Merge tag 'v5.14-rc6' into locking/core, to pick up fixes
[linux-2.6-microblaze.git] / drivers / misc / habanalabs / common / hw_queue.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13  * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14  *
15  * @ptr: the current pi/ci value
16  * @val: the amount to add
17  *
18  * Add val to ptr. It can go until twice the queue length.
19  */
20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22         ptr += val;
23         ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24         return ptr;
25 }
26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28         return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30
31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33         int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35         if (delta >= 0)
36                 return (queue_len - delta);
37         else
38                 return (abs(delta) - queue_len);
39 }
40
41 void hl_hw_queue_update_ci(struct hl_cs *cs)
42 {
43         struct hl_device *hdev = cs->ctx->hdev;
44         struct hl_hw_queue *q;
45         int i;
46
47         if (hdev->disabled)
48                 return;
49
50         q = &hdev->kernel_queues[0];
51
52         /* There are no internal queues if H/W queues are being used */
53         if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
54                 return;
55
56         /* We must increment CI for every queue that will never get a
57          * completion, there are 2 scenarios this can happen:
58          * 1. All queues of a non completion CS will never get a completion.
59          * 2. Internal queues never gets completion.
60          */
61         for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
62                 if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
63                         atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
64         }
65 }
66
67 /*
68  * ext_and_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
69  *                                H/W queue.
70  * @hdev: pointer to habanalabs device structure
71  * @q: pointer to habanalabs queue structure
72  * @ctl: BD's control word
73  * @len: BD's length
74  * @ptr: BD's pointer
75  *
76  * This function assumes there is enough space on the queue to submit a new
77  * BD to it. It initializes the next BD and calls the device specific
78  * function to set the pi (and doorbell)
79  *
80  * This function must be called when the scheduler mutex is taken
81  *
82  */
83 static void ext_and_hw_queue_submit_bd(struct hl_device *hdev,
84                         struct hl_hw_queue *q, u32 ctl, u32 len, u64 ptr)
85 {
86         struct hl_bd *bd;
87
88         bd = q->kernel_address;
89         bd += hl_pi_2_offset(q->pi);
90         bd->ctl = cpu_to_le32(ctl);
91         bd->len = cpu_to_le32(len);
92         bd->ptr = cpu_to_le64(ptr);
93
94         q->pi = hl_queue_inc_ptr(q->pi);
95         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
96 }
97
98 /*
99  * ext_queue_sanity_checks - perform some sanity checks on external queue
100  *
101  * @hdev              : pointer to hl_device structure
102  * @q                 : pointer to hl_hw_queue structure
103  * @num_of_entries    : how many entries to check for space
104  * @reserve_cq_entry  : whether to reserve an entry in the cq
105  *
106  * H/W queues spinlock should be taken before calling this function
107  *
108  * Perform the following:
109  * - Make sure we have enough space in the h/w queue
110  * - Make sure we have enough space in the completion queue
111  * - Reserve space in the completion queue (needs to be reversed if there
112  *   is a failure down the road before the actual submission of work). Only
113  *   do this action if reserve_cq_entry is true
114  *
115  */
116 static int ext_queue_sanity_checks(struct hl_device *hdev,
117                                 struct hl_hw_queue *q, int num_of_entries,
118                                 bool reserve_cq_entry)
119 {
120         atomic_t *free_slots =
121                         &hdev->completion_queue[q->cq_id].free_slots_cnt;
122         int free_slots_cnt;
123
124         /* Check we have enough space in the queue */
125         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
126
127         if (free_slots_cnt < num_of_entries) {
128                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
129                         q->hw_queue_id, num_of_entries);
130                 return -EAGAIN;
131         }
132
133         if (reserve_cq_entry) {
134                 /*
135                  * Check we have enough space in the completion queue
136                  * Add -1 to counter (decrement) unless counter was already 0
137                  * In that case, CQ is full so we can't submit a new CB because
138                  * we won't get ack on its completion
139                  * atomic_add_unless will return 0 if counter was already 0
140                  */
141                 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
142                         dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
143                                 num_of_entries, q->hw_queue_id);
144                         atomic_add(num_of_entries, free_slots);
145                         return -EAGAIN;
146                 }
147         }
148
149         return 0;
150 }
151
152 /*
153  * int_queue_sanity_checks - perform some sanity checks on internal queue
154  *
155  * @hdev              : pointer to hl_device structure
156  * @q                 : pointer to hl_hw_queue structure
157  * @num_of_entries    : how many entries to check for space
158  *
159  * H/W queues spinlock should be taken before calling this function
160  *
161  * Perform the following:
162  * - Make sure we have enough space in the h/w queue
163  *
164  */
165 static int int_queue_sanity_checks(struct hl_device *hdev,
166                                         struct hl_hw_queue *q,
167                                         int num_of_entries)
168 {
169         int free_slots_cnt;
170
171         if (num_of_entries > q->int_queue_len) {
172                 dev_err(hdev->dev,
173                         "Cannot populate queue %u with %u jobs\n",
174                         q->hw_queue_id, num_of_entries);
175                 return -ENOMEM;
176         }
177
178         /* Check we have enough space in the queue */
179         free_slots_cnt = queue_free_slots(q, q->int_queue_len);
180
181         if (free_slots_cnt < num_of_entries) {
182                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
183                         q->hw_queue_id, num_of_entries);
184                 return -EAGAIN;
185         }
186
187         return 0;
188 }
189
190 /*
191  * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
192  * @hdev: Pointer to hl_device structure.
193  * @q: Pointer to hl_hw_queue structure.
194  * @num_of_entries: How many entries to check for space.
195  *
196  * Notice: We do not reserve queue entries so this function mustn't be called
197  *         more than once per CS for the same queue
198  *
199  */
200 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
201                                         int num_of_entries)
202 {
203         int free_slots_cnt;
204
205         /* Check we have enough space in the queue */
206         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
207
208         if (free_slots_cnt < num_of_entries) {
209                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
210                         q->hw_queue_id, num_of_entries);
211                 return -EAGAIN;
212         }
213
214         return 0;
215 }
216
217 /*
218  * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
219  *
220  * @hdev: pointer to hl_device structure
221  * @hw_queue_id: Queue's type
222  * @cb_size: size of CB
223  * @cb_ptr: pointer to CB location
224  *
225  * This function sends a single CB, that must NOT generate a completion entry
226  *
227  */
228 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
229                                 u32 cb_size, u64 cb_ptr)
230 {
231         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
232         int rc = 0;
233
234         /*
235          * The CPU queue is a synchronous queue with an effective depth of
236          * a single entry (although it is allocated with room for multiple
237          * entries). Therefore, there is a different lock, called
238          * send_cpu_message_lock, that serializes accesses to the CPU queue.
239          * As a result, we don't need to lock the access to the entire H/W
240          * queues module when submitting a JOB to the CPU queue
241          */
242         if (q->queue_type != QUEUE_TYPE_CPU)
243                 hdev->asic_funcs->hw_queues_lock(hdev);
244
245         if (hdev->disabled) {
246                 rc = -EPERM;
247                 goto out;
248         }
249
250         /*
251          * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
252          * type only on init phase, when the queues are empty and being tested,
253          * so there is no need for sanity checks.
254          */
255         if (q->queue_type != QUEUE_TYPE_HW) {
256                 rc = ext_queue_sanity_checks(hdev, q, 1, false);
257                 if (rc)
258                         goto out;
259         }
260
261         ext_and_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
262
263 out:
264         if (q->queue_type != QUEUE_TYPE_CPU)
265                 hdev->asic_funcs->hw_queues_unlock(hdev);
266
267         return rc;
268 }
269
270 /*
271  * ext_queue_schedule_job - submit a JOB to an external queue
272  *
273  * @job: pointer to the job that needs to be submitted to the queue
274  *
275  * This function must be called when the scheduler mutex is taken
276  *
277  */
278 static void ext_queue_schedule_job(struct hl_cs_job *job)
279 {
280         struct hl_device *hdev = job->cs->ctx->hdev;
281         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
282         struct hl_cq_entry cq_pkt;
283         struct hl_cq *cq;
284         u64 cq_addr;
285         struct hl_cb *cb;
286         u32 ctl;
287         u32 len;
288         u64 ptr;
289
290         /*
291          * Update the JOB ID inside the BD CTL so the device would know what
292          * to write in the completion queue
293          */
294         ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
295
296         cb = job->patched_cb;
297         len = job->job_cb_size;
298         ptr = cb->bus_address;
299
300         /* Skip completion flow in case this is a non completion CS */
301         if (!cs_needs_completion(job->cs))
302                 goto submit_bd;
303
304         cq_pkt.data = cpu_to_le32(
305                         ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
306                                 & CQ_ENTRY_SHADOW_INDEX_MASK) |
307                         FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
308                         FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
309
310         /*
311          * No need to protect pi_offset because scheduling to the
312          * H/W queues is done under the scheduler mutex
313          *
314          * No need to check if CQ is full because it was already
315          * checked in ext_queue_sanity_checks
316          */
317         cq = &hdev->completion_queue[q->cq_id];
318         cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
319
320         hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
321                                                 cq_addr,
322                                                 le32_to_cpu(cq_pkt.data),
323                                                 q->msi_vec,
324                                                 job->contains_dma_pkt);
325
326         q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
327
328         cq->pi = hl_cq_inc_ptr(cq->pi);
329
330 submit_bd:
331         ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
332 }
333
334 /*
335  * int_queue_schedule_job - submit a JOB to an internal queue
336  *
337  * @job: pointer to the job that needs to be submitted to the queue
338  *
339  * This function must be called when the scheduler mutex is taken
340  *
341  */
342 static void int_queue_schedule_job(struct hl_cs_job *job)
343 {
344         struct hl_device *hdev = job->cs->ctx->hdev;
345         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
346         struct hl_bd bd;
347         __le64 *pi;
348
349         bd.ctl = 0;
350         bd.len = cpu_to_le32(job->job_cb_size);
351
352         if (job->is_kernel_allocated_cb)
353                 /* bus_address is actually a mmu mapped address
354                  * allocated from an internal pool
355                  */
356                 bd.ptr = cpu_to_le64(job->user_cb->bus_address);
357         else
358                 bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
359
360         pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
361
362         q->pi++;
363         q->pi &= ((q->int_queue_len << 1) - 1);
364
365         hdev->asic_funcs->pqe_write(hdev, pi, &bd);
366
367         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
368 }
369
370 /*
371  * hw_queue_schedule_job - submit a JOB to a H/W queue
372  *
373  * @job: pointer to the job that needs to be submitted to the queue
374  *
375  * This function must be called when the scheduler mutex is taken
376  *
377  */
378 static void hw_queue_schedule_job(struct hl_cs_job *job)
379 {
380         struct hl_device *hdev = job->cs->ctx->hdev;
381         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
382         u64 ptr;
383         u32 offset, ctl, len;
384
385         /*
386          * Upon PQE completion, COMP_DATA is used as the write data to the
387          * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
388          * write address offset in the SM block (QMAN LBW message).
389          * The write address offset is calculated as "COMP_OFFSET << 2".
390          */
391         offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
392         ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
393                 ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
394
395         len = job->job_cb_size;
396
397         /*
398          * A patched CB is created only if a user CB was allocated by driver and
399          * MMU is disabled. If MMU is enabled, the user CB should be used
400          * instead. If the user CB wasn't allocated by driver, assume that it
401          * holds an address.
402          */
403         if (job->patched_cb)
404                 ptr = job->patched_cb->bus_address;
405         else if (job->is_kernel_allocated_cb)
406                 ptr = job->user_cb->bus_address;
407         else
408                 ptr = (u64) (uintptr_t) job->user_cb;
409
410         ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
411 }
412
413 static int init_signal_cs(struct hl_device *hdev,
414                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
415 {
416         struct hl_sync_stream_properties *prop;
417         struct hl_hw_sob *hw_sob;
418         u32 q_idx;
419         int rc = 0;
420
421         q_idx = job->hw_queue_id;
422         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
423         hw_sob = &prop->hw_sob[prop->curr_sob_offset];
424
425         cs_cmpl->hw_sob = hw_sob;
426         cs_cmpl->sob_val = prop->next_sob_val;
427
428         dev_dbg(hdev->dev,
429                 "generate signal CB, sob_id: %d, sob val: 0x%x, q_idx: %d\n",
430                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx);
431
432         /* we set an EB since we must make sure all oeprations are done
433          * when sending the signal
434          */
435         hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
436                                 cs_cmpl->hw_sob->sob_id, 0, true);
437
438         rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1);
439
440         return rc;
441 }
442
443 static void init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
444                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
445 {
446         struct hl_cs_compl *signal_cs_cmpl;
447         struct hl_sync_stream_properties *prop;
448         struct hl_gen_wait_properties wait_prop;
449         u32 q_idx;
450
451         q_idx = job->hw_queue_id;
452         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
453
454         signal_cs_cmpl = container_of(cs->signal_fence,
455                                         struct hl_cs_compl,
456                                         base_fence);
457
458         /* copy the SOB id and value of the signal CS */
459         cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
460         cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
461
462         dev_dbg(hdev->dev,
463                 "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d\n",
464                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
465                 prop->base_mon_id, q_idx);
466
467         wait_prop.data = (void *) job->patched_cb;
468         wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
469         wait_prop.sob_mask = 0x1;
470         wait_prop.sob_val = cs_cmpl->sob_val;
471         wait_prop.mon_id = prop->base_mon_id;
472         wait_prop.q_idx = q_idx;
473         wait_prop.size = 0;
474         hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
475
476         kref_get(&cs_cmpl->hw_sob->kref);
477         /*
478          * Must put the signal fence after the SOB refcnt increment so
479          * the SOB refcnt won't turn 0 and reset the SOB before the
480          * wait CS was submitted.
481          */
482         mb();
483         hl_fence_put(cs->signal_fence);
484         cs->signal_fence = NULL;
485 }
486
487 /*
488  * init_signal_wait_cs - initialize a signal/wait CS
489  * @cs: pointer to the signal/wait CS
490  *
491  * H/W queues spinlock should be taken before calling this function
492  */
493 static int init_signal_wait_cs(struct hl_cs *cs)
494 {
495         struct hl_ctx *ctx = cs->ctx;
496         struct hl_device *hdev = ctx->hdev;
497         struct hl_cs_job *job;
498         struct hl_cs_compl *cs_cmpl =
499                         container_of(cs->fence, struct hl_cs_compl, base_fence);
500         int rc = 0;
501
502         /* There is only one job in a signal/wait CS */
503         job = list_first_entry(&cs->job_list, struct hl_cs_job,
504                                 cs_node);
505
506         if (cs->type & CS_TYPE_SIGNAL)
507                 rc = init_signal_cs(hdev, job, cs_cmpl);
508         else if (cs->type & CS_TYPE_WAIT)
509                 init_wait_cs(hdev, cs, job, cs_cmpl);
510
511         return rc;
512 }
513
514 /*
515  * hl_hw_queue_schedule_cs - schedule a command submission
516  * @cs: pointer to the CS
517  */
518 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
519 {
520         enum hl_device_status status;
521         struct hl_cs_counters_atomic *cntr;
522         struct hl_ctx *ctx = cs->ctx;
523         struct hl_device *hdev = ctx->hdev;
524         struct hl_cs_job *job, *tmp;
525         struct hl_hw_queue *q;
526         int rc = 0, i, cq_cnt;
527         bool first_entry;
528         u32 max_queues;
529
530         cntr = &hdev->aggregated_cs_counters;
531
532         hdev->asic_funcs->hw_queues_lock(hdev);
533
534         if (!hl_device_operational(hdev, &status)) {
535                 atomic64_inc(&cntr->device_in_reset_drop_cnt);
536                 atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
537                 dev_err(hdev->dev,
538                         "device is %s, CS rejected!\n", hdev->status[status]);
539                 rc = -EPERM;
540                 goto out;
541         }
542
543         max_queues = hdev->asic_prop.max_queues;
544
545         q = &hdev->kernel_queues[0];
546         for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
547                 if (cs->jobs_in_queue_cnt[i]) {
548                         switch (q->queue_type) {
549                         case QUEUE_TYPE_EXT:
550                                 rc = ext_queue_sanity_checks(hdev, q,
551                                                 cs->jobs_in_queue_cnt[i],
552                                                 cs_needs_completion(cs) ?
553                                                                 true : false);
554                                 break;
555                         case QUEUE_TYPE_INT:
556                                 rc = int_queue_sanity_checks(hdev, q,
557                                                 cs->jobs_in_queue_cnt[i]);
558                                 break;
559                         case QUEUE_TYPE_HW:
560                                 rc = hw_queue_sanity_checks(hdev, q,
561                                                 cs->jobs_in_queue_cnt[i]);
562                                 break;
563                         default:
564                                 dev_err(hdev->dev, "Queue type %d is invalid\n",
565                                         q->queue_type);
566                                 rc = -EINVAL;
567                                 break;
568                         }
569
570                         if (rc) {
571                                 atomic64_inc(
572                                         &ctx->cs_counters.queue_full_drop_cnt);
573                                 atomic64_inc(&cntr->queue_full_drop_cnt);
574                                 goto unroll_cq_resv;
575                         }
576
577                         if (q->queue_type == QUEUE_TYPE_EXT)
578                                 cq_cnt++;
579                 }
580         }
581
582         if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
583                 rc = init_signal_wait_cs(cs);
584                 if (rc) {
585                         dev_err(hdev->dev, "Failed to submit signal cs\n");
586                         goto unroll_cq_resv;
587                 }
588         } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT)
589                 hdev->asic_funcs->collective_wait_init_cs(cs);
590
591
592         spin_lock(&hdev->cs_mirror_lock);
593
594         /* Verify staged CS exists and add to the staged list */
595         if (cs->staged_cs && !cs->staged_first) {
596                 struct hl_cs *staged_cs;
597
598                 staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
599                 if (!staged_cs) {
600                         dev_err(hdev->dev,
601                                 "Cannot find staged submission sequence %llu",
602                                 cs->staged_sequence);
603                         rc = -EINVAL;
604                         goto unlock_cs_mirror;
605                 }
606
607                 if (is_staged_cs_last_exists(hdev, staged_cs)) {
608                         dev_err(hdev->dev,
609                                 "Staged submission sequence %llu already submitted",
610                                 cs->staged_sequence);
611                         rc = -EINVAL;
612                         goto unlock_cs_mirror;
613                 }
614
615                 list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
616         }
617
618         list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
619
620         /* Queue TDR if the CS is the first entry and if timeout is wanted */
621         first_entry = list_first_entry(&hdev->cs_mirror_list,
622                                         struct hl_cs, mirror_node) == cs;
623         if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
624                                 first_entry && cs_needs_timeout(cs)) {
625                 cs->tdr_active = true;
626                 schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
627
628         }
629
630         spin_unlock(&hdev->cs_mirror_lock);
631
632         list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
633                 switch (job->queue_type) {
634                 case QUEUE_TYPE_EXT:
635                         ext_queue_schedule_job(job);
636                         break;
637                 case QUEUE_TYPE_INT:
638                         int_queue_schedule_job(job);
639                         break;
640                 case QUEUE_TYPE_HW:
641                         hw_queue_schedule_job(job);
642                         break;
643                 default:
644                         break;
645                 }
646
647         cs->submitted = true;
648
649         goto out;
650
651 unlock_cs_mirror:
652         spin_unlock(&hdev->cs_mirror_lock);
653 unroll_cq_resv:
654         q = &hdev->kernel_queues[0];
655         for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
656                 if ((q->queue_type == QUEUE_TYPE_EXT) &&
657                                                 (cs->jobs_in_queue_cnt[i])) {
658                         atomic_t *free_slots =
659                                 &hdev->completion_queue[i].free_slots_cnt;
660                         atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
661                         cq_cnt--;
662                 }
663         }
664
665 out:
666         hdev->asic_funcs->hw_queues_unlock(hdev);
667
668         return rc;
669 }
670
671 /*
672  * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
673  *
674  * @hdev: pointer to hl_device structure
675  * @hw_queue_id: which queue to increment its ci
676  */
677 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
678 {
679         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
680
681         atomic_inc(&q->ci);
682 }
683
684 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
685                                         bool is_cpu_queue)
686 {
687         void *p;
688         int rc;
689
690         if (is_cpu_queue)
691                 p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
692                                                         HL_QUEUE_SIZE_IN_BYTES,
693                                                         &q->bus_address);
694         else
695                 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
696                                                 HL_QUEUE_SIZE_IN_BYTES,
697                                                 &q->bus_address,
698                                                 GFP_KERNEL | __GFP_ZERO);
699         if (!p)
700                 return -ENOMEM;
701
702         q->kernel_address = p;
703
704         q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
705                                         sizeof(*q->shadow_queue),
706                                         GFP_KERNEL);
707         if (!q->shadow_queue) {
708                 dev_err(hdev->dev,
709                         "Failed to allocate shadow queue for H/W queue %d\n",
710                         q->hw_queue_id);
711                 rc = -ENOMEM;
712                 goto free_queue;
713         }
714
715         /* Make sure read/write pointers are initialized to start of queue */
716         atomic_set(&q->ci, 0);
717         q->pi = 0;
718
719         return 0;
720
721 free_queue:
722         if (is_cpu_queue)
723                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
724                                         HL_QUEUE_SIZE_IN_BYTES,
725                                         q->kernel_address);
726         else
727                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
728                                         HL_QUEUE_SIZE_IN_BYTES,
729                                         q->kernel_address,
730                                         q->bus_address);
731
732         return rc;
733 }
734
735 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
736 {
737         void *p;
738
739         p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
740                                         &q->bus_address, &q->int_queue_len);
741         if (!p) {
742                 dev_err(hdev->dev,
743                         "Failed to get base address for internal queue %d\n",
744                         q->hw_queue_id);
745                 return -EFAULT;
746         }
747
748         q->kernel_address = p;
749         q->pi = 0;
750         atomic_set(&q->ci, 0);
751
752         return 0;
753 }
754
755 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
756 {
757         return ext_and_cpu_queue_init(hdev, q, true);
758 }
759
760 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
761 {
762         return ext_and_cpu_queue_init(hdev, q, false);
763 }
764
765 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
766 {
767         void *p;
768
769         p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
770                                                 HL_QUEUE_SIZE_IN_BYTES,
771                                                 &q->bus_address,
772                                                 GFP_KERNEL | __GFP_ZERO);
773         if (!p)
774                 return -ENOMEM;
775
776         q->kernel_address = p;
777
778         /* Make sure read/write pointers are initialized to start of queue */
779         atomic_set(&q->ci, 0);
780         q->pi = 0;
781
782         return 0;
783 }
784
785 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
786 {
787         struct hl_sync_stream_properties *sync_stream_prop;
788         struct asic_fixed_properties *prop = &hdev->asic_prop;
789         struct hl_hw_sob *hw_sob;
790         int sob, reserved_mon_idx, queue_idx;
791
792         sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
793
794         /* We use 'collective_mon_idx' as a running index in order to reserve
795          * monitors for collective master/slave queues.
796          * collective master queue gets 2 reserved monitors
797          * collective slave queue gets 1 reserved monitor
798          */
799         if (hdev->kernel_queues[q_idx].collective_mode ==
800                         HL_COLLECTIVE_MASTER) {
801                 reserved_mon_idx = hdev->collective_mon_idx;
802
803                 /* reserve the first monitor for collective master queue */
804                 sync_stream_prop->collective_mstr_mon_id[0] =
805                         prop->collective_first_mon + reserved_mon_idx;
806
807                 /* reserve the second monitor for collective master queue */
808                 sync_stream_prop->collective_mstr_mon_id[1] =
809                         prop->collective_first_mon + reserved_mon_idx + 1;
810
811                 hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
812         } else if (hdev->kernel_queues[q_idx].collective_mode ==
813                         HL_COLLECTIVE_SLAVE) {
814                 reserved_mon_idx = hdev->collective_mon_idx++;
815
816                 /* reserve a monitor for collective slave queue */
817                 sync_stream_prop->collective_slave_mon_id =
818                         prop->collective_first_mon + reserved_mon_idx;
819         }
820
821         if (!hdev->kernel_queues[q_idx].supports_sync_stream)
822                 return;
823
824         queue_idx = hdev->sync_stream_queue_idx++;
825
826         sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
827                         (queue_idx * HL_RSVD_SOBS);
828         sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
829                         (queue_idx * HL_RSVD_MONS);
830         sync_stream_prop->next_sob_val = 1;
831         sync_stream_prop->curr_sob_offset = 0;
832
833         for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
834                 hw_sob = &sync_stream_prop->hw_sob[sob];
835                 hw_sob->hdev = hdev;
836                 hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
837                 hw_sob->q_idx = q_idx;
838                 kref_init(&hw_sob->kref);
839         }
840 }
841
842 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
843 {
844         struct hl_sync_stream_properties *prop =
845                         &hdev->kernel_queues[q_idx].sync_stream_prop;
846
847         /*
848          * In case we got here due to a stuck CS, the refcnt might be bigger
849          * than 1 and therefore we reset it.
850          */
851         kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
852         prop->curr_sob_offset = 0;
853         prop->next_sob_val = 1;
854 }
855
856 /*
857  * queue_init - main initialization function for H/W queue object
858  *
859  * @hdev: pointer to hl_device device structure
860  * @q: pointer to hl_hw_queue queue structure
861  * @hw_queue_id: The id of the H/W queue
862  *
863  * Allocate dma-able memory for the queue and initialize fields
864  * Returns 0 on success
865  */
866 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
867                         u32 hw_queue_id)
868 {
869         int rc;
870
871         q->hw_queue_id = hw_queue_id;
872
873         switch (q->queue_type) {
874         case QUEUE_TYPE_EXT:
875                 rc = ext_queue_init(hdev, q);
876                 break;
877         case QUEUE_TYPE_INT:
878                 rc = int_queue_init(hdev, q);
879                 break;
880         case QUEUE_TYPE_CPU:
881                 rc = cpu_queue_init(hdev, q);
882                 break;
883         case QUEUE_TYPE_HW:
884                 rc = hw_queue_init(hdev, q);
885                 break;
886         case QUEUE_TYPE_NA:
887                 q->valid = 0;
888                 return 0;
889         default:
890                 dev_crit(hdev->dev, "wrong queue type %d during init\n",
891                         q->queue_type);
892                 rc = -EINVAL;
893                 break;
894         }
895
896         sync_stream_queue_init(hdev, q->hw_queue_id);
897
898         if (rc)
899                 return rc;
900
901         q->valid = 1;
902
903         return 0;
904 }
905
906 /*
907  * hw_queue_fini - destroy queue
908  *
909  * @hdev: pointer to hl_device device structure
910  * @q: pointer to hl_hw_queue queue structure
911  *
912  * Free the queue memory
913  */
914 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
915 {
916         if (!q->valid)
917                 return;
918
919         /*
920          * If we arrived here, there are no jobs waiting on this queue
921          * so we can safely remove it.
922          * This is because this function can only called when:
923          * 1. Either a context is deleted, which only can occur if all its
924          *    jobs were finished
925          * 2. A context wasn't able to be created due to failure or timeout,
926          *    which means there are no jobs on the queue yet
927          *
928          * The only exception are the queues of the kernel context, but
929          * if they are being destroyed, it means that the entire module is
930          * being removed. If the module is removed, it means there is no open
931          * user context. It also means that if a job was submitted by
932          * the kernel driver (e.g. context creation), the job itself was
933          * released by the kernel driver when a timeout occurred on its
934          * Completion. Thus, we don't need to release it again.
935          */
936
937         if (q->queue_type == QUEUE_TYPE_INT)
938                 return;
939
940         kfree(q->shadow_queue);
941
942         if (q->queue_type == QUEUE_TYPE_CPU)
943                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
944                                         HL_QUEUE_SIZE_IN_BYTES,
945                                         q->kernel_address);
946         else
947                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
948                                         HL_QUEUE_SIZE_IN_BYTES,
949                                         q->kernel_address,
950                                         q->bus_address);
951 }
952
953 int hl_hw_queues_create(struct hl_device *hdev)
954 {
955         struct asic_fixed_properties *asic = &hdev->asic_prop;
956         struct hl_hw_queue *q;
957         int i, rc, q_ready_cnt;
958
959         hdev->kernel_queues = kcalloc(asic->max_queues,
960                                 sizeof(*hdev->kernel_queues), GFP_KERNEL);
961
962         if (!hdev->kernel_queues) {
963                 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
964                 return -ENOMEM;
965         }
966
967         /* Initialize the H/W queues */
968         for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
969                         i < asic->max_queues ; i++, q_ready_cnt++, q++) {
970
971                 q->queue_type = asic->hw_queues_props[i].type;
972                 q->supports_sync_stream =
973                                 asic->hw_queues_props[i].supports_sync_stream;
974                 q->collective_mode = asic->hw_queues_props[i].collective_mode;
975                 rc = queue_init(hdev, q, i);
976                 if (rc) {
977                         dev_err(hdev->dev,
978                                 "failed to initialize queue %d\n", i);
979                         goto release_queues;
980                 }
981         }
982
983         return 0;
984
985 release_queues:
986         for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
987                 queue_fini(hdev, q);
988
989         kfree(hdev->kernel_queues);
990
991         return rc;
992 }
993
994 void hl_hw_queues_destroy(struct hl_device *hdev)
995 {
996         struct hl_hw_queue *q;
997         u32 max_queues = hdev->asic_prop.max_queues;
998         int i;
999
1000         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
1001                 queue_fini(hdev, q);
1002
1003         kfree(hdev->kernel_queues);
1004 }
1005
1006 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1007 {
1008         struct hl_hw_queue *q;
1009         u32 max_queues = hdev->asic_prop.max_queues;
1010         int i;
1011
1012         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1013                 if ((!q->valid) ||
1014                         ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1015                         continue;
1016                 q->pi = 0;
1017                 atomic_set(&q->ci, 0);
1018
1019                 if (q->supports_sync_stream)
1020                         sync_stream_queue_reset(hdev, q->hw_queue_id);
1021         }
1022 }