Merge tag 'acpi-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / drivers / md / raid5.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *         Copyright (C) 1999, 2000 Ingo Molnar
6  *         Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
73         return &conf->stripe_hashtbl[hash];
74 }
75
76 static inline int stripe_hash_locks_hash(sector_t sect)
77 {
78         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
79 }
80
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 {
83         spin_lock_irq(conf->hash_locks + hash);
84         spin_lock(&conf->device_lock);
85 }
86
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89         spin_unlock(&conf->device_lock);
90         spin_unlock_irq(conf->hash_locks + hash);
91 }
92
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94 {
95         int i;
96         spin_lock_irq(conf->hash_locks);
97         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99         spin_lock(&conf->device_lock);
100 }
101
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104         int i;
105         spin_unlock(&conf->device_lock);
106         for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107                 spin_unlock(conf->hash_locks + i);
108         spin_unlock_irq(conf->hash_locks);
109 }
110
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
113 {
114         if (sh->ddf_layout)
115                 /* ddf always start from first device */
116                 return 0;
117         /* md starts just after Q block */
118         if (sh->qd_idx == sh->disks - 1)
119                 return 0;
120         else
121                 return sh->qd_idx + 1;
122 }
123 static inline int raid6_next_disk(int disk, int raid_disks)
124 {
125         disk++;
126         return (disk < raid_disks) ? disk : 0;
127 }
128
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130  * We need to map each disk to a 'slot', where the data disks are slot
131  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132  * is raid_disks-1.  This help does that mapping.
133  */
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135                              int *count, int syndrome_disks)
136 {
137         int slot = *count;
138
139         if (sh->ddf_layout)
140                 (*count)++;
141         if (idx == sh->pd_idx)
142                 return syndrome_disks;
143         if (idx == sh->qd_idx)
144                 return syndrome_disks + 1;
145         if (!sh->ddf_layout)
146                 (*count)++;
147         return slot;
148 }
149
150 static void print_raid5_conf (struct r5conf *conf);
151
152 static int stripe_operations_active(struct stripe_head *sh)
153 {
154         return sh->check_state || sh->reconstruct_state ||
155                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157 }
158
159 static bool stripe_is_lowprio(struct stripe_head *sh)
160 {
161         return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162                 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163                !test_bit(STRIPE_R5C_CACHING, &sh->state);
164 }
165
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167 {
168         struct r5conf *conf = sh->raid_conf;
169         struct r5worker_group *group;
170         int thread_cnt;
171         int i, cpu = sh->cpu;
172
173         if (!cpu_online(cpu)) {
174                 cpu = cpumask_any(cpu_online_mask);
175                 sh->cpu = cpu;
176         }
177
178         if (list_empty(&sh->lru)) {
179                 struct r5worker_group *group;
180                 group = conf->worker_groups + cpu_to_group(cpu);
181                 if (stripe_is_lowprio(sh))
182                         list_add_tail(&sh->lru, &group->loprio_list);
183                 else
184                         list_add_tail(&sh->lru, &group->handle_list);
185                 group->stripes_cnt++;
186                 sh->group = group;
187         }
188
189         if (conf->worker_cnt_per_group == 0) {
190                 md_wakeup_thread(conf->mddev->thread);
191                 return;
192         }
193
194         group = conf->worker_groups + cpu_to_group(sh->cpu);
195
196         group->workers[0].working = true;
197         /* at least one worker should run to avoid race */
198         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201         /* wakeup more workers */
202         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203                 if (group->workers[i].working == false) {
204                         group->workers[i].working = true;
205                         queue_work_on(sh->cpu, raid5_wq,
206                                       &group->workers[i].work);
207                         thread_cnt--;
208                 }
209         }
210 }
211
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213                               struct list_head *temp_inactive_list)
214 {
215         int i;
216         int injournal = 0;      /* number of date pages with R5_InJournal */
217
218         BUG_ON(!list_empty(&sh->lru));
219         BUG_ON(atomic_read(&conf->active_stripes)==0);
220
221         if (r5c_is_writeback(conf->log))
222                 for (i = sh->disks; i--; )
223                         if (test_bit(R5_InJournal, &sh->dev[i].flags))
224                                 injournal++;
225         /*
226          * In the following cases, the stripe cannot be released to cached
227          * lists. Therefore, we make the stripe write out and set
228          * STRIPE_HANDLE:
229          *   1. when quiesce in r5c write back;
230          *   2. when resync is requested fot the stripe.
231          */
232         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233             (conf->quiesce && r5c_is_writeback(conf->log) &&
234              !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235                 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236                         r5c_make_stripe_write_out(sh);
237                 set_bit(STRIPE_HANDLE, &sh->state);
238         }
239
240         if (test_bit(STRIPE_HANDLE, &sh->state)) {
241                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243                         list_add_tail(&sh->lru, &conf->delayed_list);
244                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245                            sh->bm_seq - conf->seq_write > 0)
246                         list_add_tail(&sh->lru, &conf->bitmap_list);
247                 else {
248                         clear_bit(STRIPE_DELAYED, &sh->state);
249                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
250                         if (conf->worker_cnt_per_group == 0) {
251                                 if (stripe_is_lowprio(sh))
252                                         list_add_tail(&sh->lru,
253                                                         &conf->loprio_list);
254                                 else
255                                         list_add_tail(&sh->lru,
256                                                         &conf->handle_list);
257                         } else {
258                                 raid5_wakeup_stripe_thread(sh);
259                                 return;
260                         }
261                 }
262                 md_wakeup_thread(conf->mddev->thread);
263         } else {
264                 BUG_ON(stripe_operations_active(sh));
265                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266                         if (atomic_dec_return(&conf->preread_active_stripes)
267                             < IO_THRESHOLD)
268                                 md_wakeup_thread(conf->mddev->thread);
269                 atomic_dec(&conf->active_stripes);
270                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271                         if (!r5c_is_writeback(conf->log))
272                                 list_add_tail(&sh->lru, temp_inactive_list);
273                         else {
274                                 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275                                 if (injournal == 0)
276                                         list_add_tail(&sh->lru, temp_inactive_list);
277                                 else if (injournal == conf->raid_disks - conf->max_degraded) {
278                                         /* full stripe */
279                                         if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280                                                 atomic_inc(&conf->r5c_cached_full_stripes);
281                                         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282                                                 atomic_dec(&conf->r5c_cached_partial_stripes);
283                                         list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284                                         r5c_check_cached_full_stripe(conf);
285                                 } else
286                                         /*
287                                          * STRIPE_R5C_PARTIAL_STRIPE is set in
288                                          * r5c_try_caching_write(). No need to
289                                          * set it again.
290                                          */
291                                         list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292                         }
293                 }
294         }
295 }
296
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298                              struct list_head *temp_inactive_list)
299 {
300         if (atomic_dec_and_test(&sh->count))
301                 do_release_stripe(conf, sh, temp_inactive_list);
302 }
303
304 /*
305  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306  *
307  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308  * given time. Adding stripes only takes device lock, while deleting stripes
309  * only takes hash lock.
310  */
311 static void release_inactive_stripe_list(struct r5conf *conf,
312                                          struct list_head *temp_inactive_list,
313                                          int hash)
314 {
315         int size;
316         bool do_wakeup = false;
317         unsigned long flags;
318
319         if (hash == NR_STRIPE_HASH_LOCKS) {
320                 size = NR_STRIPE_HASH_LOCKS;
321                 hash = NR_STRIPE_HASH_LOCKS - 1;
322         } else
323                 size = 1;
324         while (size) {
325                 struct list_head *list = &temp_inactive_list[size - 1];
326
327                 /*
328                  * We don't hold any lock here yet, raid5_get_active_stripe() might
329                  * remove stripes from the list
330                  */
331                 if (!list_empty_careful(list)) {
332                         spin_lock_irqsave(conf->hash_locks + hash, flags);
333                         if (list_empty(conf->inactive_list + hash) &&
334                             !list_empty(list))
335                                 atomic_dec(&conf->empty_inactive_list_nr);
336                         list_splice_tail_init(list, conf->inactive_list + hash);
337                         do_wakeup = true;
338                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339                 }
340                 size--;
341                 hash--;
342         }
343
344         if (do_wakeup) {
345                 wake_up(&conf->wait_for_stripe);
346                 if (atomic_read(&conf->active_stripes) == 0)
347                         wake_up(&conf->wait_for_quiescent);
348                 if (conf->retry_read_aligned)
349                         md_wakeup_thread(conf->mddev->thread);
350         }
351 }
352
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355                                struct list_head *temp_inactive_list)
356 {
357         struct stripe_head *sh, *t;
358         int count = 0;
359         struct llist_node *head;
360
361         head = llist_del_all(&conf->released_stripes);
362         head = llist_reverse_order(head);
363         llist_for_each_entry_safe(sh, t, head, release_list) {
364                 int hash;
365
366                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367                 smp_mb();
368                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369                 /*
370                  * Don't worry the bit is set here, because if the bit is set
371                  * again, the count is always > 1. This is true for
372                  * STRIPE_ON_UNPLUG_LIST bit too.
373                  */
374                 hash = sh->hash_lock_index;
375                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
376                 count++;
377         }
378
379         return count;
380 }
381
382 void raid5_release_stripe(struct stripe_head *sh)
383 {
384         struct r5conf *conf = sh->raid_conf;
385         unsigned long flags;
386         struct list_head list;
387         int hash;
388         bool wakeup;
389
390         /* Avoid release_list until the last reference.
391          */
392         if (atomic_add_unless(&sh->count, -1, 1))
393                 return;
394
395         if (unlikely(!conf->mddev->thread) ||
396                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397                 goto slow_path;
398         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399         if (wakeup)
400                 md_wakeup_thread(conf->mddev->thread);
401         return;
402 slow_path:
403         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404         if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405                 INIT_LIST_HEAD(&list);
406                 hash = sh->hash_lock_index;
407                 do_release_stripe(conf, sh, &list);
408                 spin_unlock_irqrestore(&conf->device_lock, flags);
409                 release_inactive_stripe_list(conf, &list, hash);
410         }
411 }
412
413 static inline void remove_hash(struct stripe_head *sh)
414 {
415         pr_debug("remove_hash(), stripe %llu\n",
416                 (unsigned long long)sh->sector);
417
418         hlist_del_init(&sh->hash);
419 }
420
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422 {
423         struct hlist_head *hp = stripe_hash(conf, sh->sector);
424
425         pr_debug("insert_hash(), stripe %llu\n",
426                 (unsigned long long)sh->sector);
427
428         hlist_add_head(&sh->hash, hp);
429 }
430
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433 {
434         struct stripe_head *sh = NULL;
435         struct list_head *first;
436
437         if (list_empty(conf->inactive_list + hash))
438                 goto out;
439         first = (conf->inactive_list + hash)->next;
440         sh = list_entry(first, struct stripe_head, lru);
441         list_del_init(first);
442         remove_hash(sh);
443         atomic_inc(&conf->active_stripes);
444         BUG_ON(hash != sh->hash_lock_index);
445         if (list_empty(conf->inactive_list + hash))
446                 atomic_inc(&conf->empty_inactive_list_nr);
447 out:
448         return sh;
449 }
450
451 static void shrink_buffers(struct stripe_head *sh)
452 {
453         struct page *p;
454         int i;
455         int num = sh->raid_conf->pool_size;
456
457         for (i = 0; i < num ; i++) {
458                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
459                 p = sh->dev[i].page;
460                 if (!p)
461                         continue;
462                 sh->dev[i].page = NULL;
463                 put_page(p);
464         }
465 }
466
467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
468 {
469         int i;
470         int num = sh->raid_conf->pool_size;
471
472         for (i = 0; i < num; i++) {
473                 struct page *page;
474
475                 if (!(page = alloc_page(gfp))) {
476                         return 1;
477                 }
478                 sh->dev[i].page = page;
479                 sh->dev[i].orig_page = page;
480         }
481
482         return 0;
483 }
484
485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486                             struct stripe_head *sh);
487
488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
489 {
490         struct r5conf *conf = sh->raid_conf;
491         int i, seq;
492
493         BUG_ON(atomic_read(&sh->count) != 0);
494         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495         BUG_ON(stripe_operations_active(sh));
496         BUG_ON(sh->batch_head);
497
498         pr_debug("init_stripe called, stripe %llu\n",
499                 (unsigned long long)sector);
500 retry:
501         seq = read_seqcount_begin(&conf->gen_lock);
502         sh->generation = conf->generation - previous;
503         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
504         sh->sector = sector;
505         stripe_set_idx(sector, conf, previous, sh);
506         sh->state = 0;
507
508         for (i = sh->disks; i--; ) {
509                 struct r5dev *dev = &sh->dev[i];
510
511                 if (dev->toread || dev->read || dev->towrite || dev->written ||
512                     test_bit(R5_LOCKED, &dev->flags)) {
513                         pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514                                (unsigned long long)sh->sector, i, dev->toread,
515                                dev->read, dev->towrite, dev->written,
516                                test_bit(R5_LOCKED, &dev->flags));
517                         WARN_ON(1);
518                 }
519                 dev->flags = 0;
520                 dev->sector = raid5_compute_blocknr(sh, i, previous);
521         }
522         if (read_seqcount_retry(&conf->gen_lock, seq))
523                 goto retry;
524         sh->overwrite_disks = 0;
525         insert_hash(conf, sh);
526         sh->cpu = smp_processor_id();
527         set_bit(STRIPE_BATCH_READY, &sh->state);
528 }
529
530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
531                                          short generation)
532 {
533         struct stripe_head *sh;
534
535         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537                 if (sh->sector == sector && sh->generation == generation)
538                         return sh;
539         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
540         return NULL;
541 }
542
543 /*
544  * Need to check if array has failed when deciding whether to:
545  *  - start an array
546  *  - remove non-faulty devices
547  *  - add a spare
548  *  - allow a reshape
549  * This determination is simple when no reshape is happening.
550  * However if there is a reshape, we need to carefully check
551  * both the before and after sections.
552  * This is because some failed devices may only affect one
553  * of the two sections, and some non-in_sync devices may
554  * be insync in the section most affected by failed devices.
555  */
556 int raid5_calc_degraded(struct r5conf *conf)
557 {
558         int degraded, degraded2;
559         int i;
560
561         rcu_read_lock();
562         degraded = 0;
563         for (i = 0; i < conf->previous_raid_disks; i++) {
564                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565                 if (rdev && test_bit(Faulty, &rdev->flags))
566                         rdev = rcu_dereference(conf->disks[i].replacement);
567                 if (!rdev || test_bit(Faulty, &rdev->flags))
568                         degraded++;
569                 else if (test_bit(In_sync, &rdev->flags))
570                         ;
571                 else
572                         /* not in-sync or faulty.
573                          * If the reshape increases the number of devices,
574                          * this is being recovered by the reshape, so
575                          * this 'previous' section is not in_sync.
576                          * If the number of devices is being reduced however,
577                          * the device can only be part of the array if
578                          * we are reverting a reshape, so this section will
579                          * be in-sync.
580                          */
581                         if (conf->raid_disks >= conf->previous_raid_disks)
582                                 degraded++;
583         }
584         rcu_read_unlock();
585         if (conf->raid_disks == conf->previous_raid_disks)
586                 return degraded;
587         rcu_read_lock();
588         degraded2 = 0;
589         for (i = 0; i < conf->raid_disks; i++) {
590                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591                 if (rdev && test_bit(Faulty, &rdev->flags))
592                         rdev = rcu_dereference(conf->disks[i].replacement);
593                 if (!rdev || test_bit(Faulty, &rdev->flags))
594                         degraded2++;
595                 else if (test_bit(In_sync, &rdev->flags))
596                         ;
597                 else
598                         /* not in-sync or faulty.
599                          * If reshape increases the number of devices, this
600                          * section has already been recovered, else it
601                          * almost certainly hasn't.
602                          */
603                         if (conf->raid_disks <= conf->previous_raid_disks)
604                                 degraded2++;
605         }
606         rcu_read_unlock();
607         if (degraded2 > degraded)
608                 return degraded2;
609         return degraded;
610 }
611
612 static int has_failed(struct r5conf *conf)
613 {
614         int degraded;
615
616         if (conf->mddev->reshape_position == MaxSector)
617                 return conf->mddev->degraded > conf->max_degraded;
618
619         degraded = raid5_calc_degraded(conf);
620         if (degraded > conf->max_degraded)
621                 return 1;
622         return 0;
623 }
624
625 struct stripe_head *
626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627                         int previous, int noblock, int noquiesce)
628 {
629         struct stripe_head *sh;
630         int hash = stripe_hash_locks_hash(sector);
631         int inc_empty_inactive_list_flag;
632
633         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
634
635         spin_lock_irq(conf->hash_locks + hash);
636
637         do {
638                 wait_event_lock_irq(conf->wait_for_quiescent,
639                                     conf->quiesce == 0 || noquiesce,
640                                     *(conf->hash_locks + hash));
641                 sh = __find_stripe(conf, sector, conf->generation - previous);
642                 if (!sh) {
643                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644                                 sh = get_free_stripe(conf, hash);
645                                 if (!sh && !test_bit(R5_DID_ALLOC,
646                                                      &conf->cache_state))
647                                         set_bit(R5_ALLOC_MORE,
648                                                 &conf->cache_state);
649                         }
650                         if (noblock && sh == NULL)
651                                 break;
652
653                         r5c_check_stripe_cache_usage(conf);
654                         if (!sh) {
655                                 set_bit(R5_INACTIVE_BLOCKED,
656                                         &conf->cache_state);
657                                 r5l_wake_reclaim(conf->log, 0);
658                                 wait_event_lock_irq(
659                                         conf->wait_for_stripe,
660                                         !list_empty(conf->inactive_list + hash) &&
661                                         (atomic_read(&conf->active_stripes)
662                                          < (conf->max_nr_stripes * 3 / 4)
663                                          || !test_bit(R5_INACTIVE_BLOCKED,
664                                                       &conf->cache_state)),
665                                         *(conf->hash_locks + hash));
666                                 clear_bit(R5_INACTIVE_BLOCKED,
667                                           &conf->cache_state);
668                         } else {
669                                 init_stripe(sh, sector, previous);
670                                 atomic_inc(&sh->count);
671                         }
672                 } else if (!atomic_inc_not_zero(&sh->count)) {
673                         spin_lock(&conf->device_lock);
674                         if (!atomic_read(&sh->count)) {
675                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
676                                         atomic_inc(&conf->active_stripes);
677                                 BUG_ON(list_empty(&sh->lru) &&
678                                        !test_bit(STRIPE_EXPANDING, &sh->state));
679                                 inc_empty_inactive_list_flag = 0;
680                                 if (!list_empty(conf->inactive_list + hash))
681                                         inc_empty_inactive_list_flag = 1;
682                                 list_del_init(&sh->lru);
683                                 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684                                         atomic_inc(&conf->empty_inactive_list_nr);
685                                 if (sh->group) {
686                                         sh->group->stripes_cnt--;
687                                         sh->group = NULL;
688                                 }
689                         }
690                         atomic_inc(&sh->count);
691                         spin_unlock(&conf->device_lock);
692                 }
693         } while (sh == NULL);
694
695         spin_unlock_irq(conf->hash_locks + hash);
696         return sh;
697 }
698
699 static bool is_full_stripe_write(struct stripe_head *sh)
700 {
701         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703 }
704
705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
706                 __acquires(&sh1->stripe_lock)
707                 __acquires(&sh2->stripe_lock)
708 {
709         if (sh1 > sh2) {
710                 spin_lock_irq(&sh2->stripe_lock);
711                 spin_lock_nested(&sh1->stripe_lock, 1);
712         } else {
713                 spin_lock_irq(&sh1->stripe_lock);
714                 spin_lock_nested(&sh2->stripe_lock, 1);
715         }
716 }
717
718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719                 __releases(&sh1->stripe_lock)
720                 __releases(&sh2->stripe_lock)
721 {
722         spin_unlock(&sh1->stripe_lock);
723         spin_unlock_irq(&sh2->stripe_lock);
724 }
725
726 /* Only freshly new full stripe normal write stripe can be added to a batch list */
727 static bool stripe_can_batch(struct stripe_head *sh)
728 {
729         struct r5conf *conf = sh->raid_conf;
730
731         if (raid5_has_log(conf) || raid5_has_ppl(conf))
732                 return false;
733         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735                 is_full_stripe_write(sh);
736 }
737
738 /* we only do back search */
739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740 {
741         struct stripe_head *head;
742         sector_t head_sector, tmp_sec;
743         int hash;
744         int dd_idx;
745         int inc_empty_inactive_list_flag;
746
747         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748         tmp_sec = sh->sector;
749         if (!sector_div(tmp_sec, conf->chunk_sectors))
750                 return;
751         head_sector = sh->sector - STRIPE_SECTORS;
752
753         hash = stripe_hash_locks_hash(head_sector);
754         spin_lock_irq(conf->hash_locks + hash);
755         head = __find_stripe(conf, head_sector, conf->generation);
756         if (head && !atomic_inc_not_zero(&head->count)) {
757                 spin_lock(&conf->device_lock);
758                 if (!atomic_read(&head->count)) {
759                         if (!test_bit(STRIPE_HANDLE, &head->state))
760                                 atomic_inc(&conf->active_stripes);
761                         BUG_ON(list_empty(&head->lru) &&
762                                !test_bit(STRIPE_EXPANDING, &head->state));
763                         inc_empty_inactive_list_flag = 0;
764                         if (!list_empty(conf->inactive_list + hash))
765                                 inc_empty_inactive_list_flag = 1;
766                         list_del_init(&head->lru);
767                         if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768                                 atomic_inc(&conf->empty_inactive_list_nr);
769                         if (head->group) {
770                                 head->group->stripes_cnt--;
771                                 head->group = NULL;
772                         }
773                 }
774                 atomic_inc(&head->count);
775                 spin_unlock(&conf->device_lock);
776         }
777         spin_unlock_irq(conf->hash_locks + hash);
778
779         if (!head)
780                 return;
781         if (!stripe_can_batch(head))
782                 goto out;
783
784         lock_two_stripes(head, sh);
785         /* clear_batch_ready clear the flag */
786         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787                 goto unlock_out;
788
789         if (sh->batch_head)
790                 goto unlock_out;
791
792         dd_idx = 0;
793         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794                 dd_idx++;
795         if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796             bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
797                 goto unlock_out;
798
799         if (head->batch_head) {
800                 spin_lock(&head->batch_head->batch_lock);
801                 /* This batch list is already running */
802                 if (!stripe_can_batch(head)) {
803                         spin_unlock(&head->batch_head->batch_lock);
804                         goto unlock_out;
805                 }
806                 /*
807                  * We must assign batch_head of this stripe within the
808                  * batch_lock, otherwise clear_batch_ready of batch head
809                  * stripe could clear BATCH_READY bit of this stripe and
810                  * this stripe->batch_head doesn't get assigned, which
811                  * could confuse clear_batch_ready for this stripe
812                  */
813                 sh->batch_head = head->batch_head;
814
815                 /*
816                  * at this point, head's BATCH_READY could be cleared, but we
817                  * can still add the stripe to batch list
818                  */
819                 list_add(&sh->batch_list, &head->batch_list);
820                 spin_unlock(&head->batch_head->batch_lock);
821         } else {
822                 head->batch_head = head;
823                 sh->batch_head = head->batch_head;
824                 spin_lock(&head->batch_lock);
825                 list_add_tail(&sh->batch_list, &head->batch_list);
826                 spin_unlock(&head->batch_lock);
827         }
828
829         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830                 if (atomic_dec_return(&conf->preread_active_stripes)
831                     < IO_THRESHOLD)
832                         md_wakeup_thread(conf->mddev->thread);
833
834         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835                 int seq = sh->bm_seq;
836                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837                     sh->batch_head->bm_seq > seq)
838                         seq = sh->batch_head->bm_seq;
839                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840                 sh->batch_head->bm_seq = seq;
841         }
842
843         atomic_inc(&sh->count);
844 unlock_out:
845         unlock_two_stripes(head, sh);
846 out:
847         raid5_release_stripe(head);
848 }
849
850 /* Determine if 'data_offset' or 'new_data_offset' should be used
851  * in this stripe_head.
852  */
853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854 {
855         sector_t progress = conf->reshape_progress;
856         /* Need a memory barrier to make sure we see the value
857          * of conf->generation, or ->data_offset that was set before
858          * reshape_progress was updated.
859          */
860         smp_rmb();
861         if (progress == MaxSector)
862                 return 0;
863         if (sh->generation == conf->generation - 1)
864                 return 0;
865         /* We are in a reshape, and this is a new-generation stripe,
866          * so use new_data_offset.
867          */
868         return 1;
869 }
870
871 static void dispatch_bio_list(struct bio_list *tmp)
872 {
873         struct bio *bio;
874
875         while ((bio = bio_list_pop(tmp)))
876                 submit_bio_noacct(bio);
877 }
878
879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880 {
881         const struct r5pending_data *da = list_entry(a,
882                                 struct r5pending_data, sibling);
883         const struct r5pending_data *db = list_entry(b,
884                                 struct r5pending_data, sibling);
885         if (da->sector > db->sector)
886                 return 1;
887         if (da->sector < db->sector)
888                 return -1;
889         return 0;
890 }
891
892 static void dispatch_defer_bios(struct r5conf *conf, int target,
893                                 struct bio_list *list)
894 {
895         struct r5pending_data *data;
896         struct list_head *first, *next = NULL;
897         int cnt = 0;
898
899         if (conf->pending_data_cnt == 0)
900                 return;
901
902         list_sort(NULL, &conf->pending_list, cmp_stripe);
903
904         first = conf->pending_list.next;
905
906         /* temporarily move the head */
907         if (conf->next_pending_data)
908                 list_move_tail(&conf->pending_list,
909                                 &conf->next_pending_data->sibling);
910
911         while (!list_empty(&conf->pending_list)) {
912                 data = list_first_entry(&conf->pending_list,
913                         struct r5pending_data, sibling);
914                 if (&data->sibling == first)
915                         first = data->sibling.next;
916                 next = data->sibling.next;
917
918                 bio_list_merge(list, &data->bios);
919                 list_move(&data->sibling, &conf->free_list);
920                 cnt++;
921                 if (cnt >= target)
922                         break;
923         }
924         conf->pending_data_cnt -= cnt;
925         BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926
927         if (next != &conf->pending_list)
928                 conf->next_pending_data = list_entry(next,
929                                 struct r5pending_data, sibling);
930         else
931                 conf->next_pending_data = NULL;
932         /* list isn't empty */
933         if (first != &conf->pending_list)
934                 list_move_tail(&conf->pending_list, first);
935 }
936
937 static void flush_deferred_bios(struct r5conf *conf)
938 {
939         struct bio_list tmp = BIO_EMPTY_LIST;
940
941         if (conf->pending_data_cnt == 0)
942                 return;
943
944         spin_lock(&conf->pending_bios_lock);
945         dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946         BUG_ON(conf->pending_data_cnt != 0);
947         spin_unlock(&conf->pending_bios_lock);
948
949         dispatch_bio_list(&tmp);
950 }
951
952 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953                                 struct bio_list *bios)
954 {
955         struct bio_list tmp = BIO_EMPTY_LIST;
956         struct r5pending_data *ent;
957
958         spin_lock(&conf->pending_bios_lock);
959         ent = list_first_entry(&conf->free_list, struct r5pending_data,
960                                                         sibling);
961         list_move_tail(&ent->sibling, &conf->pending_list);
962         ent->sector = sector;
963         bio_list_init(&ent->bios);
964         bio_list_merge(&ent->bios, bios);
965         conf->pending_data_cnt++;
966         if (conf->pending_data_cnt >= PENDING_IO_MAX)
967                 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968
969         spin_unlock(&conf->pending_bios_lock);
970
971         dispatch_bio_list(&tmp);
972 }
973
974 static void
975 raid5_end_read_request(struct bio *bi);
976 static void
977 raid5_end_write_request(struct bio *bi);
978
979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
980 {
981         struct r5conf *conf = sh->raid_conf;
982         int i, disks = sh->disks;
983         struct stripe_head *head_sh = sh;
984         struct bio_list pending_bios = BIO_EMPTY_LIST;
985         bool should_defer;
986
987         might_sleep();
988
989         if (log_stripe(sh, s) == 0)
990                 return;
991
992         should_defer = conf->batch_bio_dispatch && conf->group_cnt;
993
994         for (i = disks; i--; ) {
995                 int op, op_flags = 0;
996                 int replace_only = 0;
997                 struct bio *bi, *rbi;
998                 struct md_rdev *rdev, *rrdev = NULL;
999
1000                 sh = head_sh;
1001                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002                         op = REQ_OP_WRITE;
1003                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004                                 op_flags = REQ_FUA;
1005                         if (test_bit(R5_Discard, &sh->dev[i].flags))
1006                                 op = REQ_OP_DISCARD;
1007                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008                         op = REQ_OP_READ;
1009                 else if (test_and_clear_bit(R5_WantReplace,
1010                                             &sh->dev[i].flags)) {
1011                         op = REQ_OP_WRITE;
1012                         replace_only = 1;
1013                 } else
1014                         continue;
1015                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016                         op_flags |= REQ_SYNC;
1017
1018 again:
1019                 bi = &sh->dev[i].req;
1020                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021
1022                 rcu_read_lock();
1023                 rrdev = rcu_dereference(conf->disks[i].replacement);
1024                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025                 rdev = rcu_dereference(conf->disks[i].rdev);
1026                 if (!rdev) {
1027                         rdev = rrdev;
1028                         rrdev = NULL;
1029                 }
1030                 if (op_is_write(op)) {
1031                         if (replace_only)
1032                                 rdev = NULL;
1033                         if (rdev == rrdev)
1034                                 /* We raced and saw duplicates */
1035                                 rrdev = NULL;
1036                 } else {
1037                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038                                 rdev = rrdev;
1039                         rrdev = NULL;
1040                 }
1041
1042                 if (rdev && test_bit(Faulty, &rdev->flags))
1043                         rdev = NULL;
1044                 if (rdev)
1045                         atomic_inc(&rdev->nr_pending);
1046                 if (rrdev && test_bit(Faulty, &rrdev->flags))
1047                         rrdev = NULL;
1048                 if (rrdev)
1049                         atomic_inc(&rrdev->nr_pending);
1050                 rcu_read_unlock();
1051
1052                 /* We have already checked bad blocks for reads.  Now
1053                  * need to check for writes.  We never accept write errors
1054                  * on the replacement, so we don't to check rrdev.
1055                  */
1056                 while (op_is_write(op) && rdev &&
1057                        test_bit(WriteErrorSeen, &rdev->flags)) {
1058                         sector_t first_bad;
1059                         int bad_sectors;
1060                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061                                               &first_bad, &bad_sectors);
1062                         if (!bad)
1063                                 break;
1064
1065                         if (bad < 0) {
1066                                 set_bit(BlockedBadBlocks, &rdev->flags);
1067                                 if (!conf->mddev->external &&
1068                                     conf->mddev->sb_flags) {
1069                                         /* It is very unlikely, but we might
1070                                          * still need to write out the
1071                                          * bad block log - better give it
1072                                          * a chance*/
1073                                         md_check_recovery(conf->mddev);
1074                                 }
1075                                 /*
1076                                  * Because md_wait_for_blocked_rdev
1077                                  * will dec nr_pending, we must
1078                                  * increment it first.
1079                                  */
1080                                 atomic_inc(&rdev->nr_pending);
1081                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
1082                         } else {
1083                                 /* Acknowledged bad block - skip the write */
1084                                 rdev_dec_pending(rdev, conf->mddev);
1085                                 rdev = NULL;
1086                         }
1087                 }
1088
1089                 if (rdev) {
1090                         if (s->syncing || s->expanding || s->expanded
1091                             || s->replacing)
1092                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1093
1094                         set_bit(STRIPE_IO_STARTED, &sh->state);
1095
1096                         bio_set_dev(bi, rdev->bdev);
1097                         bio_set_op_attrs(bi, op, op_flags);
1098                         bi->bi_end_io = op_is_write(op)
1099                                 ? raid5_end_write_request
1100                                 : raid5_end_read_request;
1101                         bi->bi_private = sh;
1102
1103                         pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104                                 __func__, (unsigned long long)sh->sector,
1105                                 bi->bi_opf, i);
1106                         atomic_inc(&sh->count);
1107                         if (sh != head_sh)
1108                                 atomic_inc(&head_sh->count);
1109                         if (use_new_offset(conf, sh))
1110                                 bi->bi_iter.bi_sector = (sh->sector
1111                                                  + rdev->new_data_offset);
1112                         else
1113                                 bi->bi_iter.bi_sector = (sh->sector
1114                                                  + rdev->data_offset);
1115                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116                                 bi->bi_opf |= REQ_NOMERGE;
1117
1118                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120
1121                         if (!op_is_write(op) &&
1122                             test_bit(R5_InJournal, &sh->dev[i].flags))
1123                                 /*
1124                                  * issuing read for a page in journal, this
1125                                  * must be preparing for prexor in rmw; read
1126                                  * the data into orig_page
1127                                  */
1128                                 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129                         else
1130                                 sh->dev[i].vec.bv_page = sh->dev[i].page;
1131                         bi->bi_vcnt = 1;
1132                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133                         bi->bi_io_vec[0].bv_offset = 0;
1134                         bi->bi_iter.bi_size = STRIPE_SIZE;
1135                         bi->bi_write_hint = sh->dev[i].write_hint;
1136                         if (!rrdev)
1137                                 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1138                         /*
1139                          * If this is discard request, set bi_vcnt 0. We don't
1140                          * want to confuse SCSI because SCSI will replace payload
1141                          */
1142                         if (op == REQ_OP_DISCARD)
1143                                 bi->bi_vcnt = 0;
1144                         if (rrdev)
1145                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147                         if (conf->mddev->gendisk)
1148                                 trace_block_bio_remap(bi->bi_disk->queue,
1149                                                       bi, disk_devt(conf->mddev->gendisk),
1150                                                       sh->dev[i].sector);
1151                         if (should_defer && op_is_write(op))
1152                                 bio_list_add(&pending_bios, bi);
1153                         else
1154                                 submit_bio_noacct(bi);
1155                 }
1156                 if (rrdev) {
1157                         if (s->syncing || s->expanding || s->expanded
1158                             || s->replacing)
1159                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161                         set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163                         bio_set_dev(rbi, rrdev->bdev);
1164                         bio_set_op_attrs(rbi, op, op_flags);
1165                         BUG_ON(!op_is_write(op));
1166                         rbi->bi_end_io = raid5_end_write_request;
1167                         rbi->bi_private = sh;
1168
1169                         pr_debug("%s: for %llu schedule op %d on "
1170                                  "replacement disc %d\n",
1171                                 __func__, (unsigned long long)sh->sector,
1172                                 rbi->bi_opf, i);
1173                         atomic_inc(&sh->count);
1174                         if (sh != head_sh)
1175                                 atomic_inc(&head_sh->count);
1176                         if (use_new_offset(conf, sh))
1177                                 rbi->bi_iter.bi_sector = (sh->sector
1178                                                   + rrdev->new_data_offset);
1179                         else
1180                                 rbi->bi_iter.bi_sector = (sh->sector
1181                                                   + rrdev->data_offset);
1182                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185                         rbi->bi_vcnt = 1;
1186                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187                         rbi->bi_io_vec[0].bv_offset = 0;
1188                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1189                         rbi->bi_write_hint = sh->dev[i].write_hint;
1190                         sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1191                         /*
1192                          * If this is discard request, set bi_vcnt 0. We don't
1193                          * want to confuse SCSI because SCSI will replace payload
1194                          */
1195                         if (op == REQ_OP_DISCARD)
1196                                 rbi->bi_vcnt = 0;
1197                         if (conf->mddev->gendisk)
1198                                 trace_block_bio_remap(rbi->bi_disk->queue,
1199                                                       rbi, disk_devt(conf->mddev->gendisk),
1200                                                       sh->dev[i].sector);
1201                         if (should_defer && op_is_write(op))
1202                                 bio_list_add(&pending_bios, rbi);
1203                         else
1204                                 submit_bio_noacct(rbi);
1205                 }
1206                 if (!rdev && !rrdev) {
1207                         if (op_is_write(op))
1208                                 set_bit(STRIPE_DEGRADED, &sh->state);
1209                         pr_debug("skip op %d on disc %d for sector %llu\n",
1210                                 bi->bi_opf, i, (unsigned long long)sh->sector);
1211                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212                         set_bit(STRIPE_HANDLE, &sh->state);
1213                 }
1214
1215                 if (!head_sh->batch_head)
1216                         continue;
1217                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218                                       batch_list);
1219                 if (sh != head_sh)
1220                         goto again;
1221         }
1222
1223         if (should_defer && !bio_list_empty(&pending_bios))
1224                 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225 }
1226
1227 static struct dma_async_tx_descriptor *
1228 async_copy_data(int frombio, struct bio *bio, struct page **page,
1229         sector_t sector, struct dma_async_tx_descriptor *tx,
1230         struct stripe_head *sh, int no_skipcopy)
1231 {
1232         struct bio_vec bvl;
1233         struct bvec_iter iter;
1234         struct page *bio_page;
1235         int page_offset;
1236         struct async_submit_ctl submit;
1237         enum async_tx_flags flags = 0;
1238
1239         if (bio->bi_iter.bi_sector >= sector)
1240                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1241         else
1242                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1243
1244         if (frombio)
1245                 flags |= ASYNC_TX_FENCE;
1246         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1247
1248         bio_for_each_segment(bvl, bio, iter) {
1249                 int len = bvl.bv_len;
1250                 int clen;
1251                 int b_offset = 0;
1252
1253                 if (page_offset < 0) {
1254                         b_offset = -page_offset;
1255                         page_offset += b_offset;
1256                         len -= b_offset;
1257                 }
1258
1259                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1260                         clen = STRIPE_SIZE - page_offset;
1261                 else
1262                         clen = len;
1263
1264                 if (clen > 0) {
1265                         b_offset += bvl.bv_offset;
1266                         bio_page = bvl.bv_page;
1267                         if (frombio) {
1268                                 if (sh->raid_conf->skip_copy &&
1269                                     b_offset == 0 && page_offset == 0 &&
1270                                     clen == STRIPE_SIZE &&
1271                                     !no_skipcopy)
1272                                         *page = bio_page;
1273                                 else
1274                                         tx = async_memcpy(*page, bio_page, page_offset,
1275                                                   b_offset, clen, &submit);
1276                         } else
1277                                 tx = async_memcpy(bio_page, *page, b_offset,
1278                                                   page_offset, clen, &submit);
1279                 }
1280                 /* chain the operations */
1281                 submit.depend_tx = tx;
1282
1283                 if (clen < len) /* hit end of page */
1284                         break;
1285                 page_offset +=  len;
1286         }
1287
1288         return tx;
1289 }
1290
1291 static void ops_complete_biofill(void *stripe_head_ref)
1292 {
1293         struct stripe_head *sh = stripe_head_ref;
1294         int i;
1295
1296         pr_debug("%s: stripe %llu\n", __func__,
1297                 (unsigned long long)sh->sector);
1298
1299         /* clear completed biofills */
1300         for (i = sh->disks; i--; ) {
1301                 struct r5dev *dev = &sh->dev[i];
1302
1303                 /* acknowledge completion of a biofill operation */
1304                 /* and check if we need to reply to a read request,
1305                  * new R5_Wantfill requests are held off until
1306                  * !STRIPE_BIOFILL_RUN
1307                  */
1308                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309                         struct bio *rbi, *rbi2;
1310
1311                         BUG_ON(!dev->read);
1312                         rbi = dev->read;
1313                         dev->read = NULL;
1314                         while (rbi && rbi->bi_iter.bi_sector <
1315                                 dev->sector + STRIPE_SECTORS) {
1316                                 rbi2 = r5_next_bio(rbi, dev->sector);
1317                                 bio_endio(rbi);
1318                                 rbi = rbi2;
1319                         }
1320                 }
1321         }
1322         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1323
1324         set_bit(STRIPE_HANDLE, &sh->state);
1325         raid5_release_stripe(sh);
1326 }
1327
1328 static void ops_run_biofill(struct stripe_head *sh)
1329 {
1330         struct dma_async_tx_descriptor *tx = NULL;
1331         struct async_submit_ctl submit;
1332         int i;
1333
1334         BUG_ON(sh->batch_head);
1335         pr_debug("%s: stripe %llu\n", __func__,
1336                 (unsigned long long)sh->sector);
1337
1338         for (i = sh->disks; i--; ) {
1339                 struct r5dev *dev = &sh->dev[i];
1340                 if (test_bit(R5_Wantfill, &dev->flags)) {
1341                         struct bio *rbi;
1342                         spin_lock_irq(&sh->stripe_lock);
1343                         dev->read = rbi = dev->toread;
1344                         dev->toread = NULL;
1345                         spin_unlock_irq(&sh->stripe_lock);
1346                         while (rbi && rbi->bi_iter.bi_sector <
1347                                 dev->sector + STRIPE_SECTORS) {
1348                                 tx = async_copy_data(0, rbi, &dev->page,
1349                                                      dev->sector, tx, sh, 0);
1350                                 rbi = r5_next_bio(rbi, dev->sector);
1351                         }
1352                 }
1353         }
1354
1355         atomic_inc(&sh->count);
1356         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357         async_trigger_callback(&submit);
1358 }
1359
1360 static void mark_target_uptodate(struct stripe_head *sh, int target)
1361 {
1362         struct r5dev *tgt;
1363
1364         if (target < 0)
1365                 return;
1366
1367         tgt = &sh->dev[target];
1368         set_bit(R5_UPTODATE, &tgt->flags);
1369         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370         clear_bit(R5_Wantcompute, &tgt->flags);
1371 }
1372
1373 static void ops_complete_compute(void *stripe_head_ref)
1374 {
1375         struct stripe_head *sh = stripe_head_ref;
1376
1377         pr_debug("%s: stripe %llu\n", __func__,
1378                 (unsigned long long)sh->sector);
1379
1380         /* mark the computed target(s) as uptodate */
1381         mark_target_uptodate(sh, sh->ops.target);
1382         mark_target_uptodate(sh, sh->ops.target2);
1383
1384         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385         if (sh->check_state == check_state_compute_run)
1386                 sh->check_state = check_state_compute_result;
1387         set_bit(STRIPE_HANDLE, &sh->state);
1388         raid5_release_stripe(sh);
1389 }
1390
1391 /* return a pointer to the address conversion region of the scribble buffer */
1392 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1393 {
1394         return percpu->scribble + i * percpu->scribble_obj_size;
1395 }
1396
1397 /* return a pointer to the address conversion region of the scribble buffer */
1398 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399                                  struct raid5_percpu *percpu, int i)
1400 {
1401         return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1402 }
1403
1404 static struct dma_async_tx_descriptor *
1405 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1406 {
1407         int disks = sh->disks;
1408         struct page **xor_srcs = to_addr_page(percpu, 0);
1409         int target = sh->ops.target;
1410         struct r5dev *tgt = &sh->dev[target];
1411         struct page *xor_dest = tgt->page;
1412         int count = 0;
1413         struct dma_async_tx_descriptor *tx;
1414         struct async_submit_ctl submit;
1415         int i;
1416
1417         BUG_ON(sh->batch_head);
1418
1419         pr_debug("%s: stripe %llu block: %d\n",
1420                 __func__, (unsigned long long)sh->sector, target);
1421         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422
1423         for (i = disks; i--; )
1424                 if (i != target)
1425                         xor_srcs[count++] = sh->dev[i].page;
1426
1427         atomic_inc(&sh->count);
1428
1429         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431         if (unlikely(count == 1))
1432                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1433         else
1434                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1435
1436         return tx;
1437 }
1438
1439 /* set_syndrome_sources - populate source buffers for gen_syndrome
1440  * @srcs - (struct page *) array of size sh->disks
1441  * @sh - stripe_head to parse
1442  *
1443  * Populates srcs in proper layout order for the stripe and returns the
1444  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1445  * destination buffer is recorded in srcs[count] and the Q destination
1446  * is recorded in srcs[count+1]].
1447  */
1448 static int set_syndrome_sources(struct page **srcs,
1449                                 struct stripe_head *sh,
1450                                 int srctype)
1451 {
1452         int disks = sh->disks;
1453         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454         int d0_idx = raid6_d0(sh);
1455         int count;
1456         int i;
1457
1458         for (i = 0; i < disks; i++)
1459                 srcs[i] = NULL;
1460
1461         count = 0;
1462         i = d0_idx;
1463         do {
1464                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465                 struct r5dev *dev = &sh->dev[i];
1466
1467                 if (i == sh->qd_idx || i == sh->pd_idx ||
1468                     (srctype == SYNDROME_SRC_ALL) ||
1469                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470                      (test_bit(R5_Wantdrain, &dev->flags) ||
1471                       test_bit(R5_InJournal, &dev->flags))) ||
1472                     (srctype == SYNDROME_SRC_WRITTEN &&
1473                      (dev->written ||
1474                       test_bit(R5_InJournal, &dev->flags)))) {
1475                         if (test_bit(R5_InJournal, &dev->flags))
1476                                 srcs[slot] = sh->dev[i].orig_page;
1477                         else
1478                                 srcs[slot] = sh->dev[i].page;
1479                 }
1480                 i = raid6_next_disk(i, disks);
1481         } while (i != d0_idx);
1482
1483         return syndrome_disks;
1484 }
1485
1486 static struct dma_async_tx_descriptor *
1487 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488 {
1489         int disks = sh->disks;
1490         struct page **blocks = to_addr_page(percpu, 0);
1491         int target;
1492         int qd_idx = sh->qd_idx;
1493         struct dma_async_tx_descriptor *tx;
1494         struct async_submit_ctl submit;
1495         struct r5dev *tgt;
1496         struct page *dest;
1497         int i;
1498         int count;
1499
1500         BUG_ON(sh->batch_head);
1501         if (sh->ops.target < 0)
1502                 target = sh->ops.target2;
1503         else if (sh->ops.target2 < 0)
1504                 target = sh->ops.target;
1505         else
1506                 /* we should only have one valid target */
1507                 BUG();
1508         BUG_ON(target < 0);
1509         pr_debug("%s: stripe %llu block: %d\n",
1510                 __func__, (unsigned long long)sh->sector, target);
1511
1512         tgt = &sh->dev[target];
1513         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514         dest = tgt->page;
1515
1516         atomic_inc(&sh->count);
1517
1518         if (target == qd_idx) {
1519                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520                 blocks[count] = NULL; /* regenerating p is not necessary */
1521                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523                                   ops_complete_compute, sh,
1524                                   to_addr_conv(sh, percpu, 0));
1525                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526         } else {
1527                 /* Compute any data- or p-drive using XOR */
1528                 count = 0;
1529                 for (i = disks; i-- ; ) {
1530                         if (i == target || i == qd_idx)
1531                                 continue;
1532                         blocks[count++] = sh->dev[i].page;
1533                 }
1534
1535                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536                                   NULL, ops_complete_compute, sh,
1537                                   to_addr_conv(sh, percpu, 0));
1538                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539         }
1540
1541         return tx;
1542 }
1543
1544 static struct dma_async_tx_descriptor *
1545 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546 {
1547         int i, count, disks = sh->disks;
1548         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549         int d0_idx = raid6_d0(sh);
1550         int faila = -1, failb = -1;
1551         int target = sh->ops.target;
1552         int target2 = sh->ops.target2;
1553         struct r5dev *tgt = &sh->dev[target];
1554         struct r5dev *tgt2 = &sh->dev[target2];
1555         struct dma_async_tx_descriptor *tx;
1556         struct page **blocks = to_addr_page(percpu, 0);
1557         struct async_submit_ctl submit;
1558
1559         BUG_ON(sh->batch_head);
1560         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561                  __func__, (unsigned long long)sh->sector, target, target2);
1562         BUG_ON(target < 0 || target2 < 0);
1563         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565
1566         /* we need to open-code set_syndrome_sources to handle the
1567          * slot number conversion for 'faila' and 'failb'
1568          */
1569         for (i = 0; i < disks ; i++)
1570                 blocks[i] = NULL;
1571         count = 0;
1572         i = d0_idx;
1573         do {
1574                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575
1576                 blocks[slot] = sh->dev[i].page;
1577
1578                 if (i == target)
1579                         faila = slot;
1580                 if (i == target2)
1581                         failb = slot;
1582                 i = raid6_next_disk(i, disks);
1583         } while (i != d0_idx);
1584
1585         BUG_ON(faila == failb);
1586         if (failb < faila)
1587                 swap(faila, failb);
1588         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589                  __func__, (unsigned long long)sh->sector, faila, failb);
1590
1591         atomic_inc(&sh->count);
1592
1593         if (failb == syndrome_disks+1) {
1594                 /* Q disk is one of the missing disks */
1595                 if (faila == syndrome_disks) {
1596                         /* Missing P+Q, just recompute */
1597                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598                                           ops_complete_compute, sh,
1599                                           to_addr_conv(sh, percpu, 0));
1600                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601                                                   STRIPE_SIZE, &submit);
1602                 } else {
1603                         struct page *dest;
1604                         int data_target;
1605                         int qd_idx = sh->qd_idx;
1606
1607                         /* Missing D+Q: recompute D from P, then recompute Q */
1608                         if (target == qd_idx)
1609                                 data_target = target2;
1610                         else
1611                                 data_target = target;
1612
1613                         count = 0;
1614                         for (i = disks; i-- ; ) {
1615                                 if (i == data_target || i == qd_idx)
1616                                         continue;
1617                                 blocks[count++] = sh->dev[i].page;
1618                         }
1619                         dest = sh->dev[data_target].page;
1620                         init_async_submit(&submit,
1621                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622                                           NULL, NULL, NULL,
1623                                           to_addr_conv(sh, percpu, 0));
1624                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625                                        &submit);
1626
1627                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629                                           ops_complete_compute, sh,
1630                                           to_addr_conv(sh, percpu, 0));
1631                         return async_gen_syndrome(blocks, 0, count+2,
1632                                                   STRIPE_SIZE, &submit);
1633                 }
1634         } else {
1635                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636                                   ops_complete_compute, sh,
1637                                   to_addr_conv(sh, percpu, 0));
1638                 if (failb == syndrome_disks) {
1639                         /* We're missing D+P. */
1640                         return async_raid6_datap_recov(syndrome_disks+2,
1641                                                        STRIPE_SIZE, faila,
1642                                                        blocks, &submit);
1643                 } else {
1644                         /* We're missing D+D. */
1645                         return async_raid6_2data_recov(syndrome_disks+2,
1646                                                        STRIPE_SIZE, faila, failb,
1647                                                        blocks, &submit);
1648                 }
1649         }
1650 }
1651
1652 static void ops_complete_prexor(void *stripe_head_ref)
1653 {
1654         struct stripe_head *sh = stripe_head_ref;
1655
1656         pr_debug("%s: stripe %llu\n", __func__,
1657                 (unsigned long long)sh->sector);
1658
1659         if (r5c_is_writeback(sh->raid_conf->log))
1660                 /*
1661                  * raid5-cache write back uses orig_page during prexor.
1662                  * After prexor, it is time to free orig_page
1663                  */
1664                 r5c_release_extra_page(sh);
1665 }
1666
1667 static struct dma_async_tx_descriptor *
1668 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669                 struct dma_async_tx_descriptor *tx)
1670 {
1671         int disks = sh->disks;
1672         struct page **xor_srcs = to_addr_page(percpu, 0);
1673         int count = 0, pd_idx = sh->pd_idx, i;
1674         struct async_submit_ctl submit;
1675
1676         /* existing parity data subtracted */
1677         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678
1679         BUG_ON(sh->batch_head);
1680         pr_debug("%s: stripe %llu\n", __func__,
1681                 (unsigned long long)sh->sector);
1682
1683         for (i = disks; i--; ) {
1684                 struct r5dev *dev = &sh->dev[i];
1685                 /* Only process blocks that are known to be uptodate */
1686                 if (test_bit(R5_InJournal, &dev->flags))
1687                         xor_srcs[count++] = dev->orig_page;
1688                 else if (test_bit(R5_Wantdrain, &dev->flags))
1689                         xor_srcs[count++] = dev->page;
1690         }
1691
1692         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1695
1696         return tx;
1697 }
1698
1699 static struct dma_async_tx_descriptor *
1700 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701                 struct dma_async_tx_descriptor *tx)
1702 {
1703         struct page **blocks = to_addr_page(percpu, 0);
1704         int count;
1705         struct async_submit_ctl submit;
1706
1707         pr_debug("%s: stripe %llu\n", __func__,
1708                 (unsigned long long)sh->sector);
1709
1710         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711
1712         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1715
1716         return tx;
1717 }
1718
1719 static struct dma_async_tx_descriptor *
1720 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1721 {
1722         struct r5conf *conf = sh->raid_conf;
1723         int disks = sh->disks;
1724         int i;
1725         struct stripe_head *head_sh = sh;
1726
1727         pr_debug("%s: stripe %llu\n", __func__,
1728                 (unsigned long long)sh->sector);
1729
1730         for (i = disks; i--; ) {
1731                 struct r5dev *dev;
1732                 struct bio *chosen;
1733
1734                 sh = head_sh;
1735                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1736                         struct bio *wbi;
1737
1738 again:
1739                         dev = &sh->dev[i];
1740                         /*
1741                          * clear R5_InJournal, so when rewriting a page in
1742                          * journal, it is not skipped by r5l_log_stripe()
1743                          */
1744                         clear_bit(R5_InJournal, &dev->flags);
1745                         spin_lock_irq(&sh->stripe_lock);
1746                         chosen = dev->towrite;
1747                         dev->towrite = NULL;
1748                         sh->overwrite_disks = 0;
1749                         BUG_ON(dev->written);
1750                         wbi = dev->written = chosen;
1751                         spin_unlock_irq(&sh->stripe_lock);
1752                         WARN_ON(dev->page != dev->orig_page);
1753
1754                         while (wbi && wbi->bi_iter.bi_sector <
1755                                 dev->sector + STRIPE_SECTORS) {
1756                                 if (wbi->bi_opf & REQ_FUA)
1757                                         set_bit(R5_WantFUA, &dev->flags);
1758                                 if (wbi->bi_opf & REQ_SYNC)
1759                                         set_bit(R5_SyncIO, &dev->flags);
1760                                 if (bio_op(wbi) == REQ_OP_DISCARD)
1761                                         set_bit(R5_Discard, &dev->flags);
1762                                 else {
1763                                         tx = async_copy_data(1, wbi, &dev->page,
1764                                                              dev->sector, tx, sh,
1765                                                              r5c_is_writeback(conf->log));
1766                                         if (dev->page != dev->orig_page &&
1767                                             !r5c_is_writeback(conf->log)) {
1768                                                 set_bit(R5_SkipCopy, &dev->flags);
1769                                                 clear_bit(R5_UPTODATE, &dev->flags);
1770                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1771                                         }
1772                                 }
1773                                 wbi = r5_next_bio(wbi, dev->sector);
1774                         }
1775
1776                         if (head_sh->batch_head) {
1777                                 sh = list_first_entry(&sh->batch_list,
1778                                                       struct stripe_head,
1779                                                       batch_list);
1780                                 if (sh == head_sh)
1781                                         continue;
1782                                 goto again;
1783                         }
1784                 }
1785         }
1786
1787         return tx;
1788 }
1789
1790 static void ops_complete_reconstruct(void *stripe_head_ref)
1791 {
1792         struct stripe_head *sh = stripe_head_ref;
1793         int disks = sh->disks;
1794         int pd_idx = sh->pd_idx;
1795         int qd_idx = sh->qd_idx;
1796         int i;
1797         bool fua = false, sync = false, discard = false;
1798
1799         pr_debug("%s: stripe %llu\n", __func__,
1800                 (unsigned long long)sh->sector);
1801
1802         for (i = disks; i--; ) {
1803                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1806         }
1807
1808         for (i = disks; i--; ) {
1809                 struct r5dev *dev = &sh->dev[i];
1810
1811                 if (dev->written || i == pd_idx || i == qd_idx) {
1812                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813                                 set_bit(R5_UPTODATE, &dev->flags);
1814                                 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815                                         set_bit(R5_Expanded, &dev->flags);
1816                         }
1817                         if (fua)
1818                                 set_bit(R5_WantFUA, &dev->flags);
1819                         if (sync)
1820                                 set_bit(R5_SyncIO, &dev->flags);
1821                 }
1822         }
1823
1824         if (sh->reconstruct_state == reconstruct_state_drain_run)
1825                 sh->reconstruct_state = reconstruct_state_drain_result;
1826         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828         else {
1829                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830                 sh->reconstruct_state = reconstruct_state_result;
1831         }
1832
1833         set_bit(STRIPE_HANDLE, &sh->state);
1834         raid5_release_stripe(sh);
1835 }
1836
1837 static void
1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839                      struct dma_async_tx_descriptor *tx)
1840 {
1841         int disks = sh->disks;
1842         struct page **xor_srcs;
1843         struct async_submit_ctl submit;
1844         int count, pd_idx = sh->pd_idx, i;
1845         struct page *xor_dest;
1846         int prexor = 0;
1847         unsigned long flags;
1848         int j = 0;
1849         struct stripe_head *head_sh = sh;
1850         int last_stripe;
1851
1852         pr_debug("%s: stripe %llu\n", __func__,
1853                 (unsigned long long)sh->sector);
1854
1855         for (i = 0; i < sh->disks; i++) {
1856                 if (pd_idx == i)
1857                         continue;
1858                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859                         break;
1860         }
1861         if (i >= sh->disks) {
1862                 atomic_inc(&sh->count);
1863                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864                 ops_complete_reconstruct(sh);
1865                 return;
1866         }
1867 again:
1868         count = 0;
1869         xor_srcs = to_addr_page(percpu, j);
1870         /* check if prexor is active which means only process blocks
1871          * that are part of a read-modify-write (written)
1872          */
1873         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874                 prexor = 1;
1875                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876                 for (i = disks; i--; ) {
1877                         struct r5dev *dev = &sh->dev[i];
1878                         if (head_sh->dev[i].written ||
1879                             test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880                                 xor_srcs[count++] = dev->page;
1881                 }
1882         } else {
1883                 xor_dest = sh->dev[pd_idx].page;
1884                 for (i = disks; i--; ) {
1885                         struct r5dev *dev = &sh->dev[i];
1886                         if (i != pd_idx)
1887                                 xor_srcs[count++] = dev->page;
1888                 }
1889         }
1890
1891         /* 1/ if we prexor'd then the dest is reused as a source
1892          * 2/ if we did not prexor then we are redoing the parity
1893          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894          * for the synchronous xor case
1895          */
1896         last_stripe = !head_sh->batch_head ||
1897                 list_first_entry(&sh->batch_list,
1898                                  struct stripe_head, batch_list) == head_sh;
1899         if (last_stripe) {
1900                 flags = ASYNC_TX_ACK |
1901                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902
1903                 atomic_inc(&head_sh->count);
1904                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905                                   to_addr_conv(sh, percpu, j));
1906         } else {
1907                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908                 init_async_submit(&submit, flags, tx, NULL, NULL,
1909                                   to_addr_conv(sh, percpu, j));
1910         }
1911
1912         if (unlikely(count == 1))
1913                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914         else
1915                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916         if (!last_stripe) {
1917                 j++;
1918                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919                                       batch_list);
1920                 goto again;
1921         }
1922 }
1923
1924 static void
1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926                      struct dma_async_tx_descriptor *tx)
1927 {
1928         struct async_submit_ctl submit;
1929         struct page **blocks;
1930         int count, i, j = 0;
1931         struct stripe_head *head_sh = sh;
1932         int last_stripe;
1933         int synflags;
1934         unsigned long txflags;
1935
1936         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937
1938         for (i = 0; i < sh->disks; i++) {
1939                 if (sh->pd_idx == i || sh->qd_idx == i)
1940                         continue;
1941                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942                         break;
1943         }
1944         if (i >= sh->disks) {
1945                 atomic_inc(&sh->count);
1946                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948                 ops_complete_reconstruct(sh);
1949                 return;
1950         }
1951
1952 again:
1953         blocks = to_addr_page(percpu, j);
1954
1955         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956                 synflags = SYNDROME_SRC_WRITTEN;
1957                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958         } else {
1959                 synflags = SYNDROME_SRC_ALL;
1960                 txflags = ASYNC_TX_ACK;
1961         }
1962
1963         count = set_syndrome_sources(blocks, sh, synflags);
1964         last_stripe = !head_sh->batch_head ||
1965                 list_first_entry(&sh->batch_list,
1966                                  struct stripe_head, batch_list) == head_sh;
1967
1968         if (last_stripe) {
1969                 atomic_inc(&head_sh->count);
1970                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971                                   head_sh, to_addr_conv(sh, percpu, j));
1972         } else
1973                 init_async_submit(&submit, 0, tx, NULL, NULL,
1974                                   to_addr_conv(sh, percpu, j));
1975         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1976         if (!last_stripe) {
1977                 j++;
1978                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979                                       batch_list);
1980                 goto again;
1981         }
1982 }
1983
1984 static void ops_complete_check(void *stripe_head_ref)
1985 {
1986         struct stripe_head *sh = stripe_head_ref;
1987
1988         pr_debug("%s: stripe %llu\n", __func__,
1989                 (unsigned long long)sh->sector);
1990
1991         sh->check_state = check_state_check_result;
1992         set_bit(STRIPE_HANDLE, &sh->state);
1993         raid5_release_stripe(sh);
1994 }
1995
1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997 {
1998         int disks = sh->disks;
1999         int pd_idx = sh->pd_idx;
2000         int qd_idx = sh->qd_idx;
2001         struct page *xor_dest;
2002         struct page **xor_srcs = to_addr_page(percpu, 0);
2003         struct dma_async_tx_descriptor *tx;
2004         struct async_submit_ctl submit;
2005         int count;
2006         int i;
2007
2008         pr_debug("%s: stripe %llu\n", __func__,
2009                 (unsigned long long)sh->sector);
2010
2011         BUG_ON(sh->batch_head);
2012         count = 0;
2013         xor_dest = sh->dev[pd_idx].page;
2014         xor_srcs[count++] = xor_dest;
2015         for (i = disks; i--; ) {
2016                 if (i == pd_idx || i == qd_idx)
2017                         continue;
2018                 xor_srcs[count++] = sh->dev[i].page;
2019         }
2020
2021         init_async_submit(&submit, 0, NULL, NULL, NULL,
2022                           to_addr_conv(sh, percpu, 0));
2023         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024                            &sh->ops.zero_sum_result, &submit);
2025
2026         atomic_inc(&sh->count);
2027         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028         tx = async_trigger_callback(&submit);
2029 }
2030
2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032 {
2033         struct page **srcs = to_addr_page(percpu, 0);
2034         struct async_submit_ctl submit;
2035         int count;
2036
2037         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038                 (unsigned long long)sh->sector, checkp);
2039
2040         BUG_ON(sh->batch_head);
2041         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042         if (!checkp)
2043                 srcs[count] = NULL;
2044
2045         atomic_inc(&sh->count);
2046         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047                           sh, to_addr_conv(sh, percpu, 0));
2048         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050 }
2051
2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053 {
2054         int overlap_clear = 0, i, disks = sh->disks;
2055         struct dma_async_tx_descriptor *tx = NULL;
2056         struct r5conf *conf = sh->raid_conf;
2057         int level = conf->level;
2058         struct raid5_percpu *percpu;
2059         unsigned long cpu;
2060
2061         cpu = get_cpu();
2062         percpu = per_cpu_ptr(conf->percpu, cpu);
2063         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064                 ops_run_biofill(sh);
2065                 overlap_clear++;
2066         }
2067
2068         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069                 if (level < 6)
2070                         tx = ops_run_compute5(sh, percpu);
2071                 else {
2072                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073                                 tx = ops_run_compute6_1(sh, percpu);
2074                         else
2075                                 tx = ops_run_compute6_2(sh, percpu);
2076                 }
2077                 /* terminate the chain if reconstruct is not set to be run */
2078                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079                         async_tx_ack(tx);
2080         }
2081
2082         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083                 if (level < 6)
2084                         tx = ops_run_prexor5(sh, percpu, tx);
2085                 else
2086                         tx = ops_run_prexor6(sh, percpu, tx);
2087         }
2088
2089         if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090                 tx = ops_run_partial_parity(sh, percpu, tx);
2091
2092         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093                 tx = ops_run_biodrain(sh, tx);
2094                 overlap_clear++;
2095         }
2096
2097         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098                 if (level < 6)
2099                         ops_run_reconstruct5(sh, percpu, tx);
2100                 else
2101                         ops_run_reconstruct6(sh, percpu, tx);
2102         }
2103
2104         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105                 if (sh->check_state == check_state_run)
2106                         ops_run_check_p(sh, percpu);
2107                 else if (sh->check_state == check_state_run_q)
2108                         ops_run_check_pq(sh, percpu, 0);
2109                 else if (sh->check_state == check_state_run_pq)
2110                         ops_run_check_pq(sh, percpu, 1);
2111                 else
2112                         BUG();
2113         }
2114
2115         if (overlap_clear && !sh->batch_head)
2116                 for (i = disks; i--; ) {
2117                         struct r5dev *dev = &sh->dev[i];
2118                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119                                 wake_up(&sh->raid_conf->wait_for_overlap);
2120                 }
2121         put_cpu();
2122 }
2123
2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125 {
2126         if (sh->ppl_page)
2127                 __free_page(sh->ppl_page);
2128         kmem_cache_free(sc, sh);
2129 }
2130
2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132         int disks, struct r5conf *conf)
2133 {
2134         struct stripe_head *sh;
2135         int i;
2136
2137         sh = kmem_cache_zalloc(sc, gfp);
2138         if (sh) {
2139                 spin_lock_init(&sh->stripe_lock);
2140                 spin_lock_init(&sh->batch_lock);
2141                 INIT_LIST_HEAD(&sh->batch_list);
2142                 INIT_LIST_HEAD(&sh->lru);
2143                 INIT_LIST_HEAD(&sh->r5c);
2144                 INIT_LIST_HEAD(&sh->log_list);
2145                 atomic_set(&sh->count, 1);
2146                 sh->raid_conf = conf;
2147                 sh->log_start = MaxSector;
2148                 for (i = 0; i < disks; i++) {
2149                         struct r5dev *dev = &sh->dev[i];
2150
2151                         bio_init(&dev->req, &dev->vec, 1);
2152                         bio_init(&dev->rreq, &dev->rvec, 1);
2153                 }
2154
2155                 if (raid5_has_ppl(conf)) {
2156                         sh->ppl_page = alloc_page(gfp);
2157                         if (!sh->ppl_page) {
2158                                 free_stripe(sc, sh);
2159                                 sh = NULL;
2160                         }
2161                 }
2162         }
2163         return sh;
2164 }
2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166 {
2167         struct stripe_head *sh;
2168
2169         sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170         if (!sh)
2171                 return 0;
2172
2173         if (grow_buffers(sh, gfp)) {
2174                 shrink_buffers(sh);
2175                 free_stripe(conf->slab_cache, sh);
2176                 return 0;
2177         }
2178         sh->hash_lock_index =
2179                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180         /* we just created an active stripe so... */
2181         atomic_inc(&conf->active_stripes);
2182
2183         raid5_release_stripe(sh);
2184         conf->max_nr_stripes++;
2185         return 1;
2186 }
2187
2188 static int grow_stripes(struct r5conf *conf, int num)
2189 {
2190         struct kmem_cache *sc;
2191         size_t namelen = sizeof(conf->cache_name[0]);
2192         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194         if (conf->mddev->gendisk)
2195                 snprintf(conf->cache_name[0], namelen,
2196                         "raid%d-%s", conf->level, mdname(conf->mddev));
2197         else
2198                 snprintf(conf->cache_name[0], namelen,
2199                         "raid%d-%p", conf->level, conf->mddev);
2200         snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2201
2202         conf->active_name = 0;
2203         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205                                0, 0, NULL);
2206         if (!sc)
2207                 return 1;
2208         conf->slab_cache = sc;
2209         conf->pool_size = devs;
2210         while (num--)
2211                 if (!grow_one_stripe(conf, GFP_KERNEL))
2212                         return 1;
2213
2214         return 0;
2215 }
2216
2217 /**
2218  * scribble_alloc - allocate percpu scribble buffer for required size
2219  *                  of the scribble region
2220  * @percpu - from for_each_present_cpu() of the caller
2221  * @num - total number of disks in the array
2222  * @cnt - scribble objs count for required size of the scribble region
2223  *
2224  * The scribble buffer size must be enough to contain:
2225  * 1/ a struct page pointer for each device in the array +2
2226  * 2/ room to convert each entry in (1) to its corresponding dma
2227  *    (dma_map_page()) or page (page_address()) address.
2228  *
2229  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2230  * calculate over all devices (not just the data blocks), using zeros in place
2231  * of the P and Q blocks.
2232  */
2233 static int scribble_alloc(struct raid5_percpu *percpu,
2234                           int num, int cnt)
2235 {
2236         size_t obj_size =
2237                 sizeof(struct page *) * (num+2) +
2238                 sizeof(addr_conv_t) * (num+2);
2239         void *scribble;
2240
2241         /*
2242          * If here is in raid array suspend context, it is in memalloc noio
2243          * context as well, there is no potential recursive memory reclaim
2244          * I/Os with the GFP_KERNEL flag.
2245          */
2246         scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2247         if (!scribble)
2248                 return -ENOMEM;
2249
2250         kvfree(percpu->scribble);
2251
2252         percpu->scribble = scribble;
2253         percpu->scribble_obj_size = obj_size;
2254         return 0;
2255 }
2256
2257 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2258 {
2259         unsigned long cpu;
2260         int err = 0;
2261
2262         /*
2263          * Never shrink. And mddev_suspend() could deadlock if this is called
2264          * from raid5d. In that case, scribble_disks and scribble_sectors
2265          * should equal to new_disks and new_sectors
2266          */
2267         if (conf->scribble_disks >= new_disks &&
2268             conf->scribble_sectors >= new_sectors)
2269                 return 0;
2270         mddev_suspend(conf->mddev);
2271         get_online_cpus();
2272
2273         for_each_present_cpu(cpu) {
2274                 struct raid5_percpu *percpu;
2275
2276                 percpu = per_cpu_ptr(conf->percpu, cpu);
2277                 err = scribble_alloc(percpu, new_disks,
2278                                      new_sectors / STRIPE_SECTORS);
2279                 if (err)
2280                         break;
2281         }
2282
2283         put_online_cpus();
2284         mddev_resume(conf->mddev);
2285         if (!err) {
2286                 conf->scribble_disks = new_disks;
2287                 conf->scribble_sectors = new_sectors;
2288         }
2289         return err;
2290 }
2291
2292 static int resize_stripes(struct r5conf *conf, int newsize)
2293 {
2294         /* Make all the stripes able to hold 'newsize' devices.
2295          * New slots in each stripe get 'page' set to a new page.
2296          *
2297          * This happens in stages:
2298          * 1/ create a new kmem_cache and allocate the required number of
2299          *    stripe_heads.
2300          * 2/ gather all the old stripe_heads and transfer the pages across
2301          *    to the new stripe_heads.  This will have the side effect of
2302          *    freezing the array as once all stripe_heads have been collected,
2303          *    no IO will be possible.  Old stripe heads are freed once their
2304          *    pages have been transferred over, and the old kmem_cache is
2305          *    freed when all stripes are done.
2306          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2307          *    we simple return a failure status - no need to clean anything up.
2308          * 4/ allocate new pages for the new slots in the new stripe_heads.
2309          *    If this fails, we don't bother trying the shrink the
2310          *    stripe_heads down again, we just leave them as they are.
2311          *    As each stripe_head is processed the new one is released into
2312          *    active service.
2313          *
2314          * Once step2 is started, we cannot afford to wait for a write,
2315          * so we use GFP_NOIO allocations.
2316          */
2317         struct stripe_head *osh, *nsh;
2318         LIST_HEAD(newstripes);
2319         struct disk_info *ndisks;
2320         int err = 0;
2321         struct kmem_cache *sc;
2322         int i;
2323         int hash, cnt;
2324
2325         md_allow_write(conf->mddev);
2326
2327         /* Step 1 */
2328         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2329                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2330                                0, 0, NULL);
2331         if (!sc)
2332                 return -ENOMEM;
2333
2334         /* Need to ensure auto-resizing doesn't interfere */
2335         mutex_lock(&conf->cache_size_mutex);
2336
2337         for (i = conf->max_nr_stripes; i; i--) {
2338                 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2339                 if (!nsh)
2340                         break;
2341
2342                 list_add(&nsh->lru, &newstripes);
2343         }
2344         if (i) {
2345                 /* didn't get enough, give up */
2346                 while (!list_empty(&newstripes)) {
2347                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2348                         list_del(&nsh->lru);
2349                         free_stripe(sc, nsh);
2350                 }
2351                 kmem_cache_destroy(sc);
2352                 mutex_unlock(&conf->cache_size_mutex);
2353                 return -ENOMEM;
2354         }
2355         /* Step 2 - Must use GFP_NOIO now.
2356          * OK, we have enough stripes, start collecting inactive
2357          * stripes and copying them over
2358          */
2359         hash = 0;
2360         cnt = 0;
2361         list_for_each_entry(nsh, &newstripes, lru) {
2362                 lock_device_hash_lock(conf, hash);
2363                 wait_event_cmd(conf->wait_for_stripe,
2364                                     !list_empty(conf->inactive_list + hash),
2365                                     unlock_device_hash_lock(conf, hash),
2366                                     lock_device_hash_lock(conf, hash));
2367                 osh = get_free_stripe(conf, hash);
2368                 unlock_device_hash_lock(conf, hash);
2369
2370                 for(i=0; i<conf->pool_size; i++) {
2371                         nsh->dev[i].page = osh->dev[i].page;
2372                         nsh->dev[i].orig_page = osh->dev[i].page;
2373                 }
2374                 nsh->hash_lock_index = hash;
2375                 free_stripe(conf->slab_cache, osh);
2376                 cnt++;
2377                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2378                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2379                         hash++;
2380                         cnt = 0;
2381                 }
2382         }
2383         kmem_cache_destroy(conf->slab_cache);
2384
2385         /* Step 3.
2386          * At this point, we are holding all the stripes so the array
2387          * is completely stalled, so now is a good time to resize
2388          * conf->disks and the scribble region
2389          */
2390         ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2391         if (ndisks) {
2392                 for (i = 0; i < conf->pool_size; i++)
2393                         ndisks[i] = conf->disks[i];
2394
2395                 for (i = conf->pool_size; i < newsize; i++) {
2396                         ndisks[i].extra_page = alloc_page(GFP_NOIO);
2397                         if (!ndisks[i].extra_page)
2398                                 err = -ENOMEM;
2399                 }
2400
2401                 if (err) {
2402                         for (i = conf->pool_size; i < newsize; i++)
2403                                 if (ndisks[i].extra_page)
2404                                         put_page(ndisks[i].extra_page);
2405                         kfree(ndisks);
2406                 } else {
2407                         kfree(conf->disks);
2408                         conf->disks = ndisks;
2409                 }
2410         } else
2411                 err = -ENOMEM;
2412
2413         mutex_unlock(&conf->cache_size_mutex);
2414
2415         conf->slab_cache = sc;
2416         conf->active_name = 1-conf->active_name;
2417
2418         /* Step 4, return new stripes to service */
2419         while(!list_empty(&newstripes)) {
2420                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2421                 list_del_init(&nsh->lru);
2422
2423                 for (i=conf->raid_disks; i < newsize; i++)
2424                         if (nsh->dev[i].page == NULL) {
2425                                 struct page *p = alloc_page(GFP_NOIO);
2426                                 nsh->dev[i].page = p;
2427                                 nsh->dev[i].orig_page = p;
2428                                 if (!p)
2429                                         err = -ENOMEM;
2430                         }
2431                 raid5_release_stripe(nsh);
2432         }
2433         /* critical section pass, GFP_NOIO no longer needed */
2434
2435         if (!err)
2436                 conf->pool_size = newsize;
2437         return err;
2438 }
2439
2440 static int drop_one_stripe(struct r5conf *conf)
2441 {
2442         struct stripe_head *sh;
2443         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2444
2445         spin_lock_irq(conf->hash_locks + hash);
2446         sh = get_free_stripe(conf, hash);
2447         spin_unlock_irq(conf->hash_locks + hash);
2448         if (!sh)
2449                 return 0;
2450         BUG_ON(atomic_read(&sh->count));
2451         shrink_buffers(sh);
2452         free_stripe(conf->slab_cache, sh);
2453         atomic_dec(&conf->active_stripes);
2454         conf->max_nr_stripes--;
2455         return 1;
2456 }
2457
2458 static void shrink_stripes(struct r5conf *conf)
2459 {
2460         while (conf->max_nr_stripes &&
2461                drop_one_stripe(conf))
2462                 ;
2463
2464         kmem_cache_destroy(conf->slab_cache);
2465         conf->slab_cache = NULL;
2466 }
2467
2468 static void raid5_end_read_request(struct bio * bi)
2469 {
2470         struct stripe_head *sh = bi->bi_private;
2471         struct r5conf *conf = sh->raid_conf;
2472         int disks = sh->disks, i;
2473         char b[BDEVNAME_SIZE];
2474         struct md_rdev *rdev = NULL;
2475         sector_t s;
2476
2477         for (i=0 ; i<disks; i++)
2478                 if (bi == &sh->dev[i].req)
2479                         break;
2480
2481         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2482                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2483                 bi->bi_status);
2484         if (i == disks) {
2485                 bio_reset(bi);
2486                 BUG();
2487                 return;
2488         }
2489         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2490                 /* If replacement finished while this request was outstanding,
2491                  * 'replacement' might be NULL already.
2492                  * In that case it moved down to 'rdev'.
2493                  * rdev is not removed until all requests are finished.
2494                  */
2495                 rdev = conf->disks[i].replacement;
2496         if (!rdev)
2497                 rdev = conf->disks[i].rdev;
2498
2499         if (use_new_offset(conf, sh))
2500                 s = sh->sector + rdev->new_data_offset;
2501         else
2502                 s = sh->sector + rdev->data_offset;
2503         if (!bi->bi_status) {
2504                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2505                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2506                         /* Note that this cannot happen on a
2507                          * replacement device.  We just fail those on
2508                          * any error
2509                          */
2510                         pr_info_ratelimited(
2511                                 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2512                                 mdname(conf->mddev), STRIPE_SECTORS,
2513                                 (unsigned long long)s,
2514                                 bdevname(rdev->bdev, b));
2515                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2516                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2517                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2518                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2519                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2520
2521                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2522                         /*
2523                          * end read for a page in journal, this
2524                          * must be preparing for prexor in rmw
2525                          */
2526                         set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2527
2528                 if (atomic_read(&rdev->read_errors))
2529                         atomic_set(&rdev->read_errors, 0);
2530         } else {
2531                 const char *bdn = bdevname(rdev->bdev, b);
2532                 int retry = 0;
2533                 int set_bad = 0;
2534
2535                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2536                 if (!(bi->bi_status == BLK_STS_PROTECTION))
2537                         atomic_inc(&rdev->read_errors);
2538                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2539                         pr_warn_ratelimited(
2540                                 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2541                                 mdname(conf->mddev),
2542                                 (unsigned long long)s,
2543                                 bdn);
2544                 else if (conf->mddev->degraded >= conf->max_degraded) {
2545                         set_bad = 1;
2546                         pr_warn_ratelimited(
2547                                 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2548                                 mdname(conf->mddev),
2549                                 (unsigned long long)s,
2550                                 bdn);
2551                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2552                         /* Oh, no!!! */
2553                         set_bad = 1;
2554                         pr_warn_ratelimited(
2555                                 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2556                                 mdname(conf->mddev),
2557                                 (unsigned long long)s,
2558                                 bdn);
2559                 } else if (atomic_read(&rdev->read_errors)
2560                          > conf->max_nr_stripes) {
2561                         if (!test_bit(Faulty, &rdev->flags)) {
2562                                 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2563                                     mdname(conf->mddev),
2564                                     atomic_read(&rdev->read_errors),
2565                                     conf->max_nr_stripes);
2566                                 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2567                                     mdname(conf->mddev), bdn);
2568                         }
2569                 } else
2570                         retry = 1;
2571                 if (set_bad && test_bit(In_sync, &rdev->flags)
2572                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2573                         retry = 1;
2574                 if (retry)
2575                         if (sh->qd_idx >= 0 && sh->pd_idx == i)
2576                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2577                         else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2578                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2579                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580                         } else
2581                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2582                 else {
2583                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2584                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2585                         if (!(set_bad
2586                               && test_bit(In_sync, &rdev->flags)
2587                               && rdev_set_badblocks(
2588                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2589                                 md_error(conf->mddev, rdev);
2590                 }
2591         }
2592         rdev_dec_pending(rdev, conf->mddev);
2593         bio_reset(bi);
2594         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2595         set_bit(STRIPE_HANDLE, &sh->state);
2596         raid5_release_stripe(sh);
2597 }
2598
2599 static void raid5_end_write_request(struct bio *bi)
2600 {
2601         struct stripe_head *sh = bi->bi_private;
2602         struct r5conf *conf = sh->raid_conf;
2603         int disks = sh->disks, i;
2604         struct md_rdev *uninitialized_var(rdev);
2605         sector_t first_bad;
2606         int bad_sectors;
2607         int replacement = 0;
2608
2609         for (i = 0 ; i < disks; i++) {
2610                 if (bi == &sh->dev[i].req) {
2611                         rdev = conf->disks[i].rdev;
2612                         break;
2613                 }
2614                 if (bi == &sh->dev[i].rreq) {
2615                         rdev = conf->disks[i].replacement;
2616                         if (rdev)
2617                                 replacement = 1;
2618                         else
2619                                 /* rdev was removed and 'replacement'
2620                                  * replaced it.  rdev is not removed
2621                                  * until all requests are finished.
2622                                  */
2623                                 rdev = conf->disks[i].rdev;
2624                         break;
2625                 }
2626         }
2627         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2628                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2629                 bi->bi_status);
2630         if (i == disks) {
2631                 bio_reset(bi);
2632                 BUG();
2633                 return;
2634         }
2635
2636         if (replacement) {
2637                 if (bi->bi_status)
2638                         md_error(conf->mddev, rdev);
2639                 else if (is_badblock(rdev, sh->sector,
2640                                      STRIPE_SECTORS,
2641                                      &first_bad, &bad_sectors))
2642                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2643         } else {
2644                 if (bi->bi_status) {
2645                         set_bit(STRIPE_DEGRADED, &sh->state);
2646                         set_bit(WriteErrorSeen, &rdev->flags);
2647                         set_bit(R5_WriteError, &sh->dev[i].flags);
2648                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2649                                 set_bit(MD_RECOVERY_NEEDED,
2650                                         &rdev->mddev->recovery);
2651                 } else if (is_badblock(rdev, sh->sector,
2652                                        STRIPE_SECTORS,
2653                                        &first_bad, &bad_sectors)) {
2654                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2655                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2656                                 /* That was a successful write so make
2657                                  * sure it looks like we already did
2658                                  * a re-write.
2659                                  */
2660                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2661                 }
2662         }
2663         rdev_dec_pending(rdev, conf->mddev);
2664
2665         if (sh->batch_head && bi->bi_status && !replacement)
2666                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2667
2668         bio_reset(bi);
2669         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2670                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2671         set_bit(STRIPE_HANDLE, &sh->state);
2672         raid5_release_stripe(sh);
2673
2674         if (sh->batch_head && sh != sh->batch_head)
2675                 raid5_release_stripe(sh->batch_head);
2676 }
2677
2678 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2679 {
2680         char b[BDEVNAME_SIZE];
2681         struct r5conf *conf = mddev->private;
2682         unsigned long flags;
2683         pr_debug("raid456: error called\n");
2684
2685         spin_lock_irqsave(&conf->device_lock, flags);
2686
2687         if (test_bit(In_sync, &rdev->flags) &&
2688             mddev->degraded == conf->max_degraded) {
2689                 /*
2690                  * Don't allow to achieve failed state
2691                  * Don't try to recover this device
2692                  */
2693                 conf->recovery_disabled = mddev->recovery_disabled;
2694                 spin_unlock_irqrestore(&conf->device_lock, flags);
2695                 return;
2696         }
2697
2698         set_bit(Faulty, &rdev->flags);
2699         clear_bit(In_sync, &rdev->flags);
2700         mddev->degraded = raid5_calc_degraded(conf);
2701         spin_unlock_irqrestore(&conf->device_lock, flags);
2702         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2703
2704         set_bit(Blocked, &rdev->flags);
2705         set_mask_bits(&mddev->sb_flags, 0,
2706                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2707         pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2708                 "md/raid:%s: Operation continuing on %d devices.\n",
2709                 mdname(mddev),
2710                 bdevname(rdev->bdev, b),
2711                 mdname(mddev),
2712                 conf->raid_disks - mddev->degraded);
2713         r5c_update_on_rdev_error(mddev, rdev);
2714 }
2715
2716 /*
2717  * Input: a 'big' sector number,
2718  * Output: index of the data and parity disk, and the sector # in them.
2719  */
2720 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2721                               int previous, int *dd_idx,
2722                               struct stripe_head *sh)
2723 {
2724         sector_t stripe, stripe2;
2725         sector_t chunk_number;
2726         unsigned int chunk_offset;
2727         int pd_idx, qd_idx;
2728         int ddf_layout = 0;
2729         sector_t new_sector;
2730         int algorithm = previous ? conf->prev_algo
2731                                  : conf->algorithm;
2732         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2733                                          : conf->chunk_sectors;
2734         int raid_disks = previous ? conf->previous_raid_disks
2735                                   : conf->raid_disks;
2736         int data_disks = raid_disks - conf->max_degraded;
2737
2738         /* First compute the information on this sector */
2739
2740         /*
2741          * Compute the chunk number and the sector offset inside the chunk
2742          */
2743         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2744         chunk_number = r_sector;
2745
2746         /*
2747          * Compute the stripe number
2748          */
2749         stripe = chunk_number;
2750         *dd_idx = sector_div(stripe, data_disks);
2751         stripe2 = stripe;
2752         /*
2753          * Select the parity disk based on the user selected algorithm.
2754          */
2755         pd_idx = qd_idx = -1;
2756         switch(conf->level) {
2757         case 4:
2758                 pd_idx = data_disks;
2759                 break;
2760         case 5:
2761                 switch (algorithm) {
2762                 case ALGORITHM_LEFT_ASYMMETRIC:
2763                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2764                         if (*dd_idx >= pd_idx)
2765                                 (*dd_idx)++;
2766                         break;
2767                 case ALGORITHM_RIGHT_ASYMMETRIC:
2768                         pd_idx = sector_div(stripe2, raid_disks);
2769                         if (*dd_idx >= pd_idx)
2770                                 (*dd_idx)++;
2771                         break;
2772                 case ALGORITHM_LEFT_SYMMETRIC:
2773                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2774                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2775                         break;
2776                 case ALGORITHM_RIGHT_SYMMETRIC:
2777                         pd_idx = sector_div(stripe2, raid_disks);
2778                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2779                         break;
2780                 case ALGORITHM_PARITY_0:
2781                         pd_idx = 0;
2782                         (*dd_idx)++;
2783                         break;
2784                 case ALGORITHM_PARITY_N:
2785                         pd_idx = data_disks;
2786                         break;
2787                 default:
2788                         BUG();
2789                 }
2790                 break;
2791         case 6:
2792
2793                 switch (algorithm) {
2794                 case ALGORITHM_LEFT_ASYMMETRIC:
2795                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2796                         qd_idx = pd_idx + 1;
2797                         if (pd_idx == raid_disks-1) {
2798                                 (*dd_idx)++;    /* Q D D D P */
2799                                 qd_idx = 0;
2800                         } else if (*dd_idx >= pd_idx)
2801                                 (*dd_idx) += 2; /* D D P Q D */
2802                         break;
2803                 case ALGORITHM_RIGHT_ASYMMETRIC:
2804                         pd_idx = sector_div(stripe2, raid_disks);
2805                         qd_idx = pd_idx + 1;
2806                         if (pd_idx == raid_disks-1) {
2807                                 (*dd_idx)++;    /* Q D D D P */
2808                                 qd_idx = 0;
2809                         } else if (*dd_idx >= pd_idx)
2810                                 (*dd_idx) += 2; /* D D P Q D */
2811                         break;
2812                 case ALGORITHM_LEFT_SYMMETRIC:
2813                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2814                         qd_idx = (pd_idx + 1) % raid_disks;
2815                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2816                         break;
2817                 case ALGORITHM_RIGHT_SYMMETRIC:
2818                         pd_idx = sector_div(stripe2, raid_disks);
2819                         qd_idx = (pd_idx + 1) % raid_disks;
2820                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2821                         break;
2822
2823                 case ALGORITHM_PARITY_0:
2824                         pd_idx = 0;
2825                         qd_idx = 1;
2826                         (*dd_idx) += 2;
2827                         break;
2828                 case ALGORITHM_PARITY_N:
2829                         pd_idx = data_disks;
2830                         qd_idx = data_disks + 1;
2831                         break;
2832
2833                 case ALGORITHM_ROTATING_ZERO_RESTART:
2834                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2835                          * of blocks for computing Q is different.
2836                          */
2837                         pd_idx = sector_div(stripe2, raid_disks);
2838                         qd_idx = pd_idx + 1;
2839                         if (pd_idx == raid_disks-1) {
2840                                 (*dd_idx)++;    /* Q D D D P */
2841                                 qd_idx = 0;
2842                         } else if (*dd_idx >= pd_idx)
2843                                 (*dd_idx) += 2; /* D D P Q D */
2844                         ddf_layout = 1;
2845                         break;
2846
2847                 case ALGORITHM_ROTATING_N_RESTART:
2848                         /* Same a left_asymmetric, by first stripe is
2849                          * D D D P Q  rather than
2850                          * Q D D D P
2851                          */
2852                         stripe2 += 1;
2853                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2854                         qd_idx = pd_idx + 1;
2855                         if (pd_idx == raid_disks-1) {
2856                                 (*dd_idx)++;    /* Q D D D P */
2857                                 qd_idx = 0;
2858                         } else if (*dd_idx >= pd_idx)
2859                                 (*dd_idx) += 2; /* D D P Q D */
2860                         ddf_layout = 1;
2861                         break;
2862
2863                 case ALGORITHM_ROTATING_N_CONTINUE:
2864                         /* Same as left_symmetric but Q is before P */
2865                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2866                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2867                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2868                         ddf_layout = 1;
2869                         break;
2870
2871                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2872                         /* RAID5 left_asymmetric, with Q on last device */
2873                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2874                         if (*dd_idx >= pd_idx)
2875                                 (*dd_idx)++;
2876                         qd_idx = raid_disks - 1;
2877                         break;
2878
2879                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2880                         pd_idx = sector_div(stripe2, raid_disks-1);
2881                         if (*dd_idx >= pd_idx)
2882                                 (*dd_idx)++;
2883                         qd_idx = raid_disks - 1;
2884                         break;
2885
2886                 case ALGORITHM_LEFT_SYMMETRIC_6:
2887                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2888                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2889                         qd_idx = raid_disks - 1;
2890                         break;
2891
2892                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2893                         pd_idx = sector_div(stripe2, raid_disks-1);
2894                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2895                         qd_idx = raid_disks - 1;
2896                         break;
2897
2898                 case ALGORITHM_PARITY_0_6:
2899                         pd_idx = 0;
2900                         (*dd_idx)++;
2901                         qd_idx = raid_disks - 1;
2902                         break;
2903
2904                 default:
2905                         BUG();
2906                 }
2907                 break;
2908         }
2909
2910         if (sh) {
2911                 sh->pd_idx = pd_idx;
2912                 sh->qd_idx = qd_idx;
2913                 sh->ddf_layout = ddf_layout;
2914         }
2915         /*
2916          * Finally, compute the new sector number
2917          */
2918         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2919         return new_sector;
2920 }
2921
2922 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2923 {
2924         struct r5conf *conf = sh->raid_conf;
2925         int raid_disks = sh->disks;
2926         int data_disks = raid_disks - conf->max_degraded;
2927         sector_t new_sector = sh->sector, check;
2928         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2929                                          : conf->chunk_sectors;
2930         int algorithm = previous ? conf->prev_algo
2931                                  : conf->algorithm;
2932         sector_t stripe;
2933         int chunk_offset;
2934         sector_t chunk_number;
2935         int dummy1, dd_idx = i;
2936         sector_t r_sector;
2937         struct stripe_head sh2;
2938
2939         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2940         stripe = new_sector;
2941
2942         if (i == sh->pd_idx)
2943                 return 0;
2944         switch(conf->level) {
2945         case 4: break;
2946         case 5:
2947                 switch (algorithm) {
2948                 case ALGORITHM_LEFT_ASYMMETRIC:
2949                 case ALGORITHM_RIGHT_ASYMMETRIC:
2950                         if (i > sh->pd_idx)
2951                                 i--;
2952                         break;
2953                 case ALGORITHM_LEFT_SYMMETRIC:
2954                 case ALGORITHM_RIGHT_SYMMETRIC:
2955                         if (i < sh->pd_idx)
2956                                 i += raid_disks;
2957                         i -= (sh->pd_idx + 1);
2958                         break;
2959                 case ALGORITHM_PARITY_0:
2960                         i -= 1;
2961                         break;
2962                 case ALGORITHM_PARITY_N:
2963                         break;
2964                 default:
2965                         BUG();
2966                 }
2967                 break;
2968         case 6:
2969                 if (i == sh->qd_idx)
2970                         return 0; /* It is the Q disk */
2971                 switch (algorithm) {
2972                 case ALGORITHM_LEFT_ASYMMETRIC:
2973                 case ALGORITHM_RIGHT_ASYMMETRIC:
2974                 case ALGORITHM_ROTATING_ZERO_RESTART:
2975                 case ALGORITHM_ROTATING_N_RESTART:
2976                         if (sh->pd_idx == raid_disks-1)
2977                                 i--;    /* Q D D D P */
2978                         else if (i > sh->pd_idx)
2979                                 i -= 2; /* D D P Q D */
2980                         break;
2981                 case ALGORITHM_LEFT_SYMMETRIC:
2982                 case ALGORITHM_RIGHT_SYMMETRIC:
2983                         if (sh->pd_idx == raid_disks-1)
2984                                 i--; /* Q D D D P */
2985                         else {
2986                                 /* D D P Q D */
2987                                 if (i < sh->pd_idx)
2988                                         i += raid_disks;
2989                                 i -= (sh->pd_idx + 2);
2990                         }
2991                         break;
2992                 case ALGORITHM_PARITY_0:
2993                         i -= 2;
2994                         break;
2995                 case ALGORITHM_PARITY_N:
2996                         break;
2997                 case ALGORITHM_ROTATING_N_CONTINUE:
2998                         /* Like left_symmetric, but P is before Q */
2999                         if (sh->pd_idx == 0)
3000                                 i--;    /* P D D D Q */
3001                         else {
3002                                 /* D D Q P D */
3003                                 if (i < sh->pd_idx)
3004                                         i += raid_disks;
3005                                 i -= (sh->pd_idx + 1);
3006                         }
3007                         break;
3008                 case ALGORITHM_LEFT_ASYMMETRIC_6:
3009                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3010                         if (i > sh->pd_idx)
3011                                 i--;
3012                         break;
3013                 case ALGORITHM_LEFT_SYMMETRIC_6:
3014                 case ALGORITHM_RIGHT_SYMMETRIC_6:
3015                         if (i < sh->pd_idx)
3016                                 i += data_disks + 1;
3017                         i -= (sh->pd_idx + 1);
3018                         break;
3019                 case ALGORITHM_PARITY_0_6:
3020                         i -= 1;
3021                         break;
3022                 default:
3023                         BUG();
3024                 }
3025                 break;
3026         }
3027
3028         chunk_number = stripe * data_disks + i;
3029         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3030
3031         check = raid5_compute_sector(conf, r_sector,
3032                                      previous, &dummy1, &sh2);
3033         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3034                 || sh2.qd_idx != sh->qd_idx) {
3035                 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3036                         mdname(conf->mddev));
3037                 return 0;
3038         }
3039         return r_sector;
3040 }
3041
3042 /*
3043  * There are cases where we want handle_stripe_dirtying() and
3044  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3045  *
3046  * This function checks whether we want to delay the towrite. Specifically,
3047  * we delay the towrite when:
3048  *
3049  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3050  *      stripe has data in journal (for other devices).
3051  *
3052  *      In this case, when reading data for the non-overwrite dev, it is
3053  *      necessary to handle complex rmw of write back cache (prexor with
3054  *      orig_page, and xor with page). To keep read path simple, we would
3055  *      like to flush data in journal to RAID disks first, so complex rmw
3056  *      is handled in the write patch (handle_stripe_dirtying).
3057  *
3058  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3059  *
3060  *      It is important to be able to flush all stripes in raid5-cache.
3061  *      Therefore, we need reserve some space on the journal device for
3062  *      these flushes. If flush operation includes pending writes to the
3063  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3064  *      for the flush out. If we exclude these pending writes from flush
3065  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3066  *      Therefore, excluding pending writes in these cases enables more
3067  *      efficient use of the journal device.
3068  *
3069  *      Note: To make sure the stripe makes progress, we only delay
3070  *      towrite for stripes with data already in journal (injournal > 0).
3071  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3072  *      no_space_stripes list.
3073  *
3074  *   3. during journal failure
3075  *      In journal failure, we try to flush all cached data to raid disks
3076  *      based on data in stripe cache. The array is read-only to upper
3077  *      layers, so we would skip all pending writes.
3078  *
3079  */
3080 static inline bool delay_towrite(struct r5conf *conf,
3081                                  struct r5dev *dev,
3082                                  struct stripe_head_state *s)
3083 {
3084         /* case 1 above */
3085         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3086             !test_bit(R5_Insync, &dev->flags) && s->injournal)
3087                 return true;
3088         /* case 2 above */
3089         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3090             s->injournal > 0)
3091                 return true;
3092         /* case 3 above */
3093         if (s->log_failed && s->injournal)
3094                 return true;
3095         return false;
3096 }
3097
3098 static void
3099 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3100                          int rcw, int expand)
3101 {
3102         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3103         struct r5conf *conf = sh->raid_conf;
3104         int level = conf->level;
3105
3106         if (rcw) {
3107                 /*
3108                  * In some cases, handle_stripe_dirtying initially decided to
3109                  * run rmw and allocates extra page for prexor. However, rcw is
3110                  * cheaper later on. We need to free the extra page now,
3111                  * because we won't be able to do that in ops_complete_prexor().
3112                  */
3113                 r5c_release_extra_page(sh);
3114
3115                 for (i = disks; i--; ) {
3116                         struct r5dev *dev = &sh->dev[i];
3117
3118                         if (dev->towrite && !delay_towrite(conf, dev, s)) {
3119                                 set_bit(R5_LOCKED, &dev->flags);
3120                                 set_bit(R5_Wantdrain, &dev->flags);
3121                                 if (!expand)
3122                                         clear_bit(R5_UPTODATE, &dev->flags);
3123                                 s->locked++;
3124                         } else if (test_bit(R5_InJournal, &dev->flags)) {
3125                                 set_bit(R5_LOCKED, &dev->flags);
3126                                 s->locked++;
3127                         }
3128                 }
3129                 /* if we are not expanding this is a proper write request, and
3130                  * there will be bios with new data to be drained into the
3131                  * stripe cache
3132                  */
3133                 if (!expand) {
3134                         if (!s->locked)
3135                                 /* False alarm, nothing to do */
3136                                 return;
3137                         sh->reconstruct_state = reconstruct_state_drain_run;
3138                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3139                 } else
3140                         sh->reconstruct_state = reconstruct_state_run;
3141
3142                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3143
3144                 if (s->locked + conf->max_degraded == disks)
3145                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3146                                 atomic_inc(&conf->pending_full_writes);
3147         } else {
3148                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3149                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3150                 BUG_ON(level == 6 &&
3151                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3152                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3153
3154                 for (i = disks; i--; ) {
3155                         struct r5dev *dev = &sh->dev[i];
3156                         if (i == pd_idx || i == qd_idx)
3157                                 continue;
3158
3159                         if (dev->towrite &&
3160                             (test_bit(R5_UPTODATE, &dev->flags) ||
3161                              test_bit(R5_Wantcompute, &dev->flags))) {
3162                                 set_bit(R5_Wantdrain, &dev->flags);
3163                                 set_bit(R5_LOCKED, &dev->flags);
3164                                 clear_bit(R5_UPTODATE, &dev->flags);
3165                                 s->locked++;
3166                         } else if (test_bit(R5_InJournal, &dev->flags)) {
3167                                 set_bit(R5_LOCKED, &dev->flags);
3168                                 s->locked++;
3169                         }
3170                 }
3171                 if (!s->locked)
3172                         /* False alarm - nothing to do */
3173                         return;
3174                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3175                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3176                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3177                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3178         }
3179
3180         /* keep the parity disk(s) locked while asynchronous operations
3181          * are in flight
3182          */
3183         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3184         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3185         s->locked++;
3186
3187         if (level == 6) {
3188                 int qd_idx = sh->qd_idx;
3189                 struct r5dev *dev = &sh->dev[qd_idx];
3190
3191                 set_bit(R5_LOCKED, &dev->flags);
3192                 clear_bit(R5_UPTODATE, &dev->flags);
3193                 s->locked++;
3194         }
3195
3196         if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3197             test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3198             !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3199             test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3200                 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3201
3202         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3203                 __func__, (unsigned long long)sh->sector,
3204                 s->locked, s->ops_request);
3205 }
3206
3207 /*
3208  * Each stripe/dev can have one or more bion attached.
3209  * toread/towrite point to the first in a chain.
3210  * The bi_next chain must be in order.
3211  */
3212 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3213                           int forwrite, int previous)
3214 {
3215         struct bio **bip;
3216         struct r5conf *conf = sh->raid_conf;
3217         int firstwrite=0;
3218
3219         pr_debug("adding bi b#%llu to stripe s#%llu\n",
3220                 (unsigned long long)bi->bi_iter.bi_sector,
3221                 (unsigned long long)sh->sector);
3222
3223         spin_lock_irq(&sh->stripe_lock);
3224         sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3225         /* Don't allow new IO added to stripes in batch list */
3226         if (sh->batch_head)
3227                 goto overlap;
3228         if (forwrite) {
3229                 bip = &sh->dev[dd_idx].towrite;
3230                 if (*bip == NULL)
3231                         firstwrite = 1;
3232         } else
3233                 bip = &sh->dev[dd_idx].toread;
3234         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3235                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3236                         goto overlap;
3237                 bip = & (*bip)->bi_next;
3238         }
3239         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3240                 goto overlap;
3241
3242         if (forwrite && raid5_has_ppl(conf)) {
3243                 /*
3244                  * With PPL only writes to consecutive data chunks within a
3245                  * stripe are allowed because for a single stripe_head we can
3246                  * only have one PPL entry at a time, which describes one data
3247                  * range. Not really an overlap, but wait_for_overlap can be
3248                  * used to handle this.
3249                  */
3250                 sector_t sector;
3251                 sector_t first = 0;
3252                 sector_t last = 0;
3253                 int count = 0;
3254                 int i;
3255
3256                 for (i = 0; i < sh->disks; i++) {
3257                         if (i != sh->pd_idx &&
3258                             (i == dd_idx || sh->dev[i].towrite)) {
3259                                 sector = sh->dev[i].sector;
3260                                 if (count == 0 || sector < first)
3261                                         first = sector;
3262                                 if (sector > last)
3263                                         last = sector;
3264                                 count++;
3265                         }
3266                 }
3267
3268                 if (first + conf->chunk_sectors * (count - 1) != last)
3269                         goto overlap;
3270         }
3271
3272         if (!forwrite || previous)
3273                 clear_bit(STRIPE_BATCH_READY, &sh->state);
3274
3275         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3276         if (*bip)
3277                 bi->bi_next = *bip;
3278         *bip = bi;
3279         bio_inc_remaining(bi);
3280         md_write_inc(conf->mddev, bi);
3281
3282         if (forwrite) {
3283                 /* check if page is covered */
3284                 sector_t sector = sh->dev[dd_idx].sector;
3285                 for (bi=sh->dev[dd_idx].towrite;
3286                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3287                              bi && bi->bi_iter.bi_sector <= sector;
3288                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3289                         if (bio_end_sector(bi) >= sector)
3290                                 sector = bio_end_sector(bi);
3291                 }
3292                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3293                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3294                                 sh->overwrite_disks++;
3295         }
3296
3297         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3298                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3299                 (unsigned long long)sh->sector, dd_idx);
3300
3301         if (conf->mddev->bitmap && firstwrite) {
3302                 /* Cannot hold spinlock over bitmap_startwrite,
3303                  * but must ensure this isn't added to a batch until
3304                  * we have added to the bitmap and set bm_seq.
3305                  * So set STRIPE_BITMAP_PENDING to prevent
3306                  * batching.
3307                  * If multiple add_stripe_bio() calls race here they
3308                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3309                  * to complete "bitmap_startwrite" gets to set
3310                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3311                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3312                  * any more.
3313                  */
3314                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3315                 spin_unlock_irq(&sh->stripe_lock);
3316                 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3317                                      STRIPE_SECTORS, 0);
3318                 spin_lock_irq(&sh->stripe_lock);
3319                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3320                 if (!sh->batch_head) {
3321                         sh->bm_seq = conf->seq_flush+1;
3322                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3323                 }
3324         }
3325         spin_unlock_irq(&sh->stripe_lock);
3326
3327         if (stripe_can_batch(sh))
3328                 stripe_add_to_batch_list(conf, sh);
3329         return 1;
3330
3331  overlap:
3332         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3333         spin_unlock_irq(&sh->stripe_lock);
3334         return 0;
3335 }
3336
3337 static void end_reshape(struct r5conf *conf);
3338
3339 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3340                             struct stripe_head *sh)
3341 {
3342         int sectors_per_chunk =
3343                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3344         int dd_idx;
3345         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3346         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3347
3348         raid5_compute_sector(conf,
3349                              stripe * (disks - conf->max_degraded)
3350                              *sectors_per_chunk + chunk_offset,
3351                              previous,
3352                              &dd_idx, sh);
3353 }
3354
3355 static void
3356 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3357                      struct stripe_head_state *s, int disks)
3358 {
3359         int i;
3360         BUG_ON(sh->batch_head);
3361         for (i = disks; i--; ) {
3362                 struct bio *bi;
3363                 int bitmap_end = 0;
3364
3365                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3366                         struct md_rdev *rdev;
3367                         rcu_read_lock();
3368                         rdev = rcu_dereference(conf->disks[i].rdev);
3369                         if (rdev && test_bit(In_sync, &rdev->flags) &&
3370                             !test_bit(Faulty, &rdev->flags))
3371                                 atomic_inc(&rdev->nr_pending);
3372                         else
3373                                 rdev = NULL;
3374                         rcu_read_unlock();
3375                         if (rdev) {
3376                                 if (!rdev_set_badblocks(
3377                                             rdev,
3378                                             sh->sector,
3379                                             STRIPE_SECTORS, 0))
3380                                         md_error(conf->mddev, rdev);
3381                                 rdev_dec_pending(rdev, conf->mddev);
3382                         }
3383                 }
3384                 spin_lock_irq(&sh->stripe_lock);
3385                 /* fail all writes first */
3386                 bi = sh->dev[i].towrite;
3387                 sh->dev[i].towrite = NULL;
3388                 sh->overwrite_disks = 0;
3389                 spin_unlock_irq(&sh->stripe_lock);
3390                 if (bi)
3391                         bitmap_end = 1;
3392
3393                 log_stripe_write_finished(sh);
3394
3395                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3396                         wake_up(&conf->wait_for_overlap);
3397
3398                 while (bi && bi->bi_iter.bi_sector <
3399                         sh->dev[i].sector + STRIPE_SECTORS) {
3400                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3401
3402                         md_write_end(conf->mddev);
3403                         bio_io_error(bi);
3404                         bi = nextbi;
3405                 }
3406                 if (bitmap_end)
3407                         md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3408                                            STRIPE_SECTORS, 0, 0);
3409                 bitmap_end = 0;
3410                 /* and fail all 'written' */
3411                 bi = sh->dev[i].written;
3412                 sh->dev[i].written = NULL;
3413                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3414                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3415                         sh->dev[i].page = sh->dev[i].orig_page;
3416                 }
3417
3418                 if (bi) bitmap_end = 1;
3419                 while (bi && bi->bi_iter.bi_sector <
3420                        sh->dev[i].sector + STRIPE_SECTORS) {
3421                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3422
3423                         md_write_end(conf->mddev);
3424                         bio_io_error(bi);
3425                         bi = bi2;
3426                 }
3427
3428                 /* fail any reads if this device is non-operational and
3429                  * the data has not reached the cache yet.
3430                  */
3431                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3432                     s->failed > conf->max_degraded &&
3433                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3434                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3435                         spin_lock_irq(&sh->stripe_lock);
3436                         bi = sh->dev[i].toread;
3437                         sh->dev[i].toread = NULL;
3438                         spin_unlock_irq(&sh->stripe_lock);
3439                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3440                                 wake_up(&conf->wait_for_overlap);
3441                         if (bi)
3442                                 s->to_read--;
3443                         while (bi && bi->bi_iter.bi_sector <
3444                                sh->dev[i].sector + STRIPE_SECTORS) {
3445                                 struct bio *nextbi =
3446                                         r5_next_bio(bi, sh->dev[i].sector);
3447
3448                                 bio_io_error(bi);
3449                                 bi = nextbi;
3450                         }
3451                 }
3452                 if (bitmap_end)
3453                         md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3454                                            STRIPE_SECTORS, 0, 0);
3455                 /* If we were in the middle of a write the parity block might
3456                  * still be locked - so just clear all R5_LOCKED flags
3457                  */
3458                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3459         }
3460         s->to_write = 0;
3461         s->written = 0;
3462
3463         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3464                 if (atomic_dec_and_test(&conf->pending_full_writes))
3465                         md_wakeup_thread(conf->mddev->thread);
3466 }
3467
3468 static void
3469 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3470                    struct stripe_head_state *s)
3471 {
3472         int abort = 0;
3473         int i;
3474
3475         BUG_ON(sh->batch_head);
3476         clear_bit(STRIPE_SYNCING, &sh->state);
3477         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3478                 wake_up(&conf->wait_for_overlap);
3479         s->syncing = 0;
3480         s->replacing = 0;
3481         /* There is nothing more to do for sync/check/repair.
3482          * Don't even need to abort as that is handled elsewhere
3483          * if needed, and not always wanted e.g. if there is a known
3484          * bad block here.
3485          * For recover/replace we need to record a bad block on all
3486          * non-sync devices, or abort the recovery
3487          */
3488         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3489                 /* During recovery devices cannot be removed, so
3490                  * locking and refcounting of rdevs is not needed
3491                  */
3492                 rcu_read_lock();
3493                 for (i = 0; i < conf->raid_disks; i++) {
3494                         struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3495                         if (rdev
3496                             && !test_bit(Faulty, &rdev->flags)
3497                             && !test_bit(In_sync, &rdev->flags)
3498                             && !rdev_set_badblocks(rdev, sh->sector,
3499                                                    STRIPE_SECTORS, 0))
3500                                 abort = 1;
3501                         rdev = rcu_dereference(conf->disks[i].replacement);
3502                         if (rdev
3503                             && !test_bit(Faulty, &rdev->flags)
3504                             && !test_bit(In_sync, &rdev->flags)
3505                             && !rdev_set_badblocks(rdev, sh->sector,
3506                                                    STRIPE_SECTORS, 0))
3507                                 abort = 1;
3508                 }
3509                 rcu_read_unlock();
3510                 if (abort)
3511                         conf->recovery_disabled =
3512                                 conf->mddev->recovery_disabled;
3513         }
3514         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3515 }
3516
3517 static int want_replace(struct stripe_head *sh, int disk_idx)
3518 {
3519         struct md_rdev *rdev;
3520         int rv = 0;
3521
3522         rcu_read_lock();
3523         rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3524         if (rdev
3525             && !test_bit(Faulty, &rdev->flags)
3526             && !test_bit(In_sync, &rdev->flags)
3527             && (rdev->recovery_offset <= sh->sector
3528                 || rdev->mddev->recovery_cp <= sh->sector))
3529                 rv = 1;
3530         rcu_read_unlock();
3531         return rv;
3532 }
3533
3534 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3535                            int disk_idx, int disks)
3536 {
3537         struct r5dev *dev = &sh->dev[disk_idx];
3538         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3539                                   &sh->dev[s->failed_num[1]] };
3540         int i;
3541
3542
3543         if (test_bit(R5_LOCKED, &dev->flags) ||
3544             test_bit(R5_UPTODATE, &dev->flags))
3545                 /* No point reading this as we already have it or have
3546                  * decided to get it.
3547                  */
3548                 return 0;
3549
3550         if (dev->toread ||
3551             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3552                 /* We need this block to directly satisfy a request */
3553                 return 1;
3554
3555         if (s->syncing || s->expanding ||
3556             (s->replacing && want_replace(sh, disk_idx)))
3557                 /* When syncing, or expanding we read everything.
3558                  * When replacing, we need the replaced block.
3559                  */
3560                 return 1;
3561
3562         if ((s->failed >= 1 && fdev[0]->toread) ||
3563             (s->failed >= 2 && fdev[1]->toread))
3564                 /* If we want to read from a failed device, then
3565                  * we need to actually read every other device.
3566                  */
3567                 return 1;
3568
3569         /* Sometimes neither read-modify-write nor reconstruct-write
3570          * cycles can work.  In those cases we read every block we
3571          * can.  Then the parity-update is certain to have enough to
3572          * work with.
3573          * This can only be a problem when we need to write something,
3574          * and some device has failed.  If either of those tests
3575          * fail we need look no further.
3576          */
3577         if (!s->failed || !s->to_write)
3578                 return 0;
3579
3580         if (test_bit(R5_Insync, &dev->flags) &&
3581             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3582                 /* Pre-reads at not permitted until after short delay
3583                  * to gather multiple requests.  However if this
3584                  * device is no Insync, the block could only be computed
3585                  * and there is no need to delay that.
3586                  */
3587                 return 0;
3588
3589         for (i = 0; i < s->failed && i < 2; i++) {
3590                 if (fdev[i]->towrite &&
3591                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3592                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3593                         /* If we have a partial write to a failed
3594                          * device, then we will need to reconstruct
3595                          * the content of that device, so all other
3596                          * devices must be read.
3597                          */
3598                         return 1;
3599         }
3600
3601         /* If we are forced to do a reconstruct-write, either because
3602          * the current RAID6 implementation only supports that, or
3603          * because parity cannot be trusted and we are currently
3604          * recovering it, there is extra need to be careful.
3605          * If one of the devices that we would need to read, because
3606          * it is not being overwritten (and maybe not written at all)
3607          * is missing/faulty, then we need to read everything we can.
3608          */
3609         if (sh->raid_conf->level != 6 &&
3610             sh->sector < sh->raid_conf->mddev->recovery_cp)
3611                 /* reconstruct-write isn't being forced */
3612                 return 0;
3613         for (i = 0; i < s->failed && i < 2; i++) {
3614                 if (s->failed_num[i] != sh->pd_idx &&
3615                     s->failed_num[i] != sh->qd_idx &&
3616                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3617                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3618                         return 1;
3619         }
3620
3621         return 0;
3622 }
3623
3624 /* fetch_block - checks the given member device to see if its data needs
3625  * to be read or computed to satisfy a request.
3626  *
3627  * Returns 1 when no more member devices need to be checked, otherwise returns
3628  * 0 to tell the loop in handle_stripe_fill to continue
3629  */
3630 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3631                        int disk_idx, int disks)
3632 {
3633         struct r5dev *dev = &sh->dev[disk_idx];
3634
3635         /* is the data in this block needed, and can we get it? */
3636         if (need_this_block(sh, s, disk_idx, disks)) {
3637                 /* we would like to get this block, possibly by computing it,
3638                  * otherwise read it if the backing disk is insync
3639                  */
3640                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3641                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3642                 BUG_ON(sh->batch_head);
3643
3644                 /*
3645                  * In the raid6 case if the only non-uptodate disk is P
3646                  * then we already trusted P to compute the other failed
3647                  * drives. It is safe to compute rather than re-read P.
3648                  * In other cases we only compute blocks from failed
3649                  * devices, otherwise check/repair might fail to detect
3650                  * a real inconsistency.
3651                  */
3652
3653                 if ((s->uptodate == disks - 1) &&
3654                     ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3655                     (s->failed && (disk_idx == s->failed_num[0] ||
3656                                    disk_idx == s->failed_num[1])))) {
3657                         /* have disk failed, and we're requested to fetch it;
3658                          * do compute it
3659                          */
3660                         pr_debug("Computing stripe %llu block %d\n",
3661                                (unsigned long long)sh->sector, disk_idx);
3662                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3663                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3664                         set_bit(R5_Wantcompute, &dev->flags);
3665                         sh->ops.target = disk_idx;
3666                         sh->ops.target2 = -1; /* no 2nd target */
3667                         s->req_compute = 1;
3668                         /* Careful: from this point on 'uptodate' is in the eye
3669                          * of raid_run_ops which services 'compute' operations
3670                          * before writes. R5_Wantcompute flags a block that will
3671                          * be R5_UPTODATE by the time it is needed for a
3672                          * subsequent operation.
3673                          */
3674                         s->uptodate++;
3675                         return 1;
3676                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3677                         /* Computing 2-failure is *very* expensive; only
3678                          * do it if failed >= 2
3679                          */
3680                         int other;
3681                         for (other = disks; other--; ) {
3682                                 if (other == disk_idx)
3683                                         continue;
3684                                 if (!test_bit(R5_UPTODATE,
3685                                       &sh->dev[other].flags))
3686                                         break;
3687                         }
3688                         BUG_ON(other < 0);
3689                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3690                                (unsigned long long)sh->sector,
3691                                disk_idx, other);
3692                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3693                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3694                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3695                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3696                         sh->ops.target = disk_idx;
3697                         sh->ops.target2 = other;
3698                         s->uptodate += 2;
3699                         s->req_compute = 1;
3700                         return 1;
3701                 } else if (test_bit(R5_Insync, &dev->flags)) {
3702                         set_bit(R5_LOCKED, &dev->flags);
3703                         set_bit(R5_Wantread, &dev->flags);
3704                         s->locked++;
3705                         pr_debug("Reading block %d (sync=%d)\n",
3706                                 disk_idx, s->syncing);
3707                 }
3708         }
3709
3710         return 0;
3711 }
3712
3713 /**
3714  * handle_stripe_fill - read or compute data to satisfy pending requests.
3715  */
3716 static void handle_stripe_fill(struct stripe_head *sh,
3717                                struct stripe_head_state *s,
3718                                int disks)
3719 {
3720         int i;
3721
3722         /* look for blocks to read/compute, skip this if a compute
3723          * is already in flight, or if the stripe contents are in the
3724          * midst of changing due to a write
3725          */
3726         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3727             !sh->reconstruct_state) {
3728
3729                 /*
3730                  * For degraded stripe with data in journal, do not handle
3731                  * read requests yet, instead, flush the stripe to raid
3732                  * disks first, this avoids handling complex rmw of write
3733                  * back cache (prexor with orig_page, and then xor with
3734                  * page) in the read path
3735                  */
3736                 if (s->injournal && s->failed) {
3737                         if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3738                                 r5c_make_stripe_write_out(sh);
3739                         goto out;
3740                 }
3741
3742                 for (i = disks; i--; )
3743                         if (fetch_block(sh, s, i, disks))
3744                                 break;
3745         }
3746 out:
3747         set_bit(STRIPE_HANDLE, &sh->state);
3748 }
3749
3750 static void break_stripe_batch_list(struct stripe_head *head_sh,
3751                                     unsigned long handle_flags);
3752 /* handle_stripe_clean_event
3753  * any written block on an uptodate or failed drive can be returned.
3754  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3755  * never LOCKED, so we don't need to test 'failed' directly.
3756  */
3757 static void handle_stripe_clean_event(struct r5conf *conf,
3758         struct stripe_head *sh, int disks)
3759 {
3760         int i;
3761         struct r5dev *dev;
3762         int discard_pending = 0;
3763         struct stripe_head *head_sh = sh;
3764         bool do_endio = false;
3765
3766         for (i = disks; i--; )
3767                 if (sh->dev[i].written) {
3768                         dev = &sh->dev[i];
3769                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3770                             (test_bit(R5_UPTODATE, &dev->flags) ||
3771                              test_bit(R5_Discard, &dev->flags) ||
3772                              test_bit(R5_SkipCopy, &dev->flags))) {
3773                                 /* We can return any write requests */
3774                                 struct bio *wbi, *wbi2;
3775                                 pr_debug("Return write for disc %d\n", i);
3776                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3777                                         clear_bit(R5_UPTODATE, &dev->flags);
3778                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3779                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3780                                 }
3781                                 do_endio = true;
3782
3783 returnbi:
3784                                 dev->page = dev->orig_page;
3785                                 wbi = dev->written;
3786                                 dev->written = NULL;
3787                                 while (wbi && wbi->bi_iter.bi_sector <
3788                                         dev->sector + STRIPE_SECTORS) {
3789                                         wbi2 = r5_next_bio(wbi, dev->sector);
3790                                         md_write_end(conf->mddev);
3791                                         bio_endio(wbi);
3792                                         wbi = wbi2;
3793                                 }
3794                                 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3795                                                    STRIPE_SECTORS,
3796                                                    !test_bit(STRIPE_DEGRADED, &sh->state),
3797                                                    0);
3798                                 if (head_sh->batch_head) {
3799                                         sh = list_first_entry(&sh->batch_list,
3800                                                               struct stripe_head,
3801                                                               batch_list);
3802                                         if (sh != head_sh) {
3803                                                 dev = &sh->dev[i];
3804                                                 goto returnbi;
3805                                         }
3806                                 }
3807                                 sh = head_sh;
3808                                 dev = &sh->dev[i];
3809                         } else if (test_bit(R5_Discard, &dev->flags))
3810                                 discard_pending = 1;
3811                 }
3812
3813         log_stripe_write_finished(sh);
3814
3815         if (!discard_pending &&
3816             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3817                 int hash;
3818                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3819                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3820                 if (sh->qd_idx >= 0) {
3821                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3822                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3823                 }
3824                 /* now that discard is done we can proceed with any sync */
3825                 clear_bit(STRIPE_DISCARD, &sh->state);
3826                 /*
3827                  * SCSI discard will change some bio fields and the stripe has
3828                  * no updated data, so remove it from hash list and the stripe
3829                  * will be reinitialized
3830                  */
3831 unhash:
3832                 hash = sh->hash_lock_index;
3833                 spin_lock_irq(conf->hash_locks + hash);
3834                 remove_hash(sh);
3835                 spin_unlock_irq(conf->hash_locks + hash);
3836                 if (head_sh->batch_head) {
3837                         sh = list_first_entry(&sh->batch_list,
3838                                               struct stripe_head, batch_list);
3839                         if (sh != head_sh)
3840                                         goto unhash;
3841                 }
3842                 sh = head_sh;
3843
3844                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3845                         set_bit(STRIPE_HANDLE, &sh->state);
3846
3847         }
3848
3849         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3850                 if (atomic_dec_and_test(&conf->pending_full_writes))
3851                         md_wakeup_thread(conf->mddev->thread);
3852
3853         if (head_sh->batch_head && do_endio)
3854                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3855 }
3856
3857 /*
3858  * For RMW in write back cache, we need extra page in prexor to store the
3859  * old data. This page is stored in dev->orig_page.
3860  *
3861  * This function checks whether we have data for prexor. The exact logic
3862  * is:
3863  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3864  */
3865 static inline bool uptodate_for_rmw(struct r5dev *dev)
3866 {
3867         return (test_bit(R5_UPTODATE, &dev->flags)) &&
3868                 (!test_bit(R5_InJournal, &dev->flags) ||
3869                  test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3870 }
3871
3872 static int handle_stripe_dirtying(struct r5conf *conf,
3873                                   struct stripe_head *sh,
3874                                   struct stripe_head_state *s,
3875                                   int disks)
3876 {
3877         int rmw = 0, rcw = 0, i;
3878         sector_t recovery_cp = conf->mddev->recovery_cp;
3879
3880         /* Check whether resync is now happening or should start.
3881          * If yes, then the array is dirty (after unclean shutdown or
3882          * initial creation), so parity in some stripes might be inconsistent.
3883          * In this case, we need to always do reconstruct-write, to ensure
3884          * that in case of drive failure or read-error correction, we
3885          * generate correct data from the parity.
3886          */
3887         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3888             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3889              s->failed == 0)) {
3890                 /* Calculate the real rcw later - for now make it
3891                  * look like rcw is cheaper
3892                  */
3893                 rcw = 1; rmw = 2;
3894                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3895                          conf->rmw_level, (unsigned long long)recovery_cp,
3896                          (unsigned long long)sh->sector);
3897         } else for (i = disks; i--; ) {
3898                 /* would I have to read this buffer for read_modify_write */
3899                 struct r5dev *dev = &sh->dev[i];
3900                 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3901                      i == sh->pd_idx || i == sh->qd_idx ||
3902                      test_bit(R5_InJournal, &dev->flags)) &&
3903                     !test_bit(R5_LOCKED, &dev->flags) &&
3904                     !(uptodate_for_rmw(dev) ||
3905                       test_bit(R5_Wantcompute, &dev->flags))) {
3906                         if (test_bit(R5_Insync, &dev->flags))
3907                                 rmw++;
3908                         else
3909                                 rmw += 2*disks;  /* cannot read it */
3910                 }
3911                 /* Would I have to read this buffer for reconstruct_write */
3912                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3913                     i != sh->pd_idx && i != sh->qd_idx &&
3914                     !test_bit(R5_LOCKED, &dev->flags) &&
3915                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3916                       test_bit(R5_Wantcompute, &dev->flags))) {
3917                         if (test_bit(R5_Insync, &dev->flags))
3918                                 rcw++;
3919                         else
3920                                 rcw += 2*disks;
3921                 }
3922         }
3923
3924         pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3925                  (unsigned long long)sh->sector, sh->state, rmw, rcw);
3926         set_bit(STRIPE_HANDLE, &sh->state);
3927         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3928                 /* prefer read-modify-write, but need to get some data */
3929                 if (conf->mddev->queue)
3930                         blk_add_trace_msg(conf->mddev->queue,
3931                                           "raid5 rmw %llu %d",
3932                                           (unsigned long long)sh->sector, rmw);
3933                 for (i = disks; i--; ) {
3934                         struct r5dev *dev = &sh->dev[i];
3935                         if (test_bit(R5_InJournal, &dev->flags) &&
3936                             dev->page == dev->orig_page &&
3937                             !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3938                                 /* alloc page for prexor */
3939                                 struct page *p = alloc_page(GFP_NOIO);
3940
3941                                 if (p) {
3942                                         dev->orig_page = p;
3943                                         continue;
3944                                 }
3945
3946                                 /*
3947                                  * alloc_page() failed, try use
3948                                  * disk_info->extra_page
3949                                  */
3950                                 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3951                                                       &conf->cache_state)) {
3952                                         r5c_use_extra_page(sh);
3953                                         break;
3954                                 }
3955
3956                                 /* extra_page in use, add to delayed_list */
3957                                 set_bit(STRIPE_DELAYED, &sh->state);
3958                                 s->waiting_extra_page = 1;
3959                                 return -EAGAIN;
3960                         }
3961                 }
3962
3963                 for (i = disks; i--; ) {
3964                         struct r5dev *dev = &sh->dev[i];
3965                         if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3966                              i == sh->pd_idx || i == sh->qd_idx ||
3967                              test_bit(R5_InJournal, &dev->flags)) &&
3968                             !test_bit(R5_LOCKED, &dev->flags) &&
3969                             !(uptodate_for_rmw(dev) ||
3970                               test_bit(R5_Wantcompute, &dev->flags)) &&
3971                             test_bit(R5_Insync, &dev->flags)) {
3972                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3973                                              &sh->state)) {
3974                                         pr_debug("Read_old block %d for r-m-w\n",
3975                                                  i);
3976                                         set_bit(R5_LOCKED, &dev->flags);
3977                                         set_bit(R5_Wantread, &dev->flags);
3978                                         s->locked++;
3979                                 } else {
3980                                         set_bit(STRIPE_DELAYED, &sh->state);
3981                                         set_bit(STRIPE_HANDLE, &sh->state);
3982                                 }
3983                         }
3984                 }
3985         }
3986         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3987                 /* want reconstruct write, but need to get some data */
3988                 int qread =0;
3989                 rcw = 0;
3990                 for (i = disks; i--; ) {
3991                         struct r5dev *dev = &sh->dev[i];
3992                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3993                             i != sh->pd_idx && i != sh->qd_idx &&
3994                             !test_bit(R5_LOCKED, &dev->flags) &&
3995                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3996                               test_bit(R5_Wantcompute, &dev->flags))) {
3997                                 rcw++;
3998                                 if (test_bit(R5_Insync, &dev->flags) &&
3999                                     test_bit(STRIPE_PREREAD_ACTIVE,
4000                                              &sh->state)) {
4001                                         pr_debug("Read_old block "
4002                                                 "%d for Reconstruct\n", i);
4003                                         set_bit(R5_LOCKED, &dev->flags);
4004                                         set_bit(R5_Wantread, &dev->flags);
4005                                         s->locked++;
4006                                         qread++;
4007                                 } else {
4008                                         set_bit(STRIPE_DELAYED, &sh->state);
4009                                         set_bit(STRIPE_HANDLE, &sh->state);
4010                                 }
4011                         }
4012                 }
4013                 if (rcw && conf->mddev->queue)
4014                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4015                                           (unsigned long long)sh->sector,
4016                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4017         }
4018
4019         if (rcw > disks && rmw > disks &&
4020             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4021                 set_bit(STRIPE_DELAYED, &sh->state);
4022
4023         /* now if nothing is locked, and if we have enough data,
4024          * we can start a write request
4025          */
4026         /* since handle_stripe can be called at any time we need to handle the
4027          * case where a compute block operation has been submitted and then a
4028          * subsequent call wants to start a write request.  raid_run_ops only
4029          * handles the case where compute block and reconstruct are requested
4030          * simultaneously.  If this is not the case then new writes need to be
4031          * held off until the compute completes.
4032          */
4033         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4034             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4035              !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4036                 schedule_reconstruction(sh, s, rcw == 0, 0);
4037         return 0;
4038 }
4039
4040 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4041                                 struct stripe_head_state *s, int disks)
4042 {
4043         struct r5dev *dev = NULL;
4044
4045         BUG_ON(sh->batch_head);
4046         set_bit(STRIPE_HANDLE, &sh->state);
4047
4048         switch (sh->check_state) {
4049         case check_state_idle:
4050                 /* start a new check operation if there are no failures */
4051                 if (s->failed == 0) {
4052                         BUG_ON(s->uptodate != disks);
4053                         sh->check_state = check_state_run;
4054                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
4055                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4056                         s->uptodate--;
4057                         break;
4058                 }
4059                 dev = &sh->dev[s->failed_num[0]];
4060                 /* fall through */
4061         case check_state_compute_result:
4062                 sh->check_state = check_state_idle;
4063                 if (!dev)
4064                         dev = &sh->dev[sh->pd_idx];
4065
4066                 /* check that a write has not made the stripe insync */
4067                 if (test_bit(STRIPE_INSYNC, &sh->state))
4068                         break;
4069
4070                 /* either failed parity check, or recovery is happening */
4071                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4072                 BUG_ON(s->uptodate != disks);
4073
4074                 set_bit(R5_LOCKED, &dev->flags);
4075                 s->locked++;
4076                 set_bit(R5_Wantwrite, &dev->flags);
4077
4078                 clear_bit(STRIPE_DEGRADED, &sh->state);
4079                 set_bit(STRIPE_INSYNC, &sh->state);
4080                 break;
4081         case check_state_run:
4082                 break; /* we will be called again upon completion */
4083         case check_state_check_result:
4084                 sh->check_state = check_state_idle;
4085
4086                 /* if a failure occurred during the check operation, leave
4087                  * STRIPE_INSYNC not set and let the stripe be handled again
4088                  */
4089                 if (s->failed)
4090                         break;
4091
4092                 /* handle a successful check operation, if parity is correct
4093                  * we are done.  Otherwise update the mismatch count and repair
4094                  * parity if !MD_RECOVERY_CHECK
4095                  */
4096                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4097                         /* parity is correct (on disc,
4098                          * not in buffer any more)
4099                          */
4100                         set_bit(STRIPE_INSYNC, &sh->state);
4101                 else {
4102                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4103                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4104                                 /* don't try to repair!! */
4105                                 set_bit(STRIPE_INSYNC, &sh->state);
4106                                 pr_warn_ratelimited("%s: mismatch sector in range "
4107                                                     "%llu-%llu\n", mdname(conf->mddev),
4108                                                     (unsigned long long) sh->sector,
4109                                                     (unsigned long long) sh->sector +
4110                                                     STRIPE_SECTORS);
4111                         } else {
4112                                 sh->check_state = check_state_compute_run;
4113                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4114                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4115                                 set_bit(R5_Wantcompute,
4116                                         &sh->dev[sh->pd_idx].flags);
4117                                 sh->ops.target = sh->pd_idx;
4118                                 sh->ops.target2 = -1;
4119                                 s->uptodate++;
4120                         }
4121                 }
4122                 break;
4123         case check_state_compute_run:
4124                 break;
4125         default:
4126                 pr_err("%s: unknown check_state: %d sector: %llu\n",
4127                        __func__, sh->check_state,
4128                        (unsigned long long) sh->sector);
4129                 BUG();
4130         }
4131 }
4132
4133 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4134                                   struct stripe_head_state *s,
4135                                   int disks)
4136 {
4137         int pd_idx = sh->pd_idx;
4138         int qd_idx = sh->qd_idx;
4139         struct r5dev *dev;
4140
4141         BUG_ON(sh->batch_head);
4142         set_bit(STRIPE_HANDLE, &sh->state);
4143
4144         BUG_ON(s->failed > 2);
4145
4146         /* Want to check and possibly repair P and Q.
4147          * However there could be one 'failed' device, in which
4148          * case we can only check one of them, possibly using the
4149          * other to generate missing data
4150          */
4151
4152         switch (sh->check_state) {
4153         case check_state_idle:
4154                 /* start a new check operation if there are < 2 failures */
4155                 if (s->failed == s->q_failed) {
4156                         /* The only possible failed device holds Q, so it
4157                          * makes sense to check P (If anything else were failed,
4158                          * we would have used P to recreate it).
4159                          */
4160                         sh->check_state = check_state_run;
4161                 }
4162                 if (!s->q_failed && s->failed < 2) {
4163                         /* Q is not failed, and we didn't use it to generate
4164                          * anything, so it makes sense to check it
4165                          */
4166                         if (sh->check_state == check_state_run)
4167                                 sh->check_state = check_state_run_pq;
4168                         else
4169                                 sh->check_state = check_state_run_q;
4170                 }
4171
4172                 /* discard potentially stale zero_sum_result */
4173                 sh->ops.zero_sum_result = 0;
4174
4175                 if (sh->check_state == check_state_run) {
4176                         /* async_xor_zero_sum destroys the contents of P */
4177                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4178                         s->uptodate--;
4179                 }
4180                 if (sh->check_state >= check_state_run &&
4181                     sh->check_state <= check_state_run_pq) {
4182                         /* async_syndrome_zero_sum preserves P and Q, so
4183                          * no need to mark them !uptodate here
4184                          */
4185                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
4186                         break;
4187                 }
4188
4189                 /* we have 2-disk failure */
4190                 BUG_ON(s->failed != 2);
4191                 /* fall through */
4192         case check_state_compute_result:
4193                 sh->check_state = check_state_idle;
4194
4195                 /* check that a write has not made the stripe insync */
4196                 if (test_bit(STRIPE_INSYNC, &sh->state))
4197                         break;
4198
4199                 /* now write out any block on a failed drive,
4200                  * or P or Q if they were recomputed
4201                  */
4202                 dev = NULL;
4203                 if (s->failed == 2) {
4204                         dev = &sh->dev[s->failed_num[1]];
4205                         s->locked++;
4206                         set_bit(R5_LOCKED, &dev->flags);
4207                         set_bit(R5_Wantwrite, &dev->flags);
4208                 }
4209                 if (s->failed >= 1) {
4210                         dev = &sh->dev[s->failed_num[0]];
4211                         s->locked++;
4212                         set_bit(R5_LOCKED, &dev->flags);
4213                         set_bit(R5_Wantwrite, &dev->flags);
4214                 }
4215                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4216                         dev = &sh->dev[pd_idx];
4217                         s->locked++;
4218                         set_bit(R5_LOCKED, &dev->flags);
4219                         set_bit(R5_Wantwrite, &dev->flags);
4220                 }
4221                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4222                         dev = &sh->dev[qd_idx];
4223                         s->locked++;
4224                         set_bit(R5_LOCKED, &dev->flags);
4225                         set_bit(R5_Wantwrite, &dev->flags);
4226                 }
4227                 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4228                               "%s: disk%td not up to date\n",
4229                               mdname(conf->mddev),
4230                               dev - (struct r5dev *) &sh->dev)) {
4231                         clear_bit(R5_LOCKED, &dev->flags);
4232                         clear_bit(R5_Wantwrite, &dev->flags);
4233                         s->locked--;
4234                 }
4235                 clear_bit(STRIPE_DEGRADED, &sh->state);
4236
4237                 set_bit(STRIPE_INSYNC, &sh->state);
4238                 break;
4239         case check_state_run:
4240         case check_state_run_q:
4241         case check_state_run_pq:
4242                 break; /* we will be called again upon completion */
4243         case check_state_check_result:
4244                 sh->check_state = check_state_idle;
4245
4246                 /* handle a successful check operation, if parity is correct
4247                  * we are done.  Otherwise update the mismatch count and repair
4248                  * parity if !MD_RECOVERY_CHECK
4249                  */
4250                 if (sh->ops.zero_sum_result == 0) {
4251                         /* both parities are correct */
4252                         if (!s->failed)
4253                                 set_bit(STRIPE_INSYNC, &sh->state);
4254                         else {
4255                                 /* in contrast to the raid5 case we can validate
4256                                  * parity, but still have a failure to write
4257                                  * back
4258                                  */
4259                                 sh->check_state = check_state_compute_result;
4260                                 /* Returning at this point means that we may go
4261                                  * off and bring p and/or q uptodate again so
4262                                  * we make sure to check zero_sum_result again
4263                                  * to verify if p or q need writeback
4264                                  */
4265                         }
4266                 } else {
4267                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4268                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4269                                 /* don't try to repair!! */
4270                                 set_bit(STRIPE_INSYNC, &sh->state);
4271                                 pr_warn_ratelimited("%s: mismatch sector in range "
4272                                                     "%llu-%llu\n", mdname(conf->mddev),
4273                                                     (unsigned long long) sh->sector,
4274                                                     (unsigned long long) sh->sector +
4275                                                     STRIPE_SECTORS);
4276                         } else {
4277                                 int *target = &sh->ops.target;
4278
4279                                 sh->ops.target = -1;
4280                                 sh->ops.target2 = -1;
4281                                 sh->check_state = check_state_compute_run;
4282                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4283                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4284                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4285                                         set_bit(R5_Wantcompute,
4286                                                 &sh->dev[pd_idx].flags);
4287                                         *target = pd_idx;
4288                                         target = &sh->ops.target2;
4289                                         s->uptodate++;
4290                                 }
4291                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4292                                         set_bit(R5_Wantcompute,
4293                                                 &sh->dev[qd_idx].flags);
4294                                         *target = qd_idx;
4295                                         s->uptodate++;
4296                                 }
4297                         }
4298                 }
4299                 break;
4300         case check_state_compute_run:
4301                 break;
4302         default:
4303                 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4304                         __func__, sh->check_state,
4305                         (unsigned long long) sh->sector);
4306                 BUG();
4307         }
4308 }
4309
4310 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4311 {
4312         int i;
4313
4314         /* We have read all the blocks in this stripe and now we need to
4315          * copy some of them into a target stripe for expand.
4316          */
4317         struct dma_async_tx_descriptor *tx = NULL;
4318         BUG_ON(sh->batch_head);
4319         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4320         for (i = 0; i < sh->disks; i++)
4321                 if (i != sh->pd_idx && i != sh->qd_idx) {
4322                         int dd_idx, j;
4323                         struct stripe_head *sh2;
4324                         struct async_submit_ctl submit;
4325
4326                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
4327                         sector_t s = raid5_compute_sector(conf, bn, 0,
4328                                                           &dd_idx, NULL);
4329                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4330                         if (sh2 == NULL)
4331                                 /* so far only the early blocks of this stripe
4332                                  * have been requested.  When later blocks
4333                                  * get requested, we will try again
4334                                  */
4335                                 continue;
4336                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4337                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4338                                 /* must have already done this block */
4339                                 raid5_release_stripe(sh2);
4340                                 continue;
4341                         }
4342
4343                         /* place all the copies on one channel */
4344                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4345                         tx = async_memcpy(sh2->dev[dd_idx].page,
4346                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
4347                                           &submit);
4348
4349                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4350                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4351                         for (j = 0; j < conf->raid_disks; j++)
4352                                 if (j != sh2->pd_idx &&
4353                                     j != sh2->qd_idx &&
4354                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
4355                                         break;
4356                         if (j == conf->raid_disks) {
4357                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4358                                 set_bit(STRIPE_HANDLE, &sh2->state);
4359                         }
4360                         raid5_release_stripe(sh2);
4361
4362                 }
4363         /* done submitting copies, wait for them to complete */
4364         async_tx_quiesce(&tx);
4365 }
4366
4367 /*
4368  * handle_stripe - do things to a stripe.
4369  *
4370  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4371  * state of various bits to see what needs to be done.
4372  * Possible results:
4373  *    return some read requests which now have data
4374  *    return some write requests which are safely on storage
4375  *    schedule a read on some buffers
4376  *    schedule a write of some buffers
4377  *    return confirmation of parity correctness
4378  *
4379  */
4380
4381 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4382 {
4383         struct r5conf *conf = sh->raid_conf;
4384         int disks = sh->disks;
4385         struct r5dev *dev;
4386         int i;
4387         int do_recovery = 0;
4388
4389         memset(s, 0, sizeof(*s));
4390
4391         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4392         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4393         s->failed_num[0] = -1;
4394         s->failed_num[1] = -1;
4395         s->log_failed = r5l_log_disk_error(conf);
4396
4397         /* Now to look around and see what can be done */
4398         rcu_read_lock();
4399         for (i=disks; i--; ) {
4400                 struct md_rdev *rdev;
4401                 sector_t first_bad;
4402                 int bad_sectors;
4403                 int is_bad = 0;
4404
4405                 dev = &sh->dev[i];
4406
4407                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4408                          i, dev->flags,
4409                          dev->toread, dev->towrite, dev->written);
4410                 /* maybe we can reply to a read
4411                  *
4412                  * new wantfill requests are only permitted while
4413                  * ops_complete_biofill is guaranteed to be inactive
4414                  */
4415                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4416                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4417                         set_bit(R5_Wantfill, &dev->flags);
4418
4419                 /* now count some things */
4420                 if (test_bit(R5_LOCKED, &dev->flags))
4421                         s->locked++;
4422                 if (test_bit(R5_UPTODATE, &dev->flags))
4423                         s->uptodate++;
4424                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4425                         s->compute++;
4426                         BUG_ON(s->compute > 2);
4427                 }
4428
4429                 if (test_bit(R5_Wantfill, &dev->flags))
4430                         s->to_fill++;
4431                 else if (dev->toread)
4432                         s->to_read++;
4433                 if (dev->towrite) {
4434                         s->to_write++;
4435                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4436                                 s->non_overwrite++;
4437                 }
4438                 if (dev->written)
4439                         s->written++;
4440                 /* Prefer to use the replacement for reads, but only
4441                  * if it is recovered enough and has no bad blocks.
4442                  */
4443                 rdev = rcu_dereference(conf->disks[i].replacement);
4444                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4445                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4446                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4447                                  &first_bad, &bad_sectors))
4448                         set_bit(R5_ReadRepl, &dev->flags);
4449                 else {
4450                         if (rdev && !test_bit(Faulty, &rdev->flags))
4451                                 set_bit(R5_NeedReplace, &dev->flags);
4452                         else
4453                                 clear_bit(R5_NeedReplace, &dev->flags);
4454                         rdev = rcu_dereference(conf->disks[i].rdev);
4455                         clear_bit(R5_ReadRepl, &dev->flags);
4456                 }
4457                 if (rdev && test_bit(Faulty, &rdev->flags))
4458                         rdev = NULL;
4459                 if (rdev) {
4460                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4461                                              &first_bad, &bad_sectors);
4462                         if (s->blocked_rdev == NULL
4463                             && (test_bit(Blocked, &rdev->flags)
4464                                 || is_bad < 0)) {
4465                                 if (is_bad < 0)
4466                                         set_bit(BlockedBadBlocks,
4467                                                 &rdev->flags);
4468                                 s->blocked_rdev = rdev;
4469                                 atomic_inc(&rdev->nr_pending);
4470                         }
4471                 }
4472                 clear_bit(R5_Insync, &dev->flags);
4473                 if (!rdev)
4474                         /* Not in-sync */;
4475                 else if (is_bad) {
4476                         /* also not in-sync */
4477                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4478                             test_bit(R5_UPTODATE, &dev->flags)) {
4479                                 /* treat as in-sync, but with a read error
4480                                  * which we can now try to correct
4481                                  */
4482                                 set_bit(R5_Insync, &dev->flags);
4483                                 set_bit(R5_ReadError, &dev->flags);
4484                         }
4485                 } else if (test_bit(In_sync, &rdev->flags))
4486                         set_bit(R5_Insync, &dev->flags);
4487                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4488                         /* in sync if before recovery_offset */
4489                         set_bit(R5_Insync, &dev->flags);
4490                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4491                          test_bit(R5_Expanded, &dev->flags))
4492                         /* If we've reshaped into here, we assume it is Insync.
4493                          * We will shortly update recovery_offset to make
4494                          * it official.
4495                          */
4496                         set_bit(R5_Insync, &dev->flags);
4497
4498                 if (test_bit(R5_WriteError, &dev->flags)) {
4499                         /* This flag does not apply to '.replacement'
4500                          * only to .rdev, so make sure to check that*/
4501                         struct md_rdev *rdev2 = rcu_dereference(
4502                                 conf->disks[i].rdev);
4503                         if (rdev2 == rdev)
4504                                 clear_bit(R5_Insync, &dev->flags);
4505                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4506                                 s->handle_bad_blocks = 1;
4507                                 atomic_inc(&rdev2->nr_pending);
4508                         } else
4509                                 clear_bit(R5_WriteError, &dev->flags);
4510                 }
4511                 if (test_bit(R5_MadeGood, &dev->flags)) {
4512                         /* This flag does not apply to '.replacement'
4513                          * only to .rdev, so make sure to check that*/
4514                         struct md_rdev *rdev2 = rcu_dereference(
4515                                 conf->disks[i].rdev);
4516                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4517                                 s->handle_bad_blocks = 1;
4518                                 atomic_inc(&rdev2->nr_pending);
4519                         } else
4520                                 clear_bit(R5_MadeGood, &dev->flags);
4521                 }
4522                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4523                         struct md_rdev *rdev2 = rcu_dereference(
4524                                 conf->disks[i].replacement);
4525                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4526                                 s->handle_bad_blocks = 1;
4527                                 atomic_inc(&rdev2->nr_pending);
4528                         } else
4529                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4530                 }
4531                 if (!test_bit(R5_Insync, &dev->flags)) {
4532                         /* The ReadError flag will just be confusing now */
4533                         clear_bit(R5_ReadError, &dev->flags);
4534                         clear_bit(R5_ReWrite, &dev->flags);
4535                 }
4536                 if (test_bit(R5_ReadError, &dev->flags))
4537                         clear_bit(R5_Insync, &dev->flags);
4538                 if (!test_bit(R5_Insync, &dev->flags)) {
4539                         if (s->failed < 2)
4540                                 s->failed_num[s->failed] = i;
4541                         s->failed++;
4542                         if (rdev && !test_bit(Faulty, &rdev->flags))
4543                                 do_recovery = 1;
4544                         else if (!rdev) {
4545                                 rdev = rcu_dereference(
4546                                     conf->disks[i].replacement);
4547                                 if (rdev && !test_bit(Faulty, &rdev->flags))
4548                                         do_recovery = 1;
4549                         }
4550                 }
4551
4552                 if (test_bit(R5_InJournal, &dev->flags))
4553                         s->injournal++;
4554                 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4555                         s->just_cached++;
4556         }
4557         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4558                 /* If there is a failed device being replaced,
4559                  *     we must be recovering.
4560                  * else if we are after recovery_cp, we must be syncing
4561                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4562                  * else we can only be replacing
4563                  * sync and recovery both need to read all devices, and so
4564                  * use the same flag.
4565                  */
4566                 if (do_recovery ||
4567                     sh->sector >= conf->mddev->recovery_cp ||
4568                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4569                         s->syncing = 1;
4570                 else
4571                         s->replacing = 1;
4572         }
4573         rcu_read_unlock();
4574 }
4575
4576 static int clear_batch_ready(struct stripe_head *sh)
4577 {
4578         /* Return '1' if this is a member of batch, or
4579          * '0' if it is a lone stripe or a head which can now be
4580          * handled.
4581          */
4582         struct stripe_head *tmp;
4583         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4584                 return (sh->batch_head && sh->batch_head != sh);
4585         spin_lock(&sh->stripe_lock);
4586         if (!sh->batch_head) {
4587                 spin_unlock(&sh->stripe_lock);
4588                 return 0;
4589         }
4590
4591         /*
4592          * this stripe could be added to a batch list before we check
4593          * BATCH_READY, skips it
4594          */
4595         if (sh->batch_head != sh) {
4596                 spin_unlock(&sh->stripe_lock);
4597                 return 1;
4598         }
4599         spin_lock(&sh->batch_lock);
4600         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4601                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4602         spin_unlock(&sh->batch_lock);
4603         spin_unlock(&sh->stripe_lock);
4604
4605         /*
4606          * BATCH_READY is cleared, no new stripes can be added.
4607          * batch_list can be accessed without lock
4608          */
4609         return 0;
4610 }
4611
4612 static void break_stripe_batch_list(struct stripe_head *head_sh,
4613                                     unsigned long handle_flags)
4614 {
4615         struct stripe_head *sh, *next;
4616         int i;
4617         int do_wakeup = 0;
4618
4619         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4620
4621                 list_del_init(&sh->batch_list);
4622
4623                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4624                                           (1 << STRIPE_SYNCING) |
4625                                           (1 << STRIPE_REPLACED) |
4626                                           (1 << STRIPE_DELAYED) |
4627                                           (1 << STRIPE_BIT_DELAY) |
4628                                           (1 << STRIPE_FULL_WRITE) |
4629                                           (1 << STRIPE_BIOFILL_RUN) |
4630                                           (1 << STRIPE_COMPUTE_RUN)  |
4631                                           (1 << STRIPE_DISCARD) |
4632                                           (1 << STRIPE_BATCH_READY) |
4633                                           (1 << STRIPE_BATCH_ERR) |
4634                                           (1 << STRIPE_BITMAP_PENDING)),
4635                         "stripe state: %lx\n", sh->state);
4636                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4637                                               (1 << STRIPE_REPLACED)),
4638                         "head stripe state: %lx\n", head_sh->state);
4639
4640                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4641                                             (1 << STRIPE_PREREAD_ACTIVE) |
4642                                             (1 << STRIPE_DEGRADED) |
4643                                             (1 << STRIPE_ON_UNPLUG_LIST)),
4644                               head_sh->state & (1 << STRIPE_INSYNC));
4645
4646                 sh->check_state = head_sh->check_state;
4647                 sh->reconstruct_state = head_sh->reconstruct_state;
4648                 spin_lock_irq(&sh->stripe_lock);
4649                 sh->batch_head = NULL;
4650                 spin_unlock_irq(&sh->stripe_lock);
4651                 for (i = 0; i < sh->disks; i++) {
4652                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4653                                 do_wakeup = 1;
4654                         sh->dev[i].flags = head_sh->dev[i].flags &
4655                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4656                 }
4657                 if (handle_flags == 0 ||
4658                     sh->state & handle_flags)
4659                         set_bit(STRIPE_HANDLE, &sh->state);
4660                 raid5_release_stripe(sh);
4661         }
4662         spin_lock_irq(&head_sh->stripe_lock);
4663         head_sh->batch_head = NULL;
4664         spin_unlock_irq(&head_sh->stripe_lock);
4665         for (i = 0; i < head_sh->disks; i++)
4666                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4667                         do_wakeup = 1;
4668         if (head_sh->state & handle_flags)
4669                 set_bit(STRIPE_HANDLE, &head_sh->state);
4670
4671         if (do_wakeup)
4672                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4673 }
4674
4675 static void handle_stripe(struct stripe_head *sh)
4676 {
4677         struct stripe_head_state s;
4678         struct r5conf *conf = sh->raid_conf;
4679         int i;
4680         int prexor;
4681         int disks = sh->disks;
4682         struct r5dev *pdev, *qdev;
4683
4684         clear_bit(STRIPE_HANDLE, &sh->state);
4685         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4686                 /* already being handled, ensure it gets handled
4687                  * again when current action finishes */
4688                 set_bit(STRIPE_HANDLE, &sh->state);
4689                 return;
4690         }
4691
4692         if (clear_batch_ready(sh) ) {
4693                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4694                 return;
4695         }
4696
4697         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4698                 break_stripe_batch_list(sh, 0);
4699
4700         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4701                 spin_lock(&sh->stripe_lock);
4702                 /*
4703                  * Cannot process 'sync' concurrently with 'discard'.
4704                  * Flush data in r5cache before 'sync'.
4705                  */
4706                 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4707                     !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4708                     !test_bit(STRIPE_DISCARD, &sh->state) &&
4709                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4710                         set_bit(STRIPE_SYNCING, &sh->state);
4711                         clear_bit(STRIPE_INSYNC, &sh->state);
4712                         clear_bit(STRIPE_REPLACED, &sh->state);
4713                 }
4714                 spin_unlock(&sh->stripe_lock);
4715         }
4716         clear_bit(STRIPE_DELAYED, &sh->state);
4717
4718         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4719                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4720                (unsigned long long)sh->sector, sh->state,
4721                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4722                sh->check_state, sh->reconstruct_state);
4723
4724         analyse_stripe(sh, &s);
4725
4726         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4727                 goto finish;
4728
4729         if (s.handle_bad_blocks ||
4730             test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4731                 set_bit(STRIPE_HANDLE, &sh->state);
4732                 goto finish;
4733         }
4734
4735         if (unlikely(s.blocked_rdev)) {
4736                 if (s.syncing || s.expanding || s.expanded ||
4737                     s.replacing || s.to_write || s.written) {
4738                         set_bit(STRIPE_HANDLE, &sh->state);
4739                         goto finish;
4740                 }
4741                 /* There is nothing for the blocked_rdev to block */
4742                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4743                 s.blocked_rdev = NULL;
4744         }
4745
4746         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4747                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4748                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4749         }
4750
4751         pr_debug("locked=%d uptodate=%d to_read=%d"
4752                " to_write=%d failed=%d failed_num=%d,%d\n",
4753                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4754                s.failed_num[0], s.failed_num[1]);
4755         /*
4756          * check if the array has lost more than max_degraded devices and,
4757          * if so, some requests might need to be failed.
4758          *
4759          * When journal device failed (log_failed), we will only process
4760          * the stripe if there is data need write to raid disks
4761          */
4762         if (s.failed > conf->max_degraded ||
4763             (s.log_failed && s.injournal == 0)) {
4764                 sh->check_state = 0;
4765                 sh->reconstruct_state = 0;
4766                 break_stripe_batch_list(sh, 0);
4767                 if (s.to_read+s.to_write+s.written)
4768                         handle_failed_stripe(conf, sh, &s, disks);
4769                 if (s.syncing + s.replacing)
4770                         handle_failed_sync(conf, sh, &s);
4771         }
4772
4773         /* Now we check to see if any write operations have recently
4774          * completed
4775          */
4776         prexor = 0;
4777         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4778                 prexor = 1;
4779         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4780             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4781                 sh->reconstruct_state = reconstruct_state_idle;
4782
4783                 /* All the 'written' buffers and the parity block are ready to
4784                  * be written back to disk
4785                  */
4786                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4787                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4788                 BUG_ON(sh->qd_idx >= 0 &&
4789                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4790                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4791                 for (i = disks; i--; ) {
4792                         struct r5dev *dev = &sh->dev[i];
4793                         if (test_bit(R5_LOCKED, &dev->flags) &&
4794                                 (i == sh->pd_idx || i == sh->qd_idx ||
4795                                  dev->written || test_bit(R5_InJournal,
4796                                                           &dev->flags))) {
4797                                 pr_debug("Writing block %d\n", i);
4798                                 set_bit(R5_Wantwrite, &dev->flags);
4799                                 if (prexor)
4800                                         continue;
4801                                 if (s.failed > 1)
4802                                         continue;
4803                                 if (!test_bit(R5_Insync, &dev->flags) ||
4804                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4805                                      s.failed == 0))
4806                                         set_bit(STRIPE_INSYNC, &sh->state);
4807                         }
4808                 }
4809                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4810                         s.dec_preread_active = 1;
4811         }
4812
4813         /*
4814          * might be able to return some write requests if the parity blocks
4815          * are safe, or on a failed drive
4816          */
4817         pdev = &sh->dev[sh->pd_idx];
4818         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4819                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4820         qdev = &sh->dev[sh->qd_idx];
4821         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4822                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4823                 || conf->level < 6;
4824
4825         if (s.written &&
4826             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4827                              && !test_bit(R5_LOCKED, &pdev->flags)
4828                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4829                                  test_bit(R5_Discard, &pdev->flags))))) &&
4830             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4831                              && !test_bit(R5_LOCKED, &qdev->flags)
4832                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4833                                  test_bit(R5_Discard, &qdev->flags))))))
4834                 handle_stripe_clean_event(conf, sh, disks);
4835
4836         if (s.just_cached)
4837                 r5c_handle_cached_data_endio(conf, sh, disks);
4838         log_stripe_write_finished(sh);
4839
4840         /* Now we might consider reading some blocks, either to check/generate
4841          * parity, or to satisfy requests
4842          * or to load a block that is being partially written.
4843          */
4844         if (s.to_read || s.non_overwrite
4845             || (conf->level == 6 && s.to_write && s.failed)
4846             || (s.syncing && (s.uptodate + s.compute < disks))
4847             || s.replacing
4848             || s.expanding)
4849                 handle_stripe_fill(sh, &s, disks);
4850
4851         /*
4852          * When the stripe finishes full journal write cycle (write to journal
4853          * and raid disk), this is the clean up procedure so it is ready for
4854          * next operation.
4855          */
4856         r5c_finish_stripe_write_out(conf, sh, &s);
4857
4858         /*
4859          * Now to consider new write requests, cache write back and what else,
4860          * if anything should be read.  We do not handle new writes when:
4861          * 1/ A 'write' operation (copy+xor) is already in flight.
4862          * 2/ A 'check' operation is in flight, as it may clobber the parity
4863          *    block.
4864          * 3/ A r5c cache log write is in flight.
4865          */
4866
4867         if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4868                 if (!r5c_is_writeback(conf->log)) {
4869                         if (s.to_write)
4870                                 handle_stripe_dirtying(conf, sh, &s, disks);
4871                 } else { /* write back cache */
4872                         int ret = 0;
4873
4874                         /* First, try handle writes in caching phase */
4875                         if (s.to_write)
4876                                 ret = r5c_try_caching_write(conf, sh, &s,
4877                                                             disks);
4878                         /*
4879                          * If caching phase failed: ret == -EAGAIN
4880                          *    OR
4881                          * stripe under reclaim: !caching && injournal
4882                          *
4883                          * fall back to handle_stripe_dirtying()
4884                          */
4885                         if (ret == -EAGAIN ||
4886                             /* stripe under reclaim: !caching && injournal */
4887                             (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4888                              s.injournal > 0)) {
4889                                 ret = handle_stripe_dirtying(conf, sh, &s,
4890                                                              disks);
4891                                 if (ret == -EAGAIN)
4892                                         goto finish;
4893                         }
4894                 }
4895         }
4896
4897         /* maybe we need to check and possibly fix the parity for this stripe
4898          * Any reads will already have been scheduled, so we just see if enough
4899          * data is available.  The parity check is held off while parity
4900          * dependent operations are in flight.
4901          */
4902         if (sh->check_state ||
4903             (s.syncing && s.locked == 0 &&
4904              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4905              !test_bit(STRIPE_INSYNC, &sh->state))) {
4906                 if (conf->level == 6)
4907                         handle_parity_checks6(conf, sh, &s, disks);
4908                 else
4909                         handle_parity_checks5(conf, sh, &s, disks);
4910         }
4911
4912         if ((s.replacing || s.syncing) && s.locked == 0
4913             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4914             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4915                 /* Write out to replacement devices where possible */
4916                 for (i = 0; i < conf->raid_disks; i++)
4917                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4918                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4919                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4920                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4921                                 s.locked++;
4922                         }
4923                 if (s.replacing)
4924                         set_bit(STRIPE_INSYNC, &sh->state);
4925                 set_bit(STRIPE_REPLACED, &sh->state);
4926         }
4927         if ((s.syncing || s.replacing) && s.locked == 0 &&
4928             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4929             test_bit(STRIPE_INSYNC, &sh->state)) {
4930                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4931                 clear_bit(STRIPE_SYNCING, &sh->state);
4932                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4933                         wake_up(&conf->wait_for_overlap);
4934         }
4935
4936         /* If the failed drives are just a ReadError, then we might need
4937          * to progress the repair/check process
4938          */
4939         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4940                 for (i = 0; i < s.failed; i++) {
4941                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4942                         if (test_bit(R5_ReadError, &dev->flags)
4943                             && !test_bit(R5_LOCKED, &dev->flags)
4944                             && test_bit(R5_UPTODATE, &dev->flags)
4945                                 ) {
4946                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4947                                         set_bit(R5_Wantwrite, &dev->flags);
4948                                         set_bit(R5_ReWrite, &dev->flags);
4949                                         set_bit(R5_LOCKED, &dev->flags);
4950                                         s.locked++;
4951                                 } else {
4952                                         /* let's read it back */
4953                                         set_bit(R5_Wantread, &dev->flags);
4954                                         set_bit(R5_LOCKED, &dev->flags);
4955                                         s.locked++;
4956                                 }
4957                         }
4958                 }
4959
4960         /* Finish reconstruct operations initiated by the expansion process */
4961         if (sh->reconstruct_state == reconstruct_state_result) {
4962                 struct stripe_head *sh_src
4963                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4964                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4965                         /* sh cannot be written until sh_src has been read.
4966                          * so arrange for sh to be delayed a little
4967                          */
4968                         set_bit(STRIPE_DELAYED, &sh->state);
4969                         set_bit(STRIPE_HANDLE, &sh->state);
4970                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4971                                               &sh_src->state))
4972                                 atomic_inc(&conf->preread_active_stripes);
4973                         raid5_release_stripe(sh_src);
4974                         goto finish;
4975                 }
4976                 if (sh_src)
4977                         raid5_release_stripe(sh_src);
4978
4979                 sh->reconstruct_state = reconstruct_state_idle;
4980                 clear_bit(STRIPE_EXPANDING, &sh->state);
4981                 for (i = conf->raid_disks; i--; ) {
4982                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4983                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4984                         s.locked++;
4985                 }
4986         }
4987
4988         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4989             !sh->reconstruct_state) {
4990                 /* Need to write out all blocks after computing parity */
4991                 sh->disks = conf->raid_disks;
4992                 stripe_set_idx(sh->sector, conf, 0, sh);
4993                 schedule_reconstruction(sh, &s, 1, 1);
4994         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4995                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4996                 atomic_dec(&conf->reshape_stripes);
4997                 wake_up(&conf->wait_for_overlap);
4998                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4999         }
5000
5001         if (s.expanding && s.locked == 0 &&
5002             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5003                 handle_stripe_expansion(conf, sh);
5004
5005 finish:
5006         /* wait for this device to become unblocked */
5007         if (unlikely(s.blocked_rdev)) {
5008                 if (conf->mddev->external)
5009                         md_wait_for_blocked_rdev(s.blocked_rdev,
5010                                                  conf->mddev);
5011                 else
5012                         /* Internal metadata will immediately
5013                          * be written by raid5d, so we don't
5014                          * need to wait here.
5015                          */
5016                         rdev_dec_pending(s.blocked_rdev,
5017                                          conf->mddev);
5018         }
5019
5020         if (s.handle_bad_blocks)
5021                 for (i = disks; i--; ) {
5022                         struct md_rdev *rdev;
5023                         struct r5dev *dev = &sh->dev[i];
5024                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5025                                 /* We own a safe reference to the rdev */
5026                                 rdev = conf->disks[i].rdev;
5027                                 if (!rdev_set_badblocks(rdev, sh->sector,
5028                                                         STRIPE_SECTORS, 0))
5029                                         md_error(conf->mddev, rdev);
5030                                 rdev_dec_pending(rdev, conf->mddev);
5031                         }
5032                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5033                                 rdev = conf->disks[i].rdev;
5034                                 rdev_clear_badblocks(rdev, sh->sector,
5035                                                      STRIPE_SECTORS, 0);
5036                                 rdev_dec_pending(rdev, conf->mddev);
5037                         }
5038                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5039                                 rdev = conf->disks[i].replacement;
5040                                 if (!rdev)
5041                                         /* rdev have been moved down */
5042                                         rdev = conf->disks[i].rdev;
5043                                 rdev_clear_badblocks(rdev, sh->sector,
5044                                                      STRIPE_SECTORS, 0);
5045                                 rdev_dec_pending(rdev, conf->mddev);
5046                         }
5047                 }
5048
5049         if (s.ops_request)
5050                 raid_run_ops(sh, s.ops_request);
5051
5052         ops_run_io(sh, &s);
5053
5054         if (s.dec_preread_active) {
5055                 /* We delay this until after ops_run_io so that if make_request
5056                  * is waiting on a flush, it won't continue until the writes
5057                  * have actually been submitted.
5058                  */
5059                 atomic_dec(&conf->preread_active_stripes);
5060                 if (atomic_read(&conf->preread_active_stripes) <
5061                     IO_THRESHOLD)
5062                         md_wakeup_thread(conf->mddev->thread);
5063         }
5064
5065         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5066 }
5067
5068 static void raid5_activate_delayed(struct r5conf *conf)
5069 {
5070         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5071                 while (!list_empty(&conf->delayed_list)) {
5072                         struct list_head *l = conf->delayed_list.next;
5073                         struct stripe_head *sh;
5074                         sh = list_entry(l, struct stripe_head, lru);
5075                         list_del_init(l);
5076                         clear_bit(STRIPE_DELAYED, &sh->state);
5077                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5078                                 atomic_inc(&conf->preread_active_stripes);
5079                         list_add_tail(&sh->lru, &conf->hold_list);
5080                         raid5_wakeup_stripe_thread(sh);
5081                 }
5082         }
5083 }
5084
5085 static void activate_bit_delay(struct r5conf *conf,
5086         struct list_head *temp_inactive_list)
5087 {
5088         /* device_lock is held */
5089         struct list_head head;
5090         list_add(&head, &conf->bitmap_list);
5091         list_del_init(&conf->bitmap_list);
5092         while (!list_empty(&head)) {
5093                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5094                 int hash;
5095                 list_del_init(&sh->lru);
5096                 atomic_inc(&sh->count);
5097                 hash = sh->hash_lock_index;
5098                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5099         }
5100 }
5101
5102 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5103 {
5104         struct r5conf *conf = mddev->private;
5105         sector_t sector = bio->bi_iter.bi_sector;
5106         unsigned int chunk_sectors;
5107         unsigned int bio_sectors = bio_sectors(bio);
5108
5109         WARN_ON_ONCE(bio->bi_partno);
5110
5111         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5112         return  chunk_sectors >=
5113                 ((sector & (chunk_sectors - 1)) + bio_sectors);
5114 }
5115
5116 /*
5117  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5118  *  later sampled by raid5d.
5119  */
5120 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5121 {
5122         unsigned long flags;
5123
5124         spin_lock_irqsave(&conf->device_lock, flags);
5125
5126         bi->bi_next = conf->retry_read_aligned_list;
5127         conf->retry_read_aligned_list = bi;
5128
5129         spin_unlock_irqrestore(&conf->device_lock, flags);
5130         md_wakeup_thread(conf->mddev->thread);
5131 }
5132
5133 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5134                                          unsigned int *offset)
5135 {
5136         struct bio *bi;
5137
5138         bi = conf->retry_read_aligned;
5139         if (bi) {
5140                 *offset = conf->retry_read_offset;
5141                 conf->retry_read_aligned = NULL;
5142                 return bi;
5143         }
5144         bi = conf->retry_read_aligned_list;
5145         if(bi) {
5146                 conf->retry_read_aligned_list = bi->bi_next;
5147                 bi->bi_next = NULL;
5148                 *offset = 0;
5149         }
5150
5151         return bi;
5152 }
5153
5154 /*
5155  *  The "raid5_align_endio" should check if the read succeeded and if it
5156  *  did, call bio_endio on the original bio (having bio_put the new bio
5157  *  first).
5158  *  If the read failed..
5159  */
5160 static void raid5_align_endio(struct bio *bi)
5161 {
5162         struct bio* raid_bi  = bi->bi_private;
5163         struct mddev *mddev;
5164         struct r5conf *conf;
5165         struct md_rdev *rdev;
5166         blk_status_t error = bi->bi_status;
5167
5168         bio_put(bi);
5169
5170         rdev = (void*)raid_bi->bi_next;
5171         raid_bi->bi_next = NULL;
5172         mddev = rdev->mddev;
5173         conf = mddev->private;
5174
5175         rdev_dec_pending(rdev, conf->mddev);
5176
5177         if (!error) {
5178                 bio_endio(raid_bi);
5179                 if (atomic_dec_and_test(&conf->active_aligned_reads))
5180                         wake_up(&conf->wait_for_quiescent);
5181                 return;
5182         }
5183
5184         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5185
5186         add_bio_to_retry(raid_bi, conf);
5187 }
5188
5189 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5190 {
5191         struct r5conf *conf = mddev->private;
5192         int dd_idx;
5193         struct bio* align_bi;
5194         struct md_rdev *rdev;
5195         sector_t end_sector;
5196
5197         if (!in_chunk_boundary(mddev, raid_bio)) {
5198                 pr_debug("%s: non aligned\n", __func__);
5199                 return 0;
5200         }
5201         /*
5202          * use bio_clone_fast to make a copy of the bio
5203          */
5204         align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5205         if (!align_bi)
5206                 return 0;
5207         /*
5208          *   set bi_end_io to a new function, and set bi_private to the
5209          *     original bio.
5210          */
5211         align_bi->bi_end_io  = raid5_align_endio;
5212         align_bi->bi_private = raid_bio;
5213         /*
5214          *      compute position
5215          */
5216         align_bi->bi_iter.bi_sector =
5217                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5218                                      0, &dd_idx, NULL);
5219
5220         end_sector = bio_end_sector(align_bi);
5221         rcu_read_lock();
5222         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5223         if (!rdev || test_bit(Faulty, &rdev->flags) ||
5224             rdev->recovery_offset < end_sector) {
5225                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5226                 if (rdev &&
5227                     (test_bit(Faulty, &rdev->flags) ||
5228                     !(test_bit(In_sync, &rdev->flags) ||
5229                       rdev->recovery_offset >= end_sector)))
5230                         rdev = NULL;
5231         }
5232
5233         if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5234                 rcu_read_unlock();
5235                 bio_put(align_bi);
5236                 return 0;
5237         }
5238
5239         if (rdev) {
5240                 sector_t first_bad;
5241                 int bad_sectors;
5242
5243                 atomic_inc(&rdev->nr_pending);
5244                 rcu_read_unlock();
5245                 raid_bio->bi_next = (void*)rdev;
5246                 bio_set_dev(align_bi, rdev->bdev);
5247
5248                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5249                                 bio_sectors(align_bi),
5250                                 &first_bad, &bad_sectors)) {
5251                         bio_put(align_bi);
5252                         rdev_dec_pending(rdev, mddev);
5253                         return 0;
5254                 }
5255
5256                 /* No reshape active, so we can trust rdev->data_offset */
5257                 align_bi->bi_iter.bi_sector += rdev->data_offset;
5258
5259                 spin_lock_irq(&conf->device_lock);
5260                 wait_event_lock_irq(conf->wait_for_quiescent,
5261                                     conf->quiesce == 0,
5262                                     conf->device_lock);
5263                 atomic_inc(&conf->active_aligned_reads);
5264                 spin_unlock_irq(&conf->device_lock);
5265
5266                 if (mddev->gendisk)
5267                         trace_block_bio_remap(align_bi->bi_disk->queue,
5268                                               align_bi, disk_devt(mddev->gendisk),
5269                                               raid_bio->bi_iter.bi_sector);
5270                 submit_bio_noacct(align_bi);
5271                 return 1;
5272         } else {
5273                 rcu_read_unlock();
5274                 bio_put(align_bi);
5275                 return 0;
5276         }
5277 }
5278
5279 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5280 {
5281         struct bio *split;
5282         sector_t sector = raid_bio->bi_iter.bi_sector;
5283         unsigned chunk_sects = mddev->chunk_sectors;
5284         unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5285
5286         if (sectors < bio_sectors(raid_bio)) {
5287                 struct r5conf *conf = mddev->private;
5288                 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5289                 bio_chain(split, raid_bio);
5290                 submit_bio_noacct(raid_bio);
5291                 raid_bio = split;
5292         }
5293
5294         if (!raid5_read_one_chunk(mddev, raid_bio))
5295                 return raid_bio;
5296
5297         return NULL;
5298 }
5299
5300 /* __get_priority_stripe - get the next stripe to process
5301  *
5302  * Full stripe writes are allowed to pass preread active stripes up until
5303  * the bypass_threshold is exceeded.  In general the bypass_count
5304  * increments when the handle_list is handled before the hold_list; however, it
5305  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5306  * stripe with in flight i/o.  The bypass_count will be reset when the
5307  * head of the hold_list has changed, i.e. the head was promoted to the
5308  * handle_list.
5309  */
5310 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5311 {
5312         struct stripe_head *sh, *tmp;
5313         struct list_head *handle_list = NULL;
5314         struct r5worker_group *wg;
5315         bool second_try = !r5c_is_writeback(conf->log) &&
5316                 !r5l_log_disk_error(conf);
5317         bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5318                 r5l_log_disk_error(conf);
5319
5320 again:
5321         wg = NULL;
5322         sh = NULL;
5323         if (conf->worker_cnt_per_group == 0) {
5324                 handle_list = try_loprio ? &conf->loprio_list :
5325                                         &conf->handle_list;
5326         } else if (group != ANY_GROUP) {
5327                 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5328                                 &conf->worker_groups[group].handle_list;
5329                 wg = &conf->worker_groups[group];
5330         } else {
5331                 int i;
5332                 for (i = 0; i < conf->group_cnt; i++) {
5333                         handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5334                                 &conf->worker_groups[i].handle_list;
5335                         wg = &conf->worker_groups[i];
5336                         if (!list_empty(handle_list))
5337                                 break;
5338                 }
5339         }
5340
5341         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5342                   __func__,
5343                   list_empty(handle_list) ? "empty" : "busy",
5344                   list_empty(&conf->hold_list) ? "empty" : "busy",
5345                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
5346
5347         if (!list_empty(handle_list)) {
5348                 sh = list_entry(handle_list->next, typeof(*sh), lru);
5349
5350                 if (list_empty(&conf->hold_list))
5351                         conf->bypass_count = 0;
5352                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5353                         if (conf->hold_list.next == conf->last_hold)
5354                                 conf->bypass_count++;
5355                         else {
5356                                 conf->last_hold = conf->hold_list.next;
5357                                 conf->bypass_count -= conf->bypass_threshold;
5358                                 if (conf->bypass_count < 0)
5359                                         conf->bypass_count = 0;
5360                         }
5361                 }
5362         } else if (!list_empty(&conf->hold_list) &&
5363                    ((conf->bypass_threshold &&
5364                      conf->bypass_count > conf->bypass_threshold) ||
5365                     atomic_read(&conf->pending_full_writes) == 0)) {
5366
5367                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
5368                         if (conf->worker_cnt_per_group == 0 ||
5369                             group == ANY_GROUP ||
5370                             !cpu_online(tmp->cpu) ||
5371                             cpu_to_group(tmp->cpu) == group) {
5372                                 sh = tmp;
5373                                 break;
5374                         }
5375                 }
5376
5377                 if (sh) {
5378                         conf->bypass_count -= conf->bypass_threshold;
5379                         if (conf->bypass_count < 0)
5380                                 conf->bypass_count = 0;
5381                 }
5382                 wg = NULL;
5383         }
5384
5385         if (!sh) {
5386                 if (second_try)
5387                         return NULL;
5388                 second_try = true;
5389                 try_loprio = !try_loprio;
5390                 goto again;
5391         }
5392
5393         if (wg) {
5394                 wg->stripes_cnt--;
5395                 sh->group = NULL;
5396         }
5397         list_del_init(&sh->lru);
5398         BUG_ON(atomic_inc_return(&sh->count) != 1);
5399         return sh;
5400 }
5401
5402 struct raid5_plug_cb {
5403         struct blk_plug_cb      cb;
5404         struct list_head        list;
5405         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5406 };
5407
5408 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5409 {
5410         struct raid5_plug_cb *cb = container_of(
5411                 blk_cb, struct raid5_plug_cb, cb);
5412         struct stripe_head *sh;
5413         struct mddev *mddev = cb->cb.data;
5414         struct r5conf *conf = mddev->private;
5415         int cnt = 0;
5416         int hash;
5417
5418         if (cb->list.next && !list_empty(&cb->list)) {
5419                 spin_lock_irq(&conf->device_lock);
5420                 while (!list_empty(&cb->list)) {
5421                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5422                         list_del_init(&sh->lru);
5423                         /*
5424                          * avoid race release_stripe_plug() sees
5425                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5426                          * is still in our list
5427                          */
5428                         smp_mb__before_atomic();
5429                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5430                         /*
5431                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5432                          * case, the count is always > 1 here
5433                          */
5434                         hash = sh->hash_lock_index;
5435                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5436                         cnt++;
5437                 }
5438                 spin_unlock_irq(&conf->device_lock);
5439         }
5440         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5441                                      NR_STRIPE_HASH_LOCKS);
5442         if (mddev->queue)
5443                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5444         kfree(cb);
5445 }
5446
5447 static void release_stripe_plug(struct mddev *mddev,
5448                                 struct stripe_head *sh)
5449 {
5450         struct blk_plug_cb *blk_cb = blk_check_plugged(
5451                 raid5_unplug, mddev,
5452                 sizeof(struct raid5_plug_cb));
5453         struct raid5_plug_cb *cb;
5454
5455         if (!blk_cb) {
5456                 raid5_release_stripe(sh);
5457                 return;
5458         }
5459
5460         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5461
5462         if (cb->list.next == NULL) {
5463                 int i;
5464                 INIT_LIST_HEAD(&cb->list);
5465                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5466                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5467         }
5468
5469         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5470                 list_add_tail(&sh->lru, &cb->list);
5471         else
5472                 raid5_release_stripe(sh);
5473 }
5474
5475 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5476 {
5477         struct r5conf *conf = mddev->private;
5478         sector_t logical_sector, last_sector;
5479         struct stripe_head *sh;
5480         int stripe_sectors;
5481
5482         if (mddev->reshape_position != MaxSector)
5483                 /* Skip discard while reshape is happening */
5484                 return;
5485
5486         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5487         last_sector = bio_end_sector(bi);
5488
5489         bi->bi_next = NULL;
5490
5491         stripe_sectors = conf->chunk_sectors *
5492                 (conf->raid_disks - conf->max_degraded);
5493         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5494                                                stripe_sectors);
5495         sector_div(last_sector, stripe_sectors);
5496
5497         logical_sector *= conf->chunk_sectors;
5498         last_sector *= conf->chunk_sectors;
5499
5500         for (; logical_sector < last_sector;
5501              logical_sector += STRIPE_SECTORS) {
5502                 DEFINE_WAIT(w);
5503                 int d;
5504         again:
5505                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5506                 prepare_to_wait(&conf->wait_for_overlap, &w,
5507                                 TASK_UNINTERRUPTIBLE);
5508                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5509                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5510                         raid5_release_stripe(sh);
5511                         schedule();
5512                         goto again;
5513                 }
5514                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5515                 spin_lock_irq(&sh->stripe_lock);
5516                 for (d = 0; d < conf->raid_disks; d++) {
5517                         if (d == sh->pd_idx || d == sh->qd_idx)
5518                                 continue;
5519                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5520                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5521                                 spin_unlock_irq(&sh->stripe_lock);
5522                                 raid5_release_stripe(sh);
5523                                 schedule();
5524                                 goto again;
5525                         }
5526                 }
5527                 set_bit(STRIPE_DISCARD, &sh->state);
5528                 finish_wait(&conf->wait_for_overlap, &w);
5529                 sh->overwrite_disks = 0;
5530                 for (d = 0; d < conf->raid_disks; d++) {
5531                         if (d == sh->pd_idx || d == sh->qd_idx)
5532                                 continue;
5533                         sh->dev[d].towrite = bi;
5534                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5535                         bio_inc_remaining(bi);
5536                         md_write_inc(mddev, bi);
5537                         sh->overwrite_disks++;
5538                 }
5539                 spin_unlock_irq(&sh->stripe_lock);
5540                 if (conf->mddev->bitmap) {
5541                         for (d = 0;
5542                              d < conf->raid_disks - conf->max_degraded;
5543                              d++)
5544                                 md_bitmap_startwrite(mddev->bitmap,
5545                                                      sh->sector,
5546                                                      STRIPE_SECTORS,
5547                                                      0);
5548                         sh->bm_seq = conf->seq_flush + 1;
5549                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5550                 }
5551
5552                 set_bit(STRIPE_HANDLE, &sh->state);
5553                 clear_bit(STRIPE_DELAYED, &sh->state);
5554                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5555                         atomic_inc(&conf->preread_active_stripes);
5556                 release_stripe_plug(mddev, sh);
5557         }
5558
5559         bio_endio(bi);
5560 }
5561
5562 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5563 {
5564         struct r5conf *conf = mddev->private;
5565         int dd_idx;
5566         sector_t new_sector;
5567         sector_t logical_sector, last_sector;
5568         struct stripe_head *sh;
5569         const int rw = bio_data_dir(bi);
5570         DEFINE_WAIT(w);
5571         bool do_prepare;
5572         bool do_flush = false;
5573
5574         if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5575                 int ret = log_handle_flush_request(conf, bi);
5576
5577                 if (ret == 0)
5578                         return true;
5579                 if (ret == -ENODEV) {
5580                         if (md_flush_request(mddev, bi))
5581                                 return true;
5582                 }
5583                 /* ret == -EAGAIN, fallback */
5584                 /*
5585                  * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5586                  * we need to flush journal device
5587                  */
5588                 do_flush = bi->bi_opf & REQ_PREFLUSH;
5589         }
5590
5591         if (!md_write_start(mddev, bi))
5592                 return false;
5593         /*
5594          * If array is degraded, better not do chunk aligned read because
5595          * later we might have to read it again in order to reconstruct
5596          * data on failed drives.
5597          */
5598         if (rw == READ && mddev->degraded == 0 &&
5599             mddev->reshape_position == MaxSector) {
5600                 bi = chunk_aligned_read(mddev, bi);
5601                 if (!bi)
5602                         return true;
5603         }
5604
5605         if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5606                 make_discard_request(mddev, bi);
5607                 md_write_end(mddev);
5608                 return true;
5609         }
5610
5611         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5612         last_sector = bio_end_sector(bi);
5613         bi->bi_next = NULL;
5614
5615         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5616         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5617                 int previous;
5618                 int seq;
5619
5620                 do_prepare = false;
5621         retry:
5622                 seq = read_seqcount_begin(&conf->gen_lock);
5623                 previous = 0;
5624                 if (do_prepare)
5625                         prepare_to_wait(&conf->wait_for_overlap, &w,
5626                                 TASK_UNINTERRUPTIBLE);
5627                 if (unlikely(conf->reshape_progress != MaxSector)) {
5628                         /* spinlock is needed as reshape_progress may be
5629                          * 64bit on a 32bit platform, and so it might be
5630                          * possible to see a half-updated value
5631                          * Of course reshape_progress could change after
5632                          * the lock is dropped, so once we get a reference
5633                          * to the stripe that we think it is, we will have
5634                          * to check again.
5635                          */
5636                         spin_lock_irq(&conf->device_lock);
5637                         if (mddev->reshape_backwards
5638                             ? logical_sector < conf->reshape_progress
5639                             : logical_sector >= conf->reshape_progress) {
5640                                 previous = 1;
5641                         } else {
5642                                 if (mddev->reshape_backwards
5643                                     ? logical_sector < conf->reshape_safe
5644                                     : logical_sector >= conf->reshape_safe) {
5645                                         spin_unlock_irq(&conf->device_lock);
5646                                         schedule();
5647                                         do_prepare = true;
5648                                         goto retry;
5649                                 }
5650                         }
5651                         spin_unlock_irq(&conf->device_lock);
5652                 }
5653
5654                 new_sector = raid5_compute_sector(conf, logical_sector,
5655                                                   previous,
5656                                                   &dd_idx, NULL);
5657                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5658                         (unsigned long long)new_sector,
5659                         (unsigned long long)logical_sector);
5660
5661                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5662                                        (bi->bi_opf & REQ_RAHEAD), 0);
5663                 if (sh) {
5664                         if (unlikely(previous)) {
5665                                 /* expansion might have moved on while waiting for a
5666                                  * stripe, so we must do the range check again.
5667                                  * Expansion could still move past after this
5668                                  * test, but as we are holding a reference to
5669                                  * 'sh', we know that if that happens,
5670                                  *  STRIPE_EXPANDING will get set and the expansion
5671                                  * won't proceed until we finish with the stripe.
5672                                  */
5673                                 int must_retry = 0;
5674                                 spin_lock_irq(&conf->device_lock);
5675                                 if (mddev->reshape_backwards
5676                                     ? logical_sector >= conf->reshape_progress
5677                                     : logical_sector < conf->reshape_progress)
5678                                         /* mismatch, need to try again */
5679                                         must_retry = 1;
5680                                 spin_unlock_irq(&conf->device_lock);
5681                                 if (must_retry) {
5682                                         raid5_release_stripe(sh);
5683                                         schedule();
5684                                         do_prepare = true;
5685                                         goto retry;
5686                                 }
5687                         }
5688                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5689                                 /* Might have got the wrong stripe_head
5690                                  * by accident
5691                                  */
5692                                 raid5_release_stripe(sh);
5693                                 goto retry;
5694                         }
5695
5696                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5697                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5698                                 /* Stripe is busy expanding or
5699                                  * add failed due to overlap.  Flush everything
5700                                  * and wait a while
5701                                  */
5702                                 md_wakeup_thread(mddev->thread);
5703                                 raid5_release_stripe(sh);
5704                                 schedule();
5705                                 do_prepare = true;
5706                                 goto retry;
5707                         }
5708                         if (do_flush) {
5709                                 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5710                                 /* we only need flush for one stripe */
5711                                 do_flush = false;
5712                         }
5713
5714                         if (!sh->batch_head || sh == sh->batch_head)
5715                                 set_bit(STRIPE_HANDLE, &sh->state);
5716                         clear_bit(STRIPE_DELAYED, &sh->state);
5717                         if ((!sh->batch_head || sh == sh->batch_head) &&
5718                             (bi->bi_opf & REQ_SYNC) &&
5719                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5720                                 atomic_inc(&conf->preread_active_stripes);
5721                         release_stripe_plug(mddev, sh);
5722                 } else {
5723                         /* cannot get stripe for read-ahead, just give-up */
5724                         bi->bi_status = BLK_STS_IOERR;
5725                         break;
5726                 }
5727         }
5728         finish_wait(&conf->wait_for_overlap, &w);
5729
5730         if (rw == WRITE)
5731                 md_write_end(mddev);
5732         bio_endio(bi);
5733         return true;
5734 }
5735
5736 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5737
5738 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5739 {
5740         /* reshaping is quite different to recovery/resync so it is
5741          * handled quite separately ... here.
5742          *
5743          * On each call to sync_request, we gather one chunk worth of
5744          * destination stripes and flag them as expanding.
5745          * Then we find all the source stripes and request reads.
5746          * As the reads complete, handle_stripe will copy the data
5747          * into the destination stripe and release that stripe.
5748          */
5749         struct r5conf *conf = mddev->private;
5750         struct stripe_head *sh;
5751         struct md_rdev *rdev;
5752         sector_t first_sector, last_sector;
5753         int raid_disks = conf->previous_raid_disks;
5754         int data_disks = raid_disks - conf->max_degraded;
5755         int new_data_disks = conf->raid_disks - conf->max_degraded;
5756         int i;
5757         int dd_idx;
5758         sector_t writepos, readpos, safepos;
5759         sector_t stripe_addr;
5760         int reshape_sectors;
5761         struct list_head stripes;
5762         sector_t retn;
5763
5764         if (sector_nr == 0) {
5765                 /* If restarting in the middle, skip the initial sectors */
5766                 if (mddev->reshape_backwards &&
5767                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5768                         sector_nr = raid5_size(mddev, 0, 0)
5769                                 - conf->reshape_progress;
5770                 } else if (mddev->reshape_backwards &&
5771                            conf->reshape_progress == MaxSector) {
5772                         /* shouldn't happen, but just in case, finish up.*/
5773                         sector_nr = MaxSector;
5774                 } else if (!mddev->reshape_backwards &&
5775                            conf->reshape_progress > 0)
5776                         sector_nr = conf->reshape_progress;
5777                 sector_div(sector_nr, new_data_disks);
5778                 if (sector_nr) {
5779                         mddev->curr_resync_completed = sector_nr;
5780                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5781                         *skipped = 1;
5782                         retn = sector_nr;
5783                         goto finish;
5784                 }
5785         }
5786
5787         /* We need to process a full chunk at a time.
5788          * If old and new chunk sizes differ, we need to process the
5789          * largest of these
5790          */
5791
5792         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5793
5794         /* We update the metadata at least every 10 seconds, or when
5795          * the data about to be copied would over-write the source of
5796          * the data at the front of the range.  i.e. one new_stripe
5797          * along from reshape_progress new_maps to after where
5798          * reshape_safe old_maps to
5799          */
5800         writepos = conf->reshape_progress;
5801         sector_div(writepos, new_data_disks);
5802         readpos = conf->reshape_progress;
5803         sector_div(readpos, data_disks);
5804         safepos = conf->reshape_safe;
5805         sector_div(safepos, data_disks);
5806         if (mddev->reshape_backwards) {
5807                 BUG_ON(writepos < reshape_sectors);
5808                 writepos -= reshape_sectors;
5809                 readpos += reshape_sectors;
5810                 safepos += reshape_sectors;
5811         } else {
5812                 writepos += reshape_sectors;
5813                 /* readpos and safepos are worst-case calculations.
5814                  * A negative number is overly pessimistic, and causes
5815                  * obvious problems for unsigned storage.  So clip to 0.
5816                  */
5817                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5818                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5819         }
5820
5821         /* Having calculated the 'writepos' possibly use it
5822          * to set 'stripe_addr' which is where we will write to.
5823          */
5824         if (mddev->reshape_backwards) {
5825                 BUG_ON(conf->reshape_progress == 0);
5826                 stripe_addr = writepos;
5827                 BUG_ON((mddev->dev_sectors &
5828                         ~((sector_t)reshape_sectors - 1))
5829                        - reshape_sectors - stripe_addr
5830                        != sector_nr);
5831         } else {
5832                 BUG_ON(writepos != sector_nr + reshape_sectors);
5833                 stripe_addr = sector_nr;
5834         }
5835
5836         /* 'writepos' is the most advanced device address we might write.
5837          * 'readpos' is the least advanced device address we might read.
5838          * 'safepos' is the least address recorded in the metadata as having
5839          *     been reshaped.
5840          * If there is a min_offset_diff, these are adjusted either by
5841          * increasing the safepos/readpos if diff is negative, or
5842          * increasing writepos if diff is positive.
5843          * If 'readpos' is then behind 'writepos', there is no way that we can
5844          * ensure safety in the face of a crash - that must be done by userspace
5845          * making a backup of the data.  So in that case there is no particular
5846          * rush to update metadata.
5847          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5848          * update the metadata to advance 'safepos' to match 'readpos' so that
5849          * we can be safe in the event of a crash.
5850          * So we insist on updating metadata if safepos is behind writepos and
5851          * readpos is beyond writepos.
5852          * In any case, update the metadata every 10 seconds.
5853          * Maybe that number should be configurable, but I'm not sure it is
5854          * worth it.... maybe it could be a multiple of safemode_delay???
5855          */
5856         if (conf->min_offset_diff < 0) {
5857                 safepos += -conf->min_offset_diff;
5858                 readpos += -conf->min_offset_diff;
5859         } else
5860                 writepos += conf->min_offset_diff;
5861
5862         if ((mddev->reshape_backwards
5863              ? (safepos > writepos && readpos < writepos)
5864              : (safepos < writepos && readpos > writepos)) ||
5865             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5866                 /* Cannot proceed until we've updated the superblock... */
5867                 wait_event(conf->wait_for_overlap,
5868                            atomic_read(&conf->reshape_stripes)==0
5869                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5870                 if (atomic_read(&conf->reshape_stripes) != 0)
5871                         return 0;
5872                 mddev->reshape_position = conf->reshape_progress;
5873                 mddev->curr_resync_completed = sector_nr;
5874                 if (!mddev->reshape_backwards)
5875                         /* Can update recovery_offset */
5876                         rdev_for_each(rdev, mddev)
5877                                 if (rdev->raid_disk >= 0 &&
5878                                     !test_bit(Journal, &rdev->flags) &&
5879                                     !test_bit(In_sync, &rdev->flags) &&
5880                                     rdev->recovery_offset < sector_nr)
5881                                         rdev->recovery_offset = sector_nr;
5882
5883                 conf->reshape_checkpoint = jiffies;
5884                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5885                 md_wakeup_thread(mddev->thread);
5886                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5887                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5888                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5889                         return 0;
5890                 spin_lock_irq(&conf->device_lock);
5891                 conf->reshape_safe = mddev->reshape_position;
5892                 spin_unlock_irq(&conf->device_lock);
5893                 wake_up(&conf->wait_for_overlap);
5894                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5895         }
5896
5897         INIT_LIST_HEAD(&stripes);
5898         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5899                 int j;
5900                 int skipped_disk = 0;
5901                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5902                 set_bit(STRIPE_EXPANDING, &sh->state);
5903                 atomic_inc(&conf->reshape_stripes);
5904                 /* If any of this stripe is beyond the end of the old
5905                  * array, then we need to zero those blocks
5906                  */
5907                 for (j=sh->disks; j--;) {
5908                         sector_t s;
5909                         if (j == sh->pd_idx)
5910                                 continue;
5911                         if (conf->level == 6 &&
5912                             j == sh->qd_idx)
5913                                 continue;
5914                         s = raid5_compute_blocknr(sh, j, 0);
5915                         if (s < raid5_size(mddev, 0, 0)) {
5916                                 skipped_disk = 1;
5917                                 continue;
5918                         }
5919                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5920                         set_bit(R5_Expanded, &sh->dev[j].flags);
5921                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5922                 }
5923                 if (!skipped_disk) {
5924                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5925                         set_bit(STRIPE_HANDLE, &sh->state);
5926                 }
5927                 list_add(&sh->lru, &stripes);
5928         }
5929         spin_lock_irq(&conf->device_lock);
5930         if (mddev->reshape_backwards)
5931                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5932         else
5933                 conf->reshape_progress += reshape_sectors * new_data_disks;
5934         spin_unlock_irq(&conf->device_lock);
5935         /* Ok, those stripe are ready. We can start scheduling
5936          * reads on the source stripes.
5937          * The source stripes are determined by mapping the first and last
5938          * block on the destination stripes.
5939          */
5940         first_sector =
5941                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5942                                      1, &dd_idx, NULL);
5943         last_sector =
5944                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5945                                             * new_data_disks - 1),
5946                                      1, &dd_idx, NULL);
5947         if (last_sector >= mddev->dev_sectors)
5948                 last_sector = mddev->dev_sectors - 1;
5949         while (first_sector <= last_sector) {
5950                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5951                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5952                 set_bit(STRIPE_HANDLE, &sh->state);
5953                 raid5_release_stripe(sh);
5954                 first_sector += STRIPE_SECTORS;
5955         }
5956         /* Now that the sources are clearly marked, we can release
5957          * the destination stripes
5958          */
5959         while (!list_empty(&stripes)) {
5960                 sh = list_entry(stripes.next, struct stripe_head, lru);
5961                 list_del_init(&sh->lru);
5962                 raid5_release_stripe(sh);
5963         }
5964         /* If this takes us to the resync_max point where we have to pause,
5965          * then we need to write out the superblock.
5966          */
5967         sector_nr += reshape_sectors;
5968         retn = reshape_sectors;
5969 finish:
5970         if (mddev->curr_resync_completed > mddev->resync_max ||
5971             (sector_nr - mddev->curr_resync_completed) * 2
5972             >= mddev->resync_max - mddev->curr_resync_completed) {
5973                 /* Cannot proceed until we've updated the superblock... */
5974                 wait_event(conf->wait_for_overlap,
5975                            atomic_read(&conf->reshape_stripes) == 0
5976                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5977                 if (atomic_read(&conf->reshape_stripes) != 0)
5978                         goto ret;
5979                 mddev->reshape_position = conf->reshape_progress;
5980                 mddev->curr_resync_completed = sector_nr;
5981                 if (!mddev->reshape_backwards)
5982                         /* Can update recovery_offset */
5983                         rdev_for_each(rdev, mddev)
5984                                 if (rdev->raid_disk >= 0 &&
5985                                     !test_bit(Journal, &rdev->flags) &&
5986                                     !test_bit(In_sync, &rdev->flags) &&
5987                                     rdev->recovery_offset < sector_nr)
5988                                         rdev->recovery_offset = sector_nr;
5989                 conf->reshape_checkpoint = jiffies;
5990                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5991                 md_wakeup_thread(mddev->thread);
5992                 wait_event(mddev->sb_wait,
5993                            !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5994                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5995                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5996                         goto ret;
5997                 spin_lock_irq(&conf->device_lock);
5998                 conf->reshape_safe = mddev->reshape_position;
5999                 spin_unlock_irq(&conf->device_lock);
6000                 wake_up(&conf->wait_for_overlap);
6001                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6002         }
6003 ret:
6004         return retn;
6005 }
6006
6007 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6008                                           int *skipped)
6009 {
6010         struct r5conf *conf = mddev->private;
6011         struct stripe_head *sh;
6012         sector_t max_sector = mddev->dev_sectors;
6013         sector_t sync_blocks;
6014         int still_degraded = 0;
6015         int i;
6016
6017         if (sector_nr >= max_sector) {
6018                 /* just being told to finish up .. nothing much to do */
6019
6020                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6021                         end_reshape(conf);
6022                         return 0;
6023                 }
6024
6025                 if (mddev->curr_resync < max_sector) /* aborted */
6026                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6027                                            &sync_blocks, 1);
6028                 else /* completed sync */
6029                         conf->fullsync = 0;
6030                 md_bitmap_close_sync(mddev->bitmap);
6031
6032                 return 0;
6033         }
6034
6035         /* Allow raid5_quiesce to complete */
6036         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6037
6038         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6039                 return reshape_request(mddev, sector_nr, skipped);
6040
6041         /* No need to check resync_max as we never do more than one
6042          * stripe, and as resync_max will always be on a chunk boundary,
6043          * if the check in md_do_sync didn't fire, there is no chance
6044          * of overstepping resync_max here
6045          */
6046
6047         /* if there is too many failed drives and we are trying
6048          * to resync, then assert that we are finished, because there is
6049          * nothing we can do.
6050          */
6051         if (mddev->degraded >= conf->max_degraded &&
6052             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6053                 sector_t rv = mddev->dev_sectors - sector_nr;
6054                 *skipped = 1;
6055                 return rv;
6056         }
6057         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6058             !conf->fullsync &&
6059             !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6060             sync_blocks >= STRIPE_SECTORS) {
6061                 /* we can skip this block, and probably more */
6062                 sync_blocks /= STRIPE_SECTORS;
6063                 *skipped = 1;
6064                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6065         }
6066
6067         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6068
6069         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6070         if (sh == NULL) {
6071                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6072                 /* make sure we don't swamp the stripe cache if someone else
6073                  * is trying to get access
6074                  */
6075                 schedule_timeout_uninterruptible(1);
6076         }
6077         /* Need to check if array will still be degraded after recovery/resync
6078          * Note in case of > 1 drive failures it's possible we're rebuilding
6079          * one drive while leaving another faulty drive in array.
6080          */
6081         rcu_read_lock();
6082         for (i = 0; i < conf->raid_disks; i++) {
6083                 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6084
6085                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6086                         still_degraded = 1;
6087         }
6088         rcu_read_unlock();
6089
6090         md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6091
6092         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6093         set_bit(STRIPE_HANDLE, &sh->state);
6094
6095         raid5_release_stripe(sh);
6096
6097         return STRIPE_SECTORS;
6098 }
6099
6100 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6101                                unsigned int offset)
6102 {
6103         /* We may not be able to submit a whole bio at once as there
6104          * may not be enough stripe_heads available.
6105          * We cannot pre-allocate enough stripe_heads as we may need
6106          * more than exist in the cache (if we allow ever large chunks).
6107          * So we do one stripe head at a time and record in
6108          * ->bi_hw_segments how many have been done.
6109          *
6110          * We *know* that this entire raid_bio is in one chunk, so
6111          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6112          */
6113         struct stripe_head *sh;
6114         int dd_idx;
6115         sector_t sector, logical_sector, last_sector;
6116         int scnt = 0;
6117         int handled = 0;
6118
6119         logical_sector = raid_bio->bi_iter.bi_sector &
6120                 ~((sector_t)STRIPE_SECTORS-1);
6121         sector = raid5_compute_sector(conf, logical_sector,
6122                                       0, &dd_idx, NULL);
6123         last_sector = bio_end_sector(raid_bio);
6124
6125         for (; logical_sector < last_sector;
6126              logical_sector += STRIPE_SECTORS,
6127                      sector += STRIPE_SECTORS,
6128                      scnt++) {
6129
6130                 if (scnt < offset)
6131                         /* already done this stripe */
6132                         continue;
6133
6134                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6135
6136                 if (!sh) {
6137                         /* failed to get a stripe - must wait */
6138                         conf->retry_read_aligned = raid_bio;
6139                         conf->retry_read_offset = scnt;
6140                         return handled;
6141                 }
6142
6143                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6144                         raid5_release_stripe(sh);
6145                         conf->retry_read_aligned = raid_bio;
6146                         conf->retry_read_offset = scnt;
6147                         return handled;
6148                 }
6149
6150                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6151                 handle_stripe(sh);
6152                 raid5_release_stripe(sh);
6153                 handled++;
6154         }
6155
6156         bio_endio(raid_bio);
6157
6158         if (atomic_dec_and_test(&conf->active_aligned_reads))
6159                 wake_up(&conf->wait_for_quiescent);
6160         return handled;
6161 }
6162
6163 static int handle_active_stripes(struct r5conf *conf, int group,
6164                                  struct r5worker *worker,
6165                                  struct list_head *temp_inactive_list)
6166                 __releases(&conf->device_lock)
6167                 __acquires(&conf->device_lock)
6168 {
6169         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6170         int i, batch_size = 0, hash;
6171         bool release_inactive = false;
6172
6173         while (batch_size < MAX_STRIPE_BATCH &&
6174                         (sh = __get_priority_stripe(conf, group)) != NULL)
6175                 batch[batch_size++] = sh;
6176
6177         if (batch_size == 0) {
6178                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6179                         if (!list_empty(temp_inactive_list + i))
6180                                 break;
6181                 if (i == NR_STRIPE_HASH_LOCKS) {
6182                         spin_unlock_irq(&conf->device_lock);
6183                         log_flush_stripe_to_raid(conf);
6184                         spin_lock_irq(&conf->device_lock);
6185                         return batch_size;
6186                 }
6187                 release_inactive = true;
6188         }
6189         spin_unlock_irq(&conf->device_lock);
6190
6191         release_inactive_stripe_list(conf, temp_inactive_list,
6192                                      NR_STRIPE_HASH_LOCKS);
6193
6194         r5l_flush_stripe_to_raid(conf->log);
6195         if (release_inactive) {
6196                 spin_lock_irq(&conf->device_lock);
6197                 return 0;
6198         }
6199
6200         for (i = 0; i < batch_size; i++)
6201                 handle_stripe(batch[i]);
6202         log_write_stripe_run(conf);
6203
6204         cond_resched();
6205
6206         spin_lock_irq(&conf->device_lock);
6207         for (i = 0; i < batch_size; i++) {
6208                 hash = batch[i]->hash_lock_index;
6209                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6210         }
6211         return batch_size;
6212 }
6213
6214 static void raid5_do_work(struct work_struct *work)
6215 {
6216         struct r5worker *worker = container_of(work, struct r5worker, work);
6217         struct r5worker_group *group = worker->group;
6218         struct r5conf *conf = group->conf;
6219         struct mddev *mddev = conf->mddev;
6220         int group_id = group - conf->worker_groups;
6221         int handled;
6222         struct blk_plug plug;
6223
6224         pr_debug("+++ raid5worker active\n");
6225
6226         blk_start_plug(&plug);
6227         handled = 0;
6228         spin_lock_irq(&conf->device_lock);
6229         while (1) {
6230                 int batch_size, released;
6231
6232                 released = release_stripe_list(conf, worker->temp_inactive_list);
6233
6234                 batch_size = handle_active_stripes(conf, group_id, worker,
6235                                                    worker->temp_inactive_list);
6236                 worker->working = false;
6237                 if (!batch_size && !released)
6238                         break;
6239                 handled += batch_size;
6240                 wait_event_lock_irq(mddev->sb_wait,
6241                         !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6242                         conf->device_lock);
6243         }
6244         pr_debug("%d stripes handled\n", handled);
6245
6246         spin_unlock_irq(&conf->device_lock);
6247
6248         flush_deferred_bios(conf);
6249
6250         r5l_flush_stripe_to_raid(conf->log);
6251
6252         async_tx_issue_pending_all();
6253         blk_finish_plug(&plug);
6254
6255         pr_debug("--- raid5worker inactive\n");
6256 }
6257
6258 /*
6259  * This is our raid5 kernel thread.
6260  *
6261  * We scan the hash table for stripes which can be handled now.
6262  * During the scan, completed stripes are saved for us by the interrupt
6263  * handler, so that they will not have to wait for our next wakeup.
6264  */
6265 static void raid5d(struct md_thread *thread)
6266 {
6267         struct mddev *mddev = thread->mddev;
6268         struct r5conf *conf = mddev->private;
6269         int handled;
6270         struct blk_plug plug;
6271
6272         pr_debug("+++ raid5d active\n");
6273
6274         md_check_recovery(mddev);
6275
6276         blk_start_plug(&plug);
6277         handled = 0;
6278         spin_lock_irq(&conf->device_lock);
6279         while (1) {
6280                 struct bio *bio;
6281                 int batch_size, released;
6282                 unsigned int offset;
6283
6284                 released = release_stripe_list(conf, conf->temp_inactive_list);
6285                 if (released)
6286                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
6287
6288                 if (
6289                     !list_empty(&conf->bitmap_list)) {
6290                         /* Now is a good time to flush some bitmap updates */
6291                         conf->seq_flush++;
6292                         spin_unlock_irq(&conf->device_lock);
6293                         md_bitmap_unplug(mddev->bitmap);
6294                         spin_lock_irq(&conf->device_lock);
6295                         conf->seq_write = conf->seq_flush;
6296                         activate_bit_delay(conf, conf->temp_inactive_list);
6297                 }
6298                 raid5_activate_delayed(conf);
6299
6300                 while ((bio = remove_bio_from_retry(conf, &offset))) {
6301                         int ok;
6302                         spin_unlock_irq(&conf->device_lock);
6303                         ok = retry_aligned_read(conf, bio, offset);
6304                         spin_lock_irq(&conf->device_lock);
6305                         if (!ok)
6306                                 break;
6307                         handled++;
6308                 }
6309
6310                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6311                                                    conf->temp_inactive_list);
6312                 if (!batch_size && !released)
6313                         break;
6314                 handled += batch_size;
6315
6316                 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6317                         spin_unlock_irq(&conf->device_lock);
6318                         md_check_recovery(mddev);
6319                         spin_lock_irq(&conf->device_lock);
6320                 }
6321         }
6322         pr_debug("%d stripes handled\n", handled);
6323
6324         spin_unlock_irq(&conf->device_lock);
6325         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6326             mutex_trylock(&conf->cache_size_mutex)) {
6327                 grow_one_stripe(conf, __GFP_NOWARN);
6328                 /* Set flag even if allocation failed.  This helps
6329                  * slow down allocation requests when mem is short
6330                  */
6331                 set_bit(R5_DID_ALLOC, &conf->cache_state);
6332                 mutex_unlock(&conf->cache_size_mutex);
6333         }
6334
6335         flush_deferred_bios(conf);
6336
6337         r5l_flush_stripe_to_raid(conf->log);
6338
6339         async_tx_issue_pending_all();
6340         blk_finish_plug(&plug);
6341
6342         pr_debug("--- raid5d inactive\n");
6343 }
6344
6345 static ssize_t
6346 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6347 {
6348         struct r5conf *conf;
6349         int ret = 0;
6350         spin_lock(&mddev->lock);
6351         conf = mddev->private;
6352         if (conf)
6353                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6354         spin_unlock(&mddev->lock);
6355         return ret;
6356 }
6357
6358 int
6359 raid5_set_cache_size(struct mddev *mddev, int size)
6360 {
6361         int result = 0;
6362         struct r5conf *conf = mddev->private;
6363
6364         if (size <= 16 || size > 32768)
6365                 return -EINVAL;
6366
6367         conf->min_nr_stripes = size;
6368         mutex_lock(&conf->cache_size_mutex);
6369         while (size < conf->max_nr_stripes &&
6370                drop_one_stripe(conf))
6371                 ;
6372         mutex_unlock(&conf->cache_size_mutex);
6373
6374         md_allow_write(mddev);
6375
6376         mutex_lock(&conf->cache_size_mutex);
6377         while (size > conf->max_nr_stripes)
6378                 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6379                         conf->min_nr_stripes = conf->max_nr_stripes;
6380                         result = -ENOMEM;
6381                         break;
6382                 }
6383         mutex_unlock(&conf->cache_size_mutex);
6384
6385         return result;
6386 }
6387 EXPORT_SYMBOL(raid5_set_cache_size);
6388
6389 static ssize_t
6390 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6391 {
6392         struct r5conf *conf;
6393         unsigned long new;
6394         int err;
6395
6396         if (len >= PAGE_SIZE)
6397                 return -EINVAL;
6398         if (kstrtoul(page, 10, &new))
6399                 return -EINVAL;
6400         err = mddev_lock(mddev);
6401         if (err)
6402                 return err;
6403         conf = mddev->private;
6404         if (!conf)
6405                 err = -ENODEV;
6406         else
6407                 err = raid5_set_cache_size(mddev, new);
6408         mddev_unlock(mddev);
6409
6410         return err ?: len;
6411 }
6412
6413 static struct md_sysfs_entry
6414 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6415                                 raid5_show_stripe_cache_size,
6416                                 raid5_store_stripe_cache_size);
6417
6418 static ssize_t
6419 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6420 {
6421         struct r5conf *conf = mddev->private;
6422         if (conf)
6423                 return sprintf(page, "%d\n", conf->rmw_level);
6424         else
6425                 return 0;
6426 }
6427
6428 static ssize_t
6429 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6430 {
6431         struct r5conf *conf = mddev->private;
6432         unsigned long new;
6433
6434         if (!conf)
6435                 return -ENODEV;
6436
6437         if (len >= PAGE_SIZE)
6438                 return -EINVAL;
6439
6440         if (kstrtoul(page, 10, &new))
6441                 return -EINVAL;
6442
6443         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6444                 return -EINVAL;
6445
6446         if (new != PARITY_DISABLE_RMW &&
6447             new != PARITY_ENABLE_RMW &&
6448             new != PARITY_PREFER_RMW)
6449                 return -EINVAL;
6450
6451         conf->rmw_level = new;
6452         return len;
6453 }
6454
6455 static struct md_sysfs_entry
6456 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6457                          raid5_show_rmw_level,
6458                          raid5_store_rmw_level);
6459
6460
6461 static ssize_t
6462 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6463 {
6464         struct r5conf *conf;
6465         int ret = 0;
6466         spin_lock(&mddev->lock);
6467         conf = mddev->private;
6468         if (conf)
6469                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6470         spin_unlock(&mddev->lock);
6471         return ret;
6472 }
6473
6474 static ssize_t
6475 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6476 {
6477         struct r5conf *conf;
6478         unsigned long new;
6479         int err;
6480
6481         if (len >= PAGE_SIZE)
6482                 return -EINVAL;
6483         if (kstrtoul(page, 10, &new))
6484                 return -EINVAL;
6485
6486         err = mddev_lock(mddev);
6487         if (err)
6488                 return err;
6489         conf = mddev->private;
6490         if (!conf)
6491                 err = -ENODEV;
6492         else if (new > conf->min_nr_stripes)
6493                 err = -EINVAL;
6494         else
6495                 conf->bypass_threshold = new;
6496         mddev_unlock(mddev);
6497         return err ?: len;
6498 }
6499
6500 static struct md_sysfs_entry
6501 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6502                                         S_IRUGO | S_IWUSR,
6503                                         raid5_show_preread_threshold,
6504                                         raid5_store_preread_threshold);
6505
6506 static ssize_t
6507 raid5_show_skip_copy(struct mddev *mddev, char *page)
6508 {
6509         struct r5conf *conf;
6510         int ret = 0;
6511         spin_lock(&mddev->lock);
6512         conf = mddev->private;
6513         if (conf)
6514                 ret = sprintf(page, "%d\n", conf->skip_copy);
6515         spin_unlock(&mddev->lock);
6516         return ret;
6517 }
6518
6519 static ssize_t
6520 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6521 {
6522         struct r5conf *conf;
6523         unsigned long new;
6524         int err;
6525
6526         if (len >= PAGE_SIZE)
6527                 return -EINVAL;
6528         if (kstrtoul(page, 10, &new))
6529                 return -EINVAL;
6530         new = !!new;
6531
6532         err = mddev_lock(mddev);
6533         if (err)
6534                 return err;
6535         conf = mddev->private;
6536         if (!conf)
6537                 err = -ENODEV;
6538         else if (new != conf->skip_copy) {
6539                 mddev_suspend(mddev);
6540                 conf->skip_copy = new;
6541                 if (new)
6542                         mddev->queue->backing_dev_info->capabilities |=
6543                                 BDI_CAP_STABLE_WRITES;
6544                 else
6545                         mddev->queue->backing_dev_info->capabilities &=
6546                                 ~BDI_CAP_STABLE_WRITES;
6547                 mddev_resume(mddev);
6548         }
6549         mddev_unlock(mddev);
6550         return err ?: len;
6551 }
6552
6553 static struct md_sysfs_entry
6554 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6555                                         raid5_show_skip_copy,
6556                                         raid5_store_skip_copy);
6557
6558 static ssize_t
6559 stripe_cache_active_show(struct mddev *mddev, char *page)
6560 {
6561         struct r5conf *conf = mddev->private;
6562         if (conf)
6563                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6564         else
6565                 return 0;
6566 }
6567
6568 static struct md_sysfs_entry
6569 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6570
6571 static ssize_t
6572 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6573 {
6574         struct r5conf *conf;
6575         int ret = 0;
6576         spin_lock(&mddev->lock);
6577         conf = mddev->private;
6578         if (conf)
6579                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6580         spin_unlock(&mddev->lock);
6581         return ret;
6582 }
6583
6584 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6585                                int *group_cnt,
6586                                struct r5worker_group **worker_groups);
6587 static ssize_t
6588 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6589 {
6590         struct r5conf *conf;
6591         unsigned int new;
6592         int err;
6593         struct r5worker_group *new_groups, *old_groups;
6594         int group_cnt;
6595
6596         if (len >= PAGE_SIZE)
6597                 return -EINVAL;
6598         if (kstrtouint(page, 10, &new))
6599                 return -EINVAL;
6600         /* 8192 should be big enough */
6601         if (new > 8192)
6602                 return -EINVAL;
6603
6604         err = mddev_lock(mddev);
6605         if (err)
6606                 return err;
6607         conf = mddev->private;
6608         if (!conf)
6609                 err = -ENODEV;
6610         else if (new != conf->worker_cnt_per_group) {
6611                 mddev_suspend(mddev);
6612
6613                 old_groups = conf->worker_groups;
6614                 if (old_groups)
6615                         flush_workqueue(raid5_wq);
6616
6617                 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6618                 if (!err) {
6619                         spin_lock_irq(&conf->device_lock);
6620                         conf->group_cnt = group_cnt;
6621                         conf->worker_cnt_per_group = new;
6622                         conf->worker_groups = new_groups;
6623                         spin_unlock_irq(&conf->device_lock);
6624
6625                         if (old_groups)
6626                                 kfree(old_groups[0].workers);
6627                         kfree(old_groups);
6628                 }
6629                 mddev_resume(mddev);
6630         }
6631         mddev_unlock(mddev);
6632
6633         return err ?: len;
6634 }
6635
6636 static struct md_sysfs_entry
6637 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6638                                 raid5_show_group_thread_cnt,
6639                                 raid5_store_group_thread_cnt);
6640
6641 static struct attribute *raid5_attrs[] =  {
6642         &raid5_stripecache_size.attr,
6643         &raid5_stripecache_active.attr,
6644         &raid5_preread_bypass_threshold.attr,
6645         &raid5_group_thread_cnt.attr,
6646         &raid5_skip_copy.attr,
6647         &raid5_rmw_level.attr,
6648         &r5c_journal_mode.attr,
6649         &ppl_write_hint.attr,
6650         NULL,
6651 };
6652 static struct attribute_group raid5_attrs_group = {
6653         .name = NULL,
6654         .attrs = raid5_attrs,
6655 };
6656
6657 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6658                                struct r5worker_group **worker_groups)
6659 {
6660         int i, j, k;
6661         ssize_t size;
6662         struct r5worker *workers;
6663
6664         if (cnt == 0) {
6665                 *group_cnt = 0;
6666                 *worker_groups = NULL;
6667                 return 0;
6668         }
6669         *group_cnt = num_possible_nodes();
6670         size = sizeof(struct r5worker) * cnt;
6671         workers = kcalloc(size, *group_cnt, GFP_NOIO);
6672         *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6673                                  GFP_NOIO);
6674         if (!*worker_groups || !workers) {
6675                 kfree(workers);
6676                 kfree(*worker_groups);
6677                 return -ENOMEM;
6678         }
6679
6680         for (i = 0; i < *group_cnt; i++) {
6681                 struct r5worker_group *group;
6682
6683                 group = &(*worker_groups)[i];
6684                 INIT_LIST_HEAD(&group->handle_list);
6685                 INIT_LIST_HEAD(&group->loprio_list);
6686                 group->conf = conf;
6687                 group->workers = workers + i * cnt;
6688
6689                 for (j = 0; j < cnt; j++) {
6690                         struct r5worker *worker = group->workers + j;
6691                         worker->group = group;
6692                         INIT_WORK(&worker->work, raid5_do_work);
6693
6694                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6695                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6696                 }
6697         }
6698
6699         return 0;
6700 }
6701
6702 static void free_thread_groups(struct r5conf *conf)
6703 {
6704         if (conf->worker_groups)
6705                 kfree(conf->worker_groups[0].workers);
6706         kfree(conf->worker_groups);
6707         conf->worker_groups = NULL;
6708 }
6709
6710 static sector_t
6711 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6712 {
6713         struct r5conf *conf = mddev->private;
6714
6715         if (!sectors)
6716                 sectors = mddev->dev_sectors;
6717         if (!raid_disks)
6718                 /* size is defined by the smallest of previous and new size */
6719                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6720
6721         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6722         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6723         return sectors * (raid_disks - conf->max_degraded);
6724 }
6725
6726 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6727 {
6728         safe_put_page(percpu->spare_page);
6729         percpu->spare_page = NULL;
6730         kvfree(percpu->scribble);
6731         percpu->scribble = NULL;
6732 }
6733
6734 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6735 {
6736         if (conf->level == 6 && !percpu->spare_page) {
6737                 percpu->spare_page = alloc_page(GFP_KERNEL);
6738                 if (!percpu->spare_page)
6739                         return -ENOMEM;
6740         }
6741
6742         if (scribble_alloc(percpu,
6743                            max(conf->raid_disks,
6744                                conf->previous_raid_disks),
6745                            max(conf->chunk_sectors,
6746                                conf->prev_chunk_sectors)
6747                            / STRIPE_SECTORS)) {
6748                 free_scratch_buffer(conf, percpu);
6749                 return -ENOMEM;
6750         }
6751
6752         return 0;
6753 }
6754
6755 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6756 {
6757         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6758
6759         free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6760         return 0;
6761 }
6762
6763 static void raid5_free_percpu(struct r5conf *conf)
6764 {
6765         if (!conf->percpu)
6766                 return;
6767
6768         cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6769         free_percpu(conf->percpu);
6770 }
6771
6772 static void free_conf(struct r5conf *conf)
6773 {
6774         int i;
6775
6776         log_exit(conf);
6777
6778         unregister_shrinker(&conf->shrinker);
6779         free_thread_groups(conf);
6780         shrink_stripes(conf);
6781         raid5_free_percpu(conf);
6782         for (i = 0; i < conf->pool_size; i++)
6783                 if (conf->disks[i].extra_page)
6784                         put_page(conf->disks[i].extra_page);
6785         kfree(conf->disks);
6786         bioset_exit(&conf->bio_split);
6787         kfree(conf->stripe_hashtbl);
6788         kfree(conf->pending_data);
6789         kfree(conf);
6790 }
6791
6792 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6793 {
6794         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6795         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6796
6797         if (alloc_scratch_buffer(conf, percpu)) {
6798                 pr_warn("%s: failed memory allocation for cpu%u\n",
6799                         __func__, cpu);
6800                 return -ENOMEM;
6801         }
6802         return 0;
6803 }
6804
6805 static int raid5_alloc_percpu(struct r5conf *conf)
6806 {
6807         int err = 0;
6808
6809         conf->percpu = alloc_percpu(struct raid5_percpu);
6810         if (!conf->percpu)
6811                 return -ENOMEM;
6812
6813         err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6814         if (!err) {
6815                 conf->scribble_disks = max(conf->raid_disks,
6816                         conf->previous_raid_disks);
6817                 conf->scribble_sectors = max(conf->chunk_sectors,
6818                         conf->prev_chunk_sectors);
6819         }
6820         return err;
6821 }
6822
6823 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6824                                       struct shrink_control *sc)
6825 {
6826         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6827         unsigned long ret = SHRINK_STOP;
6828
6829         if (mutex_trylock(&conf->cache_size_mutex)) {
6830                 ret= 0;
6831                 while (ret < sc->nr_to_scan &&
6832                        conf->max_nr_stripes > conf->min_nr_stripes) {
6833                         if (drop_one_stripe(conf) == 0) {
6834                                 ret = SHRINK_STOP;
6835                                 break;
6836                         }
6837                         ret++;
6838                 }
6839                 mutex_unlock(&conf->cache_size_mutex);
6840         }
6841         return ret;
6842 }
6843
6844 static unsigned long raid5_cache_count(struct shrinker *shrink,
6845                                        struct shrink_control *sc)
6846 {
6847         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6848
6849         if (conf->max_nr_stripes < conf->min_nr_stripes)
6850                 /* unlikely, but not impossible */
6851                 return 0;
6852         return conf->max_nr_stripes - conf->min_nr_stripes;
6853 }
6854
6855 static struct r5conf *setup_conf(struct mddev *mddev)
6856 {
6857         struct r5conf *conf;
6858         int raid_disk, memory, max_disks;
6859         struct md_rdev *rdev;
6860         struct disk_info *disk;
6861         char pers_name[6];
6862         int i;
6863         int group_cnt;
6864         struct r5worker_group *new_group;
6865         int ret;
6866
6867         if (mddev->new_level != 5
6868             && mddev->new_level != 4
6869             && mddev->new_level != 6) {
6870                 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6871                         mdname(mddev), mddev->new_level);
6872                 return ERR_PTR(-EIO);
6873         }
6874         if ((mddev->new_level == 5
6875              && !algorithm_valid_raid5(mddev->new_layout)) ||
6876             (mddev->new_level == 6
6877              && !algorithm_valid_raid6(mddev->new_layout))) {
6878                 pr_warn("md/raid:%s: layout %d not supported\n",
6879                         mdname(mddev), mddev->new_layout);
6880                 return ERR_PTR(-EIO);
6881         }
6882         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6883                 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6884                         mdname(mddev), mddev->raid_disks);
6885                 return ERR_PTR(-EINVAL);
6886         }
6887
6888         if (!mddev->new_chunk_sectors ||
6889             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6890             !is_power_of_2(mddev->new_chunk_sectors)) {
6891                 pr_warn("md/raid:%s: invalid chunk size %d\n",
6892                         mdname(mddev), mddev->new_chunk_sectors << 9);
6893                 return ERR_PTR(-EINVAL);
6894         }
6895
6896         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6897         if (conf == NULL)
6898                 goto abort;
6899         INIT_LIST_HEAD(&conf->free_list);
6900         INIT_LIST_HEAD(&conf->pending_list);
6901         conf->pending_data = kcalloc(PENDING_IO_MAX,
6902                                      sizeof(struct r5pending_data),
6903                                      GFP_KERNEL);
6904         if (!conf->pending_data)
6905                 goto abort;
6906         for (i = 0; i < PENDING_IO_MAX; i++)
6907                 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6908         /* Don't enable multi-threading by default*/
6909         if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
6910                 conf->group_cnt = group_cnt;
6911                 conf->worker_cnt_per_group = 0;
6912                 conf->worker_groups = new_group;
6913         } else
6914                 goto abort;
6915         spin_lock_init(&conf->device_lock);
6916         seqcount_init(&conf->gen_lock);
6917         mutex_init(&conf->cache_size_mutex);
6918         init_waitqueue_head(&conf->wait_for_quiescent);
6919         init_waitqueue_head(&conf->wait_for_stripe);
6920         init_waitqueue_head(&conf->wait_for_overlap);
6921         INIT_LIST_HEAD(&conf->handle_list);
6922         INIT_LIST_HEAD(&conf->loprio_list);
6923         INIT_LIST_HEAD(&conf->hold_list);
6924         INIT_LIST_HEAD(&conf->delayed_list);
6925         INIT_LIST_HEAD(&conf->bitmap_list);
6926         init_llist_head(&conf->released_stripes);
6927         atomic_set(&conf->active_stripes, 0);
6928         atomic_set(&conf->preread_active_stripes, 0);
6929         atomic_set(&conf->active_aligned_reads, 0);
6930         spin_lock_init(&conf->pending_bios_lock);
6931         conf->batch_bio_dispatch = true;
6932         rdev_for_each(rdev, mddev) {
6933                 if (test_bit(Journal, &rdev->flags))
6934                         continue;
6935                 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6936                         conf->batch_bio_dispatch = false;
6937                         break;
6938                 }
6939         }
6940
6941         conf->bypass_threshold = BYPASS_THRESHOLD;
6942         conf->recovery_disabled = mddev->recovery_disabled - 1;
6943
6944         conf->raid_disks = mddev->raid_disks;
6945         if (mddev->reshape_position == MaxSector)
6946                 conf->previous_raid_disks = mddev->raid_disks;
6947         else
6948                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6949         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6950
6951         conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6952                               GFP_KERNEL);
6953
6954         if (!conf->disks)
6955                 goto abort;
6956
6957         for (i = 0; i < max_disks; i++) {
6958                 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6959                 if (!conf->disks[i].extra_page)
6960                         goto abort;
6961         }
6962
6963         ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6964         if (ret)
6965                 goto abort;
6966         conf->mddev = mddev;
6967
6968         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6969                 goto abort;
6970
6971         /* We init hash_locks[0] separately to that it can be used
6972          * as the reference lock in the spin_lock_nest_lock() call
6973          * in lock_all_device_hash_locks_irq in order to convince
6974          * lockdep that we know what we are doing.
6975          */
6976         spin_lock_init(conf->hash_locks);
6977         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6978                 spin_lock_init(conf->hash_locks + i);
6979
6980         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6981                 INIT_LIST_HEAD(conf->inactive_list + i);
6982
6983         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6984                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6985
6986         atomic_set(&conf->r5c_cached_full_stripes, 0);
6987         INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6988         atomic_set(&conf->r5c_cached_partial_stripes, 0);
6989         INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6990         atomic_set(&conf->r5c_flushing_full_stripes, 0);
6991         atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6992
6993         conf->level = mddev->new_level;
6994         conf->chunk_sectors = mddev->new_chunk_sectors;
6995         if (raid5_alloc_percpu(conf) != 0)
6996                 goto abort;
6997
6998         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6999
7000         rdev_for_each(rdev, mddev) {
7001                 raid_disk = rdev->raid_disk;
7002                 if (raid_disk >= max_disks
7003                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7004                         continue;
7005                 disk = conf->disks + raid_disk;
7006
7007                 if (test_bit(Replacement, &rdev->flags)) {
7008                         if (disk->replacement)
7009                                 goto abort;
7010                         disk->replacement = rdev;
7011                 } else {
7012                         if (disk->rdev)
7013                                 goto abort;
7014                         disk->rdev = rdev;
7015                 }
7016
7017                 if (test_bit(In_sync, &rdev->flags)) {
7018                         char b[BDEVNAME_SIZE];
7019                         pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7020                                 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7021                 } else if (rdev->saved_raid_disk != raid_disk)
7022                         /* Cannot rely on bitmap to complete recovery */
7023                         conf->fullsync = 1;
7024         }
7025
7026         conf->level = mddev->new_level;
7027         if (conf->level == 6) {
7028                 conf->max_degraded = 2;
7029                 if (raid6_call.xor_syndrome)
7030                         conf->rmw_level = PARITY_ENABLE_RMW;
7031                 else
7032                         conf->rmw_level = PARITY_DISABLE_RMW;
7033         } else {
7034                 conf->max_degraded = 1;
7035                 conf->rmw_level = PARITY_ENABLE_RMW;
7036         }
7037         conf->algorithm = mddev->new_layout;
7038         conf->reshape_progress = mddev->reshape_position;
7039         if (conf->reshape_progress != MaxSector) {
7040                 conf->prev_chunk_sectors = mddev->chunk_sectors;
7041                 conf->prev_algo = mddev->layout;
7042         } else {
7043                 conf->prev_chunk_sectors = conf->chunk_sectors;
7044                 conf->prev_algo = conf->algorithm;
7045         }
7046
7047         conf->min_nr_stripes = NR_STRIPES;
7048         if (mddev->reshape_position != MaxSector) {
7049                 int stripes = max_t(int,
7050                         ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7051                         ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7052                 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7053                 if (conf->min_nr_stripes != NR_STRIPES)
7054                         pr_info("md/raid:%s: force stripe size %d for reshape\n",
7055                                 mdname(mddev), conf->min_nr_stripes);
7056         }
7057         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7058                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7059         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7060         if (grow_stripes(conf, conf->min_nr_stripes)) {
7061                 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7062                         mdname(mddev), memory);
7063                 goto abort;
7064         } else
7065                 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7066         /*
7067          * Losing a stripe head costs more than the time to refill it,
7068          * it reduces the queue depth and so can hurt throughput.
7069          * So set it rather large, scaled by number of devices.
7070          */
7071         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7072         conf->shrinker.scan_objects = raid5_cache_scan;
7073         conf->shrinker.count_objects = raid5_cache_count;
7074         conf->shrinker.batch = 128;
7075         conf->shrinker.flags = 0;
7076         if (register_shrinker(&conf->shrinker)) {
7077                 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7078                         mdname(mddev));
7079                 goto abort;
7080         }
7081
7082         sprintf(pers_name, "raid%d", mddev->new_level);
7083         conf->thread = md_register_thread(raid5d, mddev, pers_name);
7084         if (!conf->thread) {
7085                 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7086                         mdname(mddev));
7087                 goto abort;
7088         }
7089
7090         return conf;
7091
7092  abort:
7093         if (conf) {
7094                 free_conf(conf);
7095                 return ERR_PTR(-EIO);
7096         } else
7097                 return ERR_PTR(-ENOMEM);
7098 }
7099
7100 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7101 {
7102         switch (algo) {
7103         case ALGORITHM_PARITY_0:
7104                 if (raid_disk < max_degraded)
7105                         return 1;
7106                 break;
7107         case ALGORITHM_PARITY_N:
7108                 if (raid_disk >= raid_disks - max_degraded)
7109                         return 1;
7110                 break;
7111         case ALGORITHM_PARITY_0_6:
7112                 if (raid_disk == 0 ||
7113                     raid_disk == raid_disks - 1)
7114                         return 1;
7115                 break;
7116         case ALGORITHM_LEFT_ASYMMETRIC_6:
7117         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7118         case ALGORITHM_LEFT_SYMMETRIC_6:
7119         case ALGORITHM_RIGHT_SYMMETRIC_6:
7120                 if (raid_disk == raid_disks - 1)
7121                         return 1;
7122         }
7123         return 0;
7124 }
7125
7126 static int raid5_run(struct mddev *mddev)
7127 {
7128         struct r5conf *conf;
7129         int working_disks = 0;
7130         int dirty_parity_disks = 0;
7131         struct md_rdev *rdev;
7132         struct md_rdev *journal_dev = NULL;
7133         sector_t reshape_offset = 0;
7134         int i;
7135         long long min_offset_diff = 0;
7136         int first = 1;
7137
7138         if (mddev_init_writes_pending(mddev) < 0)
7139                 return -ENOMEM;
7140
7141         if (mddev->recovery_cp != MaxSector)
7142                 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7143                           mdname(mddev));
7144
7145         rdev_for_each(rdev, mddev) {
7146                 long long diff;
7147
7148                 if (test_bit(Journal, &rdev->flags)) {
7149                         journal_dev = rdev;
7150                         continue;
7151                 }
7152                 if (rdev->raid_disk < 0)
7153                         continue;
7154                 diff = (rdev->new_data_offset - rdev->data_offset);
7155                 if (first) {
7156                         min_offset_diff = diff;
7157                         first = 0;
7158                 } else if (mddev->reshape_backwards &&
7159                          diff < min_offset_diff)
7160                         min_offset_diff = diff;
7161                 else if (!mddev->reshape_backwards &&
7162                          diff > min_offset_diff)
7163                         min_offset_diff = diff;
7164         }
7165
7166         if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7167             (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7168                 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7169                           mdname(mddev));
7170                 return -EINVAL;
7171         }
7172
7173         if (mddev->reshape_position != MaxSector) {
7174                 /* Check that we can continue the reshape.
7175                  * Difficulties arise if the stripe we would write to
7176                  * next is at or after the stripe we would read from next.
7177                  * For a reshape that changes the number of devices, this
7178                  * is only possible for a very short time, and mdadm makes
7179                  * sure that time appears to have past before assembling
7180                  * the array.  So we fail if that time hasn't passed.
7181                  * For a reshape that keeps the number of devices the same
7182                  * mdadm must be monitoring the reshape can keeping the
7183                  * critical areas read-only and backed up.  It will start
7184                  * the array in read-only mode, so we check for that.
7185                  */
7186                 sector_t here_new, here_old;
7187                 int old_disks;
7188                 int max_degraded = (mddev->level == 6 ? 2 : 1);
7189                 int chunk_sectors;
7190                 int new_data_disks;
7191
7192                 if (journal_dev) {
7193                         pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7194                                 mdname(mddev));
7195                         return -EINVAL;
7196                 }
7197
7198                 if (mddev->new_level != mddev->level) {
7199                         pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7200                                 mdname(mddev));
7201                         return -EINVAL;
7202                 }
7203                 old_disks = mddev->raid_disks - mddev->delta_disks;
7204                 /* reshape_position must be on a new-stripe boundary, and one
7205                  * further up in new geometry must map after here in old
7206                  * geometry.
7207                  * If the chunk sizes are different, then as we perform reshape
7208                  * in units of the largest of the two, reshape_position needs
7209                  * be a multiple of the largest chunk size times new data disks.
7210                  */
7211                 here_new = mddev->reshape_position;
7212                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7213                 new_data_disks = mddev->raid_disks - max_degraded;
7214                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7215                         pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7216                                 mdname(mddev));
7217                         return -EINVAL;
7218                 }
7219                 reshape_offset = here_new * chunk_sectors;
7220                 /* here_new is the stripe we will write to */
7221                 here_old = mddev->reshape_position;
7222                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7223                 /* here_old is the first stripe that we might need to read
7224                  * from */
7225                 if (mddev->delta_disks == 0) {
7226                         /* We cannot be sure it is safe to start an in-place
7227                          * reshape.  It is only safe if user-space is monitoring
7228                          * and taking constant backups.
7229                          * mdadm always starts a situation like this in
7230                          * readonly mode so it can take control before
7231                          * allowing any writes.  So just check for that.
7232                          */
7233                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7234                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
7235                                 /* not really in-place - so OK */;
7236                         else if (mddev->ro == 0) {
7237                                 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7238                                         mdname(mddev));
7239                                 return -EINVAL;
7240                         }
7241                 } else if (mddev->reshape_backwards
7242                     ? (here_new * chunk_sectors + min_offset_diff <=
7243                        here_old * chunk_sectors)
7244                     : (here_new * chunk_sectors >=
7245                        here_old * chunk_sectors + (-min_offset_diff))) {
7246                         /* Reading from the same stripe as writing to - bad */
7247                         pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7248                                 mdname(mddev));
7249                         return -EINVAL;
7250                 }
7251                 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7252                 /* OK, we should be able to continue; */
7253         } else {
7254                 BUG_ON(mddev->level != mddev->new_level);
7255                 BUG_ON(mddev->layout != mddev->new_layout);
7256                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7257                 BUG_ON(mddev->delta_disks != 0);
7258         }
7259
7260         if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7261             test_bit(MD_HAS_PPL, &mddev->flags)) {
7262                 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7263                         mdname(mddev));
7264                 clear_bit(MD_HAS_PPL, &mddev->flags);
7265                 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7266         }
7267
7268         if (mddev->private == NULL)
7269                 conf = setup_conf(mddev);
7270         else
7271                 conf = mddev->private;
7272
7273         if (IS_ERR(conf))
7274                 return PTR_ERR(conf);
7275
7276         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7277                 if (!journal_dev) {
7278                         pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7279                                 mdname(mddev));
7280                         mddev->ro = 1;
7281                         set_disk_ro(mddev->gendisk, 1);
7282                 } else if (mddev->recovery_cp == MaxSector)
7283                         set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7284         }
7285
7286         conf->min_offset_diff = min_offset_diff;
7287         mddev->thread = conf->thread;
7288         conf->thread = NULL;
7289         mddev->private = conf;
7290
7291         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7292              i++) {
7293                 rdev = conf->disks[i].rdev;
7294                 if (!rdev && conf->disks[i].replacement) {
7295                         /* The replacement is all we have yet */
7296                         rdev = conf->disks[i].replacement;
7297                         conf->disks[i].replacement = NULL;
7298                         clear_bit(Replacement, &rdev->flags);
7299                         conf->disks[i].rdev = rdev;
7300                 }
7301                 if (!rdev)
7302                         continue;
7303                 if (conf->disks[i].replacement &&
7304                     conf->reshape_progress != MaxSector) {
7305                         /* replacements and reshape simply do not mix. */
7306                         pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7307                         goto abort;
7308                 }
7309                 if (test_bit(In_sync, &rdev->flags)) {
7310                         working_disks++;
7311                         continue;
7312                 }
7313                 /* This disc is not fully in-sync.  However if it
7314                  * just stored parity (beyond the recovery_offset),
7315                  * when we don't need to be concerned about the
7316                  * array being dirty.
7317                  * When reshape goes 'backwards', we never have
7318                  * partially completed devices, so we only need
7319                  * to worry about reshape going forwards.
7320                  */
7321                 /* Hack because v0.91 doesn't store recovery_offset properly. */
7322                 if (mddev->major_version == 0 &&
7323                     mddev->minor_version > 90)
7324                         rdev->recovery_offset = reshape_offset;
7325
7326                 if (rdev->recovery_offset < reshape_offset) {
7327                         /* We need to check old and new layout */
7328                         if (!only_parity(rdev->raid_disk,
7329                                          conf->algorithm,
7330                                          conf->raid_disks,
7331                                          conf->max_degraded))
7332                                 continue;
7333                 }
7334                 if (!only_parity(rdev->raid_disk,
7335                                  conf->prev_algo,
7336                                  conf->previous_raid_disks,
7337                                  conf->max_degraded))
7338                         continue;
7339                 dirty_parity_disks++;
7340         }
7341
7342         /*
7343          * 0 for a fully functional array, 1 or 2 for a degraded array.
7344          */
7345         mddev->degraded = raid5_calc_degraded(conf);
7346
7347         if (has_failed(conf)) {
7348                 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7349                         mdname(mddev), mddev->degraded, conf->raid_disks);
7350                 goto abort;
7351         }
7352
7353         /* device size must be a multiple of chunk size */
7354         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7355         mddev->resync_max_sectors = mddev->dev_sectors;
7356
7357         if (mddev->degraded > dirty_parity_disks &&
7358             mddev->recovery_cp != MaxSector) {
7359                 if (test_bit(MD_HAS_PPL, &mddev->flags))
7360                         pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7361                                 mdname(mddev));
7362                 else if (mddev->ok_start_degraded)
7363                         pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7364                                 mdname(mddev));
7365                 else {
7366                         pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7367                                 mdname(mddev));
7368                         goto abort;
7369                 }
7370         }
7371
7372         pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7373                 mdname(mddev), conf->level,
7374                 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7375                 mddev->new_layout);
7376
7377         print_raid5_conf(conf);
7378
7379         if (conf->reshape_progress != MaxSector) {
7380                 conf->reshape_safe = conf->reshape_progress;
7381                 atomic_set(&conf->reshape_stripes, 0);
7382                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7383                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7384                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7385                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7386                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7387                                                         "reshape");
7388                 if (!mddev->sync_thread)
7389                         goto abort;
7390         }
7391
7392         /* Ok, everything is just fine now */
7393         if (mddev->to_remove == &raid5_attrs_group)
7394                 mddev->to_remove = NULL;
7395         else if (mddev->kobj.sd &&
7396             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7397                 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7398                         mdname(mddev));
7399         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7400
7401         if (mddev->queue) {
7402                 int chunk_size;
7403                 /* read-ahead size must cover two whole stripes, which
7404                  * is 2 * (datadisks) * chunksize where 'n' is the
7405                  * number of raid devices
7406                  */
7407                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7408                 int stripe = data_disks *
7409                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7410                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7411                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7412
7413                 chunk_size = mddev->chunk_sectors << 9;
7414                 blk_queue_io_min(mddev->queue, chunk_size);
7415                 blk_queue_io_opt(mddev->queue, chunk_size *
7416                                  (conf->raid_disks - conf->max_degraded));
7417                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7418                 /*
7419                  * We can only discard a whole stripe. It doesn't make sense to
7420                  * discard data disk but write parity disk
7421                  */
7422                 stripe = stripe * PAGE_SIZE;
7423                 /* Round up to power of 2, as discard handling
7424                  * currently assumes that */
7425                 while ((stripe-1) & stripe)
7426                         stripe = (stripe | (stripe-1)) + 1;
7427                 mddev->queue->limits.discard_alignment = stripe;
7428                 mddev->queue->limits.discard_granularity = stripe;
7429
7430                 blk_queue_max_write_same_sectors(mddev->queue, 0);
7431                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7432
7433                 rdev_for_each(rdev, mddev) {
7434                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7435                                           rdev->data_offset << 9);
7436                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7437                                           rdev->new_data_offset << 9);
7438                 }
7439
7440                 /*
7441                  * zeroing is required, otherwise data
7442                  * could be lost. Consider a scenario: discard a stripe
7443                  * (the stripe could be inconsistent if
7444                  * discard_zeroes_data is 0); write one disk of the
7445                  * stripe (the stripe could be inconsistent again
7446                  * depending on which disks are used to calculate
7447                  * parity); the disk is broken; The stripe data of this
7448                  * disk is lost.
7449                  *
7450                  * We only allow DISCARD if the sysadmin has confirmed that
7451                  * only safe devices are in use by setting a module parameter.
7452                  * A better idea might be to turn DISCARD into WRITE_ZEROES
7453                  * requests, as that is required to be safe.
7454                  */
7455                 if (devices_handle_discard_safely &&
7456                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7457                     mddev->queue->limits.discard_granularity >= stripe)
7458                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7459                                                 mddev->queue);
7460                 else
7461                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7462                                                 mddev->queue);
7463
7464                 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7465         }
7466
7467         if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7468                 goto abort;
7469
7470         return 0;
7471 abort:
7472         md_unregister_thread(&mddev->thread);
7473         print_raid5_conf(conf);
7474         free_conf(conf);
7475         mddev->private = NULL;
7476         pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7477         return -EIO;
7478 }
7479
7480 static void raid5_free(struct mddev *mddev, void *priv)
7481 {
7482         struct r5conf *conf = priv;
7483
7484         free_conf(conf);
7485         mddev->to_remove = &raid5_attrs_group;
7486 }
7487
7488 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7489 {
7490         struct r5conf *conf = mddev->private;
7491         int i;
7492
7493         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7494                 conf->chunk_sectors / 2, mddev->layout);
7495         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7496         rcu_read_lock();
7497         for (i = 0; i < conf->raid_disks; i++) {
7498                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7499                 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7500         }
7501         rcu_read_unlock();
7502         seq_printf (seq, "]");
7503 }
7504
7505 static void print_raid5_conf (struct r5conf *conf)
7506 {
7507         int i;
7508         struct disk_info *tmp;
7509
7510         pr_debug("RAID conf printout:\n");
7511         if (!conf) {
7512                 pr_debug("(conf==NULL)\n");
7513                 return;
7514         }
7515         pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7516                conf->raid_disks,
7517                conf->raid_disks - conf->mddev->degraded);
7518
7519         for (i = 0; i < conf->raid_disks; i++) {
7520                 char b[BDEVNAME_SIZE];
7521                 tmp = conf->disks + i;
7522                 if (tmp->rdev)
7523                         pr_debug(" disk %d, o:%d, dev:%s\n",
7524                                i, !test_bit(Faulty, &tmp->rdev->flags),
7525                                bdevname(tmp->rdev->bdev, b));
7526         }
7527 }
7528
7529 static int raid5_spare_active(struct mddev *mddev)
7530 {
7531         int i;
7532         struct r5conf *conf = mddev->private;
7533         struct disk_info *tmp;
7534         int count = 0;
7535         unsigned long flags;
7536
7537         for (i = 0; i < conf->raid_disks; i++) {
7538                 tmp = conf->disks + i;
7539                 if (tmp->replacement
7540                     && tmp->replacement->recovery_offset == MaxSector
7541                     && !test_bit(Faulty, &tmp->replacement->flags)
7542                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7543                         /* Replacement has just become active. */
7544                         if (!tmp->rdev
7545                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7546                                 count++;
7547                         if (tmp->rdev) {
7548                                 /* Replaced device not technically faulty,
7549                                  * but we need to be sure it gets removed
7550                                  * and never re-added.
7551                                  */
7552                                 set_bit(Faulty, &tmp->rdev->flags);
7553                                 sysfs_notify_dirent_safe(
7554                                         tmp->rdev->sysfs_state);
7555                         }
7556                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7557                 } else if (tmp->rdev
7558                     && tmp->rdev->recovery_offset == MaxSector
7559                     && !test_bit(Faulty, &tmp->rdev->flags)
7560                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7561                         count++;
7562                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7563                 }
7564         }
7565         spin_lock_irqsave(&conf->device_lock, flags);
7566         mddev->degraded = raid5_calc_degraded(conf);
7567         spin_unlock_irqrestore(&conf->device_lock, flags);
7568         print_raid5_conf(conf);
7569         return count;
7570 }
7571
7572 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7573 {
7574         struct r5conf *conf = mddev->private;
7575         int err = 0;
7576         int number = rdev->raid_disk;
7577         struct md_rdev **rdevp;
7578         struct disk_info *p = conf->disks + number;
7579
7580         print_raid5_conf(conf);
7581         if (test_bit(Journal, &rdev->flags) && conf->log) {
7582                 /*
7583                  * we can't wait pending write here, as this is called in
7584                  * raid5d, wait will deadlock.
7585                  * neilb: there is no locking about new writes here,
7586                  * so this cannot be safe.
7587                  */
7588                 if (atomic_read(&conf->active_stripes) ||
7589                     atomic_read(&conf->r5c_cached_full_stripes) ||
7590                     atomic_read(&conf->r5c_cached_partial_stripes)) {
7591                         return -EBUSY;
7592                 }
7593                 log_exit(conf);
7594                 return 0;
7595         }
7596         if (rdev == p->rdev)
7597                 rdevp = &p->rdev;
7598         else if (rdev == p->replacement)
7599                 rdevp = &p->replacement;
7600         else
7601                 return 0;
7602
7603         if (number >= conf->raid_disks &&
7604             conf->reshape_progress == MaxSector)
7605                 clear_bit(In_sync, &rdev->flags);
7606
7607         if (test_bit(In_sync, &rdev->flags) ||
7608             atomic_read(&rdev->nr_pending)) {
7609                 err = -EBUSY;
7610                 goto abort;
7611         }
7612         /* Only remove non-faulty devices if recovery
7613          * isn't possible.
7614          */
7615         if (!test_bit(Faulty, &rdev->flags) &&
7616             mddev->recovery_disabled != conf->recovery_disabled &&
7617             !has_failed(conf) &&
7618             (!p->replacement || p->replacement == rdev) &&
7619             number < conf->raid_disks) {
7620                 err = -EBUSY;
7621                 goto abort;
7622         }
7623         *rdevp = NULL;
7624         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7625                 synchronize_rcu();
7626                 if (atomic_read(&rdev->nr_pending)) {
7627                         /* lost the race, try later */
7628                         err = -EBUSY;
7629                         *rdevp = rdev;
7630                 }
7631         }
7632         if (!err) {
7633                 err = log_modify(conf, rdev, false);
7634                 if (err)
7635                         goto abort;
7636         }
7637         if (p->replacement) {
7638                 /* We must have just cleared 'rdev' */
7639                 p->rdev = p->replacement;
7640                 clear_bit(Replacement, &p->replacement->flags);
7641                 smp_mb(); /* Make sure other CPUs may see both as identical
7642                            * but will never see neither - if they are careful
7643                            */
7644                 p->replacement = NULL;
7645
7646                 if (!err)
7647                         err = log_modify(conf, p->rdev, true);
7648         }
7649
7650         clear_bit(WantReplacement, &rdev->flags);
7651 abort:
7652
7653         print_raid5_conf(conf);
7654         return err;
7655 }
7656
7657 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7658 {
7659         struct r5conf *conf = mddev->private;
7660         int ret, err = -EEXIST;
7661         int disk;
7662         struct disk_info *p;
7663         int first = 0;
7664         int last = conf->raid_disks - 1;
7665
7666         if (test_bit(Journal, &rdev->flags)) {
7667                 if (conf->log)
7668                         return -EBUSY;
7669
7670                 rdev->raid_disk = 0;
7671                 /*
7672                  * The array is in readonly mode if journal is missing, so no
7673                  * write requests running. We should be safe
7674                  */
7675                 ret = log_init(conf, rdev, false);
7676                 if (ret)
7677                         return ret;
7678
7679                 ret = r5l_start(conf->log);
7680                 if (ret)
7681                         return ret;
7682
7683                 return 0;
7684         }
7685         if (mddev->recovery_disabled == conf->recovery_disabled)
7686                 return -EBUSY;
7687
7688         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7689                 /* no point adding a device */
7690                 return -EINVAL;
7691
7692         if (rdev->raid_disk >= 0)
7693                 first = last = rdev->raid_disk;
7694
7695         /*
7696          * find the disk ... but prefer rdev->saved_raid_disk
7697          * if possible.
7698          */
7699         if (rdev->saved_raid_disk >= 0 &&
7700             rdev->saved_raid_disk >= first &&
7701             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7702                 first = rdev->saved_raid_disk;
7703
7704         for (disk = first; disk <= last; disk++) {
7705                 p = conf->disks + disk;
7706                 if (p->rdev == NULL) {
7707                         clear_bit(In_sync, &rdev->flags);
7708                         rdev->raid_disk = disk;
7709                         if (rdev->saved_raid_disk != disk)
7710                                 conf->fullsync = 1;
7711                         rcu_assign_pointer(p->rdev, rdev);
7712
7713                         err = log_modify(conf, rdev, true);
7714
7715                         goto out;
7716                 }
7717         }
7718         for (disk = first; disk <= last; disk++) {
7719                 p = conf->disks + disk;
7720                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7721                     p->replacement == NULL) {
7722                         clear_bit(In_sync, &rdev->flags);
7723                         set_bit(Replacement, &rdev->flags);
7724                         rdev->raid_disk = disk;
7725                         err = 0;
7726                         conf->fullsync = 1;
7727                         rcu_assign_pointer(p->replacement, rdev);
7728                         break;
7729                 }
7730         }
7731 out:
7732         print_raid5_conf(conf);
7733         return err;
7734 }
7735
7736 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7737 {
7738         /* no resync is happening, and there is enough space
7739          * on all devices, so we can resize.
7740          * We need to make sure resync covers any new space.
7741          * If the array is shrinking we should possibly wait until
7742          * any io in the removed space completes, but it hardly seems
7743          * worth it.
7744          */
7745         sector_t newsize;
7746         struct r5conf *conf = mddev->private;
7747
7748         if (raid5_has_log(conf) || raid5_has_ppl(conf))
7749                 return -EINVAL;
7750         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7751         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7752         if (mddev->external_size &&
7753             mddev->array_sectors > newsize)
7754                 return -EINVAL;
7755         if (mddev->bitmap) {
7756                 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7757                 if (ret)
7758                         return ret;
7759         }
7760         md_set_array_sectors(mddev, newsize);
7761         if (sectors > mddev->dev_sectors &&
7762             mddev->recovery_cp > mddev->dev_sectors) {
7763                 mddev->recovery_cp = mddev->dev_sectors;
7764                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7765         }
7766         mddev->dev_sectors = sectors;
7767         mddev->resync_max_sectors = sectors;
7768         return 0;
7769 }
7770
7771 static int check_stripe_cache(struct mddev *mddev)
7772 {
7773         /* Can only proceed if there are plenty of stripe_heads.
7774          * We need a minimum of one full stripe,, and for sensible progress
7775          * it is best to have about 4 times that.
7776          * If we require 4 times, then the default 256 4K stripe_heads will
7777          * allow for chunk sizes up to 256K, which is probably OK.
7778          * If the chunk size is greater, user-space should request more
7779          * stripe_heads first.
7780          */
7781         struct r5conf *conf = mddev->private;
7782         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7783             > conf->min_nr_stripes ||
7784             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7785             > conf->min_nr_stripes) {
7786                 pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7787                         mdname(mddev),
7788                         ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7789                          / STRIPE_SIZE)*4);
7790                 return 0;
7791         }
7792         return 1;
7793 }
7794
7795 static int check_reshape(struct mddev *mddev)
7796 {
7797         struct r5conf *conf = mddev->private;
7798
7799         if (raid5_has_log(conf) || raid5_has_ppl(conf))
7800                 return -EINVAL;
7801         if (mddev->delta_disks == 0 &&
7802             mddev->new_layout == mddev->layout &&
7803             mddev->new_chunk_sectors == mddev->chunk_sectors)
7804                 return 0; /* nothing to do */
7805         if (has_failed(conf))
7806                 return -EINVAL;
7807         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7808                 /* We might be able to shrink, but the devices must
7809                  * be made bigger first.
7810                  * For raid6, 4 is the minimum size.
7811                  * Otherwise 2 is the minimum
7812                  */
7813                 int min = 2;
7814                 if (mddev->level == 6)
7815                         min = 4;
7816                 if (mddev->raid_disks + mddev->delta_disks < min)
7817                         return -EINVAL;
7818         }
7819
7820         if (!check_stripe_cache(mddev))
7821                 return -ENOSPC;
7822
7823         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7824             mddev->delta_disks > 0)
7825                 if (resize_chunks(conf,
7826                                   conf->previous_raid_disks
7827                                   + max(0, mddev->delta_disks),
7828                                   max(mddev->new_chunk_sectors,
7829                                       mddev->chunk_sectors)
7830                             ) < 0)
7831                         return -ENOMEM;
7832
7833         if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7834                 return 0; /* never bother to shrink */
7835         return resize_stripes(conf, (conf->previous_raid_disks
7836                                      + mddev->delta_disks));
7837 }
7838
7839 static int raid5_start_reshape(struct mddev *mddev)
7840 {
7841         struct r5conf *conf = mddev->private;
7842         struct md_rdev *rdev;
7843         int spares = 0;
7844         unsigned long flags;
7845
7846         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7847                 return -EBUSY;
7848
7849         if (!check_stripe_cache(mddev))
7850                 return -ENOSPC;
7851
7852         if (has_failed(conf))
7853                 return -EINVAL;
7854
7855         rdev_for_each(rdev, mddev) {
7856                 if (!test_bit(In_sync, &rdev->flags)
7857                     && !test_bit(Faulty, &rdev->flags))
7858                         spares++;
7859         }
7860
7861         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7862                 /* Not enough devices even to make a degraded array
7863                  * of that size
7864                  */
7865                 return -EINVAL;
7866
7867         /* Refuse to reduce size of the array.  Any reductions in
7868          * array size must be through explicit setting of array_size
7869          * attribute.
7870          */
7871         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7872             < mddev->array_sectors) {
7873                 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7874                         mdname(mddev));
7875                 return -EINVAL;
7876         }
7877
7878         atomic_set(&conf->reshape_stripes, 0);
7879         spin_lock_irq(&conf->device_lock);
7880         write_seqcount_begin(&conf->gen_lock);
7881         conf->previous_raid_disks = conf->raid_disks;
7882         conf->raid_disks += mddev->delta_disks;
7883         conf->prev_chunk_sectors = conf->chunk_sectors;
7884         conf->chunk_sectors = mddev->new_chunk_sectors;
7885         conf->prev_algo = conf->algorithm;
7886         conf->algorithm = mddev->new_layout;
7887         conf->generation++;
7888         /* Code that selects data_offset needs to see the generation update
7889          * if reshape_progress has been set - so a memory barrier needed.
7890          */
7891         smp_mb();
7892         if (mddev->reshape_backwards)
7893                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7894         else
7895                 conf->reshape_progress = 0;
7896         conf->reshape_safe = conf->reshape_progress;
7897         write_seqcount_end(&conf->gen_lock);
7898         spin_unlock_irq(&conf->device_lock);
7899
7900         /* Now make sure any requests that proceeded on the assumption
7901          * the reshape wasn't running - like Discard or Read - have
7902          * completed.
7903          */
7904         mddev_suspend(mddev);
7905         mddev_resume(mddev);
7906
7907         /* Add some new drives, as many as will fit.
7908          * We know there are enough to make the newly sized array work.
7909          * Don't add devices if we are reducing the number of
7910          * devices in the array.  This is because it is not possible
7911          * to correctly record the "partially reconstructed" state of
7912          * such devices during the reshape and confusion could result.
7913          */
7914         if (mddev->delta_disks >= 0) {
7915                 rdev_for_each(rdev, mddev)
7916                         if (rdev->raid_disk < 0 &&
7917                             !test_bit(Faulty, &rdev->flags)) {
7918                                 if (raid5_add_disk(mddev, rdev) == 0) {
7919                                         if (rdev->raid_disk
7920                                             >= conf->previous_raid_disks)
7921                                                 set_bit(In_sync, &rdev->flags);
7922                                         else
7923                                                 rdev->recovery_offset = 0;
7924
7925                                         if (sysfs_link_rdev(mddev, rdev))
7926                                                 /* Failure here is OK */;
7927                                 }
7928                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7929                                    && !test_bit(Faulty, &rdev->flags)) {
7930                                 /* This is a spare that was manually added */
7931                                 set_bit(In_sync, &rdev->flags);
7932                         }
7933
7934                 /* When a reshape changes the number of devices,
7935                  * ->degraded is measured against the larger of the
7936                  * pre and post number of devices.
7937                  */
7938                 spin_lock_irqsave(&conf->device_lock, flags);
7939                 mddev->degraded = raid5_calc_degraded(conf);
7940                 spin_unlock_irqrestore(&conf->device_lock, flags);
7941         }
7942         mddev->raid_disks = conf->raid_disks;
7943         mddev->reshape_position = conf->reshape_progress;
7944         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7945
7946         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7947         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7948         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7949         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7950         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7951         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7952                                                 "reshape");
7953         if (!mddev->sync_thread) {
7954                 mddev->recovery = 0;
7955                 spin_lock_irq(&conf->device_lock);
7956                 write_seqcount_begin(&conf->gen_lock);
7957                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7958                 mddev->new_chunk_sectors =
7959                         conf->chunk_sectors = conf->prev_chunk_sectors;
7960                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7961                 rdev_for_each(rdev, mddev)
7962                         rdev->new_data_offset = rdev->data_offset;
7963                 smp_wmb();
7964                 conf->generation --;
7965                 conf->reshape_progress = MaxSector;
7966                 mddev->reshape_position = MaxSector;
7967                 write_seqcount_end(&conf->gen_lock);
7968                 spin_unlock_irq(&conf->device_lock);
7969                 return -EAGAIN;
7970         }
7971         conf->reshape_checkpoint = jiffies;
7972         md_wakeup_thread(mddev->sync_thread);
7973         md_new_event(mddev);
7974         return 0;
7975 }
7976
7977 /* This is called from the reshape thread and should make any
7978  * changes needed in 'conf'
7979  */
7980 static void end_reshape(struct r5conf *conf)
7981 {
7982
7983         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7984                 struct md_rdev *rdev;
7985
7986                 spin_lock_irq(&conf->device_lock);
7987                 conf->previous_raid_disks = conf->raid_disks;
7988                 md_finish_reshape(conf->mddev);
7989                 smp_wmb();
7990                 conf->reshape_progress = MaxSector;
7991                 conf->mddev->reshape_position = MaxSector;
7992                 rdev_for_each(rdev, conf->mddev)
7993                         if (rdev->raid_disk >= 0 &&
7994                             !test_bit(Journal, &rdev->flags) &&
7995                             !test_bit(In_sync, &rdev->flags))
7996                                 rdev->recovery_offset = MaxSector;
7997                 spin_unlock_irq(&conf->device_lock);
7998                 wake_up(&conf->wait_for_overlap);
7999
8000                 /* read-ahead size must cover two whole stripes, which is
8001                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8002                  */
8003                 if (conf->mddev->queue) {
8004                         int data_disks = conf->raid_disks - conf->max_degraded;
8005                         int stripe = data_disks * ((conf->chunk_sectors << 9)
8006                                                    / PAGE_SIZE);
8007                         if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8008                                 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8009                 }
8010         }
8011 }
8012
8013 /* This is called from the raid5d thread with mddev_lock held.
8014  * It makes config changes to the device.
8015  */
8016 static void raid5_finish_reshape(struct mddev *mddev)
8017 {
8018         struct r5conf *conf = mddev->private;
8019
8020         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8021
8022                 if (mddev->delta_disks <= 0) {
8023                         int d;
8024                         spin_lock_irq(&conf->device_lock);
8025                         mddev->degraded = raid5_calc_degraded(conf);
8026                         spin_unlock_irq(&conf->device_lock);
8027                         for (d = conf->raid_disks ;
8028                              d < conf->raid_disks - mddev->delta_disks;
8029                              d++) {
8030                                 struct md_rdev *rdev = conf->disks[d].rdev;
8031                                 if (rdev)
8032                                         clear_bit(In_sync, &rdev->flags);
8033                                 rdev = conf->disks[d].replacement;
8034                                 if (rdev)
8035                                         clear_bit(In_sync, &rdev->flags);
8036                         }
8037                 }
8038                 mddev->layout = conf->algorithm;
8039                 mddev->chunk_sectors = conf->chunk_sectors;
8040                 mddev->reshape_position = MaxSector;
8041                 mddev->delta_disks = 0;
8042                 mddev->reshape_backwards = 0;
8043         }
8044 }
8045
8046 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8047 {
8048         struct r5conf *conf = mddev->private;
8049
8050         if (quiesce) {
8051                 /* stop all writes */
8052                 lock_all_device_hash_locks_irq(conf);
8053                 /* '2' tells resync/reshape to pause so that all
8054                  * active stripes can drain
8055                  */
8056                 r5c_flush_cache(conf, INT_MAX);
8057                 conf->quiesce = 2;
8058                 wait_event_cmd(conf->wait_for_quiescent,
8059                                     atomic_read(&conf->active_stripes) == 0 &&
8060                                     atomic_read(&conf->active_aligned_reads) == 0,
8061                                     unlock_all_device_hash_locks_irq(conf),
8062                                     lock_all_device_hash_locks_irq(conf));
8063                 conf->quiesce = 1;
8064                 unlock_all_device_hash_locks_irq(conf);
8065                 /* allow reshape to continue */
8066                 wake_up(&conf->wait_for_overlap);
8067         } else {
8068                 /* re-enable writes */
8069                 lock_all_device_hash_locks_irq(conf);
8070                 conf->quiesce = 0;
8071                 wake_up(&conf->wait_for_quiescent);
8072                 wake_up(&conf->wait_for_overlap);
8073                 unlock_all_device_hash_locks_irq(conf);
8074         }
8075         log_quiesce(conf, quiesce);
8076 }
8077
8078 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8079 {
8080         struct r0conf *raid0_conf = mddev->private;
8081         sector_t sectors;
8082
8083         /* for raid0 takeover only one zone is supported */
8084         if (raid0_conf->nr_strip_zones > 1) {
8085                 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8086                         mdname(mddev));
8087                 return ERR_PTR(-EINVAL);
8088         }
8089
8090         sectors = raid0_conf->strip_zone[0].zone_end;
8091         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8092         mddev->dev_sectors = sectors;
8093         mddev->new_level = level;
8094         mddev->new_layout = ALGORITHM_PARITY_N;
8095         mddev->new_chunk_sectors = mddev->chunk_sectors;
8096         mddev->raid_disks += 1;
8097         mddev->delta_disks = 1;
8098         /* make sure it will be not marked as dirty */
8099         mddev->recovery_cp = MaxSector;
8100
8101         return setup_conf(mddev);
8102 }
8103
8104 static void *raid5_takeover_raid1(struct mddev *mddev)
8105 {
8106         int chunksect;
8107         void *ret;
8108
8109         if (mddev->raid_disks != 2 ||
8110             mddev->degraded > 1)
8111                 return ERR_PTR(-EINVAL);
8112
8113         /* Should check if there are write-behind devices? */
8114
8115         chunksect = 64*2; /* 64K by default */
8116
8117         /* The array must be an exact multiple of chunksize */
8118         while (chunksect && (mddev->array_sectors & (chunksect-1)))
8119                 chunksect >>= 1;
8120
8121         if ((chunksect<<9) < STRIPE_SIZE)
8122                 /* array size does not allow a suitable chunk size */
8123                 return ERR_PTR(-EINVAL);
8124
8125         mddev->new_level = 5;
8126         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8127         mddev->new_chunk_sectors = chunksect;
8128
8129         ret = setup_conf(mddev);
8130         if (!IS_ERR(ret))
8131                 mddev_clear_unsupported_flags(mddev,
8132                         UNSUPPORTED_MDDEV_FLAGS);
8133         return ret;
8134 }
8135
8136 static void *raid5_takeover_raid6(struct mddev *mddev)
8137 {
8138         int new_layout;
8139
8140         switch (mddev->layout) {
8141         case ALGORITHM_LEFT_ASYMMETRIC_6:
8142                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8143                 break;
8144         case ALGORITHM_RIGHT_ASYMMETRIC_6:
8145                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8146                 break;
8147         case ALGORITHM_LEFT_SYMMETRIC_6:
8148                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8149                 break;
8150         case ALGORITHM_RIGHT_SYMMETRIC_6:
8151                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8152                 break;
8153         case ALGORITHM_PARITY_0_6:
8154                 new_layout = ALGORITHM_PARITY_0;
8155                 break;
8156         case ALGORITHM_PARITY_N:
8157                 new_layout = ALGORITHM_PARITY_N;
8158                 break;
8159         default:
8160                 return ERR_PTR(-EINVAL);
8161         }
8162         mddev->new_level = 5;
8163         mddev->new_layout = new_layout;
8164         mddev->delta_disks = -1;
8165         mddev->raid_disks -= 1;
8166         return setup_conf(mddev);
8167 }
8168
8169 static int raid5_check_reshape(struct mddev *mddev)
8170 {
8171         /* For a 2-drive array, the layout and chunk size can be changed
8172          * immediately as not restriping is needed.
8173          * For larger arrays we record the new value - after validation
8174          * to be used by a reshape pass.
8175          */
8176         struct r5conf *conf = mddev->private;
8177         int new_chunk = mddev->new_chunk_sectors;
8178
8179         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8180                 return -EINVAL;
8181         if (new_chunk > 0) {
8182                 if (!is_power_of_2(new_chunk))
8183                         return -EINVAL;
8184                 if (new_chunk < (PAGE_SIZE>>9))
8185                         return -EINVAL;
8186                 if (mddev->array_sectors & (new_chunk-1))
8187                         /* not factor of array size */
8188                         return -EINVAL;
8189         }
8190
8191         /* They look valid */
8192
8193         if (mddev->raid_disks == 2) {
8194                 /* can make the change immediately */
8195                 if (mddev->new_layout >= 0) {
8196                         conf->algorithm = mddev->new_layout;
8197                         mddev->layout = mddev->new_layout;
8198                 }
8199                 if (new_chunk > 0) {
8200                         conf->chunk_sectors = new_chunk ;
8201                         mddev->chunk_sectors = new_chunk;
8202                 }
8203                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8204                 md_wakeup_thread(mddev->thread);
8205         }
8206         return check_reshape(mddev);
8207 }
8208
8209 static int raid6_check_reshape(struct mddev *mddev)
8210 {
8211         int new_chunk = mddev->new_chunk_sectors;
8212
8213         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8214                 return -EINVAL;
8215         if (new_chunk > 0) {
8216                 if (!is_power_of_2(new_chunk))
8217                         return -EINVAL;
8218                 if (new_chunk < (PAGE_SIZE >> 9))
8219                         return -EINVAL;
8220                 if (mddev->array_sectors & (new_chunk-1))
8221                         /* not factor of array size */
8222                         return -EINVAL;
8223         }
8224
8225         /* They look valid */
8226         return check_reshape(mddev);
8227 }
8228
8229 static void *raid5_takeover(struct mddev *mddev)
8230 {
8231         /* raid5 can take over:
8232          *  raid0 - if there is only one strip zone - make it a raid4 layout
8233          *  raid1 - if there are two drives.  We need to know the chunk size
8234          *  raid4 - trivial - just use a raid4 layout.
8235          *  raid6 - Providing it is a *_6 layout
8236          */
8237         if (mddev->level == 0)
8238                 return raid45_takeover_raid0(mddev, 5);
8239         if (mddev->level == 1)
8240                 return raid5_takeover_raid1(mddev);
8241         if (mddev->level == 4) {
8242                 mddev->new_layout = ALGORITHM_PARITY_N;
8243                 mddev->new_level = 5;
8244                 return setup_conf(mddev);
8245         }
8246         if (mddev->level == 6)
8247                 return raid5_takeover_raid6(mddev);
8248
8249         return ERR_PTR(-EINVAL);
8250 }
8251
8252 static void *raid4_takeover(struct mddev *mddev)
8253 {
8254         /* raid4 can take over:
8255          *  raid0 - if there is only one strip zone
8256          *  raid5 - if layout is right
8257          */
8258         if (mddev->level == 0)
8259                 return raid45_takeover_raid0(mddev, 4);
8260         if (mddev->level == 5 &&
8261             mddev->layout == ALGORITHM_PARITY_N) {
8262                 mddev->new_layout = 0;
8263                 mddev->new_level = 4;
8264                 return setup_conf(mddev);
8265         }
8266         return ERR_PTR(-EINVAL);
8267 }
8268
8269 static struct md_personality raid5_personality;
8270
8271 static void *raid6_takeover(struct mddev *mddev)
8272 {
8273         /* Currently can only take over a raid5.  We map the
8274          * personality to an equivalent raid6 personality
8275          * with the Q block at the end.
8276          */
8277         int new_layout;
8278
8279         if (mddev->pers != &raid5_personality)
8280                 return ERR_PTR(-EINVAL);
8281         if (mddev->degraded > 1)
8282                 return ERR_PTR(-EINVAL);
8283         if (mddev->raid_disks > 253)
8284                 return ERR_PTR(-EINVAL);
8285         if (mddev->raid_disks < 3)
8286                 return ERR_PTR(-EINVAL);
8287
8288         switch (mddev->layout) {
8289         case ALGORITHM_LEFT_ASYMMETRIC:
8290                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8291                 break;
8292         case ALGORITHM_RIGHT_ASYMMETRIC:
8293                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8294                 break;
8295         case ALGORITHM_LEFT_SYMMETRIC:
8296                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8297                 break;
8298         case ALGORITHM_RIGHT_SYMMETRIC:
8299                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8300                 break;
8301         case ALGORITHM_PARITY_0:
8302                 new_layout = ALGORITHM_PARITY_0_6;
8303                 break;
8304         case ALGORITHM_PARITY_N:
8305                 new_layout = ALGORITHM_PARITY_N;
8306                 break;
8307         default:
8308                 return ERR_PTR(-EINVAL);
8309         }
8310         mddev->new_level = 6;
8311         mddev->new_layout = new_layout;
8312         mddev->delta_disks = 1;
8313         mddev->raid_disks += 1;
8314         return setup_conf(mddev);
8315 }
8316
8317 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8318 {
8319         struct r5conf *conf;
8320         int err;
8321
8322         err = mddev_lock(mddev);
8323         if (err)
8324                 return err;
8325         conf = mddev->private;
8326         if (!conf) {
8327                 mddev_unlock(mddev);
8328                 return -ENODEV;
8329         }
8330
8331         if (strncmp(buf, "ppl", 3) == 0) {
8332                 /* ppl only works with RAID 5 */
8333                 if (!raid5_has_ppl(conf) && conf->level == 5) {
8334                         err = log_init(conf, NULL, true);
8335                         if (!err) {
8336                                 err = resize_stripes(conf, conf->pool_size);
8337                                 if (err)
8338                                         log_exit(conf);
8339                         }
8340                 } else
8341                         err = -EINVAL;
8342         } else if (strncmp(buf, "resync", 6) == 0) {
8343                 if (raid5_has_ppl(conf)) {
8344                         mddev_suspend(mddev);
8345                         log_exit(conf);
8346                         mddev_resume(mddev);
8347                         err = resize_stripes(conf, conf->pool_size);
8348                 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8349                            r5l_log_disk_error(conf)) {
8350                         bool journal_dev_exists = false;
8351                         struct md_rdev *rdev;
8352
8353                         rdev_for_each(rdev, mddev)
8354                                 if (test_bit(Journal, &rdev->flags)) {
8355                                         journal_dev_exists = true;
8356                                         break;
8357                                 }
8358
8359                         if (!journal_dev_exists) {
8360                                 mddev_suspend(mddev);
8361                                 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8362                                 mddev_resume(mddev);
8363                         } else  /* need remove journal device first */
8364                                 err = -EBUSY;
8365                 } else
8366                         err = -EINVAL;
8367         } else {
8368                 err = -EINVAL;
8369         }
8370
8371         if (!err)
8372                 md_update_sb(mddev, 1);
8373
8374         mddev_unlock(mddev);
8375
8376         return err;
8377 }
8378
8379 static int raid5_start(struct mddev *mddev)
8380 {
8381         struct r5conf *conf = mddev->private;
8382
8383         return r5l_start(conf->log);
8384 }
8385
8386 static struct md_personality raid6_personality =
8387 {
8388         .name           = "raid6",
8389         .level          = 6,
8390         .owner          = THIS_MODULE,
8391         .make_request   = raid5_make_request,
8392         .run            = raid5_run,
8393         .start          = raid5_start,
8394         .free           = raid5_free,
8395         .status         = raid5_status,
8396         .error_handler  = raid5_error,
8397         .hot_add_disk   = raid5_add_disk,
8398         .hot_remove_disk= raid5_remove_disk,
8399         .spare_active   = raid5_spare_active,
8400         .sync_request   = raid5_sync_request,
8401         .resize         = raid5_resize,
8402         .size           = raid5_size,
8403         .check_reshape  = raid6_check_reshape,
8404         .start_reshape  = raid5_start_reshape,
8405         .finish_reshape = raid5_finish_reshape,
8406         .quiesce        = raid5_quiesce,
8407         .takeover       = raid6_takeover,
8408         .change_consistency_policy = raid5_change_consistency_policy,
8409 };
8410 static struct md_personality raid5_personality =
8411 {
8412         .name           = "raid5",
8413         .level          = 5,
8414         .owner          = THIS_MODULE,
8415         .make_request   = raid5_make_request,
8416         .run            = raid5_run,
8417         .start          = raid5_start,
8418         .free           = raid5_free,
8419         .status         = raid5_status,
8420         .error_handler  = raid5_error,
8421         .hot_add_disk   = raid5_add_disk,
8422         .hot_remove_disk= raid5_remove_disk,
8423         .spare_active   = raid5_spare_active,
8424         .sync_request   = raid5_sync_request,
8425         .resize         = raid5_resize,
8426         .size           = raid5_size,
8427         .check_reshape  = raid5_check_reshape,
8428         .start_reshape  = raid5_start_reshape,
8429         .finish_reshape = raid5_finish_reshape,
8430         .quiesce        = raid5_quiesce,
8431         .takeover       = raid5_takeover,
8432         .change_consistency_policy = raid5_change_consistency_policy,
8433 };
8434
8435 static struct md_personality raid4_personality =
8436 {
8437         .name           = "raid4",
8438         .level          = 4,
8439         .owner          = THIS_MODULE,
8440         .make_request   = raid5_make_request,
8441         .run            = raid5_run,
8442         .start          = raid5_start,
8443         .free           = raid5_free,
8444         .status         = raid5_status,
8445         .error_handler  = raid5_error,
8446         .hot_add_disk   = raid5_add_disk,
8447         .hot_remove_disk= raid5_remove_disk,
8448         .spare_active   = raid5_spare_active,
8449         .sync_request   = raid5_sync_request,
8450         .resize         = raid5_resize,
8451         .size           = raid5_size,
8452         .check_reshape  = raid5_check_reshape,
8453         .start_reshape  = raid5_start_reshape,
8454         .finish_reshape = raid5_finish_reshape,
8455         .quiesce        = raid5_quiesce,
8456         .takeover       = raid4_takeover,
8457         .change_consistency_policy = raid5_change_consistency_policy,
8458 };
8459
8460 static int __init raid5_init(void)
8461 {
8462         int ret;
8463
8464         raid5_wq = alloc_workqueue("raid5wq",
8465                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8466         if (!raid5_wq)
8467                 return -ENOMEM;
8468
8469         ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8470                                       "md/raid5:prepare",
8471                                       raid456_cpu_up_prepare,
8472                                       raid456_cpu_dead);
8473         if (ret) {
8474                 destroy_workqueue(raid5_wq);
8475                 return ret;
8476         }
8477         register_md_personality(&raid6_personality);
8478         register_md_personality(&raid5_personality);
8479         register_md_personality(&raid4_personality);
8480         return 0;
8481 }
8482
8483 static void raid5_exit(void)
8484 {
8485         unregister_md_personality(&raid6_personality);
8486         unregister_md_personality(&raid5_personality);
8487         unregister_md_personality(&raid4_personality);
8488         cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8489         destroy_workqueue(raid5_wq);
8490 }
8491
8492 module_init(raid5_init);
8493 module_exit(raid5_exit);
8494 MODULE_LICENSE("GPL");
8495 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8496 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8497 MODULE_ALIAS("md-raid5");
8498 MODULE_ALIAS("md-raid4");
8499 MODULE_ALIAS("md-level-5");
8500 MODULE_ALIAS("md-level-4");
8501 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8502 MODULE_ALIAS("md-raid6");
8503 MODULE_ALIAS("md-level-6");
8504
8505 /* This used to be two separate modules, they were: */
8506 MODULE_ALIAS("raid5");
8507 MODULE_ALIAS("raid6");