drm/etnaviv: Implement mmap as GEM object function
[linux-2.6-microblaze.git] / drivers / md / raid5-cache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5  */
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
15 #include "md.h"
16 #include "raid5.h"
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
19
20 /*
21  * metadata/data stored in disk with 4k size unit (a block) regardless
22  * underneath hardware sector size. only works with PAGE_SIZE == 4096
23  */
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
26
27 /*
28  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29  *
30  * In write through mode, the reclaim runs every log->max_free_space.
31  * This can prevent the recovery scans for too long
32  */
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42
43 /*
44  * We only need 2 bios per I/O unit to make progress, but ensure we
45  * have a few more available to not get too tight.
46  */
47 #define R5L_POOL_SIZE   4
48
49 static char *r5c_journal_mode_str[] = {"write-through",
50                                        "write-back"};
51 /*
52  * raid5 cache state machine
53  *
54  * With the RAID cache, each stripe works in two phases:
55  *      - caching phase
56  *      - writing-out phase
57  *
58  * These two phases are controlled by bit STRIPE_R5C_CACHING:
59  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61  *
62  * When there is no journal, or the journal is in write-through mode,
63  * the stripe is always in writing-out phase.
64  *
65  * For write-back journal, the stripe is sent to caching phase on write
66  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67  * the write-out phase by clearing STRIPE_R5C_CACHING.
68  *
69  * Stripes in caching phase do not write the raid disks. Instead, all
70  * writes are committed from the log device. Therefore, a stripe in
71  * caching phase handles writes as:
72  *      - write to log device
73  *      - return IO
74  *
75  * Stripes in writing-out phase handle writes as:
76  *      - calculate parity
77  *      - write pending data and parity to journal
78  *      - write data and parity to raid disks
79  *      - return IO for pending writes
80  */
81
82 struct r5l_log {
83         struct md_rdev *rdev;
84
85         u32 uuid_checksum;
86
87         sector_t device_size;           /* log device size, round to
88                                          * BLOCK_SECTORS */
89         sector_t max_free_space;        /* reclaim run if free space is at
90                                          * this size */
91
92         sector_t last_checkpoint;       /* log tail. where recovery scan
93                                          * starts from */
94         u64 last_cp_seq;                /* log tail sequence */
95
96         sector_t log_start;             /* log head. where new data appends */
97         u64 seq;                        /* log head sequence */
98
99         sector_t next_checkpoint;
100
101         struct mutex io_mutex;
102         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
103
104         spinlock_t io_list_lock;
105         struct list_head running_ios;   /* io_units which are still running,
106                                          * and have not yet been completely
107                                          * written to the log */
108         struct list_head io_end_ios;    /* io_units which have been completely
109                                          * written to the log but not yet written
110                                          * to the RAID */
111         struct list_head flushing_ios;  /* io_units which are waiting for log
112                                          * cache flush */
113         struct list_head finished_ios;  /* io_units which settle down in log disk */
114         struct bio flush_bio;
115
116         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
117
118         struct kmem_cache *io_kc;
119         mempool_t io_pool;
120         struct bio_set bs;
121         mempool_t meta_pool;
122
123         struct md_thread *reclaim_thread;
124         unsigned long reclaim_target;   /* number of space that need to be
125                                          * reclaimed.  if it's 0, reclaim spaces
126                                          * used by io_units which are in
127                                          * IO_UNIT_STRIPE_END state (eg, reclaim
128                                          * dones't wait for specific io_unit
129                                          * switching to IO_UNIT_STRIPE_END
130                                          * state) */
131         wait_queue_head_t iounit_wait;
132
133         struct list_head no_space_stripes; /* pending stripes, log has no space */
134         spinlock_t no_space_stripes_lock;
135
136         bool need_cache_flush;
137
138         /* for r5c_cache */
139         enum r5c_journal_mode r5c_journal_mode;
140
141         /* all stripes in r5cache, in the order of seq at sh->log_start */
142         struct list_head stripe_in_journal_list;
143
144         spinlock_t stripe_in_journal_lock;
145         atomic_t stripe_in_journal_count;
146
147         /* to submit async io_units, to fulfill ordering of flush */
148         struct work_struct deferred_io_work;
149         /* to disable write back during in degraded mode */
150         struct work_struct disable_writeback_work;
151
152         /* to for chunk_aligned_read in writeback mode, details below */
153         spinlock_t tree_lock;
154         struct radix_tree_root big_stripe_tree;
155 };
156
157 /*
158  * Enable chunk_aligned_read() with write back cache.
159  *
160  * Each chunk may contain more than one stripe (for example, a 256kB
161  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163  * For each big_stripe, we count how many stripes of this big_stripe
164  * are in the write back cache. These data are tracked in a radix tree
165  * (big_stripe_tree). We use radix_tree item pointer as the counter.
166  * r5c_tree_index() is used to calculate keys for the radix tree.
167  *
168  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169  * big_stripe of each chunk in the tree. If this big_stripe is in the
170  * tree, chunk_aligned_read() aborts. This look up is protected by
171  * rcu_read_lock().
172  *
173  * It is necessary to remember whether a stripe is counted in
174  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176  * two flags are set, the stripe is counted in big_stripe_tree. This
177  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178  * r5c_try_caching_write(); and moving clear_bit of
179  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180  * r5c_finish_stripe_write_out().
181  */
182
183 /*
184  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185  * So it is necessary to left shift the counter by 2 bits before using it
186  * as data pointer of the tree.
187  */
188 #define R5C_RADIX_COUNT_SHIFT 2
189
190 /*
191  * calculate key for big_stripe_tree
192  *
193  * sect: align_bi->bi_iter.bi_sector or sh->sector
194  */
195 static inline sector_t r5c_tree_index(struct r5conf *conf,
196                                       sector_t sect)
197 {
198         sector_div(sect, conf->chunk_sectors);
199         return sect;
200 }
201
202 /*
203  * an IO range starts from a meta data block and end at the next meta data
204  * block. The io unit's the meta data block tracks data/parity followed it. io
205  * unit is written to log disk with normal write, as we always flush log disk
206  * first and then start move data to raid disks, there is no requirement to
207  * write io unit with FLUSH/FUA
208  */
209 struct r5l_io_unit {
210         struct r5l_log *log;
211
212         struct page *meta_page; /* store meta block */
213         int meta_offset;        /* current offset in meta_page */
214
215         struct bio *current_bio;/* current_bio accepting new data */
216
217         atomic_t pending_stripe;/* how many stripes not flushed to raid */
218         u64 seq;                /* seq number of the metablock */
219         sector_t log_start;     /* where the io_unit starts */
220         sector_t log_end;       /* where the io_unit ends */
221         struct list_head log_sibling; /* log->running_ios */
222         struct list_head stripe_list; /* stripes added to the io_unit */
223
224         int state;
225         bool need_split_bio;
226         struct bio *split_bio;
227
228         unsigned int has_flush:1;               /* include flush request */
229         unsigned int has_fua:1;                 /* include fua request */
230         unsigned int has_null_flush:1;          /* include null flush request */
231         unsigned int has_flush_payload:1;       /* include flush payload  */
232         /*
233          * io isn't sent yet, flush/fua request can only be submitted till it's
234          * the first IO in running_ios list
235          */
236         unsigned int io_deferred:1;
237
238         struct bio_list flush_barriers;   /* size == 0 flush bios */
239 };
240
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state {
243         IO_UNIT_RUNNING = 0,    /* accepting new IO */
244         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
245                                  * don't accepting new bio */
246         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
247         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
248 };
249
250 bool r5c_is_writeback(struct r5l_log *log)
251 {
252         return (log != NULL &&
253                 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254 }
255
256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257 {
258         start += inc;
259         if (start >= log->device_size)
260                 start = start - log->device_size;
261         return start;
262 }
263
264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265                                   sector_t end)
266 {
267         if (end >= start)
268                 return end - start;
269         else
270                 return end + log->device_size - start;
271 }
272
273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274 {
275         sector_t used_size;
276
277         used_size = r5l_ring_distance(log, log->last_checkpoint,
278                                         log->log_start);
279
280         return log->device_size > used_size + size;
281 }
282
283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284                                     enum r5l_io_unit_state state)
285 {
286         if (WARN_ON(io->state >= state))
287                 return;
288         io->state = state;
289 }
290
291 static void
292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293 {
294         struct bio *wbi, *wbi2;
295
296         wbi = dev->written;
297         dev->written = NULL;
298         while (wbi && wbi->bi_iter.bi_sector <
299                dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300                 wbi2 = r5_next_bio(conf, wbi, dev->sector);
301                 md_write_end(conf->mddev);
302                 bio_endio(wbi);
303                 wbi = wbi2;
304         }
305 }
306
307 void r5c_handle_cached_data_endio(struct r5conf *conf,
308                                   struct stripe_head *sh, int disks)
309 {
310         int i;
311
312         for (i = sh->disks; i--; ) {
313                 if (sh->dev[i].written) {
314                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
315                         r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316                         md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
317                                            RAID5_STRIPE_SECTORS(conf),
318                                            !test_bit(STRIPE_DEGRADED, &sh->state),
319                                            0);
320                 }
321         }
322 }
323
324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
325
326 /* Check whether we should flush some stripes to free up stripe cache */
327 void r5c_check_stripe_cache_usage(struct r5conf *conf)
328 {
329         int total_cached;
330
331         if (!r5c_is_writeback(conf->log))
332                 return;
333
334         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
335                 atomic_read(&conf->r5c_cached_full_stripes);
336
337         /*
338          * The following condition is true for either of the following:
339          *   - stripe cache pressure high:
340          *          total_cached > 3/4 min_nr_stripes ||
341          *          empty_inactive_list_nr > 0
342          *   - stripe cache pressure moderate:
343          *          total_cached > 1/2 min_nr_stripes
344          */
345         if (total_cached > conf->min_nr_stripes * 1 / 2 ||
346             atomic_read(&conf->empty_inactive_list_nr) > 0)
347                 r5l_wake_reclaim(conf->log, 0);
348 }
349
350 /*
351  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
352  * stripes in the cache
353  */
354 void r5c_check_cached_full_stripe(struct r5conf *conf)
355 {
356         if (!r5c_is_writeback(conf->log))
357                 return;
358
359         /*
360          * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
361          * or a full stripe (chunk size / 4k stripes).
362          */
363         if (atomic_read(&conf->r5c_cached_full_stripes) >=
364             min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
365                 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
366                 r5l_wake_reclaim(conf->log, 0);
367 }
368
369 /*
370  * Total log space (in sectors) needed to flush all data in cache
371  *
372  * To avoid deadlock due to log space, it is necessary to reserve log
373  * space to flush critical stripes (stripes that occupying log space near
374  * last_checkpoint). This function helps check how much log space is
375  * required to flush all cached stripes.
376  *
377  * To reduce log space requirements, two mechanisms are used to give cache
378  * flush higher priorities:
379  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
380  *       stripes ALREADY in journal can be flushed w/o pending writes;
381  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
382  *       can be delayed (r5l_add_no_space_stripe).
383  *
384  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
385  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
386  * pages of journal space. For stripes that has not passed 1, flushing it
387  * requires (conf->raid_disks + 1) pages of journal space. There are at
388  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
389  * required to flush all cached stripes (in pages) is:
390  *
391  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
392  *     (group_cnt + 1) * (raid_disks + 1)
393  * or
394  *     (stripe_in_journal_count) * (max_degraded + 1) +
395  *     (group_cnt + 1) * (raid_disks - max_degraded)
396  */
397 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
398 {
399         struct r5l_log *log = conf->log;
400
401         if (!r5c_is_writeback(log))
402                 return 0;
403
404         return BLOCK_SECTORS *
405                 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
406                  (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
407 }
408
409 /*
410  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
411  *
412  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
413  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
414  * device is less than 2x of reclaim_required_space.
415  */
416 static inline void r5c_update_log_state(struct r5l_log *log)
417 {
418         struct r5conf *conf = log->rdev->mddev->private;
419         sector_t free_space;
420         sector_t reclaim_space;
421         bool wake_reclaim = false;
422
423         if (!r5c_is_writeback(log))
424                 return;
425
426         free_space = r5l_ring_distance(log, log->log_start,
427                                        log->last_checkpoint);
428         reclaim_space = r5c_log_required_to_flush_cache(conf);
429         if (free_space < 2 * reclaim_space)
430                 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
431         else {
432                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
433                         wake_reclaim = true;
434                 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
435         }
436         if (free_space < 3 * reclaim_space)
437                 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
438         else
439                 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
440
441         if (wake_reclaim)
442                 r5l_wake_reclaim(log, 0);
443 }
444
445 /*
446  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
447  * This function should only be called in write-back mode.
448  */
449 void r5c_make_stripe_write_out(struct stripe_head *sh)
450 {
451         struct r5conf *conf = sh->raid_conf;
452         struct r5l_log *log = conf->log;
453
454         BUG_ON(!r5c_is_writeback(log));
455
456         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
457         clear_bit(STRIPE_R5C_CACHING, &sh->state);
458
459         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
460                 atomic_inc(&conf->preread_active_stripes);
461 }
462
463 static void r5c_handle_data_cached(struct stripe_head *sh)
464 {
465         int i;
466
467         for (i = sh->disks; i--; )
468                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
469                         set_bit(R5_InJournal, &sh->dev[i].flags);
470                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
471                 }
472         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
473 }
474
475 /*
476  * this journal write must contain full parity,
477  * it may also contain some data pages
478  */
479 static void r5c_handle_parity_cached(struct stripe_head *sh)
480 {
481         int i;
482
483         for (i = sh->disks; i--; )
484                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
485                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
486 }
487
488 /*
489  * Setting proper flags after writing (or flushing) data and/or parity to the
490  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
491  */
492 static void r5c_finish_cache_stripe(struct stripe_head *sh)
493 {
494         struct r5l_log *log = sh->raid_conf->log;
495
496         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
497                 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
498                 /*
499                  * Set R5_InJournal for parity dev[pd_idx]. This means
500                  * all data AND parity in the journal. For RAID 6, it is
501                  * NOT necessary to set the flag for dev[qd_idx], as the
502                  * two parities are written out together.
503                  */
504                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
505         } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
506                 r5c_handle_data_cached(sh);
507         } else {
508                 r5c_handle_parity_cached(sh);
509                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
510         }
511 }
512
513 static void r5l_io_run_stripes(struct r5l_io_unit *io)
514 {
515         struct stripe_head *sh, *next;
516
517         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
518                 list_del_init(&sh->log_list);
519
520                 r5c_finish_cache_stripe(sh);
521
522                 set_bit(STRIPE_HANDLE, &sh->state);
523                 raid5_release_stripe(sh);
524         }
525 }
526
527 static void r5l_log_run_stripes(struct r5l_log *log)
528 {
529         struct r5l_io_unit *io, *next;
530
531         lockdep_assert_held(&log->io_list_lock);
532
533         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
534                 /* don't change list order */
535                 if (io->state < IO_UNIT_IO_END)
536                         break;
537
538                 list_move_tail(&io->log_sibling, &log->finished_ios);
539                 r5l_io_run_stripes(io);
540         }
541 }
542
543 static void r5l_move_to_end_ios(struct r5l_log *log)
544 {
545         struct r5l_io_unit *io, *next;
546
547         lockdep_assert_held(&log->io_list_lock);
548
549         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
550                 /* don't change list order */
551                 if (io->state < IO_UNIT_IO_END)
552                         break;
553                 list_move_tail(&io->log_sibling, &log->io_end_ios);
554         }
555 }
556
557 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
558 static void r5l_log_endio(struct bio *bio)
559 {
560         struct r5l_io_unit *io = bio->bi_private;
561         struct r5l_io_unit *io_deferred;
562         struct r5l_log *log = io->log;
563         unsigned long flags;
564         bool has_null_flush;
565         bool has_flush_payload;
566
567         if (bio->bi_status)
568                 md_error(log->rdev->mddev, log->rdev);
569
570         bio_put(bio);
571         mempool_free(io->meta_page, &log->meta_pool);
572
573         spin_lock_irqsave(&log->io_list_lock, flags);
574         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
575
576         /*
577          * if the io doesn't not have null_flush or flush payload,
578          * it is not safe to access it after releasing io_list_lock.
579          * Therefore, it is necessary to check the condition with
580          * the lock held.
581          */
582         has_null_flush = io->has_null_flush;
583         has_flush_payload = io->has_flush_payload;
584
585         if (log->need_cache_flush && !list_empty(&io->stripe_list))
586                 r5l_move_to_end_ios(log);
587         else
588                 r5l_log_run_stripes(log);
589         if (!list_empty(&log->running_ios)) {
590                 /*
591                  * FLUSH/FUA io_unit is deferred because of ordering, now we
592                  * can dispatch it
593                  */
594                 io_deferred = list_first_entry(&log->running_ios,
595                                                struct r5l_io_unit, log_sibling);
596                 if (io_deferred->io_deferred)
597                         schedule_work(&log->deferred_io_work);
598         }
599
600         spin_unlock_irqrestore(&log->io_list_lock, flags);
601
602         if (log->need_cache_flush)
603                 md_wakeup_thread(log->rdev->mddev->thread);
604
605         /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
606         if (has_null_flush) {
607                 struct bio *bi;
608
609                 WARN_ON(bio_list_empty(&io->flush_barriers));
610                 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
611                         bio_endio(bi);
612                         if (atomic_dec_and_test(&io->pending_stripe)) {
613                                 __r5l_stripe_write_finished(io);
614                                 return;
615                         }
616                 }
617         }
618         /* decrease pending_stripe for flush payload */
619         if (has_flush_payload)
620                 if (atomic_dec_and_test(&io->pending_stripe))
621                         __r5l_stripe_write_finished(io);
622 }
623
624 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
625 {
626         unsigned long flags;
627
628         spin_lock_irqsave(&log->io_list_lock, flags);
629         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
630         spin_unlock_irqrestore(&log->io_list_lock, flags);
631
632         /*
633          * In case of journal device failures, submit_bio will get error
634          * and calls endio, then active stripes will continue write
635          * process. Therefore, it is not necessary to check Faulty bit
636          * of journal device here.
637          *
638          * We can't check split_bio after current_bio is submitted. If
639          * io->split_bio is null, after current_bio is submitted, current_bio
640          * might already be completed and the io_unit is freed. We submit
641          * split_bio first to avoid the issue.
642          */
643         if (io->split_bio) {
644                 if (io->has_flush)
645                         io->split_bio->bi_opf |= REQ_PREFLUSH;
646                 if (io->has_fua)
647                         io->split_bio->bi_opf |= REQ_FUA;
648                 submit_bio(io->split_bio);
649         }
650
651         if (io->has_flush)
652                 io->current_bio->bi_opf |= REQ_PREFLUSH;
653         if (io->has_fua)
654                 io->current_bio->bi_opf |= REQ_FUA;
655         submit_bio(io->current_bio);
656 }
657
658 /* deferred io_unit will be dispatched here */
659 static void r5l_submit_io_async(struct work_struct *work)
660 {
661         struct r5l_log *log = container_of(work, struct r5l_log,
662                                            deferred_io_work);
663         struct r5l_io_unit *io = NULL;
664         unsigned long flags;
665
666         spin_lock_irqsave(&log->io_list_lock, flags);
667         if (!list_empty(&log->running_ios)) {
668                 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
669                                       log_sibling);
670                 if (!io->io_deferred)
671                         io = NULL;
672                 else
673                         io->io_deferred = 0;
674         }
675         spin_unlock_irqrestore(&log->io_list_lock, flags);
676         if (io)
677                 r5l_do_submit_io(log, io);
678 }
679
680 static void r5c_disable_writeback_async(struct work_struct *work)
681 {
682         struct r5l_log *log = container_of(work, struct r5l_log,
683                                            disable_writeback_work);
684         struct mddev *mddev = log->rdev->mddev;
685         struct r5conf *conf = mddev->private;
686         int locked = 0;
687
688         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
689                 return;
690         pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
691                 mdname(mddev));
692
693         /* wait superblock change before suspend */
694         wait_event(mddev->sb_wait,
695                    conf->log == NULL ||
696                    (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
697                     (locked = mddev_trylock(mddev))));
698         if (locked) {
699                 mddev_suspend(mddev);
700                 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
701                 mddev_resume(mddev);
702                 mddev_unlock(mddev);
703         }
704 }
705
706 static void r5l_submit_current_io(struct r5l_log *log)
707 {
708         struct r5l_io_unit *io = log->current_io;
709         struct r5l_meta_block *block;
710         unsigned long flags;
711         u32 crc;
712         bool do_submit = true;
713
714         if (!io)
715                 return;
716
717         block = page_address(io->meta_page);
718         block->meta_size = cpu_to_le32(io->meta_offset);
719         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
720         block->checksum = cpu_to_le32(crc);
721
722         log->current_io = NULL;
723         spin_lock_irqsave(&log->io_list_lock, flags);
724         if (io->has_flush || io->has_fua) {
725                 if (io != list_first_entry(&log->running_ios,
726                                            struct r5l_io_unit, log_sibling)) {
727                         io->io_deferred = 1;
728                         do_submit = false;
729                 }
730         }
731         spin_unlock_irqrestore(&log->io_list_lock, flags);
732         if (do_submit)
733                 r5l_do_submit_io(log, io);
734 }
735
736 static struct bio *r5l_bio_alloc(struct r5l_log *log)
737 {
738         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_VECS, &log->bs);
739
740         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
741         bio_set_dev(bio, log->rdev->bdev);
742         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
743
744         return bio;
745 }
746
747 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
748 {
749         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
750
751         r5c_update_log_state(log);
752         /*
753          * If we filled up the log device start from the beginning again,
754          * which will require a new bio.
755          *
756          * Note: for this to work properly the log size needs to me a multiple
757          * of BLOCK_SECTORS.
758          */
759         if (log->log_start == 0)
760                 io->need_split_bio = true;
761
762         io->log_end = log->log_start;
763 }
764
765 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
766 {
767         struct r5l_io_unit *io;
768         struct r5l_meta_block *block;
769
770         io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
771         if (!io)
772                 return NULL;
773         memset(io, 0, sizeof(*io));
774
775         io->log = log;
776         INIT_LIST_HEAD(&io->log_sibling);
777         INIT_LIST_HEAD(&io->stripe_list);
778         bio_list_init(&io->flush_barriers);
779         io->state = IO_UNIT_RUNNING;
780
781         io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
782         block = page_address(io->meta_page);
783         clear_page(block);
784         block->magic = cpu_to_le32(R5LOG_MAGIC);
785         block->version = R5LOG_VERSION;
786         block->seq = cpu_to_le64(log->seq);
787         block->position = cpu_to_le64(log->log_start);
788
789         io->log_start = log->log_start;
790         io->meta_offset = sizeof(struct r5l_meta_block);
791         io->seq = log->seq++;
792
793         io->current_bio = r5l_bio_alloc(log);
794         io->current_bio->bi_end_io = r5l_log_endio;
795         io->current_bio->bi_private = io;
796         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
797
798         r5_reserve_log_entry(log, io);
799
800         spin_lock_irq(&log->io_list_lock);
801         list_add_tail(&io->log_sibling, &log->running_ios);
802         spin_unlock_irq(&log->io_list_lock);
803
804         return io;
805 }
806
807 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
808 {
809         if (log->current_io &&
810             log->current_io->meta_offset + payload_size > PAGE_SIZE)
811                 r5l_submit_current_io(log);
812
813         if (!log->current_io) {
814                 log->current_io = r5l_new_meta(log);
815                 if (!log->current_io)
816                         return -ENOMEM;
817         }
818
819         return 0;
820 }
821
822 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
823                                     sector_t location,
824                                     u32 checksum1, u32 checksum2,
825                                     bool checksum2_valid)
826 {
827         struct r5l_io_unit *io = log->current_io;
828         struct r5l_payload_data_parity *payload;
829
830         payload = page_address(io->meta_page) + io->meta_offset;
831         payload->header.type = cpu_to_le16(type);
832         payload->header.flags = cpu_to_le16(0);
833         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
834                                     (PAGE_SHIFT - 9));
835         payload->location = cpu_to_le64(location);
836         payload->checksum[0] = cpu_to_le32(checksum1);
837         if (checksum2_valid)
838                 payload->checksum[1] = cpu_to_le32(checksum2);
839
840         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
841                 sizeof(__le32) * (1 + !!checksum2_valid);
842 }
843
844 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
845 {
846         struct r5l_io_unit *io = log->current_io;
847
848         if (io->need_split_bio) {
849                 BUG_ON(io->split_bio);
850                 io->split_bio = io->current_bio;
851                 io->current_bio = r5l_bio_alloc(log);
852                 bio_chain(io->current_bio, io->split_bio);
853                 io->need_split_bio = false;
854         }
855
856         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
857                 BUG();
858
859         r5_reserve_log_entry(log, io);
860 }
861
862 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
863 {
864         struct mddev *mddev = log->rdev->mddev;
865         struct r5conf *conf = mddev->private;
866         struct r5l_io_unit *io;
867         struct r5l_payload_flush *payload;
868         int meta_size;
869
870         /*
871          * payload_flush requires extra writes to the journal.
872          * To avoid handling the extra IO in quiesce, just skip
873          * flush_payload
874          */
875         if (conf->quiesce)
876                 return;
877
878         mutex_lock(&log->io_mutex);
879         meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
880
881         if (r5l_get_meta(log, meta_size)) {
882                 mutex_unlock(&log->io_mutex);
883                 return;
884         }
885
886         /* current implementation is one stripe per flush payload */
887         io = log->current_io;
888         payload = page_address(io->meta_page) + io->meta_offset;
889         payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
890         payload->header.flags = cpu_to_le16(0);
891         payload->size = cpu_to_le32(sizeof(__le64));
892         payload->flush_stripes[0] = cpu_to_le64(sect);
893         io->meta_offset += meta_size;
894         /* multiple flush payloads count as one pending_stripe */
895         if (!io->has_flush_payload) {
896                 io->has_flush_payload = 1;
897                 atomic_inc(&io->pending_stripe);
898         }
899         mutex_unlock(&log->io_mutex);
900 }
901
902 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
903                            int data_pages, int parity_pages)
904 {
905         int i;
906         int meta_size;
907         int ret;
908         struct r5l_io_unit *io;
909
910         meta_size =
911                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
912                  * data_pages) +
913                 sizeof(struct r5l_payload_data_parity) +
914                 sizeof(__le32) * parity_pages;
915
916         ret = r5l_get_meta(log, meta_size);
917         if (ret)
918                 return ret;
919
920         io = log->current_io;
921
922         if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
923                 io->has_flush = 1;
924
925         for (i = 0; i < sh->disks; i++) {
926                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
927                     test_bit(R5_InJournal, &sh->dev[i].flags))
928                         continue;
929                 if (i == sh->pd_idx || i == sh->qd_idx)
930                         continue;
931                 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
932                     log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
933                         io->has_fua = 1;
934                         /*
935                          * we need to flush journal to make sure recovery can
936                          * reach the data with fua flag
937                          */
938                         io->has_flush = 1;
939                 }
940                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
941                                         raid5_compute_blocknr(sh, i, 0),
942                                         sh->dev[i].log_checksum, 0, false);
943                 r5l_append_payload_page(log, sh->dev[i].page);
944         }
945
946         if (parity_pages == 2) {
947                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
948                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
949                                         sh->dev[sh->qd_idx].log_checksum, true);
950                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
951                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
952         } else if (parity_pages == 1) {
953                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
954                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
955                                         0, false);
956                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
957         } else  /* Just writing data, not parity, in caching phase */
958                 BUG_ON(parity_pages != 0);
959
960         list_add_tail(&sh->log_list, &io->stripe_list);
961         atomic_inc(&io->pending_stripe);
962         sh->log_io = io;
963
964         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
965                 return 0;
966
967         if (sh->log_start == MaxSector) {
968                 BUG_ON(!list_empty(&sh->r5c));
969                 sh->log_start = io->log_start;
970                 spin_lock_irq(&log->stripe_in_journal_lock);
971                 list_add_tail(&sh->r5c,
972                               &log->stripe_in_journal_list);
973                 spin_unlock_irq(&log->stripe_in_journal_lock);
974                 atomic_inc(&log->stripe_in_journal_count);
975         }
976         return 0;
977 }
978
979 /* add stripe to no_space_stripes, and then wake up reclaim */
980 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
981                                            struct stripe_head *sh)
982 {
983         spin_lock(&log->no_space_stripes_lock);
984         list_add_tail(&sh->log_list, &log->no_space_stripes);
985         spin_unlock(&log->no_space_stripes_lock);
986 }
987
988 /*
989  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
990  * data from log to raid disks), so we shouldn't wait for reclaim here
991  */
992 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
993 {
994         struct r5conf *conf = sh->raid_conf;
995         int write_disks = 0;
996         int data_pages, parity_pages;
997         int reserve;
998         int i;
999         int ret = 0;
1000         bool wake_reclaim = false;
1001
1002         if (!log)
1003                 return -EAGAIN;
1004         /* Don't support stripe batch */
1005         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1006             test_bit(STRIPE_SYNCING, &sh->state)) {
1007                 /* the stripe is written to log, we start writing it to raid */
1008                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1009                 return -EAGAIN;
1010         }
1011
1012         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1013
1014         for (i = 0; i < sh->disks; i++) {
1015                 void *addr;
1016
1017                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1018                     test_bit(R5_InJournal, &sh->dev[i].flags))
1019                         continue;
1020
1021                 write_disks++;
1022                 /* checksum is already calculated in last run */
1023                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1024                         continue;
1025                 addr = kmap_atomic(sh->dev[i].page);
1026                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1027                                                     addr, PAGE_SIZE);
1028                 kunmap_atomic(addr);
1029         }
1030         parity_pages = 1 + !!(sh->qd_idx >= 0);
1031         data_pages = write_disks - parity_pages;
1032
1033         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1034         /*
1035          * The stripe must enter state machine again to finish the write, so
1036          * don't delay.
1037          */
1038         clear_bit(STRIPE_DELAYED, &sh->state);
1039         atomic_inc(&sh->count);
1040
1041         mutex_lock(&log->io_mutex);
1042         /* meta + data */
1043         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1044
1045         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1046                 if (!r5l_has_free_space(log, reserve)) {
1047                         r5l_add_no_space_stripe(log, sh);
1048                         wake_reclaim = true;
1049                 } else {
1050                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1051                         if (ret) {
1052                                 spin_lock_irq(&log->io_list_lock);
1053                                 list_add_tail(&sh->log_list,
1054                                               &log->no_mem_stripes);
1055                                 spin_unlock_irq(&log->io_list_lock);
1056                         }
1057                 }
1058         } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1059                 /*
1060                  * log space critical, do not process stripes that are
1061                  * not in cache yet (sh->log_start == MaxSector).
1062                  */
1063                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1064                     sh->log_start == MaxSector) {
1065                         r5l_add_no_space_stripe(log, sh);
1066                         wake_reclaim = true;
1067                         reserve = 0;
1068                 } else if (!r5l_has_free_space(log, reserve)) {
1069                         if (sh->log_start == log->last_checkpoint)
1070                                 BUG();
1071                         else
1072                                 r5l_add_no_space_stripe(log, sh);
1073                 } else {
1074                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1075                         if (ret) {
1076                                 spin_lock_irq(&log->io_list_lock);
1077                                 list_add_tail(&sh->log_list,
1078                                               &log->no_mem_stripes);
1079                                 spin_unlock_irq(&log->io_list_lock);
1080                         }
1081                 }
1082         }
1083
1084         mutex_unlock(&log->io_mutex);
1085         if (wake_reclaim)
1086                 r5l_wake_reclaim(log, reserve);
1087         return 0;
1088 }
1089
1090 void r5l_write_stripe_run(struct r5l_log *log)
1091 {
1092         if (!log)
1093                 return;
1094         mutex_lock(&log->io_mutex);
1095         r5l_submit_current_io(log);
1096         mutex_unlock(&log->io_mutex);
1097 }
1098
1099 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1100 {
1101         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1102                 /*
1103                  * in write through (journal only)
1104                  * we flush log disk cache first, then write stripe data to
1105                  * raid disks. So if bio is finished, the log disk cache is
1106                  * flushed already. The recovery guarantees we can recovery
1107                  * the bio from log disk, so we don't need to flush again
1108                  */
1109                 if (bio->bi_iter.bi_size == 0) {
1110                         bio_endio(bio);
1111                         return 0;
1112                 }
1113                 bio->bi_opf &= ~REQ_PREFLUSH;
1114         } else {
1115                 /* write back (with cache) */
1116                 if (bio->bi_iter.bi_size == 0) {
1117                         mutex_lock(&log->io_mutex);
1118                         r5l_get_meta(log, 0);
1119                         bio_list_add(&log->current_io->flush_barriers, bio);
1120                         log->current_io->has_flush = 1;
1121                         log->current_io->has_null_flush = 1;
1122                         atomic_inc(&log->current_io->pending_stripe);
1123                         r5l_submit_current_io(log);
1124                         mutex_unlock(&log->io_mutex);
1125                         return 0;
1126                 }
1127         }
1128         return -EAGAIN;
1129 }
1130
1131 /* This will run after log space is reclaimed */
1132 static void r5l_run_no_space_stripes(struct r5l_log *log)
1133 {
1134         struct stripe_head *sh;
1135
1136         spin_lock(&log->no_space_stripes_lock);
1137         while (!list_empty(&log->no_space_stripes)) {
1138                 sh = list_first_entry(&log->no_space_stripes,
1139                                       struct stripe_head, log_list);
1140                 list_del_init(&sh->log_list);
1141                 set_bit(STRIPE_HANDLE, &sh->state);
1142                 raid5_release_stripe(sh);
1143         }
1144         spin_unlock(&log->no_space_stripes_lock);
1145 }
1146
1147 /*
1148  * calculate new last_checkpoint
1149  * for write through mode, returns log->next_checkpoint
1150  * for write back, returns log_start of first sh in stripe_in_journal_list
1151  */
1152 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1153 {
1154         struct stripe_head *sh;
1155         struct r5l_log *log = conf->log;
1156         sector_t new_cp;
1157         unsigned long flags;
1158
1159         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1160                 return log->next_checkpoint;
1161
1162         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1163         if (list_empty(&conf->log->stripe_in_journal_list)) {
1164                 /* all stripes flushed */
1165                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1166                 return log->next_checkpoint;
1167         }
1168         sh = list_first_entry(&conf->log->stripe_in_journal_list,
1169                               struct stripe_head, r5c);
1170         new_cp = sh->log_start;
1171         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1172         return new_cp;
1173 }
1174
1175 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1176 {
1177         struct r5conf *conf = log->rdev->mddev->private;
1178
1179         return r5l_ring_distance(log, log->last_checkpoint,
1180                                  r5c_calculate_new_cp(conf));
1181 }
1182
1183 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1184 {
1185         struct stripe_head *sh;
1186
1187         lockdep_assert_held(&log->io_list_lock);
1188
1189         if (!list_empty(&log->no_mem_stripes)) {
1190                 sh = list_first_entry(&log->no_mem_stripes,
1191                                       struct stripe_head, log_list);
1192                 list_del_init(&sh->log_list);
1193                 set_bit(STRIPE_HANDLE, &sh->state);
1194                 raid5_release_stripe(sh);
1195         }
1196 }
1197
1198 static bool r5l_complete_finished_ios(struct r5l_log *log)
1199 {
1200         struct r5l_io_unit *io, *next;
1201         bool found = false;
1202
1203         lockdep_assert_held(&log->io_list_lock);
1204
1205         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1206                 /* don't change list order */
1207                 if (io->state < IO_UNIT_STRIPE_END)
1208                         break;
1209
1210                 log->next_checkpoint = io->log_start;
1211
1212                 list_del(&io->log_sibling);
1213                 mempool_free(io, &log->io_pool);
1214                 r5l_run_no_mem_stripe(log);
1215
1216                 found = true;
1217         }
1218
1219         return found;
1220 }
1221
1222 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1223 {
1224         struct r5l_log *log = io->log;
1225         struct r5conf *conf = log->rdev->mddev->private;
1226         unsigned long flags;
1227
1228         spin_lock_irqsave(&log->io_list_lock, flags);
1229         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1230
1231         if (!r5l_complete_finished_ios(log)) {
1232                 spin_unlock_irqrestore(&log->io_list_lock, flags);
1233                 return;
1234         }
1235
1236         if (r5l_reclaimable_space(log) > log->max_free_space ||
1237             test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1238                 r5l_wake_reclaim(log, 0);
1239
1240         spin_unlock_irqrestore(&log->io_list_lock, flags);
1241         wake_up(&log->iounit_wait);
1242 }
1243
1244 void r5l_stripe_write_finished(struct stripe_head *sh)
1245 {
1246         struct r5l_io_unit *io;
1247
1248         io = sh->log_io;
1249         sh->log_io = NULL;
1250
1251         if (io && atomic_dec_and_test(&io->pending_stripe))
1252                 __r5l_stripe_write_finished(io);
1253 }
1254
1255 static void r5l_log_flush_endio(struct bio *bio)
1256 {
1257         struct r5l_log *log = container_of(bio, struct r5l_log,
1258                 flush_bio);
1259         unsigned long flags;
1260         struct r5l_io_unit *io;
1261
1262         if (bio->bi_status)
1263                 md_error(log->rdev->mddev, log->rdev);
1264
1265         spin_lock_irqsave(&log->io_list_lock, flags);
1266         list_for_each_entry(io, &log->flushing_ios, log_sibling)
1267                 r5l_io_run_stripes(io);
1268         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1269         spin_unlock_irqrestore(&log->io_list_lock, flags);
1270 }
1271
1272 /*
1273  * Starting dispatch IO to raid.
1274  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1275  * broken meta in the middle of a log causes recovery can't find meta at the
1276  * head of log. If operations require meta at the head persistent in log, we
1277  * must make sure meta before it persistent in log too. A case is:
1278  *
1279  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1280  * data/parity must be persistent in log before we do the write to raid disks.
1281  *
1282  * The solution is we restrictly maintain io_unit list order. In this case, we
1283  * only write stripes of an io_unit to raid disks till the io_unit is the first
1284  * one whose data/parity is in log.
1285  */
1286 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1287 {
1288         bool do_flush;
1289
1290         if (!log || !log->need_cache_flush)
1291                 return;
1292
1293         spin_lock_irq(&log->io_list_lock);
1294         /* flush bio is running */
1295         if (!list_empty(&log->flushing_ios)) {
1296                 spin_unlock_irq(&log->io_list_lock);
1297                 return;
1298         }
1299         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1300         do_flush = !list_empty(&log->flushing_ios);
1301         spin_unlock_irq(&log->io_list_lock);
1302
1303         if (!do_flush)
1304                 return;
1305         bio_reset(&log->flush_bio);
1306         bio_set_dev(&log->flush_bio, log->rdev->bdev);
1307         log->flush_bio.bi_end_io = r5l_log_flush_endio;
1308         log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1309         submit_bio(&log->flush_bio);
1310 }
1311
1312 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314         sector_t end)
1315 {
1316         struct block_device *bdev = log->rdev->bdev;
1317         struct mddev *mddev;
1318
1319         r5l_write_super(log, end);
1320
1321         if (!blk_queue_discard(bdev_get_queue(bdev)))
1322                 return;
1323
1324         mddev = log->rdev->mddev;
1325         /*
1326          * Discard could zero data, so before discard we must make sure
1327          * superblock is updated to new log tail. Updating superblock (either
1328          * directly call md_update_sb() or depend on md thread) must hold
1329          * reconfig mutex. On the other hand, raid5_quiesce is called with
1330          * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1331          * for all IO finish, hence waitting for reclaim thread, while reclaim
1332          * thread is calling this function and waitting for reconfig mutex. So
1333          * there is a deadlock. We workaround this issue with a trylock.
1334          * FIXME: we could miss discard if we can't take reconfig mutex
1335          */
1336         set_mask_bits(&mddev->sb_flags, 0,
1337                 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338         if (!mddev_trylock(mddev))
1339                 return;
1340         md_update_sb(mddev, 1);
1341         mddev_unlock(mddev);
1342
1343         /* discard IO error really doesn't matter, ignore it */
1344         if (log->last_checkpoint < end) {
1345                 blkdev_issue_discard(bdev,
1346                                 log->last_checkpoint + log->rdev->data_offset,
1347                                 end - log->last_checkpoint, GFP_NOIO, 0);
1348         } else {
1349                 blkdev_issue_discard(bdev,
1350                                 log->last_checkpoint + log->rdev->data_offset,
1351                                 log->device_size - log->last_checkpoint,
1352                                 GFP_NOIO, 0);
1353                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354                                 GFP_NOIO, 0);
1355         }
1356 }
1357
1358 /*
1359  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361  *
1362  * must hold conf->device_lock
1363  */
1364 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365 {
1366         BUG_ON(list_empty(&sh->lru));
1367         BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369
1370         /*
1371          * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372          * raid5_release_stripe() while holding conf->device_lock
1373          */
1374         BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375         lockdep_assert_held(&conf->device_lock);
1376
1377         list_del_init(&sh->lru);
1378         atomic_inc(&sh->count);
1379
1380         set_bit(STRIPE_HANDLE, &sh->state);
1381         atomic_inc(&conf->active_stripes);
1382         r5c_make_stripe_write_out(sh);
1383
1384         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385                 atomic_inc(&conf->r5c_flushing_partial_stripes);
1386         else
1387                 atomic_inc(&conf->r5c_flushing_full_stripes);
1388         raid5_release_stripe(sh);
1389 }
1390
1391 /*
1392  * if num == 0, flush all full stripes
1393  * if num > 0, flush all full stripes. If less than num full stripes are
1394  *             flushed, flush some partial stripes until totally num stripes are
1395  *             flushed or there is no more cached stripes.
1396  */
1397 void r5c_flush_cache(struct r5conf *conf, int num)
1398 {
1399         int count;
1400         struct stripe_head *sh, *next;
1401
1402         lockdep_assert_held(&conf->device_lock);
1403         if (!conf->log)
1404                 return;
1405
1406         count = 0;
1407         list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408                 r5c_flush_stripe(conf, sh);
1409                 count++;
1410         }
1411
1412         if (count >= num)
1413                 return;
1414         list_for_each_entry_safe(sh, next,
1415                                  &conf->r5c_partial_stripe_list, lru) {
1416                 r5c_flush_stripe(conf, sh);
1417                 if (++count >= num)
1418                         break;
1419         }
1420 }
1421
1422 static void r5c_do_reclaim(struct r5conf *conf)
1423 {
1424         struct r5l_log *log = conf->log;
1425         struct stripe_head *sh;
1426         int count = 0;
1427         unsigned long flags;
1428         int total_cached;
1429         int stripes_to_flush;
1430         int flushing_partial, flushing_full;
1431
1432         if (!r5c_is_writeback(log))
1433                 return;
1434
1435         flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436         flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438                 atomic_read(&conf->r5c_cached_full_stripes) -
1439                 flushing_full - flushing_partial;
1440
1441         if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442             atomic_read(&conf->empty_inactive_list_nr) > 0)
1443                 /*
1444                  * if stripe cache pressure high, flush all full stripes and
1445                  * some partial stripes
1446                  */
1447                 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448         else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449                  atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450                  R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451                 /*
1452                  * if stripe cache pressure moderate, or if there is many full
1453                  * stripes,flush all full stripes
1454                  */
1455                 stripes_to_flush = 0;
1456         else
1457                 /* no need to flush */
1458                 stripes_to_flush = -1;
1459
1460         if (stripes_to_flush >= 0) {
1461                 spin_lock_irqsave(&conf->device_lock, flags);
1462                 r5c_flush_cache(conf, stripes_to_flush);
1463                 spin_unlock_irqrestore(&conf->device_lock, flags);
1464         }
1465
1466         /* if log space is tight, flush stripes on stripe_in_journal_list */
1467         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468                 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469                 spin_lock(&conf->device_lock);
1470                 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471                         /*
1472                          * stripes on stripe_in_journal_list could be in any
1473                          * state of the stripe_cache state machine. In this
1474                          * case, we only want to flush stripe on
1475                          * r5c_cached_full/partial_stripes. The following
1476                          * condition makes sure the stripe is on one of the
1477                          * two lists.
1478                          */
1479                         if (!list_empty(&sh->lru) &&
1480                             !test_bit(STRIPE_HANDLE, &sh->state) &&
1481                             atomic_read(&sh->count) == 0) {
1482                                 r5c_flush_stripe(conf, sh);
1483                                 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484                                         break;
1485                         }
1486                 }
1487                 spin_unlock(&conf->device_lock);
1488                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489         }
1490
1491         if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492                 r5l_run_no_space_stripes(log);
1493
1494         md_wakeup_thread(conf->mddev->thread);
1495 }
1496
1497 static void r5l_do_reclaim(struct r5l_log *log)
1498 {
1499         struct r5conf *conf = log->rdev->mddev->private;
1500         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501         sector_t reclaimable;
1502         sector_t next_checkpoint;
1503         bool write_super;
1504
1505         spin_lock_irq(&log->io_list_lock);
1506         write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507                 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508         /*
1509          * move proper io_unit to reclaim list. We should not change the order.
1510          * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511          * shouldn't reuse space of an unreclaimable io_unit
1512          */
1513         while (1) {
1514                 reclaimable = r5l_reclaimable_space(log);
1515                 if (reclaimable >= reclaim_target ||
1516                     (list_empty(&log->running_ios) &&
1517                      list_empty(&log->io_end_ios) &&
1518                      list_empty(&log->flushing_ios) &&
1519                      list_empty(&log->finished_ios)))
1520                         break;
1521
1522                 md_wakeup_thread(log->rdev->mddev->thread);
1523                 wait_event_lock_irq(log->iounit_wait,
1524                                     r5l_reclaimable_space(log) > reclaimable,
1525                                     log->io_list_lock);
1526         }
1527
1528         next_checkpoint = r5c_calculate_new_cp(conf);
1529         spin_unlock_irq(&log->io_list_lock);
1530
1531         if (reclaimable == 0 || !write_super)
1532                 return;
1533
1534         /*
1535          * write_super will flush cache of each raid disk. We must write super
1536          * here, because the log area might be reused soon and we don't want to
1537          * confuse recovery
1538          */
1539         r5l_write_super_and_discard_space(log, next_checkpoint);
1540
1541         mutex_lock(&log->io_mutex);
1542         log->last_checkpoint = next_checkpoint;
1543         r5c_update_log_state(log);
1544         mutex_unlock(&log->io_mutex);
1545
1546         r5l_run_no_space_stripes(log);
1547 }
1548
1549 static void r5l_reclaim_thread(struct md_thread *thread)
1550 {
1551         struct mddev *mddev = thread->mddev;
1552         struct r5conf *conf = mddev->private;
1553         struct r5l_log *log = conf->log;
1554
1555         if (!log)
1556                 return;
1557         r5c_do_reclaim(conf);
1558         r5l_do_reclaim(log);
1559 }
1560
1561 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562 {
1563         unsigned long target;
1564         unsigned long new = (unsigned long)space; /* overflow in theory */
1565
1566         if (!log)
1567                 return;
1568         do {
1569                 target = log->reclaim_target;
1570                 if (new < target)
1571                         return;
1572         } while (cmpxchg(&log->reclaim_target, target, new) != target);
1573         md_wakeup_thread(log->reclaim_thread);
1574 }
1575
1576 void r5l_quiesce(struct r5l_log *log, int quiesce)
1577 {
1578         struct mddev *mddev;
1579
1580         if (quiesce) {
1581                 /* make sure r5l_write_super_and_discard_space exits */
1582                 mddev = log->rdev->mddev;
1583                 wake_up(&mddev->sb_wait);
1584                 kthread_park(log->reclaim_thread->tsk);
1585                 r5l_wake_reclaim(log, MaxSector);
1586                 r5l_do_reclaim(log);
1587         } else
1588                 kthread_unpark(log->reclaim_thread->tsk);
1589 }
1590
1591 bool r5l_log_disk_error(struct r5conf *conf)
1592 {
1593         struct r5l_log *log;
1594         bool ret;
1595         /* don't allow write if journal disk is missing */
1596         rcu_read_lock();
1597         log = rcu_dereference(conf->log);
1598
1599         if (!log)
1600                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1601         else
1602                 ret = test_bit(Faulty, &log->rdev->flags);
1603         rcu_read_unlock();
1604         return ret;
1605 }
1606
1607 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1608
1609 struct r5l_recovery_ctx {
1610         struct page *meta_page;         /* current meta */
1611         sector_t meta_total_blocks;     /* total size of current meta and data */
1612         sector_t pos;                   /* recovery position */
1613         u64 seq;                        /* recovery position seq */
1614         int data_parity_stripes;        /* number of data_parity stripes */
1615         int data_only_stripes;          /* number of data_only stripes */
1616         struct list_head cached_list;
1617
1618         /*
1619          * read ahead page pool (ra_pool)
1620          * in recovery, log is read sequentially. It is not efficient to
1621          * read every page with sync_page_io(). The read ahead page pool
1622          * reads multiple pages with one IO, so further log read can
1623          * just copy data from the pool.
1624          */
1625         struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1626         sector_t pool_offset;   /* offset of first page in the pool */
1627         int total_pages;        /* total allocated pages */
1628         int valid_pages;        /* pages with valid data */
1629         struct bio *ra_bio;     /* bio to do the read ahead */
1630 };
1631
1632 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1633                                             struct r5l_recovery_ctx *ctx)
1634 {
1635         struct page *page;
1636
1637         ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_VECS, &log->bs);
1638         if (!ctx->ra_bio)
1639                 return -ENOMEM;
1640
1641         ctx->valid_pages = 0;
1642         ctx->total_pages = 0;
1643         while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1644                 page = alloc_page(GFP_KERNEL);
1645
1646                 if (!page)
1647                         break;
1648                 ctx->ra_pool[ctx->total_pages] = page;
1649                 ctx->total_pages += 1;
1650         }
1651
1652         if (ctx->total_pages == 0) {
1653                 bio_put(ctx->ra_bio);
1654                 return -ENOMEM;
1655         }
1656
1657         ctx->pool_offset = 0;
1658         return 0;
1659 }
1660
1661 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1662                                         struct r5l_recovery_ctx *ctx)
1663 {
1664         int i;
1665
1666         for (i = 0; i < ctx->total_pages; ++i)
1667                 put_page(ctx->ra_pool[i]);
1668         bio_put(ctx->ra_bio);
1669 }
1670
1671 /*
1672  * fetch ctx->valid_pages pages from offset
1673  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1674  * However, if the offset is close to the end of the journal device,
1675  * ctx->valid_pages could be smaller than ctx->total_pages
1676  */
1677 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1678                                       struct r5l_recovery_ctx *ctx,
1679                                       sector_t offset)
1680 {
1681         bio_reset(ctx->ra_bio);
1682         bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1683         bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1684         ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1685
1686         ctx->valid_pages = 0;
1687         ctx->pool_offset = offset;
1688
1689         while (ctx->valid_pages < ctx->total_pages) {
1690                 bio_add_page(ctx->ra_bio,
1691                              ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1692                 ctx->valid_pages += 1;
1693
1694                 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1695
1696                 if (offset == 0)  /* reached end of the device */
1697                         break;
1698         }
1699
1700         return submit_bio_wait(ctx->ra_bio);
1701 }
1702
1703 /*
1704  * try read a page from the read ahead page pool, if the page is not in the
1705  * pool, call r5l_recovery_fetch_ra_pool
1706  */
1707 static int r5l_recovery_read_page(struct r5l_log *log,
1708                                   struct r5l_recovery_ctx *ctx,
1709                                   struct page *page,
1710                                   sector_t offset)
1711 {
1712         int ret;
1713
1714         if (offset < ctx->pool_offset ||
1715             offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1716                 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1717                 if (ret)
1718                         return ret;
1719         }
1720
1721         BUG_ON(offset < ctx->pool_offset ||
1722                offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1723
1724         memcpy(page_address(page),
1725                page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1726                                          BLOCK_SECTOR_SHIFT]),
1727                PAGE_SIZE);
1728         return 0;
1729 }
1730
1731 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1732                                         struct r5l_recovery_ctx *ctx)
1733 {
1734         struct page *page = ctx->meta_page;
1735         struct r5l_meta_block *mb;
1736         u32 crc, stored_crc;
1737         int ret;
1738
1739         ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1740         if (ret != 0)
1741                 return ret;
1742
1743         mb = page_address(page);
1744         stored_crc = le32_to_cpu(mb->checksum);
1745         mb->checksum = 0;
1746
1747         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1748             le64_to_cpu(mb->seq) != ctx->seq ||
1749             mb->version != R5LOG_VERSION ||
1750             le64_to_cpu(mb->position) != ctx->pos)
1751                 return -EINVAL;
1752
1753         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1754         if (stored_crc != crc)
1755                 return -EINVAL;
1756
1757         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1758                 return -EINVAL;
1759
1760         ctx->meta_total_blocks = BLOCK_SECTORS;
1761
1762         return 0;
1763 }
1764
1765 static void
1766 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1767                                      struct page *page,
1768                                      sector_t pos, u64 seq)
1769 {
1770         struct r5l_meta_block *mb;
1771
1772         mb = page_address(page);
1773         clear_page(mb);
1774         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1775         mb->version = R5LOG_VERSION;
1776         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1777         mb->seq = cpu_to_le64(seq);
1778         mb->position = cpu_to_le64(pos);
1779 }
1780
1781 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1782                                           u64 seq)
1783 {
1784         struct page *page;
1785         struct r5l_meta_block *mb;
1786
1787         page = alloc_page(GFP_KERNEL);
1788         if (!page)
1789                 return -ENOMEM;
1790         r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1791         mb = page_address(page);
1792         mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1793                                              mb, PAGE_SIZE));
1794         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1795                           REQ_SYNC | REQ_FUA, false)) {
1796                 __free_page(page);
1797                 return -EIO;
1798         }
1799         __free_page(page);
1800         return 0;
1801 }
1802
1803 /*
1804  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1805  * to mark valid (potentially not flushed) data in the journal.
1806  *
1807  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1808  * so there should not be any mismatch here.
1809  */
1810 static void r5l_recovery_load_data(struct r5l_log *log,
1811                                    struct stripe_head *sh,
1812                                    struct r5l_recovery_ctx *ctx,
1813                                    struct r5l_payload_data_parity *payload,
1814                                    sector_t log_offset)
1815 {
1816         struct mddev *mddev = log->rdev->mddev;
1817         struct r5conf *conf = mddev->private;
1818         int dd_idx;
1819
1820         raid5_compute_sector(conf,
1821                              le64_to_cpu(payload->location), 0,
1822                              &dd_idx, sh);
1823         r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1824         sh->dev[dd_idx].log_checksum =
1825                 le32_to_cpu(payload->checksum[0]);
1826         ctx->meta_total_blocks += BLOCK_SECTORS;
1827
1828         set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1829         set_bit(STRIPE_R5C_CACHING, &sh->state);
1830 }
1831
1832 static void r5l_recovery_load_parity(struct r5l_log *log,
1833                                      struct stripe_head *sh,
1834                                      struct r5l_recovery_ctx *ctx,
1835                                      struct r5l_payload_data_parity *payload,
1836                                      sector_t log_offset)
1837 {
1838         struct mddev *mddev = log->rdev->mddev;
1839         struct r5conf *conf = mddev->private;
1840
1841         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1842         r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1843         sh->dev[sh->pd_idx].log_checksum =
1844                 le32_to_cpu(payload->checksum[0]);
1845         set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1846
1847         if (sh->qd_idx >= 0) {
1848                 r5l_recovery_read_page(
1849                         log, ctx, sh->dev[sh->qd_idx].page,
1850                         r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1851                 sh->dev[sh->qd_idx].log_checksum =
1852                         le32_to_cpu(payload->checksum[1]);
1853                 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1854         }
1855         clear_bit(STRIPE_R5C_CACHING, &sh->state);
1856 }
1857
1858 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1859 {
1860         int i;
1861
1862         sh->state = 0;
1863         sh->log_start = MaxSector;
1864         for (i = sh->disks; i--; )
1865                 sh->dev[i].flags = 0;
1866 }
1867
1868 static void
1869 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1870                                struct stripe_head *sh,
1871                                struct r5l_recovery_ctx *ctx)
1872 {
1873         struct md_rdev *rdev, *rrdev;
1874         int disk_index;
1875         int data_count = 0;
1876
1877         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1878                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1879                         continue;
1880                 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1881                         continue;
1882                 data_count++;
1883         }
1884
1885         /*
1886          * stripes that only have parity must have been flushed
1887          * before the crash that we are now recovering from, so
1888          * there is nothing more to recovery.
1889          */
1890         if (data_count == 0)
1891                 goto out;
1892
1893         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1894                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1895                         continue;
1896
1897                 /* in case device is broken */
1898                 rcu_read_lock();
1899                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1900                 if (rdev) {
1901                         atomic_inc(&rdev->nr_pending);
1902                         rcu_read_unlock();
1903                         sync_page_io(rdev, sh->sector, PAGE_SIZE,
1904                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1905                                      false);
1906                         rdev_dec_pending(rdev, rdev->mddev);
1907                         rcu_read_lock();
1908                 }
1909                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1910                 if (rrdev) {
1911                         atomic_inc(&rrdev->nr_pending);
1912                         rcu_read_unlock();
1913                         sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1914                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1915                                      false);
1916                         rdev_dec_pending(rrdev, rrdev->mddev);
1917                         rcu_read_lock();
1918                 }
1919                 rcu_read_unlock();
1920         }
1921         ctx->data_parity_stripes++;
1922 out:
1923         r5l_recovery_reset_stripe(sh);
1924 }
1925
1926 static struct stripe_head *
1927 r5c_recovery_alloc_stripe(
1928                 struct r5conf *conf,
1929                 sector_t stripe_sect,
1930                 int noblock)
1931 {
1932         struct stripe_head *sh;
1933
1934         sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
1935         if (!sh)
1936                 return NULL;  /* no more stripe available */
1937
1938         r5l_recovery_reset_stripe(sh);
1939
1940         return sh;
1941 }
1942
1943 static struct stripe_head *
1944 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1945 {
1946         struct stripe_head *sh;
1947
1948         list_for_each_entry(sh, list, lru)
1949                 if (sh->sector == sect)
1950                         return sh;
1951         return NULL;
1952 }
1953
1954 static void
1955 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1956                           struct r5l_recovery_ctx *ctx)
1957 {
1958         struct stripe_head *sh, *next;
1959
1960         list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1961                 r5l_recovery_reset_stripe(sh);
1962                 list_del_init(&sh->lru);
1963                 raid5_release_stripe(sh);
1964         }
1965 }
1966
1967 static void
1968 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1969                             struct r5l_recovery_ctx *ctx)
1970 {
1971         struct stripe_head *sh, *next;
1972
1973         list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1974                 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1975                         r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1976                         list_del_init(&sh->lru);
1977                         raid5_release_stripe(sh);
1978                 }
1979 }
1980
1981 /* if matches return 0; otherwise return -EINVAL */
1982 static int
1983 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1984                                   struct r5l_recovery_ctx *ctx,
1985                                   struct page *page,
1986                                   sector_t log_offset, __le32 log_checksum)
1987 {
1988         void *addr;
1989         u32 checksum;
1990
1991         r5l_recovery_read_page(log, ctx, page, log_offset);
1992         addr = kmap_atomic(page);
1993         checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1994         kunmap_atomic(addr);
1995         return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1996 }
1997
1998 /*
1999  * before loading data to stripe cache, we need verify checksum for all data,
2000  * if there is mismatch for any data page, we drop all data in the mata block
2001  */
2002 static int
2003 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2004                                          struct r5l_recovery_ctx *ctx)
2005 {
2006         struct mddev *mddev = log->rdev->mddev;
2007         struct r5conf *conf = mddev->private;
2008         struct r5l_meta_block *mb = page_address(ctx->meta_page);
2009         sector_t mb_offset = sizeof(struct r5l_meta_block);
2010         sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2011         struct page *page;
2012         struct r5l_payload_data_parity *payload;
2013         struct r5l_payload_flush *payload_flush;
2014
2015         page = alloc_page(GFP_KERNEL);
2016         if (!page)
2017                 return -ENOMEM;
2018
2019         while (mb_offset < le32_to_cpu(mb->meta_size)) {
2020                 payload = (void *)mb + mb_offset;
2021                 payload_flush = (void *)mb + mb_offset;
2022
2023                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2024                         if (r5l_recovery_verify_data_checksum(
2025                                     log, ctx, page, log_offset,
2026                                     payload->checksum[0]) < 0)
2027                                 goto mismatch;
2028                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2029                         if (r5l_recovery_verify_data_checksum(
2030                                     log, ctx, page, log_offset,
2031                                     payload->checksum[0]) < 0)
2032                                 goto mismatch;
2033                         if (conf->max_degraded == 2 && /* q for RAID 6 */
2034                             r5l_recovery_verify_data_checksum(
2035                                     log, ctx, page,
2036                                     r5l_ring_add(log, log_offset,
2037                                                  BLOCK_SECTORS),
2038                                     payload->checksum[1]) < 0)
2039                                 goto mismatch;
2040                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2041                         /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2042                 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2043                         goto mismatch;
2044
2045                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2046                         mb_offset += sizeof(struct r5l_payload_flush) +
2047                                 le32_to_cpu(payload_flush->size);
2048                 } else {
2049                         /* DATA or PARITY payload */
2050                         log_offset = r5l_ring_add(log, log_offset,
2051                                                   le32_to_cpu(payload->size));
2052                         mb_offset += sizeof(struct r5l_payload_data_parity) +
2053                                 sizeof(__le32) *
2054                                 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2055                 }
2056
2057         }
2058
2059         put_page(page);
2060         return 0;
2061
2062 mismatch:
2063         put_page(page);
2064         return -EINVAL;
2065 }
2066
2067 /*
2068  * Analyze all data/parity pages in one meta block
2069  * Returns:
2070  * 0 for success
2071  * -EINVAL for unknown playload type
2072  * -EAGAIN for checksum mismatch of data page
2073  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2074  */
2075 static int
2076 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2077                                 struct r5l_recovery_ctx *ctx,
2078                                 struct list_head *cached_stripe_list)
2079 {
2080         struct mddev *mddev = log->rdev->mddev;
2081         struct r5conf *conf = mddev->private;
2082         struct r5l_meta_block *mb;
2083         struct r5l_payload_data_parity *payload;
2084         struct r5l_payload_flush *payload_flush;
2085         int mb_offset;
2086         sector_t log_offset;
2087         sector_t stripe_sect;
2088         struct stripe_head *sh;
2089         int ret;
2090
2091         /*
2092          * for mismatch in data blocks, we will drop all data in this mb, but
2093          * we will still read next mb for other data with FLUSH flag, as
2094          * io_unit could finish out of order.
2095          */
2096         ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2097         if (ret == -EINVAL)
2098                 return -EAGAIN;
2099         else if (ret)
2100                 return ret;   /* -ENOMEM duo to alloc_page() failed */
2101
2102         mb = page_address(ctx->meta_page);
2103         mb_offset = sizeof(struct r5l_meta_block);
2104         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2105
2106         while (mb_offset < le32_to_cpu(mb->meta_size)) {
2107                 int dd;
2108
2109                 payload = (void *)mb + mb_offset;
2110                 payload_flush = (void *)mb + mb_offset;
2111
2112                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2113                         int i, count;
2114
2115                         count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2116                         for (i = 0; i < count; ++i) {
2117                                 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2118                                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2119                                                                 stripe_sect);
2120                                 if (sh) {
2121                                         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2122                                         r5l_recovery_reset_stripe(sh);
2123                                         list_del_init(&sh->lru);
2124                                         raid5_release_stripe(sh);
2125                                 }
2126                         }
2127
2128                         mb_offset += sizeof(struct r5l_payload_flush) +
2129                                 le32_to_cpu(payload_flush->size);
2130                         continue;
2131                 }
2132
2133                 /* DATA or PARITY payload */
2134                 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2135                         raid5_compute_sector(
2136                                 conf, le64_to_cpu(payload->location), 0, &dd,
2137                                 NULL)
2138                         : le64_to_cpu(payload->location);
2139
2140                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2141                                                 stripe_sect);
2142
2143                 if (!sh) {
2144                         sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2145                         /*
2146                          * cannot get stripe from raid5_get_active_stripe
2147                          * try replay some stripes
2148                          */
2149                         if (!sh) {
2150                                 r5c_recovery_replay_stripes(
2151                                         cached_stripe_list, ctx);
2152                                 sh = r5c_recovery_alloc_stripe(
2153                                         conf, stripe_sect, 1);
2154                         }
2155                         if (!sh) {
2156                                 int new_size = conf->min_nr_stripes * 2;
2157                                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2158                                         mdname(mddev),
2159                                         new_size);
2160                                 ret = raid5_set_cache_size(mddev, new_size);
2161                                 if (conf->min_nr_stripes <= new_size / 2) {
2162                                         pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2163                                                 mdname(mddev),
2164                                                 ret,
2165                                                 new_size,
2166                                                 conf->min_nr_stripes,
2167                                                 conf->max_nr_stripes);
2168                                         return -ENOMEM;
2169                                 }
2170                                 sh = r5c_recovery_alloc_stripe(
2171                                         conf, stripe_sect, 0);
2172                         }
2173                         if (!sh) {
2174                                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2175                                         mdname(mddev));
2176                                 return -ENOMEM;
2177                         }
2178                         list_add_tail(&sh->lru, cached_stripe_list);
2179                 }
2180
2181                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2182                         if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2183                             test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2184                                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2185                                 list_move_tail(&sh->lru, cached_stripe_list);
2186                         }
2187                         r5l_recovery_load_data(log, sh, ctx, payload,
2188                                                log_offset);
2189                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2190                         r5l_recovery_load_parity(log, sh, ctx, payload,
2191                                                  log_offset);
2192                 else
2193                         return -EINVAL;
2194
2195                 log_offset = r5l_ring_add(log, log_offset,
2196                                           le32_to_cpu(payload->size));
2197
2198                 mb_offset += sizeof(struct r5l_payload_data_parity) +
2199                         sizeof(__le32) *
2200                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2201         }
2202
2203         return 0;
2204 }
2205
2206 /*
2207  * Load the stripe into cache. The stripe will be written out later by
2208  * the stripe cache state machine.
2209  */
2210 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2211                                          struct stripe_head *sh)
2212 {
2213         struct r5dev *dev;
2214         int i;
2215
2216         for (i = sh->disks; i--; ) {
2217                 dev = sh->dev + i;
2218                 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2219                         set_bit(R5_InJournal, &dev->flags);
2220                         set_bit(R5_UPTODATE, &dev->flags);
2221                 }
2222         }
2223 }
2224
2225 /*
2226  * Scan through the log for all to-be-flushed data
2227  *
2228  * For stripes with data and parity, namely Data-Parity stripe
2229  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2230  *
2231  * For stripes with only data, namely Data-Only stripe
2232  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2233  *
2234  * For a stripe, if we see data after parity, we should discard all previous
2235  * data and parity for this stripe, as these data are already flushed to
2236  * the array.
2237  *
2238  * At the end of the scan, we return the new journal_tail, which points to
2239  * first data-only stripe on the journal device, or next invalid meta block.
2240  */
2241 static int r5c_recovery_flush_log(struct r5l_log *log,
2242                                   struct r5l_recovery_ctx *ctx)
2243 {
2244         struct stripe_head *sh;
2245         int ret = 0;
2246
2247         /* scan through the log */
2248         while (1) {
2249                 if (r5l_recovery_read_meta_block(log, ctx))
2250                         break;
2251
2252                 ret = r5c_recovery_analyze_meta_block(log, ctx,
2253                                                       &ctx->cached_list);
2254                 /*
2255                  * -EAGAIN means mismatch in data block, in this case, we still
2256                  * try scan the next metablock
2257                  */
2258                 if (ret && ret != -EAGAIN)
2259                         break;   /* ret == -EINVAL or -ENOMEM */
2260                 ctx->seq++;
2261                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2262         }
2263
2264         if (ret == -ENOMEM) {
2265                 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2266                 return ret;
2267         }
2268
2269         /* replay data-parity stripes */
2270         r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2271
2272         /* load data-only stripes to stripe cache */
2273         list_for_each_entry(sh, &ctx->cached_list, lru) {
2274                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2275                 r5c_recovery_load_one_stripe(log, sh);
2276                 ctx->data_only_stripes++;
2277         }
2278
2279         return 0;
2280 }
2281
2282 /*
2283  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2284  * log will start here. but we can't let superblock point to last valid
2285  * meta block. The log might looks like:
2286  * | meta 1| meta 2| meta 3|
2287  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2288  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2289  * happens again, new recovery will start from meta 1. Since meta 2n is
2290  * valid now, recovery will think meta 3 is valid, which is wrong.
2291  * The solution is we create a new meta in meta2 with its seq == meta
2292  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2293  * will not think meta 3 is a valid meta, because its seq doesn't match
2294  */
2295
2296 /*
2297  * Before recovery, the log looks like the following
2298  *
2299  *   ---------------------------------------------
2300  *   |           valid log        | invalid log  |
2301  *   ---------------------------------------------
2302  *   ^
2303  *   |- log->last_checkpoint
2304  *   |- log->last_cp_seq
2305  *
2306  * Now we scan through the log until we see invalid entry
2307  *
2308  *   ---------------------------------------------
2309  *   |           valid log        | invalid log  |
2310  *   ---------------------------------------------
2311  *   ^                            ^
2312  *   |- log->last_checkpoint      |- ctx->pos
2313  *   |- log->last_cp_seq          |- ctx->seq
2314  *
2315  * From this point, we need to increase seq number by 10 to avoid
2316  * confusing next recovery.
2317  *
2318  *   ---------------------------------------------
2319  *   |           valid log        | invalid log  |
2320  *   ---------------------------------------------
2321  *   ^                              ^
2322  *   |- log->last_checkpoint        |- ctx->pos+1
2323  *   |- log->last_cp_seq            |- ctx->seq+10001
2324  *
2325  * However, it is not safe to start the state machine yet, because data only
2326  * parities are not yet secured in RAID. To save these data only parities, we
2327  * rewrite them from seq+11.
2328  *
2329  *   -----------------------------------------------------------------
2330  *   |           valid log        | data only stripes | invalid log  |
2331  *   -----------------------------------------------------------------
2332  *   ^                                                ^
2333  *   |- log->last_checkpoint                          |- ctx->pos+n
2334  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2335  *
2336  * If failure happens again during this process, the recovery can safe start
2337  * again from log->last_checkpoint.
2338  *
2339  * Once data only stripes are rewritten to journal, we move log_tail
2340  *
2341  *   -----------------------------------------------------------------
2342  *   |     old log        |    data only stripes    | invalid log  |
2343  *   -----------------------------------------------------------------
2344  *                        ^                         ^
2345  *                        |- log->last_checkpoint   |- ctx->pos+n
2346  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2347  *
2348  * Then we can safely start the state machine. If failure happens from this
2349  * point on, the recovery will start from new log->last_checkpoint.
2350  */
2351 static int
2352 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2353                                        struct r5l_recovery_ctx *ctx)
2354 {
2355         struct stripe_head *sh;
2356         struct mddev *mddev = log->rdev->mddev;
2357         struct page *page;
2358         sector_t next_checkpoint = MaxSector;
2359
2360         page = alloc_page(GFP_KERNEL);
2361         if (!page) {
2362                 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2363                        mdname(mddev));
2364                 return -ENOMEM;
2365         }
2366
2367         WARN_ON(list_empty(&ctx->cached_list));
2368
2369         list_for_each_entry(sh, &ctx->cached_list, lru) {
2370                 struct r5l_meta_block *mb;
2371                 int i;
2372                 int offset;
2373                 sector_t write_pos;
2374
2375                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2376                 r5l_recovery_create_empty_meta_block(log, page,
2377                                                      ctx->pos, ctx->seq);
2378                 mb = page_address(page);
2379                 offset = le32_to_cpu(mb->meta_size);
2380                 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2381
2382                 for (i = sh->disks; i--; ) {
2383                         struct r5dev *dev = &sh->dev[i];
2384                         struct r5l_payload_data_parity *payload;
2385                         void *addr;
2386
2387                         if (test_bit(R5_InJournal, &dev->flags)) {
2388                                 payload = (void *)mb + offset;
2389                                 payload->header.type = cpu_to_le16(
2390                                         R5LOG_PAYLOAD_DATA);
2391                                 payload->size = cpu_to_le32(BLOCK_SECTORS);
2392                                 payload->location = cpu_to_le64(
2393                                         raid5_compute_blocknr(sh, i, 0));
2394                                 addr = kmap_atomic(dev->page);
2395                                 payload->checksum[0] = cpu_to_le32(
2396                                         crc32c_le(log->uuid_checksum, addr,
2397                                                   PAGE_SIZE));
2398                                 kunmap_atomic(addr);
2399                                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2400                                              dev->page, REQ_OP_WRITE, 0, false);
2401                                 write_pos = r5l_ring_add(log, write_pos,
2402                                                          BLOCK_SECTORS);
2403                                 offset += sizeof(__le32) +
2404                                         sizeof(struct r5l_payload_data_parity);
2405
2406                         }
2407                 }
2408                 mb->meta_size = cpu_to_le32(offset);
2409                 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2410                                                      mb, PAGE_SIZE));
2411                 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2412                              REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2413                 sh->log_start = ctx->pos;
2414                 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2415                 atomic_inc(&log->stripe_in_journal_count);
2416                 ctx->pos = write_pos;
2417                 ctx->seq += 1;
2418                 next_checkpoint = sh->log_start;
2419         }
2420         log->next_checkpoint = next_checkpoint;
2421         __free_page(page);
2422         return 0;
2423 }
2424
2425 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2426                                                  struct r5l_recovery_ctx *ctx)
2427 {
2428         struct mddev *mddev = log->rdev->mddev;
2429         struct r5conf *conf = mddev->private;
2430         struct stripe_head *sh, *next;
2431         bool cleared_pending = false;
2432
2433         if (ctx->data_only_stripes == 0)
2434                 return;
2435
2436         if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2437                 cleared_pending = true;
2438                 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2439         }
2440         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2441
2442         list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2443                 r5c_make_stripe_write_out(sh);
2444                 set_bit(STRIPE_HANDLE, &sh->state);
2445                 list_del_init(&sh->lru);
2446                 raid5_release_stripe(sh);
2447         }
2448
2449         /* reuse conf->wait_for_quiescent in recovery */
2450         wait_event(conf->wait_for_quiescent,
2451                    atomic_read(&conf->active_stripes) == 0);
2452
2453         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2454         if (cleared_pending)
2455                 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2456 }
2457
2458 static int r5l_recovery_log(struct r5l_log *log)
2459 {
2460         struct mddev *mddev = log->rdev->mddev;
2461         struct r5l_recovery_ctx *ctx;
2462         int ret;
2463         sector_t pos;
2464
2465         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2466         if (!ctx)
2467                 return -ENOMEM;
2468
2469         ctx->pos = log->last_checkpoint;
2470         ctx->seq = log->last_cp_seq;
2471         INIT_LIST_HEAD(&ctx->cached_list);
2472         ctx->meta_page = alloc_page(GFP_KERNEL);
2473
2474         if (!ctx->meta_page) {
2475                 ret =  -ENOMEM;
2476                 goto meta_page;
2477         }
2478
2479         if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2480                 ret = -ENOMEM;
2481                 goto ra_pool;
2482         }
2483
2484         ret = r5c_recovery_flush_log(log, ctx);
2485
2486         if (ret)
2487                 goto error;
2488
2489         pos = ctx->pos;
2490         ctx->seq += 10000;
2491
2492         if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2493                 pr_info("md/raid:%s: starting from clean shutdown\n",
2494                          mdname(mddev));
2495         else
2496                 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2497                          mdname(mddev), ctx->data_only_stripes,
2498                          ctx->data_parity_stripes);
2499
2500         if (ctx->data_only_stripes == 0) {
2501                 log->next_checkpoint = ctx->pos;
2502                 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2503                 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2504         } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2505                 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2506                        mdname(mddev));
2507                 ret =  -EIO;
2508                 goto error;
2509         }
2510
2511         log->log_start = ctx->pos;
2512         log->seq = ctx->seq;
2513         log->last_checkpoint = pos;
2514         r5l_write_super(log, pos);
2515
2516         r5c_recovery_flush_data_only_stripes(log, ctx);
2517         ret = 0;
2518 error:
2519         r5l_recovery_free_ra_pool(log, ctx);
2520 ra_pool:
2521         __free_page(ctx->meta_page);
2522 meta_page:
2523         kfree(ctx);
2524         return ret;
2525 }
2526
2527 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2528 {
2529         struct mddev *mddev = log->rdev->mddev;
2530
2531         log->rdev->journal_tail = cp;
2532         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2533 }
2534
2535 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2536 {
2537         struct r5conf *conf;
2538         int ret;
2539
2540         spin_lock(&mddev->lock);
2541         conf = mddev->private;
2542         if (!conf || !conf->log) {
2543                 spin_unlock(&mddev->lock);
2544                 return 0;
2545         }
2546
2547         switch (conf->log->r5c_journal_mode) {
2548         case R5C_JOURNAL_MODE_WRITE_THROUGH:
2549                 ret = snprintf(
2550                         page, PAGE_SIZE, "[%s] %s\n",
2551                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2552                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2553                 break;
2554         case R5C_JOURNAL_MODE_WRITE_BACK:
2555                 ret = snprintf(
2556                         page, PAGE_SIZE, "%s [%s]\n",
2557                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2558                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2559                 break;
2560         default:
2561                 ret = 0;
2562         }
2563         spin_unlock(&mddev->lock);
2564         return ret;
2565 }
2566
2567 /*
2568  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2569  *
2570  * @mode as defined in 'enum r5c_journal_mode'.
2571  *
2572  */
2573 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2574 {
2575         struct r5conf *conf;
2576
2577         if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2578             mode > R5C_JOURNAL_MODE_WRITE_BACK)
2579                 return -EINVAL;
2580
2581         conf = mddev->private;
2582         if (!conf || !conf->log)
2583                 return -ENODEV;
2584
2585         if (raid5_calc_degraded(conf) > 0 &&
2586             mode == R5C_JOURNAL_MODE_WRITE_BACK)
2587                 return -EINVAL;
2588
2589         mddev_suspend(mddev);
2590         conf->log->r5c_journal_mode = mode;
2591         mddev_resume(mddev);
2592
2593         pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2594                  mdname(mddev), mode, r5c_journal_mode_str[mode]);
2595         return 0;
2596 }
2597 EXPORT_SYMBOL(r5c_journal_mode_set);
2598
2599 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2600                                       const char *page, size_t length)
2601 {
2602         int mode = ARRAY_SIZE(r5c_journal_mode_str);
2603         size_t len = length;
2604         int ret;
2605
2606         if (len < 2)
2607                 return -EINVAL;
2608
2609         if (page[len - 1] == '\n')
2610                 len--;
2611
2612         while (mode--)
2613                 if (strlen(r5c_journal_mode_str[mode]) == len &&
2614                     !strncmp(page, r5c_journal_mode_str[mode], len))
2615                         break;
2616         ret = mddev_lock(mddev);
2617         if (ret)
2618                 return ret;
2619         ret = r5c_journal_mode_set(mddev, mode);
2620         mddev_unlock(mddev);
2621         return ret ?: length;
2622 }
2623
2624 struct md_sysfs_entry
2625 r5c_journal_mode = __ATTR(journal_mode, 0644,
2626                           r5c_journal_mode_show, r5c_journal_mode_store);
2627
2628 /*
2629  * Try handle write operation in caching phase. This function should only
2630  * be called in write-back mode.
2631  *
2632  * If all outstanding writes can be handled in caching phase, returns 0
2633  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2634  * and returns -EAGAIN
2635  */
2636 int r5c_try_caching_write(struct r5conf *conf,
2637                           struct stripe_head *sh,
2638                           struct stripe_head_state *s,
2639                           int disks)
2640 {
2641         struct r5l_log *log = conf->log;
2642         int i;
2643         struct r5dev *dev;
2644         int to_cache = 0;
2645         void **pslot;
2646         sector_t tree_index;
2647         int ret;
2648         uintptr_t refcount;
2649
2650         BUG_ON(!r5c_is_writeback(log));
2651
2652         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2653                 /*
2654                  * There are two different scenarios here:
2655                  *  1. The stripe has some data cached, and it is sent to
2656                  *     write-out phase for reclaim
2657                  *  2. The stripe is clean, and this is the first write
2658                  *
2659                  * For 1, return -EAGAIN, so we continue with
2660                  * handle_stripe_dirtying().
2661                  *
2662                  * For 2, set STRIPE_R5C_CACHING and continue with caching
2663                  * write.
2664                  */
2665
2666                 /* case 1: anything injournal or anything in written */
2667                 if (s->injournal > 0 || s->written > 0)
2668                         return -EAGAIN;
2669                 /* case 2 */
2670                 set_bit(STRIPE_R5C_CACHING, &sh->state);
2671         }
2672
2673         /*
2674          * When run in degraded mode, array is set to write-through mode.
2675          * This check helps drain pending write safely in the transition to
2676          * write-through mode.
2677          *
2678          * When a stripe is syncing, the write is also handled in write
2679          * through mode.
2680          */
2681         if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2682                 r5c_make_stripe_write_out(sh);
2683                 return -EAGAIN;
2684         }
2685
2686         for (i = disks; i--; ) {
2687                 dev = &sh->dev[i];
2688                 /* if non-overwrite, use writing-out phase */
2689                 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2690                     !test_bit(R5_InJournal, &dev->flags)) {
2691                         r5c_make_stripe_write_out(sh);
2692                         return -EAGAIN;
2693                 }
2694         }
2695
2696         /* if the stripe is not counted in big_stripe_tree, add it now */
2697         if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2698             !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2699                 tree_index = r5c_tree_index(conf, sh->sector);
2700                 spin_lock(&log->tree_lock);
2701                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2702                                                tree_index);
2703                 if (pslot) {
2704                         refcount = (uintptr_t)radix_tree_deref_slot_protected(
2705                                 pslot, &log->tree_lock) >>
2706                                 R5C_RADIX_COUNT_SHIFT;
2707                         radix_tree_replace_slot(
2708                                 &log->big_stripe_tree, pslot,
2709                                 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2710                 } else {
2711                         /*
2712                          * this radix_tree_insert can fail safely, so no
2713                          * need to call radix_tree_preload()
2714                          */
2715                         ret = radix_tree_insert(
2716                                 &log->big_stripe_tree, tree_index,
2717                                 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2718                         if (ret) {
2719                                 spin_unlock(&log->tree_lock);
2720                                 r5c_make_stripe_write_out(sh);
2721                                 return -EAGAIN;
2722                         }
2723                 }
2724                 spin_unlock(&log->tree_lock);
2725
2726                 /*
2727                  * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2728                  * counted in the radix tree
2729                  */
2730                 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2731                 atomic_inc(&conf->r5c_cached_partial_stripes);
2732         }
2733
2734         for (i = disks; i--; ) {
2735                 dev = &sh->dev[i];
2736                 if (dev->towrite) {
2737                         set_bit(R5_Wantwrite, &dev->flags);
2738                         set_bit(R5_Wantdrain, &dev->flags);
2739                         set_bit(R5_LOCKED, &dev->flags);
2740                         to_cache++;
2741                 }
2742         }
2743
2744         if (to_cache) {
2745                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2746                 /*
2747                  * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2748                  * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2749                  * r5c_handle_data_cached()
2750                  */
2751                 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2752         }
2753
2754         return 0;
2755 }
2756
2757 /*
2758  * free extra pages (orig_page) we allocated for prexor
2759  */
2760 void r5c_release_extra_page(struct stripe_head *sh)
2761 {
2762         struct r5conf *conf = sh->raid_conf;
2763         int i;
2764         bool using_disk_info_extra_page;
2765
2766         using_disk_info_extra_page =
2767                 sh->dev[0].orig_page == conf->disks[0].extra_page;
2768
2769         for (i = sh->disks; i--; )
2770                 if (sh->dev[i].page != sh->dev[i].orig_page) {
2771                         struct page *p = sh->dev[i].orig_page;
2772
2773                         sh->dev[i].orig_page = sh->dev[i].page;
2774                         clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2775
2776                         if (!using_disk_info_extra_page)
2777                                 put_page(p);
2778                 }
2779
2780         if (using_disk_info_extra_page) {
2781                 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2782                 md_wakeup_thread(conf->mddev->thread);
2783         }
2784 }
2785
2786 void r5c_use_extra_page(struct stripe_head *sh)
2787 {
2788         struct r5conf *conf = sh->raid_conf;
2789         int i;
2790         struct r5dev *dev;
2791
2792         for (i = sh->disks; i--; ) {
2793                 dev = &sh->dev[i];
2794                 if (dev->orig_page != dev->page)
2795                         put_page(dev->orig_page);
2796                 dev->orig_page = conf->disks[i].extra_page;
2797         }
2798 }
2799
2800 /*
2801  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2802  * stripe is committed to RAID disks.
2803  */
2804 void r5c_finish_stripe_write_out(struct r5conf *conf,
2805                                  struct stripe_head *sh,
2806                                  struct stripe_head_state *s)
2807 {
2808         struct r5l_log *log = conf->log;
2809         int i;
2810         int do_wakeup = 0;
2811         sector_t tree_index;
2812         void **pslot;
2813         uintptr_t refcount;
2814
2815         if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2816                 return;
2817
2818         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2819         clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2820
2821         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2822                 return;
2823
2824         for (i = sh->disks; i--; ) {
2825                 clear_bit(R5_InJournal, &sh->dev[i].flags);
2826                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2827                         do_wakeup = 1;
2828         }
2829
2830         /*
2831          * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2832          * We updated R5_InJournal, so we also update s->injournal.
2833          */
2834         s->injournal = 0;
2835
2836         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2837                 if (atomic_dec_and_test(&conf->pending_full_writes))
2838                         md_wakeup_thread(conf->mddev->thread);
2839
2840         if (do_wakeup)
2841                 wake_up(&conf->wait_for_overlap);
2842
2843         spin_lock_irq(&log->stripe_in_journal_lock);
2844         list_del_init(&sh->r5c);
2845         spin_unlock_irq(&log->stripe_in_journal_lock);
2846         sh->log_start = MaxSector;
2847
2848         atomic_dec(&log->stripe_in_journal_count);
2849         r5c_update_log_state(log);
2850
2851         /* stop counting this stripe in big_stripe_tree */
2852         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2853             test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2854                 tree_index = r5c_tree_index(conf, sh->sector);
2855                 spin_lock(&log->tree_lock);
2856                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2857                                                tree_index);
2858                 BUG_ON(pslot == NULL);
2859                 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2860                         pslot, &log->tree_lock) >>
2861                         R5C_RADIX_COUNT_SHIFT;
2862                 if (refcount == 1)
2863                         radix_tree_delete(&log->big_stripe_tree, tree_index);
2864                 else
2865                         radix_tree_replace_slot(
2866                                 &log->big_stripe_tree, pslot,
2867                                 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2868                 spin_unlock(&log->tree_lock);
2869         }
2870
2871         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2872                 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2873                 atomic_dec(&conf->r5c_flushing_partial_stripes);
2874                 atomic_dec(&conf->r5c_cached_partial_stripes);
2875         }
2876
2877         if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2878                 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2879                 atomic_dec(&conf->r5c_flushing_full_stripes);
2880                 atomic_dec(&conf->r5c_cached_full_stripes);
2881         }
2882
2883         r5l_append_flush_payload(log, sh->sector);
2884         /* stripe is flused to raid disks, we can do resync now */
2885         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2886                 set_bit(STRIPE_HANDLE, &sh->state);
2887 }
2888
2889 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2890 {
2891         struct r5conf *conf = sh->raid_conf;
2892         int pages = 0;
2893         int reserve;
2894         int i;
2895         int ret = 0;
2896
2897         BUG_ON(!log);
2898
2899         for (i = 0; i < sh->disks; i++) {
2900                 void *addr;
2901
2902                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2903                         continue;
2904                 addr = kmap_atomic(sh->dev[i].page);
2905                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2906                                                     addr, PAGE_SIZE);
2907                 kunmap_atomic(addr);
2908                 pages++;
2909         }
2910         WARN_ON(pages == 0);
2911
2912         /*
2913          * The stripe must enter state machine again to call endio, so
2914          * don't delay.
2915          */
2916         clear_bit(STRIPE_DELAYED, &sh->state);
2917         atomic_inc(&sh->count);
2918
2919         mutex_lock(&log->io_mutex);
2920         /* meta + data */
2921         reserve = (1 + pages) << (PAGE_SHIFT - 9);
2922
2923         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2924             sh->log_start == MaxSector)
2925                 r5l_add_no_space_stripe(log, sh);
2926         else if (!r5l_has_free_space(log, reserve)) {
2927                 if (sh->log_start == log->last_checkpoint)
2928                         BUG();
2929                 else
2930                         r5l_add_no_space_stripe(log, sh);
2931         } else {
2932                 ret = r5l_log_stripe(log, sh, pages, 0);
2933                 if (ret) {
2934                         spin_lock_irq(&log->io_list_lock);
2935                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
2936                         spin_unlock_irq(&log->io_list_lock);
2937                 }
2938         }
2939
2940         mutex_unlock(&log->io_mutex);
2941         return 0;
2942 }
2943
2944 /* check whether this big stripe is in write back cache. */
2945 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2946 {
2947         struct r5l_log *log = conf->log;
2948         sector_t tree_index;
2949         void *slot;
2950
2951         if (!log)
2952                 return false;
2953
2954         WARN_ON_ONCE(!rcu_read_lock_held());
2955         tree_index = r5c_tree_index(conf, sect);
2956         slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2957         return slot != NULL;
2958 }
2959
2960 static int r5l_load_log(struct r5l_log *log)
2961 {
2962         struct md_rdev *rdev = log->rdev;
2963         struct page *page;
2964         struct r5l_meta_block *mb;
2965         sector_t cp = log->rdev->journal_tail;
2966         u32 stored_crc, expected_crc;
2967         bool create_super = false;
2968         int ret = 0;
2969
2970         /* Make sure it's valid */
2971         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2972                 cp = 0;
2973         page = alloc_page(GFP_KERNEL);
2974         if (!page)
2975                 return -ENOMEM;
2976
2977         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2978                 ret = -EIO;
2979                 goto ioerr;
2980         }
2981         mb = page_address(page);
2982
2983         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2984             mb->version != R5LOG_VERSION) {
2985                 create_super = true;
2986                 goto create;
2987         }
2988         stored_crc = le32_to_cpu(mb->checksum);
2989         mb->checksum = 0;
2990         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2991         if (stored_crc != expected_crc) {
2992                 create_super = true;
2993                 goto create;
2994         }
2995         if (le64_to_cpu(mb->position) != cp) {
2996                 create_super = true;
2997                 goto create;
2998         }
2999 create:
3000         if (create_super) {
3001                 log->last_cp_seq = prandom_u32();
3002                 cp = 0;
3003                 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3004                 /*
3005                  * Make sure super points to correct address. Log might have
3006                  * data very soon. If super hasn't correct log tail address,
3007                  * recovery can't find the log
3008                  */
3009                 r5l_write_super(log, cp);
3010         } else
3011                 log->last_cp_seq = le64_to_cpu(mb->seq);
3012
3013         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3014         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3015         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3016                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3017         log->last_checkpoint = cp;
3018
3019         __free_page(page);
3020
3021         if (create_super) {
3022                 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3023                 log->seq = log->last_cp_seq + 1;
3024                 log->next_checkpoint = cp;
3025         } else
3026                 ret = r5l_recovery_log(log);
3027
3028         r5c_update_log_state(log);
3029         return ret;
3030 ioerr:
3031         __free_page(page);
3032         return ret;
3033 }
3034
3035 int r5l_start(struct r5l_log *log)
3036 {
3037         int ret;
3038
3039         if (!log)
3040                 return 0;
3041
3042         ret = r5l_load_log(log);
3043         if (ret) {
3044                 struct mddev *mddev = log->rdev->mddev;
3045                 struct r5conf *conf = mddev->private;
3046
3047                 r5l_exit_log(conf);
3048         }
3049         return ret;
3050 }
3051
3052 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3053 {
3054         struct r5conf *conf = mddev->private;
3055         struct r5l_log *log = conf->log;
3056
3057         if (!log)
3058                 return;
3059
3060         if ((raid5_calc_degraded(conf) > 0 ||
3061              test_bit(Journal, &rdev->flags)) &&
3062             conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3063                 schedule_work(&log->disable_writeback_work);
3064 }
3065
3066 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3067 {
3068         struct request_queue *q = bdev_get_queue(rdev->bdev);
3069         struct r5l_log *log;
3070         char b[BDEVNAME_SIZE];
3071         int ret;
3072
3073         pr_debug("md/raid:%s: using device %s as journal\n",
3074                  mdname(conf->mddev), bdevname(rdev->bdev, b));
3075
3076         if (PAGE_SIZE != 4096)
3077                 return -EINVAL;
3078
3079         /*
3080          * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3081          * raid_disks r5l_payload_data_parity.
3082          *
3083          * Write journal and cache does not work for very big array
3084          * (raid_disks > 203)
3085          */
3086         if (sizeof(struct r5l_meta_block) +
3087             ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3088              conf->raid_disks) > PAGE_SIZE) {
3089                 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3090                        mdname(conf->mddev), conf->raid_disks);
3091                 return -EINVAL;
3092         }
3093
3094         log = kzalloc(sizeof(*log), GFP_KERNEL);
3095         if (!log)
3096                 return -ENOMEM;
3097         log->rdev = rdev;
3098
3099         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3100
3101         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3102                                        sizeof(rdev->mddev->uuid));
3103
3104         mutex_init(&log->io_mutex);
3105
3106         spin_lock_init(&log->io_list_lock);
3107         INIT_LIST_HEAD(&log->running_ios);
3108         INIT_LIST_HEAD(&log->io_end_ios);
3109         INIT_LIST_HEAD(&log->flushing_ios);
3110         INIT_LIST_HEAD(&log->finished_ios);
3111         bio_init(&log->flush_bio, NULL, 0);
3112
3113         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3114         if (!log->io_kc)
3115                 goto io_kc;
3116
3117         ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3118         if (ret)
3119                 goto io_pool;
3120
3121         ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3122         if (ret)
3123                 goto io_bs;
3124
3125         ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3126         if (ret)
3127                 goto out_mempool;
3128
3129         spin_lock_init(&log->tree_lock);
3130         INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3131
3132         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3133                                                  log->rdev->mddev, "reclaim");
3134         if (!log->reclaim_thread)
3135                 goto reclaim_thread;
3136         log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3137
3138         init_waitqueue_head(&log->iounit_wait);
3139
3140         INIT_LIST_HEAD(&log->no_mem_stripes);
3141
3142         INIT_LIST_HEAD(&log->no_space_stripes);
3143         spin_lock_init(&log->no_space_stripes_lock);
3144
3145         INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3146         INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3147
3148         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3149         INIT_LIST_HEAD(&log->stripe_in_journal_list);
3150         spin_lock_init(&log->stripe_in_journal_lock);
3151         atomic_set(&log->stripe_in_journal_count, 0);
3152
3153         rcu_assign_pointer(conf->log, log);
3154
3155         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3156         return 0;
3157
3158 reclaim_thread:
3159         mempool_exit(&log->meta_pool);
3160 out_mempool:
3161         bioset_exit(&log->bs);
3162 io_bs:
3163         mempool_exit(&log->io_pool);
3164 io_pool:
3165         kmem_cache_destroy(log->io_kc);
3166 io_kc:
3167         kfree(log);
3168         return -EINVAL;
3169 }
3170
3171 void r5l_exit_log(struct r5conf *conf)
3172 {
3173         struct r5l_log *log = conf->log;
3174
3175         conf->log = NULL;
3176         synchronize_rcu();
3177
3178         /* Ensure disable_writeback_work wakes up and exits */
3179         wake_up(&conf->mddev->sb_wait);
3180         flush_work(&log->disable_writeback_work);
3181         md_unregister_thread(&log->reclaim_thread);
3182         mempool_exit(&log->meta_pool);
3183         bioset_exit(&log->bs);
3184         mempool_exit(&log->io_pool);
3185         kmem_cache_destroy(log->io_kc);
3186         kfree(log);
3187 }