Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-microblaze.git] / drivers / misc / vmw_vmci / vmci_guest.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/moduleparam.h>
11 #include <linux/interrupt.h>
12 #include <linux/highmem.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/processor.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/vmalloc.h>
24
25 #include "vmci_datagram.h"
26 #include "vmci_doorbell.h"
27 #include "vmci_context.h"
28 #include "vmci_driver.h"
29 #include "vmci_event.h"
30
31 #define PCI_DEVICE_ID_VMWARE_VMCI       0x0740
32
33 #define VMCI_UTIL_NUM_RESOURCES 1
34
35 /*
36  * Datagram buffers for DMA send/receive must accommodate at least
37  * a maximum sized datagram and the header.
38  */
39 #define VMCI_DMA_DG_BUFFER_SIZE (VMCI_MAX_DG_SIZE + PAGE_SIZE)
40
41 static bool vmci_disable_msi;
42 module_param_named(disable_msi, vmci_disable_msi, bool, 0);
43 MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)");
44
45 static bool vmci_disable_msix;
46 module_param_named(disable_msix, vmci_disable_msix, bool, 0);
47 MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)");
48
49 static u32 ctx_update_sub_id = VMCI_INVALID_ID;
50 static u32 vm_context_id = VMCI_INVALID_ID;
51
52 struct vmci_guest_device {
53         struct device *dev;     /* PCI device we are attached to */
54         void __iomem *iobase;
55         void __iomem *mmio_base;
56
57         bool exclusive_vectors;
58
59         struct tasklet_struct datagram_tasklet;
60         struct tasklet_struct bm_tasklet;
61         struct wait_queue_head inout_wq;
62
63         void *data_buffer;
64         dma_addr_t data_buffer_base;
65         void *tx_buffer;
66         dma_addr_t tx_buffer_base;
67         void *notification_bitmap;
68         dma_addr_t notification_base;
69 };
70
71 static bool use_ppn64;
72
73 bool vmci_use_ppn64(void)
74 {
75         return use_ppn64;
76 }
77
78 /* vmci_dev singleton device and supporting data*/
79 struct pci_dev *vmci_pdev;
80 static struct vmci_guest_device *vmci_dev_g;
81 static DEFINE_SPINLOCK(vmci_dev_spinlock);
82
83 static atomic_t vmci_num_guest_devices = ATOMIC_INIT(0);
84
85 bool vmci_guest_code_active(void)
86 {
87         return atomic_read(&vmci_num_guest_devices) != 0;
88 }
89
90 u32 vmci_get_vm_context_id(void)
91 {
92         if (vm_context_id == VMCI_INVALID_ID) {
93                 struct vmci_datagram get_cid_msg;
94                 get_cid_msg.dst =
95                     vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
96                                      VMCI_GET_CONTEXT_ID);
97                 get_cid_msg.src = VMCI_ANON_SRC_HANDLE;
98                 get_cid_msg.payload_size = 0;
99                 vm_context_id = vmci_send_datagram(&get_cid_msg);
100         }
101         return vm_context_id;
102 }
103
104 static unsigned int vmci_read_reg(struct vmci_guest_device *dev, u32 reg)
105 {
106         if (dev->mmio_base != NULL)
107                 return readl(dev->mmio_base + reg);
108         return ioread32(dev->iobase + reg);
109 }
110
111 static void vmci_write_reg(struct vmci_guest_device *dev, u32 val, u32 reg)
112 {
113         if (dev->mmio_base != NULL)
114                 writel(val, dev->mmio_base + reg);
115         else
116                 iowrite32(val, dev->iobase + reg);
117 }
118
119 static void vmci_read_data(struct vmci_guest_device *vmci_dev,
120                            void *dest, size_t size)
121 {
122         if (vmci_dev->mmio_base == NULL)
123                 ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
124                             dest, size);
125         else {
126                 /*
127                  * For DMA datagrams, the data_buffer will contain the header on the
128                  * first page, followed by the incoming datagram(s) on the following
129                  * pages. The header uses an S/G element immediately following the
130                  * header on the first page to point to the data area.
131                  */
132                 struct vmci_data_in_out_header *buffer_header = vmci_dev->data_buffer;
133                 struct vmci_sg_elem *sg_array = (struct vmci_sg_elem *)(buffer_header + 1);
134                 size_t buffer_offset = dest - vmci_dev->data_buffer;
135
136                 buffer_header->opcode = 1;
137                 buffer_header->size = 1;
138                 buffer_header->busy = 0;
139                 sg_array[0].addr = vmci_dev->data_buffer_base + buffer_offset;
140                 sg_array[0].size = size;
141
142                 vmci_write_reg(vmci_dev, lower_32_bits(vmci_dev->data_buffer_base),
143                                VMCI_DATA_IN_LOW_ADDR);
144
145                 wait_event(vmci_dev->inout_wq, buffer_header->busy == 1);
146         }
147 }
148
149 static int vmci_write_data(struct vmci_guest_device *dev,
150                            struct vmci_datagram *dg)
151 {
152         int result;
153
154         if (dev->mmio_base != NULL) {
155                 struct vmci_data_in_out_header *buffer_header = dev->tx_buffer;
156                 u8 *dg_out_buffer = (u8 *)(buffer_header + 1);
157
158                 if (VMCI_DG_SIZE(dg) > VMCI_MAX_DG_SIZE)
159                         return VMCI_ERROR_INVALID_ARGS;
160
161                 /*
162                  * Initialize send buffer with outgoing datagram
163                  * and set up header for inline data. Device will
164                  * not access buffer asynchronously - only after
165                  * the write to VMCI_DATA_OUT_LOW_ADDR.
166                  */
167                 memcpy(dg_out_buffer, dg, VMCI_DG_SIZE(dg));
168                 buffer_header->opcode = 0;
169                 buffer_header->size = VMCI_DG_SIZE(dg);
170                 buffer_header->busy = 1;
171
172                 vmci_write_reg(dev, lower_32_bits(dev->tx_buffer_base),
173                                VMCI_DATA_OUT_LOW_ADDR);
174
175                 /* Caller holds a spinlock, so cannot block. */
176                 spin_until_cond(buffer_header->busy == 0);
177
178                 result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
179                 if (result == VMCI_SUCCESS)
180                         result = (int)buffer_header->result;
181         } else {
182                 iowrite8_rep(dev->iobase + VMCI_DATA_OUT_ADDR,
183                              dg, VMCI_DG_SIZE(dg));
184                 result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
185         }
186
187         return result;
188 }
189
190 /*
191  * VM to hypervisor call mechanism. We use the standard VMware naming
192  * convention since shared code is calling this function as well.
193  */
194 int vmci_send_datagram(struct vmci_datagram *dg)
195 {
196         unsigned long flags;
197         int result;
198
199         /* Check args. */
200         if (dg == NULL)
201                 return VMCI_ERROR_INVALID_ARGS;
202
203         /*
204          * Need to acquire spinlock on the device because the datagram
205          * data may be spread over multiple pages and the monitor may
206          * interleave device user rpc calls from multiple
207          * VCPUs. Acquiring the spinlock precludes that
208          * possibility. Disabling interrupts to avoid incoming
209          * datagrams during a "rep out" and possibly landing up in
210          * this function.
211          */
212         spin_lock_irqsave(&vmci_dev_spinlock, flags);
213
214         if (vmci_dev_g) {
215                 vmci_write_data(vmci_dev_g, dg);
216                 result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
217         } else {
218                 result = VMCI_ERROR_UNAVAILABLE;
219         }
220
221         spin_unlock_irqrestore(&vmci_dev_spinlock, flags);
222
223         return result;
224 }
225 EXPORT_SYMBOL_GPL(vmci_send_datagram);
226
227 /*
228  * Gets called with the new context id if updated or resumed.
229  * Context id.
230  */
231 static void vmci_guest_cid_update(u32 sub_id,
232                                   const struct vmci_event_data *event_data,
233                                   void *client_data)
234 {
235         const struct vmci_event_payld_ctx *ev_payload =
236                                 vmci_event_data_const_payload(event_data);
237
238         if (sub_id != ctx_update_sub_id) {
239                 pr_devel("Invalid subscriber (ID=0x%x)\n", sub_id);
240                 return;
241         }
242
243         if (!event_data || ev_payload->context_id == VMCI_INVALID_ID) {
244                 pr_devel("Invalid event data\n");
245                 return;
246         }
247
248         pr_devel("Updating context from (ID=0x%x) to (ID=0x%x) on event (type=%d)\n",
249                  vm_context_id, ev_payload->context_id, event_data->event);
250
251         vm_context_id = ev_payload->context_id;
252 }
253
254 /*
255  * Verify that the host supports the hypercalls we need. If it does not,
256  * try to find fallback hypercalls and use those instead.  Returns 0 if
257  * required hypercalls (or fallback hypercalls) are supported by the host,
258  * an error code otherwise.
259  */
260 static int vmci_check_host_caps(struct pci_dev *pdev)
261 {
262         bool result;
263         struct vmci_resource_query_msg *msg;
264         u32 msg_size = sizeof(struct vmci_resource_query_hdr) +
265                                 VMCI_UTIL_NUM_RESOURCES * sizeof(u32);
266         struct vmci_datagram *check_msg;
267
268         check_msg = kzalloc(msg_size, GFP_KERNEL);
269         if (!check_msg) {
270                 dev_err(&pdev->dev, "%s: Insufficient memory\n", __func__);
271                 return -ENOMEM;
272         }
273
274         check_msg->dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
275                                           VMCI_RESOURCES_QUERY);
276         check_msg->src = VMCI_ANON_SRC_HANDLE;
277         check_msg->payload_size = msg_size - VMCI_DG_HEADERSIZE;
278         msg = (struct vmci_resource_query_msg *)VMCI_DG_PAYLOAD(check_msg);
279
280         msg->num_resources = VMCI_UTIL_NUM_RESOURCES;
281         msg->resources[0] = VMCI_GET_CONTEXT_ID;
282
283         /* Checks that hyper calls are supported */
284         result = vmci_send_datagram(check_msg) == 0x01;
285         kfree(check_msg);
286
287         dev_dbg(&pdev->dev, "%s: Host capability check: %s\n",
288                 __func__, result ? "PASSED" : "FAILED");
289
290         /* We need the vector. There are no fallbacks. */
291         return result ? 0 : -ENXIO;
292 }
293
294 /*
295  * Reads datagrams from the device and dispatches them. For IO port
296  * based access to the device, we always start reading datagrams into
297  * only the first page of the datagram buffer. If the datagrams don't
298  * fit into one page, we use the maximum datagram buffer size for the
299  * remainder of the invocation. This is a simple heuristic for not
300  * penalizing small datagrams. For DMA-based datagrams, we always
301  * use the maximum datagram buffer size, since there is no performance
302  * penalty for doing so.
303  *
304  * This function assumes that it has exclusive access to the data
305  * in register(s) for the duration of the call.
306  */
307 static void vmci_dispatch_dgs(unsigned long data)
308 {
309         struct vmci_guest_device *vmci_dev = (struct vmci_guest_device *)data;
310         u8 *dg_in_buffer = vmci_dev->data_buffer;
311         struct vmci_datagram *dg;
312         size_t dg_in_buffer_size = VMCI_MAX_DG_SIZE;
313         size_t current_dg_in_buffer_size;
314         size_t remaining_bytes;
315         bool is_io_port = vmci_dev->mmio_base == NULL;
316
317         BUILD_BUG_ON(VMCI_MAX_DG_SIZE < PAGE_SIZE);
318
319         if (!is_io_port) {
320                 /* For mmio, the first page is used for the header. */
321                 dg_in_buffer += PAGE_SIZE;
322
323                 /*
324                  * For DMA-based datagram operations, there is no performance
325                  * penalty for reading the maximum buffer size.
326                  */
327                 current_dg_in_buffer_size = VMCI_MAX_DG_SIZE;
328         } else {
329                 current_dg_in_buffer_size = PAGE_SIZE;
330         }
331         vmci_read_data(vmci_dev, dg_in_buffer, current_dg_in_buffer_size);
332         dg = (struct vmci_datagram *)dg_in_buffer;
333         remaining_bytes = current_dg_in_buffer_size;
334
335         /*
336          * Read through the buffer until an invalid datagram header is
337          * encountered. The exit condition for datagrams read through
338          * VMCI_DATA_IN_ADDR is a bit more complicated, since a datagram
339          * can start on any page boundary in the buffer.
340          */
341         while (dg->dst.resource != VMCI_INVALID_ID ||
342                (is_io_port && remaining_bytes > PAGE_SIZE)) {
343                 unsigned dg_in_size;
344
345                 /*
346                  * If using VMCI_DATA_IN_ADDR, skip to the next page
347                  * as a datagram can start on any page boundary.
348                  */
349                 if (dg->dst.resource == VMCI_INVALID_ID) {
350                         dg = (struct vmci_datagram *)roundup(
351                                 (uintptr_t)dg + 1, PAGE_SIZE);
352                         remaining_bytes =
353                                 (size_t)(dg_in_buffer +
354                                          current_dg_in_buffer_size -
355                                          (u8 *)dg);
356                         continue;
357                 }
358
359                 dg_in_size = VMCI_DG_SIZE_ALIGNED(dg);
360
361                 if (dg_in_size <= dg_in_buffer_size) {
362                         int result;
363
364                         /*
365                          * If the remaining bytes in the datagram
366                          * buffer doesn't contain the complete
367                          * datagram, we first make sure we have enough
368                          * room for it and then we read the reminder
369                          * of the datagram and possibly any following
370                          * datagrams.
371                          */
372                         if (dg_in_size > remaining_bytes) {
373                                 if (remaining_bytes !=
374                                     current_dg_in_buffer_size) {
375
376                                         /*
377                                          * We move the partial
378                                          * datagram to the front and
379                                          * read the reminder of the
380                                          * datagram and possibly
381                                          * following calls into the
382                                          * following bytes.
383                                          */
384                                         memmove(dg_in_buffer, dg_in_buffer +
385                                                 current_dg_in_buffer_size -
386                                                 remaining_bytes,
387                                                 remaining_bytes);
388                                         dg = (struct vmci_datagram *)
389                                             dg_in_buffer;
390                                 }
391
392                                 if (current_dg_in_buffer_size !=
393                                     dg_in_buffer_size)
394                                         current_dg_in_buffer_size =
395                                             dg_in_buffer_size;
396
397                                 vmci_read_data(vmci_dev,
398                                                dg_in_buffer +
399                                                 remaining_bytes,
400                                                current_dg_in_buffer_size -
401                                                 remaining_bytes);
402                         }
403
404                         /*
405                          * We special case event datagrams from the
406                          * hypervisor.
407                          */
408                         if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID &&
409                             dg->dst.resource == VMCI_EVENT_HANDLER) {
410                                 result = vmci_event_dispatch(dg);
411                         } else {
412                                 result = vmci_datagram_invoke_guest_handler(dg);
413                         }
414                         if (result < VMCI_SUCCESS)
415                                 dev_dbg(vmci_dev->dev,
416                                         "Datagram with resource (ID=0x%x) failed (err=%d)\n",
417                                          dg->dst.resource, result);
418
419                         /* On to the next datagram. */
420                         dg = (struct vmci_datagram *)((u8 *)dg +
421                                                       dg_in_size);
422                 } else {
423                         size_t bytes_to_skip;
424
425                         /*
426                          * Datagram doesn't fit in datagram buffer of maximal
427                          * size. We drop it.
428                          */
429                         dev_dbg(vmci_dev->dev,
430                                 "Failed to receive datagram (size=%u bytes)\n",
431                                  dg_in_size);
432
433                         bytes_to_skip = dg_in_size - remaining_bytes;
434                         if (current_dg_in_buffer_size != dg_in_buffer_size)
435                                 current_dg_in_buffer_size = dg_in_buffer_size;
436
437                         for (;;) {
438                                 vmci_read_data(vmci_dev, dg_in_buffer,
439                                                current_dg_in_buffer_size);
440                                 if (bytes_to_skip <= current_dg_in_buffer_size)
441                                         break;
442
443                                 bytes_to_skip -= current_dg_in_buffer_size;
444                         }
445                         dg = (struct vmci_datagram *)(dg_in_buffer +
446                                                       bytes_to_skip);
447                 }
448
449                 remaining_bytes =
450                     (size_t) (dg_in_buffer + current_dg_in_buffer_size -
451                               (u8 *)dg);
452
453                 if (remaining_bytes < VMCI_DG_HEADERSIZE) {
454                         /* Get the next batch of datagrams. */
455
456                         vmci_read_data(vmci_dev, dg_in_buffer,
457                                     current_dg_in_buffer_size);
458                         dg = (struct vmci_datagram *)dg_in_buffer;
459                         remaining_bytes = current_dg_in_buffer_size;
460                 }
461         }
462 }
463
464 /*
465  * Scans the notification bitmap for raised flags, clears them
466  * and handles the notifications.
467  */
468 static void vmci_process_bitmap(unsigned long data)
469 {
470         struct vmci_guest_device *dev = (struct vmci_guest_device *)data;
471
472         if (!dev->notification_bitmap) {
473                 dev_dbg(dev->dev, "No bitmap present in %s\n", __func__);
474                 return;
475         }
476
477         vmci_dbell_scan_notification_entries(dev->notification_bitmap);
478 }
479
480 /*
481  * Interrupt handler for legacy or MSI interrupt, or for first MSI-X
482  * interrupt (vector VMCI_INTR_DATAGRAM).
483  */
484 static irqreturn_t vmci_interrupt(int irq, void *_dev)
485 {
486         struct vmci_guest_device *dev = _dev;
487
488         /*
489          * If we are using MSI-X with exclusive vectors then we simply schedule
490          * the datagram tasklet, since we know the interrupt was meant for us.
491          * Otherwise we must read the ICR to determine what to do.
492          */
493
494         if (dev->exclusive_vectors) {
495                 tasklet_schedule(&dev->datagram_tasklet);
496         } else {
497                 unsigned int icr;
498
499                 /* Acknowledge interrupt and determine what needs doing. */
500                 icr = vmci_read_reg(dev, VMCI_ICR_ADDR);
501                 if (icr == 0 || icr == ~0)
502                         return IRQ_NONE;
503
504                 if (icr & VMCI_ICR_DATAGRAM) {
505                         tasklet_schedule(&dev->datagram_tasklet);
506                         icr &= ~VMCI_ICR_DATAGRAM;
507                 }
508
509                 if (icr & VMCI_ICR_NOTIFICATION) {
510                         tasklet_schedule(&dev->bm_tasklet);
511                         icr &= ~VMCI_ICR_NOTIFICATION;
512                 }
513
514
515                 if (icr & VMCI_ICR_DMA_DATAGRAM) {
516                         wake_up_all(&dev->inout_wq);
517                         icr &= ~VMCI_ICR_DMA_DATAGRAM;
518                 }
519
520                 if (icr != 0)
521                         dev_warn(dev->dev,
522                                  "Ignoring unknown interrupt cause (%d)\n",
523                                  icr);
524         }
525
526         return IRQ_HANDLED;
527 }
528
529 /*
530  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_NOTIFICATION,
531  * which is for the notification bitmap.  Will only get called if we are
532  * using MSI-X with exclusive vectors.
533  */
534 static irqreturn_t vmci_interrupt_bm(int irq, void *_dev)
535 {
536         struct vmci_guest_device *dev = _dev;
537
538         /* For MSI-X we can just assume it was meant for us. */
539         tasklet_schedule(&dev->bm_tasklet);
540
541         return IRQ_HANDLED;
542 }
543
544 /*
545  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_DMA_DATAGRAM,
546  * which is for the completion of a DMA datagram send or receive operation.
547  * Will only get called if we are using MSI-X with exclusive vectors.
548  */
549 static irqreturn_t vmci_interrupt_dma_datagram(int irq, void *_dev)
550 {
551         struct vmci_guest_device *dev = _dev;
552
553         wake_up_all(&dev->inout_wq);
554
555         return IRQ_HANDLED;
556 }
557
558 static void vmci_free_dg_buffers(struct vmci_guest_device *vmci_dev)
559 {
560         if (vmci_dev->mmio_base != NULL) {
561                 if (vmci_dev->tx_buffer != NULL)
562                         dma_free_coherent(vmci_dev->dev,
563                                           VMCI_DMA_DG_BUFFER_SIZE,
564                                           vmci_dev->tx_buffer,
565                                           vmci_dev->tx_buffer_base);
566                 if (vmci_dev->data_buffer != NULL)
567                         dma_free_coherent(vmci_dev->dev,
568                                           VMCI_DMA_DG_BUFFER_SIZE,
569                                           vmci_dev->data_buffer,
570                                           vmci_dev->data_buffer_base);
571         } else {
572                 vfree(vmci_dev->data_buffer);
573         }
574 }
575
576 /*
577  * Most of the initialization at module load time is done here.
578  */
579 static int vmci_guest_probe_device(struct pci_dev *pdev,
580                                    const struct pci_device_id *id)
581 {
582         struct vmci_guest_device *vmci_dev;
583         void __iomem *iobase = NULL;
584         void __iomem *mmio_base = NULL;
585         unsigned int num_irq_vectors;
586         unsigned int capabilities;
587         unsigned int caps_in_use;
588         unsigned long cmd;
589         int vmci_err;
590         int error;
591
592         dev_dbg(&pdev->dev, "Probing for vmci/PCI guest device\n");
593
594         error = pcim_enable_device(pdev);
595         if (error) {
596                 dev_err(&pdev->dev,
597                         "Failed to enable VMCI device: %d\n", error);
598                 return error;
599         }
600
601         /*
602          * The VMCI device with mmio access to registers requests 256KB
603          * for BAR1. If present, driver will use new VMCI device
604          * functionality for register access and datagram send/recv.
605          */
606
607         if (pci_resource_len(pdev, 1) == VMCI_WITH_MMIO_ACCESS_BAR_SIZE) {
608                 dev_info(&pdev->dev, "MMIO register access is available\n");
609                 mmio_base = pci_iomap_range(pdev, 1, VMCI_MMIO_ACCESS_OFFSET,
610                                             VMCI_MMIO_ACCESS_SIZE);
611                 /* If the map fails, we fall back to IOIO access. */
612                 if (!mmio_base)
613                         dev_warn(&pdev->dev, "Failed to map MMIO register access\n");
614         }
615
616         if (!mmio_base) {
617                 if (IS_ENABLED(CONFIG_ARM64)) {
618                         dev_err(&pdev->dev, "MMIO base is invalid\n");
619                         return -ENXIO;
620                 }
621                 error = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
622                 if (error) {
623                         dev_err(&pdev->dev, "Failed to reserve/map IO regions\n");
624                         return error;
625                 }
626                 iobase = pcim_iomap_table(pdev)[0];
627         }
628
629         vmci_dev = devm_kzalloc(&pdev->dev, sizeof(*vmci_dev), GFP_KERNEL);
630         if (!vmci_dev) {
631                 dev_err(&pdev->dev,
632                         "Can't allocate memory for VMCI device\n");
633                 return -ENOMEM;
634         }
635
636         vmci_dev->dev = &pdev->dev;
637         vmci_dev->exclusive_vectors = false;
638         vmci_dev->iobase = iobase;
639         vmci_dev->mmio_base = mmio_base;
640
641         tasklet_init(&vmci_dev->datagram_tasklet,
642                      vmci_dispatch_dgs, (unsigned long)vmci_dev);
643         tasklet_init(&vmci_dev->bm_tasklet,
644                      vmci_process_bitmap, (unsigned long)vmci_dev);
645         init_waitqueue_head(&vmci_dev->inout_wq);
646
647         if (mmio_base != NULL) {
648                 vmci_dev->tx_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
649                                                          &vmci_dev->tx_buffer_base,
650                                                          GFP_KERNEL);
651                 if (!vmci_dev->tx_buffer) {
652                         dev_err(&pdev->dev,
653                                 "Can't allocate memory for datagram tx buffer\n");
654                         return -ENOMEM;
655                 }
656
657                 vmci_dev->data_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
658                                                            &vmci_dev->data_buffer_base,
659                                                            GFP_KERNEL);
660         } else {
661                 vmci_dev->data_buffer = vmalloc(VMCI_MAX_DG_SIZE);
662         }
663         if (!vmci_dev->data_buffer) {
664                 dev_err(&pdev->dev,
665                         "Can't allocate memory for datagram buffer\n");
666                 error = -ENOMEM;
667                 goto err_free_data_buffers;
668         }
669
670         pci_set_master(pdev);   /* To enable queue_pair functionality. */
671
672         /*
673          * Verify that the VMCI Device supports the capabilities that
674          * we need. If the device is missing capabilities that we would
675          * like to use, check for fallback capabilities and use those
676          * instead (so we can run a new VM on old hosts). Fail the load if
677          * a required capability is missing and there is no fallback.
678          *
679          * Right now, we need datagrams. There are no fallbacks.
680          */
681         capabilities = vmci_read_reg(vmci_dev, VMCI_CAPS_ADDR);
682         if (!(capabilities & VMCI_CAPS_DATAGRAM)) {
683                 dev_err(&pdev->dev, "Device does not support datagrams\n");
684                 error = -ENXIO;
685                 goto err_free_data_buffers;
686         }
687         caps_in_use = VMCI_CAPS_DATAGRAM;
688
689         /*
690          * Use 64-bit PPNs if the device supports.
691          *
692          * There is no check for the return value of dma_set_mask_and_coherent
693          * since this driver can handle the default mask values if
694          * dma_set_mask_and_coherent fails.
695          */
696         if (capabilities & VMCI_CAPS_PPN64) {
697                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
698                 use_ppn64 = true;
699                 caps_in_use |= VMCI_CAPS_PPN64;
700         } else {
701                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
702                 use_ppn64 = false;
703         }
704
705         /*
706          * If the hardware supports notifications, we will use that as
707          * well.
708          */
709         if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
710                 vmci_dev->notification_bitmap = dma_alloc_coherent(
711                         &pdev->dev, PAGE_SIZE, &vmci_dev->notification_base,
712                         GFP_KERNEL);
713                 if (!vmci_dev->notification_bitmap)
714                         dev_warn(&pdev->dev,
715                                  "Unable to allocate notification bitmap\n");
716                 else
717                         caps_in_use |= VMCI_CAPS_NOTIFICATIONS;
718         }
719
720         if (mmio_base != NULL) {
721                 if (capabilities & VMCI_CAPS_DMA_DATAGRAM) {
722                         caps_in_use |= VMCI_CAPS_DMA_DATAGRAM;
723                 } else {
724                         dev_err(&pdev->dev,
725                                 "Missing capability: VMCI_CAPS_DMA_DATAGRAM\n");
726                         error = -ENXIO;
727                         goto err_free_notification_bitmap;
728                 }
729         }
730
731         dev_info(&pdev->dev, "Using capabilities 0x%x\n", caps_in_use);
732
733         /* Let the host know which capabilities we intend to use. */
734         vmci_write_reg(vmci_dev, caps_in_use, VMCI_CAPS_ADDR);
735
736         if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
737                 /* Let the device know the size for pages passed down. */
738                 vmci_write_reg(vmci_dev, PAGE_SHIFT, VMCI_GUEST_PAGE_SHIFT);
739
740                 /* Configure the high order parts of the data in/out buffers. */
741                 vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->data_buffer_base),
742                                VMCI_DATA_IN_HIGH_ADDR);
743                 vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->tx_buffer_base),
744                                VMCI_DATA_OUT_HIGH_ADDR);
745         }
746
747         /* Set up global device so that we can start sending datagrams */
748         spin_lock_irq(&vmci_dev_spinlock);
749         vmci_dev_g = vmci_dev;
750         vmci_pdev = pdev;
751         spin_unlock_irq(&vmci_dev_spinlock);
752
753         /*
754          * Register notification bitmap with device if that capability is
755          * used.
756          */
757         if (caps_in_use & VMCI_CAPS_NOTIFICATIONS) {
758                 unsigned long bitmap_ppn =
759                         vmci_dev->notification_base >> PAGE_SHIFT;
760                 if (!vmci_dbell_register_notification_bitmap(bitmap_ppn)) {
761                         dev_warn(&pdev->dev,
762                                  "VMCI device unable to register notification bitmap with PPN 0x%lx\n",
763                                  bitmap_ppn);
764                         error = -ENXIO;
765                         goto err_remove_vmci_dev_g;
766                 }
767         }
768
769         /* Check host capabilities. */
770         error = vmci_check_host_caps(pdev);
771         if (error)
772                 goto err_remove_vmci_dev_g;
773
774         /* Enable device. */
775
776         /*
777          * We subscribe to the VMCI_EVENT_CTX_ID_UPDATE here so we can
778          * update the internal context id when needed.
779          */
780         vmci_err = vmci_event_subscribe(VMCI_EVENT_CTX_ID_UPDATE,
781                                         vmci_guest_cid_update, NULL,
782                                         &ctx_update_sub_id);
783         if (vmci_err < VMCI_SUCCESS)
784                 dev_warn(&pdev->dev,
785                          "Failed to subscribe to event (type=%d): %d\n",
786                          VMCI_EVENT_CTX_ID_UPDATE, vmci_err);
787
788         /*
789          * Enable interrupts.  Try MSI-X first, then MSI, and then fallback on
790          * legacy interrupts.
791          */
792         if (vmci_dev->mmio_base != NULL)
793                 num_irq_vectors = VMCI_MAX_INTRS;
794         else
795                 num_irq_vectors = VMCI_MAX_INTRS_NOTIFICATION;
796         error = pci_alloc_irq_vectors(pdev, num_irq_vectors, num_irq_vectors,
797                                       PCI_IRQ_MSIX);
798         if (error < 0) {
799                 error = pci_alloc_irq_vectors(pdev, 1, 1,
800                                 PCI_IRQ_MSIX | PCI_IRQ_MSI | PCI_IRQ_LEGACY);
801                 if (error < 0)
802                         goto err_unsubscribe_event;
803         } else {
804                 vmci_dev->exclusive_vectors = true;
805         }
806
807         /*
808          * Request IRQ for legacy or MSI interrupts, or for first
809          * MSI-X vector.
810          */
811         error = request_irq(pci_irq_vector(pdev, 0), vmci_interrupt,
812                             IRQF_SHARED, KBUILD_MODNAME, vmci_dev);
813         if (error) {
814                 dev_err(&pdev->dev, "Irq %u in use: %d\n",
815                         pci_irq_vector(pdev, 0), error);
816                 goto err_disable_msi;
817         }
818
819         /*
820          * For MSI-X with exclusive vectors we need to request an
821          * interrupt for each vector so that we get a separate
822          * interrupt handler routine.  This allows us to distinguish
823          * between the vectors.
824          */
825         if (vmci_dev->exclusive_vectors) {
826                 error = request_irq(pci_irq_vector(pdev, 1),
827                                     vmci_interrupt_bm, 0, KBUILD_MODNAME,
828                                     vmci_dev);
829                 if (error) {
830                         dev_err(&pdev->dev,
831                                 "Failed to allocate irq %u: %d\n",
832                                 pci_irq_vector(pdev, 1), error);
833                         goto err_free_irq;
834                 }
835                 if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
836                         error = request_irq(pci_irq_vector(pdev, 2),
837                                             vmci_interrupt_dma_datagram,
838                                             0, KBUILD_MODNAME, vmci_dev);
839                         if (error) {
840                                 dev_err(&pdev->dev,
841                                         "Failed to allocate irq %u: %d\n",
842                                         pci_irq_vector(pdev, 2), error);
843                                 goto err_free_bm_irq;
844                         }
845                 }
846         }
847
848         dev_dbg(&pdev->dev, "Registered device\n");
849
850         atomic_inc(&vmci_num_guest_devices);
851
852         /* Enable specific interrupt bits. */
853         cmd = VMCI_IMR_DATAGRAM;
854         if (caps_in_use & VMCI_CAPS_NOTIFICATIONS)
855                 cmd |= VMCI_IMR_NOTIFICATION;
856         if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM)
857                 cmd |= VMCI_IMR_DMA_DATAGRAM;
858         vmci_write_reg(vmci_dev, cmd, VMCI_IMR_ADDR);
859
860         /* Enable interrupts. */
861         vmci_write_reg(vmci_dev, VMCI_CONTROL_INT_ENABLE, VMCI_CONTROL_ADDR);
862
863         pci_set_drvdata(pdev, vmci_dev);
864
865         vmci_call_vsock_callback(false);
866         return 0;
867
868 err_free_bm_irq:
869         if (vmci_dev->exclusive_vectors)
870                 free_irq(pci_irq_vector(pdev, 1), vmci_dev);
871
872 err_free_irq:
873         free_irq(pci_irq_vector(pdev, 0), vmci_dev);
874         tasklet_kill(&vmci_dev->datagram_tasklet);
875         tasklet_kill(&vmci_dev->bm_tasklet);
876
877 err_disable_msi:
878         pci_free_irq_vectors(pdev);
879
880 err_unsubscribe_event:
881         vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
882         if (vmci_err < VMCI_SUCCESS)
883                 dev_warn(&pdev->dev,
884                          "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
885                          VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
886
887 err_remove_vmci_dev_g:
888         spin_lock_irq(&vmci_dev_spinlock);
889         vmci_pdev = NULL;
890         vmci_dev_g = NULL;
891         spin_unlock_irq(&vmci_dev_spinlock);
892
893 err_free_notification_bitmap:
894         if (vmci_dev->notification_bitmap) {
895                 vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
896                 dma_free_coherent(&pdev->dev, PAGE_SIZE,
897                                   vmci_dev->notification_bitmap,
898                                   vmci_dev->notification_base);
899         }
900
901 err_free_data_buffers:
902         vmci_free_dg_buffers(vmci_dev);
903
904         /* The rest are managed resources and will be freed by PCI core */
905         return error;
906 }
907
908 static void vmci_guest_remove_device(struct pci_dev *pdev)
909 {
910         struct vmci_guest_device *vmci_dev = pci_get_drvdata(pdev);
911         int vmci_err;
912
913         dev_dbg(&pdev->dev, "Removing device\n");
914
915         atomic_dec(&vmci_num_guest_devices);
916
917         vmci_qp_guest_endpoints_exit();
918
919         vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
920         if (vmci_err < VMCI_SUCCESS)
921                 dev_warn(&pdev->dev,
922                          "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
923                          VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
924
925         spin_lock_irq(&vmci_dev_spinlock);
926         vmci_dev_g = NULL;
927         vmci_pdev = NULL;
928         spin_unlock_irq(&vmci_dev_spinlock);
929
930         dev_dbg(&pdev->dev, "Resetting vmci device\n");
931         vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
932
933         /*
934          * Free IRQ and then disable MSI/MSI-X as appropriate.  For
935          * MSI-X, we might have multiple vectors, each with their own
936          * IRQ, which we must free too.
937          */
938         if (vmci_dev->exclusive_vectors) {
939                 free_irq(pci_irq_vector(pdev, 1), vmci_dev);
940                 if (vmci_dev->mmio_base != NULL)
941                         free_irq(pci_irq_vector(pdev, 2), vmci_dev);
942         }
943         free_irq(pci_irq_vector(pdev, 0), vmci_dev);
944         pci_free_irq_vectors(pdev);
945
946         tasklet_kill(&vmci_dev->datagram_tasklet);
947         tasklet_kill(&vmci_dev->bm_tasklet);
948
949         if (vmci_dev->notification_bitmap) {
950                 /*
951                  * The device reset above cleared the bitmap state of the
952                  * device, so we can safely free it here.
953                  */
954
955                 dma_free_coherent(&pdev->dev, PAGE_SIZE,
956                                   vmci_dev->notification_bitmap,
957                                   vmci_dev->notification_base);
958         }
959
960         vmci_free_dg_buffers(vmci_dev);
961
962         if (vmci_dev->mmio_base != NULL)
963                 pci_iounmap(pdev, vmci_dev->mmio_base);
964
965         /* The rest are managed resources and will be freed by PCI core */
966 }
967
968 static const struct pci_device_id vmci_ids[] = {
969         { PCI_DEVICE(PCI_VENDOR_ID_VMWARE, PCI_DEVICE_ID_VMWARE_VMCI), },
970         { 0 },
971 };
972 MODULE_DEVICE_TABLE(pci, vmci_ids);
973
974 static struct pci_driver vmci_guest_driver = {
975         .name           = KBUILD_MODNAME,
976         .id_table       = vmci_ids,
977         .probe          = vmci_guest_probe_device,
978         .remove         = vmci_guest_remove_device,
979 };
980
981 int __init vmci_guest_init(void)
982 {
983         return pci_register_driver(&vmci_guest_driver);
984 }
985
986 void __exit vmci_guest_exit(void)
987 {
988         pci_unregister_driver(&vmci_guest_driver);
989 }