Merge tag 'for-5.15/block-2021-08-30' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->geo.raid_disks; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301                 bio_end_io_acct(bio, r10_bio->start_time);
302         bio_endio(bio);
303         /*
304          * Wake up any possible resync thread that waits for the device
305          * to go idle.
306          */
307         allow_barrier(conf);
308
309         free_r10bio(r10_bio);
310 }
311
312 /*
313  * Update disk head position estimator based on IRQ completion info.
314  */
315 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
316 {
317         struct r10conf *conf = r10_bio->mddev->private;
318
319         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320                 r10_bio->devs[slot].addr + (r10_bio->sectors);
321 }
322
323 /*
324  * Find the disk number which triggered given bio
325  */
326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
327                          struct bio *bio, int *slotp, int *replp)
328 {
329         int slot;
330         int repl = 0;
331
332         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
333                 if (r10_bio->devs[slot].bio == bio)
334                         break;
335                 if (r10_bio->devs[slot].repl_bio == bio) {
336                         repl = 1;
337                         break;
338                 }
339         }
340
341         update_head_pos(slot, r10_bio);
342
343         if (slotp)
344                 *slotp = slot;
345         if (replp)
346                 *replp = repl;
347         return r10_bio->devs[slot].devnum;
348 }
349
350 static void raid10_end_read_request(struct bio *bio)
351 {
352         int uptodate = !bio->bi_status;
353         struct r10bio *r10_bio = bio->bi_private;
354         int slot;
355         struct md_rdev *rdev;
356         struct r10conf *conf = r10_bio->mddev->private;
357
358         slot = r10_bio->read_slot;
359         rdev = r10_bio->devs[slot].rdev;
360         /*
361          * this branch is our 'one mirror IO has finished' event handler:
362          */
363         update_head_pos(slot, r10_bio);
364
365         if (uptodate) {
366                 /*
367                  * Set R10BIO_Uptodate in our master bio, so that
368                  * we will return a good error code to the higher
369                  * levels even if IO on some other mirrored buffer fails.
370                  *
371                  * The 'master' represents the composite IO operation to
372                  * user-side. So if something waits for IO, then it will
373                  * wait for the 'master' bio.
374                  */
375                 set_bit(R10BIO_Uptodate, &r10_bio->state);
376         } else {
377                 /* If all other devices that store this block have
378                  * failed, we want to return the error upwards rather
379                  * than fail the last device.  Here we redefine
380                  * "uptodate" to mean "Don't want to retry"
381                  */
382                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383                              rdev->raid_disk))
384                         uptodate = 1;
385         }
386         if (uptodate) {
387                 raid_end_bio_io(r10_bio);
388                 rdev_dec_pending(rdev, conf->mddev);
389         } else {
390                 /*
391                  * oops, read error - keep the refcount on the rdev
392                  */
393                 char b[BDEVNAME_SIZE];
394                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395                                    mdname(conf->mddev),
396                                    bdevname(rdev->bdev, b),
397                                    (unsigned long long)r10_bio->sector);
398                 set_bit(R10BIO_ReadError, &r10_bio->state);
399                 reschedule_retry(r10_bio);
400         }
401 }
402
403 static void close_write(struct r10bio *r10_bio)
404 {
405         /* clear the bitmap if all writes complete successfully */
406         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407                            r10_bio->sectors,
408                            !test_bit(R10BIO_Degraded, &r10_bio->state),
409                            0);
410         md_write_end(r10_bio->mddev);
411 }
412
413 static void one_write_done(struct r10bio *r10_bio)
414 {
415         if (atomic_dec_and_test(&r10_bio->remaining)) {
416                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
417                         reschedule_retry(r10_bio);
418                 else {
419                         close_write(r10_bio);
420                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421                                 reschedule_retry(r10_bio);
422                         else
423                                 raid_end_bio_io(r10_bio);
424                 }
425         }
426 }
427
428 static void raid10_end_write_request(struct bio *bio)
429 {
430         struct r10bio *r10_bio = bio->bi_private;
431         int dev;
432         int dec_rdev = 1;
433         struct r10conf *conf = r10_bio->mddev->private;
434         int slot, repl;
435         struct md_rdev *rdev = NULL;
436         struct bio *to_put = NULL;
437         bool discard_error;
438
439         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
440
441         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
442
443         if (repl)
444                 rdev = conf->mirrors[dev].replacement;
445         if (!rdev) {
446                 smp_rmb();
447                 repl = 0;
448                 rdev = conf->mirrors[dev].rdev;
449         }
450         /*
451          * this branch is our 'one mirror IO has finished' event handler:
452          */
453         if (bio->bi_status && !discard_error) {
454                 if (repl)
455                         /* Never record new bad blocks to replacement,
456                          * just fail it.
457                          */
458                         md_error(rdev->mddev, rdev);
459                 else {
460                         set_bit(WriteErrorSeen, &rdev->flags);
461                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
462                                 set_bit(MD_RECOVERY_NEEDED,
463                                         &rdev->mddev->recovery);
464
465                         dec_rdev = 0;
466                         if (test_bit(FailFast, &rdev->flags) &&
467                             (bio->bi_opf & MD_FAILFAST)) {
468                                 md_error(rdev->mddev, rdev);
469                         }
470
471                         /*
472                          * When the device is faulty, it is not necessary to
473                          * handle write error.
474                          */
475                         if (!test_bit(Faulty, &rdev->flags))
476                                 set_bit(R10BIO_WriteError, &r10_bio->state);
477                         else {
478                                 /* Fail the request */
479                                 set_bit(R10BIO_Degraded, &r10_bio->state);
480                                 r10_bio->devs[slot].bio = NULL;
481                                 to_put = bio;
482                                 dec_rdev = 1;
483                         }
484                 }
485         } else {
486                 /*
487                  * Set R10BIO_Uptodate in our master bio, so that
488                  * we will return a good error code for to the higher
489                  * levels even if IO on some other mirrored buffer fails.
490                  *
491                  * The 'master' represents the composite IO operation to
492                  * user-side. So if something waits for IO, then it will
493                  * wait for the 'master' bio.
494                  */
495                 sector_t first_bad;
496                 int bad_sectors;
497
498                 /*
499                  * Do not set R10BIO_Uptodate if the current device is
500                  * rebuilding or Faulty. This is because we cannot use
501                  * such device for properly reading the data back (we could
502                  * potentially use it, if the current write would have felt
503                  * before rdev->recovery_offset, but for simplicity we don't
504                  * check this here.
505                  */
506                 if (test_bit(In_sync, &rdev->flags) &&
507                     !test_bit(Faulty, &rdev->flags))
508                         set_bit(R10BIO_Uptodate, &r10_bio->state);
509
510                 /* Maybe we can clear some bad blocks. */
511                 if (is_badblock(rdev,
512                                 r10_bio->devs[slot].addr,
513                                 r10_bio->sectors,
514                                 &first_bad, &bad_sectors) && !discard_error) {
515                         bio_put(bio);
516                         if (repl)
517                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518                         else
519                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
520                         dec_rdev = 0;
521                         set_bit(R10BIO_MadeGood, &r10_bio->state);
522                 }
523         }
524
525         /*
526          *
527          * Let's see if all mirrored write operations have finished
528          * already.
529          */
530         one_write_done(r10_bio);
531         if (dec_rdev)
532                 rdev_dec_pending(rdev, conf->mddev);
533         if (to_put)
534                 bio_put(to_put);
535 }
536
537 /*
538  * RAID10 layout manager
539  * As well as the chunksize and raid_disks count, there are two
540  * parameters: near_copies and far_copies.
541  * near_copies * far_copies must be <= raid_disks.
542  * Normally one of these will be 1.
543  * If both are 1, we get raid0.
544  * If near_copies == raid_disks, we get raid1.
545  *
546  * Chunks are laid out in raid0 style with near_copies copies of the
547  * first chunk, followed by near_copies copies of the next chunk and
548  * so on.
549  * If far_copies > 1, then after 1/far_copies of the array has been assigned
550  * as described above, we start again with a device offset of near_copies.
551  * So we effectively have another copy of the whole array further down all
552  * the drives, but with blocks on different drives.
553  * With this layout, and block is never stored twice on the one device.
554  *
555  * raid10_find_phys finds the sector offset of a given virtual sector
556  * on each device that it is on.
557  *
558  * raid10_find_virt does the reverse mapping, from a device and a
559  * sector offset to a virtual address
560  */
561
562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
563 {
564         int n,f;
565         sector_t sector;
566         sector_t chunk;
567         sector_t stripe;
568         int dev;
569         int slot = 0;
570         int last_far_set_start, last_far_set_size;
571
572         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573         last_far_set_start *= geo->far_set_size;
574
575         last_far_set_size = geo->far_set_size;
576         last_far_set_size += (geo->raid_disks % geo->far_set_size);
577
578         /* now calculate first sector/dev */
579         chunk = r10bio->sector >> geo->chunk_shift;
580         sector = r10bio->sector & geo->chunk_mask;
581
582         chunk *= geo->near_copies;
583         stripe = chunk;
584         dev = sector_div(stripe, geo->raid_disks);
585         if (geo->far_offset)
586                 stripe *= geo->far_copies;
587
588         sector += stripe << geo->chunk_shift;
589
590         /* and calculate all the others */
591         for (n = 0; n < geo->near_copies; n++) {
592                 int d = dev;
593                 int set;
594                 sector_t s = sector;
595                 r10bio->devs[slot].devnum = d;
596                 r10bio->devs[slot].addr = s;
597                 slot++;
598
599                 for (f = 1; f < geo->far_copies; f++) {
600                         set = d / geo->far_set_size;
601                         d += geo->near_copies;
602
603                         if ((geo->raid_disks % geo->far_set_size) &&
604                             (d > last_far_set_start)) {
605                                 d -= last_far_set_start;
606                                 d %= last_far_set_size;
607                                 d += last_far_set_start;
608                         } else {
609                                 d %= geo->far_set_size;
610                                 d += geo->far_set_size * set;
611                         }
612                         s += geo->stride;
613                         r10bio->devs[slot].devnum = d;
614                         r10bio->devs[slot].addr = s;
615                         slot++;
616                 }
617                 dev++;
618                 if (dev >= geo->raid_disks) {
619                         dev = 0;
620                         sector += (geo->chunk_mask + 1);
621                 }
622         }
623 }
624
625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626 {
627         struct geom *geo = &conf->geo;
628
629         if (conf->reshape_progress != MaxSector &&
630             ((r10bio->sector >= conf->reshape_progress) !=
631              conf->mddev->reshape_backwards)) {
632                 set_bit(R10BIO_Previous, &r10bio->state);
633                 geo = &conf->prev;
634         } else
635                 clear_bit(R10BIO_Previous, &r10bio->state);
636
637         __raid10_find_phys(geo, r10bio);
638 }
639
640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
641 {
642         sector_t offset, chunk, vchunk;
643         /* Never use conf->prev as this is only called during resync
644          * or recovery, so reshape isn't happening
645          */
646         struct geom *geo = &conf->geo;
647         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648         int far_set_size = geo->far_set_size;
649         int last_far_set_start;
650
651         if (geo->raid_disks % geo->far_set_size) {
652                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653                 last_far_set_start *= geo->far_set_size;
654
655                 if (dev >= last_far_set_start) {
656                         far_set_size = geo->far_set_size;
657                         far_set_size += (geo->raid_disks % geo->far_set_size);
658                         far_set_start = last_far_set_start;
659                 }
660         }
661
662         offset = sector & geo->chunk_mask;
663         if (geo->far_offset) {
664                 int fc;
665                 chunk = sector >> geo->chunk_shift;
666                 fc = sector_div(chunk, geo->far_copies);
667                 dev -= fc * geo->near_copies;
668                 if (dev < far_set_start)
669                         dev += far_set_size;
670         } else {
671                 while (sector >= geo->stride) {
672                         sector -= geo->stride;
673                         if (dev < (geo->near_copies + far_set_start))
674                                 dev += far_set_size - geo->near_copies;
675                         else
676                                 dev -= geo->near_copies;
677                 }
678                 chunk = sector >> geo->chunk_shift;
679         }
680         vchunk = chunk * geo->raid_disks + dev;
681         sector_div(vchunk, geo->near_copies);
682         return (vchunk << geo->chunk_shift) + offset;
683 }
684
685 /*
686  * This routine returns the disk from which the requested read should
687  * be done. There is a per-array 'next expected sequential IO' sector
688  * number - if this matches on the next IO then we use the last disk.
689  * There is also a per-disk 'last know head position' sector that is
690  * maintained from IRQ contexts, both the normal and the resync IO
691  * completion handlers update this position correctly. If there is no
692  * perfect sequential match then we pick the disk whose head is closest.
693  *
694  * If there are 2 mirrors in the same 2 devices, performance degrades
695  * because position is mirror, not device based.
696  *
697  * The rdev for the device selected will have nr_pending incremented.
698  */
699
700 /*
701  * FIXME: possibly should rethink readbalancing and do it differently
702  * depending on near_copies / far_copies geometry.
703  */
704 static struct md_rdev *read_balance(struct r10conf *conf,
705                                     struct r10bio *r10_bio,
706                                     int *max_sectors)
707 {
708         const sector_t this_sector = r10_bio->sector;
709         int disk, slot;
710         int sectors = r10_bio->sectors;
711         int best_good_sectors;
712         sector_t new_distance, best_dist;
713         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
714         int do_balance;
715         int best_dist_slot, best_pending_slot;
716         bool has_nonrot_disk = false;
717         unsigned int min_pending;
718         struct geom *geo = &conf->geo;
719
720         raid10_find_phys(conf, r10_bio);
721         rcu_read_lock();
722         best_dist_slot = -1;
723         min_pending = UINT_MAX;
724         best_dist_rdev = NULL;
725         best_pending_rdev = NULL;
726         best_dist = MaxSector;
727         best_good_sectors = 0;
728         do_balance = 1;
729         clear_bit(R10BIO_FailFast, &r10_bio->state);
730         /*
731          * Check if we can balance. We can balance on the whole
732          * device if no resync is going on (recovery is ok), or below
733          * the resync window. We take the first readable disk when
734          * above the resync window.
735          */
736         if ((conf->mddev->recovery_cp < MaxSector
737              && (this_sector + sectors >= conf->next_resync)) ||
738             (mddev_is_clustered(conf->mddev) &&
739              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740                                             this_sector + sectors)))
741                 do_balance = 0;
742
743         for (slot = 0; slot < conf->copies ; slot++) {
744                 sector_t first_bad;
745                 int bad_sectors;
746                 sector_t dev_sector;
747                 unsigned int pending;
748                 bool nonrot;
749
750                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
751                         continue;
752                 disk = r10_bio->devs[slot].devnum;
753                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
754                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
757                 if (rdev == NULL ||
758                     test_bit(Faulty, &rdev->flags))
759                         continue;
760                 if (!test_bit(In_sync, &rdev->flags) &&
761                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762                         continue;
763
764                 dev_sector = r10_bio->devs[slot].addr;
765                 if (is_badblock(rdev, dev_sector, sectors,
766                                 &first_bad, &bad_sectors)) {
767                         if (best_dist < MaxSector)
768                                 /* Already have a better slot */
769                                 continue;
770                         if (first_bad <= dev_sector) {
771                                 /* Cannot read here.  If this is the
772                                  * 'primary' device, then we must not read
773                                  * beyond 'bad_sectors' from another device.
774                                  */
775                                 bad_sectors -= (dev_sector - first_bad);
776                                 if (!do_balance && sectors > bad_sectors)
777                                         sectors = bad_sectors;
778                                 if (best_good_sectors > sectors)
779                                         best_good_sectors = sectors;
780                         } else {
781                                 sector_t good_sectors =
782                                         first_bad - dev_sector;
783                                 if (good_sectors > best_good_sectors) {
784                                         best_good_sectors = good_sectors;
785                                         best_dist_slot = slot;
786                                         best_dist_rdev = rdev;
787                                 }
788                                 if (!do_balance)
789                                         /* Must read from here */
790                                         break;
791                         }
792                         continue;
793                 } else
794                         best_good_sectors = sectors;
795
796                 if (!do_balance)
797                         break;
798
799                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800                 has_nonrot_disk |= nonrot;
801                 pending = atomic_read(&rdev->nr_pending);
802                 if (min_pending > pending && nonrot) {
803                         min_pending = pending;
804                         best_pending_slot = slot;
805                         best_pending_rdev = rdev;
806                 }
807
808                 if (best_dist_slot >= 0)
809                         /* At least 2 disks to choose from so failfast is OK */
810                         set_bit(R10BIO_FailFast, &r10_bio->state);
811                 /* This optimisation is debatable, and completely destroys
812                  * sequential read speed for 'far copies' arrays.  So only
813                  * keep it for 'near' arrays, and review those later.
814                  */
815                 if (geo->near_copies > 1 && !pending)
816                         new_distance = 0;
817
818                 /* for far > 1 always use the lowest address */
819                 else if (geo->far_copies > 1)
820                         new_distance = r10_bio->devs[slot].addr;
821                 else
822                         new_distance = abs(r10_bio->devs[slot].addr -
823                                            conf->mirrors[disk].head_position);
824
825                 if (new_distance < best_dist) {
826                         best_dist = new_distance;
827                         best_dist_slot = slot;
828                         best_dist_rdev = rdev;
829                 }
830         }
831         if (slot >= conf->copies) {
832                 if (has_nonrot_disk) {
833                         slot = best_pending_slot;
834                         rdev = best_pending_rdev;
835                 } else {
836                         slot = best_dist_slot;
837                         rdev = best_dist_rdev;
838                 }
839         }
840
841         if (slot >= 0) {
842                 atomic_inc(&rdev->nr_pending);
843                 r10_bio->read_slot = slot;
844         } else
845                 rdev = NULL;
846         rcu_read_unlock();
847         *max_sectors = best_good_sectors;
848
849         return rdev;
850 }
851
852 static void flush_pending_writes(struct r10conf *conf)
853 {
854         /* Any writes that have been queued but are awaiting
855          * bitmap updates get flushed here.
856          */
857         spin_lock_irq(&conf->device_lock);
858
859         if (conf->pending_bio_list.head) {
860                 struct blk_plug plug;
861                 struct bio *bio;
862
863                 bio = bio_list_get(&conf->pending_bio_list);
864                 conf->pending_count = 0;
865                 spin_unlock_irq(&conf->device_lock);
866
867                 /*
868                  * As this is called in a wait_event() loop (see freeze_array),
869                  * current->state might be TASK_UNINTERRUPTIBLE which will
870                  * cause a warning when we prepare to wait again.  As it is
871                  * rare that this path is taken, it is perfectly safe to force
872                  * us to go around the wait_event() loop again, so the warning
873                  * is a false-positive. Silence the warning by resetting
874                  * thread state
875                  */
876                 __set_current_state(TASK_RUNNING);
877
878                 blk_start_plug(&plug);
879                 /* flush any pending bitmap writes to disk
880                  * before proceeding w/ I/O */
881                 md_bitmap_unplug(conf->mddev->bitmap);
882                 wake_up(&conf->wait_barrier);
883
884                 while (bio) { /* submit pending writes */
885                         struct bio *next = bio->bi_next;
886                         struct md_rdev *rdev = (void*)bio->bi_bdev;
887                         bio->bi_next = NULL;
888                         bio_set_dev(bio, rdev->bdev);
889                         if (test_bit(Faulty, &rdev->flags)) {
890                                 bio_io_error(bio);
891                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
892                                             !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
893                                 /* Just ignore it */
894                                 bio_endio(bio);
895                         else
896                                 submit_bio_noacct(bio);
897                         bio = next;
898                 }
899                 blk_finish_plug(&plug);
900         } else
901                 spin_unlock_irq(&conf->device_lock);
902 }
903
904 /* Barriers....
905  * Sometimes we need to suspend IO while we do something else,
906  * either some resync/recovery, or reconfigure the array.
907  * To do this we raise a 'barrier'.
908  * The 'barrier' is a counter that can be raised multiple times
909  * to count how many activities are happening which preclude
910  * normal IO.
911  * We can only raise the barrier if there is no pending IO.
912  * i.e. if nr_pending == 0.
913  * We choose only to raise the barrier if no-one is waiting for the
914  * barrier to go down.  This means that as soon as an IO request
915  * is ready, no other operations which require a barrier will start
916  * until the IO request has had a chance.
917  *
918  * So: regular IO calls 'wait_barrier'.  When that returns there
919  *    is no backgroup IO happening,  It must arrange to call
920  *    allow_barrier when it has finished its IO.
921  * backgroup IO calls must call raise_barrier.  Once that returns
922  *    there is no normal IO happeing.  It must arrange to call
923  *    lower_barrier when the particular background IO completes.
924  */
925
926 static void raise_barrier(struct r10conf *conf, int force)
927 {
928         BUG_ON(force && !conf->barrier);
929         spin_lock_irq(&conf->resync_lock);
930
931         /* Wait until no block IO is waiting (unless 'force') */
932         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
933                             conf->resync_lock);
934
935         /* block any new IO from starting */
936         conf->barrier++;
937
938         /* Now wait for all pending IO to complete */
939         wait_event_lock_irq(conf->wait_barrier,
940                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
941                             conf->resync_lock);
942
943         spin_unlock_irq(&conf->resync_lock);
944 }
945
946 static void lower_barrier(struct r10conf *conf)
947 {
948         unsigned long flags;
949         spin_lock_irqsave(&conf->resync_lock, flags);
950         conf->barrier--;
951         spin_unlock_irqrestore(&conf->resync_lock, flags);
952         wake_up(&conf->wait_barrier);
953 }
954
955 static void wait_barrier(struct r10conf *conf)
956 {
957         spin_lock_irq(&conf->resync_lock);
958         if (conf->barrier) {
959                 struct bio_list *bio_list = current->bio_list;
960                 conf->nr_waiting++;
961                 /* Wait for the barrier to drop.
962                  * However if there are already pending
963                  * requests (preventing the barrier from
964                  * rising completely), and the
965                  * pre-process bio queue isn't empty,
966                  * then don't wait, as we need to empty
967                  * that queue to get the nr_pending
968                  * count down.
969                  */
970                 raid10_log(conf->mddev, "wait barrier");
971                 wait_event_lock_irq(conf->wait_barrier,
972                                     !conf->barrier ||
973                                     (atomic_read(&conf->nr_pending) &&
974                                      bio_list &&
975                                      (!bio_list_empty(&bio_list[0]) ||
976                                       !bio_list_empty(&bio_list[1]))) ||
977                                      /* move on if recovery thread is
978                                       * blocked by us
979                                       */
980                                      (conf->mddev->thread->tsk == current &&
981                                       test_bit(MD_RECOVERY_RUNNING,
982                                                &conf->mddev->recovery) &&
983                                       conf->nr_queued > 0),
984                                     conf->resync_lock);
985                 conf->nr_waiting--;
986                 if (!conf->nr_waiting)
987                         wake_up(&conf->wait_barrier);
988         }
989         atomic_inc(&conf->nr_pending);
990         spin_unlock_irq(&conf->resync_lock);
991 }
992
993 static void allow_barrier(struct r10conf *conf)
994 {
995         if ((atomic_dec_and_test(&conf->nr_pending)) ||
996                         (conf->array_freeze_pending))
997                 wake_up(&conf->wait_barrier);
998 }
999
1000 static void freeze_array(struct r10conf *conf, int extra)
1001 {
1002         /* stop syncio and normal IO and wait for everything to
1003          * go quiet.
1004          * We increment barrier and nr_waiting, and then
1005          * wait until nr_pending match nr_queued+extra
1006          * This is called in the context of one normal IO request
1007          * that has failed. Thus any sync request that might be pending
1008          * will be blocked by nr_pending, and we need to wait for
1009          * pending IO requests to complete or be queued for re-try.
1010          * Thus the number queued (nr_queued) plus this request (extra)
1011          * must match the number of pending IOs (nr_pending) before
1012          * we continue.
1013          */
1014         spin_lock_irq(&conf->resync_lock);
1015         conf->array_freeze_pending++;
1016         conf->barrier++;
1017         conf->nr_waiting++;
1018         wait_event_lock_irq_cmd(conf->wait_barrier,
1019                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1020                                 conf->resync_lock,
1021                                 flush_pending_writes(conf));
1022
1023         conf->array_freeze_pending--;
1024         spin_unlock_irq(&conf->resync_lock);
1025 }
1026
1027 static void unfreeze_array(struct r10conf *conf)
1028 {
1029         /* reverse the effect of the freeze */
1030         spin_lock_irq(&conf->resync_lock);
1031         conf->barrier--;
1032         conf->nr_waiting--;
1033         wake_up(&conf->wait_barrier);
1034         spin_unlock_irq(&conf->resync_lock);
1035 }
1036
1037 static sector_t choose_data_offset(struct r10bio *r10_bio,
1038                                    struct md_rdev *rdev)
1039 {
1040         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041             test_bit(R10BIO_Previous, &r10_bio->state))
1042                 return rdev->data_offset;
1043         else
1044                 return rdev->new_data_offset;
1045 }
1046
1047 struct raid10_plug_cb {
1048         struct blk_plug_cb      cb;
1049         struct bio_list         pending;
1050         int                     pending_cnt;
1051 };
1052
1053 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1054 {
1055         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1056                                                    cb);
1057         struct mddev *mddev = plug->cb.data;
1058         struct r10conf *conf = mddev->private;
1059         struct bio *bio;
1060
1061         if (from_schedule || current->bio_list) {
1062                 spin_lock_irq(&conf->device_lock);
1063                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064                 conf->pending_count += plug->pending_cnt;
1065                 spin_unlock_irq(&conf->device_lock);
1066                 wake_up(&conf->wait_barrier);
1067                 md_wakeup_thread(mddev->thread);
1068                 kfree(plug);
1069                 return;
1070         }
1071
1072         /* we aren't scheduling, so we can do the write-out directly. */
1073         bio = bio_list_get(&plug->pending);
1074         md_bitmap_unplug(mddev->bitmap);
1075         wake_up(&conf->wait_barrier);
1076
1077         while (bio) { /* submit pending writes */
1078                 struct bio *next = bio->bi_next;
1079                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1080                 bio->bi_next = NULL;
1081                 bio_set_dev(bio, rdev->bdev);
1082                 if (test_bit(Faulty, &rdev->flags)) {
1083                         bio_io_error(bio);
1084                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1085                                     !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1086                         /* Just ignore it */
1087                         bio_endio(bio);
1088                 else
1089                         submit_bio_noacct(bio);
1090                 bio = next;
1091         }
1092         kfree(plug);
1093 }
1094
1095 /*
1096  * 1. Register the new request and wait if the reconstruction thread has put
1097  * up a bar for new requests. Continue immediately if no resync is active
1098  * currently.
1099  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1100  */
1101 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102                                  struct bio *bio, sector_t sectors)
1103 {
1104         wait_barrier(conf);
1105         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106             bio->bi_iter.bi_sector < conf->reshape_progress &&
1107             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1108                 raid10_log(conf->mddev, "wait reshape");
1109                 allow_barrier(conf);
1110                 wait_event(conf->wait_barrier,
1111                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1113                            sectors);
1114                 wait_barrier(conf);
1115         }
1116 }
1117
1118 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119                                 struct r10bio *r10_bio)
1120 {
1121         struct r10conf *conf = mddev->private;
1122         struct bio *read_bio;
1123         const int op = bio_op(bio);
1124         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1125         int max_sectors;
1126         struct md_rdev *rdev;
1127         char b[BDEVNAME_SIZE];
1128         int slot = r10_bio->read_slot;
1129         struct md_rdev *err_rdev = NULL;
1130         gfp_t gfp = GFP_NOIO;
1131
1132         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1133                 /*
1134                  * This is an error retry, but we cannot
1135                  * safely dereference the rdev in the r10_bio,
1136                  * we must use the one in conf.
1137                  * If it has already been disconnected (unlikely)
1138                  * we lose the device name in error messages.
1139                  */
1140                 int disk;
1141                 /*
1142                  * As we are blocking raid10, it is a little safer to
1143                  * use __GFP_HIGH.
1144                  */
1145                 gfp = GFP_NOIO | __GFP_HIGH;
1146
1147                 rcu_read_lock();
1148                 disk = r10_bio->devs[slot].devnum;
1149                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1150                 if (err_rdev)
1151                         bdevname(err_rdev->bdev, b);
1152                 else {
1153                         strcpy(b, "???");
1154                         /* This never gets dereferenced */
1155                         err_rdev = r10_bio->devs[slot].rdev;
1156                 }
1157                 rcu_read_unlock();
1158         }
1159
1160         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1161         rdev = read_balance(conf, r10_bio, &max_sectors);
1162         if (!rdev) {
1163                 if (err_rdev) {
1164                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165                                             mdname(mddev), b,
1166                                             (unsigned long long)r10_bio->sector);
1167                 }
1168                 raid_end_bio_io(r10_bio);
1169                 return;
1170         }
1171         if (err_rdev)
1172                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173                                    mdname(mddev),
1174                                    bdevname(rdev->bdev, b),
1175                                    (unsigned long long)r10_bio->sector);
1176         if (max_sectors < bio_sectors(bio)) {
1177                 struct bio *split = bio_split(bio, max_sectors,
1178                                               gfp, &conf->bio_split);
1179                 bio_chain(split, bio);
1180                 allow_barrier(conf);
1181                 submit_bio_noacct(bio);
1182                 wait_barrier(conf);
1183                 bio = split;
1184                 r10_bio->master_bio = bio;
1185                 r10_bio->sectors = max_sectors;
1186         }
1187         slot = r10_bio->read_slot;
1188
1189         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190                 r10_bio->start_time = bio_start_io_acct(bio);
1191         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1192
1193         r10_bio->devs[slot].bio = read_bio;
1194         r10_bio->devs[slot].rdev = rdev;
1195
1196         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197                 choose_data_offset(r10_bio, rdev);
1198         bio_set_dev(read_bio, rdev->bdev);
1199         read_bio->bi_end_io = raid10_end_read_request;
1200         bio_set_op_attrs(read_bio, op, do_sync);
1201         if (test_bit(FailFast, &rdev->flags) &&
1202             test_bit(R10BIO_FailFast, &r10_bio->state))
1203                 read_bio->bi_opf |= MD_FAILFAST;
1204         read_bio->bi_private = r10_bio;
1205
1206         if (mddev->gendisk)
1207                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1208                                       r10_bio->sector);
1209         submit_bio_noacct(read_bio);
1210         return;
1211 }
1212
1213 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214                                   struct bio *bio, bool replacement,
1215                                   int n_copy)
1216 {
1217         const int op = bio_op(bio);
1218         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1220         unsigned long flags;
1221         struct blk_plug_cb *cb;
1222         struct raid10_plug_cb *plug = NULL;
1223         struct r10conf *conf = mddev->private;
1224         struct md_rdev *rdev;
1225         int devnum = r10_bio->devs[n_copy].devnum;
1226         struct bio *mbio;
1227
1228         if (replacement) {
1229                 rdev = conf->mirrors[devnum].replacement;
1230                 if (rdev == NULL) {
1231                         /* Replacement just got moved to main 'rdev' */
1232                         smp_mb();
1233                         rdev = conf->mirrors[devnum].rdev;
1234                 }
1235         } else
1236                 rdev = conf->mirrors[devnum].rdev;
1237
1238         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1239         if (replacement)
1240                 r10_bio->devs[n_copy].repl_bio = mbio;
1241         else
1242                 r10_bio->devs[n_copy].bio = mbio;
1243
1244         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1245                                    choose_data_offset(r10_bio, rdev));
1246         bio_set_dev(mbio, rdev->bdev);
1247         mbio->bi_end_io = raid10_end_write_request;
1248         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249         if (!replacement && test_bit(FailFast,
1250                                      &conf->mirrors[devnum].rdev->flags)
1251                          && enough(conf, devnum))
1252                 mbio->bi_opf |= MD_FAILFAST;
1253         mbio->bi_private = r10_bio;
1254
1255         if (conf->mddev->gendisk)
1256                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1257                                       r10_bio->sector);
1258         /* flush_pending_writes() needs access to the rdev so...*/
1259         mbio->bi_bdev = (void *)rdev;
1260
1261         atomic_inc(&r10_bio->remaining);
1262
1263         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1264         if (cb)
1265                 plug = container_of(cb, struct raid10_plug_cb, cb);
1266         else
1267                 plug = NULL;
1268         if (plug) {
1269                 bio_list_add(&plug->pending, mbio);
1270                 plug->pending_cnt++;
1271         } else {
1272                 spin_lock_irqsave(&conf->device_lock, flags);
1273                 bio_list_add(&conf->pending_bio_list, mbio);
1274                 conf->pending_count++;
1275                 spin_unlock_irqrestore(&conf->device_lock, flags);
1276                 md_wakeup_thread(mddev->thread);
1277         }
1278 }
1279
1280 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1281 {
1282         int i;
1283         struct r10conf *conf = mddev->private;
1284         struct md_rdev *blocked_rdev;
1285
1286 retry_wait:
1287         blocked_rdev = NULL;
1288         rcu_read_lock();
1289         for (i = 0; i < conf->copies; i++) {
1290                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291                 struct md_rdev *rrdev = rcu_dereference(
1292                         conf->mirrors[i].replacement);
1293                 if (rdev == rrdev)
1294                         rrdev = NULL;
1295                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296                         atomic_inc(&rdev->nr_pending);
1297                         blocked_rdev = rdev;
1298                         break;
1299                 }
1300                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301                         atomic_inc(&rrdev->nr_pending);
1302                         blocked_rdev = rrdev;
1303                         break;
1304                 }
1305
1306                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307                         sector_t first_bad;
1308                         sector_t dev_sector = r10_bio->devs[i].addr;
1309                         int bad_sectors;
1310                         int is_bad;
1311
1312                         /*
1313                          * Discard request doesn't care the write result
1314                          * so it doesn't need to wait blocked disk here.
1315                          */
1316                         if (!r10_bio->sectors)
1317                                 continue;
1318
1319                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320                                              &first_bad, &bad_sectors);
1321                         if (is_bad < 0) {
1322                                 /*
1323                                  * Mustn't write here until the bad block
1324                                  * is acknowledged
1325                                  */
1326                                 atomic_inc(&rdev->nr_pending);
1327                                 set_bit(BlockedBadBlocks, &rdev->flags);
1328                                 blocked_rdev = rdev;
1329                                 break;
1330                         }
1331                 }
1332         }
1333         rcu_read_unlock();
1334
1335         if (unlikely(blocked_rdev)) {
1336                 /* Have to wait for this device to get unblocked, then retry */
1337                 allow_barrier(conf);
1338                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339                                 __func__, blocked_rdev->raid_disk);
1340                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341                 wait_barrier(conf);
1342                 goto retry_wait;
1343         }
1344 }
1345
1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347                                  struct r10bio *r10_bio)
1348 {
1349         struct r10conf *conf = mddev->private;
1350         int i;
1351         sector_t sectors;
1352         int max_sectors;
1353
1354         if ((mddev_is_clustered(mddev) &&
1355              md_cluster_ops->area_resyncing(mddev, WRITE,
1356                                             bio->bi_iter.bi_sector,
1357                                             bio_end_sector(bio)))) {
1358                 DEFINE_WAIT(w);
1359                 for (;;) {
1360                         prepare_to_wait(&conf->wait_barrier,
1361                                         &w, TASK_IDLE);
1362                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1364                                 break;
1365                         schedule();
1366                 }
1367                 finish_wait(&conf->wait_barrier, &w);
1368         }
1369
1370         sectors = r10_bio->sectors;
1371         regular_request_wait(mddev, conf, bio, sectors);
1372         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1373             (mddev->reshape_backwards
1374              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1378                 /* Need to update reshape_position in metadata */
1379                 mddev->reshape_position = conf->reshape_progress;
1380                 set_mask_bits(&mddev->sb_flags, 0,
1381                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1382                 md_wakeup_thread(mddev->thread);
1383                 raid10_log(conf->mddev, "wait reshape metadata");
1384                 wait_event(mddev->sb_wait,
1385                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1386
1387                 conf->reshape_safe = mddev->reshape_position;
1388         }
1389
1390         if (conf->pending_count >= max_queued_requests) {
1391                 md_wakeup_thread(mddev->thread);
1392                 raid10_log(mddev, "wait queued");
1393                 wait_event(conf->wait_barrier,
1394                            conf->pending_count < max_queued_requests);
1395         }
1396         /* first select target devices under rcu_lock and
1397          * inc refcount on their rdev.  Record them by setting
1398          * bios[x] to bio
1399          * If there are known/acknowledged bad blocks on any device
1400          * on which we have seen a write error, we want to avoid
1401          * writing to those blocks.  This potentially requires several
1402          * writes to write around the bad blocks.  Each set of writes
1403          * gets its own r10_bio with a set of bios attached.
1404          */
1405
1406         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1407         raid10_find_phys(conf, r10_bio);
1408
1409         wait_blocked_dev(mddev, r10_bio);
1410
1411         rcu_read_lock();
1412         max_sectors = r10_bio->sectors;
1413
1414         for (i = 0;  i < conf->copies; i++) {
1415                 int d = r10_bio->devs[i].devnum;
1416                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1417                 struct md_rdev *rrdev = rcu_dereference(
1418                         conf->mirrors[d].replacement);
1419                 if (rdev == rrdev)
1420                         rrdev = NULL;
1421                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1422                         rdev = NULL;
1423                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424                         rrdev = NULL;
1425
1426                 r10_bio->devs[i].bio = NULL;
1427                 r10_bio->devs[i].repl_bio = NULL;
1428
1429                 if (!rdev && !rrdev) {
1430                         set_bit(R10BIO_Degraded, &r10_bio->state);
1431                         continue;
1432                 }
1433                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1434                         sector_t first_bad;
1435                         sector_t dev_sector = r10_bio->devs[i].addr;
1436                         int bad_sectors;
1437                         int is_bad;
1438
1439                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1440                                              &first_bad, &bad_sectors);
1441                         if (is_bad && first_bad <= dev_sector) {
1442                                 /* Cannot write here at all */
1443                                 bad_sectors -= (dev_sector - first_bad);
1444                                 if (bad_sectors < max_sectors)
1445                                         /* Mustn't write more than bad_sectors
1446                                          * to other devices yet
1447                                          */
1448                                         max_sectors = bad_sectors;
1449                                 /* We don't set R10BIO_Degraded as that
1450                                  * only applies if the disk is missing,
1451                                  * so it might be re-added, and we want to
1452                                  * know to recover this chunk.
1453                                  * In this case the device is here, and the
1454                                  * fact that this chunk is not in-sync is
1455                                  * recorded in the bad block log.
1456                                  */
1457                                 continue;
1458                         }
1459                         if (is_bad) {
1460                                 int good_sectors = first_bad - dev_sector;
1461                                 if (good_sectors < max_sectors)
1462                                         max_sectors = good_sectors;
1463                         }
1464                 }
1465                 if (rdev) {
1466                         r10_bio->devs[i].bio = bio;
1467                         atomic_inc(&rdev->nr_pending);
1468                 }
1469                 if (rrdev) {
1470                         r10_bio->devs[i].repl_bio = bio;
1471                         atomic_inc(&rrdev->nr_pending);
1472                 }
1473         }
1474         rcu_read_unlock();
1475
1476         if (max_sectors < r10_bio->sectors)
1477                 r10_bio->sectors = max_sectors;
1478
1479         if (r10_bio->sectors < bio_sectors(bio)) {
1480                 struct bio *split = bio_split(bio, r10_bio->sectors,
1481                                               GFP_NOIO, &conf->bio_split);
1482                 bio_chain(split, bio);
1483                 allow_barrier(conf);
1484                 submit_bio_noacct(bio);
1485                 wait_barrier(conf);
1486                 bio = split;
1487                 r10_bio->master_bio = bio;
1488         }
1489
1490         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491                 r10_bio->start_time = bio_start_io_acct(bio);
1492         atomic_set(&r10_bio->remaining, 1);
1493         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1494
1495         for (i = 0; i < conf->copies; i++) {
1496                 if (r10_bio->devs[i].bio)
1497                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1498                 if (r10_bio->devs[i].repl_bio)
1499                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1500         }
1501         one_write_done(r10_bio);
1502 }
1503
1504 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1505 {
1506         struct r10conf *conf = mddev->private;
1507         struct r10bio *r10_bio;
1508
1509         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1510
1511         r10_bio->master_bio = bio;
1512         r10_bio->sectors = sectors;
1513
1514         r10_bio->mddev = mddev;
1515         r10_bio->sector = bio->bi_iter.bi_sector;
1516         r10_bio->state = 0;
1517         r10_bio->read_slot = -1;
1518         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519                         conf->geo.raid_disks);
1520
1521         if (bio_data_dir(bio) == READ)
1522                 raid10_read_request(mddev, bio, r10_bio);
1523         else
1524                 raid10_write_request(mddev, bio, r10_bio);
1525 }
1526
1527 static void raid_end_discard_bio(struct r10bio *r10bio)
1528 {
1529         struct r10conf *conf = r10bio->mddev->private;
1530         struct r10bio *first_r10bio;
1531
1532         while (atomic_dec_and_test(&r10bio->remaining)) {
1533
1534                 allow_barrier(conf);
1535
1536                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1538                         free_r10bio(r10bio);
1539                         r10bio = first_r10bio;
1540                 } else {
1541                         md_write_end(r10bio->mddev);
1542                         bio_endio(r10bio->master_bio);
1543                         free_r10bio(r10bio);
1544                         break;
1545                 }
1546         }
1547 }
1548
1549 static void raid10_end_discard_request(struct bio *bio)
1550 {
1551         struct r10bio *r10_bio = bio->bi_private;
1552         struct r10conf *conf = r10_bio->mddev->private;
1553         struct md_rdev *rdev = NULL;
1554         int dev;
1555         int slot, repl;
1556
1557         /*
1558          * We don't care the return value of discard bio
1559          */
1560         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1562
1563         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1564         if (repl)
1565                 rdev = conf->mirrors[dev].replacement;
1566         if (!rdev) {
1567                 /*
1568                  * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569                  * replacement before setting replacement to NULL. It can read
1570                  * rdev first without barrier protect even replacment is NULL
1571                  */
1572                 smp_rmb();
1573                 rdev = conf->mirrors[dev].rdev;
1574         }
1575
1576         raid_end_discard_bio(r10_bio);
1577         rdev_dec_pending(rdev, conf->mddev);
1578 }
1579
1580 /*
1581  * There are some limitations to handle discard bio
1582  * 1st, the discard size is bigger than stripe_size*2.
1583  * 2st, if the discard bio spans reshape progress, we use the old way to
1584  * handle discard bio
1585  */
1586 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1587 {
1588         struct r10conf *conf = mddev->private;
1589         struct geom *geo = &conf->geo;
1590         int far_copies = geo->far_copies;
1591         bool first_copy = true;
1592         struct r10bio *r10_bio, *first_r10bio;
1593         struct bio *split;
1594         int disk;
1595         sector_t chunk;
1596         unsigned int stripe_size;
1597         unsigned int stripe_data_disks;
1598         sector_t split_size;
1599         sector_t bio_start, bio_end;
1600         sector_t first_stripe_index, last_stripe_index;
1601         sector_t start_disk_offset;
1602         unsigned int start_disk_index;
1603         sector_t end_disk_offset;
1604         unsigned int end_disk_index;
1605         unsigned int remainder;
1606
1607         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1608                 return -EAGAIN;
1609
1610         wait_barrier(conf);
1611
1612         /*
1613          * Check reshape again to avoid reshape happens after checking
1614          * MD_RECOVERY_RESHAPE and before wait_barrier
1615          */
1616         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1617                 goto out;
1618
1619         if (geo->near_copies)
1620                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1621                                         geo->raid_disks % geo->near_copies;
1622         else
1623                 stripe_data_disks = geo->raid_disks;
1624
1625         stripe_size = stripe_data_disks << geo->chunk_shift;
1626
1627         bio_start = bio->bi_iter.bi_sector;
1628         bio_end = bio_end_sector(bio);
1629
1630         /*
1631          * Maybe one discard bio is smaller than strip size or across one
1632          * stripe and discard region is larger than one stripe size. For far
1633          * offset layout, if the discard region is not aligned with stripe
1634          * size, there is hole when we submit discard bio to member disk.
1635          * For simplicity, we only handle discard bio which discard region
1636          * is bigger than stripe_size * 2
1637          */
1638         if (bio_sectors(bio) < stripe_size*2)
1639                 goto out;
1640
1641         /*
1642          * Keep bio aligned with strip size.
1643          */
1644         div_u64_rem(bio_start, stripe_size, &remainder);
1645         if (remainder) {
1646                 split_size = stripe_size - remainder;
1647                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648                 bio_chain(split, bio);
1649                 allow_barrier(conf);
1650                 /* Resend the fist split part */
1651                 submit_bio_noacct(split);
1652                 wait_barrier(conf);
1653         }
1654         div_u64_rem(bio_end, stripe_size, &remainder);
1655         if (remainder) {
1656                 split_size = bio_sectors(bio) - remainder;
1657                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658                 bio_chain(split, bio);
1659                 allow_barrier(conf);
1660                 /* Resend the second split part */
1661                 submit_bio_noacct(bio);
1662                 bio = split;
1663                 wait_barrier(conf);
1664         }
1665
1666         bio_start = bio->bi_iter.bi_sector;
1667         bio_end = bio_end_sector(bio);
1668
1669         /*
1670          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671          * One stripe contains the chunks from all member disk (one chunk from
1672          * one disk at the same HBA address). For layout detail, see 'man md 4'
1673          */
1674         chunk = bio_start >> geo->chunk_shift;
1675         chunk *= geo->near_copies;
1676         first_stripe_index = chunk;
1677         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678         if (geo->far_offset)
1679                 first_stripe_index *= geo->far_copies;
1680         start_disk_offset = (bio_start & geo->chunk_mask) +
1681                                 (first_stripe_index << geo->chunk_shift);
1682
1683         chunk = bio_end >> geo->chunk_shift;
1684         chunk *= geo->near_copies;
1685         last_stripe_index = chunk;
1686         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687         if (geo->far_offset)
1688                 last_stripe_index *= geo->far_copies;
1689         end_disk_offset = (bio_end & geo->chunk_mask) +
1690                                 (last_stripe_index << geo->chunk_shift);
1691
1692 retry_discard:
1693         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694         r10_bio->mddev = mddev;
1695         r10_bio->state = 0;
1696         r10_bio->sectors = 0;
1697         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698         wait_blocked_dev(mddev, r10_bio);
1699
1700         /*
1701          * For far layout it needs more than one r10bio to cover all regions.
1702          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703          * to record the discard bio. Other r10bio->master_bio record the first
1704          * r10bio. The first r10bio only release after all other r10bios finish.
1705          * The discard bio returns only first r10bio finishes
1706          */
1707         if (first_copy) {
1708                 r10_bio->master_bio = bio;
1709                 set_bit(R10BIO_Discard, &r10_bio->state);
1710                 first_copy = false;
1711                 first_r10bio = r10_bio;
1712         } else
1713                 r10_bio->master_bio = (struct bio *)first_r10bio;
1714
1715         rcu_read_lock();
1716         for (disk = 0; disk < geo->raid_disks; disk++) {
1717                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1718                 struct md_rdev *rrdev = rcu_dereference(
1719                         conf->mirrors[disk].replacement);
1720
1721                 r10_bio->devs[disk].bio = NULL;
1722                 r10_bio->devs[disk].repl_bio = NULL;
1723
1724                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1725                         rdev = NULL;
1726                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1727                         rrdev = NULL;
1728                 if (!rdev && !rrdev)
1729                         continue;
1730
1731                 if (rdev) {
1732                         r10_bio->devs[disk].bio = bio;
1733                         atomic_inc(&rdev->nr_pending);
1734                 }
1735                 if (rrdev) {
1736                         r10_bio->devs[disk].repl_bio = bio;
1737                         atomic_inc(&rrdev->nr_pending);
1738                 }
1739         }
1740         rcu_read_unlock();
1741
1742         atomic_set(&r10_bio->remaining, 1);
1743         for (disk = 0; disk < geo->raid_disks; disk++) {
1744                 sector_t dev_start, dev_end;
1745                 struct bio *mbio, *rbio = NULL;
1746                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1747                 struct md_rdev *rrdev = rcu_dereference(
1748                         conf->mirrors[disk].replacement);
1749
1750                 /*
1751                  * Now start to calculate the start and end address for each disk.
1752                  * The space between dev_start and dev_end is the discard region.
1753                  *
1754                  * For dev_start, it needs to consider three conditions:
1755                  * 1st, the disk is before start_disk, you can imagine the disk in
1756                  * the next stripe. So the dev_start is the start address of next
1757                  * stripe.
1758                  * 2st, the disk is after start_disk, it means the disk is at the
1759                  * same stripe of first disk
1760                  * 3st, the first disk itself, we can use start_disk_offset directly
1761                  */
1762                 if (disk < start_disk_index)
1763                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1764                 else if (disk > start_disk_index)
1765                         dev_start = first_stripe_index * mddev->chunk_sectors;
1766                 else
1767                         dev_start = start_disk_offset;
1768
1769                 if (disk < end_disk_index)
1770                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1771                 else if (disk > end_disk_index)
1772                         dev_end = last_stripe_index * mddev->chunk_sectors;
1773                 else
1774                         dev_end = end_disk_offset;
1775
1776                 /*
1777                  * It only handles discard bio which size is >= stripe size, so
1778                  * dev_end > dev_start all the time
1779                  */
1780                 if (r10_bio->devs[disk].bio) {
1781                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1782                         mbio->bi_end_io = raid10_end_discard_request;
1783                         mbio->bi_private = r10_bio;
1784                         r10_bio->devs[disk].bio = mbio;
1785                         r10_bio->devs[disk].devnum = disk;
1786                         atomic_inc(&r10_bio->remaining);
1787                         md_submit_discard_bio(mddev, rdev, mbio,
1788                                         dev_start + choose_data_offset(r10_bio, rdev),
1789                                         dev_end - dev_start);
1790                         bio_endio(mbio);
1791                 }
1792                 if (r10_bio->devs[disk].repl_bio) {
1793                         rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1794                         rbio->bi_end_io = raid10_end_discard_request;
1795                         rbio->bi_private = r10_bio;
1796                         r10_bio->devs[disk].repl_bio = rbio;
1797                         r10_bio->devs[disk].devnum = disk;
1798                         atomic_inc(&r10_bio->remaining);
1799                         md_submit_discard_bio(mddev, rrdev, rbio,
1800                                         dev_start + choose_data_offset(r10_bio, rrdev),
1801                                         dev_end - dev_start);
1802                         bio_endio(rbio);
1803                 }
1804         }
1805
1806         if (!geo->far_offset && --far_copies) {
1807                 first_stripe_index += geo->stride >> geo->chunk_shift;
1808                 start_disk_offset += geo->stride;
1809                 last_stripe_index += geo->stride >> geo->chunk_shift;
1810                 end_disk_offset += geo->stride;
1811                 atomic_inc(&first_r10bio->remaining);
1812                 raid_end_discard_bio(r10_bio);
1813                 wait_barrier(conf);
1814                 goto retry_discard;
1815         }
1816
1817         raid_end_discard_bio(r10_bio);
1818
1819         return 0;
1820 out:
1821         allow_barrier(conf);
1822         return -EAGAIN;
1823 }
1824
1825 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1826 {
1827         struct r10conf *conf = mddev->private;
1828         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1829         int chunk_sects = chunk_mask + 1;
1830         int sectors = bio_sectors(bio);
1831
1832         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1833             && md_flush_request(mddev, bio))
1834                 return true;
1835
1836         if (!md_write_start(mddev, bio))
1837                 return false;
1838
1839         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1840                 if (!raid10_handle_discard(mddev, bio))
1841                         return true;
1842
1843         /*
1844          * If this request crosses a chunk boundary, we need to split
1845          * it.
1846          */
1847         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1848                      sectors > chunk_sects
1849                      && (conf->geo.near_copies < conf->geo.raid_disks
1850                          || conf->prev.near_copies <
1851                          conf->prev.raid_disks)))
1852                 sectors = chunk_sects -
1853                         (bio->bi_iter.bi_sector &
1854                          (chunk_sects - 1));
1855         __make_request(mddev, bio, sectors);
1856
1857         /* In case raid10d snuck in to freeze_array */
1858         wake_up(&conf->wait_barrier);
1859         return true;
1860 }
1861
1862 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1863 {
1864         struct r10conf *conf = mddev->private;
1865         int i;
1866
1867         if (conf->geo.near_copies < conf->geo.raid_disks)
1868                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1869         if (conf->geo.near_copies > 1)
1870                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1871         if (conf->geo.far_copies > 1) {
1872                 if (conf->geo.far_offset)
1873                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1874                 else
1875                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1876                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1877                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1878         }
1879         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1880                                         conf->geo.raid_disks - mddev->degraded);
1881         rcu_read_lock();
1882         for (i = 0; i < conf->geo.raid_disks; i++) {
1883                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1884                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1885         }
1886         rcu_read_unlock();
1887         seq_printf(seq, "]");
1888 }
1889
1890 /* check if there are enough drives for
1891  * every block to appear on atleast one.
1892  * Don't consider the device numbered 'ignore'
1893  * as we might be about to remove it.
1894  */
1895 static int _enough(struct r10conf *conf, int previous, int ignore)
1896 {
1897         int first = 0;
1898         int has_enough = 0;
1899         int disks, ncopies;
1900         if (previous) {
1901                 disks = conf->prev.raid_disks;
1902                 ncopies = conf->prev.near_copies;
1903         } else {
1904                 disks = conf->geo.raid_disks;
1905                 ncopies = conf->geo.near_copies;
1906         }
1907
1908         rcu_read_lock();
1909         do {
1910                 int n = conf->copies;
1911                 int cnt = 0;
1912                 int this = first;
1913                 while (n--) {
1914                         struct md_rdev *rdev;
1915                         if (this != ignore &&
1916                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1917                             test_bit(In_sync, &rdev->flags))
1918                                 cnt++;
1919                         this = (this+1) % disks;
1920                 }
1921                 if (cnt == 0)
1922                         goto out;
1923                 first = (first + ncopies) % disks;
1924         } while (first != 0);
1925         has_enough = 1;
1926 out:
1927         rcu_read_unlock();
1928         return has_enough;
1929 }
1930
1931 static int enough(struct r10conf *conf, int ignore)
1932 {
1933         /* when calling 'enough', both 'prev' and 'geo' must
1934          * be stable.
1935          * This is ensured if ->reconfig_mutex or ->device_lock
1936          * is held.
1937          */
1938         return _enough(conf, 0, ignore) &&
1939                 _enough(conf, 1, ignore);
1940 }
1941
1942 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1943 {
1944         char b[BDEVNAME_SIZE];
1945         struct r10conf *conf = mddev->private;
1946         unsigned long flags;
1947
1948         /*
1949          * If it is not operational, then we have already marked it as dead
1950          * else if it is the last working disks with "fail_last_dev == false",
1951          * ignore the error, let the next level up know.
1952          * else mark the drive as failed
1953          */
1954         spin_lock_irqsave(&conf->device_lock, flags);
1955         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1956             && !enough(conf, rdev->raid_disk)) {
1957                 /*
1958                  * Don't fail the drive, just return an IO error.
1959                  */
1960                 spin_unlock_irqrestore(&conf->device_lock, flags);
1961                 return;
1962         }
1963         if (test_and_clear_bit(In_sync, &rdev->flags))
1964                 mddev->degraded++;
1965         /*
1966          * If recovery is running, make sure it aborts.
1967          */
1968         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1969         set_bit(Blocked, &rdev->flags);
1970         set_bit(Faulty, &rdev->flags);
1971         set_mask_bits(&mddev->sb_flags, 0,
1972                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1973         spin_unlock_irqrestore(&conf->device_lock, flags);
1974         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1975                 "md/raid10:%s: Operation continuing on %d devices.\n",
1976                 mdname(mddev), bdevname(rdev->bdev, b),
1977                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1978 }
1979
1980 static void print_conf(struct r10conf *conf)
1981 {
1982         int i;
1983         struct md_rdev *rdev;
1984
1985         pr_debug("RAID10 conf printout:\n");
1986         if (!conf) {
1987                 pr_debug("(!conf)\n");
1988                 return;
1989         }
1990         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1991                  conf->geo.raid_disks);
1992
1993         /* This is only called with ->reconfix_mutex held, so
1994          * rcu protection of rdev is not needed */
1995         for (i = 0; i < conf->geo.raid_disks; i++) {
1996                 char b[BDEVNAME_SIZE];
1997                 rdev = conf->mirrors[i].rdev;
1998                 if (rdev)
1999                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2000                                  i, !test_bit(In_sync, &rdev->flags),
2001                                  !test_bit(Faulty, &rdev->flags),
2002                                  bdevname(rdev->bdev,b));
2003         }
2004 }
2005
2006 static void close_sync(struct r10conf *conf)
2007 {
2008         wait_barrier(conf);
2009         allow_barrier(conf);
2010
2011         mempool_exit(&conf->r10buf_pool);
2012 }
2013
2014 static int raid10_spare_active(struct mddev *mddev)
2015 {
2016         int i;
2017         struct r10conf *conf = mddev->private;
2018         struct raid10_info *tmp;
2019         int count = 0;
2020         unsigned long flags;
2021
2022         /*
2023          * Find all non-in_sync disks within the RAID10 configuration
2024          * and mark them in_sync
2025          */
2026         for (i = 0; i < conf->geo.raid_disks; i++) {
2027                 tmp = conf->mirrors + i;
2028                 if (tmp->replacement
2029                     && tmp->replacement->recovery_offset == MaxSector
2030                     && !test_bit(Faulty, &tmp->replacement->flags)
2031                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2032                         /* Replacement has just become active */
2033                         if (!tmp->rdev
2034                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2035                                 count++;
2036                         if (tmp->rdev) {
2037                                 /* Replaced device not technically faulty,
2038                                  * but we need to be sure it gets removed
2039                                  * and never re-added.
2040                                  */
2041                                 set_bit(Faulty, &tmp->rdev->flags);
2042                                 sysfs_notify_dirent_safe(
2043                                         tmp->rdev->sysfs_state);
2044                         }
2045                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2046                 } else if (tmp->rdev
2047                            && tmp->rdev->recovery_offset == MaxSector
2048                            && !test_bit(Faulty, &tmp->rdev->flags)
2049                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2050                         count++;
2051                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2052                 }
2053         }
2054         spin_lock_irqsave(&conf->device_lock, flags);
2055         mddev->degraded -= count;
2056         spin_unlock_irqrestore(&conf->device_lock, flags);
2057
2058         print_conf(conf);
2059         return count;
2060 }
2061
2062 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2063 {
2064         struct r10conf *conf = mddev->private;
2065         int err = -EEXIST;
2066         int mirror;
2067         int first = 0;
2068         int last = conf->geo.raid_disks - 1;
2069
2070         if (mddev->recovery_cp < MaxSector)
2071                 /* only hot-add to in-sync arrays, as recovery is
2072                  * very different from resync
2073                  */
2074                 return -EBUSY;
2075         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2076                 return -EINVAL;
2077
2078         if (md_integrity_add_rdev(rdev, mddev))
2079                 return -ENXIO;
2080
2081         if (rdev->raid_disk >= 0)
2082                 first = last = rdev->raid_disk;
2083
2084         if (rdev->saved_raid_disk >= first &&
2085             rdev->saved_raid_disk < conf->geo.raid_disks &&
2086             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2087                 mirror = rdev->saved_raid_disk;
2088         else
2089                 mirror = first;
2090         for ( ; mirror <= last ; mirror++) {
2091                 struct raid10_info *p = &conf->mirrors[mirror];
2092                 if (p->recovery_disabled == mddev->recovery_disabled)
2093                         continue;
2094                 if (p->rdev) {
2095                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
2096                             p->replacement != NULL)
2097                                 continue;
2098                         clear_bit(In_sync, &rdev->flags);
2099                         set_bit(Replacement, &rdev->flags);
2100                         rdev->raid_disk = mirror;
2101                         err = 0;
2102                         if (mddev->gendisk)
2103                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2104                                                   rdev->data_offset << 9);
2105                         conf->fullsync = 1;
2106                         rcu_assign_pointer(p->replacement, rdev);
2107                         break;
2108                 }
2109
2110                 if (mddev->gendisk)
2111                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2112                                           rdev->data_offset << 9);
2113
2114                 p->head_position = 0;
2115                 p->recovery_disabled = mddev->recovery_disabled - 1;
2116                 rdev->raid_disk = mirror;
2117                 err = 0;
2118                 if (rdev->saved_raid_disk != mirror)
2119                         conf->fullsync = 1;
2120                 rcu_assign_pointer(p->rdev, rdev);
2121                 break;
2122         }
2123         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2124                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2125
2126         print_conf(conf);
2127         return err;
2128 }
2129
2130 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2131 {
2132         struct r10conf *conf = mddev->private;
2133         int err = 0;
2134         int number = rdev->raid_disk;
2135         struct md_rdev **rdevp;
2136         struct raid10_info *p = conf->mirrors + number;
2137
2138         print_conf(conf);
2139         if (rdev == p->rdev)
2140                 rdevp = &p->rdev;
2141         else if (rdev == p->replacement)
2142                 rdevp = &p->replacement;
2143         else
2144                 return 0;
2145
2146         if (test_bit(In_sync, &rdev->flags) ||
2147             atomic_read(&rdev->nr_pending)) {
2148                 err = -EBUSY;
2149                 goto abort;
2150         }
2151         /* Only remove non-faulty devices if recovery
2152          * is not possible.
2153          */
2154         if (!test_bit(Faulty, &rdev->flags) &&
2155             mddev->recovery_disabled != p->recovery_disabled &&
2156             (!p->replacement || p->replacement == rdev) &&
2157             number < conf->geo.raid_disks &&
2158             enough(conf, -1)) {
2159                 err = -EBUSY;
2160                 goto abort;
2161         }
2162         *rdevp = NULL;
2163         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2164                 synchronize_rcu();
2165                 if (atomic_read(&rdev->nr_pending)) {
2166                         /* lost the race, try later */
2167                         err = -EBUSY;
2168                         *rdevp = rdev;
2169                         goto abort;
2170                 }
2171         }
2172         if (p->replacement) {
2173                 /* We must have just cleared 'rdev' */
2174                 p->rdev = p->replacement;
2175                 clear_bit(Replacement, &p->replacement->flags);
2176                 smp_mb(); /* Make sure other CPUs may see both as identical
2177                            * but will never see neither -- if they are careful.
2178                            */
2179                 p->replacement = NULL;
2180         }
2181
2182         clear_bit(WantReplacement, &rdev->flags);
2183         err = md_integrity_register(mddev);
2184
2185 abort:
2186
2187         print_conf(conf);
2188         return err;
2189 }
2190
2191 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2192 {
2193         struct r10conf *conf = r10_bio->mddev->private;
2194
2195         if (!bio->bi_status)
2196                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2197         else
2198                 /* The write handler will notice the lack of
2199                  * R10BIO_Uptodate and record any errors etc
2200                  */
2201                 atomic_add(r10_bio->sectors,
2202                            &conf->mirrors[d].rdev->corrected_errors);
2203
2204         /* for reconstruct, we always reschedule after a read.
2205          * for resync, only after all reads
2206          */
2207         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2208         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2209             atomic_dec_and_test(&r10_bio->remaining)) {
2210                 /* we have read all the blocks,
2211                  * do the comparison in process context in raid10d
2212                  */
2213                 reschedule_retry(r10_bio);
2214         }
2215 }
2216
2217 static void end_sync_read(struct bio *bio)
2218 {
2219         struct r10bio *r10_bio = get_resync_r10bio(bio);
2220         struct r10conf *conf = r10_bio->mddev->private;
2221         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2222
2223         __end_sync_read(r10_bio, bio, d);
2224 }
2225
2226 static void end_reshape_read(struct bio *bio)
2227 {
2228         /* reshape read bio isn't allocated from r10buf_pool */
2229         struct r10bio *r10_bio = bio->bi_private;
2230
2231         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2232 }
2233
2234 static void end_sync_request(struct r10bio *r10_bio)
2235 {
2236         struct mddev *mddev = r10_bio->mddev;
2237
2238         while (atomic_dec_and_test(&r10_bio->remaining)) {
2239                 if (r10_bio->master_bio == NULL) {
2240                         /* the primary of several recovery bios */
2241                         sector_t s = r10_bio->sectors;
2242                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2243                             test_bit(R10BIO_WriteError, &r10_bio->state))
2244                                 reschedule_retry(r10_bio);
2245                         else
2246                                 put_buf(r10_bio);
2247                         md_done_sync(mddev, s, 1);
2248                         break;
2249                 } else {
2250                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2251                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2252                             test_bit(R10BIO_WriteError, &r10_bio->state))
2253                                 reschedule_retry(r10_bio);
2254                         else
2255                                 put_buf(r10_bio);
2256                         r10_bio = r10_bio2;
2257                 }
2258         }
2259 }
2260
2261 static void end_sync_write(struct bio *bio)
2262 {
2263         struct r10bio *r10_bio = get_resync_r10bio(bio);
2264         struct mddev *mddev = r10_bio->mddev;
2265         struct r10conf *conf = mddev->private;
2266         int d;
2267         sector_t first_bad;
2268         int bad_sectors;
2269         int slot;
2270         int repl;
2271         struct md_rdev *rdev = NULL;
2272
2273         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2274         if (repl)
2275                 rdev = conf->mirrors[d].replacement;
2276         else
2277                 rdev = conf->mirrors[d].rdev;
2278
2279         if (bio->bi_status) {
2280                 if (repl)
2281                         md_error(mddev, rdev);
2282                 else {
2283                         set_bit(WriteErrorSeen, &rdev->flags);
2284                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2285                                 set_bit(MD_RECOVERY_NEEDED,
2286                                         &rdev->mddev->recovery);
2287                         set_bit(R10BIO_WriteError, &r10_bio->state);
2288                 }
2289         } else if (is_badblock(rdev,
2290                              r10_bio->devs[slot].addr,
2291                              r10_bio->sectors,
2292                              &first_bad, &bad_sectors))
2293                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2294
2295         rdev_dec_pending(rdev, mddev);
2296
2297         end_sync_request(r10_bio);
2298 }
2299
2300 /*
2301  * Note: sync and recover and handled very differently for raid10
2302  * This code is for resync.
2303  * For resync, we read through virtual addresses and read all blocks.
2304  * If there is any error, we schedule a write.  The lowest numbered
2305  * drive is authoritative.
2306  * However requests come for physical address, so we need to map.
2307  * For every physical address there are raid_disks/copies virtual addresses,
2308  * which is always are least one, but is not necessarly an integer.
2309  * This means that a physical address can span multiple chunks, so we may
2310  * have to submit multiple io requests for a single sync request.
2311  */
2312 /*
2313  * We check if all blocks are in-sync and only write to blocks that
2314  * aren't in sync
2315  */
2316 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2317 {
2318         struct r10conf *conf = mddev->private;
2319         int i, first;
2320         struct bio *tbio, *fbio;
2321         int vcnt;
2322         struct page **tpages, **fpages;
2323
2324         atomic_set(&r10_bio->remaining, 1);
2325
2326         /* find the first device with a block */
2327         for (i=0; i<conf->copies; i++)
2328                 if (!r10_bio->devs[i].bio->bi_status)
2329                         break;
2330
2331         if (i == conf->copies)
2332                 goto done;
2333
2334         first = i;
2335         fbio = r10_bio->devs[i].bio;
2336         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2337         fbio->bi_iter.bi_idx = 0;
2338         fpages = get_resync_pages(fbio)->pages;
2339
2340         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2341         /* now find blocks with errors */
2342         for (i=0 ; i < conf->copies ; i++) {
2343                 int  j, d;
2344                 struct md_rdev *rdev;
2345                 struct resync_pages *rp;
2346
2347                 tbio = r10_bio->devs[i].bio;
2348
2349                 if (tbio->bi_end_io != end_sync_read)
2350                         continue;
2351                 if (i == first)
2352                         continue;
2353
2354                 tpages = get_resync_pages(tbio)->pages;
2355                 d = r10_bio->devs[i].devnum;
2356                 rdev = conf->mirrors[d].rdev;
2357                 if (!r10_bio->devs[i].bio->bi_status) {
2358                         /* We know that the bi_io_vec layout is the same for
2359                          * both 'first' and 'i', so we just compare them.
2360                          * All vec entries are PAGE_SIZE;
2361                          */
2362                         int sectors = r10_bio->sectors;
2363                         for (j = 0; j < vcnt; j++) {
2364                                 int len = PAGE_SIZE;
2365                                 if (sectors < (len / 512))
2366                                         len = sectors * 512;
2367                                 if (memcmp(page_address(fpages[j]),
2368                                            page_address(tpages[j]),
2369                                            len))
2370                                         break;
2371                                 sectors -= len/512;
2372                         }
2373                         if (j == vcnt)
2374                                 continue;
2375                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2376                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2377                                 /* Don't fix anything. */
2378                                 continue;
2379                 } else if (test_bit(FailFast, &rdev->flags)) {
2380                         /* Just give up on this device */
2381                         md_error(rdev->mddev, rdev);
2382                         continue;
2383                 }
2384                 /* Ok, we need to write this bio, either to correct an
2385                  * inconsistency or to correct an unreadable block.
2386                  * First we need to fixup bv_offset, bv_len and
2387                  * bi_vecs, as the read request might have corrupted these
2388                  */
2389                 rp = get_resync_pages(tbio);
2390                 bio_reset(tbio);
2391
2392                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2393
2394                 rp->raid_bio = r10_bio;
2395                 tbio->bi_private = rp;
2396                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2397                 tbio->bi_end_io = end_sync_write;
2398                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2399
2400                 bio_copy_data(tbio, fbio);
2401
2402                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2403                 atomic_inc(&r10_bio->remaining);
2404                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2405
2406                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2407                         tbio->bi_opf |= MD_FAILFAST;
2408                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2409                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2410                 submit_bio_noacct(tbio);
2411         }
2412
2413         /* Now write out to any replacement devices
2414          * that are active
2415          */
2416         for (i = 0; i < conf->copies; i++) {
2417                 int d;
2418
2419                 tbio = r10_bio->devs[i].repl_bio;
2420                 if (!tbio || !tbio->bi_end_io)
2421                         continue;
2422                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2423                     && r10_bio->devs[i].bio != fbio)
2424                         bio_copy_data(tbio, fbio);
2425                 d = r10_bio->devs[i].devnum;
2426                 atomic_inc(&r10_bio->remaining);
2427                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2428                              bio_sectors(tbio));
2429                 submit_bio_noacct(tbio);
2430         }
2431
2432 done:
2433         if (atomic_dec_and_test(&r10_bio->remaining)) {
2434                 md_done_sync(mddev, r10_bio->sectors, 1);
2435                 put_buf(r10_bio);
2436         }
2437 }
2438
2439 /*
2440  * Now for the recovery code.
2441  * Recovery happens across physical sectors.
2442  * We recover all non-is_sync drives by finding the virtual address of
2443  * each, and then choose a working drive that also has that virt address.
2444  * There is a separate r10_bio for each non-in_sync drive.
2445  * Only the first two slots are in use. The first for reading,
2446  * The second for writing.
2447  *
2448  */
2449 static void fix_recovery_read_error(struct r10bio *r10_bio)
2450 {
2451         /* We got a read error during recovery.
2452          * We repeat the read in smaller page-sized sections.
2453          * If a read succeeds, write it to the new device or record
2454          * a bad block if we cannot.
2455          * If a read fails, record a bad block on both old and
2456          * new devices.
2457          */
2458         struct mddev *mddev = r10_bio->mddev;
2459         struct r10conf *conf = mddev->private;
2460         struct bio *bio = r10_bio->devs[0].bio;
2461         sector_t sect = 0;
2462         int sectors = r10_bio->sectors;
2463         int idx = 0;
2464         int dr = r10_bio->devs[0].devnum;
2465         int dw = r10_bio->devs[1].devnum;
2466         struct page **pages = get_resync_pages(bio)->pages;
2467
2468         while (sectors) {
2469                 int s = sectors;
2470                 struct md_rdev *rdev;
2471                 sector_t addr;
2472                 int ok;
2473
2474                 if (s > (PAGE_SIZE>>9))
2475                         s = PAGE_SIZE >> 9;
2476
2477                 rdev = conf->mirrors[dr].rdev;
2478                 addr = r10_bio->devs[0].addr + sect,
2479                 ok = sync_page_io(rdev,
2480                                   addr,
2481                                   s << 9,
2482                                   pages[idx],
2483                                   REQ_OP_READ, 0, false);
2484                 if (ok) {
2485                         rdev = conf->mirrors[dw].rdev;
2486                         addr = r10_bio->devs[1].addr + sect;
2487                         ok = sync_page_io(rdev,
2488                                           addr,
2489                                           s << 9,
2490                                           pages[idx],
2491                                           REQ_OP_WRITE, 0, false);
2492                         if (!ok) {
2493                                 set_bit(WriteErrorSeen, &rdev->flags);
2494                                 if (!test_and_set_bit(WantReplacement,
2495                                                       &rdev->flags))
2496                                         set_bit(MD_RECOVERY_NEEDED,
2497                                                 &rdev->mddev->recovery);
2498                         }
2499                 }
2500                 if (!ok) {
2501                         /* We don't worry if we cannot set a bad block -
2502                          * it really is bad so there is no loss in not
2503                          * recording it yet
2504                          */
2505                         rdev_set_badblocks(rdev, addr, s, 0);
2506
2507                         if (rdev != conf->mirrors[dw].rdev) {
2508                                 /* need bad block on destination too */
2509                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2510                                 addr = r10_bio->devs[1].addr + sect;
2511                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2512                                 if (!ok) {
2513                                         /* just abort the recovery */
2514                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2515                                                   mdname(mddev));
2516
2517                                         conf->mirrors[dw].recovery_disabled
2518                                                 = mddev->recovery_disabled;
2519                                         set_bit(MD_RECOVERY_INTR,
2520                                                 &mddev->recovery);
2521                                         break;
2522                                 }
2523                         }
2524                 }
2525
2526                 sectors -= s;
2527                 sect += s;
2528                 idx++;
2529         }
2530 }
2531
2532 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2533 {
2534         struct r10conf *conf = mddev->private;
2535         int d;
2536         struct bio *wbio, *wbio2;
2537
2538         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2539                 fix_recovery_read_error(r10_bio);
2540                 end_sync_request(r10_bio);
2541                 return;
2542         }
2543
2544         /*
2545          * share the pages with the first bio
2546          * and submit the write request
2547          */
2548         d = r10_bio->devs[1].devnum;
2549         wbio = r10_bio->devs[1].bio;
2550         wbio2 = r10_bio->devs[1].repl_bio;
2551         /* Need to test wbio2->bi_end_io before we call
2552          * submit_bio_noacct as if the former is NULL,
2553          * the latter is free to free wbio2.
2554          */
2555         if (wbio2 && !wbio2->bi_end_io)
2556                 wbio2 = NULL;
2557         if (wbio->bi_end_io) {
2558                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2559                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2560                 submit_bio_noacct(wbio);
2561         }
2562         if (wbio2) {
2563                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2564                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2565                              bio_sectors(wbio2));
2566                 submit_bio_noacct(wbio2);
2567         }
2568 }
2569
2570 /*
2571  * Used by fix_read_error() to decay the per rdev read_errors.
2572  * We halve the read error count for every hour that has elapsed
2573  * since the last recorded read error.
2574  *
2575  */
2576 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2577 {
2578         long cur_time_mon;
2579         unsigned long hours_since_last;
2580         unsigned int read_errors = atomic_read(&rdev->read_errors);
2581
2582         cur_time_mon = ktime_get_seconds();
2583
2584         if (rdev->last_read_error == 0) {
2585                 /* first time we've seen a read error */
2586                 rdev->last_read_error = cur_time_mon;
2587                 return;
2588         }
2589
2590         hours_since_last = (long)(cur_time_mon -
2591                             rdev->last_read_error) / 3600;
2592
2593         rdev->last_read_error = cur_time_mon;
2594
2595         /*
2596          * if hours_since_last is > the number of bits in read_errors
2597          * just set read errors to 0. We do this to avoid
2598          * overflowing the shift of read_errors by hours_since_last.
2599          */
2600         if (hours_since_last >= 8 * sizeof(read_errors))
2601                 atomic_set(&rdev->read_errors, 0);
2602         else
2603                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2604 }
2605
2606 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2607                             int sectors, struct page *page, int rw)
2608 {
2609         sector_t first_bad;
2610         int bad_sectors;
2611
2612         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2613             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2614                 return -1;
2615         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2616                 /* success */
2617                 return 1;
2618         if (rw == WRITE) {
2619                 set_bit(WriteErrorSeen, &rdev->flags);
2620                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2621                         set_bit(MD_RECOVERY_NEEDED,
2622                                 &rdev->mddev->recovery);
2623         }
2624         /* need to record an error - either for the block or the device */
2625         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2626                 md_error(rdev->mddev, rdev);
2627         return 0;
2628 }
2629
2630 /*
2631  * This is a kernel thread which:
2632  *
2633  *      1.      Retries failed read operations on working mirrors.
2634  *      2.      Updates the raid superblock when problems encounter.
2635  *      3.      Performs writes following reads for array synchronising.
2636  */
2637
2638 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2639 {
2640         int sect = 0; /* Offset from r10_bio->sector */
2641         int sectors = r10_bio->sectors;
2642         struct md_rdev *rdev;
2643         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2644         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2645
2646         /* still own a reference to this rdev, so it cannot
2647          * have been cleared recently.
2648          */
2649         rdev = conf->mirrors[d].rdev;
2650
2651         if (test_bit(Faulty, &rdev->flags))
2652                 /* drive has already been failed, just ignore any
2653                    more fix_read_error() attempts */
2654                 return;
2655
2656         check_decay_read_errors(mddev, rdev);
2657         atomic_inc(&rdev->read_errors);
2658         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2659                 char b[BDEVNAME_SIZE];
2660                 bdevname(rdev->bdev, b);
2661
2662                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2663                           mdname(mddev), b,
2664                           atomic_read(&rdev->read_errors), max_read_errors);
2665                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2666                           mdname(mddev), b);
2667                 md_error(mddev, rdev);
2668                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2669                 return;
2670         }
2671
2672         while(sectors) {
2673                 int s = sectors;
2674                 int sl = r10_bio->read_slot;
2675                 int success = 0;
2676                 int start;
2677
2678                 if (s > (PAGE_SIZE>>9))
2679                         s = PAGE_SIZE >> 9;
2680
2681                 rcu_read_lock();
2682                 do {
2683                         sector_t first_bad;
2684                         int bad_sectors;
2685
2686                         d = r10_bio->devs[sl].devnum;
2687                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2688                         if (rdev &&
2689                             test_bit(In_sync, &rdev->flags) &&
2690                             !test_bit(Faulty, &rdev->flags) &&
2691                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2692                                         &first_bad, &bad_sectors) == 0) {
2693                                 atomic_inc(&rdev->nr_pending);
2694                                 rcu_read_unlock();
2695                                 success = sync_page_io(rdev,
2696                                                        r10_bio->devs[sl].addr +
2697                                                        sect,
2698                                                        s<<9,
2699                                                        conf->tmppage,
2700                                                        REQ_OP_READ, 0, false);
2701                                 rdev_dec_pending(rdev, mddev);
2702                                 rcu_read_lock();
2703                                 if (success)
2704                                         break;
2705                         }
2706                         sl++;
2707                         if (sl == conf->copies)
2708                                 sl = 0;
2709                 } while (!success && sl != r10_bio->read_slot);
2710                 rcu_read_unlock();
2711
2712                 if (!success) {
2713                         /* Cannot read from anywhere, just mark the block
2714                          * as bad on the first device to discourage future
2715                          * reads.
2716                          */
2717                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2718                         rdev = conf->mirrors[dn].rdev;
2719
2720                         if (!rdev_set_badblocks(
2721                                     rdev,
2722                                     r10_bio->devs[r10_bio->read_slot].addr
2723                                     + sect,
2724                                     s, 0)) {
2725                                 md_error(mddev, rdev);
2726                                 r10_bio->devs[r10_bio->read_slot].bio
2727                                         = IO_BLOCKED;
2728                         }
2729                         break;
2730                 }
2731
2732                 start = sl;
2733                 /* write it back and re-read */
2734                 rcu_read_lock();
2735                 while (sl != r10_bio->read_slot) {
2736                         char b[BDEVNAME_SIZE];
2737
2738                         if (sl==0)
2739                                 sl = conf->copies;
2740                         sl--;
2741                         d = r10_bio->devs[sl].devnum;
2742                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2743                         if (!rdev ||
2744                             test_bit(Faulty, &rdev->flags) ||
2745                             !test_bit(In_sync, &rdev->flags))
2746                                 continue;
2747
2748                         atomic_inc(&rdev->nr_pending);
2749                         rcu_read_unlock();
2750                         if (r10_sync_page_io(rdev,
2751                                              r10_bio->devs[sl].addr +
2752                                              sect,
2753                                              s, conf->tmppage, WRITE)
2754                             == 0) {
2755                                 /* Well, this device is dead */
2756                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2757                                           mdname(mddev), s,
2758                                           (unsigned long long)(
2759                                                   sect +
2760                                                   choose_data_offset(r10_bio,
2761                                                                      rdev)),
2762                                           bdevname(rdev->bdev, b));
2763                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2764                                           mdname(mddev),
2765                                           bdevname(rdev->bdev, b));
2766                         }
2767                         rdev_dec_pending(rdev, mddev);
2768                         rcu_read_lock();
2769                 }
2770                 sl = start;
2771                 while (sl != r10_bio->read_slot) {
2772                         char b[BDEVNAME_SIZE];
2773
2774                         if (sl==0)
2775                                 sl = conf->copies;
2776                         sl--;
2777                         d = r10_bio->devs[sl].devnum;
2778                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2779                         if (!rdev ||
2780                             test_bit(Faulty, &rdev->flags) ||
2781                             !test_bit(In_sync, &rdev->flags))
2782                                 continue;
2783
2784                         atomic_inc(&rdev->nr_pending);
2785                         rcu_read_unlock();
2786                         switch (r10_sync_page_io(rdev,
2787                                              r10_bio->devs[sl].addr +
2788                                              sect,
2789                                              s, conf->tmppage,
2790                                                  READ)) {
2791                         case 0:
2792                                 /* Well, this device is dead */
2793                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2794                                        mdname(mddev), s,
2795                                        (unsigned long long)(
2796                                                sect +
2797                                                choose_data_offset(r10_bio, rdev)),
2798                                        bdevname(rdev->bdev, b));
2799                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2800                                        mdname(mddev),
2801                                        bdevname(rdev->bdev, b));
2802                                 break;
2803                         case 1:
2804                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2805                                        mdname(mddev), s,
2806                                        (unsigned long long)(
2807                                                sect +
2808                                                choose_data_offset(r10_bio, rdev)),
2809                                        bdevname(rdev->bdev, b));
2810                                 atomic_add(s, &rdev->corrected_errors);
2811                         }
2812
2813                         rdev_dec_pending(rdev, mddev);
2814                         rcu_read_lock();
2815                 }
2816                 rcu_read_unlock();
2817
2818                 sectors -= s;
2819                 sect += s;
2820         }
2821 }
2822
2823 static int narrow_write_error(struct r10bio *r10_bio, int i)
2824 {
2825         struct bio *bio = r10_bio->master_bio;
2826         struct mddev *mddev = r10_bio->mddev;
2827         struct r10conf *conf = mddev->private;
2828         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2829         /* bio has the data to be written to slot 'i' where
2830          * we just recently had a write error.
2831          * We repeatedly clone the bio and trim down to one block,
2832          * then try the write.  Where the write fails we record
2833          * a bad block.
2834          * It is conceivable that the bio doesn't exactly align with
2835          * blocks.  We must handle this.
2836          *
2837          * We currently own a reference to the rdev.
2838          */
2839
2840         int block_sectors;
2841         sector_t sector;
2842         int sectors;
2843         int sect_to_write = r10_bio->sectors;
2844         int ok = 1;
2845
2846         if (rdev->badblocks.shift < 0)
2847                 return 0;
2848
2849         block_sectors = roundup(1 << rdev->badblocks.shift,
2850                                 bdev_logical_block_size(rdev->bdev) >> 9);
2851         sector = r10_bio->sector;
2852         sectors = ((r10_bio->sector + block_sectors)
2853                    & ~(sector_t)(block_sectors - 1))
2854                 - sector;
2855
2856         while (sect_to_write) {
2857                 struct bio *wbio;
2858                 sector_t wsector;
2859                 if (sectors > sect_to_write)
2860                         sectors = sect_to_write;
2861                 /* Write at 'sector' for 'sectors' */
2862                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2863                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2864                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2865                 wbio->bi_iter.bi_sector = wsector +
2866                                    choose_data_offset(r10_bio, rdev);
2867                 bio_set_dev(wbio, rdev->bdev);
2868                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2869
2870                 if (submit_bio_wait(wbio) < 0)
2871                         /* Failure! */
2872                         ok = rdev_set_badblocks(rdev, wsector,
2873                                                 sectors, 0)
2874                                 && ok;
2875
2876                 bio_put(wbio);
2877                 sect_to_write -= sectors;
2878                 sector += sectors;
2879                 sectors = block_sectors;
2880         }
2881         return ok;
2882 }
2883
2884 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2885 {
2886         int slot = r10_bio->read_slot;
2887         struct bio *bio;
2888         struct r10conf *conf = mddev->private;
2889         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2890
2891         /* we got a read error. Maybe the drive is bad.  Maybe just
2892          * the block and we can fix it.
2893          * We freeze all other IO, and try reading the block from
2894          * other devices.  When we find one, we re-write
2895          * and check it that fixes the read error.
2896          * This is all done synchronously while the array is
2897          * frozen.
2898          */
2899         bio = r10_bio->devs[slot].bio;
2900         bio_put(bio);
2901         r10_bio->devs[slot].bio = NULL;
2902
2903         if (mddev->ro)
2904                 r10_bio->devs[slot].bio = IO_BLOCKED;
2905         else if (!test_bit(FailFast, &rdev->flags)) {
2906                 freeze_array(conf, 1);
2907                 fix_read_error(conf, mddev, r10_bio);
2908                 unfreeze_array(conf);
2909         } else
2910                 md_error(mddev, rdev);
2911
2912         rdev_dec_pending(rdev, mddev);
2913         allow_barrier(conf);
2914         r10_bio->state = 0;
2915         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2916 }
2917
2918 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2919 {
2920         /* Some sort of write request has finished and it
2921          * succeeded in writing where we thought there was a
2922          * bad block.  So forget the bad block.
2923          * Or possibly if failed and we need to record
2924          * a bad block.
2925          */
2926         int m;
2927         struct md_rdev *rdev;
2928
2929         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2930             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2931                 for (m = 0; m < conf->copies; m++) {
2932                         int dev = r10_bio->devs[m].devnum;
2933                         rdev = conf->mirrors[dev].rdev;
2934                         if (r10_bio->devs[m].bio == NULL ||
2935                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2936                                 continue;
2937                         if (!r10_bio->devs[m].bio->bi_status) {
2938                                 rdev_clear_badblocks(
2939                                         rdev,
2940                                         r10_bio->devs[m].addr,
2941                                         r10_bio->sectors, 0);
2942                         } else {
2943                                 if (!rdev_set_badblocks(
2944                                             rdev,
2945                                             r10_bio->devs[m].addr,
2946                                             r10_bio->sectors, 0))
2947                                         md_error(conf->mddev, rdev);
2948                         }
2949                         rdev = conf->mirrors[dev].replacement;
2950                         if (r10_bio->devs[m].repl_bio == NULL ||
2951                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2952                                 continue;
2953
2954                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2955                                 rdev_clear_badblocks(
2956                                         rdev,
2957                                         r10_bio->devs[m].addr,
2958                                         r10_bio->sectors, 0);
2959                         } else {
2960                                 if (!rdev_set_badblocks(
2961                                             rdev,
2962                                             r10_bio->devs[m].addr,
2963                                             r10_bio->sectors, 0))
2964                                         md_error(conf->mddev, rdev);
2965                         }
2966                 }
2967                 put_buf(r10_bio);
2968         } else {
2969                 bool fail = false;
2970                 for (m = 0; m < conf->copies; m++) {
2971                         int dev = r10_bio->devs[m].devnum;
2972                         struct bio *bio = r10_bio->devs[m].bio;
2973                         rdev = conf->mirrors[dev].rdev;
2974                         if (bio == IO_MADE_GOOD) {
2975                                 rdev_clear_badblocks(
2976                                         rdev,
2977                                         r10_bio->devs[m].addr,
2978                                         r10_bio->sectors, 0);
2979                                 rdev_dec_pending(rdev, conf->mddev);
2980                         } else if (bio != NULL && bio->bi_status) {
2981                                 fail = true;
2982                                 if (!narrow_write_error(r10_bio, m)) {
2983                                         md_error(conf->mddev, rdev);
2984                                         set_bit(R10BIO_Degraded,
2985                                                 &r10_bio->state);
2986                                 }
2987                                 rdev_dec_pending(rdev, conf->mddev);
2988                         }
2989                         bio = r10_bio->devs[m].repl_bio;
2990                         rdev = conf->mirrors[dev].replacement;
2991                         if (rdev && bio == IO_MADE_GOOD) {
2992                                 rdev_clear_badblocks(
2993                                         rdev,
2994                                         r10_bio->devs[m].addr,
2995                                         r10_bio->sectors, 0);
2996                                 rdev_dec_pending(rdev, conf->mddev);
2997                         }
2998                 }
2999                 if (fail) {
3000                         spin_lock_irq(&conf->device_lock);
3001                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3002                         conf->nr_queued++;
3003                         spin_unlock_irq(&conf->device_lock);
3004                         /*
3005                          * In case freeze_array() is waiting for condition
3006                          * nr_pending == nr_queued + extra to be true.
3007                          */
3008                         wake_up(&conf->wait_barrier);
3009                         md_wakeup_thread(conf->mddev->thread);
3010                 } else {
3011                         if (test_bit(R10BIO_WriteError,
3012                                      &r10_bio->state))
3013                                 close_write(r10_bio);
3014                         raid_end_bio_io(r10_bio);
3015                 }
3016         }
3017 }
3018
3019 static void raid10d(struct md_thread *thread)
3020 {
3021         struct mddev *mddev = thread->mddev;
3022         struct r10bio *r10_bio;
3023         unsigned long flags;
3024         struct r10conf *conf = mddev->private;
3025         struct list_head *head = &conf->retry_list;
3026         struct blk_plug plug;
3027
3028         md_check_recovery(mddev);
3029
3030         if (!list_empty_careful(&conf->bio_end_io_list) &&
3031             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3032                 LIST_HEAD(tmp);
3033                 spin_lock_irqsave(&conf->device_lock, flags);
3034                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3035                         while (!list_empty(&conf->bio_end_io_list)) {
3036                                 list_move(conf->bio_end_io_list.prev, &tmp);
3037                                 conf->nr_queued--;
3038                         }
3039                 }
3040                 spin_unlock_irqrestore(&conf->device_lock, flags);
3041                 while (!list_empty(&tmp)) {
3042                         r10_bio = list_first_entry(&tmp, struct r10bio,
3043                                                    retry_list);
3044                         list_del(&r10_bio->retry_list);
3045                         if (mddev->degraded)
3046                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3047
3048                         if (test_bit(R10BIO_WriteError,
3049                                      &r10_bio->state))
3050                                 close_write(r10_bio);
3051                         raid_end_bio_io(r10_bio);
3052                 }
3053         }
3054
3055         blk_start_plug(&plug);
3056         for (;;) {
3057
3058                 flush_pending_writes(conf);
3059
3060                 spin_lock_irqsave(&conf->device_lock, flags);
3061                 if (list_empty(head)) {
3062                         spin_unlock_irqrestore(&conf->device_lock, flags);
3063                         break;
3064                 }
3065                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3066                 list_del(head->prev);
3067                 conf->nr_queued--;
3068                 spin_unlock_irqrestore(&conf->device_lock, flags);
3069
3070                 mddev = r10_bio->mddev;
3071                 conf = mddev->private;
3072                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3073                     test_bit(R10BIO_WriteError, &r10_bio->state))
3074                         handle_write_completed(conf, r10_bio);
3075                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3076                         reshape_request_write(mddev, r10_bio);
3077                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3078                         sync_request_write(mddev, r10_bio);
3079                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3080                         recovery_request_write(mddev, r10_bio);
3081                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3082                         handle_read_error(mddev, r10_bio);
3083                 else
3084                         WARN_ON_ONCE(1);
3085
3086                 cond_resched();
3087                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3088                         md_check_recovery(mddev);
3089         }
3090         blk_finish_plug(&plug);
3091 }
3092
3093 static int init_resync(struct r10conf *conf)
3094 {
3095         int ret, buffs, i;
3096
3097         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3098         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3099         conf->have_replacement = 0;
3100         for (i = 0; i < conf->geo.raid_disks; i++)
3101                 if (conf->mirrors[i].replacement)
3102                         conf->have_replacement = 1;
3103         ret = mempool_init(&conf->r10buf_pool, buffs,
3104                            r10buf_pool_alloc, r10buf_pool_free, conf);
3105         if (ret)
3106                 return ret;
3107         conf->next_resync = 0;
3108         return 0;
3109 }
3110
3111 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3112 {
3113         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3114         struct rsync_pages *rp;
3115         struct bio *bio;
3116         int nalloc;
3117         int i;
3118
3119         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3120             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3121                 nalloc = conf->copies; /* resync */
3122         else
3123                 nalloc = 2; /* recovery */
3124
3125         for (i = 0; i < nalloc; i++) {
3126                 bio = r10bio->devs[i].bio;
3127                 rp = bio->bi_private;
3128                 bio_reset(bio);
3129                 bio->bi_private = rp;
3130                 bio = r10bio->devs[i].repl_bio;
3131                 if (bio) {
3132                         rp = bio->bi_private;
3133                         bio_reset(bio);
3134                         bio->bi_private = rp;
3135                 }
3136         }
3137         return r10bio;
3138 }
3139
3140 /*
3141  * Set cluster_sync_high since we need other nodes to add the
3142  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3143  */
3144 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3145 {
3146         sector_t window_size;
3147         int extra_chunk, chunks;
3148
3149         /*
3150          * First, here we define "stripe" as a unit which across
3151          * all member devices one time, so we get chunks by use
3152          * raid_disks / near_copies. Otherwise, if near_copies is
3153          * close to raid_disks, then resync window could increases
3154          * linearly with the increase of raid_disks, which means
3155          * we will suspend a really large IO window while it is not
3156          * necessary. If raid_disks is not divisible by near_copies,
3157          * an extra chunk is needed to ensure the whole "stripe" is
3158          * covered.
3159          */
3160
3161         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3162         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3163                 extra_chunk = 0;
3164         else
3165                 extra_chunk = 1;
3166         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3167
3168         /*
3169          * At least use a 32M window to align with raid1's resync window
3170          */
3171         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3172                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3173
3174         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3175 }
3176
3177 /*
3178  * perform a "sync" on one "block"
3179  *
3180  * We need to make sure that no normal I/O request - particularly write
3181  * requests - conflict with active sync requests.
3182  *
3183  * This is achieved by tracking pending requests and a 'barrier' concept
3184  * that can be installed to exclude normal IO requests.
3185  *
3186  * Resync and recovery are handled very differently.
3187  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3188  *
3189  * For resync, we iterate over virtual addresses, read all copies,
3190  * and update if there are differences.  If only one copy is live,
3191  * skip it.
3192  * For recovery, we iterate over physical addresses, read a good
3193  * value for each non-in_sync drive, and over-write.
3194  *
3195  * So, for recovery we may have several outstanding complex requests for a
3196  * given address, one for each out-of-sync device.  We model this by allocating
3197  * a number of r10_bio structures, one for each out-of-sync device.
3198  * As we setup these structures, we collect all bio's together into a list
3199  * which we then process collectively to add pages, and then process again
3200  * to pass to submit_bio_noacct.
3201  *
3202  * The r10_bio structures are linked using a borrowed master_bio pointer.
3203  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3204  * has its remaining count decremented to 0, the whole complex operation
3205  * is complete.
3206  *
3207  */
3208
3209 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3210                              int *skipped)
3211 {
3212         struct r10conf *conf = mddev->private;
3213         struct r10bio *r10_bio;
3214         struct bio *biolist = NULL, *bio;
3215         sector_t max_sector, nr_sectors;
3216         int i;
3217         int max_sync;
3218         sector_t sync_blocks;
3219         sector_t sectors_skipped = 0;
3220         int chunks_skipped = 0;
3221         sector_t chunk_mask = conf->geo.chunk_mask;
3222         int page_idx = 0;
3223
3224         if (!mempool_initialized(&conf->r10buf_pool))
3225                 if (init_resync(conf))
3226                         return 0;
3227
3228         /*
3229          * Allow skipping a full rebuild for incremental assembly
3230          * of a clean array, like RAID1 does.
3231          */
3232         if (mddev->bitmap == NULL &&
3233             mddev->recovery_cp == MaxSector &&
3234             mddev->reshape_position == MaxSector &&
3235             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3236             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3237             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3238             conf->fullsync == 0) {
3239                 *skipped = 1;
3240                 return mddev->dev_sectors - sector_nr;
3241         }
3242
3243  skipped:
3244         max_sector = mddev->dev_sectors;
3245         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3246             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3247                 max_sector = mddev->resync_max_sectors;
3248         if (sector_nr >= max_sector) {
3249                 conf->cluster_sync_low = 0;
3250                 conf->cluster_sync_high = 0;
3251
3252                 /* If we aborted, we need to abort the
3253                  * sync on the 'current' bitmap chucks (there can
3254                  * be several when recovering multiple devices).
3255                  * as we may have started syncing it but not finished.
3256                  * We can find the current address in
3257                  * mddev->curr_resync, but for recovery,
3258                  * we need to convert that to several
3259                  * virtual addresses.
3260                  */
3261                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3262                         end_reshape(conf);
3263                         close_sync(conf);
3264                         return 0;
3265                 }
3266
3267                 if (mddev->curr_resync < max_sector) { /* aborted */
3268                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3269                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3270                                                    &sync_blocks, 1);
3271                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3272                                 sector_t sect =
3273                                         raid10_find_virt(conf, mddev->curr_resync, i);
3274                                 md_bitmap_end_sync(mddev->bitmap, sect,
3275                                                    &sync_blocks, 1);
3276                         }
3277                 } else {
3278                         /* completed sync */
3279                         if ((!mddev->bitmap || conf->fullsync)
3280                             && conf->have_replacement
3281                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3282                                 /* Completed a full sync so the replacements
3283                                  * are now fully recovered.
3284                                  */
3285                                 rcu_read_lock();
3286                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3287                                         struct md_rdev *rdev =
3288                                                 rcu_dereference(conf->mirrors[i].replacement);
3289                                         if (rdev)
3290                                                 rdev->recovery_offset = MaxSector;
3291                                 }
3292                                 rcu_read_unlock();
3293                         }
3294                         conf->fullsync = 0;
3295                 }
3296                 md_bitmap_close_sync(mddev->bitmap);
3297                 close_sync(conf);
3298                 *skipped = 1;
3299                 return sectors_skipped;
3300         }
3301
3302         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3303                 return reshape_request(mddev, sector_nr, skipped);
3304
3305         if (chunks_skipped >= conf->geo.raid_disks) {
3306                 /* if there has been nothing to do on any drive,
3307                  * then there is nothing to do at all..
3308                  */
3309                 *skipped = 1;
3310                 return (max_sector - sector_nr) + sectors_skipped;
3311         }
3312
3313         if (max_sector > mddev->resync_max)
3314                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3315
3316         /* make sure whole request will fit in a chunk - if chunks
3317          * are meaningful
3318          */
3319         if (conf->geo.near_copies < conf->geo.raid_disks &&
3320             max_sector > (sector_nr | chunk_mask))
3321                 max_sector = (sector_nr | chunk_mask) + 1;
3322
3323         /*
3324          * If there is non-resync activity waiting for a turn, then let it
3325          * though before starting on this new sync request.
3326          */
3327         if (conf->nr_waiting)
3328                 schedule_timeout_uninterruptible(1);
3329
3330         /* Again, very different code for resync and recovery.
3331          * Both must result in an r10bio with a list of bios that
3332          * have bi_end_io, bi_sector, bi_bdev set,
3333          * and bi_private set to the r10bio.
3334          * For recovery, we may actually create several r10bios
3335          * with 2 bios in each, that correspond to the bios in the main one.
3336          * In this case, the subordinate r10bios link back through a
3337          * borrowed master_bio pointer, and the counter in the master
3338          * includes a ref from each subordinate.
3339          */
3340         /* First, we decide what to do and set ->bi_end_io
3341          * To end_sync_read if we want to read, and
3342          * end_sync_write if we will want to write.
3343          */
3344
3345         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3346         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3347                 /* recovery... the complicated one */
3348                 int j;
3349                 r10_bio = NULL;
3350
3351                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3352                         int still_degraded;
3353                         struct r10bio *rb2;
3354                         sector_t sect;
3355                         int must_sync;
3356                         int any_working;
3357                         int need_recover = 0;
3358                         int need_replace = 0;
3359                         struct raid10_info *mirror = &conf->mirrors[i];
3360                         struct md_rdev *mrdev, *mreplace;
3361
3362                         rcu_read_lock();
3363                         mrdev = rcu_dereference(mirror->rdev);
3364                         mreplace = rcu_dereference(mirror->replacement);
3365
3366                         if (mrdev != NULL &&
3367                             !test_bit(Faulty, &mrdev->flags) &&
3368                             !test_bit(In_sync, &mrdev->flags))
3369                                 need_recover = 1;
3370                         if (mreplace != NULL &&
3371                             !test_bit(Faulty, &mreplace->flags))
3372                                 need_replace = 1;
3373
3374                         if (!need_recover && !need_replace) {
3375                                 rcu_read_unlock();
3376                                 continue;
3377                         }
3378
3379                         still_degraded = 0;
3380                         /* want to reconstruct this device */
3381                         rb2 = r10_bio;
3382                         sect = raid10_find_virt(conf, sector_nr, i);
3383                         if (sect >= mddev->resync_max_sectors) {
3384                                 /* last stripe is not complete - don't
3385                                  * try to recover this sector.
3386                                  */
3387                                 rcu_read_unlock();
3388                                 continue;
3389                         }
3390                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3391                                 mreplace = NULL;
3392                         /* Unless we are doing a full sync, or a replacement
3393                          * we only need to recover the block if it is set in
3394                          * the bitmap
3395                          */
3396                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3397                                                          &sync_blocks, 1);
3398                         if (sync_blocks < max_sync)
3399                                 max_sync = sync_blocks;
3400                         if (!must_sync &&
3401                             mreplace == NULL &&
3402                             !conf->fullsync) {
3403                                 /* yep, skip the sync_blocks here, but don't assume
3404                                  * that there will never be anything to do here
3405                                  */
3406                                 chunks_skipped = -1;
3407                                 rcu_read_unlock();
3408                                 continue;
3409                         }
3410                         atomic_inc(&mrdev->nr_pending);
3411                         if (mreplace)
3412                                 atomic_inc(&mreplace->nr_pending);
3413                         rcu_read_unlock();
3414
3415                         r10_bio = raid10_alloc_init_r10buf(conf);
3416                         r10_bio->state = 0;
3417                         raise_barrier(conf, rb2 != NULL);
3418                         atomic_set(&r10_bio->remaining, 0);
3419
3420                         r10_bio->master_bio = (struct bio*)rb2;
3421                         if (rb2)
3422                                 atomic_inc(&rb2->remaining);
3423                         r10_bio->mddev = mddev;
3424                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3425                         r10_bio->sector = sect;
3426
3427                         raid10_find_phys(conf, r10_bio);
3428
3429                         /* Need to check if the array will still be
3430                          * degraded
3431                          */
3432                         rcu_read_lock();
3433                         for (j = 0; j < conf->geo.raid_disks; j++) {
3434                                 struct md_rdev *rdev = rcu_dereference(
3435                                         conf->mirrors[j].rdev);
3436                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3437                                         still_degraded = 1;
3438                                         break;
3439                                 }
3440                         }
3441
3442                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3443                                                          &sync_blocks, still_degraded);
3444
3445                         any_working = 0;
3446                         for (j=0; j<conf->copies;j++) {
3447                                 int k;
3448                                 int d = r10_bio->devs[j].devnum;
3449                                 sector_t from_addr, to_addr;
3450                                 struct md_rdev *rdev =
3451                                         rcu_dereference(conf->mirrors[d].rdev);
3452                                 sector_t sector, first_bad;
3453                                 int bad_sectors;
3454                                 if (!rdev ||
3455                                     !test_bit(In_sync, &rdev->flags))
3456                                         continue;
3457                                 /* This is where we read from */
3458                                 any_working = 1;
3459                                 sector = r10_bio->devs[j].addr;
3460
3461                                 if (is_badblock(rdev, sector, max_sync,
3462                                                 &first_bad, &bad_sectors)) {
3463                                         if (first_bad > sector)
3464                                                 max_sync = first_bad - sector;
3465                                         else {
3466                                                 bad_sectors -= (sector
3467                                                                 - first_bad);
3468                                                 if (max_sync > bad_sectors)
3469                                                         max_sync = bad_sectors;
3470                                                 continue;
3471                                         }
3472                                 }
3473                                 bio = r10_bio->devs[0].bio;
3474                                 bio->bi_next = biolist;
3475                                 biolist = bio;
3476                                 bio->bi_end_io = end_sync_read;
3477                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3478                                 if (test_bit(FailFast, &rdev->flags))
3479                                         bio->bi_opf |= MD_FAILFAST;
3480                                 from_addr = r10_bio->devs[j].addr;
3481                                 bio->bi_iter.bi_sector = from_addr +
3482                                         rdev->data_offset;
3483                                 bio_set_dev(bio, rdev->bdev);
3484                                 atomic_inc(&rdev->nr_pending);
3485                                 /* and we write to 'i' (if not in_sync) */
3486
3487                                 for (k=0; k<conf->copies; k++)
3488                                         if (r10_bio->devs[k].devnum == i)
3489                                                 break;
3490                                 BUG_ON(k == conf->copies);
3491                                 to_addr = r10_bio->devs[k].addr;
3492                                 r10_bio->devs[0].devnum = d;
3493                                 r10_bio->devs[0].addr = from_addr;
3494                                 r10_bio->devs[1].devnum = i;
3495                                 r10_bio->devs[1].addr = to_addr;
3496
3497                                 if (need_recover) {
3498                                         bio = r10_bio->devs[1].bio;
3499                                         bio->bi_next = biolist;
3500                                         biolist = bio;
3501                                         bio->bi_end_io = end_sync_write;
3502                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3503                                         bio->bi_iter.bi_sector = to_addr
3504                                                 + mrdev->data_offset;
3505                                         bio_set_dev(bio, mrdev->bdev);
3506                                         atomic_inc(&r10_bio->remaining);
3507                                 } else
3508                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3509
3510                                 /* and maybe write to replacement */
3511                                 bio = r10_bio->devs[1].repl_bio;
3512                                 if (bio)
3513                                         bio->bi_end_io = NULL;
3514                                 /* Note: if need_replace, then bio
3515                                  * cannot be NULL as r10buf_pool_alloc will
3516                                  * have allocated it.
3517                                  */
3518                                 if (!need_replace)
3519                                         break;
3520                                 bio->bi_next = biolist;
3521                                 biolist = bio;
3522                                 bio->bi_end_io = end_sync_write;
3523                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3524                                 bio->bi_iter.bi_sector = to_addr +
3525                                         mreplace->data_offset;
3526                                 bio_set_dev(bio, mreplace->bdev);
3527                                 atomic_inc(&r10_bio->remaining);
3528                                 break;
3529                         }
3530                         rcu_read_unlock();
3531                         if (j == conf->copies) {
3532                                 /* Cannot recover, so abort the recovery or
3533                                  * record a bad block */
3534                                 if (any_working) {
3535                                         /* problem is that there are bad blocks
3536                                          * on other device(s)
3537                                          */
3538                                         int k;
3539                                         for (k = 0; k < conf->copies; k++)
3540                                                 if (r10_bio->devs[k].devnum == i)
3541                                                         break;
3542                                         if (!test_bit(In_sync,
3543                                                       &mrdev->flags)
3544                                             && !rdev_set_badblocks(
3545                                                     mrdev,
3546                                                     r10_bio->devs[k].addr,
3547                                                     max_sync, 0))
3548                                                 any_working = 0;
3549                                         if (mreplace &&
3550                                             !rdev_set_badblocks(
3551                                                     mreplace,
3552                                                     r10_bio->devs[k].addr,
3553                                                     max_sync, 0))
3554                                                 any_working = 0;
3555                                 }
3556                                 if (!any_working)  {
3557                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3558                                                               &mddev->recovery))
3559                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3560                                                        mdname(mddev));
3561                                         mirror->recovery_disabled
3562                                                 = mddev->recovery_disabled;
3563                                 }
3564                                 put_buf(r10_bio);
3565                                 if (rb2)
3566                                         atomic_dec(&rb2->remaining);
3567                                 r10_bio = rb2;
3568                                 rdev_dec_pending(mrdev, mddev);
3569                                 if (mreplace)
3570                                         rdev_dec_pending(mreplace, mddev);
3571                                 break;
3572                         }
3573                         rdev_dec_pending(mrdev, mddev);
3574                         if (mreplace)
3575                                 rdev_dec_pending(mreplace, mddev);
3576                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3577                                 /* Only want this if there is elsewhere to
3578                                  * read from. 'j' is currently the first
3579                                  * readable copy.
3580                                  */
3581                                 int targets = 1;
3582                                 for (; j < conf->copies; j++) {
3583                                         int d = r10_bio->devs[j].devnum;
3584                                         if (conf->mirrors[d].rdev &&
3585                                             test_bit(In_sync,
3586                                                       &conf->mirrors[d].rdev->flags))
3587                                                 targets++;
3588                                 }
3589                                 if (targets == 1)
3590                                         r10_bio->devs[0].bio->bi_opf
3591                                                 &= ~MD_FAILFAST;
3592                         }
3593                 }
3594                 if (biolist == NULL) {
3595                         while (r10_bio) {
3596                                 struct r10bio *rb2 = r10_bio;
3597                                 r10_bio = (struct r10bio*) rb2->master_bio;
3598                                 rb2->master_bio = NULL;
3599                                 put_buf(rb2);
3600                         }
3601                         goto giveup;
3602                 }
3603         } else {
3604                 /* resync. Schedule a read for every block at this virt offset */
3605                 int count = 0;
3606
3607                 /*
3608                  * Since curr_resync_completed could probably not update in
3609                  * time, and we will set cluster_sync_low based on it.
3610                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3611                  * safety reason, which ensures curr_resync_completed is
3612                  * updated in bitmap_cond_end_sync.
3613                  */
3614                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3615                                         mddev_is_clustered(mddev) &&
3616                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3617
3618                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3619                                           &sync_blocks, mddev->degraded) &&
3620                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3621                                                  &mddev->recovery)) {
3622                         /* We can skip this block */
3623                         *skipped = 1;
3624                         return sync_blocks + sectors_skipped;
3625                 }
3626                 if (sync_blocks < max_sync)
3627                         max_sync = sync_blocks;
3628                 r10_bio = raid10_alloc_init_r10buf(conf);
3629                 r10_bio->state = 0;
3630
3631                 r10_bio->mddev = mddev;
3632                 atomic_set(&r10_bio->remaining, 0);
3633                 raise_barrier(conf, 0);
3634                 conf->next_resync = sector_nr;
3635
3636                 r10_bio->master_bio = NULL;
3637                 r10_bio->sector = sector_nr;
3638                 set_bit(R10BIO_IsSync, &r10_bio->state);
3639                 raid10_find_phys(conf, r10_bio);
3640                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3641
3642                 for (i = 0; i < conf->copies; i++) {
3643                         int d = r10_bio->devs[i].devnum;
3644                         sector_t first_bad, sector;
3645                         int bad_sectors;
3646                         struct md_rdev *rdev;
3647
3648                         if (r10_bio->devs[i].repl_bio)
3649                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3650
3651                         bio = r10_bio->devs[i].bio;
3652                         bio->bi_status = BLK_STS_IOERR;
3653                         rcu_read_lock();
3654                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3655                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3656                                 rcu_read_unlock();
3657                                 continue;
3658                         }
3659                         sector = r10_bio->devs[i].addr;
3660                         if (is_badblock(rdev, sector, max_sync,
3661                                         &first_bad, &bad_sectors)) {
3662                                 if (first_bad > sector)
3663                                         max_sync = first_bad - sector;
3664                                 else {
3665                                         bad_sectors -= (sector - first_bad);
3666                                         if (max_sync > bad_sectors)
3667                                                 max_sync = bad_sectors;
3668                                         rcu_read_unlock();
3669                                         continue;
3670                                 }
3671                         }
3672                         atomic_inc(&rdev->nr_pending);
3673                         atomic_inc(&r10_bio->remaining);
3674                         bio->bi_next = biolist;
3675                         biolist = bio;
3676                         bio->bi_end_io = end_sync_read;
3677                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3678                         if (test_bit(FailFast, &rdev->flags))
3679                                 bio->bi_opf |= MD_FAILFAST;
3680                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3681                         bio_set_dev(bio, rdev->bdev);
3682                         count++;
3683
3684                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3685                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3686                                 rcu_read_unlock();
3687                                 continue;
3688                         }
3689                         atomic_inc(&rdev->nr_pending);
3690
3691                         /* Need to set up for writing to the replacement */
3692                         bio = r10_bio->devs[i].repl_bio;
3693                         bio->bi_status = BLK_STS_IOERR;
3694
3695                         sector = r10_bio->devs[i].addr;
3696                         bio->bi_next = biolist;
3697                         biolist = bio;
3698                         bio->bi_end_io = end_sync_write;
3699                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3700                         if (test_bit(FailFast, &rdev->flags))
3701                                 bio->bi_opf |= MD_FAILFAST;
3702                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3703                         bio_set_dev(bio, rdev->bdev);
3704                         count++;
3705                         rcu_read_unlock();
3706                 }
3707
3708                 if (count < 2) {
3709                         for (i=0; i<conf->copies; i++) {
3710                                 int d = r10_bio->devs[i].devnum;
3711                                 if (r10_bio->devs[i].bio->bi_end_io)
3712                                         rdev_dec_pending(conf->mirrors[d].rdev,
3713                                                          mddev);
3714                                 if (r10_bio->devs[i].repl_bio &&
3715                                     r10_bio->devs[i].repl_bio->bi_end_io)
3716                                         rdev_dec_pending(
3717                                                 conf->mirrors[d].replacement,
3718                                                 mddev);
3719                         }
3720                         put_buf(r10_bio);
3721                         biolist = NULL;
3722                         goto giveup;
3723                 }
3724         }
3725
3726         nr_sectors = 0;
3727         if (sector_nr + max_sync < max_sector)
3728                 max_sector = sector_nr + max_sync;
3729         do {
3730                 struct page *page;
3731                 int len = PAGE_SIZE;
3732                 if (sector_nr + (len>>9) > max_sector)
3733                         len = (max_sector - sector_nr) << 9;
3734                 if (len == 0)
3735                         break;
3736                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3737                         struct resync_pages *rp = get_resync_pages(bio);
3738                         page = resync_fetch_page(rp, page_idx);
3739                         /*
3740                          * won't fail because the vec table is big enough
3741                          * to hold all these pages
3742                          */
3743                         bio_add_page(bio, page, len, 0);
3744                 }
3745                 nr_sectors += len>>9;
3746                 sector_nr += len>>9;
3747         } while (++page_idx < RESYNC_PAGES);
3748         r10_bio->sectors = nr_sectors;
3749
3750         if (mddev_is_clustered(mddev) &&
3751             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3752                 /* It is resync not recovery */
3753                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3754                         conf->cluster_sync_low = mddev->curr_resync_completed;
3755                         raid10_set_cluster_sync_high(conf);
3756                         /* Send resync message */
3757                         md_cluster_ops->resync_info_update(mddev,
3758                                                 conf->cluster_sync_low,
3759                                                 conf->cluster_sync_high);
3760                 }
3761         } else if (mddev_is_clustered(mddev)) {
3762                 /* This is recovery not resync */
3763                 sector_t sect_va1, sect_va2;
3764                 bool broadcast_msg = false;
3765
3766                 for (i = 0; i < conf->geo.raid_disks; i++) {
3767                         /*
3768                          * sector_nr is a device address for recovery, so we
3769                          * need translate it to array address before compare
3770                          * with cluster_sync_high.
3771                          */
3772                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3773
3774                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3775                                 broadcast_msg = true;
3776                                 /*
3777                                  * curr_resync_completed is similar as
3778                                  * sector_nr, so make the translation too.
3779                                  */
3780                                 sect_va2 = raid10_find_virt(conf,
3781                                         mddev->curr_resync_completed, i);
3782
3783                                 if (conf->cluster_sync_low == 0 ||
3784                                     conf->cluster_sync_low > sect_va2)
3785                                         conf->cluster_sync_low = sect_va2;
3786                         }
3787                 }
3788                 if (broadcast_msg) {
3789                         raid10_set_cluster_sync_high(conf);
3790                         md_cluster_ops->resync_info_update(mddev,
3791                                                 conf->cluster_sync_low,
3792                                                 conf->cluster_sync_high);
3793                 }
3794         }
3795
3796         while (biolist) {
3797                 bio = biolist;
3798                 biolist = biolist->bi_next;
3799
3800                 bio->bi_next = NULL;
3801                 r10_bio = get_resync_r10bio(bio);
3802                 r10_bio->sectors = nr_sectors;
3803
3804                 if (bio->bi_end_io == end_sync_read) {
3805                         md_sync_acct_bio(bio, nr_sectors);
3806                         bio->bi_status = 0;
3807                         submit_bio_noacct(bio);
3808                 }
3809         }
3810
3811         if (sectors_skipped)
3812                 /* pretend they weren't skipped, it makes
3813                  * no important difference in this case
3814                  */
3815                 md_done_sync(mddev, sectors_skipped, 1);
3816
3817         return sectors_skipped + nr_sectors;
3818  giveup:
3819         /* There is nowhere to write, so all non-sync
3820          * drives must be failed or in resync, all drives
3821          * have a bad block, so try the next chunk...
3822          */
3823         if (sector_nr + max_sync < max_sector)
3824                 max_sector = sector_nr + max_sync;
3825
3826         sectors_skipped += (max_sector - sector_nr);
3827         chunks_skipped ++;
3828         sector_nr = max_sector;
3829         goto skipped;
3830 }
3831
3832 static sector_t
3833 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3834 {
3835         sector_t size;
3836         struct r10conf *conf = mddev->private;
3837
3838         if (!raid_disks)
3839                 raid_disks = min(conf->geo.raid_disks,
3840                                  conf->prev.raid_disks);
3841         if (!sectors)
3842                 sectors = conf->dev_sectors;
3843
3844         size = sectors >> conf->geo.chunk_shift;
3845         sector_div(size, conf->geo.far_copies);
3846         size = size * raid_disks;
3847         sector_div(size, conf->geo.near_copies);
3848
3849         return size << conf->geo.chunk_shift;
3850 }
3851
3852 static void calc_sectors(struct r10conf *conf, sector_t size)
3853 {
3854         /* Calculate the number of sectors-per-device that will
3855          * actually be used, and set conf->dev_sectors and
3856          * conf->stride
3857          */
3858
3859         size = size >> conf->geo.chunk_shift;
3860         sector_div(size, conf->geo.far_copies);
3861         size = size * conf->geo.raid_disks;
3862         sector_div(size, conf->geo.near_copies);
3863         /* 'size' is now the number of chunks in the array */
3864         /* calculate "used chunks per device" */
3865         size = size * conf->copies;
3866
3867         /* We need to round up when dividing by raid_disks to
3868          * get the stride size.
3869          */
3870         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3871
3872         conf->dev_sectors = size << conf->geo.chunk_shift;
3873
3874         if (conf->geo.far_offset)
3875                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3876         else {
3877                 sector_div(size, conf->geo.far_copies);
3878                 conf->geo.stride = size << conf->geo.chunk_shift;
3879         }
3880 }
3881
3882 enum geo_type {geo_new, geo_old, geo_start};
3883 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3884 {
3885         int nc, fc, fo;
3886         int layout, chunk, disks;
3887         switch (new) {
3888         case geo_old:
3889                 layout = mddev->layout;
3890                 chunk = mddev->chunk_sectors;
3891                 disks = mddev->raid_disks - mddev->delta_disks;
3892                 break;
3893         case geo_new:
3894                 layout = mddev->new_layout;
3895                 chunk = mddev->new_chunk_sectors;
3896                 disks = mddev->raid_disks;
3897                 break;
3898         default: /* avoid 'may be unused' warnings */
3899         case geo_start: /* new when starting reshape - raid_disks not
3900                          * updated yet. */
3901                 layout = mddev->new_layout;
3902                 chunk = mddev->new_chunk_sectors;
3903                 disks = mddev->raid_disks + mddev->delta_disks;
3904                 break;
3905         }
3906         if (layout >> 19)
3907                 return -1;
3908         if (chunk < (PAGE_SIZE >> 9) ||
3909             !is_power_of_2(chunk))
3910                 return -2;
3911         nc = layout & 255;
3912         fc = (layout >> 8) & 255;
3913         fo = layout & (1<<16);
3914         geo->raid_disks = disks;
3915         geo->near_copies = nc;
3916         geo->far_copies = fc;
3917         geo->far_offset = fo;
3918         switch (layout >> 17) {
3919         case 0: /* original layout.  simple but not always optimal */
3920                 geo->far_set_size = disks;
3921                 break;
3922         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3923                  * actually using this, but leave code here just in case.*/
3924                 geo->far_set_size = disks/fc;
3925                 WARN(geo->far_set_size < fc,
3926                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3927                 break;
3928         case 2: /* "improved" layout fixed to match documentation */
3929                 geo->far_set_size = fc * nc;
3930                 break;
3931         default: /* Not a valid layout */
3932                 return -1;
3933         }
3934         geo->chunk_mask = chunk - 1;
3935         geo->chunk_shift = ffz(~chunk);
3936         return nc*fc;
3937 }
3938
3939 static struct r10conf *setup_conf(struct mddev *mddev)
3940 {
3941         struct r10conf *conf = NULL;
3942         int err = -EINVAL;
3943         struct geom geo;
3944         int copies;
3945
3946         copies = setup_geo(&geo, mddev, geo_new);
3947
3948         if (copies == -2) {
3949                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3950                         mdname(mddev), PAGE_SIZE);
3951                 goto out;
3952         }
3953
3954         if (copies < 2 || copies > mddev->raid_disks) {
3955                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3956                         mdname(mddev), mddev->new_layout);
3957                 goto out;
3958         }
3959
3960         err = -ENOMEM;
3961         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3962         if (!conf)
3963                 goto out;
3964
3965         /* FIXME calc properly */
3966         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3967                                 sizeof(struct raid10_info),
3968                                 GFP_KERNEL);
3969         if (!conf->mirrors)
3970                 goto out;
3971
3972         conf->tmppage = alloc_page(GFP_KERNEL);
3973         if (!conf->tmppage)
3974                 goto out;
3975
3976         conf->geo = geo;
3977         conf->copies = copies;
3978         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3979                            rbio_pool_free, conf);
3980         if (err)
3981                 goto out;
3982
3983         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3984         if (err)
3985                 goto out;
3986
3987         calc_sectors(conf, mddev->dev_sectors);
3988         if (mddev->reshape_position == MaxSector) {
3989                 conf->prev = conf->geo;
3990                 conf->reshape_progress = MaxSector;
3991         } else {
3992                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3993                         err = -EINVAL;
3994                         goto out;
3995                 }
3996                 conf->reshape_progress = mddev->reshape_position;
3997                 if (conf->prev.far_offset)
3998                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3999                 else
4000                         /* far_copies must be 1 */
4001                         conf->prev.stride = conf->dev_sectors;
4002         }
4003         conf->reshape_safe = conf->reshape_progress;
4004         spin_lock_init(&conf->device_lock);
4005         INIT_LIST_HEAD(&conf->retry_list);
4006         INIT_LIST_HEAD(&conf->bio_end_io_list);
4007
4008         spin_lock_init(&conf->resync_lock);
4009         init_waitqueue_head(&conf->wait_barrier);
4010         atomic_set(&conf->nr_pending, 0);
4011
4012         err = -ENOMEM;
4013         conf->thread = md_register_thread(raid10d, mddev, "raid10");
4014         if (!conf->thread)
4015                 goto out;
4016
4017         conf->mddev = mddev;
4018         return conf;
4019
4020  out:
4021         if (conf) {
4022                 mempool_exit(&conf->r10bio_pool);
4023                 kfree(conf->mirrors);
4024                 safe_put_page(conf->tmppage);
4025                 bioset_exit(&conf->bio_split);
4026                 kfree(conf);
4027         }
4028         return ERR_PTR(err);
4029 }
4030
4031 static void raid10_set_io_opt(struct r10conf *conf)
4032 {
4033         int raid_disks = conf->geo.raid_disks;
4034
4035         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4036                 raid_disks /= conf->geo.near_copies;
4037         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4038                          raid_disks);
4039 }
4040
4041 static int raid10_run(struct mddev *mddev)
4042 {
4043         struct r10conf *conf;
4044         int i, disk_idx;
4045         struct raid10_info *disk;
4046         struct md_rdev *rdev;
4047         sector_t size;
4048         sector_t min_offset_diff = 0;
4049         int first = 1;
4050         bool discard_supported = false;
4051
4052         if (mddev_init_writes_pending(mddev) < 0)
4053                 return -ENOMEM;
4054
4055         if (mddev->private == NULL) {
4056                 conf = setup_conf(mddev);
4057                 if (IS_ERR(conf))
4058                         return PTR_ERR(conf);
4059                 mddev->private = conf;
4060         }
4061         conf = mddev->private;
4062         if (!conf)
4063                 goto out;
4064
4065         if (mddev_is_clustered(conf->mddev)) {
4066                 int fc, fo;
4067
4068                 fc = (mddev->layout >> 8) & 255;
4069                 fo = mddev->layout & (1<<16);
4070                 if (fc > 1 || fo > 0) {
4071                         pr_err("only near layout is supported by clustered"
4072                                 " raid10\n");
4073                         goto out_free_conf;
4074                 }
4075         }
4076
4077         mddev->thread = conf->thread;
4078         conf->thread = NULL;
4079
4080         if (mddev->queue) {
4081                 blk_queue_max_discard_sectors(mddev->queue,
4082                                               UINT_MAX);
4083                 blk_queue_max_write_same_sectors(mddev->queue, 0);
4084                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4085                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4086                 raid10_set_io_opt(conf);
4087         }
4088
4089         rdev_for_each(rdev, mddev) {
4090                 long long diff;
4091
4092                 disk_idx = rdev->raid_disk;
4093                 if (disk_idx < 0)
4094                         continue;
4095                 if (disk_idx >= conf->geo.raid_disks &&
4096                     disk_idx >= conf->prev.raid_disks)
4097                         continue;
4098                 disk = conf->mirrors + disk_idx;
4099
4100                 if (test_bit(Replacement, &rdev->flags)) {
4101                         if (disk->replacement)
4102                                 goto out_free_conf;
4103                         disk->replacement = rdev;
4104                 } else {
4105                         if (disk->rdev)
4106                                 goto out_free_conf;
4107                         disk->rdev = rdev;
4108                 }
4109                 diff = (rdev->new_data_offset - rdev->data_offset);
4110                 if (!mddev->reshape_backwards)
4111                         diff = -diff;
4112                 if (diff < 0)
4113                         diff = 0;
4114                 if (first || diff < min_offset_diff)
4115                         min_offset_diff = diff;
4116
4117                 if (mddev->gendisk)
4118                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4119                                           rdev->data_offset << 9);
4120
4121                 disk->head_position = 0;
4122
4123                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4124                         discard_supported = true;
4125                 first = 0;
4126         }
4127
4128         if (mddev->queue) {
4129                 if (discard_supported)
4130                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4131                                                 mddev->queue);
4132                 else
4133                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4134                                                   mddev->queue);
4135         }
4136         /* need to check that every block has at least one working mirror */
4137         if (!enough(conf, -1)) {
4138                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4139                        mdname(mddev));
4140                 goto out_free_conf;
4141         }
4142
4143         if (conf->reshape_progress != MaxSector) {
4144                 /* must ensure that shape change is supported */
4145                 if (conf->geo.far_copies != 1 &&
4146                     conf->geo.far_offset == 0)
4147                         goto out_free_conf;
4148                 if (conf->prev.far_copies != 1 &&
4149                     conf->prev.far_offset == 0)
4150                         goto out_free_conf;
4151         }
4152
4153         mddev->degraded = 0;
4154         for (i = 0;
4155              i < conf->geo.raid_disks
4156                      || i < conf->prev.raid_disks;
4157              i++) {
4158
4159                 disk = conf->mirrors + i;
4160
4161                 if (!disk->rdev && disk->replacement) {
4162                         /* The replacement is all we have - use it */
4163                         disk->rdev = disk->replacement;
4164                         disk->replacement = NULL;
4165                         clear_bit(Replacement, &disk->rdev->flags);
4166                 }
4167
4168                 if (!disk->rdev ||
4169                     !test_bit(In_sync, &disk->rdev->flags)) {
4170                         disk->head_position = 0;
4171                         mddev->degraded++;
4172                         if (disk->rdev &&
4173                             disk->rdev->saved_raid_disk < 0)
4174                                 conf->fullsync = 1;
4175                 }
4176
4177                 if (disk->replacement &&
4178                     !test_bit(In_sync, &disk->replacement->flags) &&
4179                     disk->replacement->saved_raid_disk < 0) {
4180                         conf->fullsync = 1;
4181                 }
4182
4183                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4184         }
4185
4186         if (mddev->recovery_cp != MaxSector)
4187                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4188                           mdname(mddev));
4189         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4190                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4191                 conf->geo.raid_disks);
4192         /*
4193          * Ok, everything is just fine now
4194          */
4195         mddev->dev_sectors = conf->dev_sectors;
4196         size = raid10_size(mddev, 0, 0);
4197         md_set_array_sectors(mddev, size);
4198         mddev->resync_max_sectors = size;
4199         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4200
4201         if (md_integrity_register(mddev))
4202                 goto out_free_conf;
4203
4204         if (conf->reshape_progress != MaxSector) {
4205                 unsigned long before_length, after_length;
4206
4207                 before_length = ((1 << conf->prev.chunk_shift) *
4208                                  conf->prev.far_copies);
4209                 after_length = ((1 << conf->geo.chunk_shift) *
4210                                 conf->geo.far_copies);
4211
4212                 if (max(before_length, after_length) > min_offset_diff) {
4213                         /* This cannot work */
4214                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4215                         goto out_free_conf;
4216                 }
4217                 conf->offset_diff = min_offset_diff;
4218
4219                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4220                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4221                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4222                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4223                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4224                                                         "reshape");
4225                 if (!mddev->sync_thread)
4226                         goto out_free_conf;
4227         }
4228
4229         return 0;
4230
4231 out_free_conf:
4232         md_unregister_thread(&mddev->thread);
4233         mempool_exit(&conf->r10bio_pool);
4234         safe_put_page(conf->tmppage);
4235         kfree(conf->mirrors);
4236         kfree(conf);
4237         mddev->private = NULL;
4238 out:
4239         return -EIO;
4240 }
4241
4242 static void raid10_free(struct mddev *mddev, void *priv)
4243 {
4244         struct r10conf *conf = priv;
4245
4246         mempool_exit(&conf->r10bio_pool);
4247         safe_put_page(conf->tmppage);
4248         kfree(conf->mirrors);
4249         kfree(conf->mirrors_old);
4250         kfree(conf->mirrors_new);
4251         bioset_exit(&conf->bio_split);
4252         kfree(conf);
4253 }
4254
4255 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4256 {
4257         struct r10conf *conf = mddev->private;
4258
4259         if (quiesce)
4260                 raise_barrier(conf, 0);
4261         else
4262                 lower_barrier(conf);
4263 }
4264
4265 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4266 {
4267         /* Resize of 'far' arrays is not supported.
4268          * For 'near' and 'offset' arrays we can set the
4269          * number of sectors used to be an appropriate multiple
4270          * of the chunk size.
4271          * For 'offset', this is far_copies*chunksize.
4272          * For 'near' the multiplier is the LCM of
4273          * near_copies and raid_disks.
4274          * So if far_copies > 1 && !far_offset, fail.
4275          * Else find LCM(raid_disks, near_copy)*far_copies and
4276          * multiply by chunk_size.  Then round to this number.
4277          * This is mostly done by raid10_size()
4278          */
4279         struct r10conf *conf = mddev->private;
4280         sector_t oldsize, size;
4281
4282         if (mddev->reshape_position != MaxSector)
4283                 return -EBUSY;
4284
4285         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4286                 return -EINVAL;
4287
4288         oldsize = raid10_size(mddev, 0, 0);
4289         size = raid10_size(mddev, sectors, 0);
4290         if (mddev->external_size &&
4291             mddev->array_sectors > size)
4292                 return -EINVAL;
4293         if (mddev->bitmap) {
4294                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4295                 if (ret)
4296                         return ret;
4297         }
4298         md_set_array_sectors(mddev, size);
4299         if (sectors > mddev->dev_sectors &&
4300             mddev->recovery_cp > oldsize) {
4301                 mddev->recovery_cp = oldsize;
4302                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4303         }
4304         calc_sectors(conf, sectors);
4305         mddev->dev_sectors = conf->dev_sectors;
4306         mddev->resync_max_sectors = size;
4307         return 0;
4308 }
4309
4310 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4311 {
4312         struct md_rdev *rdev;
4313         struct r10conf *conf;
4314
4315         if (mddev->degraded > 0) {
4316                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4317                         mdname(mddev));
4318                 return ERR_PTR(-EINVAL);
4319         }
4320         sector_div(size, devs);
4321
4322         /* Set new parameters */
4323         mddev->new_level = 10;
4324         /* new layout: far_copies = 1, near_copies = 2 */
4325         mddev->new_layout = (1<<8) + 2;
4326         mddev->new_chunk_sectors = mddev->chunk_sectors;
4327         mddev->delta_disks = mddev->raid_disks;
4328         mddev->raid_disks *= 2;
4329         /* make sure it will be not marked as dirty */
4330         mddev->recovery_cp = MaxSector;
4331         mddev->dev_sectors = size;
4332
4333         conf = setup_conf(mddev);
4334         if (!IS_ERR(conf)) {
4335                 rdev_for_each(rdev, mddev)
4336                         if (rdev->raid_disk >= 0) {
4337                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4338                                 rdev->sectors = size;
4339                         }
4340                 conf->barrier = 1;
4341         }
4342
4343         return conf;
4344 }
4345
4346 static void *raid10_takeover(struct mddev *mddev)
4347 {
4348         struct r0conf *raid0_conf;
4349
4350         /* raid10 can take over:
4351          *  raid0 - providing it has only two drives
4352          */
4353         if (mddev->level == 0) {
4354                 /* for raid0 takeover only one zone is supported */
4355                 raid0_conf = mddev->private;
4356                 if (raid0_conf->nr_strip_zones > 1) {
4357                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4358                                 mdname(mddev));
4359                         return ERR_PTR(-EINVAL);
4360                 }
4361                 return raid10_takeover_raid0(mddev,
4362                         raid0_conf->strip_zone->zone_end,
4363                         raid0_conf->strip_zone->nb_dev);
4364         }
4365         return ERR_PTR(-EINVAL);
4366 }
4367
4368 static int raid10_check_reshape(struct mddev *mddev)
4369 {
4370         /* Called when there is a request to change
4371          * - layout (to ->new_layout)
4372          * - chunk size (to ->new_chunk_sectors)
4373          * - raid_disks (by delta_disks)
4374          * or when trying to restart a reshape that was ongoing.
4375          *
4376          * We need to validate the request and possibly allocate
4377          * space if that might be an issue later.
4378          *
4379          * Currently we reject any reshape of a 'far' mode array,
4380          * allow chunk size to change if new is generally acceptable,
4381          * allow raid_disks to increase, and allow
4382          * a switch between 'near' mode and 'offset' mode.
4383          */
4384         struct r10conf *conf = mddev->private;
4385         struct geom geo;
4386
4387         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4388                 return -EINVAL;
4389
4390         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4391                 /* mustn't change number of copies */
4392                 return -EINVAL;
4393         if (geo.far_copies > 1 && !geo.far_offset)
4394                 /* Cannot switch to 'far' mode */
4395                 return -EINVAL;
4396
4397         if (mddev->array_sectors & geo.chunk_mask)
4398                         /* not factor of array size */
4399                         return -EINVAL;
4400
4401         if (!enough(conf, -1))
4402                 return -EINVAL;
4403
4404         kfree(conf->mirrors_new);
4405         conf->mirrors_new = NULL;
4406         if (mddev->delta_disks > 0) {
4407                 /* allocate new 'mirrors' list */
4408                 conf->mirrors_new =
4409                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4410                                 sizeof(struct raid10_info),
4411                                 GFP_KERNEL);
4412                 if (!conf->mirrors_new)
4413                         return -ENOMEM;
4414         }
4415         return 0;
4416 }
4417
4418 /*
4419  * Need to check if array has failed when deciding whether to:
4420  *  - start an array
4421  *  - remove non-faulty devices
4422  *  - add a spare
4423  *  - allow a reshape
4424  * This determination is simple when no reshape is happening.
4425  * However if there is a reshape, we need to carefully check
4426  * both the before and after sections.
4427  * This is because some failed devices may only affect one
4428  * of the two sections, and some non-in_sync devices may
4429  * be insync in the section most affected by failed devices.
4430  */
4431 static int calc_degraded(struct r10conf *conf)
4432 {
4433         int degraded, degraded2;
4434         int i;
4435
4436         rcu_read_lock();
4437         degraded = 0;
4438         /* 'prev' section first */
4439         for (i = 0; i < conf->prev.raid_disks; i++) {
4440                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4441                 if (!rdev || test_bit(Faulty, &rdev->flags))
4442                         degraded++;
4443                 else if (!test_bit(In_sync, &rdev->flags))
4444                         /* When we can reduce the number of devices in
4445                          * an array, this might not contribute to
4446                          * 'degraded'.  It does now.
4447                          */
4448                         degraded++;
4449         }
4450         rcu_read_unlock();
4451         if (conf->geo.raid_disks == conf->prev.raid_disks)
4452                 return degraded;
4453         rcu_read_lock();
4454         degraded2 = 0;
4455         for (i = 0; i < conf->geo.raid_disks; i++) {
4456                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4457                 if (!rdev || test_bit(Faulty, &rdev->flags))
4458                         degraded2++;
4459                 else if (!test_bit(In_sync, &rdev->flags)) {
4460                         /* If reshape is increasing the number of devices,
4461                          * this section has already been recovered, so
4462                          * it doesn't contribute to degraded.
4463                          * else it does.
4464                          */
4465                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4466                                 degraded2++;
4467                 }
4468         }
4469         rcu_read_unlock();
4470         if (degraded2 > degraded)
4471                 return degraded2;
4472         return degraded;
4473 }
4474
4475 static int raid10_start_reshape(struct mddev *mddev)
4476 {
4477         /* A 'reshape' has been requested. This commits
4478          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4479          * This also checks if there are enough spares and adds them
4480          * to the array.
4481          * We currently require enough spares to make the final
4482          * array non-degraded.  We also require that the difference
4483          * between old and new data_offset - on each device - is
4484          * enough that we never risk over-writing.
4485          */
4486
4487         unsigned long before_length, after_length;
4488         sector_t min_offset_diff = 0;
4489         int first = 1;
4490         struct geom new;
4491         struct r10conf *conf = mddev->private;
4492         struct md_rdev *rdev;
4493         int spares = 0;
4494         int ret;
4495
4496         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4497                 return -EBUSY;
4498
4499         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4500                 return -EINVAL;
4501
4502         before_length = ((1 << conf->prev.chunk_shift) *
4503                          conf->prev.far_copies);
4504         after_length = ((1 << conf->geo.chunk_shift) *
4505                         conf->geo.far_copies);
4506
4507         rdev_for_each(rdev, mddev) {
4508                 if (!test_bit(In_sync, &rdev->flags)
4509                     && !test_bit(Faulty, &rdev->flags))
4510                         spares++;
4511                 if (rdev->raid_disk >= 0) {
4512                         long long diff = (rdev->new_data_offset
4513                                           - rdev->data_offset);
4514                         if (!mddev->reshape_backwards)
4515                                 diff = -diff;
4516                         if (diff < 0)
4517                                 diff = 0;
4518                         if (first || diff < min_offset_diff)
4519                                 min_offset_diff = diff;
4520                         first = 0;
4521                 }
4522         }
4523
4524         if (max(before_length, after_length) > min_offset_diff)
4525                 return -EINVAL;
4526
4527         if (spares < mddev->delta_disks)
4528                 return -EINVAL;
4529
4530         conf->offset_diff = min_offset_diff;
4531         spin_lock_irq(&conf->device_lock);
4532         if (conf->mirrors_new) {
4533                 memcpy(conf->mirrors_new, conf->mirrors,
4534                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4535                 smp_mb();
4536                 kfree(conf->mirrors_old);
4537                 conf->mirrors_old = conf->mirrors;
4538                 conf->mirrors = conf->mirrors_new;
4539                 conf->mirrors_new = NULL;
4540         }
4541         setup_geo(&conf->geo, mddev, geo_start);
4542         smp_mb();
4543         if (mddev->reshape_backwards) {
4544                 sector_t size = raid10_size(mddev, 0, 0);
4545                 if (size < mddev->array_sectors) {
4546                         spin_unlock_irq(&conf->device_lock);
4547                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4548                                 mdname(mddev));
4549                         return -EINVAL;
4550                 }
4551                 mddev->resync_max_sectors = size;
4552                 conf->reshape_progress = size;
4553         } else
4554                 conf->reshape_progress = 0;
4555         conf->reshape_safe = conf->reshape_progress;
4556         spin_unlock_irq(&conf->device_lock);
4557
4558         if (mddev->delta_disks && mddev->bitmap) {
4559                 struct mdp_superblock_1 *sb = NULL;
4560                 sector_t oldsize, newsize;
4561
4562                 oldsize = raid10_size(mddev, 0, 0);
4563                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4564
4565                 if (!mddev_is_clustered(mddev)) {
4566                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4567                         if (ret)
4568                                 goto abort;
4569                         else
4570                                 goto out;
4571                 }
4572
4573                 rdev_for_each(rdev, mddev) {
4574                         if (rdev->raid_disk > -1 &&
4575                             !test_bit(Faulty, &rdev->flags))
4576                                 sb = page_address(rdev->sb_page);
4577                 }
4578
4579                 /*
4580                  * some node is already performing reshape, and no need to
4581                  * call md_bitmap_resize again since it should be called when
4582                  * receiving BITMAP_RESIZE msg
4583                  */
4584                 if ((sb && (le32_to_cpu(sb->feature_map) &
4585                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4586                         goto out;
4587
4588                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4589                 if (ret)
4590                         goto abort;
4591
4592                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4593                 if (ret) {
4594                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4595                         goto abort;
4596                 }
4597         }
4598 out:
4599         if (mddev->delta_disks > 0) {
4600                 rdev_for_each(rdev, mddev)
4601                         if (rdev->raid_disk < 0 &&
4602                             !test_bit(Faulty, &rdev->flags)) {
4603                                 if (raid10_add_disk(mddev, rdev) == 0) {
4604                                         if (rdev->raid_disk >=
4605                                             conf->prev.raid_disks)
4606                                                 set_bit(In_sync, &rdev->flags);
4607                                         else
4608                                                 rdev->recovery_offset = 0;
4609
4610                                         /* Failure here is OK */
4611                                         sysfs_link_rdev(mddev, rdev);
4612                                 }
4613                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4614                                    && !test_bit(Faulty, &rdev->flags)) {
4615                                 /* This is a spare that was manually added */
4616                                 set_bit(In_sync, &rdev->flags);
4617                         }
4618         }
4619         /* When a reshape changes the number of devices,
4620          * ->degraded is measured against the larger of the
4621          * pre and  post numbers.
4622          */
4623         spin_lock_irq(&conf->device_lock);
4624         mddev->degraded = calc_degraded(conf);
4625         spin_unlock_irq(&conf->device_lock);
4626         mddev->raid_disks = conf->geo.raid_disks;
4627         mddev->reshape_position = conf->reshape_progress;
4628         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4629
4630         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4631         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4632         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4633         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4634         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4635
4636         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4637                                                 "reshape");
4638         if (!mddev->sync_thread) {
4639                 ret = -EAGAIN;
4640                 goto abort;
4641         }
4642         conf->reshape_checkpoint = jiffies;
4643         md_wakeup_thread(mddev->sync_thread);
4644         md_new_event(mddev);
4645         return 0;
4646
4647 abort:
4648         mddev->recovery = 0;
4649         spin_lock_irq(&conf->device_lock);
4650         conf->geo = conf->prev;
4651         mddev->raid_disks = conf->geo.raid_disks;
4652         rdev_for_each(rdev, mddev)
4653                 rdev->new_data_offset = rdev->data_offset;
4654         smp_wmb();
4655         conf->reshape_progress = MaxSector;
4656         conf->reshape_safe = MaxSector;
4657         mddev->reshape_position = MaxSector;
4658         spin_unlock_irq(&conf->device_lock);
4659         return ret;
4660 }
4661
4662 /* Calculate the last device-address that could contain
4663  * any block from the chunk that includes the array-address 's'
4664  * and report the next address.
4665  * i.e. the address returned will be chunk-aligned and after
4666  * any data that is in the chunk containing 's'.
4667  */
4668 static sector_t last_dev_address(sector_t s, struct geom *geo)
4669 {
4670         s = (s | geo->chunk_mask) + 1;
4671         s >>= geo->chunk_shift;
4672         s *= geo->near_copies;
4673         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4674         s *= geo->far_copies;
4675         s <<= geo->chunk_shift;
4676         return s;
4677 }
4678
4679 /* Calculate the first device-address that could contain
4680  * any block from the chunk that includes the array-address 's'.
4681  * This too will be the start of a chunk
4682  */
4683 static sector_t first_dev_address(sector_t s, struct geom *geo)
4684 {
4685         s >>= geo->chunk_shift;
4686         s *= geo->near_copies;
4687         sector_div(s, geo->raid_disks);
4688         s *= geo->far_copies;
4689         s <<= geo->chunk_shift;
4690         return s;
4691 }
4692
4693 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4694                                 int *skipped)
4695 {
4696         /* We simply copy at most one chunk (smallest of old and new)
4697          * at a time, possibly less if that exceeds RESYNC_PAGES,
4698          * or we hit a bad block or something.
4699          * This might mean we pause for normal IO in the middle of
4700          * a chunk, but that is not a problem as mddev->reshape_position
4701          * can record any location.
4702          *
4703          * If we will want to write to a location that isn't
4704          * yet recorded as 'safe' (i.e. in metadata on disk) then
4705          * we need to flush all reshape requests and update the metadata.
4706          *
4707          * When reshaping forwards (e.g. to more devices), we interpret
4708          * 'safe' as the earliest block which might not have been copied
4709          * down yet.  We divide this by previous stripe size and multiply
4710          * by previous stripe length to get lowest device offset that we
4711          * cannot write to yet.
4712          * We interpret 'sector_nr' as an address that we want to write to.
4713          * From this we use last_device_address() to find where we might
4714          * write to, and first_device_address on the  'safe' position.
4715          * If this 'next' write position is after the 'safe' position,
4716          * we must update the metadata to increase the 'safe' position.
4717          *
4718          * When reshaping backwards, we round in the opposite direction
4719          * and perform the reverse test:  next write position must not be
4720          * less than current safe position.
4721          *
4722          * In all this the minimum difference in data offsets
4723          * (conf->offset_diff - always positive) allows a bit of slack,
4724          * so next can be after 'safe', but not by more than offset_diff
4725          *
4726          * We need to prepare all the bios here before we start any IO
4727          * to ensure the size we choose is acceptable to all devices.
4728          * The means one for each copy for write-out and an extra one for
4729          * read-in.
4730          * We store the read-in bio in ->master_bio and the others in
4731          * ->devs[x].bio and ->devs[x].repl_bio.
4732          */
4733         struct r10conf *conf = mddev->private;
4734         struct r10bio *r10_bio;
4735         sector_t next, safe, last;
4736         int max_sectors;
4737         int nr_sectors;
4738         int s;
4739         struct md_rdev *rdev;
4740         int need_flush = 0;
4741         struct bio *blist;
4742         struct bio *bio, *read_bio;
4743         int sectors_done = 0;
4744         struct page **pages;
4745
4746         if (sector_nr == 0) {
4747                 /* If restarting in the middle, skip the initial sectors */
4748                 if (mddev->reshape_backwards &&
4749                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4750                         sector_nr = (raid10_size(mddev, 0, 0)
4751                                      - conf->reshape_progress);
4752                 } else if (!mddev->reshape_backwards &&
4753                            conf->reshape_progress > 0)
4754                         sector_nr = conf->reshape_progress;
4755                 if (sector_nr) {
4756                         mddev->curr_resync_completed = sector_nr;
4757                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4758                         *skipped = 1;
4759                         return sector_nr;
4760                 }
4761         }
4762
4763         /* We don't use sector_nr to track where we are up to
4764          * as that doesn't work well for ->reshape_backwards.
4765          * So just use ->reshape_progress.
4766          */
4767         if (mddev->reshape_backwards) {
4768                 /* 'next' is the earliest device address that we might
4769                  * write to for this chunk in the new layout
4770                  */
4771                 next = first_dev_address(conf->reshape_progress - 1,
4772                                          &conf->geo);
4773
4774                 /* 'safe' is the last device address that we might read from
4775                  * in the old layout after a restart
4776                  */
4777                 safe = last_dev_address(conf->reshape_safe - 1,
4778                                         &conf->prev);
4779
4780                 if (next + conf->offset_diff < safe)
4781                         need_flush = 1;
4782
4783                 last = conf->reshape_progress - 1;
4784                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4785                                                & conf->prev.chunk_mask);
4786                 if (sector_nr + RESYNC_SECTORS < last)
4787                         sector_nr = last + 1 - RESYNC_SECTORS;
4788         } else {
4789                 /* 'next' is after the last device address that we
4790                  * might write to for this chunk in the new layout
4791                  */
4792                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4793
4794                 /* 'safe' is the earliest device address that we might
4795                  * read from in the old layout after a restart
4796                  */
4797                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4798
4799                 /* Need to update metadata if 'next' might be beyond 'safe'
4800                  * as that would possibly corrupt data
4801                  */
4802                 if (next > safe + conf->offset_diff)
4803                         need_flush = 1;
4804
4805                 sector_nr = conf->reshape_progress;
4806                 last  = sector_nr | (conf->geo.chunk_mask
4807                                      & conf->prev.chunk_mask);
4808
4809                 if (sector_nr + RESYNC_SECTORS <= last)
4810                         last = sector_nr + RESYNC_SECTORS - 1;
4811         }
4812
4813         if (need_flush ||
4814             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4815                 /* Need to update reshape_position in metadata */
4816                 wait_barrier(conf);
4817                 mddev->reshape_position = conf->reshape_progress;
4818                 if (mddev->reshape_backwards)
4819                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4820                                 - conf->reshape_progress;
4821                 else
4822                         mddev->curr_resync_completed = conf->reshape_progress;
4823                 conf->reshape_checkpoint = jiffies;
4824                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4825                 md_wakeup_thread(mddev->thread);
4826                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4827                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4828                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4829                         allow_barrier(conf);
4830                         return sectors_done;
4831                 }
4832                 conf->reshape_safe = mddev->reshape_position;
4833                 allow_barrier(conf);
4834         }
4835
4836         raise_barrier(conf, 0);
4837 read_more:
4838         /* Now schedule reads for blocks from sector_nr to last */
4839         r10_bio = raid10_alloc_init_r10buf(conf);
4840         r10_bio->state = 0;
4841         raise_barrier(conf, 1);
4842         atomic_set(&r10_bio->remaining, 0);
4843         r10_bio->mddev = mddev;
4844         r10_bio->sector = sector_nr;
4845         set_bit(R10BIO_IsReshape, &r10_bio->state);
4846         r10_bio->sectors = last - sector_nr + 1;
4847         rdev = read_balance(conf, r10_bio, &max_sectors);
4848         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4849
4850         if (!rdev) {
4851                 /* Cannot read from here, so need to record bad blocks
4852                  * on all the target devices.
4853                  */
4854                 // FIXME
4855                 mempool_free(r10_bio, &conf->r10buf_pool);
4856                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4857                 return sectors_done;
4858         }
4859
4860         read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4861
4862         bio_set_dev(read_bio, rdev->bdev);
4863         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4864                                + rdev->data_offset);
4865         read_bio->bi_private = r10_bio;
4866         read_bio->bi_end_io = end_reshape_read;
4867         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4868         r10_bio->master_bio = read_bio;
4869         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4870
4871         /*
4872          * Broadcast RESYNC message to other nodes, so all nodes would not
4873          * write to the region to avoid conflict.
4874         */
4875         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4876                 struct mdp_superblock_1 *sb = NULL;
4877                 int sb_reshape_pos = 0;
4878
4879                 conf->cluster_sync_low = sector_nr;
4880                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4881                 sb = page_address(rdev->sb_page);
4882                 if (sb) {
4883                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4884                         /*
4885                          * Set cluster_sync_low again if next address for array
4886                          * reshape is less than cluster_sync_low. Since we can't
4887                          * update cluster_sync_low until it has finished reshape.
4888                          */
4889                         if (sb_reshape_pos < conf->cluster_sync_low)
4890                                 conf->cluster_sync_low = sb_reshape_pos;
4891                 }
4892
4893                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4894                                                           conf->cluster_sync_high);
4895         }
4896
4897         /* Now find the locations in the new layout */
4898         __raid10_find_phys(&conf->geo, r10_bio);
4899
4900         blist = read_bio;
4901         read_bio->bi_next = NULL;
4902
4903         rcu_read_lock();
4904         for (s = 0; s < conf->copies*2; s++) {
4905                 struct bio *b;
4906                 int d = r10_bio->devs[s/2].devnum;
4907                 struct md_rdev *rdev2;
4908                 if (s&1) {
4909                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4910                         b = r10_bio->devs[s/2].repl_bio;
4911                 } else {
4912                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4913                         b = r10_bio->devs[s/2].bio;
4914                 }
4915                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4916                         continue;
4917
4918                 bio_set_dev(b, rdev2->bdev);
4919                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4920                         rdev2->new_data_offset;
4921                 b->bi_end_io = end_reshape_write;
4922                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4923                 b->bi_next = blist;
4924                 blist = b;
4925         }
4926
4927         /* Now add as many pages as possible to all of these bios. */
4928
4929         nr_sectors = 0;
4930         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4931         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4932                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4933                 int len = (max_sectors - s) << 9;
4934                 if (len > PAGE_SIZE)
4935                         len = PAGE_SIZE;
4936                 for (bio = blist; bio ; bio = bio->bi_next) {
4937                         /*
4938                          * won't fail because the vec table is big enough
4939                          * to hold all these pages
4940                          */
4941                         bio_add_page(bio, page, len, 0);
4942                 }
4943                 sector_nr += len >> 9;
4944                 nr_sectors += len >> 9;
4945         }
4946         rcu_read_unlock();
4947         r10_bio->sectors = nr_sectors;
4948
4949         /* Now submit the read */
4950         md_sync_acct_bio(read_bio, r10_bio->sectors);
4951         atomic_inc(&r10_bio->remaining);
4952         read_bio->bi_next = NULL;
4953         submit_bio_noacct(read_bio);
4954         sectors_done += nr_sectors;
4955         if (sector_nr <= last)
4956                 goto read_more;
4957
4958         lower_barrier(conf);
4959
4960         /* Now that we have done the whole section we can
4961          * update reshape_progress
4962          */
4963         if (mddev->reshape_backwards)
4964                 conf->reshape_progress -= sectors_done;
4965         else
4966                 conf->reshape_progress += sectors_done;
4967
4968         return sectors_done;
4969 }
4970
4971 static void end_reshape_request(struct r10bio *r10_bio);
4972 static int handle_reshape_read_error(struct mddev *mddev,
4973                                      struct r10bio *r10_bio);
4974 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4975 {
4976         /* Reshape read completed.  Hopefully we have a block
4977          * to write out.
4978          * If we got a read error then we do sync 1-page reads from
4979          * elsewhere until we find the data - or give up.
4980          */
4981         struct r10conf *conf = mddev->private;
4982         int s;
4983
4984         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4985                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4986                         /* Reshape has been aborted */
4987                         md_done_sync(mddev, r10_bio->sectors, 0);
4988                         return;
4989                 }
4990
4991         /* We definitely have the data in the pages, schedule the
4992          * writes.
4993          */
4994         atomic_set(&r10_bio->remaining, 1);
4995         for (s = 0; s < conf->copies*2; s++) {
4996                 struct bio *b;
4997                 int d = r10_bio->devs[s/2].devnum;
4998                 struct md_rdev *rdev;
4999                 rcu_read_lock();
5000                 if (s&1) {
5001                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5002                         b = r10_bio->devs[s/2].repl_bio;
5003                 } else {
5004                         rdev = rcu_dereference(conf->mirrors[d].rdev);
5005                         b = r10_bio->devs[s/2].bio;
5006                 }
5007                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5008                         rcu_read_unlock();
5009                         continue;
5010                 }
5011                 atomic_inc(&rdev->nr_pending);
5012                 rcu_read_unlock();
5013                 md_sync_acct_bio(b, r10_bio->sectors);
5014                 atomic_inc(&r10_bio->remaining);
5015                 b->bi_next = NULL;
5016                 submit_bio_noacct(b);
5017         }
5018         end_reshape_request(r10_bio);
5019 }
5020
5021 static void end_reshape(struct r10conf *conf)
5022 {
5023         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5024                 return;
5025
5026         spin_lock_irq(&conf->device_lock);
5027         conf->prev = conf->geo;
5028         md_finish_reshape(conf->mddev);
5029         smp_wmb();
5030         conf->reshape_progress = MaxSector;
5031         conf->reshape_safe = MaxSector;
5032         spin_unlock_irq(&conf->device_lock);
5033
5034         if (conf->mddev->queue)
5035                 raid10_set_io_opt(conf);
5036         conf->fullsync = 0;
5037 }
5038
5039 static void raid10_update_reshape_pos(struct mddev *mddev)
5040 {
5041         struct r10conf *conf = mddev->private;
5042         sector_t lo, hi;
5043
5044         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5045         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5046             || mddev->reshape_position == MaxSector)
5047                 conf->reshape_progress = mddev->reshape_position;
5048         else
5049                 WARN_ON_ONCE(1);
5050 }
5051
5052 static int handle_reshape_read_error(struct mddev *mddev,
5053                                      struct r10bio *r10_bio)
5054 {
5055         /* Use sync reads to get the blocks from somewhere else */
5056         int sectors = r10_bio->sectors;
5057         struct r10conf *conf = mddev->private;
5058         struct r10bio *r10b;
5059         int slot = 0;
5060         int idx = 0;
5061         struct page **pages;
5062
5063         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5064         if (!r10b) {
5065                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5066                 return -ENOMEM;
5067         }
5068
5069         /* reshape IOs share pages from .devs[0].bio */
5070         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5071
5072         r10b->sector = r10_bio->sector;
5073         __raid10_find_phys(&conf->prev, r10b);
5074
5075         while (sectors) {
5076                 int s = sectors;
5077                 int success = 0;
5078                 int first_slot = slot;
5079
5080                 if (s > (PAGE_SIZE >> 9))
5081                         s = PAGE_SIZE >> 9;
5082
5083                 rcu_read_lock();
5084                 while (!success) {
5085                         int d = r10b->devs[slot].devnum;
5086                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5087                         sector_t addr;
5088                         if (rdev == NULL ||
5089                             test_bit(Faulty, &rdev->flags) ||
5090                             !test_bit(In_sync, &rdev->flags))
5091                                 goto failed;
5092
5093                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5094                         atomic_inc(&rdev->nr_pending);
5095                         rcu_read_unlock();
5096                         success = sync_page_io(rdev,
5097                                                addr,
5098                                                s << 9,
5099                                                pages[idx],
5100                                                REQ_OP_READ, 0, false);
5101                         rdev_dec_pending(rdev, mddev);
5102                         rcu_read_lock();
5103                         if (success)
5104                                 break;
5105                 failed:
5106                         slot++;
5107                         if (slot >= conf->copies)
5108                                 slot = 0;
5109                         if (slot == first_slot)
5110                                 break;
5111                 }
5112                 rcu_read_unlock();
5113                 if (!success) {
5114                         /* couldn't read this block, must give up */
5115                         set_bit(MD_RECOVERY_INTR,
5116                                 &mddev->recovery);
5117                         kfree(r10b);
5118                         return -EIO;
5119                 }
5120                 sectors -= s;
5121                 idx++;
5122         }
5123         kfree(r10b);
5124         return 0;
5125 }
5126
5127 static void end_reshape_write(struct bio *bio)
5128 {
5129         struct r10bio *r10_bio = get_resync_r10bio(bio);
5130         struct mddev *mddev = r10_bio->mddev;
5131         struct r10conf *conf = mddev->private;
5132         int d;
5133         int slot;
5134         int repl;
5135         struct md_rdev *rdev = NULL;
5136
5137         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5138         if (repl)
5139                 rdev = conf->mirrors[d].replacement;
5140         if (!rdev) {
5141                 smp_mb();
5142                 rdev = conf->mirrors[d].rdev;
5143         }
5144
5145         if (bio->bi_status) {
5146                 /* FIXME should record badblock */
5147                 md_error(mddev, rdev);
5148         }
5149
5150         rdev_dec_pending(rdev, mddev);
5151         end_reshape_request(r10_bio);
5152 }
5153
5154 static void end_reshape_request(struct r10bio *r10_bio)
5155 {
5156         if (!atomic_dec_and_test(&r10_bio->remaining))
5157                 return;
5158         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5159         bio_put(r10_bio->master_bio);
5160         put_buf(r10_bio);
5161 }
5162
5163 static void raid10_finish_reshape(struct mddev *mddev)
5164 {
5165         struct r10conf *conf = mddev->private;
5166
5167         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5168                 return;
5169
5170         if (mddev->delta_disks > 0) {
5171                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5172                         mddev->recovery_cp = mddev->resync_max_sectors;
5173                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5174                 }
5175                 mddev->resync_max_sectors = mddev->array_sectors;
5176         } else {
5177                 int d;
5178                 rcu_read_lock();
5179                 for (d = conf->geo.raid_disks ;
5180                      d < conf->geo.raid_disks - mddev->delta_disks;
5181                      d++) {
5182                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5183                         if (rdev)
5184                                 clear_bit(In_sync, &rdev->flags);
5185                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5186                         if (rdev)
5187                                 clear_bit(In_sync, &rdev->flags);
5188                 }
5189                 rcu_read_unlock();
5190         }
5191         mddev->layout = mddev->new_layout;
5192         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5193         mddev->reshape_position = MaxSector;
5194         mddev->delta_disks = 0;
5195         mddev->reshape_backwards = 0;
5196 }
5197
5198 static struct md_personality raid10_personality =
5199 {
5200         .name           = "raid10",
5201         .level          = 10,
5202         .owner          = THIS_MODULE,
5203         .make_request   = raid10_make_request,
5204         .run            = raid10_run,
5205         .free           = raid10_free,
5206         .status         = raid10_status,
5207         .error_handler  = raid10_error,
5208         .hot_add_disk   = raid10_add_disk,
5209         .hot_remove_disk= raid10_remove_disk,
5210         .spare_active   = raid10_spare_active,
5211         .sync_request   = raid10_sync_request,
5212         .quiesce        = raid10_quiesce,
5213         .size           = raid10_size,
5214         .resize         = raid10_resize,
5215         .takeover       = raid10_takeover,
5216         .check_reshape  = raid10_check_reshape,
5217         .start_reshape  = raid10_start_reshape,
5218         .finish_reshape = raid10_finish_reshape,
5219         .update_reshape_pos = raid10_update_reshape_pos,
5220 };
5221
5222 static int __init raid_init(void)
5223 {
5224         return register_md_personality(&raid10_personality);
5225 }
5226
5227 static void raid_exit(void)
5228 {
5229         unregister_md_personality(&raid10_personality);
5230 }
5231
5232 module_init(raid_init);
5233 module_exit(raid_exit);
5234 MODULE_LICENSE("GPL");
5235 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5236 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5237 MODULE_ALIAS("md-raid10");
5238 MODULE_ALIAS("md-level-10");
5239
5240 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);