Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux-2.6-microblaze.git] / drivers / memory / emif.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EMIF driver
4  *
5  * Copyright (C) 2012 Texas Instruments, Inc.
6  *
7  * Aneesh V <aneesh@ti.com>
8  * Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
14 #include <linux/io.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/pm.h>
26
27 #include "emif.h"
28 #include "jedec_ddr.h"
29 #include "of_memory.h"
30
31 /**
32  * struct emif_data - Per device static data for driver's use
33  * @duplicate:                  Whether the DDR devices attached to this EMIF
34  *                              instance are exactly same as that on EMIF1. In
35  *                              this case we can save some memory and processing
36  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
37  *                              to this EMIF - read from MR4 register. If there
38  *                              are two devices attached to this EMIF, this
39  *                              value is the maximum of the two temperature
40  *                              levels.
41  * @node:                       node in the device list
42  * @base:                       base address of memory-mapped IO registers.
43  * @dev:                        device pointer.
44  * @addressing                  table with addressing information from the spec
45  * @regs_cache:                 An array of 'struct emif_regs' that stores
46  *                              calculated register values for different
47  *                              frequencies, to avoid re-calculating them on
48  *                              each DVFS transition.
49  * @curr_regs:                  The set of register values used in the last
50  *                              frequency change (i.e. corresponding to the
51  *                              frequency in effect at the moment)
52  * @plat_data:                  Pointer to saved platform data.
53  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
54  * @np_ddr:                     Pointer to ddr device tree node
55  */
56 struct emif_data {
57         u8                              duplicate;
58         u8                              temperature_level;
59         u8                              lpmode;
60         struct list_head                node;
61         unsigned long                   irq_state;
62         void __iomem                    *base;
63         struct device                   *dev;
64         const struct lpddr2_addressing  *addressing;
65         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
66         struct emif_regs                *curr_regs;
67         struct emif_platform_data       *plat_data;
68         struct dentry                   *debugfs_root;
69         struct device_node              *np_ddr;
70 };
71
72 static struct emif_data *emif1;
73 static DEFINE_SPINLOCK(emif_lock);
74 static unsigned long    irq_state;
75 static u32              t_ck; /* DDR clock period in ps */
76 static LIST_HEAD(device_list);
77
78 #ifdef CONFIG_DEBUG_FS
79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
80         struct emif_regs *regs)
81 {
82         u32 type = emif->plat_data->device_info->type;
83         u32 ip_rev = emif->plat_data->ip_rev;
84
85         seq_printf(s, "EMIF register cache dump for %dMHz\n",
86                 regs->freq/1000000);
87
88         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
89         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
90         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
91         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
92
93         if (ip_rev == EMIF_4D) {
94                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95                         regs->read_idle_ctrl_shdw_normal);
96                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97                         regs->read_idle_ctrl_shdw_volt_ramp);
98         } else if (ip_rev == EMIF_4D5) {
99                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100                         regs->dll_calib_ctrl_shdw_normal);
101                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102                         regs->dll_calib_ctrl_shdw_volt_ramp);
103         }
104
105         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
106                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107                         regs->ref_ctrl_shdw_derated);
108                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109                         regs->sdram_tim1_shdw_derated);
110                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111                         regs->sdram_tim3_shdw_derated);
112         }
113 }
114
115 static int emif_regdump_show(struct seq_file *s, void *unused)
116 {
117         struct emif_data        *emif   = s->private;
118         struct emif_regs        **regs_cache;
119         int                     i;
120
121         if (emif->duplicate)
122                 regs_cache = emif1->regs_cache;
123         else
124                 regs_cache = emif->regs_cache;
125
126         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
127                 do_emif_regdump_show(s, emif, regs_cache[i]);
128                 seq_putc(s, '\n');
129         }
130
131         return 0;
132 }
133
134 DEFINE_SHOW_ATTRIBUTE(emif_regdump);
135
136 static int emif_mr4_show(struct seq_file *s, void *unused)
137 {
138         struct emif_data *emif = s->private;
139
140         seq_printf(s, "MR4=%d\n", emif->temperature_level);
141         return 0;
142 }
143
144 DEFINE_SHOW_ATTRIBUTE(emif_mr4);
145
146 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
147 {
148         emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
149         debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
150                             &emif_regdump_fops);
151         debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
152                             &emif_mr4_fops);
153         return 0;
154 }
155
156 static void __exit emif_debugfs_exit(struct emif_data *emif)
157 {
158         debugfs_remove_recursive(emif->debugfs_root);
159         emif->debugfs_root = NULL;
160 }
161 #else
162 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
163 {
164         return 0;
165 }
166
167 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
168 {
169 }
170 #endif
171
172 /*
173  * Calculate the period of DDR clock from frequency value
174  */
175 static void set_ddr_clk_period(u32 freq)
176 {
177         /* Divide 10^12 by frequency to get period in ps */
178         t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
179 }
180
181 /*
182  * Get bus width used by EMIF. Note that this may be different from the
183  * bus width of the DDR devices used. For instance two 16-bit DDR devices
184  * may be connected to a given CS of EMIF. In this case bus width as far
185  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
186  */
187 static u32 get_emif_bus_width(struct emif_data *emif)
188 {
189         u32             width;
190         void __iomem    *base = emif->base;
191
192         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
193                         >> NARROW_MODE_SHIFT;
194         width = width == 0 ? 32 : 16;
195
196         return width;
197 }
198
199 /*
200  * Get the CL from SDRAM_CONFIG register
201  */
202 static u32 get_cl(struct emif_data *emif)
203 {
204         u32             cl;
205         void __iomem    *base = emif->base;
206
207         cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
208
209         return cl;
210 }
211
212 static void set_lpmode(struct emif_data *emif, u8 lpmode)
213 {
214         u32 temp;
215         void __iomem *base = emif->base;
216
217         /*
218          * Workaround for errata i743 - LPDDR2 Power-Down State is Not
219          * Efficient
220          *
221          * i743 DESCRIPTION:
222          * The EMIF supports power-down state for low power. The EMIF
223          * automatically puts the SDRAM into power-down after the memory is
224          * not accessed for a defined number of cycles and the
225          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
226          * As the EMIF supports automatic output impedance calibration, a ZQ
227          * calibration long command is issued every time it exits active
228          * power-down and precharge power-down modes. The EMIF waits and
229          * blocks any other command during this calibration.
230          * The EMIF does not allow selective disabling of ZQ calibration upon
231          * exit of power-down mode. Due to very short periods of power-down
232          * cycles, ZQ calibration overhead creates bandwidth issues and
233          * increases overall system power consumption. On the other hand,
234          * issuing ZQ calibration long commands when exiting self-refresh is
235          * still required.
236          *
237          * WORKAROUND
238          * Because there is no power consumption benefit of the power-down due
239          * to the calibration and there is a performance risk, the guideline
240          * is to not allow power-down state and, therefore, to not have set
241          * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
242          */
243         if ((emif->plat_data->ip_rev == EMIF_4D) &&
244             (lpmode == EMIF_LP_MODE_PWR_DN)) {
245                 WARN_ONCE(1,
246                           "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
247                 /* rollback LP_MODE to Self-refresh mode */
248                 lpmode = EMIF_LP_MODE_SELF_REFRESH;
249         }
250
251         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
252         temp &= ~LP_MODE_MASK;
253         temp |= (lpmode << LP_MODE_SHIFT);
254         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
255 }
256
257 static void do_freq_update(void)
258 {
259         struct emif_data *emif;
260
261         /*
262          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
263          *
264          * i728 DESCRIPTION:
265          * The EMIF automatically puts the SDRAM into self-refresh mode
266          * after the EMIF has not performed accesses during
267          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
268          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
269          * to 0x2. If during a small window the following three events
270          * occur:
271          * - The SR_TIMING counter expires
272          * - And frequency change is requested
273          * - And OCP access is requested
274          * Then it causes instable clock on the DDR interface.
275          *
276          * WORKAROUND
277          * To avoid the occurrence of the three events, the workaround
278          * is to disable the self-refresh when requesting a frequency
279          * change. Before requesting a frequency change the software must
280          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
281          * frequency change has been done, the software can reprogram
282          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
283          */
284         list_for_each_entry(emif, &device_list, node) {
285                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
286                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
287         }
288
289         /*
290          * TODO: Do FREQ_UPDATE here when an API
291          * is available for this as part of the new
292          * clock framework
293          */
294
295         list_for_each_entry(emif, &device_list, node) {
296                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
297                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
298         }
299 }
300
301 /* Find addressing table entry based on the device's type and density */
302 static const struct lpddr2_addressing *get_addressing_table(
303         const struct ddr_device_info *device_info)
304 {
305         u32             index, type, density;
306
307         type = device_info->type;
308         density = device_info->density;
309
310         switch (type) {
311         case DDR_TYPE_LPDDR2_S4:
312                 index = density - 1;
313                 break;
314         case DDR_TYPE_LPDDR2_S2:
315                 switch (density) {
316                 case DDR_DENSITY_1Gb:
317                 case DDR_DENSITY_2Gb:
318                         index = density + 3;
319                         break;
320                 default:
321                         index = density - 1;
322                 }
323                 break;
324         default:
325                 return NULL;
326         }
327
328         return &lpddr2_jedec_addressing_table[index];
329 }
330
331 /*
332  * Find the the right timing table from the array of timing
333  * tables of the device using DDR clock frequency
334  */
335 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
336                 u32 freq)
337 {
338         u32                             i, min, max, freq_nearest;
339         const struct lpddr2_timings     *timings = NULL;
340         const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
341         struct                          device *dev = emif->dev;
342
343         /* Start with a very high frequency - 1GHz */
344         freq_nearest = 1000000000;
345
346         /*
347          * Find the timings table such that:
348          *  1. the frequency range covers the required frequency(safe) AND
349          *  2. the max_freq is closest to the required frequency(optimal)
350          */
351         for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
352                 max = timings_arr[i].max_freq;
353                 min = timings_arr[i].min_freq;
354                 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
355                         freq_nearest = max;
356                         timings = &timings_arr[i];
357                 }
358         }
359
360         if (!timings)
361                 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
362                         __func__, freq);
363
364         dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
365                 __func__, freq, freq_nearest);
366
367         return timings;
368 }
369
370 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
371                 const struct lpddr2_addressing *addressing)
372 {
373         u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
374
375         /* Scale down frequency and t_refi to avoid overflow */
376         freq_khz = freq / 1000;
377         t_refi = addressing->tREFI_ns / 100;
378
379         /*
380          * refresh rate to be set is 'tREFI(in us) * freq in MHz
381          * division by 10000 to account for change in units
382          */
383         val = t_refi * freq_khz / 10000;
384         ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
385
386         return ref_ctrl_shdw;
387 }
388
389 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
390                 const struct lpddr2_min_tck *min_tck,
391                 const struct lpddr2_addressing *addressing)
392 {
393         u32 tim1 = 0, val = 0;
394
395         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
396         tim1 |= val << T_WTR_SHIFT;
397
398         if (addressing->num_banks == B8)
399                 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
400         else
401                 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
402         tim1 |= (val - 1) << T_RRD_SHIFT;
403
404         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
405         tim1 |= val << T_RC_SHIFT;
406
407         val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
408         tim1 |= (val - 1) << T_RAS_SHIFT;
409
410         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
411         tim1 |= val << T_WR_SHIFT;
412
413         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
414         tim1 |= val << T_RCD_SHIFT;
415
416         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
417         tim1 |= val << T_RP_SHIFT;
418
419         return tim1;
420 }
421
422 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
423                 const struct lpddr2_min_tck *min_tck,
424                 const struct lpddr2_addressing *addressing)
425 {
426         u32 tim1 = 0, val = 0;
427
428         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
429         tim1 = val << T_WTR_SHIFT;
430
431         /*
432          * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
433          * to tFAW for de-rating
434          */
435         if (addressing->num_banks == B8) {
436                 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
437         } else {
438                 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
439                 val = max(min_tck->tRRD, val) - 1;
440         }
441         tim1 |= val << T_RRD_SHIFT;
442
443         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
444         tim1 |= (val - 1) << T_RC_SHIFT;
445
446         val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
447         val = max(min_tck->tRASmin, val) - 1;
448         tim1 |= val << T_RAS_SHIFT;
449
450         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
451         tim1 |= val << T_WR_SHIFT;
452
453         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
454         tim1 |= (val - 1) << T_RCD_SHIFT;
455
456         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
457         tim1 |= (val - 1) << T_RP_SHIFT;
458
459         return tim1;
460 }
461
462 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
463                 const struct lpddr2_min_tck *min_tck,
464                 const struct lpddr2_addressing *addressing,
465                 u32 type)
466 {
467         u32 tim2 = 0, val = 0;
468
469         val = min_tck->tCKE - 1;
470         tim2 |= val << T_CKE_SHIFT;
471
472         val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
473         tim2 |= val << T_RTP_SHIFT;
474
475         /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
476         val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
477         tim2 |= val << T_XSNR_SHIFT;
478
479         /* XSRD same as XSNR for LPDDR2 */
480         tim2 |= val << T_XSRD_SHIFT;
481
482         val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
483         tim2 |= val << T_XP_SHIFT;
484
485         return tim2;
486 }
487
488 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
489                 const struct lpddr2_min_tck *min_tck,
490                 const struct lpddr2_addressing *addressing,
491                 u32 type, u32 ip_rev, u32 derated)
492 {
493         u32 tim3 = 0, val = 0, t_dqsck;
494
495         val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
496         val = val > 0xF ? 0xF : val;
497         tim3 |= val << T_RAS_MAX_SHIFT;
498
499         val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
500         tim3 |= val << T_RFC_SHIFT;
501
502         t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
503                 timings->tDQSCK_max_derated : timings->tDQSCK_max;
504         if (ip_rev == EMIF_4D5)
505                 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
506         else
507                 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
508
509         tim3 |= val << T_TDQSCKMAX_SHIFT;
510
511         val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
512         tim3 |= val << ZQ_ZQCS_SHIFT;
513
514         val = DIV_ROUND_UP(timings->tCKESR, t_ck);
515         val = max(min_tck->tCKESR, val) - 1;
516         tim3 |= val << T_CKESR_SHIFT;
517
518         if (ip_rev == EMIF_4D5) {
519                 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
520
521                 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
522                 tim3 |= val << T_PDLL_UL_SHIFT;
523         }
524
525         return tim3;
526 }
527
528 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
529                 bool cs1_used, bool cal_resistors_per_cs)
530 {
531         u32 zq = 0, val = 0;
532
533         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
534         zq |= val << ZQ_REFINTERVAL_SHIFT;
535
536         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
537         zq |= val << ZQ_ZQCL_MULT_SHIFT;
538
539         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
540         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
541
542         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
543
544         if (cal_resistors_per_cs)
545                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
546         else
547                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
548
549         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
550
551         val = cs1_used ? 1 : 0;
552         zq |= val << ZQ_CS1EN_SHIFT;
553
554         return zq;
555 }
556
557 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
558                 const struct emif_custom_configs *custom_configs, bool cs1_used,
559                 u32 sdram_io_width, u32 emif_bus_width)
560 {
561         u32 alert = 0, interval, devcnt;
562
563         if (custom_configs && (custom_configs->mask &
564                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
565                 interval = custom_configs->temp_alert_poll_interval_ms;
566         else
567                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
568
569         interval *= 1000000;                    /* Convert to ns */
570         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
571         alert |= (interval << TA_REFINTERVAL_SHIFT);
572
573         /*
574          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
575          * also to this form and subtract to get TA_DEVCNT, which is
576          * in log2(x) form.
577          */
578         emif_bus_width = __fls(emif_bus_width) - 1;
579         devcnt = emif_bus_width - sdram_io_width;
580         alert |= devcnt << TA_DEVCNT_SHIFT;
581
582         /* DEVWDT is in 'log2(x) - 3' form */
583         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
584
585         alert |= 1 << TA_SFEXITEN_SHIFT;
586         alert |= 1 << TA_CS0EN_SHIFT;
587         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
588
589         return alert;
590 }
591
592 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
593 {
594         u32 idle = 0, val = 0;
595
596         /*
597          * Maximum value in normal conditions and increased frequency
598          * when voltage is ramping
599          */
600         if (volt_ramp)
601                 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
602         else
603                 val = 0x1FF;
604
605         /*
606          * READ_IDLE_CTRL register in EMIF4D has same offset and fields
607          * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
608          */
609         idle |= val << DLL_CALIB_INTERVAL_SHIFT;
610         idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
611
612         return idle;
613 }
614
615 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
616 {
617         u32 calib = 0, val = 0;
618
619         if (volt_ramp == DDR_VOLTAGE_RAMPING)
620                 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
621         else
622                 val = 0; /* Disabled when voltage is stable */
623
624         calib |= val << DLL_CALIB_INTERVAL_SHIFT;
625         calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
626
627         return calib;
628 }
629
630 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
631         u32 freq, u8 RL)
632 {
633         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
634
635         val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
636         phy |= val << READ_LATENCY_SHIFT_4D;
637
638         if (freq <= 100000000)
639                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
640         else if (freq <= 200000000)
641                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
642         else
643                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
644
645         phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
646
647         return phy;
648 }
649
650 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
651 {
652         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
653
654         /*
655          * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
656          * half-delay is not needed else set half-delay
657          */
658         if (freq >= 265000000 && freq < 267000000)
659                 half_delay = 0;
660         else
661                 half_delay = 1;
662
663         phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
664         phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
665                         t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
666
667         return phy;
668 }
669
670 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
671 {
672         u32 fifo_we_slave_ratio;
673
674         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
675                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
676
677         return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
678                 fifo_we_slave_ratio << 22;
679 }
680
681 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
682 {
683         u32 fifo_we_slave_ratio;
684
685         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
686                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
687
688         return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
689                 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
690 }
691
692 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
693 {
694         u32 fifo_we_slave_ratio;
695
696         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
697                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
698
699         return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
700                 fifo_we_slave_ratio << 13;
701 }
702
703 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
704 {
705         u32 pwr_mgmt_ctrl       = 0, timeout;
706         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
707         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
708         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
709         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
710         u32 mask;
711         u8 shift;
712
713         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
714
715         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
716                 lpmode          = cust_cfgs->lpmode;
717                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
718                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
719                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
720         }
721
722         /* Timeout based on DDR frequency */
723         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
724
725         /*
726          * The value to be set in register is "log2(timeout) - 3"
727          * if timeout < 16 load 0 in register
728          * if timeout is not a power of 2, round to next highest power of 2
729          */
730         if (timeout < 16) {
731                 timeout = 0;
732         } else {
733                 if (timeout & (timeout - 1))
734                         timeout <<= 1;
735                 timeout = __fls(timeout) - 3;
736         }
737
738         switch (lpmode) {
739         case EMIF_LP_MODE_CLOCK_STOP:
740                 shift = CS_TIM_SHIFT;
741                 mask = CS_TIM_MASK;
742                 break;
743         case EMIF_LP_MODE_SELF_REFRESH:
744                 /* Workaround for errata i735 */
745                 if (timeout < 6)
746                         timeout = 6;
747
748                 shift = SR_TIM_SHIFT;
749                 mask = SR_TIM_MASK;
750                 break;
751         case EMIF_LP_MODE_PWR_DN:
752                 shift = PD_TIM_SHIFT;
753                 mask = PD_TIM_MASK;
754                 break;
755         case EMIF_LP_MODE_DISABLE:
756         default:
757                 mask = 0;
758                 shift = 0;
759                 break;
760         }
761         /* Round to maximum in case of overflow, BUT warn! */
762         if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
763                 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
764                        lpmode,
765                        timeout_perf,
766                        timeout_pwr,
767                        freq_threshold);
768                 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
769                      timeout, mask >> shift);
770                 timeout = mask >> shift;
771         }
772
773         /* Setup required timing */
774         pwr_mgmt_ctrl = (timeout << shift) & mask;
775         /* setup a default mask for rest of the modes */
776         pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
777                           ~mask;
778
779         /* No CS_TIM in EMIF_4D5 */
780         if (ip_rev == EMIF_4D5)
781                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
782
783         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
784
785         return pwr_mgmt_ctrl;
786 }
787
788 /*
789  * Get the temperature level of the EMIF instance:
790  * Reads the MR4 register of attached SDRAM parts to find out the temperature
791  * level. If there are two parts attached(one on each CS), then the temperature
792  * level for the EMIF instance is the higher of the two temperatures.
793  */
794 static void get_temperature_level(struct emif_data *emif)
795 {
796         u32             temp, temperature_level;
797         void __iomem    *base;
798
799         base = emif->base;
800
801         /* Read mode register 4 */
802         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
803         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
804         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
805                                 MR4_SDRAM_REF_RATE_SHIFT;
806
807         if (emif->plat_data->device_info->cs1_used) {
808                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
809                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
810                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
811                                 >> MR4_SDRAM_REF_RATE_SHIFT;
812                 temperature_level = max(temp, temperature_level);
813         }
814
815         /* treat everything less than nominal(3) in MR4 as nominal */
816         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
817                 temperature_level = SDRAM_TEMP_NOMINAL;
818
819         /* if we get reserved value in MR4 persist with the existing value */
820         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
821                 emif->temperature_level = temperature_level;
822 }
823
824 /*
825  * Program EMIF shadow registers that are not dependent on temperature
826  * or voltage
827  */
828 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
829 {
830         void __iomem    *base = emif->base;
831
832         writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
833         writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
834         writel(regs->pwr_mgmt_ctrl_shdw,
835                base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
836
837         /* Settings specific for EMIF4D5 */
838         if (emif->plat_data->ip_rev != EMIF_4D5)
839                 return;
840         writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
841         writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
842         writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
843 }
844
845 /*
846  * When voltage ramps dll calibration and forced read idle should
847  * happen more often
848  */
849 static void setup_volt_sensitive_regs(struct emif_data *emif,
850                 struct emif_regs *regs, u32 volt_state)
851 {
852         u32             calib_ctrl;
853         void __iomem    *base = emif->base;
854
855         /*
856          * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
857          * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
858          * is an alias of the respective read_idle_ctrl_shdw_* (members of
859          * a union). So, the below code takes care of both cases
860          */
861         if (volt_state == DDR_VOLTAGE_RAMPING)
862                 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
863         else
864                 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
865
866         writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
867 }
868
869 /*
870  * setup_temperature_sensitive_regs() - set the timings for temperature
871  * sensitive registers. This happens once at initialisation time based
872  * on the temperature at boot time and subsequently based on the temperature
873  * alert interrupt. Temperature alert can happen when the temperature
874  * increases or drops. So this function can have the effect of either
875  * derating the timings or going back to nominal values.
876  */
877 static void setup_temperature_sensitive_regs(struct emif_data *emif,
878                 struct emif_regs *regs)
879 {
880         u32             tim1, tim3, ref_ctrl, type;
881         void __iomem    *base = emif->base;
882         u32             temperature;
883
884         type = emif->plat_data->device_info->type;
885
886         tim1 = regs->sdram_tim1_shdw;
887         tim3 = regs->sdram_tim3_shdw;
888         ref_ctrl = regs->ref_ctrl_shdw;
889
890         /* No de-rating for non-lpddr2 devices */
891         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
892                 goto out;
893
894         temperature = emif->temperature_level;
895         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
896                 ref_ctrl = regs->ref_ctrl_shdw_derated;
897         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
898                 tim1 = regs->sdram_tim1_shdw_derated;
899                 tim3 = regs->sdram_tim3_shdw_derated;
900                 ref_ctrl = regs->ref_ctrl_shdw_derated;
901         }
902
903 out:
904         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
905         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
906         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
907 }
908
909 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
910 {
911         u32             old_temp_level;
912         irqreturn_t     ret = IRQ_HANDLED;
913         struct emif_custom_configs *custom_configs;
914
915         spin_lock_irqsave(&emif_lock, irq_state);
916         old_temp_level = emif->temperature_level;
917         get_temperature_level(emif);
918
919         if (unlikely(emif->temperature_level == old_temp_level)) {
920                 goto out;
921         } else if (!emif->curr_regs) {
922                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
923                 goto out;
924         }
925
926         custom_configs = emif->plat_data->custom_configs;
927
928         /*
929          * IF we detect higher than "nominal rating" from DDR sensor
930          * on an unsupported DDR part, shutdown system
931          */
932         if (custom_configs && !(custom_configs->mask &
933                                 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
934                 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
935                         dev_err(emif->dev,
936                                 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
937                                 __func__, emif->temperature_level);
938                         /*
939                          * Temperature far too high - do kernel_power_off()
940                          * from thread context
941                          */
942                         emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
943                         ret = IRQ_WAKE_THREAD;
944                         goto out;
945                 }
946         }
947
948         if (emif->temperature_level < old_temp_level ||
949                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
950                 /*
951                  * Temperature coming down - defer handling to thread OR
952                  * Temperature far too high - do kernel_power_off() from
953                  * thread context
954                  */
955                 ret = IRQ_WAKE_THREAD;
956         } else {
957                 /* Temperature is going up - handle immediately */
958                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
959                 do_freq_update();
960         }
961
962 out:
963         spin_unlock_irqrestore(&emif_lock, irq_state);
964         return ret;
965 }
966
967 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
968 {
969         u32                     interrupts;
970         struct emif_data        *emif = dev_id;
971         void __iomem            *base = emif->base;
972         struct device           *dev = emif->dev;
973         irqreturn_t             ret = IRQ_HANDLED;
974
975         /* Save the status and clear it */
976         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
977         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
978
979         /*
980          * Handle temperature alert
981          * Temperature alert should be same for all ports
982          * So, it's enough to process it only for one of the ports
983          */
984         if (interrupts & TA_SYS_MASK)
985                 ret = handle_temp_alert(base, emif);
986
987         if (interrupts & ERR_SYS_MASK)
988                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
989
990         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
991                 /* Save the status and clear it */
992                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
993                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
994
995                 if (interrupts & ERR_LL_MASK)
996                         dev_err(dev, "Access error from LL port - %x\n",
997                                 interrupts);
998         }
999
1000         return ret;
1001 }
1002
1003 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1004 {
1005         struct emif_data        *emif = dev_id;
1006
1007         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1008                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1009
1010                 /* If we have Power OFF ability, use it, else try restarting */
1011                 if (pm_power_off) {
1012                         kernel_power_off();
1013                 } else {
1014                         WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1015                         kernel_restart("SDRAM Over-temp Emergency restart");
1016                 }
1017                 return IRQ_HANDLED;
1018         }
1019
1020         spin_lock_irqsave(&emif_lock, irq_state);
1021
1022         if (emif->curr_regs) {
1023                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1024                 do_freq_update();
1025         } else {
1026                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1027         }
1028
1029         spin_unlock_irqrestore(&emif_lock, irq_state);
1030
1031         return IRQ_HANDLED;
1032 }
1033
1034 static void clear_all_interrupts(struct emif_data *emif)
1035 {
1036         void __iomem    *base = emif->base;
1037
1038         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1039                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1040         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1041                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1042                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
1043 }
1044
1045 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1046 {
1047         void __iomem            *base = emif->base;
1048
1049         /* Disable all interrupts */
1050         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1051                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1052         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1053                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1054                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1055
1056         /* Clear all interrupts */
1057         clear_all_interrupts(emif);
1058 }
1059
1060 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1061 {
1062         u32             interrupts, type;
1063         void __iomem    *base = emif->base;
1064
1065         type = emif->plat_data->device_info->type;
1066
1067         clear_all_interrupts(emif);
1068
1069         /* Enable interrupts for SYS interface */
1070         interrupts = EN_ERR_SYS_MASK;
1071         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1072                 interrupts |= EN_TA_SYS_MASK;
1073         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1074
1075         /* Enable interrupts for LL interface */
1076         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1077                 /* TA need not be enabled for LL */
1078                 interrupts = EN_ERR_LL_MASK;
1079                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1080         }
1081
1082         /* setup IRQ handlers */
1083         return devm_request_threaded_irq(emif->dev, irq,
1084                                     emif_interrupt_handler,
1085                                     emif_threaded_isr,
1086                                     0, dev_name(emif->dev),
1087                                     emif);
1088
1089 }
1090
1091 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1092 {
1093         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1094         void __iomem                    *base = emif->base;
1095         const struct lpddr2_addressing  *addressing;
1096         const struct ddr_device_info    *device_info;
1097
1098         device_info = emif->plat_data->device_info;
1099         addressing = get_addressing_table(device_info);
1100
1101         /*
1102          * Init power management settings
1103          * We don't know the frequency yet. Use a high frequency
1104          * value for a conservative timeout setting
1105          */
1106         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1107                         emif->plat_data->ip_rev);
1108         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1109         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1110
1111         /* Init ZQ calibration settings */
1112         zq = get_zq_config_reg(addressing, device_info->cs1_used,
1113                 device_info->cal_resistors_per_cs);
1114         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1115
1116         /* Check temperature level temperature level*/
1117         get_temperature_level(emif);
1118         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1119                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1120
1121         /* Init temperature polling */
1122         temp_alert_cfg = get_temp_alert_config(addressing,
1123                 emif->plat_data->custom_configs, device_info->cs1_used,
1124                 device_info->io_width, get_emif_bus_width(emif));
1125         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1126
1127         /*
1128          * Program external PHY control registers that are not frequency
1129          * dependent
1130          */
1131         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1132                 return;
1133         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1134         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1135         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1136         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1137         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1138         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1139         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1140         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1141         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1142         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1143         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1144         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1145         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1146         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1147         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1148         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1149         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1150         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1151         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1152         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1153         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1154 }
1155
1156 static void get_default_timings(struct emif_data *emif)
1157 {
1158         struct emif_platform_data *pd = emif->plat_data;
1159
1160         pd->timings             = lpddr2_jedec_timings;
1161         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1162
1163         dev_warn(emif->dev, "%s: using default timings\n", __func__);
1164 }
1165
1166 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1167                 u32 ip_rev, struct device *dev)
1168 {
1169         int valid;
1170
1171         valid = (type == DDR_TYPE_LPDDR2_S4 ||
1172                         type == DDR_TYPE_LPDDR2_S2)
1173                 && (density >= DDR_DENSITY_64Mb
1174                         && density <= DDR_DENSITY_8Gb)
1175                 && (io_width >= DDR_IO_WIDTH_8
1176                         && io_width <= DDR_IO_WIDTH_32);
1177
1178         /* Combinations of EMIF and PHY revisions that we support today */
1179         switch (ip_rev) {
1180         case EMIF_4D:
1181                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1182                 break;
1183         case EMIF_4D5:
1184                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1185                 break;
1186         default:
1187                 valid = 0;
1188         }
1189
1190         if (!valid)
1191                 dev_err(dev, "%s: invalid DDR details\n", __func__);
1192         return valid;
1193 }
1194
1195 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1196                 struct device *dev)
1197 {
1198         int valid = 1;
1199
1200         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1201                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1202                 valid = cust_cfgs->lpmode_freq_threshold &&
1203                         cust_cfgs->lpmode_timeout_performance &&
1204                         cust_cfgs->lpmode_timeout_power;
1205
1206         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1207                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1208
1209         if (!valid)
1210                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1211
1212         return valid;
1213 }
1214
1215 #if defined(CONFIG_OF)
1216 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1217                 struct emif_data *emif)
1218 {
1219         struct emif_custom_configs      *cust_cfgs = NULL;
1220         int                             len;
1221         const __be32                    *lpmode, *poll_intvl;
1222
1223         lpmode = of_get_property(np_emif, "low-power-mode", &len);
1224         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1225
1226         if (lpmode || poll_intvl)
1227                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1228                         GFP_KERNEL);
1229
1230         if (!cust_cfgs)
1231                 return;
1232
1233         if (lpmode) {
1234                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1235                 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1236                 of_property_read_u32(np_emif,
1237                                 "low-power-mode-timeout-performance",
1238                                 &cust_cfgs->lpmode_timeout_performance);
1239                 of_property_read_u32(np_emif,
1240                                 "low-power-mode-timeout-power",
1241                                 &cust_cfgs->lpmode_timeout_power);
1242                 of_property_read_u32(np_emif,
1243                                 "low-power-mode-freq-threshold",
1244                                 &cust_cfgs->lpmode_freq_threshold);
1245         }
1246
1247         if (poll_intvl) {
1248                 cust_cfgs->mask |=
1249                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1250                 cust_cfgs->temp_alert_poll_interval_ms =
1251                                                 be32_to_cpup(poll_intvl);
1252         }
1253
1254         if (of_find_property(np_emif, "extended-temp-part", &len))
1255                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1256
1257         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1258                 devm_kfree(emif->dev, cust_cfgs);
1259                 return;
1260         }
1261
1262         emif->plat_data->custom_configs = cust_cfgs;
1263 }
1264
1265 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1266                 struct device_node *np_ddr,
1267                 struct ddr_device_info *dev_info)
1268 {
1269         u32 density = 0, io_width = 0;
1270         int len;
1271
1272         if (of_find_property(np_emif, "cs1-used", &len))
1273                 dev_info->cs1_used = true;
1274
1275         if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1276                 dev_info->cal_resistors_per_cs = true;
1277
1278         if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
1279                 dev_info->type = DDR_TYPE_LPDDR2_S4;
1280         else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
1281                 dev_info->type = DDR_TYPE_LPDDR2_S2;
1282
1283         of_property_read_u32(np_ddr, "density", &density);
1284         of_property_read_u32(np_ddr, "io-width", &io_width);
1285
1286         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1287         if (density & (density - 1))
1288                 dev_info->density = 0;
1289         else
1290                 dev_info->density = __fls(density) - 5;
1291
1292         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1293         if (io_width & (io_width - 1))
1294                 dev_info->io_width = 0;
1295         else
1296                 dev_info->io_width = __fls(io_width) - 1;
1297 }
1298
1299 static struct emif_data * __init_or_module of_get_memory_device_details(
1300                 struct device_node *np_emif, struct device *dev)
1301 {
1302         struct emif_data                *emif = NULL;
1303         struct ddr_device_info          *dev_info = NULL;
1304         struct emif_platform_data       *pd = NULL;
1305         struct device_node              *np_ddr;
1306         int                             len;
1307
1308         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1309         if (!np_ddr)
1310                 goto error;
1311         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1312         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1313         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1314
1315         if (!emif || !pd || !dev_info) {
1316                 dev_err(dev, "%s: Out of memory!!\n",
1317                         __func__);
1318                 goto error;
1319         }
1320
1321         emif->plat_data         = pd;
1322         pd->device_info         = dev_info;
1323         emif->dev               = dev;
1324         emif->np_ddr            = np_ddr;
1325         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1326
1327         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1328                 emif->plat_data->ip_rev = EMIF_4D;
1329         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1330                 emif->plat_data->ip_rev = EMIF_4D5;
1331
1332         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1333
1334         if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1335                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1336
1337         of_get_ddr_info(np_emif, np_ddr, dev_info);
1338         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1339                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1340                         emif->dev)) {
1341                 dev_err(dev, "%s: invalid device data!!\n", __func__);
1342                 goto error;
1343         }
1344         /*
1345          * For EMIF instances other than EMIF1 see if the devices connected
1346          * are exactly same as on EMIF1(which is typically the case). If so,
1347          * mark it as a duplicate of EMIF1. This will save some memory and
1348          * computation.
1349          */
1350         if (emif1 && emif1->np_ddr == np_ddr) {
1351                 emif->duplicate = true;
1352                 goto out;
1353         } else if (emif1) {
1354                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1355                         __func__);
1356         }
1357
1358         of_get_custom_configs(np_emif, emif);
1359         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1360                                         emif->plat_data->device_info->type,
1361                                         &emif->plat_data->timings_arr_size);
1362
1363         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1364         goto out;
1365
1366 error:
1367         return NULL;
1368 out:
1369         return emif;
1370 }
1371
1372 #else
1373
1374 static struct emif_data * __init_or_module of_get_memory_device_details(
1375                 struct device_node *np_emif, struct device *dev)
1376 {
1377         return NULL;
1378 }
1379 #endif
1380
1381 static struct emif_data *__init_or_module get_device_details(
1382                 struct platform_device *pdev)
1383 {
1384         u32                             size;
1385         struct emif_data                *emif = NULL;
1386         struct ddr_device_info          *dev_info;
1387         struct emif_custom_configs      *cust_cfgs;
1388         struct emif_platform_data       *pd;
1389         struct device                   *dev;
1390         void                            *temp;
1391
1392         pd = pdev->dev.platform_data;
1393         dev = &pdev->dev;
1394
1395         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1396                         pd->device_info->density, pd->device_info->io_width,
1397                         pd->phy_type, pd->ip_rev, dev))) {
1398                 dev_err(dev, "%s: invalid device data\n", __func__);
1399                 goto error;
1400         }
1401
1402         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1403         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1404         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1405
1406         if (!emif || !pd || !dev_info) {
1407                 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1408                 goto error;
1409         }
1410
1411         memcpy(temp, pd, sizeof(*pd));
1412         pd = temp;
1413         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1414
1415         pd->device_info         = dev_info;
1416         emif->plat_data         = pd;
1417         emif->dev               = dev;
1418         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1419
1420         /*
1421          * For EMIF instances other than EMIF1 see if the devices connected
1422          * are exactly same as on EMIF1(which is typically the case). If so,
1423          * mark it as a duplicate of EMIF1 and skip copying timings data.
1424          * This will save some memory and some computation later.
1425          */
1426         emif->duplicate = emif1 && (memcmp(dev_info,
1427                 emif1->plat_data->device_info,
1428                 sizeof(struct ddr_device_info)) == 0);
1429
1430         if (emif->duplicate) {
1431                 pd->timings = NULL;
1432                 pd->min_tck = NULL;
1433                 goto out;
1434         } else if (emif1) {
1435                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1436                         __func__);
1437         }
1438
1439         /*
1440          * Copy custom configs - ignore allocation error, if any, as
1441          * custom_configs is not very critical
1442          */
1443         cust_cfgs = pd->custom_configs;
1444         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1445                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1446                 if (temp)
1447                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1448                 else
1449                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1450                                 __LINE__);
1451                 pd->custom_configs = temp;
1452         }
1453
1454         /*
1455          * Copy timings and min-tck values from platform data. If it is not
1456          * available or if memory allocation fails, use JEDEC defaults
1457          */
1458         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1459         if (pd->timings) {
1460                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1461                 if (temp) {
1462                         memcpy(temp, pd->timings, size);
1463                         pd->timings = temp;
1464                 } else {
1465                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1466                                 __LINE__);
1467                         get_default_timings(emif);
1468                 }
1469         } else {
1470                 get_default_timings(emif);
1471         }
1472
1473         if (pd->min_tck) {
1474                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1475                 if (temp) {
1476                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1477                         pd->min_tck = temp;
1478                 } else {
1479                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1480                                 __LINE__);
1481                         pd->min_tck = &lpddr2_jedec_min_tck;
1482                 }
1483         } else {
1484                 pd->min_tck = &lpddr2_jedec_min_tck;
1485         }
1486
1487 out:
1488         return emif;
1489
1490 error:
1491         return NULL;
1492 }
1493
1494 static int __init_or_module emif_probe(struct platform_device *pdev)
1495 {
1496         struct emif_data        *emif;
1497         struct resource         *res;
1498         int                     irq;
1499
1500         if (pdev->dev.of_node)
1501                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1502         else
1503                 emif = get_device_details(pdev);
1504
1505         if (!emif) {
1506                 pr_err("%s: error getting device data\n", __func__);
1507                 goto error;
1508         }
1509
1510         list_add(&emif->node, &device_list);
1511         emif->addressing = get_addressing_table(emif->plat_data->device_info);
1512
1513         /* Save pointers to each other in emif and device structures */
1514         emif->dev = &pdev->dev;
1515         platform_set_drvdata(pdev, emif);
1516
1517         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1518         emif->base = devm_ioremap_resource(emif->dev, res);
1519         if (IS_ERR(emif->base))
1520                 goto error;
1521
1522         irq = platform_get_irq(pdev, 0);
1523         if (irq < 0)
1524                 goto error;
1525
1526         emif_onetime_settings(emif);
1527         emif_debugfs_init(emif);
1528         disable_and_clear_all_interrupts(emif);
1529         setup_interrupts(emif, irq);
1530
1531         /* One-time actions taken on probing the first device */
1532         if (!emif1) {
1533                 emif1 = emif;
1534
1535                 /*
1536                  * TODO: register notifiers for frequency and voltage
1537                  * change here once the respective frameworks are
1538                  * available
1539                  */
1540         }
1541
1542         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1543                 __func__, emif->base, irq);
1544
1545         return 0;
1546 error:
1547         return -ENODEV;
1548 }
1549
1550 static int __exit emif_remove(struct platform_device *pdev)
1551 {
1552         struct emif_data *emif = platform_get_drvdata(pdev);
1553
1554         emif_debugfs_exit(emif);
1555
1556         return 0;
1557 }
1558
1559 static void emif_shutdown(struct platform_device *pdev)
1560 {
1561         struct emif_data        *emif = platform_get_drvdata(pdev);
1562
1563         disable_and_clear_all_interrupts(emif);
1564 }
1565
1566 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1567                 struct emif_regs *regs)
1568 {
1569         u32                             ip_rev, phy_type;
1570         u32                             cl, type;
1571         const struct lpddr2_timings     *timings;
1572         const struct lpddr2_min_tck     *min_tck;
1573         const struct ddr_device_info    *device_info;
1574         const struct lpddr2_addressing  *addressing;
1575         struct emif_data                *emif_for_calc;
1576         struct device                   *dev;
1577
1578         dev = emif->dev;
1579         /*
1580          * If the devices on this EMIF instance is duplicate of EMIF1,
1581          * use EMIF1 details for the calculation
1582          */
1583         emif_for_calc   = emif->duplicate ? emif1 : emif;
1584         timings         = get_timings_table(emif_for_calc, freq);
1585         addressing      = emif_for_calc->addressing;
1586         if (!timings || !addressing) {
1587                 dev_err(dev, "%s: not enough data available for %dHz",
1588                         __func__, freq);
1589                 return -1;
1590         }
1591
1592         device_info     = emif_for_calc->plat_data->device_info;
1593         type            = device_info->type;
1594         ip_rev          = emif_for_calc->plat_data->ip_rev;
1595         phy_type        = emif_for_calc->plat_data->phy_type;
1596
1597         min_tck         = emif_for_calc->plat_data->min_tck;
1598
1599         set_ddr_clk_period(freq);
1600
1601         regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1602         regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1603                         addressing);
1604         regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1605                         addressing, type);
1606         regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1607                 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1608
1609         cl = get_cl(emif);
1610
1611         if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1612                 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1613                         timings, freq, cl);
1614         } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1615                 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1616                 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1617                 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1618                 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1619         } else {
1620                 return -1;
1621         }
1622
1623         /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1624         regs->pwr_mgmt_ctrl_shdw =
1625                 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1626                 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1627
1628         if (ip_rev & EMIF_4D) {
1629                 regs->read_idle_ctrl_shdw_normal =
1630                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1631
1632                 regs->read_idle_ctrl_shdw_volt_ramp =
1633                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1634         } else if (ip_rev & EMIF_4D5) {
1635                 regs->dll_calib_ctrl_shdw_normal =
1636                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1637
1638                 regs->dll_calib_ctrl_shdw_volt_ramp =
1639                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1640         }
1641
1642         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1643                 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1644                         addressing);
1645
1646                 regs->sdram_tim1_shdw_derated =
1647                         get_sdram_tim_1_shdw_derated(timings, min_tck,
1648                                 addressing);
1649
1650                 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1651                         min_tck, addressing, type, ip_rev,
1652                         EMIF_DERATED_TIMINGS);
1653         }
1654
1655         regs->freq = freq;
1656
1657         return 0;
1658 }
1659
1660 /*
1661  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1662  * given frequency(freq):
1663  *
1664  * As an optimisation, every EMIF instance other than EMIF1 shares the
1665  * register cache with EMIF1 if the devices connected on this instance
1666  * are same as that on EMIF1(indicated by the duplicate flag)
1667  *
1668  * If we do not have an entry corresponding to the frequency given, we
1669  * allocate a new entry and calculate the values
1670  *
1671  * Upon finding the right reg dump, save it in curr_regs. It can be
1672  * directly used for thermal de-rating and voltage ramping changes.
1673  */
1674 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1675 {
1676         int                     i;
1677         struct emif_regs        **regs_cache;
1678         struct emif_regs        *regs = NULL;
1679         struct device           *dev;
1680
1681         dev = emif->dev;
1682         if (emif->curr_regs && emif->curr_regs->freq == freq) {
1683                 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1684                 return emif->curr_regs;
1685         }
1686
1687         if (emif->duplicate)
1688                 regs_cache = emif1->regs_cache;
1689         else
1690                 regs_cache = emif->regs_cache;
1691
1692         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1693                 if (regs_cache[i]->freq == freq) {
1694                         regs = regs_cache[i];
1695                         dev_dbg(dev,
1696                                 "%s: reg dump found in reg cache for %u Hz\n",
1697                                 __func__, freq);
1698                         break;
1699                 }
1700         }
1701
1702         /*
1703          * If we don't have an entry for this frequency in the cache create one
1704          * and calculate the values
1705          */
1706         if (!regs) {
1707                 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1708                 if (!regs)
1709                         return NULL;
1710
1711                 if (get_emif_reg_values(emif, freq, regs)) {
1712                         devm_kfree(emif->dev, regs);
1713                         return NULL;
1714                 }
1715
1716                 /*
1717                  * Now look for an un-used entry in the cache and save the
1718                  * newly created struct. If there are no free entries
1719                  * over-write the last entry
1720                  */
1721                 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1722                         ;
1723
1724                 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1725                         dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1726                                 __func__);
1727                         i = EMIF_MAX_NUM_FREQUENCIES - 1;
1728                         devm_kfree(emif->dev, regs_cache[i]);
1729                 }
1730                 regs_cache[i] = regs;
1731         }
1732
1733         return regs;
1734 }
1735
1736 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1737 {
1738         dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1739                 volt_state);
1740
1741         if (!emif->curr_regs) {
1742                 dev_err(emif->dev,
1743                         "%s: volt-notify before registers are ready: %d\n",
1744                         __func__, volt_state);
1745                 return;
1746         }
1747
1748         setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1749 }
1750
1751 /*
1752  * TODO: voltage notify handling should be hooked up to
1753  * regulator framework as soon as the necessary support
1754  * is available in mainline kernel. This function is un-used
1755  * right now.
1756  */
1757 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1758 {
1759         struct emif_data *emif;
1760
1761         spin_lock_irqsave(&emif_lock, irq_state);
1762
1763         list_for_each_entry(emif, &device_list, node)
1764                 do_volt_notify_handling(emif, volt_state);
1765         do_freq_update();
1766
1767         spin_unlock_irqrestore(&emif_lock, irq_state);
1768 }
1769
1770 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1771 {
1772         struct emif_regs *regs;
1773
1774         regs = get_regs(emif, new_freq);
1775         if (!regs)
1776                 return;
1777
1778         emif->curr_regs = regs;
1779
1780         /*
1781          * Update the shadow registers:
1782          * Temperature and voltage-ramp sensitive settings are also configured
1783          * in terms of DDR cycles. So, we need to update them too when there
1784          * is a freq change
1785          */
1786         dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1787                 __func__, new_freq);
1788         setup_registers(emif, regs);
1789         setup_temperature_sensitive_regs(emif, regs);
1790         setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1791
1792         /*
1793          * Part of workaround for errata i728. See do_freq_update()
1794          * for more details
1795          */
1796         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1797                 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1798 }
1799
1800 /*
1801  * TODO: frequency notify handling should be hooked up to
1802  * clock framework as soon as the necessary support is
1803  * available in mainline kernel. This function is un-used
1804  * right now.
1805  */
1806 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1807 {
1808         struct emif_data *emif;
1809
1810         /*
1811          * NOTE: we are taking the spin-lock here and releases it
1812          * only in post-notifier. This doesn't look good and
1813          * Sparse complains about it, but this seems to be
1814          * un-avoidable. We need to lock a sequence of events
1815          * that is split between EMIF and clock framework.
1816          *
1817          * 1. EMIF driver updates EMIF timings in shadow registers in the
1818          *    frequency pre-notify callback from clock framework
1819          * 2. clock framework sets up the registers for the new frequency
1820          * 3. clock framework initiates a hw-sequence that updates
1821          *    the frequency EMIF timings synchronously.
1822          *
1823          * All these 3 steps should be performed as an atomic operation
1824          * vis-a-vis similar sequence in the EMIF interrupt handler
1825          * for temperature events. Otherwise, there could be race
1826          * conditions that could result in incorrect EMIF timings for
1827          * a given frequency
1828          */
1829         spin_lock_irqsave(&emif_lock, irq_state);
1830
1831         list_for_each_entry(emif, &device_list, node)
1832                 do_freq_pre_notify_handling(emif, new_freq);
1833 }
1834
1835 static void do_freq_post_notify_handling(struct emif_data *emif)
1836 {
1837         /*
1838          * Part of workaround for errata i728. See do_freq_update()
1839          * for more details
1840          */
1841         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1842                 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1843 }
1844
1845 /*
1846  * TODO: frequency notify handling should be hooked up to
1847  * clock framework as soon as the necessary support is
1848  * available in mainline kernel. This function is un-used
1849  * right now.
1850  */
1851 static void __attribute__((unused)) freq_post_notify_handling(void)
1852 {
1853         struct emif_data *emif;
1854
1855         list_for_each_entry(emif, &device_list, node)
1856                 do_freq_post_notify_handling(emif);
1857
1858         /*
1859          * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1860          * for more details
1861          */
1862         spin_unlock_irqrestore(&emif_lock, irq_state);
1863 }
1864
1865 #if defined(CONFIG_OF)
1866 static const struct of_device_id emif_of_match[] = {
1867                 { .compatible = "ti,emif-4d" },
1868                 { .compatible = "ti,emif-4d5" },
1869                 {},
1870 };
1871 MODULE_DEVICE_TABLE(of, emif_of_match);
1872 #endif
1873
1874 static struct platform_driver emif_driver = {
1875         .remove         = __exit_p(emif_remove),
1876         .shutdown       = emif_shutdown,
1877         .driver = {
1878                 .name = "emif",
1879                 .of_match_table = of_match_ptr(emif_of_match),
1880         },
1881 };
1882
1883 module_platform_driver_probe(emif_driver, emif_probe);
1884
1885 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1886 MODULE_LICENSE("GPL");
1887 MODULE_ALIAS("platform:emif");
1888 MODULE_AUTHOR("Texas Instruments Inc");