCISTATUS);
337         busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
338         busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
339
340         /* complete if there is an error or busy_d0end */
341         if ((status & err_msk) || busy_d0end)
342                 goto complete;
343
344         /*
345          * On response the busy signaling is reflected in the BUSYD0 flag.
346          * if busy_d0 is in-progress we must activate busyd0end interrupt
347          * to wait this completion. Else this request has no busy step.
348          */
349         if (busy_d0) {
350                 if (!host->busy_status) {
351                         writel_relaxed(mask | host->variant->busy_detect_mask,
352                                        base + MMCIMASK0);
353                         host->busy_status = status &
354                                 (MCI_CMDSENT | MCI_CMDRESPEND);
355                 }
356                 return false;
357         }
358
359 complete:
360         if (host->busy_status) {
361                 writel_relaxed(mask & ~host->variant->busy_detect_mask,
362                                base + MMCIMASK0);
363                 host->busy_status = 0;
364         }
365
366         writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
367
368         return true;
369 }
370
371 static void sdmmc_dlyb_set_cfgr(struct sdmmc_dlyb *dlyb,
372                                 int unit, int phase, bool sampler)
373 {
374         u32 cfgr;
375
376         writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
377
378         cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
379                FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
380         writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
381
382         if (!sampler)
383                 writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
384 }
385
386 static int sdmmc_dlyb_lng_tuning(struct mmci_host *host)
387 {
388         struct sdmmc_dlyb *dlyb = host->variant_priv;
389         u32 cfgr;
390         int i, lng, ret;
391
392         for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
393                 sdmmc_dlyb_set_cfgr(dlyb, i, DLYB_CFGR_SEL_MAX, true);
394
395                 ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
396                                                  (cfgr & DLYB_CFGR_LNGF),
397                                                  1, DLYB_LNG_TIMEOUT_US);
398                 if (ret) {
399                         dev_warn(mmc_dev(host->mmc),
400                                  "delay line cfg timeout unit:%d cfgr:%d\n",
401                                  i, cfgr);
402                         continue;
403                 }
404
405                 lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
406                 if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
407                         break;
408         }
409
410         if (i > DLYB_CFGR_UNIT_MAX)
411                 return -EINVAL;
412
413         dlyb->unit = i;
414         dlyb->max = __fls(lng);
415
416         return 0;
417 }
418
419 static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
420 {
421         struct sdmmc_dlyb *dlyb = host->variant_priv;
422         int cur_len = 0, max_len = 0, end_of_len = 0;
423         int phase;
424
425         for (phase = 0; phase <= dlyb->max; phase++) {
426                 sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
427
428                 if (mmc_send_tuning(host->mmc, opcode, NULL)) {
429                         cur_len = 0;
430                 } else {
431                         cur_len++;
432                         if (cur_len > max_len) {
433                                 max_len = cur_len;
434                                 end_of_len = phase;
435                         }
436                 }
437         }
438
439         if (!max_len) {
440                 dev_err(mmc_dev(host->mmc), "no tuning point found\n");
441                 return -EINVAL;
442         }
443
444         phase = end_of_len - max_len / 2;
445         sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
446
447         dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
448                 dlyb->unit, dlyb->max, phase);
449
450         return 0;
451 }
452
453 static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
454 {
455         struct mmci_host *host = mmc_priv(mmc);
456         struct sdmmc_dlyb *dlyb = host->variant_priv;
457
458         if (!dlyb || !dlyb->base)
459                 return -EINVAL;
460
461         if (sdmmc_dlyb_lng_tuning(host))
462                 return -EINVAL;
463
464         return sdmmc_dlyb_phase_tuning(host, opcode);
465 }
466
467 static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
468 {
469         /* clear the voltage switch completion flag */
470         writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
471         /* enable Voltage switch procedure */
472         mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
473 }
474
475 static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
476                                       struct mmc_ios *ios)
477 {
478         unsigned long flags;
479         u32 status;
480         int ret = 0;
481
482         if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
483                 spin_lock_irqsave(&host->lock, flags);
484                 mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
485                 spin_unlock_irqrestore(&host->lock, flags);
486
487                 /* wait voltage switch completion while 10ms */
488                 ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
489                                                  status,
490                                                  (status & MCI_STM32_VSWEND),
491                                                  10, SDMMC_VSWEND_TIMEOUT_US);
492
493                 writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
494                                host->base + MMCICLEAR);
495                 mmci_write_pwrreg(host, host->pwr_reg &
496                                   ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
497         }
498
499         return ret;
500 }
501
502 static struct mmci_host_ops sdmmc_variant_ops = {
503         .validate_data = sdmmc_idma_validate_data,
504         .prep_data = sdmmc_idma_prep_data,
505         .unprep_data = sdmmc_idma_unprep_data,
506         .get_datactrl_cfg = sdmmc_get_dctrl_cfg,
507         .dma_setup = sdmmc_idma_setup,
508         .dma_start = sdmmc_idma_start,
509         .dma_finalize = sdmmc_idma_finalize,
510         .set_clkreg = mmci_sdmmc_set_clkreg,
511         .set_pwrreg = mmci_sdmmc_set_pwrreg,
512         .busy_complete = sdmmc_busy_complete,
513         .pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
514         .post_sig_volt_switch = sdmmc_post_sig_volt_switch,
515 };
516
517 void sdmmc_variant_init(struct mmci_host *host)
518 {
519         struct device_node *np = host->mmc->parent->of_node;
520         void __iomem *base_dlyb;
521         struct sdmmc_dlyb *dlyb;
522
523         host->ops = &sdmmc_variant_ops;
524         host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
525
526         base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
527         if (IS_ERR(base_dlyb))
528                 return;
529
530         dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
531         if (!dlyb)
532                 return;
533
534         dlyb->base = base_dlyb;
535         host->variant_priv = dlyb;
536         host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
537 }