MIPS: check return value of pgtable_pmd_page_ctor
[linux-2.6-microblaze.git] / drivers / mmc / core / block.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/blkdev.h>
32 #include <linux/cdev.h>
33 #include <linux/mutex.h>
34 #include <linux/scatterlist.h>
35 #include <linux/string_helpers.h>
36 #include <linux/delay.h>
37 #include <linux/capability.h>
38 #include <linux/compat.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/idr.h>
41 #include <linux/debugfs.h>
42
43 #include <linux/mmc/ioctl.h>
44 #include <linux/mmc/card.h>
45 #include <linux/mmc/host.h>
46 #include <linux/mmc/mmc.h>
47 #include <linux/mmc/sd.h>
48
49 #include <linux/uaccess.h>
50
51 #include "queue.h"
52 #include "block.h"
53 #include "core.h"
54 #include "card.h"
55 #include "crypto.h"
56 #include "host.h"
57 #include "bus.h"
58 #include "mmc_ops.h"
59 #include "quirks.h"
60 #include "sd_ops.h"
61
62 MODULE_ALIAS("mmc:block");
63 #ifdef MODULE_PARAM_PREFIX
64 #undef MODULE_PARAM_PREFIX
65 #endif
66 #define MODULE_PARAM_PREFIX "mmcblk."
67
68 /*
69  * Set a 10 second timeout for polling write request busy state. Note, mmc core
70  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
71  * second software timer to timeout the whole request, so 10 seconds should be
72  * ample.
73  */
74 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
75 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
76 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
77
78 #define mmc_req_rel_wr(req)     ((req->cmd_flags & REQ_FUA) && \
79                                   (rq_data_dir(req) == WRITE))
80 static DEFINE_MUTEX(block_mutex);
81
82 /*
83  * The defaults come from config options but can be overriden by module
84  * or bootarg options.
85  */
86 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
87
88 /*
89  * We've only got one major, so number of mmcblk devices is
90  * limited to (1 << 20) / number of minors per device.  It is also
91  * limited by the MAX_DEVICES below.
92  */
93 static int max_devices;
94
95 #define MAX_DEVICES 256
96
97 static DEFINE_IDA(mmc_blk_ida);
98 static DEFINE_IDA(mmc_rpmb_ida);
99
100 /*
101  * There is one mmc_blk_data per slot.
102  */
103 struct mmc_blk_data {
104         struct device   *parent;
105         struct gendisk  *disk;
106         struct mmc_queue queue;
107         struct list_head part;
108         struct list_head rpmbs;
109
110         unsigned int    flags;
111 #define MMC_BLK_CMD23   (1 << 0)        /* Can do SET_BLOCK_COUNT for multiblock */
112 #define MMC_BLK_REL_WR  (1 << 1)        /* MMC Reliable write support */
113
114         unsigned int    usage;
115         unsigned int    read_only;
116         unsigned int    part_type;
117         unsigned int    reset_done;
118 #define MMC_BLK_READ            BIT(0)
119 #define MMC_BLK_WRITE           BIT(1)
120 #define MMC_BLK_DISCARD         BIT(2)
121 #define MMC_BLK_SECDISCARD      BIT(3)
122 #define MMC_BLK_CQE_RECOVERY    BIT(4)
123
124         /*
125          * Only set in main mmc_blk_data associated
126          * with mmc_card with dev_set_drvdata, and keeps
127          * track of the current selected device partition.
128          */
129         unsigned int    part_curr;
130         struct device_attribute force_ro;
131         struct device_attribute power_ro_lock;
132         int     area_type;
133
134         /* debugfs files (only in main mmc_blk_data) */
135         struct dentry *status_dentry;
136         struct dentry *ext_csd_dentry;
137 };
138
139 /* Device type for RPMB character devices */
140 static dev_t mmc_rpmb_devt;
141
142 /* Bus type for RPMB character devices */
143 static struct bus_type mmc_rpmb_bus_type = {
144         .name = "mmc_rpmb",
145 };
146
147 /**
148  * struct mmc_rpmb_data - special RPMB device type for these areas
149  * @dev: the device for the RPMB area
150  * @chrdev: character device for the RPMB area
151  * @id: unique device ID number
152  * @part_index: partition index (0 on first)
153  * @md: parent MMC block device
154  * @node: list item, so we can put this device on a list
155  */
156 struct mmc_rpmb_data {
157         struct device dev;
158         struct cdev chrdev;
159         int id;
160         unsigned int part_index;
161         struct mmc_blk_data *md;
162         struct list_head node;
163 };
164
165 static DEFINE_MUTEX(open_lock);
166
167 module_param(perdev_minors, int, 0444);
168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169
170 static inline int mmc_blk_part_switch(struct mmc_card *card,
171                                       unsigned int part_type);
172 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
173                                struct mmc_card *card,
174                                int disable_multi,
175                                struct mmc_queue *mq);
176 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
177
178 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
179 {
180         struct mmc_blk_data *md;
181
182         mutex_lock(&open_lock);
183         md = disk->private_data;
184         if (md && md->usage == 0)
185                 md = NULL;
186         if (md)
187                 md->usage++;
188         mutex_unlock(&open_lock);
189
190         return md;
191 }
192
193 static inline int mmc_get_devidx(struct gendisk *disk)
194 {
195         int devidx = disk->first_minor / perdev_minors;
196         return devidx;
197 }
198
199 static void mmc_blk_put(struct mmc_blk_data *md)
200 {
201         mutex_lock(&open_lock);
202         md->usage--;
203         if (md->usage == 0) {
204                 int devidx = mmc_get_devidx(md->disk);
205
206                 ida_simple_remove(&mmc_blk_ida, devidx);
207                 put_disk(md->disk);
208                 kfree(md);
209         }
210         mutex_unlock(&open_lock);
211 }
212
213 static ssize_t power_ro_lock_show(struct device *dev,
214                 struct device_attribute *attr, char *buf)
215 {
216         int ret;
217         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
218         struct mmc_card *card = md->queue.card;
219         int locked = 0;
220
221         if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
222                 locked = 2;
223         else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
224                 locked = 1;
225
226         ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
227
228         mmc_blk_put(md);
229
230         return ret;
231 }
232
233 static ssize_t power_ro_lock_store(struct device *dev,
234                 struct device_attribute *attr, const char *buf, size_t count)
235 {
236         int ret;
237         struct mmc_blk_data *md, *part_md;
238         struct mmc_queue *mq;
239         struct request *req;
240         unsigned long set;
241
242         if (kstrtoul(buf, 0, &set))
243                 return -EINVAL;
244
245         if (set != 1)
246                 return count;
247
248         md = mmc_blk_get(dev_to_disk(dev));
249         mq = &md->queue;
250
251         /* Dispatch locking to the block layer */
252         req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
253         if (IS_ERR(req)) {
254                 count = PTR_ERR(req);
255                 goto out_put;
256         }
257         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
258         blk_execute_rq(NULL, req, 0);
259         ret = req_to_mmc_queue_req(req)->drv_op_result;
260         blk_put_request(req);
261
262         if (!ret) {
263                 pr_info("%s: Locking boot partition ro until next power on\n",
264                         md->disk->disk_name);
265                 set_disk_ro(md->disk, 1);
266
267                 list_for_each_entry(part_md, &md->part, part)
268                         if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
269                                 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
270                                 set_disk_ro(part_md->disk, 1);
271                         }
272         }
273 out_put:
274         mmc_blk_put(md);
275         return count;
276 }
277
278 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
279                              char *buf)
280 {
281         int ret;
282         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
283
284         ret = snprintf(buf, PAGE_SIZE, "%d\n",
285                        get_disk_ro(dev_to_disk(dev)) ^
286                        md->read_only);
287         mmc_blk_put(md);
288         return ret;
289 }
290
291 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
292                               const char *buf, size_t count)
293 {
294         int ret;
295         char *end;
296         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
297         unsigned long set = simple_strtoul(buf, &end, 0);
298         if (end == buf) {
299                 ret = -EINVAL;
300                 goto out;
301         }
302
303         set_disk_ro(dev_to_disk(dev), set || md->read_only);
304         ret = count;
305 out:
306         mmc_blk_put(md);
307         return ret;
308 }
309
310 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
311 {
312         struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
313         int ret = -ENXIO;
314
315         mutex_lock(&block_mutex);
316         if (md) {
317                 ret = 0;
318                 if ((mode & FMODE_WRITE) && md->read_only) {
319                         mmc_blk_put(md);
320                         ret = -EROFS;
321                 }
322         }
323         mutex_unlock(&block_mutex);
324
325         return ret;
326 }
327
328 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
329 {
330         struct mmc_blk_data *md = disk->private_data;
331
332         mutex_lock(&block_mutex);
333         mmc_blk_put(md);
334         mutex_unlock(&block_mutex);
335 }
336
337 static int
338 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
339 {
340         geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
341         geo->heads = 4;
342         geo->sectors = 16;
343         return 0;
344 }
345
346 struct mmc_blk_ioc_data {
347         struct mmc_ioc_cmd ic;
348         unsigned char *buf;
349         u64 buf_bytes;
350         struct mmc_rpmb_data *rpmb;
351 };
352
353 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
354         struct mmc_ioc_cmd __user *user)
355 {
356         struct mmc_blk_ioc_data *idata;
357         int err;
358
359         idata = kmalloc(sizeof(*idata), GFP_KERNEL);
360         if (!idata) {
361                 err = -ENOMEM;
362                 goto out;
363         }
364
365         if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
366                 err = -EFAULT;
367                 goto idata_err;
368         }
369
370         idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
371         if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
372                 err = -EOVERFLOW;
373                 goto idata_err;
374         }
375
376         if (!idata->buf_bytes) {
377                 idata->buf = NULL;
378                 return idata;
379         }
380
381         idata->buf = memdup_user((void __user *)(unsigned long)
382                                  idata->ic.data_ptr, idata->buf_bytes);
383         if (IS_ERR(idata->buf)) {
384                 err = PTR_ERR(idata->buf);
385                 goto idata_err;
386         }
387
388         return idata;
389
390 idata_err:
391         kfree(idata);
392 out:
393         return ERR_PTR(err);
394 }
395
396 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
397                                       struct mmc_blk_ioc_data *idata)
398 {
399         struct mmc_ioc_cmd *ic = &idata->ic;
400
401         if (copy_to_user(&(ic_ptr->response), ic->response,
402                          sizeof(ic->response)))
403                 return -EFAULT;
404
405         if (!idata->ic.write_flag) {
406                 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
407                                  idata->buf, idata->buf_bytes))
408                         return -EFAULT;
409         }
410
411         return 0;
412 }
413
414 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
415                             u32 *resp_errs)
416 {
417         unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
418         int err = 0;
419         u32 status;
420
421         do {
422                 bool done = time_after(jiffies, timeout);
423
424                 err = __mmc_send_status(card, &status, 5);
425                 if (err) {
426                         dev_err(mmc_dev(card->host),
427                                 "error %d requesting status\n", err);
428                         return err;
429                 }
430
431                 /* Accumulate any response error bits seen */
432                 if (resp_errs)
433                         *resp_errs |= status;
434
435                 /*
436                  * Timeout if the device never becomes ready for data and never
437                  * leaves the program state.
438                  */
439                 if (done) {
440                         dev_err(mmc_dev(card->host),
441                                 "Card stuck in wrong state! %s status: %#x\n",
442                                  __func__, status);
443                         return -ETIMEDOUT;
444                 }
445         } while (!mmc_ready_for_data(status));
446
447         return err;
448 }
449
450 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
451                                struct mmc_blk_ioc_data *idata)
452 {
453         struct mmc_command cmd = {}, sbc = {};
454         struct mmc_data data = {};
455         struct mmc_request mrq = {};
456         struct scatterlist sg;
457         int err;
458         unsigned int target_part;
459
460         if (!card || !md || !idata)
461                 return -EINVAL;
462
463         /*
464          * The RPMB accesses comes in from the character device, so we
465          * need to target these explicitly. Else we just target the
466          * partition type for the block device the ioctl() was issued
467          * on.
468          */
469         if (idata->rpmb) {
470                 /* Support multiple RPMB partitions */
471                 target_part = idata->rpmb->part_index;
472                 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
473         } else {
474                 target_part = md->part_type;
475         }
476
477         cmd.opcode = idata->ic.opcode;
478         cmd.arg = idata->ic.arg;
479         cmd.flags = idata->ic.flags;
480
481         if (idata->buf_bytes) {
482                 data.sg = &sg;
483                 data.sg_len = 1;
484                 data.blksz = idata->ic.blksz;
485                 data.blocks = idata->ic.blocks;
486
487                 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
488
489                 if (idata->ic.write_flag)
490                         data.flags = MMC_DATA_WRITE;
491                 else
492                         data.flags = MMC_DATA_READ;
493
494                 /* data.flags must already be set before doing this. */
495                 mmc_set_data_timeout(&data, card);
496
497                 /* Allow overriding the timeout_ns for empirical tuning. */
498                 if (idata->ic.data_timeout_ns)
499                         data.timeout_ns = idata->ic.data_timeout_ns;
500
501                 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
502                         /*
503                          * Pretend this is a data transfer and rely on the
504                          * host driver to compute timeout.  When all host
505                          * drivers support cmd.cmd_timeout for R1B, this
506                          * can be changed to:
507                          *
508                          *     mrq.data = NULL;
509                          *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
510                          */
511                         data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
512                 }
513
514                 mrq.data = &data;
515         }
516
517         mrq.cmd = &cmd;
518
519         err = mmc_blk_part_switch(card, target_part);
520         if (err)
521                 return err;
522
523         if (idata->ic.is_acmd) {
524                 err = mmc_app_cmd(card->host, card);
525                 if (err)
526                         return err;
527         }
528
529         if (idata->rpmb) {
530                 sbc.opcode = MMC_SET_BLOCK_COUNT;
531                 /*
532                  * We don't do any blockcount validation because the max size
533                  * may be increased by a future standard. We just copy the
534                  * 'Reliable Write' bit here.
535                  */
536                 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
537                 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
538                 mrq.sbc = &sbc;
539         }
540
541         if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
542             (cmd.opcode == MMC_SWITCH))
543                 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
544
545         mmc_wait_for_req(card->host, &mrq);
546
547         if (cmd.error) {
548                 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
549                                                 __func__, cmd.error);
550                 return cmd.error;
551         }
552         if (data.error) {
553                 dev_err(mmc_dev(card->host), "%s: data error %d\n",
554                                                 __func__, data.error);
555                 return data.error;
556         }
557
558         /*
559          * Make sure the cache of the PARTITION_CONFIG register and
560          * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
561          * changed it successfully.
562          */
563         if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
564             (cmd.opcode == MMC_SWITCH)) {
565                 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
566                 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
567
568                 /*
569                  * Update cache so the next mmc_blk_part_switch call operates
570                  * on up-to-date data.
571                  */
572                 card->ext_csd.part_config = value;
573                 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
574         }
575
576         /*
577          * Make sure to update CACHE_CTRL in case it was changed. The cache
578          * will get turned back on if the card is re-initialized, e.g.
579          * suspend/resume or hw reset in recovery.
580          */
581         if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
582             (cmd.opcode == MMC_SWITCH)) {
583                 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
584
585                 card->ext_csd.cache_ctrl = value;
586         }
587
588         /*
589          * According to the SD specs, some commands require a delay after
590          * issuing the command.
591          */
592         if (idata->ic.postsleep_min_us)
593                 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
594
595         memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
596
597         if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
598                 /*
599                  * Ensure RPMB/R1B command has completed by polling CMD13
600                  * "Send Status".
601                  */
602                 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
603         }
604
605         return err;
606 }
607
608 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
609                              struct mmc_ioc_cmd __user *ic_ptr,
610                              struct mmc_rpmb_data *rpmb)
611 {
612         struct mmc_blk_ioc_data *idata;
613         struct mmc_blk_ioc_data *idatas[1];
614         struct mmc_queue *mq;
615         struct mmc_card *card;
616         int err = 0, ioc_err = 0;
617         struct request *req;
618
619         idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
620         if (IS_ERR(idata))
621                 return PTR_ERR(idata);
622         /* This will be NULL on non-RPMB ioctl():s */
623         idata->rpmb = rpmb;
624
625         card = md->queue.card;
626         if (IS_ERR(card)) {
627                 err = PTR_ERR(card);
628                 goto cmd_done;
629         }
630
631         /*
632          * Dispatch the ioctl() into the block request queue.
633          */
634         mq = &md->queue;
635         req = blk_get_request(mq->queue,
636                 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
637         if (IS_ERR(req)) {
638                 err = PTR_ERR(req);
639                 goto cmd_done;
640         }
641         idatas[0] = idata;
642         req_to_mmc_queue_req(req)->drv_op =
643                 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
644         req_to_mmc_queue_req(req)->drv_op_data = idatas;
645         req_to_mmc_queue_req(req)->ioc_count = 1;
646         blk_execute_rq(NULL, req, 0);
647         ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
648         err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
649         blk_put_request(req);
650
651 cmd_done:
652         kfree(idata->buf);
653         kfree(idata);
654         return ioc_err ? ioc_err : err;
655 }
656
657 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
658                                    struct mmc_ioc_multi_cmd __user *user,
659                                    struct mmc_rpmb_data *rpmb)
660 {
661         struct mmc_blk_ioc_data **idata = NULL;
662         struct mmc_ioc_cmd __user *cmds = user->cmds;
663         struct mmc_card *card;
664         struct mmc_queue *mq;
665         int i, err = 0, ioc_err = 0;
666         __u64 num_of_cmds;
667         struct request *req;
668
669         if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
670                            sizeof(num_of_cmds)))
671                 return -EFAULT;
672
673         if (!num_of_cmds)
674                 return 0;
675
676         if (num_of_cmds > MMC_IOC_MAX_CMDS)
677                 return -EINVAL;
678
679         idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
680         if (!idata)
681                 return -ENOMEM;
682
683         for (i = 0; i < num_of_cmds; i++) {
684                 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
685                 if (IS_ERR(idata[i])) {
686                         err = PTR_ERR(idata[i]);
687                         num_of_cmds = i;
688                         goto cmd_err;
689                 }
690                 /* This will be NULL on non-RPMB ioctl():s */
691                 idata[i]->rpmb = rpmb;
692         }
693
694         card = md->queue.card;
695         if (IS_ERR(card)) {
696                 err = PTR_ERR(card);
697                 goto cmd_err;
698         }
699
700
701         /*
702          * Dispatch the ioctl()s into the block request queue.
703          */
704         mq = &md->queue;
705         req = blk_get_request(mq->queue,
706                 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
707         if (IS_ERR(req)) {
708                 err = PTR_ERR(req);
709                 goto cmd_err;
710         }
711         req_to_mmc_queue_req(req)->drv_op =
712                 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
713         req_to_mmc_queue_req(req)->drv_op_data = idata;
714         req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
715         blk_execute_rq(NULL, req, 0);
716         ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
717
718         /* copy to user if data and response */
719         for (i = 0; i < num_of_cmds && !err; i++)
720                 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
721
722         blk_put_request(req);
723
724 cmd_err:
725         for (i = 0; i < num_of_cmds; i++) {
726                 kfree(idata[i]->buf);
727                 kfree(idata[i]);
728         }
729         kfree(idata);
730         return ioc_err ? ioc_err : err;
731 }
732
733 static int mmc_blk_check_blkdev(struct block_device *bdev)
734 {
735         /*
736          * The caller must have CAP_SYS_RAWIO, and must be calling this on the
737          * whole block device, not on a partition.  This prevents overspray
738          * between sibling partitions.
739          */
740         if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
741                 return -EPERM;
742         return 0;
743 }
744
745 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
746         unsigned int cmd, unsigned long arg)
747 {
748         struct mmc_blk_data *md;
749         int ret;
750
751         switch (cmd) {
752         case MMC_IOC_CMD:
753                 ret = mmc_blk_check_blkdev(bdev);
754                 if (ret)
755                         return ret;
756                 md = mmc_blk_get(bdev->bd_disk);
757                 if (!md)
758                         return -EINVAL;
759                 ret = mmc_blk_ioctl_cmd(md,
760                                         (struct mmc_ioc_cmd __user *)arg,
761                                         NULL);
762                 mmc_blk_put(md);
763                 return ret;
764         case MMC_IOC_MULTI_CMD:
765                 ret = mmc_blk_check_blkdev(bdev);
766                 if (ret)
767                         return ret;
768                 md = mmc_blk_get(bdev->bd_disk);
769                 if (!md)
770                         return -EINVAL;
771                 ret = mmc_blk_ioctl_multi_cmd(md,
772                                         (struct mmc_ioc_multi_cmd __user *)arg,
773                                         NULL);
774                 mmc_blk_put(md);
775                 return ret;
776         default:
777                 return -EINVAL;
778         }
779 }
780
781 #ifdef CONFIG_COMPAT
782 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
783         unsigned int cmd, unsigned long arg)
784 {
785         return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
786 }
787 #endif
788
789 static const struct block_device_operations mmc_bdops = {
790         .open                   = mmc_blk_open,
791         .release                = mmc_blk_release,
792         .getgeo                 = mmc_blk_getgeo,
793         .owner                  = THIS_MODULE,
794         .ioctl                  = mmc_blk_ioctl,
795 #ifdef CONFIG_COMPAT
796         .compat_ioctl           = mmc_blk_compat_ioctl,
797 #endif
798 };
799
800 static int mmc_blk_part_switch_pre(struct mmc_card *card,
801                                    unsigned int part_type)
802 {
803         int ret = 0;
804
805         if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
806                 if (card->ext_csd.cmdq_en) {
807                         ret = mmc_cmdq_disable(card);
808                         if (ret)
809                                 return ret;
810                 }
811                 mmc_retune_pause(card->host);
812         }
813
814         return ret;
815 }
816
817 static int mmc_blk_part_switch_post(struct mmc_card *card,
818                                     unsigned int part_type)
819 {
820         int ret = 0;
821
822         if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
823                 mmc_retune_unpause(card->host);
824                 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
825                         ret = mmc_cmdq_enable(card);
826         }
827
828         return ret;
829 }
830
831 static inline int mmc_blk_part_switch(struct mmc_card *card,
832                                       unsigned int part_type)
833 {
834         int ret = 0;
835         struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
836
837         if (main_md->part_curr == part_type)
838                 return 0;
839
840         if (mmc_card_mmc(card)) {
841                 u8 part_config = card->ext_csd.part_config;
842
843                 ret = mmc_blk_part_switch_pre(card, part_type);
844                 if (ret)
845                         return ret;
846
847                 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
848                 part_config |= part_type;
849
850                 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
851                                  EXT_CSD_PART_CONFIG, part_config,
852                                  card->ext_csd.part_time);
853                 if (ret) {
854                         mmc_blk_part_switch_post(card, part_type);
855                         return ret;
856                 }
857
858                 card->ext_csd.part_config = part_config;
859
860                 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
861         }
862
863         main_md->part_curr = part_type;
864         return ret;
865 }
866
867 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
868 {
869         int err;
870         u32 result;
871         __be32 *blocks;
872
873         struct mmc_request mrq = {};
874         struct mmc_command cmd = {};
875         struct mmc_data data = {};
876
877         struct scatterlist sg;
878
879         cmd.opcode = MMC_APP_CMD;
880         cmd.arg = card->rca << 16;
881         cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
882
883         err = mmc_wait_for_cmd(card->host, &cmd, 0);
884         if (err)
885                 return err;
886         if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
887                 return -EIO;
888
889         memset(&cmd, 0, sizeof(struct mmc_command));
890
891         cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
892         cmd.arg = 0;
893         cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
894
895         data.blksz = 4;
896         data.blocks = 1;
897         data.flags = MMC_DATA_READ;
898         data.sg = &sg;
899         data.sg_len = 1;
900         mmc_set_data_timeout(&data, card);
901
902         mrq.cmd = &cmd;
903         mrq.data = &data;
904
905         blocks = kmalloc(4, GFP_KERNEL);
906         if (!blocks)
907                 return -ENOMEM;
908
909         sg_init_one(&sg, blocks, 4);
910
911         mmc_wait_for_req(card->host, &mrq);
912
913         result = ntohl(*blocks);
914         kfree(blocks);
915
916         if (cmd.error || data.error)
917                 return -EIO;
918
919         *written_blocks = result;
920
921         return 0;
922 }
923
924 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
925 {
926         if (host->actual_clock)
927                 return host->actual_clock / 1000;
928
929         /* Clock may be subject to a divisor, fudge it by a factor of 2. */
930         if (host->ios.clock)
931                 return host->ios.clock / 2000;
932
933         /* How can there be no clock */
934         WARN_ON_ONCE(1);
935         return 100; /* 100 kHz is minimum possible value */
936 }
937
938 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
939                                             struct mmc_data *data)
940 {
941         unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
942         unsigned int khz;
943
944         if (data->timeout_clks) {
945                 khz = mmc_blk_clock_khz(host);
946                 ms += DIV_ROUND_UP(data->timeout_clks, khz);
947         }
948
949         return ms;
950 }
951
952 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
953                          int type)
954 {
955         int err;
956
957         if (md->reset_done & type)
958                 return -EEXIST;
959
960         md->reset_done |= type;
961         err = mmc_hw_reset(host);
962         /* Ensure we switch back to the correct partition */
963         if (err) {
964                 struct mmc_blk_data *main_md =
965                         dev_get_drvdata(&host->card->dev);
966                 int part_err;
967
968                 main_md->part_curr = main_md->part_type;
969                 part_err = mmc_blk_part_switch(host->card, md->part_type);
970                 if (part_err) {
971                         /*
972                          * We have failed to get back into the correct
973                          * partition, so we need to abort the whole request.
974                          */
975                         return -ENODEV;
976                 }
977         }
978         return err;
979 }
980
981 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
982 {
983         md->reset_done &= ~type;
984 }
985
986 /*
987  * The non-block commands come back from the block layer after it queued it and
988  * processed it with all other requests and then they get issued in this
989  * function.
990  */
991 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
992 {
993         struct mmc_queue_req *mq_rq;
994         struct mmc_card *card = mq->card;
995         struct mmc_blk_data *md = mq->blkdata;
996         struct mmc_blk_ioc_data **idata;
997         bool rpmb_ioctl;
998         u8 **ext_csd;
999         u32 status;
1000         int ret;
1001         int i;
1002
1003         mq_rq = req_to_mmc_queue_req(req);
1004         rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1005
1006         switch (mq_rq->drv_op) {
1007         case MMC_DRV_OP_IOCTL:
1008                 if (card->ext_csd.cmdq_en) {
1009                         ret = mmc_cmdq_disable(card);
1010                         if (ret)
1011                                 break;
1012                 }
1013                 fallthrough;
1014         case MMC_DRV_OP_IOCTL_RPMB:
1015                 idata = mq_rq->drv_op_data;
1016                 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1017                         ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1018                         if (ret)
1019                                 break;
1020                 }
1021                 /* Always switch back to main area after RPMB access */
1022                 if (rpmb_ioctl)
1023                         mmc_blk_part_switch(card, 0);
1024                 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1025                         mmc_cmdq_enable(card);
1026                 break;
1027         case MMC_DRV_OP_BOOT_WP:
1028                 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1029                                  card->ext_csd.boot_ro_lock |
1030                                  EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1031                                  card->ext_csd.part_time);
1032                 if (ret)
1033                         pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1034                                md->disk->disk_name, ret);
1035                 else
1036                         card->ext_csd.boot_ro_lock |=
1037                                 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1038                 break;
1039         case MMC_DRV_OP_GET_CARD_STATUS:
1040                 ret = mmc_send_status(card, &status);
1041                 if (!ret)
1042                         ret = status;
1043                 break;
1044         case MMC_DRV_OP_GET_EXT_CSD:
1045                 ext_csd = mq_rq->drv_op_data;
1046                 ret = mmc_get_ext_csd(card, ext_csd);
1047                 break;
1048         default:
1049                 pr_err("%s: unknown driver specific operation\n",
1050                        md->disk->disk_name);
1051                 ret = -EINVAL;
1052                 break;
1053         }
1054         mq_rq->drv_op_result = ret;
1055         blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1056 }
1057
1058 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1059 {
1060         struct mmc_blk_data *md = mq->blkdata;
1061         struct mmc_card *card = md->queue.card;
1062         unsigned int from, nr;
1063         int err = 0, type = MMC_BLK_DISCARD;
1064         blk_status_t status = BLK_STS_OK;
1065
1066         if (!mmc_can_erase(card)) {
1067                 status = BLK_STS_NOTSUPP;
1068                 goto fail;
1069         }
1070
1071         from = blk_rq_pos(req);
1072         nr = blk_rq_sectors(req);
1073
1074         do {
1075                 err = 0;
1076                 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1077                         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1078                                          INAND_CMD38_ARG_EXT_CSD,
1079                                          card->erase_arg == MMC_TRIM_ARG ?
1080                                          INAND_CMD38_ARG_TRIM :
1081                                          INAND_CMD38_ARG_ERASE,
1082                                          card->ext_csd.generic_cmd6_time);
1083                 }
1084                 if (!err)
1085                         err = mmc_erase(card, from, nr, card->erase_arg);
1086         } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1087         if (err)
1088                 status = BLK_STS_IOERR;
1089         else
1090                 mmc_blk_reset_success(md, type);
1091 fail:
1092         blk_mq_end_request(req, status);
1093 }
1094
1095 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1096                                        struct request *req)
1097 {
1098         struct mmc_blk_data *md = mq->blkdata;
1099         struct mmc_card *card = md->queue.card;
1100         unsigned int from, nr, arg;
1101         int err = 0, type = MMC_BLK_SECDISCARD;
1102         blk_status_t status = BLK_STS_OK;
1103
1104         if (!(mmc_can_secure_erase_trim(card))) {
1105                 status = BLK_STS_NOTSUPP;
1106                 goto out;
1107         }
1108
1109         from = blk_rq_pos(req);
1110         nr = blk_rq_sectors(req);
1111
1112         if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1113                 arg = MMC_SECURE_TRIM1_ARG;
1114         else
1115                 arg = MMC_SECURE_ERASE_ARG;
1116
1117 retry:
1118         if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1119                 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1120                                  INAND_CMD38_ARG_EXT_CSD,
1121                                  arg == MMC_SECURE_TRIM1_ARG ?
1122                                  INAND_CMD38_ARG_SECTRIM1 :
1123                                  INAND_CMD38_ARG_SECERASE,
1124                                  card->ext_csd.generic_cmd6_time);
1125                 if (err)
1126                         goto out_retry;
1127         }
1128
1129         err = mmc_erase(card, from, nr, arg);
1130         if (err == -EIO)
1131                 goto out_retry;
1132         if (err) {
1133                 status = BLK_STS_IOERR;
1134                 goto out;
1135         }
1136
1137         if (arg == MMC_SECURE_TRIM1_ARG) {
1138                 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1139                         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1140                                          INAND_CMD38_ARG_EXT_CSD,
1141                                          INAND_CMD38_ARG_SECTRIM2,
1142                                          card->ext_csd.generic_cmd6_time);
1143                         if (err)
1144                                 goto out_retry;
1145                 }
1146
1147                 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1148                 if (err == -EIO)
1149                         goto out_retry;
1150                 if (err) {
1151                         status = BLK_STS_IOERR;
1152                         goto out;
1153                 }
1154         }
1155
1156 out_retry:
1157         if (err && !mmc_blk_reset(md, card->host, type))
1158                 goto retry;
1159         if (!err)
1160                 mmc_blk_reset_success(md, type);
1161 out:
1162         blk_mq_end_request(req, status);
1163 }
1164
1165 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1166 {
1167         struct mmc_blk_data *md = mq->blkdata;
1168         struct mmc_card *card = md->queue.card;
1169         int ret = 0;
1170
1171         ret = mmc_flush_cache(card->host);
1172         blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1173 }
1174
1175 /*
1176  * Reformat current write as a reliable write, supporting
1177  * both legacy and the enhanced reliable write MMC cards.
1178  * In each transfer we'll handle only as much as a single
1179  * reliable write can handle, thus finish the request in
1180  * partial completions.
1181  */
1182 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1183                                     struct mmc_card *card,
1184                                     struct request *req)
1185 {
1186         if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1187                 /* Legacy mode imposes restrictions on transfers. */
1188                 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1189                         brq->data.blocks = 1;
1190
1191                 if (brq->data.blocks > card->ext_csd.rel_sectors)
1192                         brq->data.blocks = card->ext_csd.rel_sectors;
1193                 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1194                         brq->data.blocks = 1;
1195         }
1196 }
1197
1198 #define CMD_ERRORS_EXCL_OOR                                             \
1199         (R1_ADDRESS_ERROR |     /* Misaligned address */                \
1200          R1_BLOCK_LEN_ERROR |   /* Transferred block length incorrect */\
1201          R1_WP_VIOLATION |      /* Tried to write to protected block */ \
1202          R1_CARD_ECC_FAILED |   /* Card ECC failed */                   \
1203          R1_CC_ERROR |          /* Card controller error */             \
1204          R1_ERROR)              /* General/unknown error */
1205
1206 #define CMD_ERRORS                                                      \
1207         (CMD_ERRORS_EXCL_OOR |                                          \
1208          R1_OUT_OF_RANGE)       /* Command argument out of range */     \
1209
1210 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1211 {
1212         u32 val;
1213
1214         /*
1215          * Per the SD specification(physical layer version 4.10)[1],
1216          * section 4.3.3, it explicitly states that "When the last
1217          * block of user area is read using CMD18, the host should
1218          * ignore OUT_OF_RANGE error that may occur even the sequence
1219          * is correct". And JESD84-B51 for eMMC also has a similar
1220          * statement on section 6.8.3.
1221          *
1222          * Multiple block read/write could be done by either predefined
1223          * method, namely CMD23, or open-ending mode. For open-ending mode,
1224          * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1225          *
1226          * However the spec[1] doesn't tell us whether we should also
1227          * ignore that for predefined method. But per the spec[1], section
1228          * 4.15 Set Block Count Command, it says"If illegal block count
1229          * is set, out of range error will be indicated during read/write
1230          * operation (For example, data transfer is stopped at user area
1231          * boundary)." In another word, we could expect a out of range error
1232          * in the response for the following CMD18/25. And if argument of
1233          * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1234          * we could also expect to get a -ETIMEDOUT or any error number from
1235          * the host drivers due to missing data response(for write)/data(for
1236          * read), as the cards will stop the data transfer by itself per the
1237          * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1238          */
1239
1240         if (!brq->stop.error) {
1241                 bool oor_with_open_end;
1242                 /* If there is no error yet, check R1 response */
1243
1244                 val = brq->stop.resp[0] & CMD_ERRORS;
1245                 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1246
1247                 if (val && !oor_with_open_end)
1248                         brq->stop.error = -EIO;
1249         }
1250 }
1251
1252 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1253                               int disable_multi, bool *do_rel_wr_p,
1254                               bool *do_data_tag_p)
1255 {
1256         struct mmc_blk_data *md = mq->blkdata;
1257         struct mmc_card *card = md->queue.card;
1258         struct mmc_blk_request *brq = &mqrq->brq;
1259         struct request *req = mmc_queue_req_to_req(mqrq);
1260         bool do_rel_wr, do_data_tag;
1261
1262         /*
1263          * Reliable writes are used to implement Forced Unit Access and
1264          * are supported only on MMCs.
1265          */
1266         do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1267                     rq_data_dir(req) == WRITE &&
1268                     (md->flags & MMC_BLK_REL_WR);
1269
1270         memset(brq, 0, sizeof(struct mmc_blk_request));
1271
1272         mmc_crypto_prepare_req(mqrq);
1273
1274         brq->mrq.data = &brq->data;
1275         brq->mrq.tag = req->tag;
1276
1277         brq->stop.opcode = MMC_STOP_TRANSMISSION;
1278         brq->stop.arg = 0;
1279
1280         if (rq_data_dir(req) == READ) {
1281                 brq->data.flags = MMC_DATA_READ;
1282                 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1283         } else {
1284                 brq->data.flags = MMC_DATA_WRITE;
1285                 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1286         }
1287
1288         brq->data.blksz = 512;
1289         brq->data.blocks = blk_rq_sectors(req);
1290         brq->data.blk_addr = blk_rq_pos(req);
1291
1292         /*
1293          * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1294          * The eMMC will give "high" priority tasks priority over "simple"
1295          * priority tasks. Here we always set "simple" priority by not setting
1296          * MMC_DATA_PRIO.
1297          */
1298
1299         /*
1300          * The block layer doesn't support all sector count
1301          * restrictions, so we need to be prepared for too big
1302          * requests.
1303          */
1304         if (brq->data.blocks > card->host->max_blk_count)
1305                 brq->data.blocks = card->host->max_blk_count;
1306
1307         if (brq->data.blocks > 1) {
1308                 /*
1309                  * Some SD cards in SPI mode return a CRC error or even lock up
1310                  * completely when trying to read the last block using a
1311                  * multiblock read command.
1312                  */
1313                 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1314                     (blk_rq_pos(req) + blk_rq_sectors(req) ==
1315                      get_capacity(md->disk)))
1316                         brq->data.blocks--;
1317
1318                 /*
1319                  * After a read error, we redo the request one sector
1320                  * at a time in order to accurately determine which
1321                  * sectors can be read successfully.
1322                  */
1323                 if (disable_multi)
1324                         brq->data.blocks = 1;
1325
1326                 /*
1327                  * Some controllers have HW issues while operating
1328                  * in multiple I/O mode
1329                  */
1330                 if (card->host->ops->multi_io_quirk)
1331                         brq->data.blocks = card->host->ops->multi_io_quirk(card,
1332                                                 (rq_data_dir(req) == READ) ?
1333                                                 MMC_DATA_READ : MMC_DATA_WRITE,
1334                                                 brq->data.blocks);
1335         }
1336
1337         if (do_rel_wr) {
1338                 mmc_apply_rel_rw(brq, card, req);
1339                 brq->data.flags |= MMC_DATA_REL_WR;
1340         }
1341
1342         /*
1343          * Data tag is used only during writing meta data to speed
1344          * up write and any subsequent read of this meta data
1345          */
1346         do_data_tag = card->ext_csd.data_tag_unit_size &&
1347                       (req->cmd_flags & REQ_META) &&
1348                       (rq_data_dir(req) == WRITE) &&
1349                       ((brq->data.blocks * brq->data.blksz) >=
1350                        card->ext_csd.data_tag_unit_size);
1351
1352         if (do_data_tag)
1353                 brq->data.flags |= MMC_DATA_DAT_TAG;
1354
1355         mmc_set_data_timeout(&brq->data, card);
1356
1357         brq->data.sg = mqrq->sg;
1358         brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1359
1360         /*
1361          * Adjust the sg list so it is the same size as the
1362          * request.
1363          */
1364         if (brq->data.blocks != blk_rq_sectors(req)) {
1365                 int i, data_size = brq->data.blocks << 9;
1366                 struct scatterlist *sg;
1367
1368                 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1369                         data_size -= sg->length;
1370                         if (data_size <= 0) {
1371                                 sg->length += data_size;
1372                                 i++;
1373                                 break;
1374                         }
1375                 }
1376                 brq->data.sg_len = i;
1377         }
1378
1379         if (do_rel_wr_p)
1380                 *do_rel_wr_p = do_rel_wr;
1381
1382         if (do_data_tag_p)
1383                 *do_data_tag_p = do_data_tag;
1384 }
1385
1386 #define MMC_CQE_RETRIES 2
1387
1388 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1389 {
1390         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1391         struct mmc_request *mrq = &mqrq->brq.mrq;
1392         struct request_queue *q = req->q;
1393         struct mmc_host *host = mq->card->host;
1394         enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1395         unsigned long flags;
1396         bool put_card;
1397         int err;
1398
1399         mmc_cqe_post_req(host, mrq);
1400
1401         if (mrq->cmd && mrq->cmd->error)
1402                 err = mrq->cmd->error;
1403         else if (mrq->data && mrq->data->error)
1404                 err = mrq->data->error;
1405         else
1406                 err = 0;
1407
1408         if (err) {
1409                 if (mqrq->retries++ < MMC_CQE_RETRIES)
1410                         blk_mq_requeue_request(req, true);
1411                 else
1412                         blk_mq_end_request(req, BLK_STS_IOERR);
1413         } else if (mrq->data) {
1414                 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1415                         blk_mq_requeue_request(req, true);
1416                 else
1417                         __blk_mq_end_request(req, BLK_STS_OK);
1418         } else {
1419                 blk_mq_end_request(req, BLK_STS_OK);
1420         }
1421
1422         spin_lock_irqsave(&mq->lock, flags);
1423
1424         mq->in_flight[issue_type] -= 1;
1425
1426         put_card = (mmc_tot_in_flight(mq) == 0);
1427
1428         mmc_cqe_check_busy(mq);
1429
1430         spin_unlock_irqrestore(&mq->lock, flags);
1431
1432         if (!mq->cqe_busy)
1433                 blk_mq_run_hw_queues(q, true);
1434
1435         if (put_card)
1436                 mmc_put_card(mq->card, &mq->ctx);
1437 }
1438
1439 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1440 {
1441         struct mmc_card *card = mq->card;
1442         struct mmc_host *host = card->host;
1443         int err;
1444
1445         pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1446
1447         err = mmc_cqe_recovery(host);
1448         if (err)
1449                 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1450         else
1451                 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1452
1453         pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1454 }
1455
1456 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1457 {
1458         struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1459                                                   brq.mrq);
1460         struct request *req = mmc_queue_req_to_req(mqrq);
1461         struct request_queue *q = req->q;
1462         struct mmc_queue *mq = q->queuedata;
1463
1464         /*
1465          * Block layer timeouts race with completions which means the normal
1466          * completion path cannot be used during recovery.
1467          */
1468         if (mq->in_recovery)
1469                 mmc_blk_cqe_complete_rq(mq, req);
1470         else if (likely(!blk_should_fake_timeout(req->q)))
1471                 blk_mq_complete_request(req);
1472 }
1473
1474 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1475 {
1476         mrq->done               = mmc_blk_cqe_req_done;
1477         mrq->recovery_notifier  = mmc_cqe_recovery_notifier;
1478
1479         return mmc_cqe_start_req(host, mrq);
1480 }
1481
1482 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1483                                                  struct request *req)
1484 {
1485         struct mmc_blk_request *brq = &mqrq->brq;
1486
1487         memset(brq, 0, sizeof(*brq));
1488
1489         brq->mrq.cmd = &brq->cmd;
1490         brq->mrq.tag = req->tag;
1491
1492         return &brq->mrq;
1493 }
1494
1495 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1496 {
1497         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1498         struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1499
1500         mrq->cmd->opcode = MMC_SWITCH;
1501         mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1502                         (EXT_CSD_FLUSH_CACHE << 16) |
1503                         (1 << 8) |
1504                         EXT_CSD_CMD_SET_NORMAL;
1505         mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1506
1507         return mmc_blk_cqe_start_req(mq->card->host, mrq);
1508 }
1509
1510 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1511 {
1512         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1513         struct mmc_host *host = mq->card->host;
1514         int err;
1515
1516         mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1517         mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1518         mmc_pre_req(host, &mqrq->brq.mrq);
1519
1520         err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1521         if (err)
1522                 mmc_post_req(host, &mqrq->brq.mrq, err);
1523
1524         return err;
1525 }
1526
1527 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1528 {
1529         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1530         struct mmc_host *host = mq->card->host;
1531
1532         if (host->hsq_enabled)
1533                 return mmc_blk_hsq_issue_rw_rq(mq, req);
1534
1535         mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1536
1537         return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1538 }
1539
1540 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1541                                struct mmc_card *card,
1542                                int disable_multi,
1543                                struct mmc_queue *mq)
1544 {
1545         u32 readcmd, writecmd;
1546         struct mmc_blk_request *brq = &mqrq->brq;
1547         struct request *req = mmc_queue_req_to_req(mqrq);
1548         struct mmc_blk_data *md = mq->blkdata;
1549         bool do_rel_wr, do_data_tag;
1550
1551         mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1552
1553         brq->mrq.cmd = &brq->cmd;
1554
1555         brq->cmd.arg = blk_rq_pos(req);
1556         if (!mmc_card_blockaddr(card))
1557                 brq->cmd.arg <<= 9;
1558         brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1559
1560         if (brq->data.blocks > 1 || do_rel_wr) {
1561                 /* SPI multiblock writes terminate using a special
1562                  * token, not a STOP_TRANSMISSION request.
1563                  */
1564                 if (!mmc_host_is_spi(card->host) ||
1565                     rq_data_dir(req) == READ)
1566                         brq->mrq.stop = &brq->stop;
1567                 readcmd = MMC_READ_MULTIPLE_BLOCK;
1568                 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1569         } else {
1570                 brq->mrq.stop = NULL;
1571                 readcmd = MMC_READ_SINGLE_BLOCK;
1572                 writecmd = MMC_WRITE_BLOCK;
1573         }
1574         brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1575
1576         /*
1577          * Pre-defined multi-block transfers are preferable to
1578          * open ended-ones (and necessary for reliable writes).
1579          * However, it is not sufficient to just send CMD23,
1580          * and avoid the final CMD12, as on an error condition
1581          * CMD12 (stop) needs to be sent anyway. This, coupled
1582          * with Auto-CMD23 enhancements provided by some
1583          * hosts, means that the complexity of dealing
1584          * with this is best left to the host. If CMD23 is
1585          * supported by card and host, we'll fill sbc in and let
1586          * the host deal with handling it correctly. This means
1587          * that for hosts that don't expose MMC_CAP_CMD23, no
1588          * change of behavior will be observed.
1589          *
1590          * N.B: Some MMC cards experience perf degradation.
1591          * We'll avoid using CMD23-bounded multiblock writes for
1592          * these, while retaining features like reliable writes.
1593          */
1594         if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1595             (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1596              do_data_tag)) {
1597                 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1598                 brq->sbc.arg = brq->data.blocks |
1599                         (do_rel_wr ? (1 << 31) : 0) |
1600                         (do_data_tag ? (1 << 29) : 0);
1601                 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1602                 brq->mrq.sbc = &brq->sbc;
1603         }
1604 }
1605
1606 #define MMC_MAX_RETRIES         5
1607 #define MMC_DATA_RETRIES        2
1608 #define MMC_NO_RETRIES          (MMC_MAX_RETRIES + 1)
1609
1610 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1611 {
1612         struct mmc_command cmd = {
1613                 .opcode = MMC_STOP_TRANSMISSION,
1614                 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1615                 /* Some hosts wait for busy anyway, so provide a busy timeout */
1616                 .busy_timeout = timeout,
1617         };
1618
1619         return mmc_wait_for_cmd(card->host, &cmd, 5);
1620 }
1621
1622 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1623 {
1624         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1625         struct mmc_blk_request *brq = &mqrq->brq;
1626         unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1627         int err;
1628
1629         mmc_retune_hold_now(card->host);
1630
1631         mmc_blk_send_stop(card, timeout);
1632
1633         err = card_busy_detect(card, timeout, NULL);
1634
1635         mmc_retune_release(card->host);
1636
1637         return err;
1638 }
1639
1640 #define MMC_READ_SINGLE_RETRIES 2
1641
1642 /* Single sector read during recovery */
1643 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1644 {
1645         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1646         struct mmc_request *mrq = &mqrq->brq.mrq;
1647         struct mmc_card *card = mq->card;
1648         struct mmc_host *host = card->host;
1649         blk_status_t error = BLK_STS_OK;
1650         int retries = 0;
1651
1652         do {
1653                 u32 status;
1654                 int err;
1655
1656                 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1657
1658                 mmc_wait_for_req(host, mrq);
1659
1660                 err = mmc_send_status(card, &status);
1661                 if (err)
1662                         goto error_exit;
1663
1664                 if (!mmc_host_is_spi(host) &&
1665                     !mmc_ready_for_data(status)) {
1666                         err = mmc_blk_fix_state(card, req);
1667                         if (err)
1668                                 goto error_exit;
1669                 }
1670
1671                 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1672                         continue;
1673
1674                 retries = 0;
1675
1676                 if (mrq->cmd->error ||
1677                     mrq->data->error ||
1678                     (!mmc_host_is_spi(host) &&
1679                      (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1680                         error = BLK_STS_IOERR;
1681                 else
1682                         error = BLK_STS_OK;
1683
1684         } while (blk_update_request(req, error, 512));
1685
1686         return;
1687
1688 error_exit:
1689         mrq->data->bytes_xfered = 0;
1690         blk_update_request(req, BLK_STS_IOERR, 512);
1691         /* Let it try the remaining request again */
1692         if (mqrq->retries > MMC_MAX_RETRIES - 1)
1693                 mqrq->retries = MMC_MAX_RETRIES - 1;
1694 }
1695
1696 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1697 {
1698         return !!brq->mrq.sbc;
1699 }
1700
1701 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1702 {
1703         return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1704 }
1705
1706 /*
1707  * Check for errors the host controller driver might not have seen such as
1708  * response mode errors or invalid card state.
1709  */
1710 static bool mmc_blk_status_error(struct request *req, u32 status)
1711 {
1712         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1713         struct mmc_blk_request *brq = &mqrq->brq;
1714         struct mmc_queue *mq = req->q->queuedata;
1715         u32 stop_err_bits;
1716
1717         if (mmc_host_is_spi(mq->card->host))
1718                 return false;
1719
1720         stop_err_bits = mmc_blk_stop_err_bits(brq);
1721
1722         return brq->cmd.resp[0]  & CMD_ERRORS    ||
1723                brq->stop.resp[0] & stop_err_bits ||
1724                status            & stop_err_bits ||
1725                (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1726 }
1727
1728 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1729 {
1730         return !brq->sbc.error && !brq->cmd.error &&
1731                !(brq->cmd.resp[0] & CMD_ERRORS);
1732 }
1733
1734 /*
1735  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1736  * policy:
1737  * 1. A request that has transferred at least some data is considered
1738  * successful and will be requeued if there is remaining data to
1739  * transfer.
1740  * 2. Otherwise the number of retries is incremented and the request
1741  * will be requeued if there are remaining retries.
1742  * 3. Otherwise the request will be errored out.
1743  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1744  * mqrq->retries. So there are only 4 possible actions here:
1745  *      1. do not accept the bytes_xfered value i.e. set it to zero
1746  *      2. change mqrq->retries to determine the number of retries
1747  *      3. try to reset the card
1748  *      4. read one sector at a time
1749  */
1750 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1751 {
1752         int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1753         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1754         struct mmc_blk_request *brq = &mqrq->brq;
1755         struct mmc_blk_data *md = mq->blkdata;
1756         struct mmc_card *card = mq->card;
1757         u32 status;
1758         u32 blocks;
1759         int err;
1760
1761         /*
1762          * Some errors the host driver might not have seen. Set the number of
1763          * bytes transferred to zero in that case.
1764          */
1765         err = __mmc_send_status(card, &status, 0);
1766         if (err || mmc_blk_status_error(req, status))
1767                 brq->data.bytes_xfered = 0;
1768
1769         mmc_retune_release(card->host);
1770
1771         /*
1772          * Try again to get the status. This also provides an opportunity for
1773          * re-tuning.
1774          */
1775         if (err)
1776                 err = __mmc_send_status(card, &status, 0);
1777
1778         /*
1779          * Nothing more to do after the number of bytes transferred has been
1780          * updated and there is no card.
1781          */
1782         if (err && mmc_detect_card_removed(card->host))
1783                 return;
1784
1785         /* Try to get back to "tran" state */
1786         if (!mmc_host_is_spi(mq->card->host) &&
1787             (err || !mmc_ready_for_data(status)))
1788                 err = mmc_blk_fix_state(mq->card, req);
1789
1790         /*
1791          * Special case for SD cards where the card might record the number of
1792          * blocks written.
1793          */
1794         if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1795             rq_data_dir(req) == WRITE) {
1796                 if (mmc_sd_num_wr_blocks(card, &blocks))
1797                         brq->data.bytes_xfered = 0;
1798                 else
1799                         brq->data.bytes_xfered = blocks << 9;
1800         }
1801
1802         /* Reset if the card is in a bad state */
1803         if (!mmc_host_is_spi(mq->card->host) &&
1804             err && mmc_blk_reset(md, card->host, type)) {
1805                 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1806                 mqrq->retries = MMC_NO_RETRIES;
1807                 return;
1808         }
1809
1810         /*
1811          * If anything was done, just return and if there is anything remaining
1812          * on the request it will get requeued.
1813          */
1814         if (brq->data.bytes_xfered)
1815                 return;
1816
1817         /* Reset before last retry */
1818         if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1819                 mmc_blk_reset(md, card->host, type);
1820
1821         /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1822         if (brq->sbc.error || brq->cmd.error)
1823                 return;
1824
1825         /* Reduce the remaining retries for data errors */
1826         if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1827                 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1828                 return;
1829         }
1830
1831         /* FIXME: Missing single sector read for large sector size */
1832         if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1833             brq->data.blocks > 1) {
1834                 /* Read one sector at a time */
1835                 mmc_blk_read_single(mq, req);
1836                 return;
1837         }
1838 }
1839
1840 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1841 {
1842         mmc_blk_eval_resp_error(brq);
1843
1844         return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1845                brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1846 }
1847
1848 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1849 {
1850         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1851         u32 status = 0;
1852         int err;
1853
1854         if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1855                 return 0;
1856
1857         err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1858
1859         /*
1860          * Do not assume data transferred correctly if there are any error bits
1861          * set.
1862          */
1863         if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1864                 mqrq->brq.data.bytes_xfered = 0;
1865                 err = err ? err : -EIO;
1866         }
1867
1868         /* Copy the exception bit so it will be seen later on */
1869         if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1870                 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1871
1872         return err;
1873 }
1874
1875 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1876                                             struct request *req)
1877 {
1878         int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1879
1880         mmc_blk_reset_success(mq->blkdata, type);
1881 }
1882
1883 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1884 {
1885         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1886         unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1887
1888         if (nr_bytes) {
1889                 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1890                         blk_mq_requeue_request(req, true);
1891                 else
1892                         __blk_mq_end_request(req, BLK_STS_OK);
1893         } else if (!blk_rq_bytes(req)) {
1894                 __blk_mq_end_request(req, BLK_STS_IOERR);
1895         } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1896                 blk_mq_requeue_request(req, true);
1897         } else {
1898                 if (mmc_card_removed(mq->card))
1899                         req->rq_flags |= RQF_QUIET;
1900                 blk_mq_end_request(req, BLK_STS_IOERR);
1901         }
1902 }
1903
1904 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1905                                         struct mmc_queue_req *mqrq)
1906 {
1907         return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1908                (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1909                 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1910 }
1911
1912 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1913                                  struct mmc_queue_req *mqrq)
1914 {
1915         if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1916                 mmc_run_bkops(mq->card);
1917 }
1918
1919 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1920 {
1921         struct mmc_queue_req *mqrq =
1922                 container_of(mrq, struct mmc_queue_req, brq.mrq);
1923         struct request *req = mmc_queue_req_to_req(mqrq);
1924         struct request_queue *q = req->q;
1925         struct mmc_queue *mq = q->queuedata;
1926         struct mmc_host *host = mq->card->host;
1927         unsigned long flags;
1928
1929         if (mmc_blk_rq_error(&mqrq->brq) ||
1930             mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1931                 spin_lock_irqsave(&mq->lock, flags);
1932                 mq->recovery_needed = true;
1933                 mq->recovery_req = req;
1934                 spin_unlock_irqrestore(&mq->lock, flags);
1935
1936                 host->cqe_ops->cqe_recovery_start(host);
1937
1938                 schedule_work(&mq->recovery_work);
1939                 return;
1940         }
1941
1942         mmc_blk_rw_reset_success(mq, req);
1943
1944         /*
1945          * Block layer timeouts race with completions which means the normal
1946          * completion path cannot be used during recovery.
1947          */
1948         if (mq->in_recovery)
1949                 mmc_blk_cqe_complete_rq(mq, req);
1950         else if (likely(!blk_should_fake_timeout(req->q)))
1951                 blk_mq_complete_request(req);
1952 }
1953
1954 void mmc_blk_mq_complete(struct request *req)
1955 {
1956         struct mmc_queue *mq = req->q->queuedata;
1957         struct mmc_host *host = mq->card->host;
1958
1959         if (host->cqe_enabled)
1960                 mmc_blk_cqe_complete_rq(mq, req);
1961         else if (likely(!blk_should_fake_timeout(req->q)))
1962                 mmc_blk_mq_complete_rq(mq, req);
1963 }
1964
1965 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1966                                        struct request *req)
1967 {
1968         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1969         struct mmc_host *host = mq->card->host;
1970
1971         if (mmc_blk_rq_error(&mqrq->brq) ||
1972             mmc_blk_card_busy(mq->card, req)) {
1973                 mmc_blk_mq_rw_recovery(mq, req);
1974         } else {
1975                 mmc_blk_rw_reset_success(mq, req);
1976                 mmc_retune_release(host);
1977         }
1978
1979         mmc_blk_urgent_bkops(mq, mqrq);
1980 }
1981
1982 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1983 {
1984         unsigned long flags;
1985         bool put_card;
1986
1987         spin_lock_irqsave(&mq->lock, flags);
1988
1989         mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1990
1991         put_card = (mmc_tot_in_flight(mq) == 0);
1992
1993         spin_unlock_irqrestore(&mq->lock, flags);
1994
1995         if (put_card)
1996                 mmc_put_card(mq->card, &mq->ctx);
1997 }
1998
1999 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2000 {
2001         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2002         struct mmc_request *mrq = &mqrq->brq.mrq;
2003         struct mmc_host *host = mq->card->host;
2004
2005         mmc_post_req(host, mrq, 0);
2006
2007         /*
2008          * Block layer timeouts race with completions which means the normal
2009          * completion path cannot be used during recovery.
2010          */
2011         if (mq->in_recovery)
2012                 mmc_blk_mq_complete_rq(mq, req);
2013         else if (likely(!blk_should_fake_timeout(req->q)))
2014                 blk_mq_complete_request(req);
2015
2016         mmc_blk_mq_dec_in_flight(mq, req);
2017 }
2018
2019 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2020 {
2021         struct request *req = mq->recovery_req;
2022         struct mmc_host *host = mq->card->host;
2023         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2024
2025         mq->recovery_req = NULL;
2026         mq->rw_wait = false;
2027
2028         if (mmc_blk_rq_error(&mqrq->brq)) {
2029                 mmc_retune_hold_now(host);
2030                 mmc_blk_mq_rw_recovery(mq, req);
2031         }
2032
2033         mmc_blk_urgent_bkops(mq, mqrq);
2034
2035         mmc_blk_mq_post_req(mq, req);
2036 }
2037
2038 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2039                                          struct request **prev_req)
2040 {
2041         if (mmc_host_done_complete(mq->card->host))
2042                 return;
2043
2044         mutex_lock(&mq->complete_lock);
2045
2046         if (!mq->complete_req)
2047                 goto out_unlock;
2048
2049         mmc_blk_mq_poll_completion(mq, mq->complete_req);
2050
2051         if (prev_req)
2052                 *prev_req = mq->complete_req;
2053         else
2054                 mmc_blk_mq_post_req(mq, mq->complete_req);
2055
2056         mq->complete_req = NULL;
2057
2058 out_unlock:
2059         mutex_unlock(&mq->complete_lock);
2060 }
2061
2062 void mmc_blk_mq_complete_work(struct work_struct *work)
2063 {
2064         struct mmc_queue *mq = container_of(work, struct mmc_queue,
2065                                             complete_work);
2066
2067         mmc_blk_mq_complete_prev_req(mq, NULL);
2068 }
2069
2070 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2071 {
2072         struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2073                                                   brq.mrq);
2074         struct request *req = mmc_queue_req_to_req(mqrq);
2075         struct request_queue *q = req->q;
2076         struct mmc_queue *mq = q->queuedata;
2077         struct mmc_host *host = mq->card->host;
2078         unsigned long flags;
2079
2080         if (!mmc_host_done_complete(host)) {
2081                 bool waiting;
2082
2083                 /*
2084                  * We cannot complete the request in this context, so record
2085                  * that there is a request to complete, and that a following
2086                  * request does not need to wait (although it does need to
2087                  * complete complete_req first).
2088                  */
2089                 spin_lock_irqsave(&mq->lock, flags);
2090                 mq->complete_req = req;
2091                 mq->rw_wait = false;
2092                 waiting = mq->waiting;
2093                 spin_unlock_irqrestore(&mq->lock, flags);
2094
2095                 /*
2096                  * If 'waiting' then the waiting task will complete this
2097                  * request, otherwise queue a work to do it. Note that
2098                  * complete_work may still race with the dispatch of a following
2099                  * request.
2100                  */
2101                 if (waiting)
2102                         wake_up(&mq->wait);
2103                 else
2104                         queue_work(mq->card->complete_wq, &mq->complete_work);
2105
2106                 return;
2107         }
2108
2109         /* Take the recovery path for errors or urgent background operations */
2110         if (mmc_blk_rq_error(&mqrq->brq) ||
2111             mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2112                 spin_lock_irqsave(&mq->lock, flags);
2113                 mq->recovery_needed = true;
2114                 mq->recovery_req = req;
2115                 spin_unlock_irqrestore(&mq->lock, flags);
2116                 wake_up(&mq->wait);
2117                 schedule_work(&mq->recovery_work);
2118                 return;
2119         }
2120
2121         mmc_blk_rw_reset_success(mq, req);
2122
2123         mq->rw_wait = false;
2124         wake_up(&mq->wait);
2125
2126         mmc_blk_mq_post_req(mq, req);
2127 }
2128
2129 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2130 {
2131         unsigned long flags;
2132         bool done;
2133
2134         /*
2135          * Wait while there is another request in progress, but not if recovery
2136          * is needed. Also indicate whether there is a request waiting to start.
2137          */
2138         spin_lock_irqsave(&mq->lock, flags);
2139         if (mq->recovery_needed) {
2140                 *err = -EBUSY;
2141                 done = true;
2142         } else {
2143                 done = !mq->rw_wait;
2144         }
2145         mq->waiting = !done;
2146         spin_unlock_irqrestore(&mq->lock, flags);
2147
2148         return done;
2149 }
2150
2151 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2152 {
2153         int err = 0;
2154
2155         wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2156
2157         /* Always complete the previous request if there is one */
2158         mmc_blk_mq_complete_prev_req(mq, prev_req);
2159
2160         return err;
2161 }
2162
2163 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2164                                   struct request *req)
2165 {
2166         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2167         struct mmc_host *host = mq->card->host;
2168         struct request *prev_req = NULL;
2169         int err = 0;
2170
2171         mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2172
2173         mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2174
2175         mmc_pre_req(host, &mqrq->brq.mrq);
2176
2177         err = mmc_blk_rw_wait(mq, &prev_req);
2178         if (err)
2179                 goto out_post_req;
2180
2181         mq->rw_wait = true;
2182
2183         err = mmc_start_request(host, &mqrq->brq.mrq);
2184
2185         if (prev_req)
2186                 mmc_blk_mq_post_req(mq, prev_req);
2187
2188         if (err)
2189                 mq->rw_wait = false;
2190
2191         /* Release re-tuning here where there is no synchronization required */
2192         if (err || mmc_host_done_complete(host))
2193                 mmc_retune_release(host);
2194
2195 out_post_req:
2196         if (err)
2197                 mmc_post_req(host, &mqrq->brq.mrq, err);
2198
2199         return err;
2200 }
2201
2202 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2203 {
2204         if (host->cqe_enabled)
2205                 return host->cqe_ops->cqe_wait_for_idle(host);
2206
2207         return mmc_blk_rw_wait(mq, NULL);
2208 }
2209
2210 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2211 {
2212         struct mmc_blk_data *md = mq->blkdata;
2213         struct mmc_card *card = md->queue.card;
2214         struct mmc_host *host = card->host;
2215         int ret;
2216
2217         ret = mmc_blk_part_switch(card, md->part_type);
2218         if (ret)
2219                 return MMC_REQ_FAILED_TO_START;
2220
2221         switch (mmc_issue_type(mq, req)) {
2222         case MMC_ISSUE_SYNC:
2223                 ret = mmc_blk_wait_for_idle(mq, host);
2224                 if (ret)
2225                         return MMC_REQ_BUSY;
2226                 switch (req_op(req)) {
2227                 case REQ_OP_DRV_IN:
2228                 case REQ_OP_DRV_OUT:
2229                         mmc_blk_issue_drv_op(mq, req);
2230                         break;
2231                 case REQ_OP_DISCARD:
2232                         mmc_blk_issue_discard_rq(mq, req);
2233                         break;
2234                 case REQ_OP_SECURE_ERASE:
2235                         mmc_blk_issue_secdiscard_rq(mq, req);
2236                         break;
2237                 case REQ_OP_FLUSH:
2238                         mmc_blk_issue_flush(mq, req);
2239                         break;
2240                 default:
2241                         WARN_ON_ONCE(1);
2242                         return MMC_REQ_FAILED_TO_START;
2243                 }
2244                 return MMC_REQ_FINISHED;
2245         case MMC_ISSUE_DCMD:
2246         case MMC_ISSUE_ASYNC:
2247                 switch (req_op(req)) {
2248                 case REQ_OP_FLUSH:
2249                         if (!mmc_cache_enabled(host)) {
2250                                 blk_mq_end_request(req, BLK_STS_OK);
2251                                 return MMC_REQ_FINISHED;
2252                         }
2253                         ret = mmc_blk_cqe_issue_flush(mq, req);
2254                         break;
2255                 case REQ_OP_READ:
2256                 case REQ_OP_WRITE:
2257                         if (host->cqe_enabled)
2258                                 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2259                         else
2260                                 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2261                         break;
2262                 default:
2263                         WARN_ON_ONCE(1);
2264                         ret = -EINVAL;
2265                 }
2266                 if (!ret)
2267                         return MMC_REQ_STARTED;
2268                 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2269         default:
2270                 WARN_ON_ONCE(1);
2271                 return MMC_REQ_FAILED_TO_START;
2272         }
2273 }
2274
2275 static inline int mmc_blk_readonly(struct mmc_card *card)
2276 {
2277         return mmc_card_readonly(card) ||
2278                !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2279 }
2280
2281 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2282                                               struct device *parent,
2283                                               sector_t size,
2284                                               bool default_ro,
2285                                               const char *subname,
2286                                               int area_type)
2287 {
2288         struct mmc_blk_data *md;
2289         int devidx, ret;
2290         char cap_str[10];
2291
2292         devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2293         if (devidx < 0) {
2294                 /*
2295                  * We get -ENOSPC because there are no more any available
2296                  * devidx. The reason may be that, either userspace haven't yet
2297                  * unmounted the partitions, which postpones mmc_blk_release()
2298                  * from being called, or the device has more partitions than
2299                  * what we support.
2300                  */
2301                 if (devidx == -ENOSPC)
2302                         dev_err(mmc_dev(card->host),
2303                                 "no more device IDs available\n");
2304
2305                 return ERR_PTR(devidx);
2306         }
2307
2308         md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2309         if (!md) {
2310                 ret = -ENOMEM;
2311                 goto out;
2312         }
2313
2314         md->area_type = area_type;
2315
2316         /*
2317          * Set the read-only status based on the supported commands
2318          * and the write protect switch.
2319          */
2320         md->read_only = mmc_blk_readonly(card);
2321
2322         md->disk = mmc_init_queue(&md->queue, card);
2323         if (IS_ERR(md->disk)) {
2324                 ret = PTR_ERR(md->disk);
2325                 goto err_kfree;
2326         }
2327
2328         INIT_LIST_HEAD(&md->part);
2329         INIT_LIST_HEAD(&md->rpmbs);
2330         md->usage = 1;
2331         md->queue.blkdata = md;
2332
2333         md->disk->major = MMC_BLOCK_MAJOR;
2334         md->disk->minors = perdev_minors;
2335         md->disk->first_minor = devidx * perdev_minors;
2336         md->disk->fops = &mmc_bdops;
2337         md->disk->private_data = md;
2338         md->parent = parent;
2339         set_disk_ro(md->disk, md->read_only || default_ro);
2340         md->disk->flags = GENHD_FL_EXT_DEVT;
2341         if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2342                 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2343                                    | GENHD_FL_SUPPRESS_PARTITION_INFO;
2344
2345         /*
2346          * As discussed on lkml, GENHD_FL_REMOVABLE should:
2347          *
2348          * - be set for removable media with permanent block devices
2349          * - be unset for removable block devices with permanent media
2350          *
2351          * Since MMC block devices clearly fall under the second
2352          * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2353          * should use the block device creation/destruction hotplug
2354          * messages to tell when the card is present.
2355          */
2356
2357         snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2358                  "mmcblk%u%s", card->host->index, subname ? subname : "");
2359
2360         set_capacity(md->disk, size);
2361
2362         if (mmc_host_cmd23(card->host)) {
2363                 if ((mmc_card_mmc(card) &&
2364                      card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2365                     (mmc_card_sd(card) &&
2366                      card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2367                         md->flags |= MMC_BLK_CMD23;
2368         }
2369
2370         if (mmc_card_mmc(card) &&
2371             md->flags & MMC_BLK_CMD23 &&
2372             ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2373              card->ext_csd.rel_sectors)) {
2374                 md->flags |= MMC_BLK_REL_WR;
2375                 blk_queue_write_cache(md->queue.queue, true, true);
2376         }
2377
2378         string_get_size((u64)size, 512, STRING_UNITS_2,
2379                         cap_str, sizeof(cap_str));
2380         pr_info("%s: %s %s %s %s\n",
2381                 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2382                 cap_str, md->read_only ? "(ro)" : "");
2383
2384         return md;
2385
2386  err_kfree:
2387         kfree(md);
2388  out:
2389         ida_simple_remove(&mmc_blk_ida, devidx);
2390         return ERR_PTR(ret);
2391 }
2392
2393 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2394 {
2395         sector_t size;
2396
2397         if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2398                 /*
2399                  * The EXT_CSD sector count is in number or 512 byte
2400                  * sectors.
2401                  */
2402                 size = card->ext_csd.sectors;
2403         } else {
2404                 /*
2405                  * The CSD capacity field is in units of read_blkbits.
2406                  * set_capacity takes units of 512 bytes.
2407                  */
2408                 size = (typeof(sector_t))card->csd.capacity
2409                         << (card->csd.read_blkbits - 9);
2410         }
2411
2412         return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2413                                         MMC_BLK_DATA_AREA_MAIN);
2414 }
2415
2416 static int mmc_blk_alloc_part(struct mmc_card *card,
2417                               struct mmc_blk_data *md,
2418                               unsigned int part_type,
2419                               sector_t size,
2420                               bool default_ro,
2421                               const char *subname,
2422                               int area_type)
2423 {
2424         struct mmc_blk_data *part_md;
2425
2426         part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2427                                     subname, area_type);
2428         if (IS_ERR(part_md))
2429                 return PTR_ERR(part_md);
2430         part_md->part_type = part_type;
2431         list_add(&part_md->part, &md->part);
2432
2433         return 0;
2434 }
2435
2436 /**
2437  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2438  * @filp: the character device file
2439  * @cmd: the ioctl() command
2440  * @arg: the argument from userspace
2441  *
2442  * This will essentially just redirect the ioctl()s coming in over to
2443  * the main block device spawning the RPMB character device.
2444  */
2445 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2446                            unsigned long arg)
2447 {
2448         struct mmc_rpmb_data *rpmb = filp->private_data;
2449         int ret;
2450
2451         switch (cmd) {
2452         case MMC_IOC_CMD:
2453                 ret = mmc_blk_ioctl_cmd(rpmb->md,
2454                                         (struct mmc_ioc_cmd __user *)arg,
2455                                         rpmb);
2456                 break;
2457         case MMC_IOC_MULTI_CMD:
2458                 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2459                                         (struct mmc_ioc_multi_cmd __user *)arg,
2460                                         rpmb);
2461                 break;
2462         default:
2463                 ret = -EINVAL;
2464                 break;
2465         }
2466
2467         return ret;
2468 }
2469
2470 #ifdef CONFIG_COMPAT
2471 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2472                               unsigned long arg)
2473 {
2474         return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2475 }
2476 #endif
2477
2478 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2479 {
2480         struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2481                                                   struct mmc_rpmb_data, chrdev);
2482
2483         get_device(&rpmb->dev);
2484         filp->private_data = rpmb;
2485         mmc_blk_get(rpmb->md->disk);
2486
2487         return nonseekable_open(inode, filp);
2488 }
2489
2490 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2491 {
2492         struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2493                                                   struct mmc_rpmb_data, chrdev);
2494
2495         mmc_blk_put(rpmb->md);
2496         put_device(&rpmb->dev);
2497
2498         return 0;
2499 }
2500
2501 static const struct file_operations mmc_rpmb_fileops = {
2502         .release = mmc_rpmb_chrdev_release,
2503         .open = mmc_rpmb_chrdev_open,
2504         .owner = THIS_MODULE,
2505         .llseek = no_llseek,
2506         .unlocked_ioctl = mmc_rpmb_ioctl,
2507 #ifdef CONFIG_COMPAT
2508         .compat_ioctl = mmc_rpmb_ioctl_compat,
2509 #endif
2510 };
2511
2512 static void mmc_blk_rpmb_device_release(struct device *dev)
2513 {
2514         struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2515
2516         ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2517         kfree(rpmb);
2518 }
2519
2520 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2521                                    struct mmc_blk_data *md,
2522                                    unsigned int part_index,
2523                                    sector_t size,
2524                                    const char *subname)
2525 {
2526         int devidx, ret;
2527         char rpmb_name[DISK_NAME_LEN];
2528         char cap_str[10];
2529         struct mmc_rpmb_data *rpmb;
2530
2531         /* This creates the minor number for the RPMB char device */
2532         devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2533         if (devidx < 0)
2534                 return devidx;
2535
2536         rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2537         if (!rpmb) {
2538                 ida_simple_remove(&mmc_rpmb_ida, devidx);
2539                 return -ENOMEM;
2540         }
2541
2542         snprintf(rpmb_name, sizeof(rpmb_name),
2543                  "mmcblk%u%s", card->host->index, subname ? subname : "");
2544
2545         rpmb->id = devidx;
2546         rpmb->part_index = part_index;
2547         rpmb->dev.init_name = rpmb_name;
2548         rpmb->dev.bus = &mmc_rpmb_bus_type;
2549         rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2550         rpmb->dev.parent = &card->dev;
2551         rpmb->dev.release = mmc_blk_rpmb_device_release;
2552         device_initialize(&rpmb->dev);
2553         dev_set_drvdata(&rpmb->dev, rpmb);
2554         rpmb->md = md;
2555
2556         cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2557         rpmb->chrdev.owner = THIS_MODULE;
2558         ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2559         if (ret) {
2560                 pr_err("%s: could not add character device\n", rpmb_name);
2561                 goto out_put_device;
2562         }
2563
2564         list_add(&rpmb->node, &md->rpmbs);
2565
2566         string_get_size((u64)size, 512, STRING_UNITS_2,
2567                         cap_str, sizeof(cap_str));
2568
2569         pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2570                 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2571                 MAJOR(mmc_rpmb_devt), rpmb->id);
2572
2573         return 0;
2574
2575 out_put_device:
2576         put_device(&rpmb->dev);
2577         return ret;
2578 }
2579
2580 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2581
2582 {
2583         cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2584         put_device(&rpmb->dev);
2585 }
2586
2587 /* MMC Physical partitions consist of two boot partitions and
2588  * up to four general purpose partitions.
2589  * For each partition enabled in EXT_CSD a block device will be allocatedi
2590  * to provide access to the partition.
2591  */
2592
2593 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2594 {
2595         int idx, ret;
2596
2597         if (!mmc_card_mmc(card))
2598                 return 0;
2599
2600         for (idx = 0; idx < card->nr_parts; idx++) {
2601                 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2602                         /*
2603                          * RPMB partitions does not provide block access, they
2604                          * are only accessed using ioctl():s. Thus create
2605                          * special RPMB block devices that do not have a
2606                          * backing block queue for these.
2607                          */
2608                         ret = mmc_blk_alloc_rpmb_part(card, md,
2609                                 card->part[idx].part_cfg,
2610                                 card->part[idx].size >> 9,
2611                                 card->part[idx].name);
2612                         if (ret)
2613                                 return ret;
2614                 } else if (card->part[idx].size) {
2615                         ret = mmc_blk_alloc_part(card, md,
2616                                 card->part[idx].part_cfg,
2617                                 card->part[idx].size >> 9,
2618                                 card->part[idx].force_ro,
2619                                 card->part[idx].name,
2620                                 card->part[idx].area_type);
2621                         if (ret)
2622                                 return ret;
2623                 }
2624         }
2625
2626         return 0;
2627 }
2628
2629 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2630 {
2631         struct mmc_card *card;
2632
2633         if (md) {
2634                 /*
2635                  * Flush remaining requests and free queues. It
2636                  * is freeing the queue that stops new requests
2637                  * from being accepted.
2638                  */
2639                 card = md->queue.card;
2640                 if (md->disk->flags & GENHD_FL_UP) {
2641                         device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2642                         if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2643                                         card->ext_csd.boot_ro_lockable)
2644                                 device_remove_file(disk_to_dev(md->disk),
2645                                         &md->power_ro_lock);
2646
2647                         del_gendisk(md->disk);
2648                 }
2649                 mmc_cleanup_queue(&md->queue);
2650                 mmc_blk_put(md);
2651         }
2652 }
2653
2654 static void mmc_blk_remove_parts(struct mmc_card *card,
2655                                  struct mmc_blk_data *md)
2656 {
2657         struct list_head *pos, *q;
2658         struct mmc_blk_data *part_md;
2659         struct mmc_rpmb_data *rpmb;
2660
2661         /* Remove RPMB partitions */
2662         list_for_each_safe(pos, q, &md->rpmbs) {
2663                 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2664                 list_del(pos);
2665                 mmc_blk_remove_rpmb_part(rpmb);
2666         }
2667         /* Remove block partitions */
2668         list_for_each_safe(pos, q, &md->part) {
2669                 part_md = list_entry(pos, struct mmc_blk_data, part);
2670                 list_del(pos);
2671                 mmc_blk_remove_req(part_md);
2672         }
2673 }
2674
2675 static int mmc_add_disk(struct mmc_blk_data *md)
2676 {
2677         int ret;
2678         struct mmc_card *card = md->queue.card;
2679
2680         device_add_disk(md->parent, md->disk, NULL);
2681         md->force_ro.show = force_ro_show;
2682         md->force_ro.store = force_ro_store;
2683         sysfs_attr_init(&md->force_ro.attr);
2684         md->force_ro.attr.name = "force_ro";
2685         md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2686         ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2687         if (ret)
2688                 goto force_ro_fail;
2689
2690         if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2691              card->ext_csd.boot_ro_lockable) {
2692                 umode_t mode;
2693
2694                 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2695                         mode = S_IRUGO;
2696                 else
2697                         mode = S_IRUGO | S_IWUSR;
2698
2699                 md->power_ro_lock.show = power_ro_lock_show;
2700                 md->power_ro_lock.store = power_ro_lock_store;
2701                 sysfs_attr_init(&md->power_ro_lock.attr);
2702                 md->power_ro_lock.attr.mode = mode;
2703                 md->power_ro_lock.attr.name =
2704                                         "ro_lock_until_next_power_on";
2705                 ret = device_create_file(disk_to_dev(md->disk),
2706                                 &md->power_ro_lock);
2707                 if (ret)
2708                         goto power_ro_lock_fail;
2709         }
2710         return ret;
2711
2712 power_ro_lock_fail:
2713         device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2714 force_ro_fail:
2715         del_gendisk(md->disk);
2716
2717         return ret;
2718 }
2719
2720 #ifdef CONFIG_DEBUG_FS
2721
2722 static int mmc_dbg_card_status_get(void *data, u64 *val)
2723 {
2724         struct mmc_card *card = data;
2725         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2726         struct mmc_queue *mq = &md->queue;
2727         struct request *req;
2728         int ret;
2729
2730         /* Ask the block layer about the card status */
2731         req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2732         if (IS_ERR(req))
2733                 return PTR_ERR(req);
2734         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2735         blk_execute_rq(NULL, req, 0);
2736         ret = req_to_mmc_queue_req(req)->drv_op_result;
2737         if (ret >= 0) {
2738                 *val = ret;
2739                 ret = 0;
2740         }
2741         blk_put_request(req);
2742
2743         return ret;
2744 }
2745 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2746                          NULL, "%08llx\n");
2747
2748 /* That is two digits * 512 + 1 for newline */
2749 #define EXT_CSD_STR_LEN 1025
2750
2751 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2752 {
2753         struct mmc_card *card = inode->i_private;
2754         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2755         struct mmc_queue *mq = &md->queue;
2756         struct request *req;
2757         char *buf;
2758         ssize_t n = 0;
2759         u8 *ext_csd;
2760         int err, i;
2761
2762         buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2763         if (!buf)
2764                 return -ENOMEM;
2765
2766         /* Ask the block layer for the EXT CSD */
2767         req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2768         if (IS_ERR(req)) {
2769                 err = PTR_ERR(req);
2770                 goto out_free;
2771         }
2772         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2773         req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2774         blk_execute_rq(NULL, req, 0);
2775         err = req_to_mmc_queue_req(req)->drv_op_result;
2776         blk_put_request(req);
2777         if (err) {
2778                 pr_err("FAILED %d\n", err);
2779                 goto out_free;
2780         }
2781
2782         for (i = 0; i < 512; i++)
2783                 n += sprintf(buf + n, "%02x", ext_csd[i]);
2784         n += sprintf(buf + n, "\n");
2785
2786         if (n != EXT_CSD_STR_LEN) {
2787                 err = -EINVAL;
2788                 kfree(ext_csd);
2789                 goto out_free;
2790         }
2791
2792         filp->private_data = buf;
2793         kfree(ext_csd);
2794         return 0;
2795
2796 out_free:
2797         kfree(buf);
2798         return err;
2799 }
2800
2801 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2802                                 size_t cnt, loff_t *ppos)
2803 {
2804         char *buf = filp->private_data;
2805
2806         return simple_read_from_buffer(ubuf, cnt, ppos,
2807                                        buf, EXT_CSD_STR_LEN);
2808 }
2809
2810 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2811 {
2812         kfree(file->private_data);
2813         return 0;
2814 }
2815
2816 static const struct file_operations mmc_dbg_ext_csd_fops = {
2817         .open           = mmc_ext_csd_open,
2818         .read           = mmc_ext_csd_read,
2819         .release        = mmc_ext_csd_release,
2820         .llseek         = default_llseek,
2821 };
2822
2823 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2824 {
2825         struct dentry *root;
2826
2827         if (!card->debugfs_root)
2828                 return 0;
2829
2830         root = card->debugfs_root;
2831
2832         if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2833                 md->status_dentry =
2834                         debugfs_create_file_unsafe("status", 0400, root,
2835                                                    card,
2836                                                    &mmc_dbg_card_status_fops);
2837                 if (!md->status_dentry)
2838                         return -EIO;
2839         }
2840
2841         if (mmc_card_mmc(card)) {
2842                 md->ext_csd_dentry =
2843                         debugfs_create_file("ext_csd", S_IRUSR, root, card,
2844                                             &mmc_dbg_ext_csd_fops);
2845                 if (!md->ext_csd_dentry)
2846                         return -EIO;
2847         }
2848
2849         return 0;
2850 }
2851
2852 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2853                                    struct mmc_blk_data *md)
2854 {
2855         if (!card->debugfs_root)
2856                 return;
2857
2858         if (!IS_ERR_OR_NULL(md->status_dentry)) {
2859                 debugfs_remove(md->status_dentry);
2860                 md->status_dentry = NULL;
2861         }
2862
2863         if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2864                 debugfs_remove(md->ext_csd_dentry);
2865                 md->ext_csd_dentry = NULL;
2866         }
2867 }
2868
2869 #else
2870
2871 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2872 {
2873         return 0;
2874 }
2875
2876 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2877                                    struct mmc_blk_data *md)
2878 {
2879 }
2880
2881 #endif /* CONFIG_DEBUG_FS */
2882
2883 static int mmc_blk_probe(struct mmc_card *card)
2884 {
2885         struct mmc_blk_data *md, *part_md;
2886         int ret = 0;
2887
2888         /*
2889          * Check that the card supports the command class(es) we need.
2890          */
2891         if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2892                 return -ENODEV;
2893
2894         mmc_fixup_device(card, mmc_blk_fixups);
2895
2896         card->complete_wq = alloc_workqueue("mmc_complete",
2897                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2898         if (!card->complete_wq) {
2899                 pr_err("Failed to create mmc completion workqueue");
2900                 return -ENOMEM;
2901         }
2902
2903         md = mmc_blk_alloc(card);
2904         if (IS_ERR(md)) {
2905                 ret = PTR_ERR(md);
2906                 goto out_free;
2907         }
2908
2909         ret = mmc_blk_alloc_parts(card, md);
2910         if (ret)
2911                 goto out;
2912
2913         dev_set_drvdata(&card->dev, md);
2914
2915         ret = mmc_add_disk(md);
2916         if (ret)
2917                 goto out;
2918
2919         list_for_each_entry(part_md, &md->part, part) {
2920                 ret = mmc_add_disk(part_md);
2921                 if (ret)
2922                         goto out;
2923         }
2924
2925         /* Add two debugfs entries */
2926         mmc_blk_add_debugfs(card, md);
2927
2928         pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2929         pm_runtime_use_autosuspend(&card->dev);
2930
2931         /*
2932          * Don't enable runtime PM for SD-combo cards here. Leave that
2933          * decision to be taken during the SDIO init sequence instead.
2934          */
2935         if (card->type != MMC_TYPE_SD_COMBO) {
2936                 pm_runtime_set_active(&card->dev);
2937                 pm_runtime_enable(&card->dev);
2938         }
2939
2940         return 0;
2941
2942 out:
2943         mmc_blk_remove_parts(card, md);
2944         mmc_blk_remove_req(md);
2945 out_free:
2946         destroy_workqueue(card->complete_wq);
2947         return ret;
2948 }
2949
2950 static void mmc_blk_remove(struct mmc_card *card)
2951 {
2952         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2953
2954         mmc_blk_remove_debugfs(card, md);
2955         mmc_blk_remove_parts(card, md);
2956         pm_runtime_get_sync(&card->dev);
2957         if (md->part_curr != md->part_type) {
2958                 mmc_claim_host(card->host);
2959                 mmc_blk_part_switch(card, md->part_type);
2960                 mmc_release_host(card->host);
2961         }
2962         if (card->type != MMC_TYPE_SD_COMBO)
2963                 pm_runtime_disable(&card->dev);
2964         pm_runtime_put_noidle(&card->dev);
2965         mmc_blk_remove_req(md);
2966         dev_set_drvdata(&card->dev, NULL);
2967         destroy_workqueue(card->complete_wq);
2968 }
2969
2970 static int _mmc_blk_suspend(struct mmc_card *card)
2971 {
2972         struct mmc_blk_data *part_md;
2973         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2974
2975         if (md) {
2976                 mmc_queue_suspend(&md->queue);
2977                 list_for_each_entry(part_md, &md->part, part) {
2978                         mmc_queue_suspend(&part_md->queue);
2979                 }
2980         }
2981         return 0;
2982 }
2983
2984 static void mmc_blk_shutdown(struct mmc_card *card)
2985 {
2986         _mmc_blk_suspend(card);
2987 }
2988
2989 #ifdef CONFIG_PM_SLEEP
2990 static int mmc_blk_suspend(struct device *dev)
2991 {
2992         struct mmc_card *card = mmc_dev_to_card(dev);
2993
2994         return _mmc_blk_suspend(card);
2995 }
2996
2997 static int mmc_blk_resume(struct device *dev)
2998 {
2999         struct mmc_blk_data *part_md;
3000         struct mmc_blk_data *md = dev_get_drvdata(dev);
3001
3002         if (md) {
3003                 /*
3004                  * Resume involves the card going into idle state,
3005                  * so current partition is always the main one.
3006                  */
3007                 md->part_curr = md->part_type;
3008                 mmc_queue_resume(&md->queue);
3009                 list_for_each_entry(part_md, &md->part, part) {
3010                         mmc_queue_resume(&part_md->queue);
3011                 }
3012         }
3013         return 0;
3014 }
3015 #endif
3016
3017 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3018
3019 static struct mmc_driver mmc_driver = {
3020         .drv            = {
3021                 .name   = "mmcblk",
3022                 .pm     = &mmc_blk_pm_ops,
3023         },
3024         .probe          = mmc_blk_probe,
3025         .remove         = mmc_blk_remove,
3026         .shutdown       = mmc_blk_shutdown,
3027 };
3028
3029 static int __init mmc_blk_init(void)
3030 {
3031         int res;
3032
3033         res  = bus_register(&mmc_rpmb_bus_type);
3034         if (res < 0) {
3035                 pr_err("mmcblk: could not register RPMB bus type\n");
3036                 return res;
3037         }
3038         res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3039         if (res < 0) {
3040                 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3041                 goto out_bus_unreg;
3042         }
3043
3044         if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3045                 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3046
3047         max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3048
3049         res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3050         if (res)
3051                 goto out_chrdev_unreg;
3052
3053         res = mmc_register_driver(&mmc_driver);
3054         if (res)
3055                 goto out_blkdev_unreg;
3056
3057         return 0;
3058
3059 out_blkdev_unreg:
3060         unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3061 out_chrdev_unreg:
3062         unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3063 out_bus_unreg:
3064         bus_unregister(&mmc_rpmb_bus_type);
3065         return res;
3066 }
3067
3068 static void __exit mmc_blk_exit(void)
3069 {
3070         mmc_unregister_driver(&mmc_driver);
3071         unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3072         unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3073         bus_unregister(&mmc_rpmb_bus_type);
3074 }
3075
3076 module_init(mmc_blk_init);
3077 module_exit(mmc_blk_exit);
3078
3079 MODULE_LICENSE("GPL");
3080 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3081