mfd: cros_ec: Instantiate the CrOS USB PD logger driver
[linux-2.6-microblaze.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * DB8500 PRCM Unit driver
3  *
4  * Copyright (C) STMicroelectronics 2009
5  * Copyright (C) ST-Ericsson SA 2010
6  *
7  * License Terms: GNU General Public License v2
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  *
14  */
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/errno.h>
20 #include <linux/err.h>
21 #include <linux/spinlock.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/mutex.h>
25 #include <linux/completion.h>
26 #include <linux/irq.h>
27 #include <linux/jiffies.h>
28 #include <linux/bitops.h>
29 #include <linux/fs.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include <linux/platform_data/ux500_wdt.h>
40 #include <linux/platform_data/db8500_thermal.h>
41 #include "dbx500-prcmu-regs.h"
42
43 /* Index of different voltages to be used when accessing AVSData */
44 #define PRCM_AVS_BASE           0x2FC
45 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
46 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
47 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
48 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
49 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
50 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
51 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
52 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
53 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
54 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
55 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
56 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
57 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
58
59 #define PRCM_AVS_VOLTAGE                0
60 #define PRCM_AVS_VOLTAGE_MASK           0x3f
61 #define PRCM_AVS_ISSLOWSTARTUP          6
62 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
63 #define PRCM_AVS_ISMODEENABLE           7
64 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
65
66 #define PRCM_BOOT_STATUS        0xFFF
67 #define PRCM_ROMCODE_A2P        0xFFE
68 #define PRCM_ROMCODE_P2A        0xFFD
69 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
70
71 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
72
73 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
74 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
75 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
76 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
77 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
78 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
79 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
80 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
81
82 /* Req Mailboxes */
83 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
84 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
85 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
86 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
87 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
88 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
89
90 /* Ack Mailboxes */
91 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
92 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
93 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
94 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
95 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
96 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
97
98 /* Mailbox 0 headers */
99 #define MB0H_POWER_STATE_TRANS          0
100 #define MB0H_CONFIG_WAKEUPS_EXE         1
101 #define MB0H_READ_WAKEUP_ACK            3
102 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
103
104 #define MB0H_WAKEUP_EXE 2
105 #define MB0H_WAKEUP_SLEEP 5
106
107 /* Mailbox 0 REQs */
108 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
109 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
110 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
111 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
112 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
113 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
114
115 /* Mailbox 0 ACKs */
116 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
117 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
118 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
119 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
120 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
121 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
122 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
123
124 /* Mailbox 1 headers */
125 #define MB1H_ARM_APE_OPP 0x0
126 #define MB1H_RESET_MODEM 0x2
127 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
128 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
129 #define MB1H_RELEASE_USB_WAKEUP 0x5
130 #define MB1H_PLL_ON_OFF 0x6
131
132 /* Mailbox 1 Requests */
133 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
134 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
135 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
136 #define PLL_SOC0_OFF    0x1
137 #define PLL_SOC0_ON     0x2
138 #define PLL_SOC1_OFF    0x4
139 #define PLL_SOC1_ON     0x8
140
141 /* Mailbox 1 ACKs */
142 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
143 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
144 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
145 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
146
147 /* Mailbox 2 headers */
148 #define MB2H_DPS        0x0
149 #define MB2H_AUTO_PWR   0x1
150
151 /* Mailbox 2 REQs */
152 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
153 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
154 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
155 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
156 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
157 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
158 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
159 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
160 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
161 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
162
163 /* Mailbox 2 ACKs */
164 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
165 #define HWACC_PWR_ST_OK 0xFE
166
167 /* Mailbox 3 headers */
168 #define MB3H_ANC        0x0
169 #define MB3H_SIDETONE   0x1
170 #define MB3H_SYSCLK     0xE
171
172 /* Mailbox 3 Requests */
173 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
174 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
175 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
176 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
179 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
180
181 /* Mailbox 4 headers */
182 #define MB4H_DDR_INIT   0x0
183 #define MB4H_MEM_ST     0x1
184 #define MB4H_HOTDOG     0x12
185 #define MB4H_HOTMON     0x13
186 #define MB4H_HOT_PERIOD 0x14
187 #define MB4H_A9WDOG_CONF 0x16
188 #define MB4H_A9WDOG_EN   0x17
189 #define MB4H_A9WDOG_DIS  0x18
190 #define MB4H_A9WDOG_LOAD 0x19
191 #define MB4H_A9WDOG_KICK 0x20
192
193 /* Mailbox 4 Requests */
194 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
196 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
197 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
200 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
201 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
202 #define HOTMON_CONFIG_LOW                       BIT(0)
203 #define HOTMON_CONFIG_HIGH                      BIT(1)
204 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
205 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
206 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
207 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
208 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
209 #define A9WDOG_AUTO_OFF_DIS                     0
210 #define A9WDOG_ID_MASK                          0xf
211
212 /* Mailbox 5 Requests */
213 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
214 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
215 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
216 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
217 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
218 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
219 #define PRCMU_I2C_STOP_EN               BIT(3)
220
221 /* Mailbox 5 ACKs */
222 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
223 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
224 #define I2C_WR_OK 0x1
225 #define I2C_RD_OK 0x2
226
227 #define NUM_MB 8
228 #define MBOX_BIT BIT
229 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
230
231 /*
232  * Wakeups/IRQs
233  */
234
235 #define WAKEUP_BIT_RTC BIT(0)
236 #define WAKEUP_BIT_RTT0 BIT(1)
237 #define WAKEUP_BIT_RTT1 BIT(2)
238 #define WAKEUP_BIT_HSI0 BIT(3)
239 #define WAKEUP_BIT_HSI1 BIT(4)
240 #define WAKEUP_BIT_CA_WAKE BIT(5)
241 #define WAKEUP_BIT_USB BIT(6)
242 #define WAKEUP_BIT_ABB BIT(7)
243 #define WAKEUP_BIT_ABB_FIFO BIT(8)
244 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
245 #define WAKEUP_BIT_CA_SLEEP BIT(10)
246 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
247 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
248 #define WAKEUP_BIT_ANC_OK BIT(13)
249 #define WAKEUP_BIT_SW_ERROR BIT(14)
250 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
251 #define WAKEUP_BIT_ARM BIT(17)
252 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
253 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
254 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
255 #define WAKEUP_BIT_GPIO0 BIT(23)
256 #define WAKEUP_BIT_GPIO1 BIT(24)
257 #define WAKEUP_BIT_GPIO2 BIT(25)
258 #define WAKEUP_BIT_GPIO3 BIT(26)
259 #define WAKEUP_BIT_GPIO4 BIT(27)
260 #define WAKEUP_BIT_GPIO5 BIT(28)
261 #define WAKEUP_BIT_GPIO6 BIT(29)
262 #define WAKEUP_BIT_GPIO7 BIT(30)
263 #define WAKEUP_BIT_GPIO8 BIT(31)
264
265 static struct {
266         bool valid;
267         struct prcmu_fw_version version;
268 } fw_info;
269
270 static struct irq_domain *db8500_irq_domain;
271
272 /*
273  * This vector maps irq numbers to the bits in the bit field used in
274  * communication with the PRCMU firmware.
275  *
276  * The reason for having this is to keep the irq numbers contiguous even though
277  * the bits in the bit field are not. (The bits also have a tendency to move
278  * around, to further complicate matters.)
279  */
280 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
281 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
282
283 #define IRQ_PRCMU_RTC 0
284 #define IRQ_PRCMU_RTT0 1
285 #define IRQ_PRCMU_RTT1 2
286 #define IRQ_PRCMU_HSI0 3
287 #define IRQ_PRCMU_HSI1 4
288 #define IRQ_PRCMU_CA_WAKE 5
289 #define IRQ_PRCMU_USB 6
290 #define IRQ_PRCMU_ABB 7
291 #define IRQ_PRCMU_ABB_FIFO 8
292 #define IRQ_PRCMU_ARM 9
293 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
294 #define IRQ_PRCMU_GPIO0 11
295 #define IRQ_PRCMU_GPIO1 12
296 #define IRQ_PRCMU_GPIO2 13
297 #define IRQ_PRCMU_GPIO3 14
298 #define IRQ_PRCMU_GPIO4 15
299 #define IRQ_PRCMU_GPIO5 16
300 #define IRQ_PRCMU_GPIO6 17
301 #define IRQ_PRCMU_GPIO7 18
302 #define IRQ_PRCMU_GPIO8 19
303 #define IRQ_PRCMU_CA_SLEEP 20
304 #define IRQ_PRCMU_HOTMON_LOW 21
305 #define IRQ_PRCMU_HOTMON_HIGH 22
306 #define NUM_PRCMU_WAKEUPS 23
307
308 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
309         IRQ_ENTRY(RTC),
310         IRQ_ENTRY(RTT0),
311         IRQ_ENTRY(RTT1),
312         IRQ_ENTRY(HSI0),
313         IRQ_ENTRY(HSI1),
314         IRQ_ENTRY(CA_WAKE),
315         IRQ_ENTRY(USB),
316         IRQ_ENTRY(ABB),
317         IRQ_ENTRY(ABB_FIFO),
318         IRQ_ENTRY(CA_SLEEP),
319         IRQ_ENTRY(ARM),
320         IRQ_ENTRY(HOTMON_LOW),
321         IRQ_ENTRY(HOTMON_HIGH),
322         IRQ_ENTRY(MODEM_SW_RESET_REQ),
323         IRQ_ENTRY(GPIO0),
324         IRQ_ENTRY(GPIO1),
325         IRQ_ENTRY(GPIO2),
326         IRQ_ENTRY(GPIO3),
327         IRQ_ENTRY(GPIO4),
328         IRQ_ENTRY(GPIO5),
329         IRQ_ENTRY(GPIO6),
330         IRQ_ENTRY(GPIO7),
331         IRQ_ENTRY(GPIO8)
332 };
333
334 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
335 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
336 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
337         WAKEUP_ENTRY(RTC),
338         WAKEUP_ENTRY(RTT0),
339         WAKEUP_ENTRY(RTT1),
340         WAKEUP_ENTRY(HSI0),
341         WAKEUP_ENTRY(HSI1),
342         WAKEUP_ENTRY(USB),
343         WAKEUP_ENTRY(ABB),
344         WAKEUP_ENTRY(ABB_FIFO),
345         WAKEUP_ENTRY(ARM)
346 };
347
348 /*
349  * mb0_transfer - state needed for mailbox 0 communication.
350  * @lock:               The transaction lock.
351  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
352  *                      the request data.
353  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
354  * @req:                Request data that need to persist between requests.
355  */
356 static struct {
357         spinlock_t lock;
358         spinlock_t dbb_irqs_lock;
359         struct work_struct mask_work;
360         struct mutex ac_wake_lock;
361         struct completion ac_wake_work;
362         struct {
363                 u32 dbb_irqs;
364                 u32 dbb_wakeups;
365                 u32 abb_events;
366         } req;
367 } mb0_transfer;
368
369 /*
370  * mb1_transfer - state needed for mailbox 1 communication.
371  * @lock:       The transaction lock.
372  * @work:       The transaction completion structure.
373  * @ape_opp:    The current APE OPP.
374  * @ack:        Reply ("acknowledge") data.
375  */
376 static struct {
377         struct mutex lock;
378         struct completion work;
379         u8 ape_opp;
380         struct {
381                 u8 header;
382                 u8 arm_opp;
383                 u8 ape_opp;
384                 u8 ape_voltage_status;
385         } ack;
386 } mb1_transfer;
387
388 /*
389  * mb2_transfer - state needed for mailbox 2 communication.
390  * @lock:            The transaction lock.
391  * @work:            The transaction completion structure.
392  * @auto_pm_lock:    The autonomous power management configuration lock.
393  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
394  * @req:             Request data that need to persist between requests.
395  * @ack:             Reply ("acknowledge") data.
396  */
397 static struct {
398         struct mutex lock;
399         struct completion work;
400         spinlock_t auto_pm_lock;
401         bool auto_pm_enabled;
402         struct {
403                 u8 status;
404         } ack;
405 } mb2_transfer;
406
407 /*
408  * mb3_transfer - state needed for mailbox 3 communication.
409  * @lock:               The request lock.
410  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
411  * @sysclk_work:        Work structure used for sysclk requests.
412  */
413 static struct {
414         spinlock_t lock;
415         struct mutex sysclk_lock;
416         struct completion sysclk_work;
417 } mb3_transfer;
418
419 /*
420  * mb4_transfer - state needed for mailbox 4 communication.
421  * @lock:       The transaction lock.
422  * @work:       The transaction completion structure.
423  */
424 static struct {
425         struct mutex lock;
426         struct completion work;
427 } mb4_transfer;
428
429 /*
430  * mb5_transfer - state needed for mailbox 5 communication.
431  * @lock:       The transaction lock.
432  * @work:       The transaction completion structure.
433  * @ack:        Reply ("acknowledge") data.
434  */
435 static struct {
436         struct mutex lock;
437         struct completion work;
438         struct {
439                 u8 status;
440                 u8 value;
441         } ack;
442 } mb5_transfer;
443
444 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
445
446 /* Spinlocks */
447 static DEFINE_SPINLOCK(prcmu_lock);
448 static DEFINE_SPINLOCK(clkout_lock);
449
450 /* Global var to runtime determine TCDM base for v2 or v1 */
451 static __iomem void *tcdm_base;
452 static __iomem void *prcmu_base;
453
454 struct clk_mgt {
455         u32 offset;
456         u32 pllsw;
457         int branch;
458         bool clk38div;
459 };
460
461 enum {
462         PLL_RAW,
463         PLL_FIX,
464         PLL_DIV
465 };
466
467 static DEFINE_SPINLOCK(clk_mgt_lock);
468
469 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
470         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
471 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
472         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
473         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
476         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
477         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
478         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
479         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
483         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
484         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
485         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
486         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
487         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
488         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
489         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
490         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
491         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
492         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
493         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
494         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
495         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
496         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
497         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
498         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
499         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
500         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
501 };
502
503 struct dsiclk {
504         u32 divsel_mask;
505         u32 divsel_shift;
506         u32 divsel;
507 };
508
509 static struct dsiclk dsiclk[2] = {
510         {
511                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
512                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
513                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
514         },
515         {
516                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
517                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
518                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
519         }
520 };
521
522 struct dsiescclk {
523         u32 en;
524         u32 div_mask;
525         u32 div_shift;
526 };
527
528 static struct dsiescclk dsiescclk[3] = {
529         {
530                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
531                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
532                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
533         },
534         {
535                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
536                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
537                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
538         },
539         {
540                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
541                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
542                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
543         }
544 };
545
546
547 /*
548 * Used by MCDE to setup all necessary PRCMU registers
549 */
550 #define PRCMU_RESET_DSIPLL              0x00004000
551 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
552
553 #define PRCMU_CLK_PLL_DIV_SHIFT         0
554 #define PRCMU_CLK_PLL_SW_SHIFT          5
555 #define PRCMU_CLK_38                    (1 << 9)
556 #define PRCMU_CLK_38_SRC                (1 << 10)
557 #define PRCMU_CLK_38_DIV                (1 << 11)
558
559 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
560 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
561
562 /* DPI 50000000 Hz */
563 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
564                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
565 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
566
567 /* D=101, N=1, R=4, SELDIV2=0 */
568 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
569
570 #define PRCMU_ENABLE_PLLDSI             0x00000001
571 #define PRCMU_DISABLE_PLLDSI            0x00000000
572 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
573 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
574 /* ESC clk, div0=1, div1=1, div2=3 */
575 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
576 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
577 #define PRCMU_DSI_RESET_SW              0x00000007
578
579 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
580
581 int db8500_prcmu_enable_dsipll(void)
582 {
583         int i;
584
585         /* Clear DSIPLL_RESETN */
586         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
587         /* Unclamp DSIPLL in/out */
588         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
589
590         /* Set DSI PLL FREQ */
591         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
592         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
593         /* Enable Escape clocks */
594         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
595
596         /* Start DSI PLL */
597         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
598         /* Reset DSI PLL */
599         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
600         for (i = 0; i < 10; i++) {
601                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
602                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
603                         break;
604                 udelay(100);
605         }
606         /* Set DSIPLL_RESETN */
607         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
608         return 0;
609 }
610
611 int db8500_prcmu_disable_dsipll(void)
612 {
613         /* Disable dsi pll */
614         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
615         /* Disable  escapeclock */
616         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
617         return 0;
618 }
619
620 int db8500_prcmu_set_display_clocks(void)
621 {
622         unsigned long flags;
623
624         spin_lock_irqsave(&clk_mgt_lock, flags);
625
626         /* Grab the HW semaphore. */
627         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
628                 cpu_relax();
629
630         writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
631         writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
632         writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
633
634         /* Release the HW semaphore. */
635         writel(0, PRCM_SEM);
636
637         spin_unlock_irqrestore(&clk_mgt_lock, flags);
638
639         return 0;
640 }
641
642 u32 db8500_prcmu_read(unsigned int reg)
643 {
644         return readl(prcmu_base + reg);
645 }
646
647 void db8500_prcmu_write(unsigned int reg, u32 value)
648 {
649         unsigned long flags;
650
651         spin_lock_irqsave(&prcmu_lock, flags);
652         writel(value, (prcmu_base + reg));
653         spin_unlock_irqrestore(&prcmu_lock, flags);
654 }
655
656 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
657 {
658         u32 val;
659         unsigned long flags;
660
661         spin_lock_irqsave(&prcmu_lock, flags);
662         val = readl(prcmu_base + reg);
663         val = ((val & ~mask) | (value & mask));
664         writel(val, (prcmu_base + reg));
665         spin_unlock_irqrestore(&prcmu_lock, flags);
666 }
667
668 struct prcmu_fw_version *prcmu_get_fw_version(void)
669 {
670         return fw_info.valid ? &fw_info.version : NULL;
671 }
672
673 bool prcmu_has_arm_maxopp(void)
674 {
675         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
676                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
677 }
678
679 /**
680  * prcmu_set_rc_a2p - This function is used to run few power state sequences
681  * @val: Value to be set, i.e. transition requested
682  * Returns: 0 on success, -EINVAL on invalid argument
683  *
684  * This function is used to run the following power state sequences -
685  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
686  */
687 int prcmu_set_rc_a2p(enum romcode_write val)
688 {
689         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
690                 return -EINVAL;
691         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
692         return 0;
693 }
694
695 /**
696  * prcmu_get_rc_p2a - This function is used to get power state sequences
697  * Returns: the power transition that has last happened
698  *
699  * This function can return the following transitions-
700  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
701  */
702 enum romcode_read prcmu_get_rc_p2a(void)
703 {
704         return readb(tcdm_base + PRCM_ROMCODE_P2A);
705 }
706
707 /**
708  * prcmu_get_current_mode - Return the current XP70 power mode
709  * Returns: Returns the current AP(ARM) power mode: init,
710  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
711  */
712 enum ap_pwrst prcmu_get_xp70_current_state(void)
713 {
714         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
715 }
716
717 /**
718  * prcmu_config_clkout - Configure one of the programmable clock outputs.
719  * @clkout:     The CLKOUT number (0 or 1).
720  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
721  * @div:        The divider to be applied.
722  *
723  * Configures one of the programmable clock outputs (CLKOUTs).
724  * @div should be in the range [1,63] to request a configuration, or 0 to
725  * inform that the configuration is no longer requested.
726  */
727 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
728 {
729         static int requests[2];
730         int r = 0;
731         unsigned long flags;
732         u32 val;
733         u32 bits;
734         u32 mask;
735         u32 div_mask;
736
737         BUG_ON(clkout > 1);
738         BUG_ON(div > 63);
739         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
740
741         if (!div && !requests[clkout])
742                 return -EINVAL;
743
744         if (clkout == 0) {
745                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
746                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
747                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
748                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
749         } else {
750                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
751                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
752                         PRCM_CLKOCR_CLK1TYPE);
753                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
754                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
755         }
756         bits &= mask;
757
758         spin_lock_irqsave(&clkout_lock, flags);
759
760         val = readl(PRCM_CLKOCR);
761         if (val & div_mask) {
762                 if (div) {
763                         if ((val & mask) != bits) {
764                                 r = -EBUSY;
765                                 goto unlock_and_return;
766                         }
767                 } else {
768                         if ((val & mask & ~div_mask) != bits) {
769                                 r = -EINVAL;
770                                 goto unlock_and_return;
771                         }
772                 }
773         }
774         writel((bits | (val & ~mask)), PRCM_CLKOCR);
775         requests[clkout] += (div ? 1 : -1);
776
777 unlock_and_return:
778         spin_unlock_irqrestore(&clkout_lock, flags);
779
780         return r;
781 }
782
783 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
784 {
785         unsigned long flags;
786
787         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
788
789         spin_lock_irqsave(&mb0_transfer.lock, flags);
790
791         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
792                 cpu_relax();
793
794         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
795         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
796         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
797         writeb((keep_ulp_clk ? 1 : 0),
798                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
799         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
800         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
801
802         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
803
804         return 0;
805 }
806
807 u8 db8500_prcmu_get_power_state_result(void)
808 {
809         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
810 }
811
812 /* This function should only be called while mb0_transfer.lock is held. */
813 static void config_wakeups(void)
814 {
815         const u8 header[2] = {
816                 MB0H_CONFIG_WAKEUPS_EXE,
817                 MB0H_CONFIG_WAKEUPS_SLEEP
818         };
819         static u32 last_dbb_events;
820         static u32 last_abb_events;
821         u32 dbb_events;
822         u32 abb_events;
823         unsigned int i;
824
825         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
826         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
827
828         abb_events = mb0_transfer.req.abb_events;
829
830         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
831                 return;
832
833         for (i = 0; i < 2; i++) {
834                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
835                         cpu_relax();
836                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
837                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
838                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
839                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
840         }
841         last_dbb_events = dbb_events;
842         last_abb_events = abb_events;
843 }
844
845 void db8500_prcmu_enable_wakeups(u32 wakeups)
846 {
847         unsigned long flags;
848         u32 bits;
849         int i;
850
851         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
852
853         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
854                 if (wakeups & BIT(i))
855                         bits |= prcmu_wakeup_bit[i];
856         }
857
858         spin_lock_irqsave(&mb0_transfer.lock, flags);
859
860         mb0_transfer.req.dbb_wakeups = bits;
861         config_wakeups();
862
863         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
864 }
865
866 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
867 {
868         unsigned long flags;
869
870         spin_lock_irqsave(&mb0_transfer.lock, flags);
871
872         mb0_transfer.req.abb_events = abb_events;
873         config_wakeups();
874
875         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
876 }
877
878 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
879 {
880         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
881                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
882         else
883                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
884 }
885
886 /**
887  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
888  * @opp: The new ARM operating point to which transition is to be made
889  * Returns: 0 on success, non-zero on failure
890  *
891  * This function sets the the operating point of the ARM.
892  */
893 int db8500_prcmu_set_arm_opp(u8 opp)
894 {
895         int r;
896
897         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
898                 return -EINVAL;
899
900         r = 0;
901
902         mutex_lock(&mb1_transfer.lock);
903
904         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
905                 cpu_relax();
906
907         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
908         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
909         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
910
911         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
912         wait_for_completion(&mb1_transfer.work);
913
914         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
915                 (mb1_transfer.ack.arm_opp != opp))
916                 r = -EIO;
917
918         mutex_unlock(&mb1_transfer.lock);
919
920         return r;
921 }
922
923 /**
924  * db8500_prcmu_get_arm_opp - get the current ARM OPP
925  *
926  * Returns: the current ARM OPP
927  */
928 int db8500_prcmu_get_arm_opp(void)
929 {
930         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
931 }
932
933 /**
934  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
935  *
936  * Returns: the current DDR OPP
937  */
938 int db8500_prcmu_get_ddr_opp(void)
939 {
940         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
941 }
942
943 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
944 static void request_even_slower_clocks(bool enable)
945 {
946         u32 clock_reg[] = {
947                 PRCM_ACLK_MGT,
948                 PRCM_DMACLK_MGT
949         };
950         unsigned long flags;
951         unsigned int i;
952
953         spin_lock_irqsave(&clk_mgt_lock, flags);
954
955         /* Grab the HW semaphore. */
956         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
957                 cpu_relax();
958
959         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
960                 u32 val;
961                 u32 div;
962
963                 val = readl(prcmu_base + clock_reg[i]);
964                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
965                 if (enable) {
966                         if ((div <= 1) || (div > 15)) {
967                                 pr_err("prcmu: Bad clock divider %d in %s\n",
968                                         div, __func__);
969                                 goto unlock_and_return;
970                         }
971                         div <<= 1;
972                 } else {
973                         if (div <= 2)
974                                 goto unlock_and_return;
975                         div >>= 1;
976                 }
977                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
978                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
979                 writel(val, prcmu_base + clock_reg[i]);
980         }
981
982 unlock_and_return:
983         /* Release the HW semaphore. */
984         writel(0, PRCM_SEM);
985
986         spin_unlock_irqrestore(&clk_mgt_lock, flags);
987 }
988
989 /**
990  * db8500_set_ape_opp - set the appropriate APE OPP
991  * @opp: The new APE operating point to which transition is to be made
992  * Returns: 0 on success, non-zero on failure
993  *
994  * This function sets the operating point of the APE.
995  */
996 int db8500_prcmu_set_ape_opp(u8 opp)
997 {
998         int r = 0;
999
1000         if (opp == mb1_transfer.ape_opp)
1001                 return 0;
1002
1003         mutex_lock(&mb1_transfer.lock);
1004
1005         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1006                 request_even_slower_clocks(false);
1007
1008         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1009                 goto skip_message;
1010
1011         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1012                 cpu_relax();
1013
1014         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1015         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1016         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1017                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1018
1019         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1020         wait_for_completion(&mb1_transfer.work);
1021
1022         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1023                 (mb1_transfer.ack.ape_opp != opp))
1024                 r = -EIO;
1025
1026 skip_message:
1027         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1028                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1029                 request_even_slower_clocks(true);
1030         if (!r)
1031                 mb1_transfer.ape_opp = opp;
1032
1033         mutex_unlock(&mb1_transfer.lock);
1034
1035         return r;
1036 }
1037
1038 /**
1039  * db8500_prcmu_get_ape_opp - get the current APE OPP
1040  *
1041  * Returns: the current APE OPP
1042  */
1043 int db8500_prcmu_get_ape_opp(void)
1044 {
1045         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1046 }
1047
1048 /**
1049  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1050  * @enable: true to request the higher voltage, false to drop a request.
1051  *
1052  * Calls to this function to enable and disable requests must be balanced.
1053  */
1054 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1055 {
1056         int r = 0;
1057         u8 header;
1058         static unsigned int requests;
1059
1060         mutex_lock(&mb1_transfer.lock);
1061
1062         if (enable) {
1063                 if (0 != requests++)
1064                         goto unlock_and_return;
1065                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1066         } else {
1067                 if (requests == 0) {
1068                         r = -EIO;
1069                         goto unlock_and_return;
1070                 } else if (1 != requests--) {
1071                         goto unlock_and_return;
1072                 }
1073                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1074         }
1075
1076         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1077                 cpu_relax();
1078
1079         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1080
1081         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1082         wait_for_completion(&mb1_transfer.work);
1083
1084         if ((mb1_transfer.ack.header != header) ||
1085                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1086                 r = -EIO;
1087
1088 unlock_and_return:
1089         mutex_unlock(&mb1_transfer.lock);
1090
1091         return r;
1092 }
1093
1094 /**
1095  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1096  *
1097  * This function releases the power state requirements of a USB wakeup.
1098  */
1099 int prcmu_release_usb_wakeup_state(void)
1100 {
1101         int r = 0;
1102
1103         mutex_lock(&mb1_transfer.lock);
1104
1105         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1106                 cpu_relax();
1107
1108         writeb(MB1H_RELEASE_USB_WAKEUP,
1109                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1110
1111         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1112         wait_for_completion(&mb1_transfer.work);
1113
1114         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1115                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1116                 r = -EIO;
1117
1118         mutex_unlock(&mb1_transfer.lock);
1119
1120         return r;
1121 }
1122
1123 static int request_pll(u8 clock, bool enable)
1124 {
1125         int r = 0;
1126
1127         if (clock == PRCMU_PLLSOC0)
1128                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1129         else if (clock == PRCMU_PLLSOC1)
1130                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1131         else
1132                 return -EINVAL;
1133
1134         mutex_lock(&mb1_transfer.lock);
1135
1136         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1137                 cpu_relax();
1138
1139         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1140         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1141
1142         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1143         wait_for_completion(&mb1_transfer.work);
1144
1145         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1146                 r = -EIO;
1147
1148         mutex_unlock(&mb1_transfer.lock);
1149
1150         return r;
1151 }
1152
1153 /**
1154  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1155  * @epod_id: The EPOD to set
1156  * @epod_state: The new EPOD state
1157  *
1158  * This function sets the state of a EPOD (power domain). It may not be called
1159  * from interrupt context.
1160  */
1161 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1162 {
1163         int r = 0;
1164         bool ram_retention = false;
1165         int i;
1166
1167         /* check argument */
1168         BUG_ON(epod_id >= NUM_EPOD_ID);
1169
1170         /* set flag if retention is possible */
1171         switch (epod_id) {
1172         case EPOD_ID_SVAMMDSP:
1173         case EPOD_ID_SIAMMDSP:
1174         case EPOD_ID_ESRAM12:
1175         case EPOD_ID_ESRAM34:
1176                 ram_retention = true;
1177                 break;
1178         }
1179
1180         /* check argument */
1181         BUG_ON(epod_state > EPOD_STATE_ON);
1182         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1183
1184         /* get lock */
1185         mutex_lock(&mb2_transfer.lock);
1186
1187         /* wait for mailbox */
1188         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1189                 cpu_relax();
1190
1191         /* fill in mailbox */
1192         for (i = 0; i < NUM_EPOD_ID; i++)
1193                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1194         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1195
1196         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1197
1198         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1199
1200         /*
1201          * The current firmware version does not handle errors correctly,
1202          * and we cannot recover if there is an error.
1203          * This is expected to change when the firmware is updated.
1204          */
1205         if (!wait_for_completion_timeout(&mb2_transfer.work,
1206                         msecs_to_jiffies(20000))) {
1207                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1208                         __func__);
1209                 r = -EIO;
1210                 goto unlock_and_return;
1211         }
1212
1213         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1214                 r = -EIO;
1215
1216 unlock_and_return:
1217         mutex_unlock(&mb2_transfer.lock);
1218         return r;
1219 }
1220
1221 /**
1222  * prcmu_configure_auto_pm - Configure autonomous power management.
1223  * @sleep: Configuration for ApSleep.
1224  * @idle:  Configuration for ApIdle.
1225  */
1226 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1227         struct prcmu_auto_pm_config *idle)
1228 {
1229         u32 sleep_cfg;
1230         u32 idle_cfg;
1231         unsigned long flags;
1232
1233         BUG_ON((sleep == NULL) || (idle == NULL));
1234
1235         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1236         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1237         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1238         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1239         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1240         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1241
1242         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1243         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1244         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1245         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1246         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1247         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1248
1249         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1250
1251         /*
1252          * The autonomous power management configuration is done through
1253          * fields in mailbox 2, but these fields are only used as shared
1254          * variables - i.e. there is no need to send a message.
1255          */
1256         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1257         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1258
1259         mb2_transfer.auto_pm_enabled =
1260                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1262                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1263                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1264
1265         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1266 }
1267 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1268
1269 bool prcmu_is_auto_pm_enabled(void)
1270 {
1271         return mb2_transfer.auto_pm_enabled;
1272 }
1273
1274 static int request_sysclk(bool enable)
1275 {
1276         int r;
1277         unsigned long flags;
1278
1279         r = 0;
1280
1281         mutex_lock(&mb3_transfer.sysclk_lock);
1282
1283         spin_lock_irqsave(&mb3_transfer.lock, flags);
1284
1285         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1286                 cpu_relax();
1287
1288         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1289
1290         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1291         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1292
1293         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1294
1295         /*
1296          * The firmware only sends an ACK if we want to enable the
1297          * SysClk, and it succeeds.
1298          */
1299         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1300                         msecs_to_jiffies(20000))) {
1301                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1302                         __func__);
1303                 r = -EIO;
1304         }
1305
1306         mutex_unlock(&mb3_transfer.sysclk_lock);
1307
1308         return r;
1309 }
1310
1311 static int request_timclk(bool enable)
1312 {
1313         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1314
1315         if (!enable)
1316                 val |= PRCM_TCR_STOP_TIMERS;
1317         writel(val, PRCM_TCR);
1318
1319         return 0;
1320 }
1321
1322 static int request_clock(u8 clock, bool enable)
1323 {
1324         u32 val;
1325         unsigned long flags;
1326
1327         spin_lock_irqsave(&clk_mgt_lock, flags);
1328
1329         /* Grab the HW semaphore. */
1330         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1331                 cpu_relax();
1332
1333         val = readl(prcmu_base + clk_mgt[clock].offset);
1334         if (enable) {
1335                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1336         } else {
1337                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1338                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1339         }
1340         writel(val, prcmu_base + clk_mgt[clock].offset);
1341
1342         /* Release the HW semaphore. */
1343         writel(0, PRCM_SEM);
1344
1345         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1346
1347         return 0;
1348 }
1349
1350 static int request_sga_clock(u8 clock, bool enable)
1351 {
1352         u32 val;
1353         int ret;
1354
1355         if (enable) {
1356                 val = readl(PRCM_CGATING_BYPASS);
1357                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1358         }
1359
1360         ret = request_clock(clock, enable);
1361
1362         if (!ret && !enable) {
1363                 val = readl(PRCM_CGATING_BYPASS);
1364                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1365         }
1366
1367         return ret;
1368 }
1369
1370 static inline bool plldsi_locked(void)
1371 {
1372         return (readl(PRCM_PLLDSI_LOCKP) &
1373                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1374                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1375                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1376                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1377 }
1378
1379 static int request_plldsi(bool enable)
1380 {
1381         int r = 0;
1382         u32 val;
1383
1384         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1385                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1386                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1387
1388         val = readl(PRCM_PLLDSI_ENABLE);
1389         if (enable)
1390                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1391         else
1392                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1393         writel(val, PRCM_PLLDSI_ENABLE);
1394
1395         if (enable) {
1396                 unsigned int i;
1397                 bool locked = plldsi_locked();
1398
1399                 for (i = 10; !locked && (i > 0); --i) {
1400                         udelay(100);
1401                         locked = plldsi_locked();
1402                 }
1403                 if (locked) {
1404                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1405                                 PRCM_APE_RESETN_SET);
1406                 } else {
1407                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1408                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1409                                 PRCM_MMIP_LS_CLAMP_SET);
1410                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1411                         writel(val, PRCM_PLLDSI_ENABLE);
1412                         r = -EAGAIN;
1413                 }
1414         } else {
1415                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1416         }
1417         return r;
1418 }
1419
1420 static int request_dsiclk(u8 n, bool enable)
1421 {
1422         u32 val;
1423
1424         val = readl(PRCM_DSI_PLLOUT_SEL);
1425         val &= ~dsiclk[n].divsel_mask;
1426         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1427                 dsiclk[n].divsel_shift);
1428         writel(val, PRCM_DSI_PLLOUT_SEL);
1429         return 0;
1430 }
1431
1432 static int request_dsiescclk(u8 n, bool enable)
1433 {
1434         u32 val;
1435
1436         val = readl(PRCM_DSITVCLK_DIV);
1437         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1438         writel(val, PRCM_DSITVCLK_DIV);
1439         return 0;
1440 }
1441
1442 /**
1443  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1444  * @clock:      The clock for which the request is made.
1445  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1446  *
1447  * This function should only be used by the clock implementation.
1448  * Do not use it from any other place!
1449  */
1450 int db8500_prcmu_request_clock(u8 clock, bool enable)
1451 {
1452         if (clock == PRCMU_SGACLK)
1453                 return request_sga_clock(clock, enable);
1454         else if (clock < PRCMU_NUM_REG_CLOCKS)
1455                 return request_clock(clock, enable);
1456         else if (clock == PRCMU_TIMCLK)
1457                 return request_timclk(enable);
1458         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1459                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1460         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1461                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1462         else if (clock == PRCMU_PLLDSI)
1463                 return request_plldsi(enable);
1464         else if (clock == PRCMU_SYSCLK)
1465                 return request_sysclk(enable);
1466         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1467                 return request_pll(clock, enable);
1468         else
1469                 return -EINVAL;
1470 }
1471
1472 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1473         int branch)
1474 {
1475         u64 rate;
1476         u32 val;
1477         u32 d;
1478         u32 div = 1;
1479
1480         val = readl(reg);
1481
1482         rate = src_rate;
1483         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1484
1485         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1486         if (d > 1)
1487                 div *= d;
1488
1489         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1490         if (d > 1)
1491                 div *= d;
1492
1493         if (val & PRCM_PLL_FREQ_SELDIV2)
1494                 div *= 2;
1495
1496         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1497                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1498                 ((reg == PRCM_PLLSOC0_FREQ) ||
1499                  (reg == PRCM_PLLARM_FREQ) ||
1500                  (reg == PRCM_PLLDDR_FREQ))))
1501                 div *= 2;
1502
1503         (void)do_div(rate, div);
1504
1505         return (unsigned long)rate;
1506 }
1507
1508 #define ROOT_CLOCK_RATE 38400000
1509
1510 static unsigned long clock_rate(u8 clock)
1511 {
1512         u32 val;
1513         u32 pllsw;
1514         unsigned long rate = ROOT_CLOCK_RATE;
1515
1516         val = readl(prcmu_base + clk_mgt[clock].offset);
1517
1518         if (val & PRCM_CLK_MGT_CLK38) {
1519                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1520                         rate /= 2;
1521                 return rate;
1522         }
1523
1524         val |= clk_mgt[clock].pllsw;
1525         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1526
1527         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1528                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1529         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1530                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1531         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1532                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1533         else
1534                 return 0;
1535
1536         if ((clock == PRCMU_SGACLK) &&
1537                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1538                 u64 r = (rate * 10);
1539
1540                 (void)do_div(r, 25);
1541                 return (unsigned long)r;
1542         }
1543         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1544         if (val)
1545                 return rate / val;
1546         else
1547                 return 0;
1548 }
1549
1550 static unsigned long armss_rate(void)
1551 {
1552         u32 r;
1553         unsigned long rate;
1554
1555         r = readl(PRCM_ARM_CHGCLKREQ);
1556
1557         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1558                 /* External ARMCLKFIX clock */
1559
1560                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1561
1562                 /* Check PRCM_ARM_CHGCLKREQ divider */
1563                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1564                         rate /= 2;
1565
1566                 /* Check PRCM_ARMCLKFIX_MGT divider */
1567                 r = readl(PRCM_ARMCLKFIX_MGT);
1568                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1569                 rate /= r;
1570
1571         } else {/* ARM PLL */
1572                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1573         }
1574
1575         return rate;
1576 }
1577
1578 static unsigned long dsiclk_rate(u8 n)
1579 {
1580         u32 divsel;
1581         u32 div = 1;
1582
1583         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1584         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1585
1586         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1587                 divsel = dsiclk[n].divsel;
1588         else
1589                 dsiclk[n].divsel = divsel;
1590
1591         switch (divsel) {
1592         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1593                 div *= 2;
1594         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1595                 div *= 2;
1596         case PRCM_DSI_PLLOUT_SEL_PHI:
1597                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1598                         PLL_RAW) / div;
1599         default:
1600                 return 0;
1601         }
1602 }
1603
1604 static unsigned long dsiescclk_rate(u8 n)
1605 {
1606         u32 div;
1607
1608         div = readl(PRCM_DSITVCLK_DIV);
1609         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1610         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1611 }
1612
1613 unsigned long prcmu_clock_rate(u8 clock)
1614 {
1615         if (clock < PRCMU_NUM_REG_CLOCKS)
1616                 return clock_rate(clock);
1617         else if (clock == PRCMU_TIMCLK)
1618                 return ROOT_CLOCK_RATE / 16;
1619         else if (clock == PRCMU_SYSCLK)
1620                 return ROOT_CLOCK_RATE;
1621         else if (clock == PRCMU_PLLSOC0)
1622                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1623         else if (clock == PRCMU_PLLSOC1)
1624                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1625         else if (clock == PRCMU_ARMSS)
1626                 return armss_rate();
1627         else if (clock == PRCMU_PLLDDR)
1628                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1629         else if (clock == PRCMU_PLLDSI)
1630                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1631                         PLL_RAW);
1632         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1633                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1634         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1635                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1636         else
1637                 return 0;
1638 }
1639
1640 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1641 {
1642         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1643                 return ROOT_CLOCK_RATE;
1644         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1645         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1646                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1647         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1648                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1649         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1650                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1651         else
1652                 return 0;
1653 }
1654
1655 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1656 {
1657         u32 div;
1658
1659         div = (src_rate / rate);
1660         if (div == 0)
1661                 return 1;
1662         if (rate < (src_rate / div))
1663                 div++;
1664         return div;
1665 }
1666
1667 static long round_clock_rate(u8 clock, unsigned long rate)
1668 {
1669         u32 val;
1670         u32 div;
1671         unsigned long src_rate;
1672         long rounded_rate;
1673
1674         val = readl(prcmu_base + clk_mgt[clock].offset);
1675         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1676                 clk_mgt[clock].branch);
1677         div = clock_divider(src_rate, rate);
1678         if (val & PRCM_CLK_MGT_CLK38) {
1679                 if (clk_mgt[clock].clk38div) {
1680                         if (div > 2)
1681                                 div = 2;
1682                 } else {
1683                         div = 1;
1684                 }
1685         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1686                 u64 r = (src_rate * 10);
1687
1688                 (void)do_div(r, 25);
1689                 if (r <= rate)
1690                         return (unsigned long)r;
1691         }
1692         rounded_rate = (src_rate / min(div, (u32)31));
1693
1694         return rounded_rate;
1695 }
1696
1697 static const unsigned long armss_freqs[] = {
1698         200000000,
1699         400000000,
1700         800000000,
1701         998400000
1702 };
1703
1704 static long round_armss_rate(unsigned long rate)
1705 {
1706         unsigned long freq = 0;
1707         int i;
1708
1709         /* Find the corresponding arm opp from the cpufreq table. */
1710         for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1711                 freq = armss_freqs[i];
1712                 if (rate <= freq)
1713                         break;
1714         }
1715
1716         /* Return the last valid value, even if a match was not found. */
1717         return freq;
1718 }
1719
1720 #define MIN_PLL_VCO_RATE 600000000ULL
1721 #define MAX_PLL_VCO_RATE 1680640000ULL
1722
1723 static long round_plldsi_rate(unsigned long rate)
1724 {
1725         long rounded_rate = 0;
1726         unsigned long src_rate;
1727         unsigned long rem;
1728         u32 r;
1729
1730         src_rate = clock_rate(PRCMU_HDMICLK);
1731         rem = rate;
1732
1733         for (r = 7; (rem > 0) && (r > 0); r--) {
1734                 u64 d;
1735
1736                 d = (r * rate);
1737                 (void)do_div(d, src_rate);
1738                 if (d < 6)
1739                         d = 6;
1740                 else if (d > 255)
1741                         d = 255;
1742                 d *= src_rate;
1743                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1744                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1745                         continue;
1746                 (void)do_div(d, r);
1747                 if (rate < d) {
1748                         if (rounded_rate == 0)
1749                                 rounded_rate = (long)d;
1750                         break;
1751                 }
1752                 if ((rate - d) < rem) {
1753                         rem = (rate - d);
1754                         rounded_rate = (long)d;
1755                 }
1756         }
1757         return rounded_rate;
1758 }
1759
1760 static long round_dsiclk_rate(unsigned long rate)
1761 {
1762         u32 div;
1763         unsigned long src_rate;
1764         long rounded_rate;
1765
1766         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1767                 PLL_RAW);
1768         div = clock_divider(src_rate, rate);
1769         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1770
1771         return rounded_rate;
1772 }
1773
1774 static long round_dsiescclk_rate(unsigned long rate)
1775 {
1776         u32 div;
1777         unsigned long src_rate;
1778         long rounded_rate;
1779
1780         src_rate = clock_rate(PRCMU_TVCLK);
1781         div = clock_divider(src_rate, rate);
1782         rounded_rate = (src_rate / min(div, (u32)255));
1783
1784         return rounded_rate;
1785 }
1786
1787 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1788 {
1789         if (clock < PRCMU_NUM_REG_CLOCKS)
1790                 return round_clock_rate(clock, rate);
1791         else if (clock == PRCMU_ARMSS)
1792                 return round_armss_rate(rate);
1793         else if (clock == PRCMU_PLLDSI)
1794                 return round_plldsi_rate(rate);
1795         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1796                 return round_dsiclk_rate(rate);
1797         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1798                 return round_dsiescclk_rate(rate);
1799         else
1800                 return (long)prcmu_clock_rate(clock);
1801 }
1802
1803 static void set_clock_rate(u8 clock, unsigned long rate)
1804 {
1805         u32 val;
1806         u32 div;
1807         unsigned long src_rate;
1808         unsigned long flags;
1809
1810         spin_lock_irqsave(&clk_mgt_lock, flags);
1811
1812         /* Grab the HW semaphore. */
1813         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1814                 cpu_relax();
1815
1816         val = readl(prcmu_base + clk_mgt[clock].offset);
1817         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1818                 clk_mgt[clock].branch);
1819         div = clock_divider(src_rate, rate);
1820         if (val & PRCM_CLK_MGT_CLK38) {
1821                 if (clk_mgt[clock].clk38div) {
1822                         if (div > 1)
1823                                 val |= PRCM_CLK_MGT_CLK38DIV;
1824                         else
1825                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1826                 }
1827         } else if (clock == PRCMU_SGACLK) {
1828                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1829                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1830                 if (div == 3) {
1831                         u64 r = (src_rate * 10);
1832
1833                         (void)do_div(r, 25);
1834                         if (r <= rate) {
1835                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1836                                 div = 0;
1837                         }
1838                 }
1839                 val |= min(div, (u32)31);
1840         } else {
1841                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1842                 val |= min(div, (u32)31);
1843         }
1844         writel(val, prcmu_base + clk_mgt[clock].offset);
1845
1846         /* Release the HW semaphore. */
1847         writel(0, PRCM_SEM);
1848
1849         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1850 }
1851
1852 static int set_armss_rate(unsigned long rate)
1853 {
1854         unsigned long freq;
1855         u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1856         int i;
1857
1858         /* Find the corresponding arm opp from the cpufreq table. */
1859         for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1860                 freq = armss_freqs[i];
1861                 if (rate == freq)
1862                         break;
1863         }
1864
1865         if (rate != freq)
1866                 return -EINVAL;
1867
1868         /* Set the new arm opp. */
1869         pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1870         return db8500_prcmu_set_arm_opp(opps[i]);
1871 }
1872
1873 static int set_plldsi_rate(unsigned long rate)
1874 {
1875         unsigned long src_rate;
1876         unsigned long rem;
1877         u32 pll_freq = 0;
1878         u32 r;
1879
1880         src_rate = clock_rate(PRCMU_HDMICLK);
1881         rem = rate;
1882
1883         for (r = 7; (rem > 0) && (r > 0); r--) {
1884                 u64 d;
1885                 u64 hwrate;
1886
1887                 d = (r * rate);
1888                 (void)do_div(d, src_rate);
1889                 if (d < 6)
1890                         d = 6;
1891                 else if (d > 255)
1892                         d = 255;
1893                 hwrate = (d * src_rate);
1894                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1895                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1896                         continue;
1897                 (void)do_div(hwrate, r);
1898                 if (rate < hwrate) {
1899                         if (pll_freq == 0)
1900                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1901                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1902                         break;
1903                 }
1904                 if ((rate - hwrate) < rem) {
1905                         rem = (rate - hwrate);
1906                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1907                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1908                 }
1909         }
1910         if (pll_freq == 0)
1911                 return -EINVAL;
1912
1913         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1914         writel(pll_freq, PRCM_PLLDSI_FREQ);
1915
1916         return 0;
1917 }
1918
1919 static void set_dsiclk_rate(u8 n, unsigned long rate)
1920 {
1921         u32 val;
1922         u32 div;
1923
1924         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1925                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1926
1927         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1928                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1929                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1930
1931         val = readl(PRCM_DSI_PLLOUT_SEL);
1932         val &= ~dsiclk[n].divsel_mask;
1933         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1934         writel(val, PRCM_DSI_PLLOUT_SEL);
1935 }
1936
1937 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1938 {
1939         u32 val;
1940         u32 div;
1941
1942         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1943         val = readl(PRCM_DSITVCLK_DIV);
1944         val &= ~dsiescclk[n].div_mask;
1945         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1946         writel(val, PRCM_DSITVCLK_DIV);
1947 }
1948
1949 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1950 {
1951         if (clock < PRCMU_NUM_REG_CLOCKS)
1952                 set_clock_rate(clock, rate);
1953         else if (clock == PRCMU_ARMSS)
1954                 return set_armss_rate(rate);
1955         else if (clock == PRCMU_PLLDSI)
1956                 return set_plldsi_rate(rate);
1957         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1958                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1959         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1960                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1961         return 0;
1962 }
1963
1964 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1965 {
1966         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1967             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1968                 return -EINVAL;
1969
1970         mutex_lock(&mb4_transfer.lock);
1971
1972         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1973                 cpu_relax();
1974
1975         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1976         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1977                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1978         writeb(DDR_PWR_STATE_ON,
1979                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1980         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1981
1982         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1983         wait_for_completion(&mb4_transfer.work);
1984
1985         mutex_unlock(&mb4_transfer.lock);
1986
1987         return 0;
1988 }
1989
1990 int db8500_prcmu_config_hotdog(u8 threshold)
1991 {
1992         mutex_lock(&mb4_transfer.lock);
1993
1994         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1995                 cpu_relax();
1996
1997         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1998         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1999
2000         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2001         wait_for_completion(&mb4_transfer.work);
2002
2003         mutex_unlock(&mb4_transfer.lock);
2004
2005         return 0;
2006 }
2007
2008 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2009 {
2010         mutex_lock(&mb4_transfer.lock);
2011
2012         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2013                 cpu_relax();
2014
2015         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2016         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2017         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2018                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2019         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2020
2021         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2022         wait_for_completion(&mb4_transfer.work);
2023
2024         mutex_unlock(&mb4_transfer.lock);
2025
2026         return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2029
2030 static int config_hot_period(u16 val)
2031 {
2032         mutex_lock(&mb4_transfer.lock);
2033
2034         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2035                 cpu_relax();
2036
2037         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2038         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2039
2040         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2041         wait_for_completion(&mb4_transfer.work);
2042
2043         mutex_unlock(&mb4_transfer.lock);
2044
2045         return 0;
2046 }
2047
2048 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2049 {
2050         if (cycles32k == 0xFFFF)
2051                 return -EINVAL;
2052
2053         return config_hot_period(cycles32k);
2054 }
2055 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2056
2057 int db8500_prcmu_stop_temp_sense(void)
2058 {
2059         return config_hot_period(0xFFFF);
2060 }
2061 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2062
2063 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2064 {
2065
2066         mutex_lock(&mb4_transfer.lock);
2067
2068         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2069                 cpu_relax();
2070
2071         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2072         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2073         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2074         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2075
2076         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2077
2078         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2079         wait_for_completion(&mb4_transfer.work);
2080
2081         mutex_unlock(&mb4_transfer.lock);
2082
2083         return 0;
2084
2085 }
2086
2087 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2088 {
2089         BUG_ON(num == 0 || num > 0xf);
2090         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2091                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2092                             A9WDOG_AUTO_OFF_DIS);
2093 }
2094 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2095
2096 int db8500_prcmu_enable_a9wdog(u8 id)
2097 {
2098         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2099 }
2100 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2101
2102 int db8500_prcmu_disable_a9wdog(u8 id)
2103 {
2104         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2105 }
2106 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2107
2108 int db8500_prcmu_kick_a9wdog(u8 id)
2109 {
2110         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2111 }
2112 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2113
2114 /*
2115  * timeout is 28 bit, in ms.
2116  */
2117 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2118 {
2119         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2120                             (id & A9WDOG_ID_MASK) |
2121                             /*
2122                              * Put the lowest 28 bits of timeout at
2123                              * offset 4. Four first bits are used for id.
2124                              */
2125                             (u8)((timeout << 4) & 0xf0),
2126                             (u8)((timeout >> 4) & 0xff),
2127                             (u8)((timeout >> 12) & 0xff),
2128                             (u8)((timeout >> 20) & 0xff));
2129 }
2130 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2131
2132 /**
2133  * prcmu_abb_read() - Read register value(s) from the ABB.
2134  * @slave:      The I2C slave address.
2135  * @reg:        The (start) register address.
2136  * @value:      The read out value(s).
2137  * @size:       The number of registers to read.
2138  *
2139  * Reads register value(s) from the ABB.
2140  * @size has to be 1 for the current firmware version.
2141  */
2142 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2143 {
2144         int r;
2145
2146         if (size != 1)
2147                 return -EINVAL;
2148
2149         mutex_lock(&mb5_transfer.lock);
2150
2151         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2152                 cpu_relax();
2153
2154         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2155         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2156         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2157         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2158         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2159
2160         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2161
2162         if (!wait_for_completion_timeout(&mb5_transfer.work,
2163                                 msecs_to_jiffies(20000))) {
2164                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2165                         __func__);
2166                 r = -EIO;
2167         } else {
2168                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2169         }
2170
2171         if (!r)
2172                 *value = mb5_transfer.ack.value;
2173
2174         mutex_unlock(&mb5_transfer.lock);
2175
2176         return r;
2177 }
2178
2179 /**
2180  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2181  * @slave:      The I2C slave address.
2182  * @reg:        The (start) register address.
2183  * @value:      The value(s) to write.
2184  * @mask:       The mask(s) to use.
2185  * @size:       The number of registers to write.
2186  *
2187  * Writes masked register value(s) to the ABB.
2188  * For each @value, only the bits set to 1 in the corresponding @mask
2189  * will be written. The other bits are not changed.
2190  * @size has to be 1 for the current firmware version.
2191  */
2192 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2193 {
2194         int r;
2195
2196         if (size != 1)
2197                 return -EINVAL;
2198
2199         mutex_lock(&mb5_transfer.lock);
2200
2201         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2202                 cpu_relax();
2203
2204         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2205         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2206         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2207         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2208         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2209
2210         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2211
2212         if (!wait_for_completion_timeout(&mb5_transfer.work,
2213                                 msecs_to_jiffies(20000))) {
2214                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2215                         __func__);
2216                 r = -EIO;
2217         } else {
2218                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2219         }
2220
2221         mutex_unlock(&mb5_transfer.lock);
2222
2223         return r;
2224 }
2225
2226 /**
2227  * prcmu_abb_write() - Write register value(s) to the ABB.
2228  * @slave:      The I2C slave address.
2229  * @reg:        The (start) register address.
2230  * @value:      The value(s) to write.
2231  * @size:       The number of registers to write.
2232  *
2233  * Writes register value(s) to the ABB.
2234  * @size has to be 1 for the current firmware version.
2235  */
2236 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2237 {
2238         u8 mask = ~0;
2239
2240         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2241 }
2242
2243 /**
2244  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2245  */
2246 int prcmu_ac_wake_req(void)
2247 {
2248         u32 val;
2249         int ret = 0;
2250
2251         mutex_lock(&mb0_transfer.ac_wake_lock);
2252
2253         val = readl(PRCM_HOSTACCESS_REQ);
2254         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2255                 goto unlock_and_return;
2256
2257         atomic_set(&ac_wake_req_state, 1);
2258
2259         /*
2260          * Force Modem Wake-up before hostaccess_req ping-pong.
2261          * It prevents Modem to enter in Sleep while acking the hostaccess
2262          * request. The 31us delay has been calculated by HWI.
2263          */
2264         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2265         writel(val, PRCM_HOSTACCESS_REQ);
2266
2267         udelay(31);
2268
2269         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2270         writel(val, PRCM_HOSTACCESS_REQ);
2271
2272         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2273                         msecs_to_jiffies(5000))) {
2274                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2275                         __func__);
2276                 ret = -EFAULT;
2277         }
2278
2279 unlock_and_return:
2280         mutex_unlock(&mb0_transfer.ac_wake_lock);
2281         return ret;
2282 }
2283
2284 /**
2285  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2286  */
2287 void prcmu_ac_sleep_req(void)
2288 {
2289         u32 val;
2290
2291         mutex_lock(&mb0_transfer.ac_wake_lock);
2292
2293         val = readl(PRCM_HOSTACCESS_REQ);
2294         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2295                 goto unlock_and_return;
2296
2297         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2298                 PRCM_HOSTACCESS_REQ);
2299
2300         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2301                         msecs_to_jiffies(5000))) {
2302                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2303                         __func__);
2304         }
2305
2306         atomic_set(&ac_wake_req_state, 0);
2307
2308 unlock_and_return:
2309         mutex_unlock(&mb0_transfer.ac_wake_lock);
2310 }
2311
2312 bool db8500_prcmu_is_ac_wake_requested(void)
2313 {
2314         return (atomic_read(&ac_wake_req_state) != 0);
2315 }
2316
2317 /**
2318  * db8500_prcmu_system_reset - System reset
2319  *
2320  * Saves the reset reason code and then sets the APE_SOFTRST register which
2321  * fires interrupt to fw
2322  */
2323 void db8500_prcmu_system_reset(u16 reset_code)
2324 {
2325         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2326         writel(1, PRCM_APE_SOFTRST);
2327 }
2328
2329 /**
2330  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2331  *
2332  * Retrieves the reset reason code stored by prcmu_system_reset() before
2333  * last restart.
2334  */
2335 u16 db8500_prcmu_get_reset_code(void)
2336 {
2337         return readw(tcdm_base + PRCM_SW_RST_REASON);
2338 }
2339
2340 /**
2341  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2342  */
2343 void db8500_prcmu_modem_reset(void)
2344 {
2345         mutex_lock(&mb1_transfer.lock);
2346
2347         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2348                 cpu_relax();
2349
2350         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2351         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2352         wait_for_completion(&mb1_transfer.work);
2353
2354         /*
2355          * No need to check return from PRCMU as modem should go in reset state
2356          * This state is already managed by upper layer
2357          */
2358
2359         mutex_unlock(&mb1_transfer.lock);
2360 }
2361
2362 static void ack_dbb_wakeup(void)
2363 {
2364         unsigned long flags;
2365
2366         spin_lock_irqsave(&mb0_transfer.lock, flags);
2367
2368         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2369                 cpu_relax();
2370
2371         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2372         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2373
2374         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2375 }
2376
2377 static inline void print_unknown_header_warning(u8 n, u8 header)
2378 {
2379         pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2380                 header, n);
2381 }
2382
2383 static bool read_mailbox_0(void)
2384 {
2385         bool r;
2386         u32 ev;
2387         unsigned int n;
2388         u8 header;
2389
2390         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2391         switch (header) {
2392         case MB0H_WAKEUP_EXE:
2393         case MB0H_WAKEUP_SLEEP:
2394                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2395                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2396                 else
2397                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2398
2399                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2400                         complete(&mb0_transfer.ac_wake_work);
2401                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2402                         complete(&mb3_transfer.sysclk_work);
2403
2404                 ev &= mb0_transfer.req.dbb_irqs;
2405
2406                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2407                         if (ev & prcmu_irq_bit[n])
2408                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2409                 }
2410                 r = true;
2411                 break;
2412         default:
2413                 print_unknown_header_warning(0, header);
2414                 r = false;
2415                 break;
2416         }
2417         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2418         return r;
2419 }
2420
2421 static bool read_mailbox_1(void)
2422 {
2423         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2424         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2425                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2426         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2427                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2428         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2429                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2430         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2431         complete(&mb1_transfer.work);
2432         return false;
2433 }
2434
2435 static bool read_mailbox_2(void)
2436 {
2437         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2438         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2439         complete(&mb2_transfer.work);
2440         return false;
2441 }
2442
2443 static bool read_mailbox_3(void)
2444 {
2445         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2446         return false;
2447 }
2448
2449 static bool read_mailbox_4(void)
2450 {
2451         u8 header;
2452         bool do_complete = true;
2453
2454         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2455         switch (header) {
2456         case MB4H_MEM_ST:
2457         case MB4H_HOTDOG:
2458         case MB4H_HOTMON:
2459         case MB4H_HOT_PERIOD:
2460         case MB4H_A9WDOG_CONF:
2461         case MB4H_A9WDOG_EN:
2462         case MB4H_A9WDOG_DIS:
2463         case MB4H_A9WDOG_LOAD:
2464         case MB4H_A9WDOG_KICK:
2465                 break;
2466         default:
2467                 print_unknown_header_warning(4, header);
2468                 do_complete = false;
2469                 break;
2470         }
2471
2472         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2473
2474         if (do_complete)
2475                 complete(&mb4_transfer.work);
2476
2477         return false;
2478 }
2479
2480 static bool read_mailbox_5(void)
2481 {
2482         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2483         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2484         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2485         complete(&mb5_transfer.work);
2486         return false;
2487 }
2488
2489 static bool read_mailbox_6(void)
2490 {
2491         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2492         return false;
2493 }
2494
2495 static bool read_mailbox_7(void)
2496 {
2497         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2498         return false;
2499 }
2500
2501 static bool (* const read_mailbox[NUM_MB])(void) = {
2502         read_mailbox_0,
2503         read_mailbox_1,
2504         read_mailbox_2,
2505         read_mailbox_3,
2506         read_mailbox_4,
2507         read_mailbox_5,
2508         read_mailbox_6,
2509         read_mailbox_7
2510 };
2511
2512 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2513 {
2514         u32 bits;
2515         u8 n;
2516         irqreturn_t r;
2517
2518         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2519         if (unlikely(!bits))
2520                 return IRQ_NONE;
2521
2522         r = IRQ_HANDLED;
2523         for (n = 0; bits; n++) {
2524                 if (bits & MBOX_BIT(n)) {
2525                         bits -= MBOX_BIT(n);
2526                         if (read_mailbox[n]())
2527                                 r = IRQ_WAKE_THREAD;
2528                 }
2529         }
2530         return r;
2531 }
2532
2533 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2534 {
2535         ack_dbb_wakeup();
2536         return IRQ_HANDLED;
2537 }
2538
2539 static void prcmu_mask_work(struct work_struct *work)
2540 {
2541         unsigned long flags;
2542
2543         spin_lock_irqsave(&mb0_transfer.lock, flags);
2544
2545         config_wakeups();
2546
2547         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2548 }
2549
2550 static void prcmu_irq_mask(struct irq_data *d)
2551 {
2552         unsigned long flags;
2553
2554         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2555
2556         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2557
2558         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2559
2560         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2561                 schedule_work(&mb0_transfer.mask_work);
2562 }
2563
2564 static void prcmu_irq_unmask(struct irq_data *d)
2565 {
2566         unsigned long flags;
2567
2568         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2569
2570         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2571
2572         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2573
2574         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2575                 schedule_work(&mb0_transfer.mask_work);
2576 }
2577
2578 static void noop(struct irq_data *d)
2579 {
2580 }
2581
2582 static struct irq_chip prcmu_irq_chip = {
2583         .name           = "prcmu",
2584         .irq_disable    = prcmu_irq_mask,
2585         .irq_ack        = noop,
2586         .irq_mask       = prcmu_irq_mask,
2587         .irq_unmask     = prcmu_irq_unmask,
2588 };
2589
2590 static char *fw_project_name(u32 project)
2591 {
2592         switch (project) {
2593         case PRCMU_FW_PROJECT_U8500:
2594                 return "U8500";
2595         case PRCMU_FW_PROJECT_U8400:
2596                 return "U8400";
2597         case PRCMU_FW_PROJECT_U9500:
2598                 return "U9500";
2599         case PRCMU_FW_PROJECT_U8500_MBB:
2600                 return "U8500 MBB";
2601         case PRCMU_FW_PROJECT_U8500_C1:
2602                 return "U8500 C1";
2603         case PRCMU_FW_PROJECT_U8500_C2:
2604                 return "U8500 C2";
2605         case PRCMU_FW_PROJECT_U8500_C3:
2606                 return "U8500 C3";
2607         case PRCMU_FW_PROJECT_U8500_C4:
2608                 return "U8500 C4";
2609         case PRCMU_FW_PROJECT_U9500_MBL:
2610                 return "U9500 MBL";
2611         case PRCMU_FW_PROJECT_U8500_MBL:
2612                 return "U8500 MBL";
2613         case PRCMU_FW_PROJECT_U8500_MBL2:
2614                 return "U8500 MBL2";
2615         case PRCMU_FW_PROJECT_U8520:
2616                 return "U8520 MBL";
2617         case PRCMU_FW_PROJECT_U8420:
2618                 return "U8420";
2619         case PRCMU_FW_PROJECT_U9540:
2620                 return "U9540";
2621         case PRCMU_FW_PROJECT_A9420:
2622                 return "A9420";
2623         case PRCMU_FW_PROJECT_L8540:
2624                 return "L8540";
2625         case PRCMU_FW_PROJECT_L8580:
2626                 return "L8580";
2627         default:
2628                 return "Unknown";
2629         }
2630 }
2631
2632 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2633                                 irq_hw_number_t hwirq)
2634 {
2635         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2636                                 handle_simple_irq);
2637
2638         return 0;
2639 }
2640
2641 static const struct irq_domain_ops db8500_irq_ops = {
2642         .map    = db8500_irq_map,
2643         .xlate  = irq_domain_xlate_twocell,
2644 };
2645
2646 static int db8500_irq_init(struct device_node *np)
2647 {
2648         int i;
2649
2650         db8500_irq_domain = irq_domain_add_simple(
2651                 np, NUM_PRCMU_WAKEUPS, 0,
2652                 &db8500_irq_ops, NULL);
2653
2654         if (!db8500_irq_domain) {
2655                 pr_err("Failed to create irqdomain\n");
2656                 return -ENOSYS;
2657         }
2658
2659         /* All wakeups will be used, so create mappings for all */
2660         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2661                 irq_create_mapping(db8500_irq_domain, i);
2662
2663         return 0;
2664 }
2665
2666 static void dbx500_fw_version_init(struct platform_device *pdev,
2667                             u32 version_offset)
2668 {
2669         struct resource *res;
2670         void __iomem *tcpm_base;
2671         u32 version;
2672
2673         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2674                                            "prcmu-tcpm");
2675         if (!res) {
2676                 dev_err(&pdev->dev,
2677                         "Error: no prcmu tcpm memory region provided\n");
2678                 return;
2679         }
2680         tcpm_base = ioremap(res->start, resource_size(res));
2681         if (!tcpm_base) {
2682                 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2683                 return;
2684         }
2685
2686         version = readl(tcpm_base + version_offset);
2687         fw_info.version.project = (version & 0xFF);
2688         fw_info.version.api_version = (version >> 8) & 0xFF;
2689         fw_info.version.func_version = (version >> 16) & 0xFF;
2690         fw_info.version.errata = (version >> 24) & 0xFF;
2691         strncpy(fw_info.version.project_name,
2692                 fw_project_name(fw_info.version.project),
2693                 PRCMU_FW_PROJECT_NAME_LEN);
2694         fw_info.valid = true;
2695         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2696                 fw_info.version.project_name,
2697                 fw_info.version.project,
2698                 fw_info.version.api_version,
2699                 fw_info.version.func_version,
2700                 fw_info.version.errata);
2701         iounmap(tcpm_base);
2702 }
2703
2704 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2705 {
2706         /*
2707          * This is a temporary remap to bring up the clocks. It is
2708          * subsequently replaces with a real remap. After the merge of
2709          * the mailbox subsystem all of this early code goes away, and the
2710          * clock driver can probe independently. An early initcall will
2711          * still be needed, but it can be diverted into drivers/clk/ux500.
2712          */
2713         prcmu_base = ioremap(phy_base, size);
2714         if (!prcmu_base)
2715                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2716
2717         spin_lock_init(&mb0_transfer.lock);
2718         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2719         mutex_init(&mb0_transfer.ac_wake_lock);
2720         init_completion(&mb0_transfer.ac_wake_work);
2721         mutex_init(&mb1_transfer.lock);
2722         init_completion(&mb1_transfer.work);
2723         mb1_transfer.ape_opp = APE_NO_CHANGE;
2724         mutex_init(&mb2_transfer.lock);
2725         init_completion(&mb2_transfer.work);
2726         spin_lock_init(&mb2_transfer.auto_pm_lock);
2727         spin_lock_init(&mb3_transfer.lock);
2728         mutex_init(&mb3_transfer.sysclk_lock);
2729         init_completion(&mb3_transfer.sysclk_work);
2730         mutex_init(&mb4_transfer.lock);
2731         init_completion(&mb4_transfer.work);
2732         mutex_init(&mb5_transfer.lock);
2733         init_completion(&mb5_transfer.work);
2734
2735         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2736 }
2737
2738 static void init_prcm_registers(void)
2739 {
2740         u32 val;
2741
2742         val = readl(PRCM_A9PL_FORCE_CLKEN);
2743         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2744                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2745         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2746 }
2747
2748 /*
2749  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2750  */
2751 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2752         REGULATOR_SUPPLY("v-ape", NULL),
2753         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2754         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2755         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2756         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2757         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2758         /* "v-mmc" changed to "vcore" in the mainline kernel */
2759         REGULATOR_SUPPLY("vcore", "sdi0"),
2760         REGULATOR_SUPPLY("vcore", "sdi1"),
2761         REGULATOR_SUPPLY("vcore", "sdi2"),
2762         REGULATOR_SUPPLY("vcore", "sdi3"),
2763         REGULATOR_SUPPLY("vcore", "sdi4"),
2764         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2765         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2766         /* "v-uart" changed to "vcore" in the mainline kernel */
2767         REGULATOR_SUPPLY("vcore", "uart0"),
2768         REGULATOR_SUPPLY("vcore", "uart1"),
2769         REGULATOR_SUPPLY("vcore", "uart2"),
2770         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2771         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2772         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2773 };
2774
2775 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2776         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2777         /* AV8100 regulator */
2778         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2779 };
2780
2781 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2782         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2783         REGULATOR_SUPPLY("vsupply", "mcde"),
2784 };
2785
2786 /* SVA MMDSP regulator switch */
2787 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2788         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2789 };
2790
2791 /* SVA pipe regulator switch */
2792 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2793         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2794 };
2795
2796 /* SIA MMDSP regulator switch */
2797 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2798         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2799 };
2800
2801 /* SIA pipe regulator switch */
2802 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2803         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2804 };
2805
2806 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2807         REGULATOR_SUPPLY("v-mali", NULL),
2808 };
2809
2810 /* ESRAM1 and 2 regulator switch */
2811 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2812         REGULATOR_SUPPLY("esram12", "cm_control"),
2813 };
2814
2815 /* ESRAM3 and 4 regulator switch */
2816 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2817         REGULATOR_SUPPLY("v-esram34", "mcde"),
2818         REGULATOR_SUPPLY("esram34", "cm_control"),
2819         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2820 };
2821
2822 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2823         [DB8500_REGULATOR_VAPE] = {
2824                 .constraints = {
2825                         .name = "db8500-vape",
2826                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827                         .always_on = true,
2828                 },
2829                 .consumer_supplies = db8500_vape_consumers,
2830                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2831         },
2832         [DB8500_REGULATOR_VARM] = {
2833                 .constraints = {
2834                         .name = "db8500-varm",
2835                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2836                 },
2837         },
2838         [DB8500_REGULATOR_VMODEM] = {
2839                 .constraints = {
2840                         .name = "db8500-vmodem",
2841                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2842                 },
2843         },
2844         [DB8500_REGULATOR_VPLL] = {
2845                 .constraints = {
2846                         .name = "db8500-vpll",
2847                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2848                 },
2849         },
2850         [DB8500_REGULATOR_VSMPS1] = {
2851                 .constraints = {
2852                         .name = "db8500-vsmps1",
2853                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2854                 },
2855         },
2856         [DB8500_REGULATOR_VSMPS2] = {
2857                 .constraints = {
2858                         .name = "db8500-vsmps2",
2859                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2860                 },
2861                 .consumer_supplies = db8500_vsmps2_consumers,
2862                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2863         },
2864         [DB8500_REGULATOR_VSMPS3] = {
2865                 .constraints = {
2866                         .name = "db8500-vsmps3",
2867                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2868                 },
2869         },
2870         [DB8500_REGULATOR_VRF1] = {
2871                 .constraints = {
2872                         .name = "db8500-vrf1",
2873                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874                 },
2875         },
2876         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2877                 /* dependency to u8500-vape is handled outside regulator framework */
2878                 .constraints = {
2879                         .name = "db8500-sva-mmdsp",
2880                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881                 },
2882                 .consumer_supplies = db8500_svammdsp_consumers,
2883                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2884         },
2885         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2886                 .constraints = {
2887                         /* "ret" means "retention" */
2888                         .name = "db8500-sva-mmdsp-ret",
2889                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890                 },
2891         },
2892         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2893                 /* dependency to u8500-vape is handled outside regulator framework */
2894                 .constraints = {
2895                         .name = "db8500-sva-pipe",
2896                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2897                 },
2898                 .consumer_supplies = db8500_svapipe_consumers,
2899                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2900         },
2901         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2902                 /* dependency to u8500-vape is handled outside regulator framework */
2903                 .constraints = {
2904                         .name = "db8500-sia-mmdsp",
2905                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2906                 },
2907                 .consumer_supplies = db8500_siammdsp_consumers,
2908                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2909         },
2910         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2911                 .constraints = {
2912                         .name = "db8500-sia-mmdsp-ret",
2913                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2914                 },
2915         },
2916         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2917                 /* dependency to u8500-vape is handled outside regulator framework */
2918                 .constraints = {
2919                         .name = "db8500-sia-pipe",
2920                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2921                 },
2922                 .consumer_supplies = db8500_siapipe_consumers,
2923                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2924         },
2925         [DB8500_REGULATOR_SWITCH_SGA] = {
2926                 .supply_regulator = "db8500-vape",
2927                 .constraints = {
2928                         .name = "db8500-sga",
2929                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930                 },
2931                 .consumer_supplies = db8500_sga_consumers,
2932                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2933
2934         },
2935         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2936                 .supply_regulator = "db8500-vape",
2937                 .constraints = {
2938                         .name = "db8500-b2r2-mcde",
2939                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2940                 },
2941                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2942                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2943         },
2944         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2945                 /*
2946                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2947                  * no need to hold Vape
2948                  */
2949                 .constraints = {
2950                         .name = "db8500-esram12",
2951                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2952                 },
2953                 .consumer_supplies = db8500_esram12_consumers,
2954                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2955         },
2956         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2957                 .constraints = {
2958                         .name = "db8500-esram12-ret",
2959                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960                 },
2961         },
2962         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2963                 /*
2964                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2965                  * no need to hold Vape
2966                  */
2967                 .constraints = {
2968                         .name = "db8500-esram34",
2969                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2970                 },
2971                 .consumer_supplies = db8500_esram34_consumers,
2972                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2973         },
2974         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2975                 .constraints = {
2976                         .name = "db8500-esram34-ret",
2977                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2978                 },
2979         },
2980 };
2981
2982 static struct ux500_wdt_data db8500_wdt_pdata = {
2983         .timeout = 600, /* 10 minutes */
2984         .has_28_bits_resolution = true,
2985 };
2986 /*
2987  * Thermal Sensor
2988  */
2989
2990 static struct resource db8500_thsens_resources[] = {
2991         {
2992                 .name = "IRQ_HOTMON_LOW",
2993                 .start  = IRQ_PRCMU_HOTMON_LOW,
2994                 .end    = IRQ_PRCMU_HOTMON_LOW,
2995                 .flags  = IORESOURCE_IRQ,
2996         },
2997         {
2998                 .name = "IRQ_HOTMON_HIGH",
2999                 .start  = IRQ_PRCMU_HOTMON_HIGH,
3000                 .end    = IRQ_PRCMU_HOTMON_HIGH,
3001                 .flags  = IORESOURCE_IRQ,
3002         },
3003 };
3004
3005 static struct db8500_thsens_platform_data db8500_thsens_data = {
3006         .trip_points[0] = {
3007                 .temp = 70000,
3008                 .type = THERMAL_TRIP_ACTIVE,
3009                 .cdev_name = {
3010                         [0] = "thermal-cpufreq-0",
3011                 },
3012         },
3013         .trip_points[1] = {
3014                 .temp = 75000,
3015                 .type = THERMAL_TRIP_ACTIVE,
3016                 .cdev_name = {
3017                         [0] = "thermal-cpufreq-0",
3018                 },
3019         },
3020         .trip_points[2] = {
3021                 .temp = 80000,
3022                 .type = THERMAL_TRIP_ACTIVE,
3023                 .cdev_name = {
3024                         [0] = "thermal-cpufreq-0",
3025                 },
3026         },
3027         .trip_points[3] = {
3028                 .temp = 85000,
3029                 .type = THERMAL_TRIP_CRITICAL,
3030         },
3031         .num_trips = 4,
3032 };
3033
3034 static const struct mfd_cell common_prcmu_devs[] = {
3035         {
3036                 .name = "ux500_wdt",
3037                 .platform_data = &db8500_wdt_pdata,
3038                 .pdata_size = sizeof(db8500_wdt_pdata),
3039                 .id = -1,
3040         },
3041 };
3042
3043 static const struct mfd_cell db8500_prcmu_devs[] = {
3044         {
3045                 .name = "db8500-prcmu-regulators",
3046                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3047                 .platform_data = &db8500_regulators,
3048                 .pdata_size = sizeof(db8500_regulators),
3049         },
3050         {
3051                 .name = "cpuidle-dbx500",
3052                 .of_compatible = "stericsson,cpuidle-dbx500",
3053         },
3054         {
3055                 .name = "db8500-thermal",
3056                 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3057                 .resources = db8500_thsens_resources,
3058                 .platform_data = &db8500_thsens_data,
3059                 .pdata_size = sizeof(db8500_thsens_data),
3060         },
3061 };
3062
3063 static int db8500_prcmu_register_ab8500(struct device *parent)
3064 {
3065         struct device_node *np;
3066         struct resource ab8500_resource;
3067         const struct mfd_cell ab8500_cell = {
3068                 .name = "ab8500-core",
3069                 .of_compatible = "stericsson,ab8500",
3070                 .id = AB8500_VERSION_AB8500,
3071                 .resources = &ab8500_resource,
3072                 .num_resources = 1,
3073         };
3074
3075         if (!parent->of_node)
3076                 return -ENODEV;
3077
3078         /* Look up the device node, sneak the IRQ out of it */
3079         for_each_child_of_node(parent->of_node, np) {
3080                 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3081                         break;
3082         }
3083         if (!np) {
3084                 dev_info(parent, "could not find AB8500 node in the device tree\n");
3085                 return -ENODEV;
3086         }
3087         of_irq_to_resource_table(np, &ab8500_resource, 1);
3088
3089         return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3090 }
3091
3092 /**
3093  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3094  *
3095  */
3096 static int db8500_prcmu_probe(struct platform_device *pdev)
3097 {
3098         struct device_node *np = pdev->dev.of_node;
3099         int irq = 0, err = 0;
3100         struct resource *res;
3101
3102         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3103         if (!res) {
3104                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3105                 return -EINVAL;
3106         }
3107         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3108         if (!prcmu_base) {
3109                 dev_err(&pdev->dev,
3110                         "failed to ioremap prcmu register memory\n");
3111                 return -ENOMEM;
3112         }
3113         init_prcm_registers();
3114         dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3115         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3116         if (!res) {
3117                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3118                 return -EINVAL;
3119         }
3120         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3121                         resource_size(res));
3122         if (!tcdm_base) {
3123                 dev_err(&pdev->dev,
3124                         "failed to ioremap prcmu-tcdm register memory\n");
3125                 return -ENOMEM;
3126         }
3127
3128         /* Clean up the mailbox interrupts after pre-kernel code. */
3129         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3130
3131         irq = platform_get_irq(pdev, 0);
3132         if (irq <= 0) {
3133                 dev_err(&pdev->dev, "no prcmu irq provided\n");
3134                 return irq;
3135         }
3136
3137         err = request_threaded_irq(irq, prcmu_irq_handler,
3138                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3139         if (err < 0) {
3140                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3141                 return err;
3142         }
3143
3144         db8500_irq_init(np);
3145
3146         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3147
3148         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3149                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3150         if (err) {
3151                 pr_err("prcmu: Failed to add subdevices\n");
3152                 return err;
3153         }
3154
3155         /* TODO: Remove restriction when clk definitions are available. */
3156         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3157                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3158                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3159                                       db8500_irq_domain);
3160                 if (err) {
3161                         mfd_remove_devices(&pdev->dev);
3162                         pr_err("prcmu: Failed to add subdevices\n");
3163                         return err;
3164                 }
3165         }
3166
3167         err = db8500_prcmu_register_ab8500(&pdev->dev);
3168         if (err) {
3169                 mfd_remove_devices(&pdev->dev);
3170                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3171                 return err;
3172         }
3173
3174         pr_info("DB8500 PRCMU initialized\n");
3175         return err;
3176 }
3177 static const struct of_device_id db8500_prcmu_match[] = {
3178         { .compatible = "stericsson,db8500-prcmu"},
3179         { },
3180 };
3181
3182 static struct platform_driver db8500_prcmu_driver = {
3183         .driver = {
3184                 .name = "db8500-prcmu",
3185                 .of_match_table = db8500_prcmu_match,
3186         },
3187         .probe = db8500_prcmu_probe,
3188 };
3189
3190 static int __init db8500_prcmu_init(void)
3191 {
3192         return platform_driver_register(&db8500_prcmu_driver);
3193 }
3194 core_initcall(db8500_prcmu_init);