0bea21d81697e210a48a8e1dcab1e26349c8b6cf
[linux-2.6-microblaze.git] / drivers / md / raid5-cache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5  */
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
15 #include "md.h"
16 #include "raid5.h"
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
19
20 /*
21  * metadata/data stored in disk with 4k size unit (a block) regardless
22  * underneath hardware sector size. only works with PAGE_SIZE == 4096
23  */
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
26
27 /*
28  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29  *
30  * In write through mode, the reclaim runs every log->max_free_space.
31  * This can prevent the recovery scans for too long
32  */
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42
43 /*
44  * We only need 2 bios per I/O unit to make progress, but ensure we
45  * have a few more available to not get too tight.
46  */
47 #define R5L_POOL_SIZE   4
48
49 static char *r5c_journal_mode_str[] = {"write-through",
50                                        "write-back"};
51 /*
52  * raid5 cache state machine
53  *
54  * With the RAID cache, each stripe works in two phases:
55  *      - caching phase
56  *      - writing-out phase
57  *
58  * These two phases are controlled by bit STRIPE_R5C_CACHING:
59  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61  *
62  * When there is no journal, or the journal is in write-through mode,
63  * the stripe is always in writing-out phase.
64  *
65  * For write-back journal, the stripe is sent to caching phase on write
66  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67  * the write-out phase by clearing STRIPE_R5C_CACHING.
68  *
69  * Stripes in caching phase do not write the raid disks. Instead, all
70  * writes are committed from the log device. Therefore, a stripe in
71  * caching phase handles writes as:
72  *      - write to log device
73  *      - return IO
74  *
75  * Stripes in writing-out phase handle writes as:
76  *      - calculate parity
77  *      - write pending data and parity to journal
78  *      - write data and parity to raid disks
79  *      - return IO for pending writes
80  */
81
82 struct r5l_log {
83         struct md_rdev *rdev;
84
85         u32 uuid_checksum;
86
87         sector_t device_size;           /* log device size, round to
88                                          * BLOCK_SECTORS */
89         sector_t max_free_space;        /* reclaim run if free space is at
90                                          * this size */
91
92         sector_t last_checkpoint;       /* log tail. where recovery scan
93                                          * starts from */
94         u64 last_cp_seq;                /* log tail sequence */
95
96         sector_t log_start;             /* log head. where new data appends */
97         u64 seq;                        /* log head sequence */
98
99         sector_t next_checkpoint;
100
101         struct mutex io_mutex;
102         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
103
104         spinlock_t io_list_lock;
105         struct list_head running_ios;   /* io_units which are still running,
106                                          * and have not yet been completely
107                                          * written to the log */
108         struct list_head io_end_ios;    /* io_units which have been completely
109                                          * written to the log but not yet written
110                                          * to the RAID */
111         struct list_head flushing_ios;  /* io_units which are waiting for log
112                                          * cache flush */
113         struct list_head finished_ios;  /* io_units which settle down in log disk */
114         struct bio flush_bio;
115
116         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
117
118         struct kmem_cache *io_kc;
119         mempool_t io_pool;
120         struct bio_set bs;
121         mempool_t meta_pool;
122
123         struct md_thread *reclaim_thread;
124         unsigned long reclaim_target;   /* number of space that need to be
125                                          * reclaimed.  if it's 0, reclaim spaces
126                                          * used by io_units which are in
127                                          * IO_UNIT_STRIPE_END state (eg, reclaim
128                                          * dones't wait for specific io_unit
129                                          * switching to IO_UNIT_STRIPE_END
130                                          * state) */
131         wait_queue_head_t iounit_wait;
132
133         struct list_head no_space_stripes; /* pending stripes, log has no space */
134         spinlock_t no_space_stripes_lock;
135
136         bool need_cache_flush;
137
138         /* for r5c_cache */
139         enum r5c_journal_mode r5c_journal_mode;
140
141         /* all stripes in r5cache, in the order of seq at sh->log_start */
142         struct list_head stripe_in_journal_list;
143
144         spinlock_t stripe_in_journal_lock;
145         atomic_t stripe_in_journal_count;
146
147         /* to submit async io_units, to fulfill ordering of flush */
148         struct work_struct deferred_io_work;
149         /* to disable write back during in degraded mode */
150         struct work_struct disable_writeback_work;
151
152         /* to for chunk_aligned_read in writeback mode, details below */
153         spinlock_t tree_lock;
154         struct radix_tree_root big_stripe_tree;
155 };
156
157 /*
158  * Enable chunk_aligned_read() with write back cache.
159  *
160  * Each chunk may contain more than one stripe (for example, a 256kB
161  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163  * For each big_stripe, we count how many stripes of this big_stripe
164  * are in the write back cache. These data are tracked in a radix tree
165  * (big_stripe_tree). We use radix_tree item pointer as the counter.
166  * r5c_tree_index() is used to calculate keys for the radix tree.
167  *
168  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169  * big_stripe of each chunk in the tree. If this big_stripe is in the
170  * tree, chunk_aligned_read() aborts. This look up is protected by
171  * rcu_read_lock().
172  *
173  * It is necessary to remember whether a stripe is counted in
174  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176  * two flags are set, the stripe is counted in big_stripe_tree. This
177  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178  * r5c_try_caching_write(); and moving clear_bit of
179  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180  * r5c_finish_stripe_write_out().
181  */
182
183 /*
184  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185  * So it is necessary to left shift the counter by 2 bits before using it
186  * as data pointer of the tree.
187  */
188 #define R5C_RADIX_COUNT_SHIFT 2
189
190 /*
191  * calculate key for big_stripe_tree
192  *
193  * sect: align_bi->bi_iter.bi_sector or sh->sector
194  */
195 static inline sector_t r5c_tree_index(struct r5conf *conf,
196                                       sector_t sect)
197 {
198         sector_t offset;
199
200         offset = sector_div(sect, conf->chunk_sectors);
201         return sect;
202 }
203
204 /*
205  * an IO range starts from a meta data block and end at the next meta data
206  * block. The io unit's the meta data block tracks data/parity followed it. io
207  * unit is written to log disk with normal write, as we always flush log disk
208  * first and then start move data to raid disks, there is no requirement to
209  * write io unit with FLUSH/FUA
210  */
211 struct r5l_io_unit {
212         struct r5l_log *log;
213
214         struct page *meta_page; /* store meta block */
215         int meta_offset;        /* current offset in meta_page */
216
217         struct bio *current_bio;/* current_bio accepting new data */
218
219         atomic_t pending_stripe;/* how many stripes not flushed to raid */
220         u64 seq;                /* seq number of the metablock */
221         sector_t log_start;     /* where the io_unit starts */
222         sector_t log_end;       /* where the io_unit ends */
223         struct list_head log_sibling; /* log->running_ios */
224         struct list_head stripe_list; /* stripes added to the io_unit */
225
226         int state;
227         bool need_split_bio;
228         struct bio *split_bio;
229
230         unsigned int has_flush:1;               /* include flush request */
231         unsigned int has_fua:1;                 /* include fua request */
232         unsigned int has_null_flush:1;          /* include null flush request */
233         unsigned int has_flush_payload:1;       /* include flush payload  */
234         /*
235          * io isn't sent yet, flush/fua request can only be submitted till it's
236          * the first IO in running_ios list
237          */
238         unsigned int io_deferred:1;
239
240         struct bio_list flush_barriers;   /* size == 0 flush bios */
241 };
242
243 /* r5l_io_unit state */
244 enum r5l_io_unit_state {
245         IO_UNIT_RUNNING = 0,    /* accepting new IO */
246         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
247                                  * don't accepting new bio */
248         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
249         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
250 };
251
252 bool r5c_is_writeback(struct r5l_log *log)
253 {
254         return (log != NULL &&
255                 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
256 }
257
258 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
259 {
260         start += inc;
261         if (start >= log->device_size)
262                 start = start - log->device_size;
263         return start;
264 }
265
266 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
267                                   sector_t end)
268 {
269         if (end >= start)
270                 return end - start;
271         else
272                 return end + log->device_size - start;
273 }
274
275 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
276 {
277         sector_t used_size;
278
279         used_size = r5l_ring_distance(log, log->last_checkpoint,
280                                         log->log_start);
281
282         return log->device_size > used_size + size;
283 }
284
285 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
286                                     enum r5l_io_unit_state state)
287 {
288         if (WARN_ON(io->state >= state))
289                 return;
290         io->state = state;
291 }
292
293 static void
294 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
295 {
296         struct bio *wbi, *wbi2;
297
298         wbi = dev->written;
299         dev->written = NULL;
300         while (wbi && wbi->bi_iter.bi_sector <
301                dev->sector + STRIPE_SECTORS) {
302                 wbi2 = r5_next_bio(wbi, dev->sector);
303                 md_write_end(conf->mddev);
304                 bio_endio(wbi);
305                 wbi = wbi2;
306         }
307 }
308
309 void r5c_handle_cached_data_endio(struct r5conf *conf,
310                                   struct stripe_head *sh, int disks)
311 {
312         int i;
313
314         for (i = sh->disks; i--; ) {
315                 if (sh->dev[i].written) {
316                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
317                         r5c_return_dev_pending_writes(conf, &sh->dev[i]);
318                         md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
319                                            STRIPE_SECTORS,
320                                            !test_bit(STRIPE_DEGRADED, &sh->state),
321                                            0);
322                 }
323         }
324 }
325
326 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
327
328 /* Check whether we should flush some stripes to free up stripe cache */
329 void r5c_check_stripe_cache_usage(struct r5conf *conf)
330 {
331         int total_cached;
332
333         if (!r5c_is_writeback(conf->log))
334                 return;
335
336         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
337                 atomic_read(&conf->r5c_cached_full_stripes);
338
339         /*
340          * The following condition is true for either of the following:
341          *   - stripe cache pressure high:
342          *          total_cached > 3/4 min_nr_stripes ||
343          *          empty_inactive_list_nr > 0
344          *   - stripe cache pressure moderate:
345          *          total_cached > 1/2 min_nr_stripes
346          */
347         if (total_cached > conf->min_nr_stripes * 1 / 2 ||
348             atomic_read(&conf->empty_inactive_list_nr) > 0)
349                 r5l_wake_reclaim(conf->log, 0);
350 }
351
352 /*
353  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
354  * stripes in the cache
355  */
356 void r5c_check_cached_full_stripe(struct r5conf *conf)
357 {
358         if (!r5c_is_writeback(conf->log))
359                 return;
360
361         /*
362          * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
363          * or a full stripe (chunk size / 4k stripes).
364          */
365         if (atomic_read(&conf->r5c_cached_full_stripes) >=
366             min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
367                 conf->chunk_sectors >> STRIPE_SHIFT))
368                 r5l_wake_reclaim(conf->log, 0);
369 }
370
371 /*
372  * Total log space (in sectors) needed to flush all data in cache
373  *
374  * To avoid deadlock due to log space, it is necessary to reserve log
375  * space to flush critical stripes (stripes that occupying log space near
376  * last_checkpoint). This function helps check how much log space is
377  * required to flush all cached stripes.
378  *
379  * To reduce log space requirements, two mechanisms are used to give cache
380  * flush higher priorities:
381  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
382  *       stripes ALREADY in journal can be flushed w/o pending writes;
383  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
384  *       can be delayed (r5l_add_no_space_stripe).
385  *
386  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
387  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
388  * pages of journal space. For stripes that has not passed 1, flushing it
389  * requires (conf->raid_disks + 1) pages of journal space. There are at
390  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
391  * required to flush all cached stripes (in pages) is:
392  *
393  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
394  *     (group_cnt + 1) * (raid_disks + 1)
395  * or
396  *     (stripe_in_journal_count) * (max_degraded + 1) +
397  *     (group_cnt + 1) * (raid_disks - max_degraded)
398  */
399 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
400 {
401         struct r5l_log *log = conf->log;
402
403         if (!r5c_is_writeback(log))
404                 return 0;
405
406         return BLOCK_SECTORS *
407                 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
408                  (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
409 }
410
411 /*
412  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
413  *
414  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
415  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
416  * device is less than 2x of reclaim_required_space.
417  */
418 static inline void r5c_update_log_state(struct r5l_log *log)
419 {
420         struct r5conf *conf = log->rdev->mddev->private;
421         sector_t free_space;
422         sector_t reclaim_space;
423         bool wake_reclaim = false;
424
425         if (!r5c_is_writeback(log))
426                 return;
427
428         free_space = r5l_ring_distance(log, log->log_start,
429                                        log->last_checkpoint);
430         reclaim_space = r5c_log_required_to_flush_cache(conf);
431         if (free_space < 2 * reclaim_space)
432                 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
433         else {
434                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
435                         wake_reclaim = true;
436                 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
437         }
438         if (free_space < 3 * reclaim_space)
439                 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
440         else
441                 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
442
443         if (wake_reclaim)
444                 r5l_wake_reclaim(log, 0);
445 }
446
447 /*
448  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
449  * This function should only be called in write-back mode.
450  */
451 void r5c_make_stripe_write_out(struct stripe_head *sh)
452 {
453         struct r5conf *conf = sh->raid_conf;
454         struct r5l_log *log = conf->log;
455
456         BUG_ON(!r5c_is_writeback(log));
457
458         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
459         clear_bit(STRIPE_R5C_CACHING, &sh->state);
460
461         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
462                 atomic_inc(&conf->preread_active_stripes);
463 }
464
465 static void r5c_handle_data_cached(struct stripe_head *sh)
466 {
467         int i;
468
469         for (i = sh->disks; i--; )
470                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
471                         set_bit(R5_InJournal, &sh->dev[i].flags);
472                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
473                 }
474         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
475 }
476
477 /*
478  * this journal write must contain full parity,
479  * it may also contain some data pages
480  */
481 static void r5c_handle_parity_cached(struct stripe_head *sh)
482 {
483         int i;
484
485         for (i = sh->disks; i--; )
486                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
487                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
488 }
489
490 /*
491  * Setting proper flags after writing (or flushing) data and/or parity to the
492  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
493  */
494 static void r5c_finish_cache_stripe(struct stripe_head *sh)
495 {
496         struct r5l_log *log = sh->raid_conf->log;
497
498         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
499                 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
500                 /*
501                  * Set R5_InJournal for parity dev[pd_idx]. This means
502                  * all data AND parity in the journal. For RAID 6, it is
503                  * NOT necessary to set the flag for dev[qd_idx], as the
504                  * two parities are written out together.
505                  */
506                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
507         } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
508                 r5c_handle_data_cached(sh);
509         } else {
510                 r5c_handle_parity_cached(sh);
511                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
512         }
513 }
514
515 static void r5l_io_run_stripes(struct r5l_io_unit *io)
516 {
517         struct stripe_head *sh, *next;
518
519         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
520                 list_del_init(&sh->log_list);
521
522                 r5c_finish_cache_stripe(sh);
523
524                 set_bit(STRIPE_HANDLE, &sh->state);
525                 raid5_release_stripe(sh);
526         }
527 }
528
529 static void r5l_log_run_stripes(struct r5l_log *log)
530 {
531         struct r5l_io_unit *io, *next;
532
533         lockdep_assert_held(&log->io_list_lock);
534
535         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
536                 /* don't change list order */
537                 if (io->state < IO_UNIT_IO_END)
538                         break;
539
540                 list_move_tail(&io->log_sibling, &log->finished_ios);
541                 r5l_io_run_stripes(io);
542         }
543 }
544
545 static void r5l_move_to_end_ios(struct r5l_log *log)
546 {
547         struct r5l_io_unit *io, *next;
548
549         lockdep_assert_held(&log->io_list_lock);
550
551         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
552                 /* don't change list order */
553                 if (io->state < IO_UNIT_IO_END)
554                         break;
555                 list_move_tail(&io->log_sibling, &log->io_end_ios);
556         }
557 }
558
559 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
560 static void r5l_log_endio(struct bio *bio)
561 {
562         struct r5l_io_unit *io = bio->bi_private;
563         struct r5l_io_unit *io_deferred;
564         struct r5l_log *log = io->log;
565         unsigned long flags;
566         bool has_null_flush;
567         bool has_flush_payload;
568
569         if (bio->bi_status)
570                 md_error(log->rdev->mddev, log->rdev);
571
572         bio_put(bio);
573         mempool_free(io->meta_page, &log->meta_pool);
574
575         spin_lock_irqsave(&log->io_list_lock, flags);
576         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
577
578         /*
579          * if the io doesn't not have null_flush or flush payload,
580          * it is not safe to access it after releasing io_list_lock.
581          * Therefore, it is necessary to check the condition with
582          * the lock held.
583          */
584         has_null_flush = io->has_null_flush;
585         has_flush_payload = io->has_flush_payload;
586
587         if (log->need_cache_flush && !list_empty(&io->stripe_list))
588                 r5l_move_to_end_ios(log);
589         else
590                 r5l_log_run_stripes(log);
591         if (!list_empty(&log->running_ios)) {
592                 /*
593                  * FLUSH/FUA io_unit is deferred because of ordering, now we
594                  * can dispatch it
595                  */
596                 io_deferred = list_first_entry(&log->running_ios,
597                                                struct r5l_io_unit, log_sibling);
598                 if (io_deferred->io_deferred)
599                         schedule_work(&log->deferred_io_work);
600         }
601
602         spin_unlock_irqrestore(&log->io_list_lock, flags);
603
604         if (log->need_cache_flush)
605                 md_wakeup_thread(log->rdev->mddev->thread);
606
607         /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
608         if (has_null_flush) {
609                 struct bio *bi;
610
611                 WARN_ON(bio_list_empty(&io->flush_barriers));
612                 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
613                         bio_endio(bi);
614                         if (atomic_dec_and_test(&io->pending_stripe)) {
615                                 __r5l_stripe_write_finished(io);
616                                 return;
617                         }
618                 }
619         }
620         /* decrease pending_stripe for flush payload */
621         if (has_flush_payload)
622                 if (atomic_dec_and_test(&io->pending_stripe))
623                         __r5l_stripe_write_finished(io);
624 }
625
626 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
627 {
628         unsigned long flags;
629
630         spin_lock_irqsave(&log->io_list_lock, flags);
631         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
632         spin_unlock_irqrestore(&log->io_list_lock, flags);
633
634         /*
635          * In case of journal device failures, submit_bio will get error
636          * and calls endio, then active stripes will continue write
637          * process. Therefore, it is not necessary to check Faulty bit
638          * of journal device here.
639          *
640          * We can't check split_bio after current_bio is submitted. If
641          * io->split_bio is null, after current_bio is submitted, current_bio
642          * might already be completed and the io_unit is freed. We submit
643          * split_bio first to avoid the issue.
644          */
645         if (io->split_bio) {
646                 if (io->has_flush)
647                         io->split_bio->bi_opf |= REQ_PREFLUSH;
648                 if (io->has_fua)
649                         io->split_bio->bi_opf |= REQ_FUA;
650                 submit_bio(io->split_bio);
651         }
652
653         if (io->has_flush)
654                 io->current_bio->bi_opf |= REQ_PREFLUSH;
655         if (io->has_fua)
656                 io->current_bio->bi_opf |= REQ_FUA;
657         submit_bio(io->current_bio);
658 }
659
660 /* deferred io_unit will be dispatched here */
661 static void r5l_submit_io_async(struct work_struct *work)
662 {
663         struct r5l_log *log = container_of(work, struct r5l_log,
664                                            deferred_io_work);
665         struct r5l_io_unit *io = NULL;
666         unsigned long flags;
667
668         spin_lock_irqsave(&log->io_list_lock, flags);
669         if (!list_empty(&log->running_ios)) {
670                 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
671                                       log_sibling);
672                 if (!io->io_deferred)
673                         io = NULL;
674                 else
675                         io->io_deferred = 0;
676         }
677         spin_unlock_irqrestore(&log->io_list_lock, flags);
678         if (io)
679                 r5l_do_submit_io(log, io);
680 }
681
682 static void r5c_disable_writeback_async(struct work_struct *work)
683 {
684         struct r5l_log *log = container_of(work, struct r5l_log,
685                                            disable_writeback_work);
686         struct mddev *mddev = log->rdev->mddev;
687         struct r5conf *conf = mddev->private;
688         int locked = 0;
689
690         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
691                 return;
692         pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
693                 mdname(mddev));
694
695         /* wait superblock change before suspend */
696         wait_event(mddev->sb_wait,
697                    conf->log == NULL ||
698                    (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
699                     (locked = mddev_trylock(mddev))));
700         if (locked) {
701                 mddev_suspend(mddev);
702                 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
703                 mddev_resume(mddev);
704                 mddev_unlock(mddev);
705         }
706 }
707
708 static void r5l_submit_current_io(struct r5l_log *log)
709 {
710         struct r5l_io_unit *io = log->current_io;
711         struct r5l_meta_block *block;
712         unsigned long flags;
713         u32 crc;
714         bool do_submit = true;
715
716         if (!io)
717                 return;
718
719         block = page_address(io->meta_page);
720         block->meta_size = cpu_to_le32(io->meta_offset);
721         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
722         block->checksum = cpu_to_le32(crc);
723
724         log->current_io = NULL;
725         spin_lock_irqsave(&log->io_list_lock, flags);
726         if (io->has_flush || io->has_fua) {
727                 if (io != list_first_entry(&log->running_ios,
728                                            struct r5l_io_unit, log_sibling)) {
729                         io->io_deferred = 1;
730                         do_submit = false;
731                 }
732         }
733         spin_unlock_irqrestore(&log->io_list_lock, flags);
734         if (do_submit)
735                 r5l_do_submit_io(log, io);
736 }
737
738 static struct bio *r5l_bio_alloc(struct r5l_log *log)
739 {
740         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs);
741
742         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
743         bio_set_dev(bio, log->rdev->bdev);
744         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
745
746         return bio;
747 }
748
749 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
750 {
751         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
752
753         r5c_update_log_state(log);
754         /*
755          * If we filled up the log device start from the beginning again,
756          * which will require a new bio.
757          *
758          * Note: for this to work properly the log size needs to me a multiple
759          * of BLOCK_SECTORS.
760          */
761         if (log->log_start == 0)
762                 io->need_split_bio = true;
763
764         io->log_end = log->log_start;
765 }
766
767 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
768 {
769         struct r5l_io_unit *io;
770         struct r5l_meta_block *block;
771
772         io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
773         if (!io)
774                 return NULL;
775         memset(io, 0, sizeof(*io));
776
777         io->log = log;
778         INIT_LIST_HEAD(&io->log_sibling);
779         INIT_LIST_HEAD(&io->stripe_list);
780         bio_list_init(&io->flush_barriers);
781         io->state = IO_UNIT_RUNNING;
782
783         io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
784         block = page_address(io->meta_page);
785         clear_page(block);
786         block->magic = cpu_to_le32(R5LOG_MAGIC);
787         block->version = R5LOG_VERSION;
788         block->seq = cpu_to_le64(log->seq);
789         block->position = cpu_to_le64(log->log_start);
790
791         io->log_start = log->log_start;
792         io->meta_offset = sizeof(struct r5l_meta_block);
793         io->seq = log->seq++;
794
795         io->current_bio = r5l_bio_alloc(log);
796         io->current_bio->bi_end_io = r5l_log_endio;
797         io->current_bio->bi_private = io;
798         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
799
800         r5_reserve_log_entry(log, io);
801
802         spin_lock_irq(&log->io_list_lock);
803         list_add_tail(&io->log_sibling, &log->running_ios);
804         spin_unlock_irq(&log->io_list_lock);
805
806         return io;
807 }
808
809 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
810 {
811         if (log->current_io &&
812             log->current_io->meta_offset + payload_size > PAGE_SIZE)
813                 r5l_submit_current_io(log);
814
815         if (!log->current_io) {
816                 log->current_io = r5l_new_meta(log);
817                 if (!log->current_io)
818                         return -ENOMEM;
819         }
820
821         return 0;
822 }
823
824 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
825                                     sector_t location,
826                                     u32 checksum1, u32 checksum2,
827                                     bool checksum2_valid)
828 {
829         struct r5l_io_unit *io = log->current_io;
830         struct r5l_payload_data_parity *payload;
831
832         payload = page_address(io->meta_page) + io->meta_offset;
833         payload->header.type = cpu_to_le16(type);
834         payload->header.flags = cpu_to_le16(0);
835         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
836                                     (PAGE_SHIFT - 9));
837         payload->location = cpu_to_le64(location);
838         payload->checksum[0] = cpu_to_le32(checksum1);
839         if (checksum2_valid)
840                 payload->checksum[1] = cpu_to_le32(checksum2);
841
842         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
843                 sizeof(__le32) * (1 + !!checksum2_valid);
844 }
845
846 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
847 {
848         struct r5l_io_unit *io = log->current_io;
849
850         if (io->need_split_bio) {
851                 BUG_ON(io->split_bio);
852                 io->split_bio = io->current_bio;
853                 io->current_bio = r5l_bio_alloc(log);
854                 bio_chain(io->current_bio, io->split_bio);
855                 io->need_split_bio = false;
856         }
857
858         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
859                 BUG();
860
861         r5_reserve_log_entry(log, io);
862 }
863
864 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
865 {
866         struct mddev *mddev = log->rdev->mddev;
867         struct r5conf *conf = mddev->private;
868         struct r5l_io_unit *io;
869         struct r5l_payload_flush *payload;
870         int meta_size;
871
872         /*
873          * payload_flush requires extra writes to the journal.
874          * To avoid handling the extra IO in quiesce, just skip
875          * flush_payload
876          */
877         if (conf->quiesce)
878                 return;
879
880         mutex_lock(&log->io_mutex);
881         meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
882
883         if (r5l_get_meta(log, meta_size)) {
884                 mutex_unlock(&log->io_mutex);
885                 return;
886         }
887
888         /* current implementation is one stripe per flush payload */
889         io = log->current_io;
890         payload = page_address(io->meta_page) + io->meta_offset;
891         payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
892         payload->header.flags = cpu_to_le16(0);
893         payload->size = cpu_to_le32(sizeof(__le64));
894         payload->flush_stripes[0] = cpu_to_le64(sect);
895         io->meta_offset += meta_size;
896         /* multiple flush payloads count as one pending_stripe */
897         if (!io->has_flush_payload) {
898                 io->has_flush_payload = 1;
899                 atomic_inc(&io->pending_stripe);
900         }
901         mutex_unlock(&log->io_mutex);
902 }
903
904 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
905                            int data_pages, int parity_pages)
906 {
907         int i;
908         int meta_size;
909         int ret;
910         struct r5l_io_unit *io;
911
912         meta_size =
913                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
914                  * data_pages) +
915                 sizeof(struct r5l_payload_data_parity) +
916                 sizeof(__le32) * parity_pages;
917
918         ret = r5l_get_meta(log, meta_size);
919         if (ret)
920                 return ret;
921
922         io = log->current_io;
923
924         if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
925                 io->has_flush = 1;
926
927         for (i = 0; i < sh->disks; i++) {
928                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
929                     test_bit(R5_InJournal, &sh->dev[i].flags))
930                         continue;
931                 if (i == sh->pd_idx || i == sh->qd_idx)
932                         continue;
933                 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
934                     log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
935                         io->has_fua = 1;
936                         /*
937                          * we need to flush journal to make sure recovery can
938                          * reach the data with fua flag
939                          */
940                         io->has_flush = 1;
941                 }
942                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
943                                         raid5_compute_blocknr(sh, i, 0),
944                                         sh->dev[i].log_checksum, 0, false);
945                 r5l_append_payload_page(log, sh->dev[i].page);
946         }
947
948         if (parity_pages == 2) {
949                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
950                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
951                                         sh->dev[sh->qd_idx].log_checksum, true);
952                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
953                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
954         } else if (parity_pages == 1) {
955                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
956                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
957                                         0, false);
958                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
959         } else  /* Just writing data, not parity, in caching phase */
960                 BUG_ON(parity_pages != 0);
961
962         list_add_tail(&sh->log_list, &io->stripe_list);
963         atomic_inc(&io->pending_stripe);
964         sh->log_io = io;
965
966         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
967                 return 0;
968
969         if (sh->log_start == MaxSector) {
970                 BUG_ON(!list_empty(&sh->r5c));
971                 sh->log_start = io->log_start;
972                 spin_lock_irq(&log->stripe_in_journal_lock);
973                 list_add_tail(&sh->r5c,
974                               &log->stripe_in_journal_list);
975                 spin_unlock_irq(&log->stripe_in_journal_lock);
976                 atomic_inc(&log->stripe_in_journal_count);
977         }
978         return 0;
979 }
980
981 /* add stripe to no_space_stripes, and then wake up reclaim */
982 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
983                                            struct stripe_head *sh)
984 {
985         spin_lock(&log->no_space_stripes_lock);
986         list_add_tail(&sh->log_list, &log->no_space_stripes);
987         spin_unlock(&log->no_space_stripes_lock);
988 }
989
990 /*
991  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
992  * data from log to raid disks), so we shouldn't wait for reclaim here
993  */
994 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
995 {
996         struct r5conf *conf = sh->raid_conf;
997         int write_disks = 0;
998         int data_pages, parity_pages;
999         int reserve;
1000         int i;
1001         int ret = 0;
1002         bool wake_reclaim = false;
1003
1004         if (!log)
1005                 return -EAGAIN;
1006         /* Don't support stripe batch */
1007         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1008             test_bit(STRIPE_SYNCING, &sh->state)) {
1009                 /* the stripe is written to log, we start writing it to raid */
1010                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1011                 return -EAGAIN;
1012         }
1013
1014         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1015
1016         for (i = 0; i < sh->disks; i++) {
1017                 void *addr;
1018
1019                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1020                     test_bit(R5_InJournal, &sh->dev[i].flags))
1021                         continue;
1022
1023                 write_disks++;
1024                 /* checksum is already calculated in last run */
1025                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1026                         continue;
1027                 addr = kmap_atomic(sh->dev[i].page);
1028                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1029                                                     addr, PAGE_SIZE);
1030                 kunmap_atomic(addr);
1031         }
1032         parity_pages = 1 + !!(sh->qd_idx >= 0);
1033         data_pages = write_disks - parity_pages;
1034
1035         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1036         /*
1037          * The stripe must enter state machine again to finish the write, so
1038          * don't delay.
1039          */
1040         clear_bit(STRIPE_DELAYED, &sh->state);
1041         atomic_inc(&sh->count);
1042
1043         mutex_lock(&log->io_mutex);
1044         /* meta + data */
1045         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1046
1047         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1048                 if (!r5l_has_free_space(log, reserve)) {
1049                         r5l_add_no_space_stripe(log, sh);
1050                         wake_reclaim = true;
1051                 } else {
1052                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1053                         if (ret) {
1054                                 spin_lock_irq(&log->io_list_lock);
1055                                 list_add_tail(&sh->log_list,
1056                                               &log->no_mem_stripes);
1057                                 spin_unlock_irq(&log->io_list_lock);
1058                         }
1059                 }
1060         } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1061                 /*
1062                  * log space critical, do not process stripes that are
1063                  * not in cache yet (sh->log_start == MaxSector).
1064                  */
1065                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1066                     sh->log_start == MaxSector) {
1067                         r5l_add_no_space_stripe(log, sh);
1068                         wake_reclaim = true;
1069                         reserve = 0;
1070                 } else if (!r5l_has_free_space(log, reserve)) {
1071                         if (sh->log_start == log->last_checkpoint)
1072                                 BUG();
1073                         else
1074                                 r5l_add_no_space_stripe(log, sh);
1075                 } else {
1076                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1077                         if (ret) {
1078                                 spin_lock_irq(&log->io_list_lock);
1079                                 list_add_tail(&sh->log_list,
1080                                               &log->no_mem_stripes);
1081                                 spin_unlock_irq(&log->io_list_lock);
1082                         }
1083                 }
1084         }
1085
1086         mutex_unlock(&log->io_mutex);
1087         if (wake_reclaim)
1088                 r5l_wake_reclaim(log, reserve);
1089         return 0;
1090 }
1091
1092 void r5l_write_stripe_run(struct r5l_log *log)
1093 {
1094         if (!log)
1095                 return;
1096         mutex_lock(&log->io_mutex);
1097         r5l_submit_current_io(log);
1098         mutex_unlock(&log->io_mutex);
1099 }
1100
1101 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1102 {
1103         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1104                 /*
1105                  * in write through (journal only)
1106                  * we flush log disk cache first, then write stripe data to
1107                  * raid disks. So if bio is finished, the log disk cache is
1108                  * flushed already. The recovery guarantees we can recovery
1109                  * the bio from log disk, so we don't need to flush again
1110                  */
1111                 if (bio->bi_iter.bi_size == 0) {
1112                         bio_endio(bio);
1113                         return 0;
1114                 }
1115                 bio->bi_opf &= ~REQ_PREFLUSH;
1116         } else {
1117                 /* write back (with cache) */
1118                 if (bio->bi_iter.bi_size == 0) {
1119                         mutex_lock(&log->io_mutex);
1120                         r5l_get_meta(log, 0);
1121                         bio_list_add(&log->current_io->flush_barriers, bio);
1122                         log->current_io->has_flush = 1;
1123                         log->current_io->has_null_flush = 1;
1124                         atomic_inc(&log->current_io->pending_stripe);
1125                         r5l_submit_current_io(log);
1126                         mutex_unlock(&log->io_mutex);
1127                         return 0;
1128                 }
1129         }
1130         return -EAGAIN;
1131 }
1132
1133 /* This will run after log space is reclaimed */
1134 static void r5l_run_no_space_stripes(struct r5l_log *log)
1135 {
1136         struct stripe_head *sh;
1137
1138         spin_lock(&log->no_space_stripes_lock);
1139         while (!list_empty(&log->no_space_stripes)) {
1140                 sh = list_first_entry(&log->no_space_stripes,
1141                                       struct stripe_head, log_list);
1142                 list_del_init(&sh->log_list);
1143                 set_bit(STRIPE_HANDLE, &sh->state);
1144                 raid5_release_stripe(sh);
1145         }
1146         spin_unlock(&log->no_space_stripes_lock);
1147 }
1148
1149 /*
1150  * calculate new last_checkpoint
1151  * for write through mode, returns log->next_checkpoint
1152  * for write back, returns log_start of first sh in stripe_in_journal_list
1153  */
1154 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1155 {
1156         struct stripe_head *sh;
1157         struct r5l_log *log = conf->log;
1158         sector_t new_cp;
1159         unsigned long flags;
1160
1161         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1162                 return log->next_checkpoint;
1163
1164         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1165         if (list_empty(&conf->log->stripe_in_journal_list)) {
1166                 /* all stripes flushed */
1167                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1168                 return log->next_checkpoint;
1169         }
1170         sh = list_first_entry(&conf->log->stripe_in_journal_list,
1171                               struct stripe_head, r5c);
1172         new_cp = sh->log_start;
1173         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1174         return new_cp;
1175 }
1176
1177 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1178 {
1179         struct r5conf *conf = log->rdev->mddev->private;
1180
1181         return r5l_ring_distance(log, log->last_checkpoint,
1182                                  r5c_calculate_new_cp(conf));
1183 }
1184
1185 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1186 {
1187         struct stripe_head *sh;
1188
1189         lockdep_assert_held(&log->io_list_lock);
1190
1191         if (!list_empty(&log->no_mem_stripes)) {
1192                 sh = list_first_entry(&log->no_mem_stripes,
1193                                       struct stripe_head, log_list);
1194                 list_del_init(&sh->log_list);
1195                 set_bit(STRIPE_HANDLE, &sh->state);
1196                 raid5_release_stripe(sh);
1197         }
1198 }
1199
1200 static bool r5l_complete_finished_ios(struct r5l_log *log)
1201 {
1202         struct r5l_io_unit *io, *next;
1203         bool found = false;
1204
1205         lockdep_assert_held(&log->io_list_lock);
1206
1207         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1208                 /* don't change list order */
1209                 if (io->state < IO_UNIT_STRIPE_END)
1210                         break;
1211
1212                 log->next_checkpoint = io->log_start;
1213
1214                 list_del(&io->log_sibling);
1215                 mempool_free(io, &log->io_pool);
1216                 r5l_run_no_mem_stripe(log);
1217
1218                 found = true;
1219         }
1220
1221         return found;
1222 }
1223
1224 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1225 {
1226         struct r5l_log *log = io->log;
1227         struct r5conf *conf = log->rdev->mddev->private;
1228         unsigned long flags;
1229
1230         spin_lock_irqsave(&log->io_list_lock, flags);
1231         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1232
1233         if (!r5l_complete_finished_ios(log)) {
1234                 spin_unlock_irqrestore(&log->io_list_lock, flags);
1235                 return;
1236         }
1237
1238         if (r5l_reclaimable_space(log) > log->max_free_space ||
1239             test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1240                 r5l_wake_reclaim(log, 0);
1241
1242         spin_unlock_irqrestore(&log->io_list_lock, flags);
1243         wake_up(&log->iounit_wait);
1244 }
1245
1246 void r5l_stripe_write_finished(struct stripe_head *sh)
1247 {
1248         struct r5l_io_unit *io;
1249
1250         io = sh->log_io;
1251         sh->log_io = NULL;
1252
1253         if (io && atomic_dec_and_test(&io->pending_stripe))
1254                 __r5l_stripe_write_finished(io);
1255 }
1256
1257 static void r5l_log_flush_endio(struct bio *bio)
1258 {
1259         struct r5l_log *log = container_of(bio, struct r5l_log,
1260                 flush_bio);
1261         unsigned long flags;
1262         struct r5l_io_unit *io;
1263
1264         if (bio->bi_status)
1265                 md_error(log->rdev->mddev, log->rdev);
1266
1267         spin_lock_irqsave(&log->io_list_lock, flags);
1268         list_for_each_entry(io, &log->flushing_ios, log_sibling)
1269                 r5l_io_run_stripes(io);
1270         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1271         spin_unlock_irqrestore(&log->io_list_lock, flags);
1272 }
1273
1274 /*
1275  * Starting dispatch IO to raid.
1276  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1277  * broken meta in the middle of a log causes recovery can't find meta at the
1278  * head of log. If operations require meta at the head persistent in log, we
1279  * must make sure meta before it persistent in log too. A case is:
1280  *
1281  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1282  * data/parity must be persistent in log before we do the write to raid disks.
1283  *
1284  * The solution is we restrictly maintain io_unit list order. In this case, we
1285  * only write stripes of an io_unit to raid disks till the io_unit is the first
1286  * one whose data/parity is in log.
1287  */
1288 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1289 {
1290         bool do_flush;
1291
1292         if (!log || !log->need_cache_flush)
1293                 return;
1294
1295         spin_lock_irq(&log->io_list_lock);
1296         /* flush bio is running */
1297         if (!list_empty(&log->flushing_ios)) {
1298                 spin_unlock_irq(&log->io_list_lock);
1299                 return;
1300         }
1301         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1302         do_flush = !list_empty(&log->flushing_ios);
1303         spin_unlock_irq(&log->io_list_lock);
1304
1305         if (!do_flush)
1306                 return;
1307         bio_reset(&log->flush_bio);
1308         bio_set_dev(&log->flush_bio, log->rdev->bdev);
1309         log->flush_bio.bi_end_io = r5l_log_flush_endio;
1310         log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1311         submit_bio(&log->flush_bio);
1312 }
1313
1314 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1315 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1316         sector_t end)
1317 {
1318         struct block_device *bdev = log->rdev->bdev;
1319         struct mddev *mddev;
1320
1321         r5l_write_super(log, end);
1322
1323         if (!blk_queue_discard(bdev_get_queue(bdev)))
1324                 return;
1325
1326         mddev = log->rdev->mddev;
1327         /*
1328          * Discard could zero data, so before discard we must make sure
1329          * superblock is updated to new log tail. Updating superblock (either
1330          * directly call md_update_sb() or depend on md thread) must hold
1331          * reconfig mutex. On the other hand, raid5_quiesce is called with
1332          * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1333          * for all IO finish, hence waitting for reclaim thread, while reclaim
1334          * thread is calling this function and waitting for reconfig mutex. So
1335          * there is a deadlock. We workaround this issue with a trylock.
1336          * FIXME: we could miss discard if we can't take reconfig mutex
1337          */
1338         set_mask_bits(&mddev->sb_flags, 0,
1339                 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1340         if (!mddev_trylock(mddev))
1341                 return;
1342         md_update_sb(mddev, 1);
1343         mddev_unlock(mddev);
1344
1345         /* discard IO error really doesn't matter, ignore it */
1346         if (log->last_checkpoint < end) {
1347                 blkdev_issue_discard(bdev,
1348                                 log->last_checkpoint + log->rdev->data_offset,
1349                                 end - log->last_checkpoint, GFP_NOIO, 0);
1350         } else {
1351                 blkdev_issue_discard(bdev,
1352                                 log->last_checkpoint + log->rdev->data_offset,
1353                                 log->device_size - log->last_checkpoint,
1354                                 GFP_NOIO, 0);
1355                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1356                                 GFP_NOIO, 0);
1357         }
1358 }
1359
1360 /*
1361  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1362  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1363  *
1364  * must hold conf->device_lock
1365  */
1366 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1367 {
1368         BUG_ON(list_empty(&sh->lru));
1369         BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1370         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1371
1372         /*
1373          * The stripe is not ON_RELEASE_LIST, so it is safe to call
1374          * raid5_release_stripe() while holding conf->device_lock
1375          */
1376         BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1377         lockdep_assert_held(&conf->device_lock);
1378
1379         list_del_init(&sh->lru);
1380         atomic_inc(&sh->count);
1381
1382         set_bit(STRIPE_HANDLE, &sh->state);
1383         atomic_inc(&conf->active_stripes);
1384         r5c_make_stripe_write_out(sh);
1385
1386         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1387                 atomic_inc(&conf->r5c_flushing_partial_stripes);
1388         else
1389                 atomic_inc(&conf->r5c_flushing_full_stripes);
1390         raid5_release_stripe(sh);
1391 }
1392
1393 /*
1394  * if num == 0, flush all full stripes
1395  * if num > 0, flush all full stripes. If less than num full stripes are
1396  *             flushed, flush some partial stripes until totally num stripes are
1397  *             flushed or there is no more cached stripes.
1398  */
1399 void r5c_flush_cache(struct r5conf *conf, int num)
1400 {
1401         int count;
1402         struct stripe_head *sh, *next;
1403
1404         lockdep_assert_held(&conf->device_lock);
1405         if (!conf->log)
1406                 return;
1407
1408         count = 0;
1409         list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1410                 r5c_flush_stripe(conf, sh);
1411                 count++;
1412         }
1413
1414         if (count >= num)
1415                 return;
1416         list_for_each_entry_safe(sh, next,
1417                                  &conf->r5c_partial_stripe_list, lru) {
1418                 r5c_flush_stripe(conf, sh);
1419                 if (++count >= num)
1420                         break;
1421         }
1422 }
1423
1424 static void r5c_do_reclaim(struct r5conf *conf)
1425 {
1426         struct r5l_log *log = conf->log;
1427         struct stripe_head *sh;
1428         int count = 0;
1429         unsigned long flags;
1430         int total_cached;
1431         int stripes_to_flush;
1432         int flushing_partial, flushing_full;
1433
1434         if (!r5c_is_writeback(log))
1435                 return;
1436
1437         flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1438         flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1439         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1440                 atomic_read(&conf->r5c_cached_full_stripes) -
1441                 flushing_full - flushing_partial;
1442
1443         if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1444             atomic_read(&conf->empty_inactive_list_nr) > 0)
1445                 /*
1446                  * if stripe cache pressure high, flush all full stripes and
1447                  * some partial stripes
1448                  */
1449                 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1450         else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1451                  atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1452                  R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1453                 /*
1454                  * if stripe cache pressure moderate, or if there is many full
1455                  * stripes,flush all full stripes
1456                  */
1457                 stripes_to_flush = 0;
1458         else
1459                 /* no need to flush */
1460                 stripes_to_flush = -1;
1461
1462         if (stripes_to_flush >= 0) {
1463                 spin_lock_irqsave(&conf->device_lock, flags);
1464                 r5c_flush_cache(conf, stripes_to_flush);
1465                 spin_unlock_irqrestore(&conf->device_lock, flags);
1466         }
1467
1468         /* if log space is tight, flush stripes on stripe_in_journal_list */
1469         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1470                 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1471                 spin_lock(&conf->device_lock);
1472                 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1473                         /*
1474                          * stripes on stripe_in_journal_list could be in any
1475                          * state of the stripe_cache state machine. In this
1476                          * case, we only want to flush stripe on
1477                          * r5c_cached_full/partial_stripes. The following
1478                          * condition makes sure the stripe is on one of the
1479                          * two lists.
1480                          */
1481                         if (!list_empty(&sh->lru) &&
1482                             !test_bit(STRIPE_HANDLE, &sh->state) &&
1483                             atomic_read(&sh->count) == 0) {
1484                                 r5c_flush_stripe(conf, sh);
1485                                 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1486                                         break;
1487                         }
1488                 }
1489                 spin_unlock(&conf->device_lock);
1490                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1491         }
1492
1493         if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1494                 r5l_run_no_space_stripes(log);
1495
1496         md_wakeup_thread(conf->mddev->thread);
1497 }
1498
1499 static void r5l_do_reclaim(struct r5l_log *log)
1500 {
1501         struct r5conf *conf = log->rdev->mddev->private;
1502         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1503         sector_t reclaimable;
1504         sector_t next_checkpoint;
1505         bool write_super;
1506
1507         spin_lock_irq(&log->io_list_lock);
1508         write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1509                 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1510         /*
1511          * move proper io_unit to reclaim list. We should not change the order.
1512          * reclaimable/unreclaimable io_unit can be mixed in the list, we
1513          * shouldn't reuse space of an unreclaimable io_unit
1514          */
1515         while (1) {
1516                 reclaimable = r5l_reclaimable_space(log);
1517                 if (reclaimable >= reclaim_target ||
1518                     (list_empty(&log->running_ios) &&
1519                      list_empty(&log->io_end_ios) &&
1520                      list_empty(&log->flushing_ios) &&
1521                      list_empty(&log->finished_ios)))
1522                         break;
1523
1524                 md_wakeup_thread(log->rdev->mddev->thread);
1525                 wait_event_lock_irq(log->iounit_wait,
1526                                     r5l_reclaimable_space(log) > reclaimable,
1527                                     log->io_list_lock);
1528         }
1529
1530         next_checkpoint = r5c_calculate_new_cp(conf);
1531         spin_unlock_irq(&log->io_list_lock);
1532
1533         if (reclaimable == 0 || !write_super)
1534                 return;
1535
1536         /*
1537          * write_super will flush cache of each raid disk. We must write super
1538          * here, because the log area might be reused soon and we don't want to
1539          * confuse recovery
1540          */
1541         r5l_write_super_and_discard_space(log, next_checkpoint);
1542
1543         mutex_lock(&log->io_mutex);
1544         log->last_checkpoint = next_checkpoint;
1545         r5c_update_log_state(log);
1546         mutex_unlock(&log->io_mutex);
1547
1548         r5l_run_no_space_stripes(log);
1549 }
1550
1551 static void r5l_reclaim_thread(struct md_thread *thread)
1552 {
1553         struct mddev *mddev = thread->mddev;
1554         struct r5conf *conf = mddev->private;
1555         struct r5l_log *log = conf->log;
1556
1557         if (!log)
1558                 return;
1559         r5c_do_reclaim(conf);
1560         r5l_do_reclaim(log);
1561 }
1562
1563 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1564 {
1565         unsigned long target;
1566         unsigned long new = (unsigned long)space; /* overflow in theory */
1567
1568         if (!log)
1569                 return;
1570         do {
1571                 target = log->reclaim_target;
1572                 if (new < target)
1573                         return;
1574         } while (cmpxchg(&log->reclaim_target, target, new) != target);
1575         md_wakeup_thread(log->reclaim_thread);
1576 }
1577
1578 void r5l_quiesce(struct r5l_log *log, int quiesce)
1579 {
1580         struct mddev *mddev;
1581
1582         if (quiesce) {
1583                 /* make sure r5l_write_super_and_discard_space exits */
1584                 mddev = log->rdev->mddev;
1585                 wake_up(&mddev->sb_wait);
1586                 kthread_park(log->reclaim_thread->tsk);
1587                 r5l_wake_reclaim(log, MaxSector);
1588                 r5l_do_reclaim(log);
1589         } else
1590                 kthread_unpark(log->reclaim_thread->tsk);
1591 }
1592
1593 bool r5l_log_disk_error(struct r5conf *conf)
1594 {
1595         struct r5l_log *log;
1596         bool ret;
1597         /* don't allow write if journal disk is missing */
1598         rcu_read_lock();
1599         log = rcu_dereference(conf->log);
1600
1601         if (!log)
1602                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1603         else
1604                 ret = test_bit(Faulty, &log->rdev->flags);
1605         rcu_read_unlock();
1606         return ret;
1607 }
1608
1609 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1610
1611 struct r5l_recovery_ctx {
1612         struct page *meta_page;         /* current meta */
1613         sector_t meta_total_blocks;     /* total size of current meta and data */
1614         sector_t pos;                   /* recovery position */
1615         u64 seq;                        /* recovery position seq */
1616         int data_parity_stripes;        /* number of data_parity stripes */
1617         int data_only_stripes;          /* number of data_only stripes */
1618         struct list_head cached_list;
1619
1620         /*
1621          * read ahead page pool (ra_pool)
1622          * in recovery, log is read sequentially. It is not efficient to
1623          * read every page with sync_page_io(). The read ahead page pool
1624          * reads multiple pages with one IO, so further log read can
1625          * just copy data from the pool.
1626          */
1627         struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1628         sector_t pool_offset;   /* offset of first page in the pool */
1629         int total_pages;        /* total allocated pages */
1630         int valid_pages;        /* pages with valid data */
1631         struct bio *ra_bio;     /* bio to do the read ahead */
1632 };
1633
1634 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1635                                             struct r5l_recovery_ctx *ctx)
1636 {
1637         struct page *page;
1638
1639         ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs);
1640         if (!ctx->ra_bio)
1641                 return -ENOMEM;
1642
1643         ctx->valid_pages = 0;
1644         ctx->total_pages = 0;
1645         while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1646                 page = alloc_page(GFP_KERNEL);
1647
1648                 if (!page)
1649                         break;
1650                 ctx->ra_pool[ctx->total_pages] = page;
1651                 ctx->total_pages += 1;
1652         }
1653
1654         if (ctx->total_pages == 0) {
1655                 bio_put(ctx->ra_bio);
1656                 return -ENOMEM;
1657         }
1658
1659         ctx->pool_offset = 0;
1660         return 0;
1661 }
1662
1663 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1664                                         struct r5l_recovery_ctx *ctx)
1665 {
1666         int i;
1667
1668         for (i = 0; i < ctx->total_pages; ++i)
1669                 put_page(ctx->ra_pool[i]);
1670         bio_put(ctx->ra_bio);
1671 }
1672
1673 /*
1674  * fetch ctx->valid_pages pages from offset
1675  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1676  * However, if the offset is close to the end of the journal device,
1677  * ctx->valid_pages could be smaller than ctx->total_pages
1678  */
1679 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1680                                       struct r5l_recovery_ctx *ctx,
1681                                       sector_t offset)
1682 {
1683         bio_reset(ctx->ra_bio);
1684         bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1685         bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1686         ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1687
1688         ctx->valid_pages = 0;
1689         ctx->pool_offset = offset;
1690
1691         while (ctx->valid_pages < ctx->total_pages) {
1692                 bio_add_page(ctx->ra_bio,
1693                              ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1694                 ctx->valid_pages += 1;
1695
1696                 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1697
1698                 if (offset == 0)  /* reached end of the device */
1699                         break;
1700         }
1701
1702         return submit_bio_wait(ctx->ra_bio);
1703 }
1704
1705 /*
1706  * try read a page from the read ahead page pool, if the page is not in the
1707  * pool, call r5l_recovery_fetch_ra_pool
1708  */
1709 static int r5l_recovery_read_page(struct r5l_log *log,
1710                                   struct r5l_recovery_ctx *ctx,
1711                                   struct page *page,
1712                                   sector_t offset)
1713 {
1714         int ret;
1715
1716         if (offset < ctx->pool_offset ||
1717             offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1718                 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1719                 if (ret)
1720                         return ret;
1721         }
1722
1723         BUG_ON(offset < ctx->pool_offset ||
1724                offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1725
1726         memcpy(page_address(page),
1727                page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1728                                          BLOCK_SECTOR_SHIFT]),
1729                PAGE_SIZE);
1730         return 0;
1731 }
1732
1733 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1734                                         struct r5l_recovery_ctx *ctx)
1735 {
1736         struct page *page = ctx->meta_page;
1737         struct r5l_meta_block *mb;
1738         u32 crc, stored_crc;
1739         int ret;
1740
1741         ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1742         if (ret != 0)
1743                 return ret;
1744
1745         mb = page_address(page);
1746         stored_crc = le32_to_cpu(mb->checksum);
1747         mb->checksum = 0;
1748
1749         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1750             le64_to_cpu(mb->seq) != ctx->seq ||
1751             mb->version != R5LOG_VERSION ||
1752             le64_to_cpu(mb->position) != ctx->pos)
1753                 return -EINVAL;
1754
1755         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1756         if (stored_crc != crc)
1757                 return -EINVAL;
1758
1759         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1760                 return -EINVAL;
1761
1762         ctx->meta_total_blocks = BLOCK_SECTORS;
1763
1764         return 0;
1765 }
1766
1767 static void
1768 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1769                                      struct page *page,
1770                                      sector_t pos, u64 seq)
1771 {
1772         struct r5l_meta_block *mb;
1773
1774         mb = page_address(page);
1775         clear_page(mb);
1776         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1777         mb->version = R5LOG_VERSION;
1778         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1779         mb->seq = cpu_to_le64(seq);
1780         mb->position = cpu_to_le64(pos);
1781 }
1782
1783 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1784                                           u64 seq)
1785 {
1786         struct page *page;
1787         struct r5l_meta_block *mb;
1788
1789         page = alloc_page(GFP_KERNEL);
1790         if (!page)
1791                 return -ENOMEM;
1792         r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1793         mb = page_address(page);
1794         mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1795                                              mb, PAGE_SIZE));
1796         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1797                           REQ_SYNC | REQ_FUA, false)) {
1798                 __free_page(page);
1799                 return -EIO;
1800         }
1801         __free_page(page);
1802         return 0;
1803 }
1804
1805 /*
1806  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1807  * to mark valid (potentially not flushed) data in the journal.
1808  *
1809  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1810  * so there should not be any mismatch here.
1811  */
1812 static void r5l_recovery_load_data(struct r5l_log *log,
1813                                    struct stripe_head *sh,
1814                                    struct r5l_recovery_ctx *ctx,
1815                                    struct r5l_payload_data_parity *payload,
1816                                    sector_t log_offset)
1817 {
1818         struct mddev *mddev = log->rdev->mddev;
1819         struct r5conf *conf = mddev->private;
1820         int dd_idx;
1821
1822         raid5_compute_sector(conf,
1823                              le64_to_cpu(payload->location), 0,
1824                              &dd_idx, sh);
1825         r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1826         sh->dev[dd_idx].log_checksum =
1827                 le32_to_cpu(payload->checksum[0]);
1828         ctx->meta_total_blocks += BLOCK_SECTORS;
1829
1830         set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1831         set_bit(STRIPE_R5C_CACHING, &sh->state);
1832 }
1833
1834 static void r5l_recovery_load_parity(struct r5l_log *log,
1835                                      struct stripe_head *sh,
1836                                      struct r5l_recovery_ctx *ctx,
1837                                      struct r5l_payload_data_parity *payload,
1838                                      sector_t log_offset)
1839 {
1840         struct mddev *mddev = log->rdev->mddev;
1841         struct r5conf *conf = mddev->private;
1842
1843         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1844         r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1845         sh->dev[sh->pd_idx].log_checksum =
1846                 le32_to_cpu(payload->checksum[0]);
1847         set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1848
1849         if (sh->qd_idx >= 0) {
1850                 r5l_recovery_read_page(
1851                         log, ctx, sh->dev[sh->qd_idx].page,
1852                         r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1853                 sh->dev[sh->qd_idx].log_checksum =
1854                         le32_to_cpu(payload->checksum[1]);
1855                 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1856         }
1857         clear_bit(STRIPE_R5C_CACHING, &sh->state);
1858 }
1859
1860 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1861 {
1862         int i;
1863
1864         sh->state = 0;
1865         sh->log_start = MaxSector;
1866         for (i = sh->disks; i--; )
1867                 sh->dev[i].flags = 0;
1868 }
1869
1870 static void
1871 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1872                                struct stripe_head *sh,
1873                                struct r5l_recovery_ctx *ctx)
1874 {
1875         struct md_rdev *rdev, *rrdev;
1876         int disk_index;
1877         int data_count = 0;
1878
1879         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1880                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1881                         continue;
1882                 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1883                         continue;
1884                 data_count++;
1885         }
1886
1887         /*
1888          * stripes that only have parity must have been flushed
1889          * before the crash that we are now recovering from, so
1890          * there is nothing more to recovery.
1891          */
1892         if (data_count == 0)
1893                 goto out;
1894
1895         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1896                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1897                         continue;
1898
1899                 /* in case device is broken */
1900                 rcu_read_lock();
1901                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1902                 if (rdev) {
1903                         atomic_inc(&rdev->nr_pending);
1904                         rcu_read_unlock();
1905                         sync_page_io(rdev, sh->sector, PAGE_SIZE,
1906                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1907                                      false);
1908                         rdev_dec_pending(rdev, rdev->mddev);
1909                         rcu_read_lock();
1910                 }
1911                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1912                 if (rrdev) {
1913                         atomic_inc(&rrdev->nr_pending);
1914                         rcu_read_unlock();
1915                         sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1916                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1917                                      false);
1918                         rdev_dec_pending(rrdev, rrdev->mddev);
1919                         rcu_read_lock();
1920                 }
1921                 rcu_read_unlock();
1922         }
1923         ctx->data_parity_stripes++;
1924 out:
1925         r5l_recovery_reset_stripe(sh);
1926 }
1927
1928 static struct stripe_head *
1929 r5c_recovery_alloc_stripe(
1930                 struct r5conf *conf,
1931                 sector_t stripe_sect,
1932                 int noblock)
1933 {
1934         struct stripe_head *sh;
1935
1936         sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
1937         if (!sh)
1938                 return NULL;  /* no more stripe available */
1939
1940         r5l_recovery_reset_stripe(sh);
1941
1942         return sh;
1943 }
1944
1945 static struct stripe_head *
1946 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1947 {
1948         struct stripe_head *sh;
1949
1950         list_for_each_entry(sh, list, lru)
1951                 if (sh->sector == sect)
1952                         return sh;
1953         return NULL;
1954 }
1955
1956 static void
1957 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1958                           struct r5l_recovery_ctx *ctx)
1959 {
1960         struct stripe_head *sh, *next;
1961
1962         list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1963                 r5l_recovery_reset_stripe(sh);
1964                 list_del_init(&sh->lru);
1965                 raid5_release_stripe(sh);
1966         }
1967 }
1968
1969 static void
1970 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1971                             struct r5l_recovery_ctx *ctx)
1972 {
1973         struct stripe_head *sh, *next;
1974
1975         list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1976                 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1977                         r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1978                         list_del_init(&sh->lru);
1979                         raid5_release_stripe(sh);
1980                 }
1981 }
1982
1983 /* if matches return 0; otherwise return -EINVAL */
1984 static int
1985 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1986                                   struct r5l_recovery_ctx *ctx,
1987                                   struct page *page,
1988                                   sector_t log_offset, __le32 log_checksum)
1989 {
1990         void *addr;
1991         u32 checksum;
1992
1993         r5l_recovery_read_page(log, ctx, page, log_offset);
1994         addr = kmap_atomic(page);
1995         checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1996         kunmap_atomic(addr);
1997         return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1998 }
1999
2000 /*
2001  * before loading data to stripe cache, we need verify checksum for all data,
2002  * if there is mismatch for any data page, we drop all data in the mata block
2003  */
2004 static int
2005 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2006                                          struct r5l_recovery_ctx *ctx)
2007 {
2008         struct mddev *mddev = log->rdev->mddev;
2009         struct r5conf *conf = mddev->private;
2010         struct r5l_meta_block *mb = page_address(ctx->meta_page);
2011         sector_t mb_offset = sizeof(struct r5l_meta_block);
2012         sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2013         struct page *page;
2014         struct r5l_payload_data_parity *payload;
2015         struct r5l_payload_flush *payload_flush;
2016
2017         page = alloc_page(GFP_KERNEL);
2018         if (!page)
2019                 return -ENOMEM;
2020
2021         while (mb_offset < le32_to_cpu(mb->meta_size)) {
2022                 payload = (void *)mb + mb_offset;
2023                 payload_flush = (void *)mb + mb_offset;
2024
2025                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2026                         if (r5l_recovery_verify_data_checksum(
2027                                     log, ctx, page, log_offset,
2028                                     payload->checksum[0]) < 0)
2029                                 goto mismatch;
2030                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2031                         if (r5l_recovery_verify_data_checksum(
2032                                     log, ctx, page, log_offset,
2033                                     payload->checksum[0]) < 0)
2034                                 goto mismatch;
2035                         if (conf->max_degraded == 2 && /* q for RAID 6 */
2036                             r5l_recovery_verify_data_checksum(
2037                                     log, ctx, page,
2038                                     r5l_ring_add(log, log_offset,
2039                                                  BLOCK_SECTORS),
2040                                     payload->checksum[1]) < 0)
2041                                 goto mismatch;
2042                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2043                         /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2044                 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2045                         goto mismatch;
2046
2047                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2048                         mb_offset += sizeof(struct r5l_payload_flush) +
2049                                 le32_to_cpu(payload_flush->size);
2050                 } else {
2051                         /* DATA or PARITY payload */
2052                         log_offset = r5l_ring_add(log, log_offset,
2053                                                   le32_to_cpu(payload->size));
2054                         mb_offset += sizeof(struct r5l_payload_data_parity) +
2055                                 sizeof(__le32) *
2056                                 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2057                 }
2058
2059         }
2060
2061         put_page(page);
2062         return 0;
2063
2064 mismatch:
2065         put_page(page);
2066         return -EINVAL;
2067 }
2068
2069 /*
2070  * Analyze all data/parity pages in one meta block
2071  * Returns:
2072  * 0 for success
2073  * -EINVAL for unknown playload type
2074  * -EAGAIN for checksum mismatch of data page
2075  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2076  */
2077 static int
2078 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2079                                 struct r5l_recovery_ctx *ctx,
2080                                 struct list_head *cached_stripe_list)
2081 {
2082         struct mddev *mddev = log->rdev->mddev;
2083         struct r5conf *conf = mddev->private;
2084         struct r5l_meta_block *mb;
2085         struct r5l_payload_data_parity *payload;
2086         struct r5l_payload_flush *payload_flush;
2087         int mb_offset;
2088         sector_t log_offset;
2089         sector_t stripe_sect;
2090         struct stripe_head *sh;
2091         int ret;
2092
2093         /*
2094          * for mismatch in data blocks, we will drop all data in this mb, but
2095          * we will still read next mb for other data with FLUSH flag, as
2096          * io_unit could finish out of order.
2097          */
2098         ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2099         if (ret == -EINVAL)
2100                 return -EAGAIN;
2101         else if (ret)
2102                 return ret;   /* -ENOMEM duo to alloc_page() failed */
2103
2104         mb = page_address(ctx->meta_page);
2105         mb_offset = sizeof(struct r5l_meta_block);
2106         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2107
2108         while (mb_offset < le32_to_cpu(mb->meta_size)) {
2109                 int dd;
2110
2111                 payload = (void *)mb + mb_offset;
2112                 payload_flush = (void *)mb + mb_offset;
2113
2114                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2115                         int i, count;
2116
2117                         count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2118                         for (i = 0; i < count; ++i) {
2119                                 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2120                                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2121                                                                 stripe_sect);
2122                                 if (sh) {
2123                                         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2124                                         r5l_recovery_reset_stripe(sh);
2125                                         list_del_init(&sh->lru);
2126                                         raid5_release_stripe(sh);
2127                                 }
2128                         }
2129
2130                         mb_offset += sizeof(struct r5l_payload_flush) +
2131                                 le32_to_cpu(payload_flush->size);
2132                         continue;
2133                 }
2134
2135                 /* DATA or PARITY payload */
2136                 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2137                         raid5_compute_sector(
2138                                 conf, le64_to_cpu(payload->location), 0, &dd,
2139                                 NULL)
2140                         : le64_to_cpu(payload->location);
2141
2142                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2143                                                 stripe_sect);
2144
2145                 if (!sh) {
2146                         sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2147                         /*
2148                          * cannot get stripe from raid5_get_active_stripe
2149                          * try replay some stripes
2150                          */
2151                         if (!sh) {
2152                                 r5c_recovery_replay_stripes(
2153                                         cached_stripe_list, ctx);
2154                                 sh = r5c_recovery_alloc_stripe(
2155                                         conf, stripe_sect, 1);
2156                         }
2157                         if (!sh) {
2158                                 int new_size = conf->min_nr_stripes * 2;
2159                                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2160                                         mdname(mddev),
2161                                         new_size);
2162                                 ret = raid5_set_cache_size(mddev, new_size);
2163                                 if (conf->min_nr_stripes <= new_size / 2) {
2164                                         pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2165                                                 mdname(mddev),
2166                                                 ret,
2167                                                 new_size,
2168                                                 conf->min_nr_stripes,
2169                                                 conf->max_nr_stripes);
2170                                         return -ENOMEM;
2171                                 }
2172                                 sh = r5c_recovery_alloc_stripe(
2173                                         conf, stripe_sect, 0);
2174                         }
2175                         if (!sh) {
2176                                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2177                                         mdname(mddev));
2178                                 return -ENOMEM;
2179                         }
2180                         list_add_tail(&sh->lru, cached_stripe_list);
2181                 }
2182
2183                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2184                         if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2185                             test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2186                                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2187                                 list_move_tail(&sh->lru, cached_stripe_list);
2188                         }
2189                         r5l_recovery_load_data(log, sh, ctx, payload,
2190                                                log_offset);
2191                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2192                         r5l_recovery_load_parity(log, sh, ctx, payload,
2193                                                  log_offset);
2194                 else
2195                         return -EINVAL;
2196
2197                 log_offset = r5l_ring_add(log, log_offset,
2198                                           le32_to_cpu(payload->size));
2199
2200                 mb_offset += sizeof(struct r5l_payload_data_parity) +
2201                         sizeof(__le32) *
2202                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2203         }
2204
2205         return 0;
2206 }
2207
2208 /*
2209  * Load the stripe into cache. The stripe will be written out later by
2210  * the stripe cache state machine.
2211  */
2212 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2213                                          struct stripe_head *sh)
2214 {
2215         struct r5dev *dev;
2216         int i;
2217
2218         for (i = sh->disks; i--; ) {
2219                 dev = sh->dev + i;
2220                 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2221                         set_bit(R5_InJournal, &dev->flags);
2222                         set_bit(R5_UPTODATE, &dev->flags);
2223                 }
2224         }
2225 }
2226
2227 /*
2228  * Scan through the log for all to-be-flushed data
2229  *
2230  * For stripes with data and parity, namely Data-Parity stripe
2231  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2232  *
2233  * For stripes with only data, namely Data-Only stripe
2234  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2235  *
2236  * For a stripe, if we see data after parity, we should discard all previous
2237  * data and parity for this stripe, as these data are already flushed to
2238  * the array.
2239  *
2240  * At the end of the scan, we return the new journal_tail, which points to
2241  * first data-only stripe on the journal device, or next invalid meta block.
2242  */
2243 static int r5c_recovery_flush_log(struct r5l_log *log,
2244                                   struct r5l_recovery_ctx *ctx)
2245 {
2246         struct stripe_head *sh;
2247         int ret = 0;
2248
2249         /* scan through the log */
2250         while (1) {
2251                 if (r5l_recovery_read_meta_block(log, ctx))
2252                         break;
2253
2254                 ret = r5c_recovery_analyze_meta_block(log, ctx,
2255                                                       &ctx->cached_list);
2256                 /*
2257                  * -EAGAIN means mismatch in data block, in this case, we still
2258                  * try scan the next metablock
2259                  */
2260                 if (ret && ret != -EAGAIN)
2261                         break;   /* ret == -EINVAL or -ENOMEM */
2262                 ctx->seq++;
2263                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2264         }
2265
2266         if (ret == -ENOMEM) {
2267                 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2268                 return ret;
2269         }
2270
2271         /* replay data-parity stripes */
2272         r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2273
2274         /* load data-only stripes to stripe cache */
2275         list_for_each_entry(sh, &ctx->cached_list, lru) {
2276                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2277                 r5c_recovery_load_one_stripe(log, sh);
2278                 ctx->data_only_stripes++;
2279         }
2280
2281         return 0;
2282 }
2283
2284 /*
2285  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2286  * log will start here. but we can't let superblock point to last valid
2287  * meta block. The log might looks like:
2288  * | meta 1| meta 2| meta 3|
2289  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2290  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2291  * happens again, new recovery will start from meta 1. Since meta 2n is
2292  * valid now, recovery will think meta 3 is valid, which is wrong.
2293  * The solution is we create a new meta in meta2 with its seq == meta
2294  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2295  * will not think meta 3 is a valid meta, because its seq doesn't match
2296  */
2297
2298 /*
2299  * Before recovery, the log looks like the following
2300  *
2301  *   ---------------------------------------------
2302  *   |           valid log        | invalid log  |
2303  *   ---------------------------------------------
2304  *   ^
2305  *   |- log->last_checkpoint
2306  *   |- log->last_cp_seq
2307  *
2308  * Now we scan through the log until we see invalid entry
2309  *
2310  *   ---------------------------------------------
2311  *   |           valid log        | invalid log  |
2312  *   ---------------------------------------------
2313  *   ^                            ^
2314  *   |- log->last_checkpoint      |- ctx->pos
2315  *   |- log->last_cp_seq          |- ctx->seq
2316  *
2317  * From this point, we need to increase seq number by 10 to avoid
2318  * confusing next recovery.
2319  *
2320  *   ---------------------------------------------
2321  *   |           valid log        | invalid log  |
2322  *   ---------------------------------------------
2323  *   ^                              ^
2324  *   |- log->last_checkpoint        |- ctx->pos+1
2325  *   |- log->last_cp_seq            |- ctx->seq+10001
2326  *
2327  * However, it is not safe to start the state machine yet, because data only
2328  * parities are not yet secured in RAID. To save these data only parities, we
2329  * rewrite them from seq+11.
2330  *
2331  *   -----------------------------------------------------------------
2332  *   |           valid log        | data only stripes | invalid log  |
2333  *   -----------------------------------------------------------------
2334  *   ^                                                ^
2335  *   |- log->last_checkpoint                          |- ctx->pos+n
2336  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2337  *
2338  * If failure happens again during this process, the recovery can safe start
2339  * again from log->last_checkpoint.
2340  *
2341  * Once data only stripes are rewritten to journal, we move log_tail
2342  *
2343  *   -----------------------------------------------------------------
2344  *   |     old log        |    data only stripes    | invalid log  |
2345  *   -----------------------------------------------------------------
2346  *                        ^                         ^
2347  *                        |- log->last_checkpoint   |- ctx->pos+n
2348  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2349  *
2350  * Then we can safely start the state machine. If failure happens from this
2351  * point on, the recovery will start from new log->last_checkpoint.
2352  */
2353 static int
2354 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2355                                        struct r5l_recovery_ctx *ctx)
2356 {
2357         struct stripe_head *sh;
2358         struct mddev *mddev = log->rdev->mddev;
2359         struct page *page;
2360         sector_t next_checkpoint = MaxSector;
2361
2362         page = alloc_page(GFP_KERNEL);
2363         if (!page) {
2364                 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2365                        mdname(mddev));
2366                 return -ENOMEM;
2367         }
2368
2369         WARN_ON(list_empty(&ctx->cached_list));
2370
2371         list_for_each_entry(sh, &ctx->cached_list, lru) {
2372                 struct r5l_meta_block *mb;
2373                 int i;
2374                 int offset;
2375                 sector_t write_pos;
2376
2377                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2378                 r5l_recovery_create_empty_meta_block(log, page,
2379                                                      ctx->pos, ctx->seq);
2380                 mb = page_address(page);
2381                 offset = le32_to_cpu(mb->meta_size);
2382                 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2383
2384                 for (i = sh->disks; i--; ) {
2385                         struct r5dev *dev = &sh->dev[i];
2386                         struct r5l_payload_data_parity *payload;
2387                         void *addr;
2388
2389                         if (test_bit(R5_InJournal, &dev->flags)) {
2390                                 payload = (void *)mb + offset;
2391                                 payload->header.type = cpu_to_le16(
2392                                         R5LOG_PAYLOAD_DATA);
2393                                 payload->size = cpu_to_le32(BLOCK_SECTORS);
2394                                 payload->location = cpu_to_le64(
2395                                         raid5_compute_blocknr(sh, i, 0));
2396                                 addr = kmap_atomic(dev->page);
2397                                 payload->checksum[0] = cpu_to_le32(
2398                                         crc32c_le(log->uuid_checksum, addr,
2399                                                   PAGE_SIZE));
2400                                 kunmap_atomic(addr);
2401                                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2402                                              dev->page, REQ_OP_WRITE, 0, false);
2403                                 write_pos = r5l_ring_add(log, write_pos,
2404                                                          BLOCK_SECTORS);
2405                                 offset += sizeof(__le32) +
2406                                         sizeof(struct r5l_payload_data_parity);
2407
2408                         }
2409                 }
2410                 mb->meta_size = cpu_to_le32(offset);
2411                 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2412                                                      mb, PAGE_SIZE));
2413                 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2414                              REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2415                 sh->log_start = ctx->pos;
2416                 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2417                 atomic_inc(&log->stripe_in_journal_count);
2418                 ctx->pos = write_pos;
2419                 ctx->seq += 1;
2420                 next_checkpoint = sh->log_start;
2421         }
2422         log->next_checkpoint = next_checkpoint;
2423         __free_page(page);
2424         return 0;
2425 }
2426
2427 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2428                                                  struct r5l_recovery_ctx *ctx)
2429 {
2430         struct mddev *mddev = log->rdev->mddev;
2431         struct r5conf *conf = mddev->private;
2432         struct stripe_head *sh, *next;
2433         bool cleared_pending = false;
2434
2435         if (ctx->data_only_stripes == 0)
2436                 return;
2437
2438         if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2439                 cleared_pending = true;
2440                 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2441         }
2442         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2443
2444         list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2445                 r5c_make_stripe_write_out(sh);
2446                 set_bit(STRIPE_HANDLE, &sh->state);
2447                 list_del_init(&sh->lru);
2448                 raid5_release_stripe(sh);
2449         }
2450
2451         /* reuse conf->wait_for_quiescent in recovery */
2452         wait_event(conf->wait_for_quiescent,
2453                    atomic_read(&conf->active_stripes) == 0);
2454
2455         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2456         if (cleared_pending)
2457                 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2458 }
2459
2460 static int r5l_recovery_log(struct r5l_log *log)
2461 {
2462         struct mddev *mddev = log->rdev->mddev;
2463         struct r5l_recovery_ctx *ctx;
2464         int ret;
2465         sector_t pos;
2466
2467         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2468         if (!ctx)
2469                 return -ENOMEM;
2470
2471         ctx->pos = log->last_checkpoint;
2472         ctx->seq = log->last_cp_seq;
2473         INIT_LIST_HEAD(&ctx->cached_list);
2474         ctx->meta_page = alloc_page(GFP_KERNEL);
2475
2476         if (!ctx->meta_page) {
2477                 ret =  -ENOMEM;
2478                 goto meta_page;
2479         }
2480
2481         if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2482                 ret = -ENOMEM;
2483                 goto ra_pool;
2484         }
2485
2486         ret = r5c_recovery_flush_log(log, ctx);
2487
2488         if (ret)
2489                 goto error;
2490
2491         pos = ctx->pos;
2492         ctx->seq += 10000;
2493
2494         if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2495                 pr_info("md/raid:%s: starting from clean shutdown\n",
2496                          mdname(mddev));
2497         else
2498                 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2499                          mdname(mddev), ctx->data_only_stripes,
2500                          ctx->data_parity_stripes);
2501
2502         if (ctx->data_only_stripes == 0) {
2503                 log->next_checkpoint = ctx->pos;
2504                 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2505                 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2506         } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2507                 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2508                        mdname(mddev));
2509                 ret =  -EIO;
2510                 goto error;
2511         }
2512
2513         log->log_start = ctx->pos;
2514         log->seq = ctx->seq;
2515         log->last_checkpoint = pos;
2516         r5l_write_super(log, pos);
2517
2518         r5c_recovery_flush_data_only_stripes(log, ctx);
2519         ret = 0;
2520 error:
2521         r5l_recovery_free_ra_pool(log, ctx);
2522 ra_pool:
2523         __free_page(ctx->meta_page);
2524 meta_page:
2525         kfree(ctx);
2526         return ret;
2527 }
2528
2529 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2530 {
2531         struct mddev *mddev = log->rdev->mddev;
2532
2533         log->rdev->journal_tail = cp;
2534         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2535 }
2536
2537 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2538 {
2539         struct r5conf *conf;
2540         int ret;
2541
2542         ret = mddev_lock(mddev);
2543         if (ret)
2544                 return ret;
2545
2546         conf = mddev->private;
2547         if (!conf || !conf->log) {
2548                 mddev_unlock(mddev);
2549                 return 0;
2550         }
2551
2552         switch (conf->log->r5c_journal_mode) {
2553         case R5C_JOURNAL_MODE_WRITE_THROUGH:
2554                 ret = snprintf(
2555                         page, PAGE_SIZE, "[%s] %s\n",
2556                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2557                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2558                 break;
2559         case R5C_JOURNAL_MODE_WRITE_BACK:
2560                 ret = snprintf(
2561                         page, PAGE_SIZE, "%s [%s]\n",
2562                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2563                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2564                 break;
2565         default:
2566                 ret = 0;
2567         }
2568         mddev_unlock(mddev);
2569         return ret;
2570 }
2571
2572 /*
2573  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2574  *
2575  * @mode as defined in 'enum r5c_journal_mode'.
2576  *
2577  */
2578 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2579 {
2580         struct r5conf *conf;
2581
2582         if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2583             mode > R5C_JOURNAL_MODE_WRITE_BACK)
2584                 return -EINVAL;
2585
2586         conf = mddev->private;
2587         if (!conf || !conf->log)
2588                 return -ENODEV;
2589
2590         if (raid5_calc_degraded(conf) > 0 &&
2591             mode == R5C_JOURNAL_MODE_WRITE_BACK)
2592                 return -EINVAL;
2593
2594         mddev_suspend(mddev);
2595         conf->log->r5c_journal_mode = mode;
2596         mddev_resume(mddev);
2597
2598         pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2599                  mdname(mddev), mode, r5c_journal_mode_str[mode]);
2600         return 0;
2601 }
2602 EXPORT_SYMBOL(r5c_journal_mode_set);
2603
2604 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2605                                       const char *page, size_t length)
2606 {
2607         int mode = ARRAY_SIZE(r5c_journal_mode_str);
2608         size_t len = length;
2609         int ret;
2610
2611         if (len < 2)
2612                 return -EINVAL;
2613
2614         if (page[len - 1] == '\n')
2615                 len--;
2616
2617         while (mode--)
2618                 if (strlen(r5c_journal_mode_str[mode]) == len &&
2619                     !strncmp(page, r5c_journal_mode_str[mode], len))
2620                         break;
2621         ret = mddev_lock(mddev);
2622         if (ret)
2623                 return ret;
2624         ret = r5c_journal_mode_set(mddev, mode);
2625         mddev_unlock(mddev);
2626         return ret ?: length;
2627 }
2628
2629 struct md_sysfs_entry
2630 r5c_journal_mode = __ATTR(journal_mode, 0644,
2631                           r5c_journal_mode_show, r5c_journal_mode_store);
2632
2633 /*
2634  * Try handle write operation in caching phase. This function should only
2635  * be called in write-back mode.
2636  *
2637  * If all outstanding writes can be handled in caching phase, returns 0
2638  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2639  * and returns -EAGAIN
2640  */
2641 int r5c_try_caching_write(struct r5conf *conf,
2642                           struct stripe_head *sh,
2643                           struct stripe_head_state *s,
2644                           int disks)
2645 {
2646         struct r5l_log *log = conf->log;
2647         int i;
2648         struct r5dev *dev;
2649         int to_cache = 0;
2650         void **pslot;
2651         sector_t tree_index;
2652         int ret;
2653         uintptr_t refcount;
2654
2655         BUG_ON(!r5c_is_writeback(log));
2656
2657         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2658                 /*
2659                  * There are two different scenarios here:
2660                  *  1. The stripe has some data cached, and it is sent to
2661                  *     write-out phase for reclaim
2662                  *  2. The stripe is clean, and this is the first write
2663                  *
2664                  * For 1, return -EAGAIN, so we continue with
2665                  * handle_stripe_dirtying().
2666                  *
2667                  * For 2, set STRIPE_R5C_CACHING and continue with caching
2668                  * write.
2669                  */
2670
2671                 /* case 1: anything injournal or anything in written */
2672                 if (s->injournal > 0 || s->written > 0)
2673                         return -EAGAIN;
2674                 /* case 2 */
2675                 set_bit(STRIPE_R5C_CACHING, &sh->state);
2676         }
2677
2678         /*
2679          * When run in degraded mode, array is set to write-through mode.
2680          * This check helps drain pending write safely in the transition to
2681          * write-through mode.
2682          *
2683          * When a stripe is syncing, the write is also handled in write
2684          * through mode.
2685          */
2686         if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2687                 r5c_make_stripe_write_out(sh);
2688                 return -EAGAIN;
2689         }
2690
2691         for (i = disks; i--; ) {
2692                 dev = &sh->dev[i];
2693                 /* if non-overwrite, use writing-out phase */
2694                 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2695                     !test_bit(R5_InJournal, &dev->flags)) {
2696                         r5c_make_stripe_write_out(sh);
2697                         return -EAGAIN;
2698                 }
2699         }
2700
2701         /* if the stripe is not counted in big_stripe_tree, add it now */
2702         if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2703             !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2704                 tree_index = r5c_tree_index(conf, sh->sector);
2705                 spin_lock(&log->tree_lock);
2706                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2707                                                tree_index);
2708                 if (pslot) {
2709                         refcount = (uintptr_t)radix_tree_deref_slot_protected(
2710                                 pslot, &log->tree_lock) >>
2711                                 R5C_RADIX_COUNT_SHIFT;
2712                         radix_tree_replace_slot(
2713                                 &log->big_stripe_tree, pslot,
2714                                 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2715                 } else {
2716                         /*
2717                          * this radix_tree_insert can fail safely, so no
2718                          * need to call radix_tree_preload()
2719                          */
2720                         ret = radix_tree_insert(
2721                                 &log->big_stripe_tree, tree_index,
2722                                 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2723                         if (ret) {
2724                                 spin_unlock(&log->tree_lock);
2725                                 r5c_make_stripe_write_out(sh);
2726                                 return -EAGAIN;
2727                         }
2728                 }
2729                 spin_unlock(&log->tree_lock);
2730
2731                 /*
2732                  * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2733                  * counted in the radix tree
2734                  */
2735                 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2736                 atomic_inc(&conf->r5c_cached_partial_stripes);
2737         }
2738
2739         for (i = disks; i--; ) {
2740                 dev = &sh->dev[i];
2741                 if (dev->towrite) {
2742                         set_bit(R5_Wantwrite, &dev->flags);
2743                         set_bit(R5_Wantdrain, &dev->flags);
2744                         set_bit(R5_LOCKED, &dev->flags);
2745                         to_cache++;
2746                 }
2747         }
2748
2749         if (to_cache) {
2750                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2751                 /*
2752                  * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2753                  * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2754                  * r5c_handle_data_cached()
2755                  */
2756                 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2757         }
2758
2759         return 0;
2760 }
2761
2762 /*
2763  * free extra pages (orig_page) we allocated for prexor
2764  */
2765 void r5c_release_extra_page(struct stripe_head *sh)
2766 {
2767         struct r5conf *conf = sh->raid_conf;
2768         int i;
2769         bool using_disk_info_extra_page;
2770
2771         using_disk_info_extra_page =
2772                 sh->dev[0].orig_page == conf->disks[0].extra_page;
2773
2774         for (i = sh->disks; i--; )
2775                 if (sh->dev[i].page != sh->dev[i].orig_page) {
2776                         struct page *p = sh->dev[i].orig_page;
2777
2778                         sh->dev[i].orig_page = sh->dev[i].page;
2779                         clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2780
2781                         if (!using_disk_info_extra_page)
2782                                 put_page(p);
2783                 }
2784
2785         if (using_disk_info_extra_page) {
2786                 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2787                 md_wakeup_thread(conf->mddev->thread);
2788         }
2789 }
2790
2791 void r5c_use_extra_page(struct stripe_head *sh)
2792 {
2793         struct r5conf *conf = sh->raid_conf;
2794         int i;
2795         struct r5dev *dev;
2796
2797         for (i = sh->disks; i--; ) {
2798                 dev = &sh->dev[i];
2799                 if (dev->orig_page != dev->page)
2800                         put_page(dev->orig_page);
2801                 dev->orig_page = conf->disks[i].extra_page;
2802         }
2803 }
2804
2805 /*
2806  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2807  * stripe is committed to RAID disks.
2808  */
2809 void r5c_finish_stripe_write_out(struct r5conf *conf,
2810                                  struct stripe_head *sh,
2811                                  struct stripe_head_state *s)
2812 {
2813         struct r5l_log *log = conf->log;
2814         int i;
2815         int do_wakeup = 0;
2816         sector_t tree_index;
2817         void **pslot;
2818         uintptr_t refcount;
2819
2820         if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2821                 return;
2822
2823         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2824         clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2825
2826         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2827                 return;
2828
2829         for (i = sh->disks; i--; ) {
2830                 clear_bit(R5_InJournal, &sh->dev[i].flags);
2831                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2832                         do_wakeup = 1;
2833         }
2834
2835         /*
2836          * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2837          * We updated R5_InJournal, so we also update s->injournal.
2838          */
2839         s->injournal = 0;
2840
2841         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2842                 if (atomic_dec_and_test(&conf->pending_full_writes))
2843                         md_wakeup_thread(conf->mddev->thread);
2844
2845         if (do_wakeup)
2846                 wake_up(&conf->wait_for_overlap);
2847
2848         spin_lock_irq(&log->stripe_in_journal_lock);
2849         list_del_init(&sh->r5c);
2850         spin_unlock_irq(&log->stripe_in_journal_lock);
2851         sh->log_start = MaxSector;
2852
2853         atomic_dec(&log->stripe_in_journal_count);
2854         r5c_update_log_state(log);
2855
2856         /* stop counting this stripe in big_stripe_tree */
2857         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2858             test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2859                 tree_index = r5c_tree_index(conf, sh->sector);
2860                 spin_lock(&log->tree_lock);
2861                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2862                                                tree_index);
2863                 BUG_ON(pslot == NULL);
2864                 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2865                         pslot, &log->tree_lock) >>
2866                         R5C_RADIX_COUNT_SHIFT;
2867                 if (refcount == 1)
2868                         radix_tree_delete(&log->big_stripe_tree, tree_index);
2869                 else
2870                         radix_tree_replace_slot(
2871                                 &log->big_stripe_tree, pslot,
2872                                 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2873                 spin_unlock(&log->tree_lock);
2874         }
2875
2876         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2877                 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2878                 atomic_dec(&conf->r5c_flushing_partial_stripes);
2879                 atomic_dec(&conf->r5c_cached_partial_stripes);
2880         }
2881
2882         if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2883                 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2884                 atomic_dec(&conf->r5c_flushing_full_stripes);
2885                 atomic_dec(&conf->r5c_cached_full_stripes);
2886         }
2887
2888         r5l_append_flush_payload(log, sh->sector);
2889         /* stripe is flused to raid disks, we can do resync now */
2890         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2891                 set_bit(STRIPE_HANDLE, &sh->state);
2892 }
2893
2894 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2895 {
2896         struct r5conf *conf = sh->raid_conf;
2897         int pages = 0;
2898         int reserve;
2899         int i;
2900         int ret = 0;
2901
2902         BUG_ON(!log);
2903
2904         for (i = 0; i < sh->disks; i++) {
2905                 void *addr;
2906
2907                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2908                         continue;
2909                 addr = kmap_atomic(sh->dev[i].page);
2910                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2911                                                     addr, PAGE_SIZE);
2912                 kunmap_atomic(addr);
2913                 pages++;
2914         }
2915         WARN_ON(pages == 0);
2916
2917         /*
2918          * The stripe must enter state machine again to call endio, so
2919          * don't delay.
2920          */
2921         clear_bit(STRIPE_DELAYED, &sh->state);
2922         atomic_inc(&sh->count);
2923
2924         mutex_lock(&log->io_mutex);
2925         /* meta + data */
2926         reserve = (1 + pages) << (PAGE_SHIFT - 9);
2927
2928         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2929             sh->log_start == MaxSector)
2930                 r5l_add_no_space_stripe(log, sh);
2931         else if (!r5l_has_free_space(log, reserve)) {
2932                 if (sh->log_start == log->last_checkpoint)
2933                         BUG();
2934                 else
2935                         r5l_add_no_space_stripe(log, sh);
2936         } else {
2937                 ret = r5l_log_stripe(log, sh, pages, 0);
2938                 if (ret) {
2939                         spin_lock_irq(&log->io_list_lock);
2940                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
2941                         spin_unlock_irq(&log->io_list_lock);
2942                 }
2943         }
2944
2945         mutex_unlock(&log->io_mutex);
2946         return 0;
2947 }
2948
2949 /* check whether this big stripe is in write back cache. */
2950 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2951 {
2952         struct r5l_log *log = conf->log;
2953         sector_t tree_index;
2954         void *slot;
2955
2956         if (!log)
2957                 return false;
2958
2959         WARN_ON_ONCE(!rcu_read_lock_held());
2960         tree_index = r5c_tree_index(conf, sect);
2961         slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2962         return slot != NULL;
2963 }
2964
2965 static int r5l_load_log(struct r5l_log *log)
2966 {
2967         struct md_rdev *rdev = log->rdev;
2968         struct page *page;
2969         struct r5l_meta_block *mb;
2970         sector_t cp = log->rdev->journal_tail;
2971         u32 stored_crc, expected_crc;
2972         bool create_super = false;
2973         int ret = 0;
2974
2975         /* Make sure it's valid */
2976         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2977                 cp = 0;
2978         page = alloc_page(GFP_KERNEL);
2979         if (!page)
2980                 return -ENOMEM;
2981
2982         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2983                 ret = -EIO;
2984                 goto ioerr;
2985         }
2986         mb = page_address(page);
2987
2988         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2989             mb->version != R5LOG_VERSION) {
2990                 create_super = true;
2991                 goto create;
2992         }
2993         stored_crc = le32_to_cpu(mb->checksum);
2994         mb->checksum = 0;
2995         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2996         if (stored_crc != expected_crc) {
2997                 create_super = true;
2998                 goto create;
2999         }
3000         if (le64_to_cpu(mb->position) != cp) {
3001                 create_super = true;
3002                 goto create;
3003         }
3004 create:
3005         if (create_super) {
3006                 log->last_cp_seq = prandom_u32();
3007                 cp = 0;
3008                 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3009                 /*
3010                  * Make sure super points to correct address. Log might have
3011                  * data very soon. If super hasn't correct log tail address,
3012                  * recovery can't find the log
3013                  */
3014                 r5l_write_super(log, cp);
3015         } else
3016                 log->last_cp_seq = le64_to_cpu(mb->seq);
3017
3018         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3019         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3020         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3021                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3022         log->last_checkpoint = cp;
3023
3024         __free_page(page);
3025
3026         if (create_super) {
3027                 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3028                 log->seq = log->last_cp_seq + 1;
3029                 log->next_checkpoint = cp;
3030         } else
3031                 ret = r5l_recovery_log(log);
3032
3033         r5c_update_log_state(log);
3034         return ret;
3035 ioerr:
3036         __free_page(page);
3037         return ret;
3038 }
3039
3040 int r5l_start(struct r5l_log *log)
3041 {
3042         int ret;
3043
3044         if (!log)
3045                 return 0;
3046
3047         ret = r5l_load_log(log);
3048         if (ret) {
3049                 struct mddev *mddev = log->rdev->mddev;
3050                 struct r5conf *conf = mddev->private;
3051
3052                 r5l_exit_log(conf);
3053         }
3054         return ret;
3055 }
3056
3057 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3058 {
3059         struct r5conf *conf = mddev->private;
3060         struct r5l_log *log = conf->log;
3061
3062         if (!log)
3063                 return;
3064
3065         if ((raid5_calc_degraded(conf) > 0 ||
3066              test_bit(Journal, &rdev->flags)) &&
3067             conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3068                 schedule_work(&log->disable_writeback_work);
3069 }
3070
3071 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3072 {
3073         struct request_queue *q = bdev_get_queue(rdev->bdev);
3074         struct r5l_log *log;
3075         char b[BDEVNAME_SIZE];
3076         int ret;
3077
3078         pr_debug("md/raid:%s: using device %s as journal\n",
3079                  mdname(conf->mddev), bdevname(rdev->bdev, b));
3080
3081         if (PAGE_SIZE != 4096)
3082                 return -EINVAL;
3083
3084         /*
3085          * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3086          * raid_disks r5l_payload_data_parity.
3087          *
3088          * Write journal and cache does not work for very big array
3089          * (raid_disks > 203)
3090          */
3091         if (sizeof(struct r5l_meta_block) +
3092             ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3093              conf->raid_disks) > PAGE_SIZE) {
3094                 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3095                        mdname(conf->mddev), conf->raid_disks);
3096                 return -EINVAL;
3097         }
3098
3099         log = kzalloc(sizeof(*log), GFP_KERNEL);
3100         if (!log)
3101                 return -ENOMEM;
3102         log->rdev = rdev;
3103
3104         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3105
3106         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3107                                        sizeof(rdev->mddev->uuid));
3108
3109         mutex_init(&log->io_mutex);
3110
3111         spin_lock_init(&log->io_list_lock);
3112         INIT_LIST_HEAD(&log->running_ios);
3113         INIT_LIST_HEAD(&log->io_end_ios);
3114         INIT_LIST_HEAD(&log->flushing_ios);
3115         INIT_LIST_HEAD(&log->finished_ios);
3116         bio_init(&log->flush_bio, NULL, 0);
3117
3118         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3119         if (!log->io_kc)
3120                 goto io_kc;
3121
3122         ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3123         if (ret)
3124                 goto io_pool;
3125
3126         ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3127         if (ret)
3128                 goto io_bs;
3129
3130         ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3131         if (ret)
3132                 goto out_mempool;
3133
3134         spin_lock_init(&log->tree_lock);
3135         INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3136
3137         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3138                                                  log->rdev->mddev, "reclaim");
3139         if (!log->reclaim_thread)
3140                 goto reclaim_thread;
3141         log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3142
3143         init_waitqueue_head(&log->iounit_wait);
3144
3145         INIT_LIST_HEAD(&log->no_mem_stripes);
3146
3147         INIT_LIST_HEAD(&log->no_space_stripes);
3148         spin_lock_init(&log->no_space_stripes_lock);
3149
3150         INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3151         INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3152
3153         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3154         INIT_LIST_HEAD(&log->stripe_in_journal_list);
3155         spin_lock_init(&log->stripe_in_journal_lock);
3156         atomic_set(&log->stripe_in_journal_count, 0);
3157
3158         rcu_assign_pointer(conf->log, log);
3159
3160         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3161         return 0;
3162
3163 reclaim_thread:
3164         mempool_exit(&log->meta_pool);
3165 out_mempool:
3166         bioset_exit(&log->bs);
3167 io_bs:
3168         mempool_exit(&log->io_pool);
3169 io_pool:
3170         kmem_cache_destroy(log->io_kc);
3171 io_kc:
3172         kfree(log);
3173         return -EINVAL;
3174 }
3175
3176 void r5l_exit_log(struct r5conf *conf)
3177 {
3178         struct r5l_log *log = conf->log;
3179
3180         conf->log = NULL;
3181         synchronize_rcu();
3182
3183         /* Ensure disable_writeback_work wakes up and exits */
3184         wake_up(&conf->mddev->sb_wait);
3185         flush_work(&log->disable_writeback_work);
3186         md_unregister_thread(&log->reclaim_thread);
3187         mempool_exit(&log->meta_pool);
3188         bioset_exit(&log->bs);
3189         mempool_exit(&log->io_pool);
3190         kmem_cache_destroy(log->io_kc);
3191         kfree(log);
3192 }