habanalabs: add wait-for-multi-CS uAPI
[linux-2.6-microblaze.git] / drivers / misc / habanalabs / common / hw_queue.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13  * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14  *
15  * @ptr: the current pi/ci value
16  * @val: the amount to add
17  *
18  * Add val to ptr. It can go until twice the queue length.
19  */
20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22         ptr += val;
23         ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24         return ptr;
25 }
26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28         return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30
31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33         int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35         if (delta >= 0)
36                 return (queue_len - delta);
37         else
38                 return (abs(delta) - queue_len);
39 }
40
41 void hl_hw_queue_update_ci(struct hl_cs *cs)
42 {
43         struct hl_device *hdev = cs->ctx->hdev;
44         struct hl_hw_queue *q;
45         int i;
46
47         if (hdev->disabled)
48                 return;
49
50         q = &hdev->kernel_queues[0];
51
52         /* There are no internal queues if H/W queues are being used */
53         if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
54                 return;
55
56         /* We must increment CI for every queue that will never get a
57          * completion, there are 2 scenarios this can happen:
58          * 1. All queues of a non completion CS will never get a completion.
59          * 2. Internal queues never gets completion.
60          */
61         for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
62                 if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
63                         atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
64         }
65 }
66
67 /*
68  * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
69  *                                H/W queue.
70  * @hdev: pointer to habanalabs device structure
71  * @q: pointer to habanalabs queue structure
72  * @ctl: BD's control word
73  * @len: BD's length
74  * @ptr: BD's pointer
75  *
76  * This function assumes there is enough space on the queue to submit a new
77  * BD to it. It initializes the next BD and calls the device specific
78  * function to set the pi (and doorbell)
79  *
80  * This function must be called when the scheduler mutex is taken
81  *
82  */
83 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
84                 u32 ctl, u32 len, u64 ptr)
85 {
86         struct hl_bd *bd;
87
88         bd = q->kernel_address;
89         bd += hl_pi_2_offset(q->pi);
90         bd->ctl = cpu_to_le32(ctl);
91         bd->len = cpu_to_le32(len);
92         bd->ptr = cpu_to_le64(ptr);
93
94         q->pi = hl_queue_inc_ptr(q->pi);
95         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
96 }
97
98 /*
99  * ext_queue_sanity_checks - perform some sanity checks on external queue
100  *
101  * @hdev              : pointer to hl_device structure
102  * @q                 : pointer to hl_hw_queue structure
103  * @num_of_entries    : how many entries to check for space
104  * @reserve_cq_entry  : whether to reserve an entry in the cq
105  *
106  * H/W queues spinlock should be taken before calling this function
107  *
108  * Perform the following:
109  * - Make sure we have enough space in the h/w queue
110  * - Make sure we have enough space in the completion queue
111  * - Reserve space in the completion queue (needs to be reversed if there
112  *   is a failure down the road before the actual submission of work). Only
113  *   do this action if reserve_cq_entry is true
114  *
115  */
116 static int ext_queue_sanity_checks(struct hl_device *hdev,
117                                 struct hl_hw_queue *q, int num_of_entries,
118                                 bool reserve_cq_entry)
119 {
120         atomic_t *free_slots =
121                         &hdev->completion_queue[q->cq_id].free_slots_cnt;
122         int free_slots_cnt;
123
124         /* Check we have enough space in the queue */
125         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
126
127         if (free_slots_cnt < num_of_entries) {
128                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
129                         q->hw_queue_id, num_of_entries);
130                 return -EAGAIN;
131         }
132
133         if (reserve_cq_entry) {
134                 /*
135                  * Check we have enough space in the completion queue
136                  * Add -1 to counter (decrement) unless counter was already 0
137                  * In that case, CQ is full so we can't submit a new CB because
138                  * we won't get ack on its completion
139                  * atomic_add_unless will return 0 if counter was already 0
140                  */
141                 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
142                         dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
143                                 num_of_entries, q->hw_queue_id);
144                         atomic_add(num_of_entries, free_slots);
145                         return -EAGAIN;
146                 }
147         }
148
149         return 0;
150 }
151
152 /*
153  * int_queue_sanity_checks - perform some sanity checks on internal queue
154  *
155  * @hdev              : pointer to hl_device structure
156  * @q                 : pointer to hl_hw_queue structure
157  * @num_of_entries    : how many entries to check for space
158  *
159  * H/W queues spinlock should be taken before calling this function
160  *
161  * Perform the following:
162  * - Make sure we have enough space in the h/w queue
163  *
164  */
165 static int int_queue_sanity_checks(struct hl_device *hdev,
166                                         struct hl_hw_queue *q,
167                                         int num_of_entries)
168 {
169         int free_slots_cnt;
170
171         if (num_of_entries > q->int_queue_len) {
172                 dev_err(hdev->dev,
173                         "Cannot populate queue %u with %u jobs\n",
174                         q->hw_queue_id, num_of_entries);
175                 return -ENOMEM;
176         }
177
178         /* Check we have enough space in the queue */
179         free_slots_cnt = queue_free_slots(q, q->int_queue_len);
180
181         if (free_slots_cnt < num_of_entries) {
182                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
183                         q->hw_queue_id, num_of_entries);
184                 return -EAGAIN;
185         }
186
187         return 0;
188 }
189
190 /*
191  * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
192  * @hdev: Pointer to hl_device structure.
193  * @q: Pointer to hl_hw_queue structure.
194  * @num_of_entries: How many entries to check for space.
195  *
196  * Notice: We do not reserve queue entries so this function mustn't be called
197  *         more than once per CS for the same queue
198  *
199  */
200 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
201                                         int num_of_entries)
202 {
203         int free_slots_cnt;
204
205         /* Check we have enough space in the queue */
206         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
207
208         if (free_slots_cnt < num_of_entries) {
209                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
210                         q->hw_queue_id, num_of_entries);
211                 return -EAGAIN;
212         }
213
214         return 0;
215 }
216
217 /*
218  * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
219  *
220  * @hdev: pointer to hl_device structure
221  * @hw_queue_id: Queue's type
222  * @cb_size: size of CB
223  * @cb_ptr: pointer to CB location
224  *
225  * This function sends a single CB, that must NOT generate a completion entry.
226  * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
227  */
228 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
229                                 u32 cb_size, u64 cb_ptr)
230 {
231         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
232         int rc = 0;
233
234         hdev->asic_funcs->hw_queues_lock(hdev);
235
236         if (hdev->disabled) {
237                 rc = -EPERM;
238                 goto out;
239         }
240
241         /*
242          * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
243          * type only on init phase, when the queues are empty and being tested,
244          * so there is no need for sanity checks.
245          */
246         if (q->queue_type != QUEUE_TYPE_HW) {
247                 rc = ext_queue_sanity_checks(hdev, q, 1, false);
248                 if (rc)
249                         goto out;
250         }
251
252         hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
253
254 out:
255         hdev->asic_funcs->hw_queues_unlock(hdev);
256
257         return rc;
258 }
259
260 /*
261  * ext_queue_schedule_job - submit a JOB to an external queue
262  *
263  * @job: pointer to the job that needs to be submitted to the queue
264  *
265  * This function must be called when the scheduler mutex is taken
266  *
267  */
268 static void ext_queue_schedule_job(struct hl_cs_job *job)
269 {
270         struct hl_device *hdev = job->cs->ctx->hdev;
271         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
272         struct hl_cq_entry cq_pkt;
273         struct hl_cq *cq;
274         u64 cq_addr;
275         struct hl_cb *cb;
276         u32 ctl;
277         u32 len;
278         u64 ptr;
279
280         /*
281          * Update the JOB ID inside the BD CTL so the device would know what
282          * to write in the completion queue
283          */
284         ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
285
286         cb = job->patched_cb;
287         len = job->job_cb_size;
288         ptr = cb->bus_address;
289
290         /* Skip completion flow in case this is a non completion CS */
291         if (!cs_needs_completion(job->cs))
292                 goto submit_bd;
293
294         cq_pkt.data = cpu_to_le32(
295                         ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
296                                 & CQ_ENTRY_SHADOW_INDEX_MASK) |
297                         FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
298                         FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
299
300         /*
301          * No need to protect pi_offset because scheduling to the
302          * H/W queues is done under the scheduler mutex
303          *
304          * No need to check if CQ is full because it was already
305          * checked in ext_queue_sanity_checks
306          */
307         cq = &hdev->completion_queue[q->cq_id];
308         cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
309
310         hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
311                                                 cq_addr,
312                                                 le32_to_cpu(cq_pkt.data),
313                                                 q->msi_vec,
314                                                 job->contains_dma_pkt);
315
316         q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
317
318         cq->pi = hl_cq_inc_ptr(cq->pi);
319
320 submit_bd:
321         hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
322 }
323
324 /*
325  * int_queue_schedule_job - submit a JOB to an internal queue
326  *
327  * @job: pointer to the job that needs to be submitted to the queue
328  *
329  * This function must be called when the scheduler mutex is taken
330  *
331  */
332 static void int_queue_schedule_job(struct hl_cs_job *job)
333 {
334         struct hl_device *hdev = job->cs->ctx->hdev;
335         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
336         struct hl_bd bd;
337         __le64 *pi;
338
339         bd.ctl = 0;
340         bd.len = cpu_to_le32(job->job_cb_size);
341
342         if (job->is_kernel_allocated_cb)
343                 /* bus_address is actually a mmu mapped address
344                  * allocated from an internal pool
345                  */
346                 bd.ptr = cpu_to_le64(job->user_cb->bus_address);
347         else
348                 bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
349
350         pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
351
352         q->pi++;
353         q->pi &= ((q->int_queue_len << 1) - 1);
354
355         hdev->asic_funcs->pqe_write(hdev, pi, &bd);
356
357         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
358 }
359
360 /*
361  * hw_queue_schedule_job - submit a JOB to a H/W queue
362  *
363  * @job: pointer to the job that needs to be submitted to the queue
364  *
365  * This function must be called when the scheduler mutex is taken
366  *
367  */
368 static void hw_queue_schedule_job(struct hl_cs_job *job)
369 {
370         struct hl_device *hdev = job->cs->ctx->hdev;
371         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
372         u64 ptr;
373         u32 offset, ctl, len;
374
375         /*
376          * Upon PQE completion, COMP_DATA is used as the write data to the
377          * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
378          * write address offset in the SM block (QMAN LBW message).
379          * The write address offset is calculated as "COMP_OFFSET << 2".
380          */
381         offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
382         ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
383                 ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
384
385         len = job->job_cb_size;
386
387         /*
388          * A patched CB is created only if a user CB was allocated by driver and
389          * MMU is disabled. If MMU is enabled, the user CB should be used
390          * instead. If the user CB wasn't allocated by driver, assume that it
391          * holds an address.
392          */
393         if (job->patched_cb)
394                 ptr = job->patched_cb->bus_address;
395         else if (job->is_kernel_allocated_cb)
396                 ptr = job->user_cb->bus_address;
397         else
398                 ptr = (u64) (uintptr_t) job->user_cb;
399
400         hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
401 }
402
403 static int init_signal_cs(struct hl_device *hdev,
404                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
405 {
406         struct hl_sync_stream_properties *prop;
407         struct hl_hw_sob *hw_sob;
408         u32 q_idx;
409         int rc = 0;
410
411         q_idx = job->hw_queue_id;
412         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
413         hw_sob = &prop->hw_sob[prop->curr_sob_offset];
414
415         cs_cmpl->hw_sob = hw_sob;
416         cs_cmpl->sob_val = prop->next_sob_val;
417
418         dev_dbg(hdev->dev,
419                 "generate signal CB, sob_id: %d, sob val: 0x%x, q_idx: %d\n",
420                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx);
421
422         /* we set an EB since we must make sure all oeprations are done
423          * when sending the signal
424          */
425         hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
426                                 cs_cmpl->hw_sob->sob_id, 0, true);
427
428         rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1);
429
430         return rc;
431 }
432
433 static void init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
434                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
435 {
436         struct hl_cs_compl *signal_cs_cmpl;
437         struct hl_sync_stream_properties *prop;
438         struct hl_gen_wait_properties wait_prop;
439         u32 q_idx;
440
441         q_idx = job->hw_queue_id;
442         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
443
444         signal_cs_cmpl = container_of(cs->signal_fence,
445                                         struct hl_cs_compl,
446                                         base_fence);
447
448         /* copy the SOB id and value of the signal CS */
449         cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
450         cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
451
452         dev_dbg(hdev->dev,
453                 "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d\n",
454                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
455                 prop->base_mon_id, q_idx);
456
457         wait_prop.data = (void *) job->patched_cb;
458         wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
459         wait_prop.sob_mask = 0x1;
460         wait_prop.sob_val = cs_cmpl->sob_val;
461         wait_prop.mon_id = prop->base_mon_id;
462         wait_prop.q_idx = q_idx;
463         wait_prop.size = 0;
464         hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
465
466         kref_get(&cs_cmpl->hw_sob->kref);
467         /*
468          * Must put the signal fence after the SOB refcnt increment so
469          * the SOB refcnt won't turn 0 and reset the SOB before the
470          * wait CS was submitted.
471          */
472         mb();
473         hl_fence_put(cs->signal_fence);
474         cs->signal_fence = NULL;
475 }
476
477 /*
478  * init_signal_wait_cs - initialize a signal/wait CS
479  * @cs: pointer to the signal/wait CS
480  *
481  * H/W queues spinlock should be taken before calling this function
482  */
483 static int init_signal_wait_cs(struct hl_cs *cs)
484 {
485         struct hl_ctx *ctx = cs->ctx;
486         struct hl_device *hdev = ctx->hdev;
487         struct hl_cs_job *job;
488         struct hl_cs_compl *cs_cmpl =
489                         container_of(cs->fence, struct hl_cs_compl, base_fence);
490         int rc = 0;
491
492         /* There is only one job in a signal/wait CS */
493         job = list_first_entry(&cs->job_list, struct hl_cs_job,
494                                 cs_node);
495
496         if (cs->type & CS_TYPE_SIGNAL)
497                 rc = init_signal_cs(hdev, job, cs_cmpl);
498         else if (cs->type & CS_TYPE_WAIT)
499                 init_wait_cs(hdev, cs, job, cs_cmpl);
500
501         return rc;
502 }
503
504 /*
505  * hl_hw_queue_schedule_cs - schedule a command submission
506  * @cs: pointer to the CS
507  */
508 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
509 {
510         enum hl_device_status status;
511         struct hl_cs_counters_atomic *cntr;
512         struct hl_ctx *ctx = cs->ctx;
513         struct hl_device *hdev = ctx->hdev;
514         struct hl_cs_job *job, *tmp;
515         struct hl_hw_queue *q;
516         int rc = 0, i, cq_cnt;
517         bool first_entry;
518         u32 max_queues;
519
520         cntr = &hdev->aggregated_cs_counters;
521
522         hdev->asic_funcs->hw_queues_lock(hdev);
523
524         if (!hl_device_operational(hdev, &status)) {
525                 atomic64_inc(&cntr->device_in_reset_drop_cnt);
526                 atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
527                 dev_err(hdev->dev,
528                         "device is %s, CS rejected!\n", hdev->status[status]);
529                 rc = -EPERM;
530                 goto out;
531         }
532
533         max_queues = hdev->asic_prop.max_queues;
534
535         q = &hdev->kernel_queues[0];
536         for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
537                 if (cs->jobs_in_queue_cnt[i]) {
538                         switch (q->queue_type) {
539                         case QUEUE_TYPE_EXT:
540                                 rc = ext_queue_sanity_checks(hdev, q,
541                                                 cs->jobs_in_queue_cnt[i],
542                                                 cs_needs_completion(cs) ?
543                                                                 true : false);
544                                 break;
545                         case QUEUE_TYPE_INT:
546                                 rc = int_queue_sanity_checks(hdev, q,
547                                                 cs->jobs_in_queue_cnt[i]);
548                                 break;
549                         case QUEUE_TYPE_HW:
550                                 rc = hw_queue_sanity_checks(hdev, q,
551                                                 cs->jobs_in_queue_cnt[i]);
552                                 break;
553                         default:
554                                 dev_err(hdev->dev, "Queue type %d is invalid\n",
555                                         q->queue_type);
556                                 rc = -EINVAL;
557                                 break;
558                         }
559
560                         if (rc) {
561                                 atomic64_inc(
562                                         &ctx->cs_counters.queue_full_drop_cnt);
563                                 atomic64_inc(&cntr->queue_full_drop_cnt);
564                                 goto unroll_cq_resv;
565                         }
566
567                         if (q->queue_type == QUEUE_TYPE_EXT)
568                                 cq_cnt++;
569                 }
570         }
571
572         if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
573                 rc = init_signal_wait_cs(cs);
574                 if (rc) {
575                         dev_err(hdev->dev, "Failed to submit signal cs\n");
576                         goto unroll_cq_resv;
577                 }
578         } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT)
579                 hdev->asic_funcs->collective_wait_init_cs(cs);
580
581
582         spin_lock(&hdev->cs_mirror_lock);
583
584         /* Verify staged CS exists and add to the staged list */
585         if (cs->staged_cs && !cs->staged_first) {
586                 struct hl_cs *staged_cs;
587
588                 staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
589                 if (!staged_cs) {
590                         dev_err(hdev->dev,
591                                 "Cannot find staged submission sequence %llu",
592                                 cs->staged_sequence);
593                         rc = -EINVAL;
594                         goto unlock_cs_mirror;
595                 }
596
597                 if (is_staged_cs_last_exists(hdev, staged_cs)) {
598                         dev_err(hdev->dev,
599                                 "Staged submission sequence %llu already submitted",
600                                 cs->staged_sequence);
601                         rc = -EINVAL;
602                         goto unlock_cs_mirror;
603                 }
604
605                 list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
606
607                 /* update stream map of the first CS */
608                 if (hdev->supports_wait_for_multi_cs)
609                         staged_cs->fence->stream_map |= cs->fence->stream_map;
610         }
611
612         list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
613
614         /* Queue TDR if the CS is the first entry and if timeout is wanted */
615         first_entry = list_first_entry(&hdev->cs_mirror_list,
616                                         struct hl_cs, mirror_node) == cs;
617         if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
618                                 first_entry && cs_needs_timeout(cs)) {
619                 cs->tdr_active = true;
620                 schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
621
622         }
623
624         spin_unlock(&hdev->cs_mirror_lock);
625
626         list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
627                 switch (job->queue_type) {
628                 case QUEUE_TYPE_EXT:
629                         ext_queue_schedule_job(job);
630                         break;
631                 case QUEUE_TYPE_INT:
632                         int_queue_schedule_job(job);
633                         break;
634                 case QUEUE_TYPE_HW:
635                         hw_queue_schedule_job(job);
636                         break;
637                 default:
638                         break;
639                 }
640
641         cs->submitted = true;
642
643         goto out;
644
645 unlock_cs_mirror:
646         spin_unlock(&hdev->cs_mirror_lock);
647 unroll_cq_resv:
648         q = &hdev->kernel_queues[0];
649         for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
650                 if ((q->queue_type == QUEUE_TYPE_EXT) &&
651                                                 (cs->jobs_in_queue_cnt[i])) {
652                         atomic_t *free_slots =
653                                 &hdev->completion_queue[i].free_slots_cnt;
654                         atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
655                         cq_cnt--;
656                 }
657         }
658
659 out:
660         hdev->asic_funcs->hw_queues_unlock(hdev);
661
662         return rc;
663 }
664
665 /*
666  * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
667  *
668  * @hdev: pointer to hl_device structure
669  * @hw_queue_id: which queue to increment its ci
670  */
671 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
672 {
673         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
674
675         atomic_inc(&q->ci);
676 }
677
678 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
679                                         bool is_cpu_queue)
680 {
681         void *p;
682         int rc;
683
684         if (is_cpu_queue)
685                 p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
686                                                         HL_QUEUE_SIZE_IN_BYTES,
687                                                         &q->bus_address);
688         else
689                 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
690                                                 HL_QUEUE_SIZE_IN_BYTES,
691                                                 &q->bus_address,
692                                                 GFP_KERNEL | __GFP_ZERO);
693         if (!p)
694                 return -ENOMEM;
695
696         q->kernel_address = p;
697
698         q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
699                                         sizeof(*q->shadow_queue),
700                                         GFP_KERNEL);
701         if (!q->shadow_queue) {
702                 dev_err(hdev->dev,
703                         "Failed to allocate shadow queue for H/W queue %d\n",
704                         q->hw_queue_id);
705                 rc = -ENOMEM;
706                 goto free_queue;
707         }
708
709         /* Make sure read/write pointers are initialized to start of queue */
710         atomic_set(&q->ci, 0);
711         q->pi = 0;
712
713         return 0;
714
715 free_queue:
716         if (is_cpu_queue)
717                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
718                                         HL_QUEUE_SIZE_IN_BYTES,
719                                         q->kernel_address);
720         else
721                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
722                                         HL_QUEUE_SIZE_IN_BYTES,
723                                         q->kernel_address,
724                                         q->bus_address);
725
726         return rc;
727 }
728
729 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
730 {
731         void *p;
732
733         p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
734                                         &q->bus_address, &q->int_queue_len);
735         if (!p) {
736                 dev_err(hdev->dev,
737                         "Failed to get base address for internal queue %d\n",
738                         q->hw_queue_id);
739                 return -EFAULT;
740         }
741
742         q->kernel_address = p;
743         q->pi = 0;
744         atomic_set(&q->ci, 0);
745
746         return 0;
747 }
748
749 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
750 {
751         return ext_and_cpu_queue_init(hdev, q, true);
752 }
753
754 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
755 {
756         return ext_and_cpu_queue_init(hdev, q, false);
757 }
758
759 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
760 {
761         void *p;
762
763         p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
764                                                 HL_QUEUE_SIZE_IN_BYTES,
765                                                 &q->bus_address,
766                                                 GFP_KERNEL | __GFP_ZERO);
767         if (!p)
768                 return -ENOMEM;
769
770         q->kernel_address = p;
771
772         /* Make sure read/write pointers are initialized to start of queue */
773         atomic_set(&q->ci, 0);
774         q->pi = 0;
775
776         return 0;
777 }
778
779 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
780 {
781         struct hl_sync_stream_properties *sync_stream_prop;
782         struct asic_fixed_properties *prop = &hdev->asic_prop;
783         struct hl_hw_sob *hw_sob;
784         int sob, reserved_mon_idx, queue_idx;
785
786         sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
787
788         /* We use 'collective_mon_idx' as a running index in order to reserve
789          * monitors for collective master/slave queues.
790          * collective master queue gets 2 reserved monitors
791          * collective slave queue gets 1 reserved monitor
792          */
793         if (hdev->kernel_queues[q_idx].collective_mode ==
794                         HL_COLLECTIVE_MASTER) {
795                 reserved_mon_idx = hdev->collective_mon_idx;
796
797                 /* reserve the first monitor for collective master queue */
798                 sync_stream_prop->collective_mstr_mon_id[0] =
799                         prop->collective_first_mon + reserved_mon_idx;
800
801                 /* reserve the second monitor for collective master queue */
802                 sync_stream_prop->collective_mstr_mon_id[1] =
803                         prop->collective_first_mon + reserved_mon_idx + 1;
804
805                 hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
806         } else if (hdev->kernel_queues[q_idx].collective_mode ==
807                         HL_COLLECTIVE_SLAVE) {
808                 reserved_mon_idx = hdev->collective_mon_idx++;
809
810                 /* reserve a monitor for collective slave queue */
811                 sync_stream_prop->collective_slave_mon_id =
812                         prop->collective_first_mon + reserved_mon_idx;
813         }
814
815         if (!hdev->kernel_queues[q_idx].supports_sync_stream)
816                 return;
817
818         queue_idx = hdev->sync_stream_queue_idx++;
819
820         sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
821                         (queue_idx * HL_RSVD_SOBS);
822         sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
823                         (queue_idx * HL_RSVD_MONS);
824         sync_stream_prop->next_sob_val = 1;
825         sync_stream_prop->curr_sob_offset = 0;
826
827         for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
828                 hw_sob = &sync_stream_prop->hw_sob[sob];
829                 hw_sob->hdev = hdev;
830                 hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
831                 hw_sob->q_idx = q_idx;
832                 kref_init(&hw_sob->kref);
833         }
834 }
835
836 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
837 {
838         struct hl_sync_stream_properties *prop =
839                         &hdev->kernel_queues[q_idx].sync_stream_prop;
840
841         /*
842          * In case we got here due to a stuck CS, the refcnt might be bigger
843          * than 1 and therefore we reset it.
844          */
845         kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
846         prop->curr_sob_offset = 0;
847         prop->next_sob_val = 1;
848 }
849
850 /*
851  * queue_init - main initialization function for H/W queue object
852  *
853  * @hdev: pointer to hl_device device structure
854  * @q: pointer to hl_hw_queue queue structure
855  * @hw_queue_id: The id of the H/W queue
856  *
857  * Allocate dma-able memory for the queue and initialize fields
858  * Returns 0 on success
859  */
860 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
861                         u32 hw_queue_id)
862 {
863         int rc;
864
865         q->hw_queue_id = hw_queue_id;
866
867         switch (q->queue_type) {
868         case QUEUE_TYPE_EXT:
869                 rc = ext_queue_init(hdev, q);
870                 break;
871         case QUEUE_TYPE_INT:
872                 rc = int_queue_init(hdev, q);
873                 break;
874         case QUEUE_TYPE_CPU:
875                 rc = cpu_queue_init(hdev, q);
876                 break;
877         case QUEUE_TYPE_HW:
878                 rc = hw_queue_init(hdev, q);
879                 break;
880         case QUEUE_TYPE_NA:
881                 q->valid = 0;
882                 return 0;
883         default:
884                 dev_crit(hdev->dev, "wrong queue type %d during init\n",
885                         q->queue_type);
886                 rc = -EINVAL;
887                 break;
888         }
889
890         sync_stream_queue_init(hdev, q->hw_queue_id);
891
892         if (rc)
893                 return rc;
894
895         q->valid = 1;
896
897         return 0;
898 }
899
900 /*
901  * hw_queue_fini - destroy queue
902  *
903  * @hdev: pointer to hl_device device structure
904  * @q: pointer to hl_hw_queue queue structure
905  *
906  * Free the queue memory
907  */
908 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
909 {
910         if (!q->valid)
911                 return;
912
913         /*
914          * If we arrived here, there are no jobs waiting on this queue
915          * so we can safely remove it.
916          * This is because this function can only called when:
917          * 1. Either a context is deleted, which only can occur if all its
918          *    jobs were finished
919          * 2. A context wasn't able to be created due to failure or timeout,
920          *    which means there are no jobs on the queue yet
921          *
922          * The only exception are the queues of the kernel context, but
923          * if they are being destroyed, it means that the entire module is
924          * being removed. If the module is removed, it means there is no open
925          * user context. It also means that if a job was submitted by
926          * the kernel driver (e.g. context creation), the job itself was
927          * released by the kernel driver when a timeout occurred on its
928          * Completion. Thus, we don't need to release it again.
929          */
930
931         if (q->queue_type == QUEUE_TYPE_INT)
932                 return;
933
934         kfree(q->shadow_queue);
935
936         if (q->queue_type == QUEUE_TYPE_CPU)
937                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
938                                         HL_QUEUE_SIZE_IN_BYTES,
939                                         q->kernel_address);
940         else
941                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
942                                         HL_QUEUE_SIZE_IN_BYTES,
943                                         q->kernel_address,
944                                         q->bus_address);
945 }
946
947 int hl_hw_queues_create(struct hl_device *hdev)
948 {
949         struct asic_fixed_properties *asic = &hdev->asic_prop;
950         struct hl_hw_queue *q;
951         int i, rc, q_ready_cnt;
952
953         hdev->kernel_queues = kcalloc(asic->max_queues,
954                                 sizeof(*hdev->kernel_queues), GFP_KERNEL);
955
956         if (!hdev->kernel_queues) {
957                 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
958                 return -ENOMEM;
959         }
960
961         /* Initialize the H/W queues */
962         for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
963                         i < asic->max_queues ; i++, q_ready_cnt++, q++) {
964
965                 q->queue_type = asic->hw_queues_props[i].type;
966                 q->supports_sync_stream =
967                                 asic->hw_queues_props[i].supports_sync_stream;
968                 q->collective_mode = asic->hw_queues_props[i].collective_mode;
969                 rc = queue_init(hdev, q, i);
970                 if (rc) {
971                         dev_err(hdev->dev,
972                                 "failed to initialize queue %d\n", i);
973                         goto release_queues;
974                 }
975         }
976
977         return 0;
978
979 release_queues:
980         for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
981                 queue_fini(hdev, q);
982
983         kfree(hdev->kernel_queues);
984
985         return rc;
986 }
987
988 void hl_hw_queues_destroy(struct hl_device *hdev)
989 {
990         struct hl_hw_queue *q;
991         u32 max_queues = hdev->asic_prop.max_queues;
992         int i;
993
994         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
995                 queue_fini(hdev, q);
996
997         kfree(hdev->kernel_queues);
998 }
999
1000 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1001 {
1002         struct hl_hw_queue *q;
1003         u32 max_queues = hdev->asic_prop.max_queues;
1004         int i;
1005
1006         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1007                 if ((!q->valid) ||
1008                         ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1009                         continue;
1010                 q->pi = 0;
1011                 atomic_set(&q->ci, 0);
1012
1013                 if (q->supports_sync_stream)
1014                         sync_stream_queue_reset(hdev, q->hw_queue_id);
1015         }
1016 }