mt76: mt7663: introduce coredump support
[linux-2.6-microblaze.git] / drivers / misc / habanalabs / common / memory.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14
15 #define HL_MMU_DEBUG    0
16
17 /*
18  * The va ranges in context object contain a list with the available chunks of
19  * device virtual memory.
20  * There is one range for host allocations and one for DRAM allocations.
21  *
22  * On initialization each range contains one chunk of all of its available
23  * virtual range which is a half of the total device virtual range.
24  *
25  * On each mapping of physical pages, a suitable virtual range chunk (with a
26  * minimum size) is selected from the list. If the chunk size equals the
27  * requested size, the chunk is returned. Otherwise, the chunk is split into
28  * two chunks - one to return as result and a remainder to stay in the list.
29  *
30  * On each Unmapping of a virtual address, the relevant virtual chunk is
31  * returned to the list. The chunk is added to the list and if its edges match
32  * the edges of the adjacent chunks (means a contiguous chunk can be created),
33  * the chunks are merged.
34  *
35  * On finish, the list is checked to have only one chunk of all the relevant
36  * virtual range (which is a half of the device total virtual range).
37  * If not (means not all mappings were unmapped), a warning is printed.
38  */
39
40 /*
41  * alloc_device_memory - allocate device memory
42  *
43  * @ctx                 : current context
44  * @args                : host parameters containing the requested size
45  * @ret_handle          : result handle
46  *
47  * This function does the following:
48  * - Allocate the requested size rounded up to 'dram_page_size' pages
49  * - Return unique handle
50  */
51 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
52                                 u32 *ret_handle)
53 {
54         struct hl_device *hdev = ctx->hdev;
55         struct hl_vm *vm = &hdev->vm;
56         struct hl_vm_phys_pg_pack *phys_pg_pack;
57         u64 paddr = 0, total_size, num_pgs, i;
58         u32 num_curr_pgs, page_size, page_shift;
59         int handle, rc;
60         bool contiguous;
61
62         num_curr_pgs = 0;
63         page_size = hdev->asic_prop.dram_page_size;
64         page_shift = __ffs(page_size);
65         num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
66         total_size = num_pgs << page_shift;
67
68         if (!total_size) {
69                 dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
70                 return -EINVAL;
71         }
72
73         contiguous = args->flags & HL_MEM_CONTIGUOUS;
74
75         if (contiguous) {
76                 paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
77                 if (!paddr) {
78                         dev_err(hdev->dev,
79                                 "failed to allocate %llu contiguous pages with total size of %llu\n",
80                                 num_pgs, total_size);
81                         return -ENOMEM;
82                 }
83
84                 if (hdev->memory_scrub) {
85                         rc = hdev->asic_funcs->scrub_device_mem(hdev, paddr,
86                                         total_size);
87                         if (rc) {
88                                 dev_err(hdev->dev,
89                                         "Failed to scrub contiguous device memory\n");
90                                 goto pages_pack_err;
91                         }
92                 }
93         }
94
95         phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
96         if (!phys_pg_pack) {
97                 rc = -ENOMEM;
98                 goto pages_pack_err;
99         }
100
101         phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
102         phys_pg_pack->asid = ctx->asid;
103         phys_pg_pack->npages = num_pgs;
104         phys_pg_pack->page_size = page_size;
105         phys_pg_pack->total_size = total_size;
106         phys_pg_pack->flags = args->flags;
107         phys_pg_pack->contiguous = contiguous;
108
109         phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
110         if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
111                 rc = -ENOMEM;
112                 goto pages_arr_err;
113         }
114
115         if (phys_pg_pack->contiguous) {
116                 for (i = 0 ; i < num_pgs ; i++)
117                         phys_pg_pack->pages[i] = paddr + i * page_size;
118         } else {
119                 for (i = 0 ; i < num_pgs ; i++) {
120                         phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
121                                                         vm->dram_pg_pool,
122                                                         page_size);
123                         if (!phys_pg_pack->pages[i]) {
124                                 dev_err(hdev->dev,
125                                         "Failed to allocate device memory (out of memory)\n");
126                                 rc = -ENOMEM;
127                                 goto page_err;
128                         }
129
130                         if (hdev->memory_scrub) {
131                                 rc = hdev->asic_funcs->scrub_device_mem(hdev,
132                                                 phys_pg_pack->pages[i],
133                                                 page_size);
134                                 if (rc) {
135                                         dev_err(hdev->dev,
136                                                 "Failed to scrub device memory\n");
137                                         goto page_err;
138                                 }
139                         }
140
141                         num_curr_pgs++;
142                 }
143         }
144
145         spin_lock(&vm->idr_lock);
146         handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
147                                 GFP_ATOMIC);
148         spin_unlock(&vm->idr_lock);
149
150         if (handle < 0) {
151                 dev_err(hdev->dev, "Failed to get handle for page\n");
152                 rc = -EFAULT;
153                 goto idr_err;
154         }
155
156         for (i = 0 ; i < num_pgs ; i++)
157                 kref_get(&vm->dram_pg_pool_refcount);
158
159         phys_pg_pack->handle = handle;
160
161         atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
162         atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
163
164         *ret_handle = handle;
165
166         return 0;
167
168 idr_err:
169 page_err:
170         if (!phys_pg_pack->contiguous)
171                 for (i = 0 ; i < num_curr_pgs ; i++)
172                         gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
173                                         page_size);
174
175         kvfree(phys_pg_pack->pages);
176 pages_arr_err:
177         kfree(phys_pg_pack);
178 pages_pack_err:
179         if (contiguous)
180                 gen_pool_free(vm->dram_pg_pool, paddr, total_size);
181
182         return rc;
183 }
184
185 /*
186  * dma_map_host_va - DMA mapping of the given host virtual address.
187  * @hdev: habanalabs device structure
188  * @addr: the host virtual address of the memory area
189  * @size: the size of the memory area
190  * @p_userptr: pointer to result userptr structure
191  *
192  * This function does the following:
193  * - Allocate userptr structure
194  * - Pin the given host memory using the userptr structure
195  * - Perform DMA mapping to have the DMA addresses of the pages
196  */
197 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
198                                 struct hl_userptr **p_userptr)
199 {
200         struct hl_userptr *userptr;
201         int rc;
202
203         userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
204         if (!userptr) {
205                 rc = -ENOMEM;
206                 goto userptr_err;
207         }
208
209         rc = hl_pin_host_memory(hdev, addr, size, userptr);
210         if (rc) {
211                 dev_err(hdev->dev, "Failed to pin host memory\n");
212                 goto pin_err;
213         }
214
215         rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
216                                         userptr->sgt->nents, DMA_BIDIRECTIONAL);
217         if (rc) {
218                 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
219                 goto dma_map_err;
220         }
221
222         userptr->dma_mapped = true;
223         userptr->dir = DMA_BIDIRECTIONAL;
224         userptr->vm_type = VM_TYPE_USERPTR;
225
226         *p_userptr = userptr;
227
228         return 0;
229
230 dma_map_err:
231         hl_unpin_host_memory(hdev, userptr);
232 pin_err:
233         kfree(userptr);
234 userptr_err:
235
236         return rc;
237 }
238
239 /*
240  * dma_unmap_host_va - DMA unmapping of the given host virtual address.
241  * @hdev: habanalabs device structure
242  * @userptr: userptr to free
243  *
244  * This function does the following:
245  * - Unpins the physical pages
246  * - Frees the userptr structure
247  */
248 static void dma_unmap_host_va(struct hl_device *hdev,
249                                 struct hl_userptr *userptr)
250 {
251         hl_unpin_host_memory(hdev, userptr);
252         kfree(userptr);
253 }
254
255 /*
256  * dram_pg_pool_do_release - free DRAM pages pool
257  *
258  * @ref                 : pointer to reference object
259  *
260  * This function does the following:
261  * - Frees the idr structure of physical pages handles
262  * - Frees the generic pool of DRAM physical pages
263  */
264 static void dram_pg_pool_do_release(struct kref *ref)
265 {
266         struct hl_vm *vm = container_of(ref, struct hl_vm,
267                         dram_pg_pool_refcount);
268
269         /*
270          * free the idr here as only here we know for sure that there are no
271          * allocated physical pages and hence there are no handles in use
272          */
273         idr_destroy(&vm->phys_pg_pack_handles);
274         gen_pool_destroy(vm->dram_pg_pool);
275 }
276
277 /*
278  * free_phys_pg_pack - free physical page pack
279  * @hdev: habanalabs device structure
280  * @phys_pg_pack: physical page pack to free
281  *
282  * This function does the following:
283  * - For DRAM memory only, iterate over the pack and free each physical block
284  *   structure by returning it to the general pool
285  * - Free the hl_vm_phys_pg_pack structure
286  */
287 static void free_phys_pg_pack(struct hl_device *hdev,
288                                 struct hl_vm_phys_pg_pack *phys_pg_pack)
289 {
290         struct hl_vm *vm = &hdev->vm;
291         u64 i;
292
293         if (!phys_pg_pack->created_from_userptr) {
294                 if (phys_pg_pack->contiguous) {
295                         gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
296                                         phys_pg_pack->total_size);
297
298                         for (i = 0; i < phys_pg_pack->npages ; i++)
299                                 kref_put(&vm->dram_pg_pool_refcount,
300                                         dram_pg_pool_do_release);
301                 } else {
302                         for (i = 0 ; i < phys_pg_pack->npages ; i++) {
303                                 gen_pool_free(vm->dram_pg_pool,
304                                                 phys_pg_pack->pages[i],
305                                                 phys_pg_pack->page_size);
306                                 kref_put(&vm->dram_pg_pool_refcount,
307                                         dram_pg_pool_do_release);
308                         }
309                 }
310         }
311
312         kvfree(phys_pg_pack->pages);
313         kfree(phys_pg_pack);
314 }
315
316 /*
317  * free_device_memory - free device memory
318  *
319  * @ctx                  : current context
320  * @handle              : handle of the memory chunk to free
321  *
322  * This function does the following:
323  * - Free the device memory related to the given handle
324  */
325 static int free_device_memory(struct hl_ctx *ctx, u32 handle)
326 {
327         struct hl_device *hdev = ctx->hdev;
328         struct hl_vm *vm = &hdev->vm;
329         struct hl_vm_phys_pg_pack *phys_pg_pack;
330
331         spin_lock(&vm->idr_lock);
332         phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
333         if (phys_pg_pack) {
334                 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
335                         dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
336                                 handle);
337                         spin_unlock(&vm->idr_lock);
338                         return -EINVAL;
339                 }
340
341                 /*
342                  * must remove from idr before the freeing of the physical
343                  * pages as the refcount of the pool is also the trigger of the
344                  * idr destroy
345                  */
346                 idr_remove(&vm->phys_pg_pack_handles, handle);
347                 spin_unlock(&vm->idr_lock);
348
349                 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
350                 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
351
352                 free_phys_pg_pack(hdev, phys_pg_pack);
353         } else {
354                 spin_unlock(&vm->idr_lock);
355                 dev_err(hdev->dev,
356                         "free device memory failed, no match for handle %u\n",
357                         handle);
358                 return -EINVAL;
359         }
360
361         return 0;
362 }
363
364 /*
365  * clear_va_list_locked - free virtual addresses list
366  *
367  * @hdev                : habanalabs device structure
368  * @va_list             : list of virtual addresses to free
369  *
370  * This function does the following:
371  * - Iterate over the list and free each virtual addresses block
372  *
373  * This function should be called only when va_list lock is taken
374  */
375 static void clear_va_list_locked(struct hl_device *hdev,
376                 struct list_head *va_list)
377 {
378         struct hl_vm_va_block *va_block, *tmp;
379
380         list_for_each_entry_safe(va_block, tmp, va_list, node) {
381                 list_del(&va_block->node);
382                 kfree(va_block);
383         }
384 }
385
386 /*
387  * print_va_list_locked    - print virtual addresses list
388  *
389  * @hdev                : habanalabs device structure
390  * @va_list             : list of virtual addresses to print
391  *
392  * This function does the following:
393  * - Iterate over the list and print each virtual addresses block
394  *
395  * This function should be called only when va_list lock is taken
396  */
397 static void print_va_list_locked(struct hl_device *hdev,
398                 struct list_head *va_list)
399 {
400 #if HL_MMU_DEBUG
401         struct hl_vm_va_block *va_block;
402
403         dev_dbg(hdev->dev, "print va list:\n");
404
405         list_for_each_entry(va_block, va_list, node)
406                 dev_dbg(hdev->dev,
407                         "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
408                         va_block->start, va_block->end, va_block->size);
409 #endif
410 }
411
412 /*
413  * merge_va_blocks_locked - merge a virtual block if possible
414  *
415  * @hdev                : pointer to the habanalabs device structure
416  * @va_list             : pointer to the virtual addresses block list
417  * @va_block            : virtual block to merge with adjacent blocks
418  *
419  * This function does the following:
420  * - Merge the given blocks with the adjacent blocks if their virtual ranges
421  *   create a contiguous virtual range
422  *
423  * This Function should be called only when va_list lock is taken
424  */
425 static void merge_va_blocks_locked(struct hl_device *hdev,
426                 struct list_head *va_list, struct hl_vm_va_block *va_block)
427 {
428         struct hl_vm_va_block *prev, *next;
429
430         prev = list_prev_entry(va_block, node);
431         if (&prev->node != va_list && prev->end + 1 == va_block->start) {
432                 prev->end = va_block->end;
433                 prev->size = prev->end - prev->start;
434                 list_del(&va_block->node);
435                 kfree(va_block);
436                 va_block = prev;
437         }
438
439         next = list_next_entry(va_block, node);
440         if (&next->node != va_list && va_block->end + 1 == next->start) {
441                 next->start = va_block->start;
442                 next->size = next->end - next->start;
443                 list_del(&va_block->node);
444                 kfree(va_block);
445         }
446 }
447
448 /*
449  * add_va_block_locked - add a virtual block to the virtual addresses list
450  *
451  * @hdev                : pointer to the habanalabs device structure
452  * @va_list             : pointer to the virtual addresses block list
453  * @start               : start virtual address
454  * @end                 : end virtual address
455  *
456  * This function does the following:
457  * - Add the given block to the virtual blocks list and merge with other
458  * blocks if a contiguous virtual block can be created
459  *
460  * This Function should be called only when va_list lock is taken
461  */
462 static int add_va_block_locked(struct hl_device *hdev,
463                 struct list_head *va_list, u64 start, u64 end)
464 {
465         struct hl_vm_va_block *va_block, *res = NULL;
466         u64 size = end - start;
467
468         print_va_list_locked(hdev, va_list);
469
470         list_for_each_entry(va_block, va_list, node) {
471                 /* TODO: remove upon matureness */
472                 if (hl_mem_area_crosses_range(start, size, va_block->start,
473                                 va_block->end)) {
474                         dev_err(hdev->dev,
475                                 "block crossing ranges at start 0x%llx, end 0x%llx\n",
476                                 va_block->start, va_block->end);
477                         return -EINVAL;
478                 }
479
480                 if (va_block->end < start)
481                         res = va_block;
482         }
483
484         va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
485         if (!va_block)
486                 return -ENOMEM;
487
488         va_block->start = start;
489         va_block->end = end;
490         va_block->size = size;
491
492         if (!res)
493                 list_add(&va_block->node, va_list);
494         else
495                 list_add(&va_block->node, &res->node);
496
497         merge_va_blocks_locked(hdev, va_list, va_block);
498
499         print_va_list_locked(hdev, va_list);
500
501         return 0;
502 }
503
504 /*
505  * add_va_block - wrapper for add_va_block_locked
506  *
507  * @hdev                : pointer to the habanalabs device structure
508  * @va_list             : pointer to the virtual addresses block list
509  * @start               : start virtual address
510  * @end                 : end virtual address
511  *
512  * This function does the following:
513  * - Takes the list lock and calls add_va_block_locked
514  */
515 static inline int add_va_block(struct hl_device *hdev,
516                 struct hl_va_range *va_range, u64 start, u64 end)
517 {
518         int rc;
519
520         mutex_lock(&va_range->lock);
521         rc = add_va_block_locked(hdev, &va_range->list, start, end);
522         mutex_unlock(&va_range->lock);
523
524         return rc;
525 }
526
527 /*
528  * get_va_block() - get a virtual block for the given size and alignment.
529  * @hdev: pointer to the habanalabs device structure.
530  * @va_range: pointer to the virtual addresses range.
531  * @size: requested block size.
532  * @hint_addr: hint for requested address by the user.
533  * @va_block_align: required alignment of the virtual block start address.
534  *
535  * This function does the following:
536  * - Iterate on the virtual block list to find a suitable virtual block for the
537  *   given size and alignment.
538  * - Reserve the requested block and update the list.
539  * - Return the start address of the virtual block.
540  */
541 static u64 get_va_block(struct hl_device *hdev, struct hl_va_range *va_range,
542                         u64 size, u64 hint_addr, u32 va_block_align)
543 {
544         struct hl_vm_va_block *va_block, *new_va_block = NULL;
545         u64 valid_start, valid_size, prev_start, prev_end, align_mask,
546                 res_valid_start = 0, res_valid_size = 0;
547         bool add_prev = false;
548
549         align_mask = ~((u64)va_block_align - 1);
550
551         /* check if hint_addr is aligned */
552         if (hint_addr & (va_block_align - 1))
553                 hint_addr = 0;
554
555         mutex_lock(&va_range->lock);
556
557         print_va_list_locked(hdev, &va_range->list);
558
559         list_for_each_entry(va_block, &va_range->list, node) {
560                 /* calc the first possible aligned addr */
561                 valid_start = va_block->start;
562
563                 if (valid_start & (va_block_align - 1)) {
564                         valid_start &= align_mask;
565                         valid_start += va_block_align;
566                         if (valid_start > va_block->end)
567                                 continue;
568                 }
569
570                 valid_size = va_block->end - valid_start;
571
572                 if (valid_size >= size &&
573                         (!new_va_block || valid_size < res_valid_size)) {
574                         new_va_block = va_block;
575                         res_valid_start = valid_start;
576                         res_valid_size = valid_size;
577                 }
578
579                 if (hint_addr && hint_addr >= valid_start &&
580                                 ((hint_addr + size) <= va_block->end)) {
581                         new_va_block = va_block;
582                         res_valid_start = hint_addr;
583                         res_valid_size = valid_size;
584                         break;
585                 }
586         }
587
588         if (!new_va_block) {
589                 dev_err(hdev->dev, "no available va block for size %llu\n",
590                                 size);
591                 goto out;
592         }
593
594         if (res_valid_start > new_va_block->start) {
595                 prev_start = new_va_block->start;
596                 prev_end = res_valid_start - 1;
597
598                 new_va_block->start = res_valid_start;
599                 new_va_block->size = res_valid_size;
600
601                 add_prev = true;
602         }
603
604         if (new_va_block->size > size) {
605                 new_va_block->start += size;
606                 new_va_block->size = new_va_block->end - new_va_block->start;
607         } else {
608                 list_del(&new_va_block->node);
609                 kfree(new_va_block);
610         }
611
612         if (add_prev)
613                 add_va_block_locked(hdev, &va_range->list, prev_start,
614                                 prev_end);
615
616         print_va_list_locked(hdev, &va_range->list);
617 out:
618         mutex_unlock(&va_range->lock);
619
620         return res_valid_start;
621 }
622
623 /*
624  * hl_reserve_va_block() - reserve a virtual block of a given size.
625  * @hdev: pointer to the habanalabs device structure.
626  * @ctx: current context
627  * @type: virtual addresses range type.
628  * @size: requested block size.
629  * @alignment: required alignment in bytes of the virtual block start address,
630  *             0 means no alignment.
631  *
632  * This function does the following:
633  * - Iterate on the virtual block list to find a suitable virtual block for the
634  *   given size and alignment.
635  * - Reserve the requested block and update the list.
636  * - Return the start address of the virtual block.
637  */
638 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
639                 enum hl_va_range_type type, u32 size, u32 alignment)
640 {
641         return get_va_block(hdev, ctx->va_range[type], size, 0,
642                         max(alignment, ctx->va_range[type]->page_size));
643 }
644
645 /**
646  * hl_get_va_range_type() - get va_range type for the given address and size.
647  * @address: The start address of the area we want to validate.
648  * @size: The size in bytes of the area we want to validate.
649  * @type: returned va_range type
650  *
651  * Return: true if the area is inside a valid range, false otherwise.
652  */
653 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
654                         enum hl_va_range_type *type)
655 {
656         int i;
657
658         for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
659                 if (hl_mem_area_inside_range(address, size,
660                                 ctx->va_range[i]->start_addr,
661                                 ctx->va_range[i]->end_addr)) {
662                         *type = i;
663                         return 0;
664                 }
665         }
666
667         return -EINVAL;
668 }
669
670 /*
671  * hl_unreserve_va_block - wrapper for add_va_block for unreserving a va block
672  *
673  * @hdev: pointer to the habanalabs device structure
674  * @ctx: current context
675  * @start: start virtual address
676  * @end: end virtual address
677  *
678  * This function does the following:
679  * - Takes the list lock and calls add_va_block_locked
680  */
681 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
682                 u64 start_addr, u64 size)
683 {
684         enum hl_va_range_type type;
685         int rc;
686
687         rc = hl_get_va_range_type(ctx, start_addr, size, &type);
688         if (rc) {
689                 dev_err(hdev->dev,
690                         "cannot find va_range for va %#llx size %llu",
691                         start_addr, size);
692                 return rc;
693         }
694
695         rc = add_va_block(hdev, ctx->va_range[type], start_addr,
696                                                 start_addr + size - 1);
697         if (rc)
698                 dev_warn(hdev->dev,
699                         "add va block failed for vaddr: 0x%llx\n", start_addr);
700
701         return rc;
702 }
703
704 /*
705  * get_sg_info - get number of pages and the DMA address from SG list
706  *
707  * @sg                 : the SG list
708  * @dma_addr           : pointer to DMA address to return
709  *
710  * Calculate the number of consecutive pages described by the SG list. Take the
711  * offset of the address in the first page, add to it the length and round it up
712  * to the number of needed pages.
713  */
714 static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
715 {
716         *dma_addr = sg_dma_address(sg);
717
718         return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
719                         (PAGE_SIZE - 1)) >> PAGE_SHIFT;
720 }
721
722 /*
723  * init_phys_pg_pack_from_userptr - initialize physical page pack from host
724  *                                  memory
725  * @ctx: current context
726  * @userptr: userptr to initialize from
727  * @pphys_pg_pack: result pointer
728  *
729  * This function does the following:
730  * - Pin the physical pages related to the given virtual block
731  * - Create a physical page pack from the physical pages related to the given
732  *   virtual block
733  */
734 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
735                                 struct hl_userptr *userptr,
736                                 struct hl_vm_phys_pg_pack **pphys_pg_pack)
737 {
738         struct hl_vm_phys_pg_pack *phys_pg_pack;
739         struct scatterlist *sg;
740         dma_addr_t dma_addr;
741         u64 page_mask, total_npages;
742         u32 npages, page_size = PAGE_SIZE,
743                 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
744         bool first = true, is_huge_page_opt = true;
745         int rc, i, j;
746         u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
747
748         phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
749         if (!phys_pg_pack)
750                 return -ENOMEM;
751
752         phys_pg_pack->vm_type = userptr->vm_type;
753         phys_pg_pack->created_from_userptr = true;
754         phys_pg_pack->asid = ctx->asid;
755         atomic_set(&phys_pg_pack->mapping_cnt, 1);
756
757         /* Only if all dma_addrs are aligned to 2MB and their
758          * sizes is at least 2MB, we can use huge page mapping.
759          * We limit the 2MB optimization to this condition,
760          * since later on we acquire the related VA range as one
761          * consecutive block.
762          */
763         total_npages = 0;
764         for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
765                 npages = get_sg_info(sg, &dma_addr);
766
767                 total_npages += npages;
768
769                 if ((npages % pgs_in_huge_page) ||
770                                         (dma_addr & (huge_page_size - 1)))
771                         is_huge_page_opt = false;
772         }
773
774         if (is_huge_page_opt) {
775                 page_size = huge_page_size;
776                 do_div(total_npages, pgs_in_huge_page);
777         }
778
779         page_mask = ~(((u64) page_size) - 1);
780
781         phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
782                                                 GFP_KERNEL);
783         if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
784                 rc = -ENOMEM;
785                 goto page_pack_arr_mem_err;
786         }
787
788         phys_pg_pack->npages = total_npages;
789         phys_pg_pack->page_size = page_size;
790         phys_pg_pack->total_size = total_npages * page_size;
791
792         j = 0;
793         for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
794                 npages = get_sg_info(sg, &dma_addr);
795
796                 /* align down to physical page size and save the offset */
797                 if (first) {
798                         first = false;
799                         phys_pg_pack->offset = dma_addr & (page_size - 1);
800                         dma_addr &= page_mask;
801                 }
802
803                 while (npages) {
804                         phys_pg_pack->pages[j++] = dma_addr;
805                         dma_addr += page_size;
806
807                         if (is_huge_page_opt)
808                                 npages -= pgs_in_huge_page;
809                         else
810                                 npages--;
811                 }
812         }
813
814         *pphys_pg_pack = phys_pg_pack;
815
816         return 0;
817
818 page_pack_arr_mem_err:
819         kfree(phys_pg_pack);
820
821         return rc;
822 }
823
824 /*
825  * map_phys_pg_pack - maps the physical page pack.
826  * @ctx: current context
827  * @vaddr: start address of the virtual area to map from
828  * @phys_pg_pack: the pack of physical pages to map to
829  *
830  * This function does the following:
831  * - Maps each chunk of virtual memory to matching physical chunk
832  * - Stores number of successful mappings in the given argument
833  * - Returns 0 on success, error code otherwise
834  */
835 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
836                                 struct hl_vm_phys_pg_pack *phys_pg_pack)
837 {
838         struct hl_device *hdev = ctx->hdev;
839         u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
840         u32 page_size = phys_pg_pack->page_size;
841         int rc = 0;
842
843         for (i = 0 ; i < phys_pg_pack->npages ; i++) {
844                 paddr = phys_pg_pack->pages[i];
845
846                 rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
847                                 (i + 1) == phys_pg_pack->npages);
848                 if (rc) {
849                         dev_err(hdev->dev,
850                                 "map failed for handle %u, npages: %llu, mapped: %llu",
851                                 phys_pg_pack->handle, phys_pg_pack->npages,
852                                 mapped_pg_cnt);
853                         goto err;
854                 }
855
856                 mapped_pg_cnt++;
857                 next_vaddr += page_size;
858         }
859
860         return 0;
861
862 err:
863         next_vaddr = vaddr;
864         for (i = 0 ; i < mapped_pg_cnt ; i++) {
865                 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
866                                         (i + 1) == mapped_pg_cnt))
867                         dev_warn_ratelimited(hdev->dev,
868                                 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
869                                         phys_pg_pack->handle, next_vaddr,
870                                         phys_pg_pack->pages[i], page_size);
871
872                 next_vaddr += page_size;
873         }
874
875         return rc;
876 }
877
878 /*
879  * unmap_phys_pg_pack - unmaps the physical page pack
880  * @ctx: current context
881  * @vaddr: start address of the virtual area to unmap
882  * @phys_pg_pack: the pack of physical pages to unmap
883  */
884 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
885                                 struct hl_vm_phys_pg_pack *phys_pg_pack)
886 {
887         struct hl_device *hdev = ctx->hdev;
888         u64 next_vaddr, i;
889         u32 page_size;
890
891         page_size = phys_pg_pack->page_size;
892         next_vaddr = vaddr;
893
894         for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
895                 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
896                                        (i + 1) == phys_pg_pack->npages))
897                         dev_warn_ratelimited(hdev->dev,
898                         "unmap failed for vaddr: 0x%llx\n", next_vaddr);
899
900                 /*
901                  * unmapping on Palladium can be really long, so avoid a CPU
902                  * soft lockup bug by sleeping a little between unmapping pages
903                  */
904                 if (hdev->pldm)
905                         usleep_range(500, 1000);
906         }
907 }
908
909 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
910                                 u64 *paddr)
911 {
912         struct hl_device *hdev = ctx->hdev;
913         struct hl_vm *vm = &hdev->vm;
914         struct hl_vm_phys_pg_pack *phys_pg_pack;
915         u32 handle;
916
917         handle = lower_32_bits(args->map_device.handle);
918         spin_lock(&vm->idr_lock);
919         phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
920         if (!phys_pg_pack) {
921                 spin_unlock(&vm->idr_lock);
922                 dev_err(hdev->dev, "no match for handle %u\n", handle);
923                 return -EINVAL;
924         }
925
926         *paddr = phys_pg_pack->pages[0];
927
928         spin_unlock(&vm->idr_lock);
929
930         return 0;
931 }
932
933 /*
934  * map_device_va - map the given memory
935  *
936  * @ctx          : current context
937  * @args         : host parameters with handle/host virtual address
938  * @device_addr  : pointer to result device virtual address
939  *
940  * This function does the following:
941  * - If given a physical device memory handle, map to a device virtual block
942  *   and return the start address of this block
943  * - If given a host virtual address and size, find the related physical pages,
944  *   map a device virtual block to this pages and return the start address of
945  *   this block
946  */
947 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
948                 u64 *device_addr)
949 {
950         struct hl_device *hdev = ctx->hdev;
951         struct hl_vm *vm = &hdev->vm;
952         struct hl_vm_phys_pg_pack *phys_pg_pack;
953         struct hl_userptr *userptr = NULL;
954         struct hl_vm_hash_node *hnode;
955         struct hl_va_range *va_range;
956         enum vm_type_t *vm_type;
957         u64 ret_vaddr, hint_addr;
958         u32 handle = 0, va_block_align;
959         int rc;
960         bool is_userptr = args->flags & HL_MEM_USERPTR;
961
962         /* Assume failure */
963         *device_addr = 0;
964
965         if (is_userptr) {
966                 u64 addr = args->map_host.host_virt_addr,
967                         size = args->map_host.mem_size;
968                 u32 page_size = hdev->asic_prop.pmmu.page_size,
969                         huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
970
971                 rc = dma_map_host_va(hdev, addr, size, &userptr);
972                 if (rc) {
973                         dev_err(hdev->dev, "failed to get userptr from va\n");
974                         return rc;
975                 }
976
977                 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
978                                 &phys_pg_pack);
979                 if (rc) {
980                         dev_err(hdev->dev,
981                                 "unable to init page pack for vaddr 0x%llx\n",
982                                 addr);
983                         goto init_page_pack_err;
984                 }
985
986                 vm_type = (enum vm_type_t *) userptr;
987                 hint_addr = args->map_host.hint_addr;
988                 handle = phys_pg_pack->handle;
989
990                 /* get required alignment */
991                 if (phys_pg_pack->page_size == page_size) {
992                         va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
993
994                         /*
995                          * huge page alignment may be needed in case of regular
996                          * page mapping, depending on the host VA alignment
997                          */
998                         if (addr & (huge_page_size - 1))
999                                 va_block_align = page_size;
1000                         else
1001                                 va_block_align = huge_page_size;
1002                 } else {
1003                         /*
1004                          * huge page alignment is needed in case of huge page
1005                          * mapping
1006                          */
1007                         va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1008                         va_block_align = huge_page_size;
1009                 }
1010         } else {
1011                 handle = lower_32_bits(args->map_device.handle);
1012
1013                 spin_lock(&vm->idr_lock);
1014                 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1015                 if (!phys_pg_pack) {
1016                         spin_unlock(&vm->idr_lock);
1017                         dev_err(hdev->dev,
1018                                 "no match for handle %u\n", handle);
1019                         return -EINVAL;
1020                 }
1021
1022                 /* increment now to avoid freeing device memory while mapping */
1023                 atomic_inc(&phys_pg_pack->mapping_cnt);
1024
1025                 spin_unlock(&vm->idr_lock);
1026
1027                 vm_type = (enum vm_type_t *) phys_pg_pack;
1028
1029                 hint_addr = args->map_device.hint_addr;
1030
1031                 /* DRAM VA alignment is the same as the DRAM page size */
1032                 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1033                 va_block_align = hdev->asic_prop.dmmu.page_size;
1034         }
1035
1036         /*
1037          * relevant for mapping device physical memory only, as host memory is
1038          * implicitly shared
1039          */
1040         if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1041                         phys_pg_pack->asid != ctx->asid) {
1042                 dev_err(hdev->dev,
1043                         "Failed to map memory, handle %u is not shared\n",
1044                         handle);
1045                 rc = -EPERM;
1046                 goto shared_err;
1047         }
1048
1049         hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1050         if (!hnode) {
1051                 rc = -ENOMEM;
1052                 goto hnode_err;
1053         }
1054
1055         ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1056                                         hint_addr, va_block_align);
1057         if (!ret_vaddr) {
1058                 dev_err(hdev->dev, "no available va block for handle %u\n",
1059                                 handle);
1060                 rc = -ENOMEM;
1061                 goto va_block_err;
1062         }
1063
1064         mutex_lock(&ctx->mmu_lock);
1065
1066         rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1067         if (rc) {
1068                 mutex_unlock(&ctx->mmu_lock);
1069                 dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
1070                                 handle);
1071                 goto map_err;
1072         }
1073
1074         rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, false, *vm_type);
1075
1076         mutex_unlock(&ctx->mmu_lock);
1077
1078         if (rc) {
1079                 dev_err(hdev->dev,
1080                         "mapping handle %u failed due to MMU cache invalidation\n",
1081                         handle);
1082                 goto map_err;
1083         }
1084
1085         ret_vaddr += phys_pg_pack->offset;
1086
1087         hnode->ptr = vm_type;
1088         hnode->vaddr = ret_vaddr;
1089
1090         mutex_lock(&ctx->mem_hash_lock);
1091         hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1092         mutex_unlock(&ctx->mem_hash_lock);
1093
1094         *device_addr = ret_vaddr;
1095
1096         if (is_userptr)
1097                 free_phys_pg_pack(hdev, phys_pg_pack);
1098
1099         return 0;
1100
1101 map_err:
1102         if (add_va_block(hdev, va_range, ret_vaddr,
1103                                 ret_vaddr + phys_pg_pack->total_size - 1))
1104                 dev_warn(hdev->dev,
1105                         "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1106                                 handle, ret_vaddr);
1107
1108 va_block_err:
1109         kfree(hnode);
1110 hnode_err:
1111 shared_err:
1112         atomic_dec(&phys_pg_pack->mapping_cnt);
1113         if (is_userptr)
1114                 free_phys_pg_pack(hdev, phys_pg_pack);
1115 init_page_pack_err:
1116         if (is_userptr)
1117                 dma_unmap_host_va(hdev, userptr);
1118
1119         return rc;
1120 }
1121
1122 /*
1123  * unmap_device_va      - unmap the given device virtual address
1124  *
1125  * @ctx                 : current context
1126  * @vaddr               : device virtual address to unmap
1127  * @ctx_free            : true if in context free flow, false otherwise.
1128  *
1129  * This function does the following:
1130  * - Unmap the physical pages related to the given virtual address
1131  * - return the device virtual block to the virtual block list
1132  */
1133 static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free)
1134 {
1135         struct hl_device *hdev = ctx->hdev;
1136         struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1137         struct hl_vm_hash_node *hnode = NULL;
1138         struct hl_userptr *userptr = NULL;
1139         struct hl_va_range *va_range;
1140         enum vm_type_t *vm_type;
1141         bool is_userptr;
1142         int rc = 0;
1143
1144         /* protect from double entrance */
1145         mutex_lock(&ctx->mem_hash_lock);
1146         hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1147                 if (vaddr == hnode->vaddr)
1148                         break;
1149
1150         if (!hnode) {
1151                 mutex_unlock(&ctx->mem_hash_lock);
1152                 dev_err(hdev->dev,
1153                         "unmap failed, no mem hnode for vaddr 0x%llx\n",
1154                         vaddr);
1155                 return -EINVAL;
1156         }
1157
1158         hash_del(&hnode->node);
1159         mutex_unlock(&ctx->mem_hash_lock);
1160
1161         vm_type = hnode->ptr;
1162
1163         if (*vm_type == VM_TYPE_USERPTR) {
1164                 is_userptr = true;
1165                 userptr = hnode->ptr;
1166                 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1167                                                         &phys_pg_pack);
1168                 if (rc) {
1169                         dev_err(hdev->dev,
1170                                 "unable to init page pack for vaddr 0x%llx\n",
1171                                 vaddr);
1172                         goto vm_type_err;
1173                 }
1174
1175                 if (phys_pg_pack->page_size ==
1176                                         hdev->asic_prop.pmmu.page_size)
1177                         va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1178                 else
1179                         va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1180         } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1181                 is_userptr = false;
1182                 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1183                 phys_pg_pack = hnode->ptr;
1184         } else {
1185                 dev_warn(hdev->dev,
1186                         "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1187                                 vaddr);
1188                 rc = -EFAULT;
1189                 goto vm_type_err;
1190         }
1191
1192         if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1193                 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1194                 rc = -EINVAL;
1195                 goto mapping_cnt_err;
1196         }
1197
1198         vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1199
1200         mutex_lock(&ctx->mmu_lock);
1201
1202         unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1203
1204         /*
1205          * During context free this function is called in a loop to clean all
1206          * the context mappings. Hence the cache invalidation can be called once
1207          * at the loop end rather than for each iteration
1208          */
1209         if (!ctx_free)
1210                 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, true,
1211                                                                 *vm_type);
1212
1213         mutex_unlock(&ctx->mmu_lock);
1214
1215         /*
1216          * If the context is closing we don't need to check for the MMU cache
1217          * invalidation return code and update the VA free list as in this flow
1218          * we invalidate the MMU cache outside of this unmap function and the VA
1219          * free list will be freed anyway.
1220          */
1221         if (!ctx_free) {
1222                 int tmp_rc;
1223
1224                 if (rc)
1225                         dev_err(hdev->dev,
1226                                 "unmapping vaddr 0x%llx failed due to MMU cache invalidation\n",
1227                                 vaddr);
1228
1229                 tmp_rc = add_va_block(hdev, va_range, vaddr,
1230                                         vaddr + phys_pg_pack->total_size - 1);
1231                 if (tmp_rc) {
1232                         dev_warn(hdev->dev,
1233                                         "add va block failed for vaddr: 0x%llx\n",
1234                                         vaddr);
1235                         if (!rc)
1236                                 rc = tmp_rc;
1237                 }
1238         }
1239
1240         atomic_dec(&phys_pg_pack->mapping_cnt);
1241         kfree(hnode);
1242
1243         if (is_userptr) {
1244                 free_phys_pg_pack(hdev, phys_pg_pack);
1245                 dma_unmap_host_va(hdev, userptr);
1246         }
1247
1248         return rc;
1249
1250 mapping_cnt_err:
1251         if (is_userptr)
1252                 free_phys_pg_pack(hdev, phys_pg_pack);
1253 vm_type_err:
1254         mutex_lock(&ctx->mem_hash_lock);
1255         hash_add(ctx->mem_hash, &hnode->node, vaddr);
1256         mutex_unlock(&ctx->mem_hash_lock);
1257
1258         return rc;
1259 }
1260
1261 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
1262 {
1263         struct hl_device *hdev = hpriv->hdev;
1264         struct hl_ctx *ctx = hpriv->ctx;
1265         u64 device_addr = 0;
1266         u32 handle = 0;
1267         int rc;
1268
1269         switch (args->in.op) {
1270         case HL_MEM_OP_ALLOC:
1271                 if (args->in.alloc.mem_size == 0) {
1272                         dev_err(hdev->dev,
1273                                 "alloc size must be larger than 0\n");
1274                         rc = -EINVAL;
1275                         goto out;
1276                 }
1277
1278                 /* Force contiguous as there are no real MMU
1279                  * translations to overcome physical memory gaps
1280                  */
1281                 args->in.flags |= HL_MEM_CONTIGUOUS;
1282                 rc = alloc_device_memory(ctx, &args->in, &handle);
1283
1284                 memset(args, 0, sizeof(*args));
1285                 args->out.handle = (__u64) handle;
1286                 break;
1287
1288         case HL_MEM_OP_FREE:
1289                 rc = free_device_memory(ctx, args->in.free.handle);
1290                 break;
1291
1292         case HL_MEM_OP_MAP:
1293                 if (args->in.flags & HL_MEM_USERPTR) {
1294                         device_addr = args->in.map_host.host_virt_addr;
1295                         rc = 0;
1296                 } else {
1297                         rc = get_paddr_from_handle(ctx, &args->in,
1298                                         &device_addr);
1299                 }
1300
1301                 memset(args, 0, sizeof(*args));
1302                 args->out.device_virt_addr = device_addr;
1303                 break;
1304
1305         case HL_MEM_OP_UNMAP:
1306                 rc = 0;
1307                 break;
1308
1309         default:
1310                 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1311                 rc = -ENOTTY;
1312                 break;
1313         }
1314
1315 out:
1316         return rc;
1317 }
1318
1319 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1320 {
1321         enum hl_device_status status;
1322         union hl_mem_args *args = data;
1323         struct hl_device *hdev = hpriv->hdev;
1324         struct hl_ctx *ctx = hpriv->ctx;
1325         u64 device_addr = 0;
1326         u32 handle = 0;
1327         int rc;
1328
1329         if (!hl_device_operational(hdev, &status)) {
1330                 dev_warn_ratelimited(hdev->dev,
1331                         "Device is %s. Can't execute MEMORY IOCTL\n",
1332                         hdev->status[status]);
1333                 return -EBUSY;
1334         }
1335
1336         if (!hdev->mmu_enable)
1337                 return mem_ioctl_no_mmu(hpriv, args);
1338
1339         switch (args->in.op) {
1340         case HL_MEM_OP_ALLOC:
1341                 if (args->in.alloc.mem_size == 0) {
1342                         dev_err(hdev->dev,
1343                                 "alloc size must be larger than 0\n");
1344                         rc = -EINVAL;
1345                         goto out;
1346                 }
1347
1348                 /* If DRAM does not support virtual memory the driver won't
1349                  * handle the allocation/freeing of that memory. However, for
1350                  * system administration/monitoring purposes, the driver will
1351                  * keep track of the amount of DRAM memory that is allocated
1352                  * and freed by the user. Because this code totally relies on
1353                  * the user's input, the driver can't ensure the validity
1354                  * of this accounting.
1355                  */
1356                 if (!hdev->asic_prop.dram_supports_virtual_memory) {
1357                         atomic64_add(args->in.alloc.mem_size,
1358                                         &ctx->dram_phys_mem);
1359                         atomic64_add(args->in.alloc.mem_size,
1360                                         &hdev->dram_used_mem);
1361
1362                         dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
1363                         rc = 0;
1364
1365                         memset(args, 0, sizeof(*args));
1366                         args->out.handle = 0;
1367                         goto out;
1368                 }
1369
1370                 rc = alloc_device_memory(ctx, &args->in, &handle);
1371
1372                 memset(args, 0, sizeof(*args));
1373                 args->out.handle = (__u64) handle;
1374                 break;
1375
1376         case HL_MEM_OP_FREE:
1377                 /* If DRAM does not support virtual memory the driver won't
1378                  * handle the allocation/freeing of that memory. However, for
1379                  * system administration/monitoring purposes, the driver will
1380                  * keep track of the amount of DRAM memory that is allocated
1381                  * and freed by the user. Because this code totally relies on
1382                  * the user's input, the driver can't ensure the validity
1383                  * of this accounting.
1384                  */
1385                 if (!hdev->asic_prop.dram_supports_virtual_memory) {
1386                         atomic64_sub(args->in.alloc.mem_size,
1387                                         &ctx->dram_phys_mem);
1388                         atomic64_sub(args->in.alloc.mem_size,
1389                                         &hdev->dram_used_mem);
1390
1391                         dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
1392                         rc = 0;
1393
1394                         goto out;
1395                 }
1396
1397                 rc = free_device_memory(ctx, args->in.free.handle);
1398                 break;
1399
1400         case HL_MEM_OP_MAP:
1401                 rc = map_device_va(ctx, &args->in, &device_addr);
1402
1403                 memset(args, 0, sizeof(*args));
1404                 args->out.device_virt_addr = device_addr;
1405                 break;
1406
1407         case HL_MEM_OP_UNMAP:
1408                 rc = unmap_device_va(ctx, args->in.unmap.device_virt_addr,
1409                                         false);
1410                 break;
1411
1412         default:
1413                 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1414                 rc = -ENOTTY;
1415                 break;
1416         }
1417
1418 out:
1419         return rc;
1420 }
1421
1422 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
1423                                 u32 npages, u64 start, u32 offset,
1424                                 struct hl_userptr *userptr)
1425 {
1426         int rc;
1427
1428         if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1429                 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1430                 return -EFAULT;
1431         }
1432
1433         userptr->vec = frame_vector_create(npages);
1434         if (!userptr->vec) {
1435                 dev_err(hdev->dev, "Failed to create frame vector\n");
1436                 return -ENOMEM;
1437         }
1438
1439         rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
1440                                 userptr->vec);
1441
1442         if (rc != npages) {
1443                 dev_err(hdev->dev,
1444                         "Failed to map host memory, user ptr probably wrong\n");
1445                 if (rc < 0)
1446                         goto destroy_framevec;
1447                 rc = -EFAULT;
1448                 goto put_framevec;
1449         }
1450
1451         if (frame_vector_to_pages(userptr->vec) < 0) {
1452                 dev_err(hdev->dev,
1453                         "Failed to translate frame vector to pages\n");
1454                 rc = -EFAULT;
1455                 goto put_framevec;
1456         }
1457
1458         rc = sg_alloc_table_from_pages(userptr->sgt,
1459                                         frame_vector_pages(userptr->vec),
1460                                         npages, offset, size, GFP_ATOMIC);
1461         if (rc < 0) {
1462                 dev_err(hdev->dev, "failed to create SG table from pages\n");
1463                 goto put_framevec;
1464         }
1465
1466         return 0;
1467
1468 put_framevec:
1469         put_vaddr_frames(userptr->vec);
1470 destroy_framevec:
1471         frame_vector_destroy(userptr->vec);
1472         return rc;
1473 }
1474
1475 /*
1476  * hl_pin_host_memory - pins a chunk of host memory.
1477  * @hdev: pointer to the habanalabs device structure
1478  * @addr: the host virtual address of the memory area
1479  * @size: the size of the memory area
1480  * @userptr: pointer to hl_userptr structure
1481  *
1482  * This function does the following:
1483  * - Pins the physical pages
1484  * - Create an SG list from those pages
1485  */
1486 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1487                                         struct hl_userptr *userptr)
1488 {
1489         u64 start, end;
1490         u32 npages, offset;
1491         int rc;
1492
1493         if (!size) {
1494                 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1495                 return -EINVAL;
1496         }
1497
1498         /*
1499          * If the combination of the address and size requested for this memory
1500          * region causes an integer overflow, return error.
1501          */
1502         if (((addr + size) < addr) ||
1503                         PAGE_ALIGN(addr + size) < (addr + size)) {
1504                 dev_err(hdev->dev,
1505                         "user pointer 0x%llx + %llu causes integer overflow\n",
1506                         addr, size);
1507                 return -EINVAL;
1508         }
1509
1510         /*
1511          * This function can be called also from data path, hence use atomic
1512          * always as it is not a big allocation.
1513          */
1514         userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
1515         if (!userptr->sgt)
1516                 return -ENOMEM;
1517
1518         start = addr & PAGE_MASK;
1519         offset = addr & ~PAGE_MASK;
1520         end = PAGE_ALIGN(addr + size);
1521         npages = (end - start) >> PAGE_SHIFT;
1522
1523         userptr->size = size;
1524         userptr->addr = addr;
1525         userptr->dma_mapped = false;
1526         INIT_LIST_HEAD(&userptr->job_node);
1527
1528         rc = get_user_memory(hdev, addr, size, npages, start, offset,
1529                                 userptr);
1530         if (rc) {
1531                 dev_err(hdev->dev,
1532                         "failed to get user memory for address 0x%llx\n",
1533                         addr);
1534                 goto free_sgt;
1535         }
1536
1537         hl_debugfs_add_userptr(hdev, userptr);
1538
1539         return 0;
1540
1541 free_sgt:
1542         kfree(userptr->sgt);
1543         return rc;
1544 }
1545
1546 /*
1547  * hl_unpin_host_memory - unpins a chunk of host memory.
1548  * @hdev: pointer to the habanalabs device structure
1549  * @userptr: pointer to hl_userptr structure
1550  *
1551  * This function does the following:
1552  * - Unpins the physical pages related to the host memory
1553  * - Free the SG list
1554  */
1555 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1556 {
1557         struct page **pages;
1558
1559         hl_debugfs_remove_userptr(hdev, userptr);
1560
1561         if (userptr->dma_mapped)
1562                 hdev->asic_funcs->hl_dma_unmap_sg(hdev, userptr->sgt->sgl,
1563                                                         userptr->sgt->nents,
1564                                                         userptr->dir);
1565
1566         pages = frame_vector_pages(userptr->vec);
1567         if (!IS_ERR(pages)) {
1568                 int i;
1569
1570                 for (i = 0; i < frame_vector_count(userptr->vec); i++)
1571                         set_page_dirty_lock(pages[i]);
1572         }
1573         put_vaddr_frames(userptr->vec);
1574         frame_vector_destroy(userptr->vec);
1575
1576         list_del(&userptr->job_node);
1577
1578         sg_free_table(userptr->sgt);
1579         kfree(userptr->sgt);
1580 }
1581
1582 /*
1583  * hl_userptr_delete_list - clear userptr list
1584  *
1585  * @hdev                : pointer to the habanalabs device structure
1586  * @userptr_list        : pointer to the list to clear
1587  *
1588  * This function does the following:
1589  * - Iterates over the list and unpins the host memory and frees the userptr
1590  *   structure.
1591  */
1592 void hl_userptr_delete_list(struct hl_device *hdev,
1593                                 struct list_head *userptr_list)
1594 {
1595         struct hl_userptr *userptr, *tmp;
1596
1597         list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1598                 hl_unpin_host_memory(hdev, userptr);
1599                 kfree(userptr);
1600         }
1601
1602         INIT_LIST_HEAD(userptr_list);
1603 }
1604
1605 /*
1606  * hl_userptr_is_pinned - returns whether the given userptr is pinned
1607  *
1608  * @hdev                : pointer to the habanalabs device structure
1609  * @userptr_list        : pointer to the list to clear
1610  * @userptr             : pointer to userptr to check
1611  *
1612  * This function does the following:
1613  * - Iterates over the list and checks if the given userptr is in it, means is
1614  *   pinned. If so, returns true, otherwise returns false.
1615  */
1616 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1617                                 u32 size, struct list_head *userptr_list,
1618                                 struct hl_userptr **userptr)
1619 {
1620         list_for_each_entry((*userptr), userptr_list, job_node) {
1621                 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1622                         return true;
1623         }
1624
1625         return false;
1626 }
1627
1628 /*
1629  * va_range_init - initialize virtual addresses range
1630  * @hdev: pointer to the habanalabs device structure
1631  * @va_range: pointer to the range to initialize
1632  * @start: range start address
1633  * @end: range end address
1634  *
1635  * This function does the following:
1636  * - Initializes the virtual addresses list of the given range with the given
1637  *   addresses.
1638  */
1639 static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range,
1640                                 u64 start, u64 end, u32 page_size)
1641 {
1642         int rc;
1643
1644         INIT_LIST_HEAD(&va_range->list);
1645
1646         /* PAGE_SIZE alignment */
1647
1648         if (start & (PAGE_SIZE - 1)) {
1649                 start &= PAGE_MASK;
1650                 start += PAGE_SIZE;
1651         }
1652
1653         if (end & (PAGE_SIZE - 1))
1654                 end &= PAGE_MASK;
1655
1656         if (start >= end) {
1657                 dev_err(hdev->dev, "too small vm range for va list\n");
1658                 return -EFAULT;
1659         }
1660
1661         rc = add_va_block(hdev, va_range, start, end);
1662
1663         if (rc) {
1664                 dev_err(hdev->dev, "Failed to init host va list\n");
1665                 return rc;
1666         }
1667
1668         va_range->start_addr = start;
1669         va_range->end_addr = end;
1670         va_range->page_size = page_size;
1671
1672         return 0;
1673 }
1674
1675 /*
1676  * va_range_fini() - clear a virtual addresses range
1677  * @hdev: pointer to the habanalabs structure
1678  * va_range: pointer to virtual addresses range
1679  *
1680  * This function does the following:
1681  * - Frees the virtual addresses block list and its lock
1682  */
1683 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
1684 {
1685         mutex_lock(&va_range->lock);
1686         clear_va_list_locked(hdev, &va_range->list);
1687         mutex_unlock(&va_range->lock);
1688
1689         mutex_destroy(&va_range->lock);
1690         kfree(va_range);
1691 }
1692
1693 /*
1694  * vm_ctx_init_with_ranges() - initialize virtual memory for context
1695  * @ctx: pointer to the habanalabs context structure
1696  * @host_range_start: host virtual addresses range start.
1697  * @host_range_end: host virtual addresses range end.
1698  * @host_huge_range_start: host virtual addresses range start for memory
1699  *                          allocated with huge pages.
1700  * @host_huge_range_end: host virtual addresses range end for memory allocated
1701  *                        with huge pages.
1702  * @dram_range_start: dram virtual addresses range start.
1703  * @dram_range_end: dram virtual addresses range end.
1704  *
1705  * This function initializes the following:
1706  * - MMU for context
1707  * - Virtual address to area descriptor hashtable
1708  * - Virtual block list of available virtual memory
1709  */
1710 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
1711                                         u64 host_range_start,
1712                                         u64 host_range_end,
1713                                         u32 host_page_size,
1714                                         u64 host_huge_range_start,
1715                                         u64 host_huge_range_end,
1716                                         u32 host_huge_page_size,
1717                                         u64 dram_range_start,
1718                                         u64 dram_range_end,
1719                                         u32 dram_page_size)
1720 {
1721         struct hl_device *hdev = ctx->hdev;
1722         int i, rc;
1723
1724         for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
1725                 ctx->va_range[i] =
1726                         kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
1727                 if (!ctx->va_range[i]) {
1728                         rc = -ENOMEM;
1729                         goto free_va_range;
1730                 }
1731         }
1732
1733         rc = hl_mmu_ctx_init(ctx);
1734         if (rc) {
1735                 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
1736                 goto free_va_range;
1737         }
1738
1739         mutex_init(&ctx->mem_hash_lock);
1740         hash_init(ctx->mem_hash);
1741
1742         mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
1743
1744         rc = va_range_init(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST],
1745                         host_range_start, host_range_end, host_page_size);
1746         if (rc) {
1747                 dev_err(hdev->dev, "failed to init host vm range\n");
1748                 goto mmu_ctx_fini;
1749         }
1750
1751         if (hdev->pmmu_huge_range) {
1752                 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
1753
1754                 rc = va_range_init(hdev,
1755                         ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE],
1756                         host_huge_range_start, host_huge_range_end,
1757                         host_huge_page_size);
1758                 if (rc) {
1759                         dev_err(hdev->dev,
1760                                 "failed to init host huge vm range\n");
1761                         goto clear_host_va_range;
1762                 }
1763         } else {
1764                 kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
1765                 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
1766                                 ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1767         }
1768
1769         mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
1770
1771         rc = va_range_init(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM],
1772                         dram_range_start, dram_range_end, dram_page_size);
1773         if (rc) {
1774                 dev_err(hdev->dev, "failed to init dram vm range\n");
1775                 goto clear_host_huge_va_range;
1776         }
1777
1778         hl_debugfs_add_ctx_mem_hash(hdev, ctx);
1779
1780         return 0;
1781
1782 clear_host_huge_va_range:
1783         mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
1784
1785         if (hdev->pmmu_huge_range) {
1786                 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
1787                 clear_va_list_locked(hdev,
1788                         &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
1789                 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
1790         }
1791 clear_host_va_range:
1792         if (hdev->pmmu_huge_range)
1793                 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
1794         mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
1795         clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
1796         mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
1797 mmu_ctx_fini:
1798         mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
1799         mutex_destroy(&ctx->mem_hash_lock);
1800         hl_mmu_ctx_fini(ctx);
1801 free_va_range:
1802         for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
1803                 kfree(ctx->va_range[i]);
1804
1805         return rc;
1806 }
1807
1808 int hl_vm_ctx_init(struct hl_ctx *ctx)
1809 {
1810         struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
1811         u64 host_range_start, host_range_end, host_huge_range_start,
1812                 host_huge_range_end, dram_range_start, dram_range_end;
1813         u32 host_page_size, host_huge_page_size, dram_page_size;
1814
1815         atomic64_set(&ctx->dram_phys_mem, 0);
1816
1817         /*
1818          * - If MMU is enabled, init the ranges as usual.
1819          * - If MMU is disabled, in case of host mapping, the returned address
1820          *   is the given one.
1821          *   In case of DRAM mapping, the returned address is the physical
1822          *   address of the memory related to the given handle.
1823          */
1824         if (!ctx->hdev->mmu_enable)
1825                 return 0;
1826
1827         dram_range_start = prop->dmmu.start_addr;
1828         dram_range_end = prop->dmmu.end_addr;
1829         dram_page_size = prop->dmmu.page_size;
1830         host_range_start = prop->pmmu.start_addr;
1831         host_range_end = prop->pmmu.end_addr;
1832         host_page_size = prop->pmmu.page_size;
1833         host_huge_range_start = prop->pmmu_huge.start_addr;
1834         host_huge_range_end = prop->pmmu_huge.end_addr;
1835         host_huge_page_size = prop->pmmu_huge.page_size;
1836
1837         return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
1838                         host_page_size, host_huge_range_start,
1839                         host_huge_range_end, host_huge_page_size,
1840                         dram_range_start, dram_range_end, dram_page_size);
1841 }
1842
1843 /*
1844  * hl_vm_ctx_fini       - virtual memory teardown of context
1845  *
1846  * @ctx                 : pointer to the habanalabs context structure
1847  *
1848  * This function perform teardown the following:
1849  * - Virtual block list of available virtual memory
1850  * - Virtual address to area descriptor hashtable
1851  * - MMU for context
1852  *
1853  * In addition this function does the following:
1854  * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
1855  *   hashtable should be empty as no valid mappings should exist at this
1856  *   point.
1857  * - Frees any existing physical page list from the idr which relates to the
1858  *   current context asid.
1859  * - This function checks the virtual block list for correctness. At this point
1860  *   the list should contain one element which describes the whole virtual
1861  *   memory range of the context. Otherwise, a warning is printed.
1862  */
1863 void hl_vm_ctx_fini(struct hl_ctx *ctx)
1864 {
1865         struct hl_device *hdev = ctx->hdev;
1866         struct hl_vm *vm = &hdev->vm;
1867         struct hl_vm_phys_pg_pack *phys_pg_list;
1868         struct hl_vm_hash_node *hnode;
1869         struct hlist_node *tmp_node;
1870         int i;
1871
1872         if (!ctx->hdev->mmu_enable)
1873                 return;
1874
1875         hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
1876
1877         /*
1878          * Clearly something went wrong on hard reset so no point in printing
1879          * another side effect error
1880          */
1881         if (!hdev->hard_reset_pending && !hash_empty(ctx->mem_hash))
1882                 dev_notice(hdev->dev,
1883                         "user released device without removing its memory mappings\n");
1884
1885         hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
1886                 dev_dbg(hdev->dev,
1887                         "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
1888                         hnode->vaddr, ctx->asid);
1889                 unmap_device_va(ctx, hnode->vaddr, true);
1890         }
1891
1892         /* invalidate the cache once after the unmapping loop */
1893         hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
1894         hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_PHYS_PACK);
1895
1896         spin_lock(&vm->idr_lock);
1897         idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
1898                 if (phys_pg_list->asid == ctx->asid) {
1899                         dev_dbg(hdev->dev,
1900                                 "page list 0x%px of asid %d is still alive\n",
1901                                 phys_pg_list, ctx->asid);
1902                         atomic64_sub(phys_pg_list->total_size,
1903                                         &hdev->dram_used_mem);
1904                         free_phys_pg_pack(hdev, phys_pg_list);
1905                         idr_remove(&vm->phys_pg_pack_handles, i);
1906                 }
1907         spin_unlock(&vm->idr_lock);
1908
1909         va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
1910         va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
1911
1912         if (hdev->pmmu_huge_range)
1913                 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
1914
1915         mutex_destroy(&ctx->mem_hash_lock);
1916         hl_mmu_ctx_fini(ctx);
1917
1918         /* In this case we need to clear the global accounting of DRAM usage
1919          * because the user notifies us on allocations. If the user is no more,
1920          * all DRAM is available
1921          */
1922         if (!ctx->hdev->asic_prop.dram_supports_virtual_memory)
1923                 atomic64_set(&ctx->hdev->dram_used_mem, 0);
1924 }
1925
1926 /*
1927  * hl_vm_init           - initialize virtual memory module
1928  *
1929  * @hdev                : pointer to the habanalabs device structure
1930  *
1931  * This function initializes the following:
1932  * - MMU module
1933  * - DRAM physical pages pool of 2MB
1934  * - Idr for device memory allocation handles
1935  */
1936 int hl_vm_init(struct hl_device *hdev)
1937 {
1938         struct asic_fixed_properties *prop = &hdev->asic_prop;
1939         struct hl_vm *vm = &hdev->vm;
1940         int rc;
1941
1942         vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
1943         if (!vm->dram_pg_pool) {
1944                 dev_err(hdev->dev, "Failed to create dram page pool\n");
1945                 return -ENOMEM;
1946         }
1947
1948         kref_init(&vm->dram_pg_pool_refcount);
1949
1950         rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
1951                         prop->dram_end_address - prop->dram_user_base_address,
1952                         -1);
1953
1954         if (rc) {
1955                 dev_err(hdev->dev,
1956                         "Failed to add memory to dram page pool %d\n", rc);
1957                 goto pool_add_err;
1958         }
1959
1960         spin_lock_init(&vm->idr_lock);
1961         idr_init(&vm->phys_pg_pack_handles);
1962
1963         atomic64_set(&hdev->dram_used_mem, 0);
1964
1965         vm->init_done = true;
1966
1967         return 0;
1968
1969 pool_add_err:
1970         gen_pool_destroy(vm->dram_pg_pool);
1971
1972         return rc;
1973 }
1974
1975 /*
1976  * hl_vm_fini           - virtual memory module teardown
1977  *
1978  * @hdev                : pointer to the habanalabs device structure
1979  *
1980  * This function perform teardown to the following:
1981  * - Idr for device memory allocation handles
1982  * - DRAM physical pages pool of 2MB
1983  * - MMU module
1984  */
1985 void hl_vm_fini(struct hl_device *hdev)
1986 {
1987         struct hl_vm *vm = &hdev->vm;
1988
1989         if (!vm->init_done)
1990                 return;
1991
1992         /*
1993          * At this point all the contexts should be freed and hence no DRAM
1994          * memory should be in use. Hence the DRAM pool should be freed here.
1995          */
1996         if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
1997                 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
1998                                 __func__);
1999
2000         vm->init_done = false;
2001 }