aa2636582841eebd742814cfc03324aaa3210faf
[linux-2.6-microblaze.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->geo.raid_disks; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301                 bio_end_io_acct(bio, r10_bio->start_time);
302         bio_endio(bio);
303         /*
304          * Wake up any possible resync thread that waits for the device
305          * to go idle.
306          */
307         allow_barrier(conf);
308
309         free_r10bio(r10_bio);
310 }
311
312 /*
313  * Update disk head position estimator based on IRQ completion info.
314  */
315 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
316 {
317         struct r10conf *conf = r10_bio->mddev->private;
318
319         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320                 r10_bio->devs[slot].addr + (r10_bio->sectors);
321 }
322
323 /*
324  * Find the disk number which triggered given bio
325  */
326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
327                          struct bio *bio, int *slotp, int *replp)
328 {
329         int slot;
330         int repl = 0;
331
332         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
333                 if (r10_bio->devs[slot].bio == bio)
334                         break;
335                 if (r10_bio->devs[slot].repl_bio == bio) {
336                         repl = 1;
337                         break;
338                 }
339         }
340
341         update_head_pos(slot, r10_bio);
342
343         if (slotp)
344                 *slotp = slot;
345         if (replp)
346                 *replp = repl;
347         return r10_bio->devs[slot].devnum;
348 }
349
350 static void raid10_end_read_request(struct bio *bio)
351 {
352         int uptodate = !bio->bi_status;
353         struct r10bio *r10_bio = bio->bi_private;
354         int slot;
355         struct md_rdev *rdev;
356         struct r10conf *conf = r10_bio->mddev->private;
357
358         slot = r10_bio->read_slot;
359         rdev = r10_bio->devs[slot].rdev;
360         /*
361          * this branch is our 'one mirror IO has finished' event handler:
362          */
363         update_head_pos(slot, r10_bio);
364
365         if (uptodate) {
366                 /*
367                  * Set R10BIO_Uptodate in our master bio, so that
368                  * we will return a good error code to the higher
369                  * levels even if IO on some other mirrored buffer fails.
370                  *
371                  * The 'master' represents the composite IO operation to
372                  * user-side. So if something waits for IO, then it will
373                  * wait for the 'master' bio.
374                  */
375                 set_bit(R10BIO_Uptodate, &r10_bio->state);
376         } else {
377                 /* If all other devices that store this block have
378                  * failed, we want to return the error upwards rather
379                  * than fail the last device.  Here we redefine
380                  * "uptodate" to mean "Don't want to retry"
381                  */
382                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383                              rdev->raid_disk))
384                         uptodate = 1;
385         }
386         if (uptodate) {
387                 raid_end_bio_io(r10_bio);
388                 rdev_dec_pending(rdev, conf->mddev);
389         } else {
390                 /*
391                  * oops, read error - keep the refcount on the rdev
392                  */
393                 char b[BDEVNAME_SIZE];
394                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395                                    mdname(conf->mddev),
396                                    bdevname(rdev->bdev, b),
397                                    (unsigned long long)r10_bio->sector);
398                 set_bit(R10BIO_ReadError, &r10_bio->state);
399                 reschedule_retry(r10_bio);
400         }
401 }
402
403 static void close_write(struct r10bio *r10_bio)
404 {
405         /* clear the bitmap if all writes complete successfully */
406         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407                            r10_bio->sectors,
408                            !test_bit(R10BIO_Degraded, &r10_bio->state),
409                            0);
410         md_write_end(r10_bio->mddev);
411 }
412
413 static void one_write_done(struct r10bio *r10_bio)
414 {
415         if (atomic_dec_and_test(&r10_bio->remaining)) {
416                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
417                         reschedule_retry(r10_bio);
418                 else {
419                         close_write(r10_bio);
420                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421                                 reschedule_retry(r10_bio);
422                         else
423                                 raid_end_bio_io(r10_bio);
424                 }
425         }
426 }
427
428 static void raid10_end_write_request(struct bio *bio)
429 {
430         struct r10bio *r10_bio = bio->bi_private;
431         int dev;
432         int dec_rdev = 1;
433         struct r10conf *conf = r10_bio->mddev->private;
434         int slot, repl;
435         struct md_rdev *rdev = NULL;
436         struct bio *to_put = NULL;
437         bool discard_error;
438
439         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
440
441         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
442
443         if (repl)
444                 rdev = conf->mirrors[dev].replacement;
445         if (!rdev) {
446                 smp_rmb();
447                 repl = 0;
448                 rdev = conf->mirrors[dev].rdev;
449         }
450         /*
451          * this branch is our 'one mirror IO has finished' event handler:
452          */
453         if (bio->bi_status && !discard_error) {
454                 if (repl)
455                         /* Never record new bad blocks to replacement,
456                          * just fail it.
457                          */
458                         md_error(rdev->mddev, rdev);
459                 else {
460                         set_bit(WriteErrorSeen, &rdev->flags);
461                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
462                                 set_bit(MD_RECOVERY_NEEDED,
463                                         &rdev->mddev->recovery);
464
465                         dec_rdev = 0;
466                         if (test_bit(FailFast, &rdev->flags) &&
467                             (bio->bi_opf & MD_FAILFAST)) {
468                                 md_error(rdev->mddev, rdev);
469                         }
470
471                         /*
472                          * When the device is faulty, it is not necessary to
473                          * handle write error.
474                          */
475                         if (!test_bit(Faulty, &rdev->flags))
476                                 set_bit(R10BIO_WriteError, &r10_bio->state);
477                         else {
478                                 /* Fail the request */
479                                 set_bit(R10BIO_Degraded, &r10_bio->state);
480                                 r10_bio->devs[slot].bio = NULL;
481                                 to_put = bio;
482                                 dec_rdev = 1;
483                         }
484                 }
485         } else {
486                 /*
487                  * Set R10BIO_Uptodate in our master bio, so that
488                  * we will return a good error code for to the higher
489                  * levels even if IO on some other mirrored buffer fails.
490                  *
491                  * The 'master' represents the composite IO operation to
492                  * user-side. So if something waits for IO, then it will
493                  * wait for the 'master' bio.
494                  */
495                 sector_t first_bad;
496                 int bad_sectors;
497
498                 /*
499                  * Do not set R10BIO_Uptodate if the current device is
500                  * rebuilding or Faulty. This is because we cannot use
501                  * such device for properly reading the data back (we could
502                  * potentially use it, if the current write would have felt
503                  * before rdev->recovery_offset, but for simplicity we don't
504                  * check this here.
505                  */
506                 if (test_bit(In_sync, &rdev->flags) &&
507                     !test_bit(Faulty, &rdev->flags))
508                         set_bit(R10BIO_Uptodate, &r10_bio->state);
509
510                 /* Maybe we can clear some bad blocks. */
511                 if (is_badblock(rdev,
512                                 r10_bio->devs[slot].addr,
513                                 r10_bio->sectors,
514                                 &first_bad, &bad_sectors) && !discard_error) {
515                         bio_put(bio);
516                         if (repl)
517                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518                         else
519                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
520                         dec_rdev = 0;
521                         set_bit(R10BIO_MadeGood, &r10_bio->state);
522                 }
523         }
524
525         /*
526          *
527          * Let's see if all mirrored write operations have finished
528          * already.
529          */
530         one_write_done(r10_bio);
531         if (dec_rdev)
532                 rdev_dec_pending(rdev, conf->mddev);
533         if (to_put)
534                 bio_put(to_put);
535 }
536
537 /*
538  * RAID10 layout manager
539  * As well as the chunksize and raid_disks count, there are two
540  * parameters: near_copies and far_copies.
541  * near_copies * far_copies must be <= raid_disks.
542  * Normally one of these will be 1.
543  * If both are 1, we get raid0.
544  * If near_copies == raid_disks, we get raid1.
545  *
546  * Chunks are laid out in raid0 style with near_copies copies of the
547  * first chunk, followed by near_copies copies of the next chunk and
548  * so on.
549  * If far_copies > 1, then after 1/far_copies of the array has been assigned
550  * as described above, we start again with a device offset of near_copies.
551  * So we effectively have another copy of the whole array further down all
552  * the drives, but with blocks on different drives.
553  * With this layout, and block is never stored twice on the one device.
554  *
555  * raid10_find_phys finds the sector offset of a given virtual sector
556  * on each device that it is on.
557  *
558  * raid10_find_virt does the reverse mapping, from a device and a
559  * sector offset to a virtual address
560  */
561
562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
563 {
564         int n,f;
565         sector_t sector;
566         sector_t chunk;
567         sector_t stripe;
568         int dev;
569         int slot = 0;
570         int last_far_set_start, last_far_set_size;
571
572         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573         last_far_set_start *= geo->far_set_size;
574
575         last_far_set_size = geo->far_set_size;
576         last_far_set_size += (geo->raid_disks % geo->far_set_size);
577
578         /* now calculate first sector/dev */
579         chunk = r10bio->sector >> geo->chunk_shift;
580         sector = r10bio->sector & geo->chunk_mask;
581
582         chunk *= geo->near_copies;
583         stripe = chunk;
584         dev = sector_div(stripe, geo->raid_disks);
585         if (geo->far_offset)
586                 stripe *= geo->far_copies;
587
588         sector += stripe << geo->chunk_shift;
589
590         /* and calculate all the others */
591         for (n = 0; n < geo->near_copies; n++) {
592                 int d = dev;
593                 int set;
594                 sector_t s = sector;
595                 r10bio->devs[slot].devnum = d;
596                 r10bio->devs[slot].addr = s;
597                 slot++;
598
599                 for (f = 1; f < geo->far_copies; f++) {
600                         set = d / geo->far_set_size;
601                         d += geo->near_copies;
602
603                         if ((geo->raid_disks % geo->far_set_size) &&
604                             (d > last_far_set_start)) {
605                                 d -= last_far_set_start;
606                                 d %= last_far_set_size;
607                                 d += last_far_set_start;
608                         } else {
609                                 d %= geo->far_set_size;
610                                 d += geo->far_set_size * set;
611                         }
612                         s += geo->stride;
613                         r10bio->devs[slot].devnum = d;
614                         r10bio->devs[slot].addr = s;
615                         slot++;
616                 }
617                 dev++;
618                 if (dev >= geo->raid_disks) {
619                         dev = 0;
620                         sector += (geo->chunk_mask + 1);
621                 }
622         }
623 }
624
625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626 {
627         struct geom *geo = &conf->geo;
628
629         if (conf->reshape_progress != MaxSector &&
630             ((r10bio->sector >= conf->reshape_progress) !=
631              conf->mddev->reshape_backwards)) {
632                 set_bit(R10BIO_Previous, &r10bio->state);
633                 geo = &conf->prev;
634         } else
635                 clear_bit(R10BIO_Previous, &r10bio->state);
636
637         __raid10_find_phys(geo, r10bio);
638 }
639
640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
641 {
642         sector_t offset, chunk, vchunk;
643         /* Never use conf->prev as this is only called during resync
644          * or recovery, so reshape isn't happening
645          */
646         struct geom *geo = &conf->geo;
647         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648         int far_set_size = geo->far_set_size;
649         int last_far_set_start;
650
651         if (geo->raid_disks % geo->far_set_size) {
652                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653                 last_far_set_start *= geo->far_set_size;
654
655                 if (dev >= last_far_set_start) {
656                         far_set_size = geo->far_set_size;
657                         far_set_size += (geo->raid_disks % geo->far_set_size);
658                         far_set_start = last_far_set_start;
659                 }
660         }
661
662         offset = sector & geo->chunk_mask;
663         if (geo->far_offset) {
664                 int fc;
665                 chunk = sector >> geo->chunk_shift;
666                 fc = sector_div(chunk, geo->far_copies);
667                 dev -= fc * geo->near_copies;
668                 if (dev < far_set_start)
669                         dev += far_set_size;
670         } else {
671                 while (sector >= geo->stride) {
672                         sector -= geo->stride;
673                         if (dev < (geo->near_copies + far_set_start))
674                                 dev += far_set_size - geo->near_copies;
675                         else
676                                 dev -= geo->near_copies;
677                 }
678                 chunk = sector >> geo->chunk_shift;
679         }
680         vchunk = chunk * geo->raid_disks + dev;
681         sector_div(vchunk, geo->near_copies);
682         return (vchunk << geo->chunk_shift) + offset;
683 }
684
685 /*
686  * This routine returns the disk from which the requested read should
687  * be done. There is a per-array 'next expected sequential IO' sector
688  * number - if this matches on the next IO then we use the last disk.
689  * There is also a per-disk 'last know head position' sector that is
690  * maintained from IRQ contexts, both the normal and the resync IO
691  * completion handlers update this position correctly. If there is no
692  * perfect sequential match then we pick the disk whose head is closest.
693  *
694  * If there are 2 mirrors in the same 2 devices, performance degrades
695  * because position is mirror, not device based.
696  *
697  * The rdev for the device selected will have nr_pending incremented.
698  */
699
700 /*
701  * FIXME: possibly should rethink readbalancing and do it differently
702  * depending on near_copies / far_copies geometry.
703  */
704 static struct md_rdev *read_balance(struct r10conf *conf,
705                                     struct r10bio *r10_bio,
706                                     int *max_sectors)
707 {
708         const sector_t this_sector = r10_bio->sector;
709         int disk, slot;
710         int sectors = r10_bio->sectors;
711         int best_good_sectors;
712         sector_t new_distance, best_dist;
713         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
714         int do_balance;
715         int best_dist_slot, best_pending_slot;
716         bool has_nonrot_disk = false;
717         unsigned int min_pending;
718         struct geom *geo = &conf->geo;
719
720         raid10_find_phys(conf, r10_bio);
721         rcu_read_lock();
722         best_dist_slot = -1;
723         min_pending = UINT_MAX;
724         best_dist_rdev = NULL;
725         best_pending_rdev = NULL;
726         best_dist = MaxSector;
727         best_good_sectors = 0;
728         do_balance = 1;
729         clear_bit(R10BIO_FailFast, &r10_bio->state);
730         /*
731          * Check if we can balance. We can balance on the whole
732          * device if no resync is going on (recovery is ok), or below
733          * the resync window. We take the first readable disk when
734          * above the resync window.
735          */
736         if ((conf->mddev->recovery_cp < MaxSector
737              && (this_sector + sectors >= conf->next_resync)) ||
738             (mddev_is_clustered(conf->mddev) &&
739              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740                                             this_sector + sectors)))
741                 do_balance = 0;
742
743         for (slot = 0; slot < conf->copies ; slot++) {
744                 sector_t first_bad;
745                 int bad_sectors;
746                 sector_t dev_sector;
747                 unsigned int pending;
748                 bool nonrot;
749
750                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
751                         continue;
752                 disk = r10_bio->devs[slot].devnum;
753                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
754                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
757                 if (rdev == NULL ||
758                     test_bit(Faulty, &rdev->flags))
759                         continue;
760                 if (!test_bit(In_sync, &rdev->flags) &&
761                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762                         continue;
763
764                 dev_sector = r10_bio->devs[slot].addr;
765                 if (is_badblock(rdev, dev_sector, sectors,
766                                 &first_bad, &bad_sectors)) {
767                         if (best_dist < MaxSector)
768                                 /* Already have a better slot */
769                                 continue;
770                         if (first_bad <= dev_sector) {
771                                 /* Cannot read here.  If this is the
772                                  * 'primary' device, then we must not read
773                                  * beyond 'bad_sectors' from another device.
774                                  */
775                                 bad_sectors -= (dev_sector - first_bad);
776                                 if (!do_balance && sectors > bad_sectors)
777                                         sectors = bad_sectors;
778                                 if (best_good_sectors > sectors)
779                                         best_good_sectors = sectors;
780                         } else {
781                                 sector_t good_sectors =
782                                         first_bad - dev_sector;
783                                 if (good_sectors > best_good_sectors) {
784                                         best_good_sectors = good_sectors;
785                                         best_dist_slot = slot;
786                                         best_dist_rdev = rdev;
787                                 }
788                                 if (!do_balance)
789                                         /* Must read from here */
790                                         break;
791                         }
792                         continue;
793                 } else
794                         best_good_sectors = sectors;
795
796                 if (!do_balance)
797                         break;
798
799                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800                 has_nonrot_disk |= nonrot;
801                 pending = atomic_read(&rdev->nr_pending);
802                 if (min_pending > pending && nonrot) {
803                         min_pending = pending;
804                         best_pending_slot = slot;
805                         best_pending_rdev = rdev;
806                 }
807
808                 if (best_dist_slot >= 0)
809                         /* At least 2 disks to choose from so failfast is OK */
810                         set_bit(R10BIO_FailFast, &r10_bio->state);
811                 /* This optimisation is debatable, and completely destroys
812                  * sequential read speed for 'far copies' arrays.  So only
813                  * keep it for 'near' arrays, and review those later.
814                  */
815                 if (geo->near_copies > 1 && !pending)
816                         new_distance = 0;
817
818                 /* for far > 1 always use the lowest address */
819                 else if (geo->far_copies > 1)
820                         new_distance = r10_bio->devs[slot].addr;
821                 else
822                         new_distance = abs(r10_bio->devs[slot].addr -
823                                            conf->mirrors[disk].head_position);
824
825                 if (new_distance < best_dist) {
826                         best_dist = new_distance;
827                         best_dist_slot = slot;
828                         best_dist_rdev = rdev;
829                 }
830         }
831         if (slot >= conf->copies) {
832                 if (has_nonrot_disk) {
833                         slot = best_pending_slot;
834                         rdev = best_pending_rdev;
835                 } else {
836                         slot = best_dist_slot;
837                         rdev = best_dist_rdev;
838                 }
839         }
840
841         if (slot >= 0) {
842                 atomic_inc(&rdev->nr_pending);
843                 r10_bio->read_slot = slot;
844         } else
845                 rdev = NULL;
846         rcu_read_unlock();
847         *max_sectors = best_good_sectors;
848
849         return rdev;
850 }
851
852 static void flush_pending_writes(struct r10conf *conf)
853 {
854         /* Any writes that have been queued but are awaiting
855          * bitmap updates get flushed here.
856          */
857         spin_lock_irq(&conf->device_lock);
858
859         if (conf->pending_bio_list.head) {
860                 struct blk_plug plug;
861                 struct bio *bio;
862
863                 bio = bio_list_get(&conf->pending_bio_list);
864                 conf->pending_count = 0;
865                 spin_unlock_irq(&conf->device_lock);
866
867                 /*
868                  * As this is called in a wait_event() loop (see freeze_array),
869                  * current->state might be TASK_UNINTERRUPTIBLE which will
870                  * cause a warning when we prepare to wait again.  As it is
871                  * rare that this path is taken, it is perfectly safe to force
872                  * us to go around the wait_event() loop again, so the warning
873                  * is a false-positive. Silence the warning by resetting
874                  * thread state
875                  */
876                 __set_current_state(TASK_RUNNING);
877
878                 blk_start_plug(&plug);
879                 /* flush any pending bitmap writes to disk
880                  * before proceeding w/ I/O */
881                 md_bitmap_unplug(conf->mddev->bitmap);
882                 wake_up(&conf->wait_barrier);
883
884                 while (bio) { /* submit pending writes */
885                         struct bio *next = bio->bi_next;
886                         struct md_rdev *rdev = (void*)bio->bi_bdev;
887                         bio->bi_next = NULL;
888                         bio_set_dev(bio, rdev->bdev);
889                         if (test_bit(Faulty, &rdev->flags)) {
890                                 bio_io_error(bio);
891                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
892                                             !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
893                                 /* Just ignore it */
894                                 bio_endio(bio);
895                         else
896                                 submit_bio_noacct(bio);
897                         bio = next;
898                 }
899                 blk_finish_plug(&plug);
900         } else
901                 spin_unlock_irq(&conf->device_lock);
902 }
903
904 /* Barriers....
905  * Sometimes we need to suspend IO while we do something else,
906  * either some resync/recovery, or reconfigure the array.
907  * To do this we raise a 'barrier'.
908  * The 'barrier' is a counter that can be raised multiple times
909  * to count how many activities are happening which preclude
910  * normal IO.
911  * We can only raise the barrier if there is no pending IO.
912  * i.e. if nr_pending == 0.
913  * We choose only to raise the barrier if no-one is waiting for the
914  * barrier to go down.  This means that as soon as an IO request
915  * is ready, no other operations which require a barrier will start
916  * until the IO request has had a chance.
917  *
918  * So: regular IO calls 'wait_barrier'.  When that returns there
919  *    is no backgroup IO happening,  It must arrange to call
920  *    allow_barrier when it has finished its IO.
921  * backgroup IO calls must call raise_barrier.  Once that returns
922  *    there is no normal IO happeing.  It must arrange to call
923  *    lower_barrier when the particular background IO completes.
924  */
925
926 static void raise_barrier(struct r10conf *conf, int force)
927 {
928         BUG_ON(force && !conf->barrier);
929         spin_lock_irq(&conf->resync_lock);
930
931         /* Wait until no block IO is waiting (unless 'force') */
932         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
933                             conf->resync_lock);
934
935         /* block any new IO from starting */
936         conf->barrier++;
937
938         /* Now wait for all pending IO to complete */
939         wait_event_lock_irq(conf->wait_barrier,
940                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
941                             conf->resync_lock);
942
943         spin_unlock_irq(&conf->resync_lock);
944 }
945
946 static void lower_barrier(struct r10conf *conf)
947 {
948         unsigned long flags;
949         spin_lock_irqsave(&conf->resync_lock, flags);
950         conf->barrier--;
951         spin_unlock_irqrestore(&conf->resync_lock, flags);
952         wake_up(&conf->wait_barrier);
953 }
954
955 static void wait_barrier(struct r10conf *conf)
956 {
957         spin_lock_irq(&conf->resync_lock);
958         if (conf->barrier) {
959                 struct bio_list *bio_list = current->bio_list;
960                 conf->nr_waiting++;
961                 /* Wait for the barrier to drop.
962                  * However if there are already pending
963                  * requests (preventing the barrier from
964                  * rising completely), and the
965                  * pre-process bio queue isn't empty,
966                  * then don't wait, as we need to empty
967                  * that queue to get the nr_pending
968                  * count down.
969                  */
970                 raid10_log(conf->mddev, "wait barrier");
971                 wait_event_lock_irq(conf->wait_barrier,
972                                     !conf->barrier ||
973                                     (atomic_read(&conf->nr_pending) &&
974                                      bio_list &&
975                                      (!bio_list_empty(&bio_list[0]) ||
976                                       !bio_list_empty(&bio_list[1]))) ||
977                                      /* move on if recovery thread is
978                                       * blocked by us
979                                       */
980                                      (conf->mddev->thread->tsk == current &&
981                                       test_bit(MD_RECOVERY_RUNNING,
982                                                &conf->mddev->recovery) &&
983                                       conf->nr_queued > 0),
984                                     conf->resync_lock);
985                 conf->nr_waiting--;
986                 if (!conf->nr_waiting)
987                         wake_up(&conf->wait_barrier);
988         }
989         atomic_inc(&conf->nr_pending);
990         spin_unlock_irq(&conf->resync_lock);
991 }
992
993 static void allow_barrier(struct r10conf *conf)
994 {
995         if ((atomic_dec_and_test(&conf->nr_pending)) ||
996                         (conf->array_freeze_pending))
997                 wake_up(&conf->wait_barrier);
998 }
999
1000 static void freeze_array(struct r10conf *conf, int extra)
1001 {
1002         /* stop syncio and normal IO and wait for everything to
1003          * go quiet.
1004          * We increment barrier and nr_waiting, and then
1005          * wait until nr_pending match nr_queued+extra
1006          * This is called in the context of one normal IO request
1007          * that has failed. Thus any sync request that might be pending
1008          * will be blocked by nr_pending, and we need to wait for
1009          * pending IO requests to complete or be queued for re-try.
1010          * Thus the number queued (nr_queued) plus this request (extra)
1011          * must match the number of pending IOs (nr_pending) before
1012          * we continue.
1013          */
1014         spin_lock_irq(&conf->resync_lock);
1015         conf->array_freeze_pending++;
1016         conf->barrier++;
1017         conf->nr_waiting++;
1018         wait_event_lock_irq_cmd(conf->wait_barrier,
1019                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1020                                 conf->resync_lock,
1021                                 flush_pending_writes(conf));
1022
1023         conf->array_freeze_pending--;
1024         spin_unlock_irq(&conf->resync_lock);
1025 }
1026
1027 static void unfreeze_array(struct r10conf *conf)
1028 {
1029         /* reverse the effect of the freeze */
1030         spin_lock_irq(&conf->resync_lock);
1031         conf->barrier--;
1032         conf->nr_waiting--;
1033         wake_up(&conf->wait_barrier);
1034         spin_unlock_irq(&conf->resync_lock);
1035 }
1036
1037 static sector_t choose_data_offset(struct r10bio *r10_bio,
1038                                    struct md_rdev *rdev)
1039 {
1040         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041             test_bit(R10BIO_Previous, &r10_bio->state))
1042                 return rdev->data_offset;
1043         else
1044                 return rdev->new_data_offset;
1045 }
1046
1047 struct raid10_plug_cb {
1048         struct blk_plug_cb      cb;
1049         struct bio_list         pending;
1050         int                     pending_cnt;
1051 };
1052
1053 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1054 {
1055         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1056                                                    cb);
1057         struct mddev *mddev = plug->cb.data;
1058         struct r10conf *conf = mddev->private;
1059         struct bio *bio;
1060
1061         if (from_schedule || current->bio_list) {
1062                 spin_lock_irq(&conf->device_lock);
1063                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064                 conf->pending_count += plug->pending_cnt;
1065                 spin_unlock_irq(&conf->device_lock);
1066                 wake_up(&conf->wait_barrier);
1067                 md_wakeup_thread(mddev->thread);
1068                 kfree(plug);
1069                 return;
1070         }
1071
1072         /* we aren't scheduling, so we can do the write-out directly. */
1073         bio = bio_list_get(&plug->pending);
1074         md_bitmap_unplug(mddev->bitmap);
1075         wake_up(&conf->wait_barrier);
1076
1077         while (bio) { /* submit pending writes */
1078                 struct bio *next = bio->bi_next;
1079                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1080                 bio->bi_next = NULL;
1081                 bio_set_dev(bio, rdev->bdev);
1082                 if (test_bit(Faulty, &rdev->flags)) {
1083                         bio_io_error(bio);
1084                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1085                                     !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1086                         /* Just ignore it */
1087                         bio_endio(bio);
1088                 else
1089                         submit_bio_noacct(bio);
1090                 bio = next;
1091         }
1092         kfree(plug);
1093 }
1094
1095 /*
1096  * 1. Register the new request and wait if the reconstruction thread has put
1097  * up a bar for new requests. Continue immediately if no resync is active
1098  * currently.
1099  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1100  */
1101 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102                                  struct bio *bio, sector_t sectors)
1103 {
1104         wait_barrier(conf);
1105         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106             bio->bi_iter.bi_sector < conf->reshape_progress &&
1107             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1108                 raid10_log(conf->mddev, "wait reshape");
1109                 allow_barrier(conf);
1110                 wait_event(conf->wait_barrier,
1111                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1113                            sectors);
1114                 wait_barrier(conf);
1115         }
1116 }
1117
1118 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119                                 struct r10bio *r10_bio)
1120 {
1121         struct r10conf *conf = mddev->private;
1122         struct bio *read_bio;
1123         const int op = bio_op(bio);
1124         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1125         int max_sectors;
1126         struct md_rdev *rdev;
1127         char b[BDEVNAME_SIZE];
1128         int slot = r10_bio->read_slot;
1129         struct md_rdev *err_rdev = NULL;
1130         gfp_t gfp = GFP_NOIO;
1131
1132         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1133                 /*
1134                  * This is an error retry, but we cannot
1135                  * safely dereference the rdev in the r10_bio,
1136                  * we must use the one in conf.
1137                  * If it has already been disconnected (unlikely)
1138                  * we lose the device name in error messages.
1139                  */
1140                 int disk;
1141                 /*
1142                  * As we are blocking raid10, it is a little safer to
1143                  * use __GFP_HIGH.
1144                  */
1145                 gfp = GFP_NOIO | __GFP_HIGH;
1146
1147                 rcu_read_lock();
1148                 disk = r10_bio->devs[slot].devnum;
1149                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1150                 if (err_rdev)
1151                         bdevname(err_rdev->bdev, b);
1152                 else {
1153                         strcpy(b, "???");
1154                         /* This never gets dereferenced */
1155                         err_rdev = r10_bio->devs[slot].rdev;
1156                 }
1157                 rcu_read_unlock();
1158         }
1159
1160         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1161         rdev = read_balance(conf, r10_bio, &max_sectors);
1162         if (!rdev) {
1163                 if (err_rdev) {
1164                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165                                             mdname(mddev), b,
1166                                             (unsigned long long)r10_bio->sector);
1167                 }
1168                 raid_end_bio_io(r10_bio);
1169                 return;
1170         }
1171         if (err_rdev)
1172                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173                                    mdname(mddev),
1174                                    bdevname(rdev->bdev, b),
1175                                    (unsigned long long)r10_bio->sector);
1176         if (max_sectors < bio_sectors(bio)) {
1177                 struct bio *split = bio_split(bio, max_sectors,
1178                                               gfp, &conf->bio_split);
1179                 bio_chain(split, bio);
1180                 allow_barrier(conf);
1181                 submit_bio_noacct(bio);
1182                 wait_barrier(conf);
1183                 bio = split;
1184                 r10_bio->master_bio = bio;
1185                 r10_bio->sectors = max_sectors;
1186         }
1187         slot = r10_bio->read_slot;
1188
1189         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190                 r10_bio->start_time = bio_start_io_acct(bio);
1191         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1192
1193         r10_bio->devs[slot].bio = read_bio;
1194         r10_bio->devs[slot].rdev = rdev;
1195
1196         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197                 choose_data_offset(r10_bio, rdev);
1198         bio_set_dev(read_bio, rdev->bdev);
1199         read_bio->bi_end_io = raid10_end_read_request;
1200         bio_set_op_attrs(read_bio, op, do_sync);
1201         if (test_bit(FailFast, &rdev->flags) &&
1202             test_bit(R10BIO_FailFast, &r10_bio->state))
1203                 read_bio->bi_opf |= MD_FAILFAST;
1204         read_bio->bi_private = r10_bio;
1205
1206         if (mddev->gendisk)
1207                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1208                                       r10_bio->sector);
1209         submit_bio_noacct(read_bio);
1210         return;
1211 }
1212
1213 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214                                   struct bio *bio, bool replacement,
1215                                   int n_copy)
1216 {
1217         const int op = bio_op(bio);
1218         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1220         unsigned long flags;
1221         struct blk_plug_cb *cb;
1222         struct raid10_plug_cb *plug = NULL;
1223         struct r10conf *conf = mddev->private;
1224         struct md_rdev *rdev;
1225         int devnum = r10_bio->devs[n_copy].devnum;
1226         struct bio *mbio;
1227
1228         if (replacement) {
1229                 rdev = conf->mirrors[devnum].replacement;
1230                 if (rdev == NULL) {
1231                         /* Replacement just got moved to main 'rdev' */
1232                         smp_mb();
1233                         rdev = conf->mirrors[devnum].rdev;
1234                 }
1235         } else
1236                 rdev = conf->mirrors[devnum].rdev;
1237
1238         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1239         if (replacement)
1240                 r10_bio->devs[n_copy].repl_bio = mbio;
1241         else
1242                 r10_bio->devs[n_copy].bio = mbio;
1243
1244         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1245                                    choose_data_offset(r10_bio, rdev));
1246         bio_set_dev(mbio, rdev->bdev);
1247         mbio->bi_end_io = raid10_end_write_request;
1248         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249         if (!replacement && test_bit(FailFast,
1250                                      &conf->mirrors[devnum].rdev->flags)
1251                          && enough(conf, devnum))
1252                 mbio->bi_opf |= MD_FAILFAST;
1253         mbio->bi_private = r10_bio;
1254
1255         if (conf->mddev->gendisk)
1256                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1257                                       r10_bio->sector);
1258         /* flush_pending_writes() needs access to the rdev so...*/
1259         mbio->bi_bdev = (void *)rdev;
1260
1261         atomic_inc(&r10_bio->remaining);
1262
1263         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1264         if (cb)
1265                 plug = container_of(cb, struct raid10_plug_cb, cb);
1266         else
1267                 plug = NULL;
1268         if (plug) {
1269                 bio_list_add(&plug->pending, mbio);
1270                 plug->pending_cnt++;
1271         } else {
1272                 spin_lock_irqsave(&conf->device_lock, flags);
1273                 bio_list_add(&conf->pending_bio_list, mbio);
1274                 conf->pending_count++;
1275                 spin_unlock_irqrestore(&conf->device_lock, flags);
1276                 md_wakeup_thread(mddev->thread);
1277         }
1278 }
1279
1280 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1281 {
1282         int i;
1283         struct r10conf *conf = mddev->private;
1284         struct md_rdev *blocked_rdev;
1285
1286 retry_wait:
1287         blocked_rdev = NULL;
1288         rcu_read_lock();
1289         for (i = 0; i < conf->copies; i++) {
1290                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291                 struct md_rdev *rrdev = rcu_dereference(
1292                         conf->mirrors[i].replacement);
1293                 if (rdev == rrdev)
1294                         rrdev = NULL;
1295                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296                         atomic_inc(&rdev->nr_pending);
1297                         blocked_rdev = rdev;
1298                         break;
1299                 }
1300                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301                         atomic_inc(&rrdev->nr_pending);
1302                         blocked_rdev = rrdev;
1303                         break;
1304                 }
1305
1306                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307                         sector_t first_bad;
1308                         sector_t dev_sector = r10_bio->devs[i].addr;
1309                         int bad_sectors;
1310                         int is_bad;
1311
1312                         /*
1313                          * Discard request doesn't care the write result
1314                          * so it doesn't need to wait blocked disk here.
1315                          */
1316                         if (!r10_bio->sectors)
1317                                 continue;
1318
1319                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320                                              &first_bad, &bad_sectors);
1321                         if (is_bad < 0) {
1322                                 /*
1323                                  * Mustn't write here until the bad block
1324                                  * is acknowledged
1325                                  */
1326                                 atomic_inc(&rdev->nr_pending);
1327                                 set_bit(BlockedBadBlocks, &rdev->flags);
1328                                 blocked_rdev = rdev;
1329                                 break;
1330                         }
1331                 }
1332         }
1333         rcu_read_unlock();
1334
1335         if (unlikely(blocked_rdev)) {
1336                 /* Have to wait for this device to get unblocked, then retry */
1337                 allow_barrier(conf);
1338                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339                                 __func__, blocked_rdev->raid_disk);
1340                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341                 wait_barrier(conf);
1342                 goto retry_wait;
1343         }
1344 }
1345
1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347                                  struct r10bio *r10_bio)
1348 {
1349         struct r10conf *conf = mddev->private;
1350         int i;
1351         sector_t sectors;
1352         int max_sectors;
1353
1354         if ((mddev_is_clustered(mddev) &&
1355              md_cluster_ops->area_resyncing(mddev, WRITE,
1356                                             bio->bi_iter.bi_sector,
1357                                             bio_end_sector(bio)))) {
1358                 DEFINE_WAIT(w);
1359                 for (;;) {
1360                         prepare_to_wait(&conf->wait_barrier,
1361                                         &w, TASK_IDLE);
1362                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1364                                 break;
1365                         schedule();
1366                 }
1367                 finish_wait(&conf->wait_barrier, &w);
1368         }
1369
1370         sectors = r10_bio->sectors;
1371         regular_request_wait(mddev, conf, bio, sectors);
1372         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1373             (mddev->reshape_backwards
1374              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1378                 /* Need to update reshape_position in metadata */
1379                 mddev->reshape_position = conf->reshape_progress;
1380                 set_mask_bits(&mddev->sb_flags, 0,
1381                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1382                 md_wakeup_thread(mddev->thread);
1383                 raid10_log(conf->mddev, "wait reshape metadata");
1384                 wait_event(mddev->sb_wait,
1385                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1386
1387                 conf->reshape_safe = mddev->reshape_position;
1388         }
1389
1390         if (conf->pending_count >= max_queued_requests) {
1391                 md_wakeup_thread(mddev->thread);
1392                 raid10_log(mddev, "wait queued");
1393                 wait_event(conf->wait_barrier,
1394                            conf->pending_count < max_queued_requests);
1395         }
1396         /* first select target devices under rcu_lock and
1397          * inc refcount on their rdev.  Record them by setting
1398          * bios[x] to bio
1399          * If there are known/acknowledged bad blocks on any device
1400          * on which we have seen a write error, we want to avoid
1401          * writing to those blocks.  This potentially requires several
1402          * writes to write around the bad blocks.  Each set of writes
1403          * gets its own r10_bio with a set of bios attached.
1404          */
1405
1406         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1407         raid10_find_phys(conf, r10_bio);
1408
1409         wait_blocked_dev(mddev, r10_bio);
1410
1411         rcu_read_lock();
1412         max_sectors = r10_bio->sectors;
1413
1414         for (i = 0;  i < conf->copies; i++) {
1415                 int d = r10_bio->devs[i].devnum;
1416                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1417                 struct md_rdev *rrdev = rcu_dereference(
1418                         conf->mirrors[d].replacement);
1419                 if (rdev == rrdev)
1420                         rrdev = NULL;
1421                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1422                         rdev = NULL;
1423                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424                         rrdev = NULL;
1425
1426                 r10_bio->devs[i].bio = NULL;
1427                 r10_bio->devs[i].repl_bio = NULL;
1428
1429                 if (!rdev && !rrdev) {
1430                         set_bit(R10BIO_Degraded, &r10_bio->state);
1431                         continue;
1432                 }
1433                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1434                         sector_t first_bad;
1435                         sector_t dev_sector = r10_bio->devs[i].addr;
1436                         int bad_sectors;
1437                         int is_bad;
1438
1439                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1440                                              &first_bad, &bad_sectors);
1441                         if (is_bad && first_bad <= dev_sector) {
1442                                 /* Cannot write here at all */
1443                                 bad_sectors -= (dev_sector - first_bad);
1444                                 if (bad_sectors < max_sectors)
1445                                         /* Mustn't write more than bad_sectors
1446                                          * to other devices yet
1447                                          */
1448                                         max_sectors = bad_sectors;
1449                                 /* We don't set R10BIO_Degraded as that
1450                                  * only applies if the disk is missing,
1451                                  * so it might be re-added, and we want to
1452                                  * know to recover this chunk.
1453                                  * In this case the device is here, and the
1454                                  * fact that this chunk is not in-sync is
1455                                  * recorded in the bad block log.
1456                                  */
1457                                 continue;
1458                         }
1459                         if (is_bad) {
1460                                 int good_sectors = first_bad - dev_sector;
1461                                 if (good_sectors < max_sectors)
1462                                         max_sectors = good_sectors;
1463                         }
1464                 }
1465                 if (rdev) {
1466                         r10_bio->devs[i].bio = bio;
1467                         atomic_inc(&rdev->nr_pending);
1468                 }
1469                 if (rrdev) {
1470                         r10_bio->devs[i].repl_bio = bio;
1471                         atomic_inc(&rrdev->nr_pending);
1472                 }
1473         }
1474         rcu_read_unlock();
1475
1476         if (max_sectors < r10_bio->sectors)
1477                 r10_bio->sectors = max_sectors;
1478
1479         if (r10_bio->sectors < bio_sectors(bio)) {
1480                 struct bio *split = bio_split(bio, r10_bio->sectors,
1481                                               GFP_NOIO, &conf->bio_split);
1482                 bio_chain(split, bio);
1483                 allow_barrier(conf);
1484                 submit_bio_noacct(bio);
1485                 wait_barrier(conf);
1486                 bio = split;
1487                 r10_bio->master_bio = bio;
1488         }
1489
1490         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491                 r10_bio->start_time = bio_start_io_acct(bio);
1492         atomic_set(&r10_bio->remaining, 1);
1493         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1494
1495         for (i = 0; i < conf->copies; i++) {
1496                 if (r10_bio->devs[i].bio)
1497                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1498                 if (r10_bio->devs[i].repl_bio)
1499                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1500         }
1501         one_write_done(r10_bio);
1502 }
1503
1504 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1505 {
1506         struct r10conf *conf = mddev->private;
1507         struct r10bio *r10_bio;
1508
1509         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1510
1511         r10_bio->master_bio = bio;
1512         r10_bio->sectors = sectors;
1513
1514         r10_bio->mddev = mddev;
1515         r10_bio->sector = bio->bi_iter.bi_sector;
1516         r10_bio->state = 0;
1517         r10_bio->read_slot = -1;
1518         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519                         conf->geo.raid_disks);
1520
1521         if (bio_data_dir(bio) == READ)
1522                 raid10_read_request(mddev, bio, r10_bio);
1523         else
1524                 raid10_write_request(mddev, bio, r10_bio);
1525 }
1526
1527 static void raid_end_discard_bio(struct r10bio *r10bio)
1528 {
1529         struct r10conf *conf = r10bio->mddev->private;
1530         struct r10bio *first_r10bio;
1531
1532         while (atomic_dec_and_test(&r10bio->remaining)) {
1533
1534                 allow_barrier(conf);
1535
1536                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1538                         free_r10bio(r10bio);
1539                         r10bio = first_r10bio;
1540                 } else {
1541                         md_write_end(r10bio->mddev);
1542                         bio_endio(r10bio->master_bio);
1543                         free_r10bio(r10bio);
1544                         break;
1545                 }
1546         }
1547 }
1548
1549 static void raid10_end_discard_request(struct bio *bio)
1550 {
1551         struct r10bio *r10_bio = bio->bi_private;
1552         struct r10conf *conf = r10_bio->mddev->private;
1553         struct md_rdev *rdev = NULL;
1554         int dev;
1555         int slot, repl;
1556
1557         /*
1558          * We don't care the return value of discard bio
1559          */
1560         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1562
1563         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1564         if (repl)
1565                 rdev = conf->mirrors[dev].replacement;
1566         if (!rdev) {
1567                 /*
1568                  * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569                  * replacement before setting replacement to NULL. It can read
1570                  * rdev first without barrier protect even replacment is NULL
1571                  */
1572                 smp_rmb();
1573                 rdev = conf->mirrors[dev].rdev;
1574         }
1575
1576         raid_end_discard_bio(r10_bio);
1577         rdev_dec_pending(rdev, conf->mddev);
1578 }
1579
1580 /*
1581  * There are some limitations to handle discard bio
1582  * 1st, the discard size is bigger than stripe_size*2.
1583  * 2st, if the discard bio spans reshape progress, we use the old way to
1584  * handle discard bio
1585  */
1586 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1587 {
1588         struct r10conf *conf = mddev->private;
1589         struct geom *geo = &conf->geo;
1590         int far_copies = geo->far_copies;
1591         bool first_copy = true;
1592         struct r10bio *r10_bio, *first_r10bio;
1593         struct bio *split;
1594         int disk;
1595         sector_t chunk;
1596         unsigned int stripe_size;
1597         unsigned int stripe_data_disks;
1598         sector_t split_size;
1599         sector_t bio_start, bio_end;
1600         sector_t first_stripe_index, last_stripe_index;
1601         sector_t start_disk_offset;
1602         unsigned int start_disk_index;
1603         sector_t end_disk_offset;
1604         unsigned int end_disk_index;
1605         unsigned int remainder;
1606
1607         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1608                 return -EAGAIN;
1609
1610         wait_barrier(conf);
1611
1612         /*
1613          * Check reshape again to avoid reshape happens after checking
1614          * MD_RECOVERY_RESHAPE and before wait_barrier
1615          */
1616         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1617                 goto out;
1618
1619         if (geo->near_copies)
1620                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1621                                         geo->raid_disks % geo->near_copies;
1622         else
1623                 stripe_data_disks = geo->raid_disks;
1624
1625         stripe_size = stripe_data_disks << geo->chunk_shift;
1626
1627         bio_start = bio->bi_iter.bi_sector;
1628         bio_end = bio_end_sector(bio);
1629
1630         /*
1631          * Maybe one discard bio is smaller than strip size or across one
1632          * stripe and discard region is larger than one stripe size. For far
1633          * offset layout, if the discard region is not aligned with stripe
1634          * size, there is hole when we submit discard bio to member disk.
1635          * For simplicity, we only handle discard bio which discard region
1636          * is bigger than stripe_size * 2
1637          */
1638         if (bio_sectors(bio) < stripe_size*2)
1639                 goto out;
1640
1641         /*
1642          * Keep bio aligned with strip size.
1643          */
1644         div_u64_rem(bio_start, stripe_size, &remainder);
1645         if (remainder) {
1646                 split_size = stripe_size - remainder;
1647                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648                 bio_chain(split, bio);
1649                 allow_barrier(conf);
1650                 /* Resend the fist split part */
1651                 submit_bio_noacct(split);
1652                 wait_barrier(conf);
1653         }
1654         div_u64_rem(bio_end, stripe_size, &remainder);
1655         if (remainder) {
1656                 split_size = bio_sectors(bio) - remainder;
1657                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658                 bio_chain(split, bio);
1659                 allow_barrier(conf);
1660                 /* Resend the second split part */
1661                 submit_bio_noacct(bio);
1662                 bio = split;
1663                 wait_barrier(conf);
1664         }
1665
1666         bio_start = bio->bi_iter.bi_sector;
1667         bio_end = bio_end_sector(bio);
1668
1669         /*
1670          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671          * One stripe contains the chunks from all member disk (one chunk from
1672          * one disk at the same HBA address). For layout detail, see 'man md 4'
1673          */
1674         chunk = bio_start >> geo->chunk_shift;
1675         chunk *= geo->near_copies;
1676         first_stripe_index = chunk;
1677         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678         if (geo->far_offset)
1679                 first_stripe_index *= geo->far_copies;
1680         start_disk_offset = (bio_start & geo->chunk_mask) +
1681                                 (first_stripe_index << geo->chunk_shift);
1682
1683         chunk = bio_end >> geo->chunk_shift;
1684         chunk *= geo->near_copies;
1685         last_stripe_index = chunk;
1686         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687         if (geo->far_offset)
1688                 last_stripe_index *= geo->far_copies;
1689         end_disk_offset = (bio_end & geo->chunk_mask) +
1690                                 (last_stripe_index << geo->chunk_shift);
1691
1692 retry_discard:
1693         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694         r10_bio->mddev = mddev;
1695         r10_bio->state = 0;
1696         r10_bio->sectors = 0;
1697         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698         wait_blocked_dev(mddev, r10_bio);
1699
1700         /*
1701          * For far layout it needs more than one r10bio to cover all regions.
1702          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703          * to record the discard bio. Other r10bio->master_bio record the first
1704          * r10bio. The first r10bio only release after all other r10bios finish.
1705          * The discard bio returns only first r10bio finishes
1706          */
1707         if (first_copy) {
1708                 r10_bio->master_bio = bio;
1709                 set_bit(R10BIO_Discard, &r10_bio->state);
1710                 first_copy = false;
1711                 first_r10bio = r10_bio;
1712         } else
1713                 r10_bio->master_bio = (struct bio *)first_r10bio;
1714
1715         /*
1716          * first select target devices under rcu_lock and
1717          * inc refcount on their rdev.  Record them by setting
1718          * bios[x] to bio
1719          */
1720         rcu_read_lock();
1721         for (disk = 0; disk < geo->raid_disks; disk++) {
1722                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1723                 struct md_rdev *rrdev = rcu_dereference(
1724                         conf->mirrors[disk].replacement);
1725
1726                 r10_bio->devs[disk].bio = NULL;
1727                 r10_bio->devs[disk].repl_bio = NULL;
1728
1729                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1730                         rdev = NULL;
1731                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1732                         rrdev = NULL;
1733                 if (!rdev && !rrdev)
1734                         continue;
1735
1736                 if (rdev) {
1737                         r10_bio->devs[disk].bio = bio;
1738                         atomic_inc(&rdev->nr_pending);
1739                 }
1740                 if (rrdev) {
1741                         r10_bio->devs[disk].repl_bio = bio;
1742                         atomic_inc(&rrdev->nr_pending);
1743                 }
1744         }
1745         rcu_read_unlock();
1746
1747         atomic_set(&r10_bio->remaining, 1);
1748         for (disk = 0; disk < geo->raid_disks; disk++) {
1749                 sector_t dev_start, dev_end;
1750                 struct bio *mbio, *rbio = NULL;
1751
1752                 /*
1753                  * Now start to calculate the start and end address for each disk.
1754                  * The space between dev_start and dev_end is the discard region.
1755                  *
1756                  * For dev_start, it needs to consider three conditions:
1757                  * 1st, the disk is before start_disk, you can imagine the disk in
1758                  * the next stripe. So the dev_start is the start address of next
1759                  * stripe.
1760                  * 2st, the disk is after start_disk, it means the disk is at the
1761                  * same stripe of first disk
1762                  * 3st, the first disk itself, we can use start_disk_offset directly
1763                  */
1764                 if (disk < start_disk_index)
1765                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1766                 else if (disk > start_disk_index)
1767                         dev_start = first_stripe_index * mddev->chunk_sectors;
1768                 else
1769                         dev_start = start_disk_offset;
1770
1771                 if (disk < end_disk_index)
1772                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1773                 else if (disk > end_disk_index)
1774                         dev_end = last_stripe_index * mddev->chunk_sectors;
1775                 else
1776                         dev_end = end_disk_offset;
1777
1778                 /*
1779                  * It only handles discard bio which size is >= stripe size, so
1780                  * dev_end > dev_start all the time.
1781                  * It doesn't need to use rcu lock to get rdev here. We already
1782                  * add rdev->nr_pending in the first loop.
1783                  */
1784                 if (r10_bio->devs[disk].bio) {
1785                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1786                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1787                         mbio->bi_end_io = raid10_end_discard_request;
1788                         mbio->bi_private = r10_bio;
1789                         r10_bio->devs[disk].bio = mbio;
1790                         r10_bio->devs[disk].devnum = disk;
1791                         atomic_inc(&r10_bio->remaining);
1792                         md_submit_discard_bio(mddev, rdev, mbio,
1793                                         dev_start + choose_data_offset(r10_bio, rdev),
1794                                         dev_end - dev_start);
1795                         bio_endio(mbio);
1796                 }
1797                 if (r10_bio->devs[disk].repl_bio) {
1798                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1799                         rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1800                         rbio->bi_end_io = raid10_end_discard_request;
1801                         rbio->bi_private = r10_bio;
1802                         r10_bio->devs[disk].repl_bio = rbio;
1803                         r10_bio->devs[disk].devnum = disk;
1804                         atomic_inc(&r10_bio->remaining);
1805                         md_submit_discard_bio(mddev, rrdev, rbio,
1806                                         dev_start + choose_data_offset(r10_bio, rrdev),
1807                                         dev_end - dev_start);
1808                         bio_endio(rbio);
1809                 }
1810         }
1811
1812         if (!geo->far_offset && --far_copies) {
1813                 first_stripe_index += geo->stride >> geo->chunk_shift;
1814                 start_disk_offset += geo->stride;
1815                 last_stripe_index += geo->stride >> geo->chunk_shift;
1816                 end_disk_offset += geo->stride;
1817                 atomic_inc(&first_r10bio->remaining);
1818                 raid_end_discard_bio(r10_bio);
1819                 wait_barrier(conf);
1820                 goto retry_discard;
1821         }
1822
1823         raid_end_discard_bio(r10_bio);
1824
1825         return 0;
1826 out:
1827         allow_barrier(conf);
1828         return -EAGAIN;
1829 }
1830
1831 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1832 {
1833         struct r10conf *conf = mddev->private;
1834         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1835         int chunk_sects = chunk_mask + 1;
1836         int sectors = bio_sectors(bio);
1837
1838         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1839             && md_flush_request(mddev, bio))
1840                 return true;
1841
1842         if (!md_write_start(mddev, bio))
1843                 return false;
1844
1845         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1846                 if (!raid10_handle_discard(mddev, bio))
1847                         return true;
1848
1849         /*
1850          * If this request crosses a chunk boundary, we need to split
1851          * it.
1852          */
1853         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1854                      sectors > chunk_sects
1855                      && (conf->geo.near_copies < conf->geo.raid_disks
1856                          || conf->prev.near_copies <
1857                          conf->prev.raid_disks)))
1858                 sectors = chunk_sects -
1859                         (bio->bi_iter.bi_sector &
1860                          (chunk_sects - 1));
1861         __make_request(mddev, bio, sectors);
1862
1863         /* In case raid10d snuck in to freeze_array */
1864         wake_up(&conf->wait_barrier);
1865         return true;
1866 }
1867
1868 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1869 {
1870         struct r10conf *conf = mddev->private;
1871         int i;
1872
1873         if (conf->geo.near_copies < conf->geo.raid_disks)
1874                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1875         if (conf->geo.near_copies > 1)
1876                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1877         if (conf->geo.far_copies > 1) {
1878                 if (conf->geo.far_offset)
1879                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1880                 else
1881                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1882                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1883                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1884         }
1885         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1886                                         conf->geo.raid_disks - mddev->degraded);
1887         rcu_read_lock();
1888         for (i = 0; i < conf->geo.raid_disks; i++) {
1889                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1890                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1891         }
1892         rcu_read_unlock();
1893         seq_printf(seq, "]");
1894 }
1895
1896 /* check if there are enough drives for
1897  * every block to appear on atleast one.
1898  * Don't consider the device numbered 'ignore'
1899  * as we might be about to remove it.
1900  */
1901 static int _enough(struct r10conf *conf, int previous, int ignore)
1902 {
1903         int first = 0;
1904         int has_enough = 0;
1905         int disks, ncopies;
1906         if (previous) {
1907                 disks = conf->prev.raid_disks;
1908                 ncopies = conf->prev.near_copies;
1909         } else {
1910                 disks = conf->geo.raid_disks;
1911                 ncopies = conf->geo.near_copies;
1912         }
1913
1914         rcu_read_lock();
1915         do {
1916                 int n = conf->copies;
1917                 int cnt = 0;
1918                 int this = first;
1919                 while (n--) {
1920                         struct md_rdev *rdev;
1921                         if (this != ignore &&
1922                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1923                             test_bit(In_sync, &rdev->flags))
1924                                 cnt++;
1925                         this = (this+1) % disks;
1926                 }
1927                 if (cnt == 0)
1928                         goto out;
1929                 first = (first + ncopies) % disks;
1930         } while (first != 0);
1931         has_enough = 1;
1932 out:
1933         rcu_read_unlock();
1934         return has_enough;
1935 }
1936
1937 static int enough(struct r10conf *conf, int ignore)
1938 {
1939         /* when calling 'enough', both 'prev' and 'geo' must
1940          * be stable.
1941          * This is ensured if ->reconfig_mutex or ->device_lock
1942          * is held.
1943          */
1944         return _enough(conf, 0, ignore) &&
1945                 _enough(conf, 1, ignore);
1946 }
1947
1948 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1949 {
1950         char b[BDEVNAME_SIZE];
1951         struct r10conf *conf = mddev->private;
1952         unsigned long flags;
1953
1954         /*
1955          * If it is not operational, then we have already marked it as dead
1956          * else if it is the last working disks with "fail_last_dev == false",
1957          * ignore the error, let the next level up know.
1958          * else mark the drive as failed
1959          */
1960         spin_lock_irqsave(&conf->device_lock, flags);
1961         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1962             && !enough(conf, rdev->raid_disk)) {
1963                 /*
1964                  * Don't fail the drive, just return an IO error.
1965                  */
1966                 spin_unlock_irqrestore(&conf->device_lock, flags);
1967                 return;
1968         }
1969         if (test_and_clear_bit(In_sync, &rdev->flags))
1970                 mddev->degraded++;
1971         /*
1972          * If recovery is running, make sure it aborts.
1973          */
1974         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1975         set_bit(Blocked, &rdev->flags);
1976         set_bit(Faulty, &rdev->flags);
1977         set_mask_bits(&mddev->sb_flags, 0,
1978                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1979         spin_unlock_irqrestore(&conf->device_lock, flags);
1980         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1981                 "md/raid10:%s: Operation continuing on %d devices.\n",
1982                 mdname(mddev), bdevname(rdev->bdev, b),
1983                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1984 }
1985
1986 static void print_conf(struct r10conf *conf)
1987 {
1988         int i;
1989         struct md_rdev *rdev;
1990
1991         pr_debug("RAID10 conf printout:\n");
1992         if (!conf) {
1993                 pr_debug("(!conf)\n");
1994                 return;
1995         }
1996         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1997                  conf->geo.raid_disks);
1998
1999         /* This is only called with ->reconfix_mutex held, so
2000          * rcu protection of rdev is not needed */
2001         for (i = 0; i < conf->geo.raid_disks; i++) {
2002                 char b[BDEVNAME_SIZE];
2003                 rdev = conf->mirrors[i].rdev;
2004                 if (rdev)
2005                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2006                                  i, !test_bit(In_sync, &rdev->flags),
2007                                  !test_bit(Faulty, &rdev->flags),
2008                                  bdevname(rdev->bdev,b));
2009         }
2010 }
2011
2012 static void close_sync(struct r10conf *conf)
2013 {
2014         wait_barrier(conf);
2015         allow_barrier(conf);
2016
2017         mempool_exit(&conf->r10buf_pool);
2018 }
2019
2020 static int raid10_spare_active(struct mddev *mddev)
2021 {
2022         int i;
2023         struct r10conf *conf = mddev->private;
2024         struct raid10_info *tmp;
2025         int count = 0;
2026         unsigned long flags;
2027
2028         /*
2029          * Find all non-in_sync disks within the RAID10 configuration
2030          * and mark them in_sync
2031          */
2032         for (i = 0; i < conf->geo.raid_disks; i++) {
2033                 tmp = conf->mirrors + i;
2034                 if (tmp->replacement
2035                     && tmp->replacement->recovery_offset == MaxSector
2036                     && !test_bit(Faulty, &tmp->replacement->flags)
2037                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038                         /* Replacement has just become active */
2039                         if (!tmp->rdev
2040                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2041                                 count++;
2042                         if (tmp->rdev) {
2043                                 /* Replaced device not technically faulty,
2044                                  * but we need to be sure it gets removed
2045                                  * and never re-added.
2046                                  */
2047                                 set_bit(Faulty, &tmp->rdev->flags);
2048                                 sysfs_notify_dirent_safe(
2049                                         tmp->rdev->sysfs_state);
2050                         }
2051                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052                 } else if (tmp->rdev
2053                            && tmp->rdev->recovery_offset == MaxSector
2054                            && !test_bit(Faulty, &tmp->rdev->flags)
2055                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2056                         count++;
2057                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2058                 }
2059         }
2060         spin_lock_irqsave(&conf->device_lock, flags);
2061         mddev->degraded -= count;
2062         spin_unlock_irqrestore(&conf->device_lock, flags);
2063
2064         print_conf(conf);
2065         return count;
2066 }
2067
2068 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2069 {
2070         struct r10conf *conf = mddev->private;
2071         int err = -EEXIST;
2072         int mirror;
2073         int first = 0;
2074         int last = conf->geo.raid_disks - 1;
2075
2076         if (mddev->recovery_cp < MaxSector)
2077                 /* only hot-add to in-sync arrays, as recovery is
2078                  * very different from resync
2079                  */
2080                 return -EBUSY;
2081         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2082                 return -EINVAL;
2083
2084         if (md_integrity_add_rdev(rdev, mddev))
2085                 return -ENXIO;
2086
2087         if (rdev->raid_disk >= 0)
2088                 first = last = rdev->raid_disk;
2089
2090         if (rdev->saved_raid_disk >= first &&
2091             rdev->saved_raid_disk < conf->geo.raid_disks &&
2092             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2093                 mirror = rdev->saved_raid_disk;
2094         else
2095                 mirror = first;
2096         for ( ; mirror <= last ; mirror++) {
2097                 struct raid10_info *p = &conf->mirrors[mirror];
2098                 if (p->recovery_disabled == mddev->recovery_disabled)
2099                         continue;
2100                 if (p->rdev) {
2101                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
2102                             p->replacement != NULL)
2103                                 continue;
2104                         clear_bit(In_sync, &rdev->flags);
2105                         set_bit(Replacement, &rdev->flags);
2106                         rdev->raid_disk = mirror;
2107                         err = 0;
2108                         if (mddev->gendisk)
2109                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2110                                                   rdev->data_offset << 9);
2111                         conf->fullsync = 1;
2112                         rcu_assign_pointer(p->replacement, rdev);
2113                         break;
2114                 }
2115
2116                 if (mddev->gendisk)
2117                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2118                                           rdev->data_offset << 9);
2119
2120                 p->head_position = 0;
2121                 p->recovery_disabled = mddev->recovery_disabled - 1;
2122                 rdev->raid_disk = mirror;
2123                 err = 0;
2124                 if (rdev->saved_raid_disk != mirror)
2125                         conf->fullsync = 1;
2126                 rcu_assign_pointer(p->rdev, rdev);
2127                 break;
2128         }
2129         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2130                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2131
2132         print_conf(conf);
2133         return err;
2134 }
2135
2136 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2137 {
2138         struct r10conf *conf = mddev->private;
2139         int err = 0;
2140         int number = rdev->raid_disk;
2141         struct md_rdev **rdevp;
2142         struct raid10_info *p = conf->mirrors + number;
2143
2144         print_conf(conf);
2145         if (rdev == p->rdev)
2146                 rdevp = &p->rdev;
2147         else if (rdev == p->replacement)
2148                 rdevp = &p->replacement;
2149         else
2150                 return 0;
2151
2152         if (test_bit(In_sync, &rdev->flags) ||
2153             atomic_read(&rdev->nr_pending)) {
2154                 err = -EBUSY;
2155                 goto abort;
2156         }
2157         /* Only remove non-faulty devices if recovery
2158          * is not possible.
2159          */
2160         if (!test_bit(Faulty, &rdev->flags) &&
2161             mddev->recovery_disabled != p->recovery_disabled &&
2162             (!p->replacement || p->replacement == rdev) &&
2163             number < conf->geo.raid_disks &&
2164             enough(conf, -1)) {
2165                 err = -EBUSY;
2166                 goto abort;
2167         }
2168         *rdevp = NULL;
2169         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2170                 synchronize_rcu();
2171                 if (atomic_read(&rdev->nr_pending)) {
2172                         /* lost the race, try later */
2173                         err = -EBUSY;
2174                         *rdevp = rdev;
2175                         goto abort;
2176                 }
2177         }
2178         if (p->replacement) {
2179                 /* We must have just cleared 'rdev' */
2180                 p->rdev = p->replacement;
2181                 clear_bit(Replacement, &p->replacement->flags);
2182                 smp_mb(); /* Make sure other CPUs may see both as identical
2183                            * but will never see neither -- if they are careful.
2184                            */
2185                 p->replacement = NULL;
2186         }
2187
2188         clear_bit(WantReplacement, &rdev->flags);
2189         err = md_integrity_register(mddev);
2190
2191 abort:
2192
2193         print_conf(conf);
2194         return err;
2195 }
2196
2197 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2198 {
2199         struct r10conf *conf = r10_bio->mddev->private;
2200
2201         if (!bio->bi_status)
2202                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2203         else
2204                 /* The write handler will notice the lack of
2205                  * R10BIO_Uptodate and record any errors etc
2206                  */
2207                 atomic_add(r10_bio->sectors,
2208                            &conf->mirrors[d].rdev->corrected_errors);
2209
2210         /* for reconstruct, we always reschedule after a read.
2211          * for resync, only after all reads
2212          */
2213         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2214         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2215             atomic_dec_and_test(&r10_bio->remaining)) {
2216                 /* we have read all the blocks,
2217                  * do the comparison in process context in raid10d
2218                  */
2219                 reschedule_retry(r10_bio);
2220         }
2221 }
2222
2223 static void end_sync_read(struct bio *bio)
2224 {
2225         struct r10bio *r10_bio = get_resync_r10bio(bio);
2226         struct r10conf *conf = r10_bio->mddev->private;
2227         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2228
2229         __end_sync_read(r10_bio, bio, d);
2230 }
2231
2232 static void end_reshape_read(struct bio *bio)
2233 {
2234         /* reshape read bio isn't allocated from r10buf_pool */
2235         struct r10bio *r10_bio = bio->bi_private;
2236
2237         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2238 }
2239
2240 static void end_sync_request(struct r10bio *r10_bio)
2241 {
2242         struct mddev *mddev = r10_bio->mddev;
2243
2244         while (atomic_dec_and_test(&r10_bio->remaining)) {
2245                 if (r10_bio->master_bio == NULL) {
2246                         /* the primary of several recovery bios */
2247                         sector_t s = r10_bio->sectors;
2248                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2249                             test_bit(R10BIO_WriteError, &r10_bio->state))
2250                                 reschedule_retry(r10_bio);
2251                         else
2252                                 put_buf(r10_bio);
2253                         md_done_sync(mddev, s, 1);
2254                         break;
2255                 } else {
2256                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2257                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2258                             test_bit(R10BIO_WriteError, &r10_bio->state))
2259                                 reschedule_retry(r10_bio);
2260                         else
2261                                 put_buf(r10_bio);
2262                         r10_bio = r10_bio2;
2263                 }
2264         }
2265 }
2266
2267 static void end_sync_write(struct bio *bio)
2268 {
2269         struct r10bio *r10_bio = get_resync_r10bio(bio);
2270         struct mddev *mddev = r10_bio->mddev;
2271         struct r10conf *conf = mddev->private;
2272         int d;
2273         sector_t first_bad;
2274         int bad_sectors;
2275         int slot;
2276         int repl;
2277         struct md_rdev *rdev = NULL;
2278
2279         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2280         if (repl)
2281                 rdev = conf->mirrors[d].replacement;
2282         else
2283                 rdev = conf->mirrors[d].rdev;
2284
2285         if (bio->bi_status) {
2286                 if (repl)
2287                         md_error(mddev, rdev);
2288                 else {
2289                         set_bit(WriteErrorSeen, &rdev->flags);
2290                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2291                                 set_bit(MD_RECOVERY_NEEDED,
2292                                         &rdev->mddev->recovery);
2293                         set_bit(R10BIO_WriteError, &r10_bio->state);
2294                 }
2295         } else if (is_badblock(rdev,
2296                              r10_bio->devs[slot].addr,
2297                              r10_bio->sectors,
2298                              &first_bad, &bad_sectors))
2299                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2300
2301         rdev_dec_pending(rdev, mddev);
2302
2303         end_sync_request(r10_bio);
2304 }
2305
2306 /*
2307  * Note: sync and recover and handled very differently for raid10
2308  * This code is for resync.
2309  * For resync, we read through virtual addresses and read all blocks.
2310  * If there is any error, we schedule a write.  The lowest numbered
2311  * drive is authoritative.
2312  * However requests come for physical address, so we need to map.
2313  * For every physical address there are raid_disks/copies virtual addresses,
2314  * which is always are least one, but is not necessarly an integer.
2315  * This means that a physical address can span multiple chunks, so we may
2316  * have to submit multiple io requests for a single sync request.
2317  */
2318 /*
2319  * We check if all blocks are in-sync and only write to blocks that
2320  * aren't in sync
2321  */
2322 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2323 {
2324         struct r10conf *conf = mddev->private;
2325         int i, first;
2326         struct bio *tbio, *fbio;
2327         int vcnt;
2328         struct page **tpages, **fpages;
2329
2330         atomic_set(&r10_bio->remaining, 1);
2331
2332         /* find the first device with a block */
2333         for (i=0; i<conf->copies; i++)
2334                 if (!r10_bio->devs[i].bio->bi_status)
2335                         break;
2336
2337         if (i == conf->copies)
2338                 goto done;
2339
2340         first = i;
2341         fbio = r10_bio->devs[i].bio;
2342         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2343         fbio->bi_iter.bi_idx = 0;
2344         fpages = get_resync_pages(fbio)->pages;
2345
2346         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2347         /* now find blocks with errors */
2348         for (i=0 ; i < conf->copies ; i++) {
2349                 int  j, d;
2350                 struct md_rdev *rdev;
2351                 struct resync_pages *rp;
2352
2353                 tbio = r10_bio->devs[i].bio;
2354
2355                 if (tbio->bi_end_io != end_sync_read)
2356                         continue;
2357                 if (i == first)
2358                         continue;
2359
2360                 tpages = get_resync_pages(tbio)->pages;
2361                 d = r10_bio->devs[i].devnum;
2362                 rdev = conf->mirrors[d].rdev;
2363                 if (!r10_bio->devs[i].bio->bi_status) {
2364                         /* We know that the bi_io_vec layout is the same for
2365                          * both 'first' and 'i', so we just compare them.
2366                          * All vec entries are PAGE_SIZE;
2367                          */
2368                         int sectors = r10_bio->sectors;
2369                         for (j = 0; j < vcnt; j++) {
2370                                 int len = PAGE_SIZE;
2371                                 if (sectors < (len / 512))
2372                                         len = sectors * 512;
2373                                 if (memcmp(page_address(fpages[j]),
2374                                            page_address(tpages[j]),
2375                                            len))
2376                                         break;
2377                                 sectors -= len/512;
2378                         }
2379                         if (j == vcnt)
2380                                 continue;
2381                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2382                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2383                                 /* Don't fix anything. */
2384                                 continue;
2385                 } else if (test_bit(FailFast, &rdev->flags)) {
2386                         /* Just give up on this device */
2387                         md_error(rdev->mddev, rdev);
2388                         continue;
2389                 }
2390                 /* Ok, we need to write this bio, either to correct an
2391                  * inconsistency or to correct an unreadable block.
2392                  * First we need to fixup bv_offset, bv_len and
2393                  * bi_vecs, as the read request might have corrupted these
2394                  */
2395                 rp = get_resync_pages(tbio);
2396                 bio_reset(tbio);
2397
2398                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2399
2400                 rp->raid_bio = r10_bio;
2401                 tbio->bi_private = rp;
2402                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2403                 tbio->bi_end_io = end_sync_write;
2404                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2405
2406                 bio_copy_data(tbio, fbio);
2407
2408                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2409                 atomic_inc(&r10_bio->remaining);
2410                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2411
2412                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2413                         tbio->bi_opf |= MD_FAILFAST;
2414                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2415                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2416                 submit_bio_noacct(tbio);
2417         }
2418
2419         /* Now write out to any replacement devices
2420          * that are active
2421          */
2422         for (i = 0; i < conf->copies; i++) {
2423                 int d;
2424
2425                 tbio = r10_bio->devs[i].repl_bio;
2426                 if (!tbio || !tbio->bi_end_io)
2427                         continue;
2428                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2429                     && r10_bio->devs[i].bio != fbio)
2430                         bio_copy_data(tbio, fbio);
2431                 d = r10_bio->devs[i].devnum;
2432                 atomic_inc(&r10_bio->remaining);
2433                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2434                              bio_sectors(tbio));
2435                 submit_bio_noacct(tbio);
2436         }
2437
2438 done:
2439         if (atomic_dec_and_test(&r10_bio->remaining)) {
2440                 md_done_sync(mddev, r10_bio->sectors, 1);
2441                 put_buf(r10_bio);
2442         }
2443 }
2444
2445 /*
2446  * Now for the recovery code.
2447  * Recovery happens across physical sectors.
2448  * We recover all non-is_sync drives by finding the virtual address of
2449  * each, and then choose a working drive that also has that virt address.
2450  * There is a separate r10_bio for each non-in_sync drive.
2451  * Only the first two slots are in use. The first for reading,
2452  * The second for writing.
2453  *
2454  */
2455 static void fix_recovery_read_error(struct r10bio *r10_bio)
2456 {
2457         /* We got a read error during recovery.
2458          * We repeat the read in smaller page-sized sections.
2459          * If a read succeeds, write it to the new device or record
2460          * a bad block if we cannot.
2461          * If a read fails, record a bad block on both old and
2462          * new devices.
2463          */
2464         struct mddev *mddev = r10_bio->mddev;
2465         struct r10conf *conf = mddev->private;
2466         struct bio *bio = r10_bio->devs[0].bio;
2467         sector_t sect = 0;
2468         int sectors = r10_bio->sectors;
2469         int idx = 0;
2470         int dr = r10_bio->devs[0].devnum;
2471         int dw = r10_bio->devs[1].devnum;
2472         struct page **pages = get_resync_pages(bio)->pages;
2473
2474         while (sectors) {
2475                 int s = sectors;
2476                 struct md_rdev *rdev;
2477                 sector_t addr;
2478                 int ok;
2479
2480                 if (s > (PAGE_SIZE>>9))
2481                         s = PAGE_SIZE >> 9;
2482
2483                 rdev = conf->mirrors[dr].rdev;
2484                 addr = r10_bio->devs[0].addr + sect,
2485                 ok = sync_page_io(rdev,
2486                                   addr,
2487                                   s << 9,
2488                                   pages[idx],
2489                                   REQ_OP_READ, 0, false);
2490                 if (ok) {
2491                         rdev = conf->mirrors[dw].rdev;
2492                         addr = r10_bio->devs[1].addr + sect;
2493                         ok = sync_page_io(rdev,
2494                                           addr,
2495                                           s << 9,
2496                                           pages[idx],
2497                                           REQ_OP_WRITE, 0, false);
2498                         if (!ok) {
2499                                 set_bit(WriteErrorSeen, &rdev->flags);
2500                                 if (!test_and_set_bit(WantReplacement,
2501                                                       &rdev->flags))
2502                                         set_bit(MD_RECOVERY_NEEDED,
2503                                                 &rdev->mddev->recovery);
2504                         }
2505                 }
2506                 if (!ok) {
2507                         /* We don't worry if we cannot set a bad block -
2508                          * it really is bad so there is no loss in not
2509                          * recording it yet
2510                          */
2511                         rdev_set_badblocks(rdev, addr, s, 0);
2512
2513                         if (rdev != conf->mirrors[dw].rdev) {
2514                                 /* need bad block on destination too */
2515                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2516                                 addr = r10_bio->devs[1].addr + sect;
2517                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2518                                 if (!ok) {
2519                                         /* just abort the recovery */
2520                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2521                                                   mdname(mddev));
2522
2523                                         conf->mirrors[dw].recovery_disabled
2524                                                 = mddev->recovery_disabled;
2525                                         set_bit(MD_RECOVERY_INTR,
2526                                                 &mddev->recovery);
2527                                         break;
2528                                 }
2529                         }
2530                 }
2531
2532                 sectors -= s;
2533                 sect += s;
2534                 idx++;
2535         }
2536 }
2537
2538 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2539 {
2540         struct r10conf *conf = mddev->private;
2541         int d;
2542         struct bio *wbio, *wbio2;
2543
2544         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2545                 fix_recovery_read_error(r10_bio);
2546                 end_sync_request(r10_bio);
2547                 return;
2548         }
2549
2550         /*
2551          * share the pages with the first bio
2552          * and submit the write request
2553          */
2554         d = r10_bio->devs[1].devnum;
2555         wbio = r10_bio->devs[1].bio;
2556         wbio2 = r10_bio->devs[1].repl_bio;
2557         /* Need to test wbio2->bi_end_io before we call
2558          * submit_bio_noacct as if the former is NULL,
2559          * the latter is free to free wbio2.
2560          */
2561         if (wbio2 && !wbio2->bi_end_io)
2562                 wbio2 = NULL;
2563         if (wbio->bi_end_io) {
2564                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2565                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2566                 submit_bio_noacct(wbio);
2567         }
2568         if (wbio2) {
2569                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2570                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2571                              bio_sectors(wbio2));
2572                 submit_bio_noacct(wbio2);
2573         }
2574 }
2575
2576 /*
2577  * Used by fix_read_error() to decay the per rdev read_errors.
2578  * We halve the read error count for every hour that has elapsed
2579  * since the last recorded read error.
2580  *
2581  */
2582 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2583 {
2584         long cur_time_mon;
2585         unsigned long hours_since_last;
2586         unsigned int read_errors = atomic_read(&rdev->read_errors);
2587
2588         cur_time_mon = ktime_get_seconds();
2589
2590         if (rdev->last_read_error == 0) {
2591                 /* first time we've seen a read error */
2592                 rdev->last_read_error = cur_time_mon;
2593                 return;
2594         }
2595
2596         hours_since_last = (long)(cur_time_mon -
2597                             rdev->last_read_error) / 3600;
2598
2599         rdev->last_read_error = cur_time_mon;
2600
2601         /*
2602          * if hours_since_last is > the number of bits in read_errors
2603          * just set read errors to 0. We do this to avoid
2604          * overflowing the shift of read_errors by hours_since_last.
2605          */
2606         if (hours_since_last >= 8 * sizeof(read_errors))
2607                 atomic_set(&rdev->read_errors, 0);
2608         else
2609                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2610 }
2611
2612 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2613                             int sectors, struct page *page, int rw)
2614 {
2615         sector_t first_bad;
2616         int bad_sectors;
2617
2618         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2619             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2620                 return -1;
2621         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2622                 /* success */
2623                 return 1;
2624         if (rw == WRITE) {
2625                 set_bit(WriteErrorSeen, &rdev->flags);
2626                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2627                         set_bit(MD_RECOVERY_NEEDED,
2628                                 &rdev->mddev->recovery);
2629         }
2630         /* need to record an error - either for the block or the device */
2631         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2632                 md_error(rdev->mddev, rdev);
2633         return 0;
2634 }
2635
2636 /*
2637  * This is a kernel thread which:
2638  *
2639  *      1.      Retries failed read operations on working mirrors.
2640  *      2.      Updates the raid superblock when problems encounter.
2641  *      3.      Performs writes following reads for array synchronising.
2642  */
2643
2644 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2645 {
2646         int sect = 0; /* Offset from r10_bio->sector */
2647         int sectors = r10_bio->sectors;
2648         struct md_rdev *rdev;
2649         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2650         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2651
2652         /* still own a reference to this rdev, so it cannot
2653          * have been cleared recently.
2654          */
2655         rdev = conf->mirrors[d].rdev;
2656
2657         if (test_bit(Faulty, &rdev->flags))
2658                 /* drive has already been failed, just ignore any
2659                    more fix_read_error() attempts */
2660                 return;
2661
2662         check_decay_read_errors(mddev, rdev);
2663         atomic_inc(&rdev->read_errors);
2664         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2665                 char b[BDEVNAME_SIZE];
2666                 bdevname(rdev->bdev, b);
2667
2668                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2669                           mdname(mddev), b,
2670                           atomic_read(&rdev->read_errors), max_read_errors);
2671                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2672                           mdname(mddev), b);
2673                 md_error(mddev, rdev);
2674                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2675                 return;
2676         }
2677
2678         while(sectors) {
2679                 int s = sectors;
2680                 int sl = r10_bio->read_slot;
2681                 int success = 0;
2682                 int start;
2683
2684                 if (s > (PAGE_SIZE>>9))
2685                         s = PAGE_SIZE >> 9;
2686
2687                 rcu_read_lock();
2688                 do {
2689                         sector_t first_bad;
2690                         int bad_sectors;
2691
2692                         d = r10_bio->devs[sl].devnum;
2693                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2694                         if (rdev &&
2695                             test_bit(In_sync, &rdev->flags) &&
2696                             !test_bit(Faulty, &rdev->flags) &&
2697                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2698                                         &first_bad, &bad_sectors) == 0) {
2699                                 atomic_inc(&rdev->nr_pending);
2700                                 rcu_read_unlock();
2701                                 success = sync_page_io(rdev,
2702                                                        r10_bio->devs[sl].addr +
2703                                                        sect,
2704                                                        s<<9,
2705                                                        conf->tmppage,
2706                                                        REQ_OP_READ, 0, false);
2707                                 rdev_dec_pending(rdev, mddev);
2708                                 rcu_read_lock();
2709                                 if (success)
2710                                         break;
2711                         }
2712                         sl++;
2713                         if (sl == conf->copies)
2714                                 sl = 0;
2715                 } while (!success && sl != r10_bio->read_slot);
2716                 rcu_read_unlock();
2717
2718                 if (!success) {
2719                         /* Cannot read from anywhere, just mark the block
2720                          * as bad on the first device to discourage future
2721                          * reads.
2722                          */
2723                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2724                         rdev = conf->mirrors[dn].rdev;
2725
2726                         if (!rdev_set_badblocks(
2727                                     rdev,
2728                                     r10_bio->devs[r10_bio->read_slot].addr
2729                                     + sect,
2730                                     s, 0)) {
2731                                 md_error(mddev, rdev);
2732                                 r10_bio->devs[r10_bio->read_slot].bio
2733                                         = IO_BLOCKED;
2734                         }
2735                         break;
2736                 }
2737
2738                 start = sl;
2739                 /* write it back and re-read */
2740                 rcu_read_lock();
2741                 while (sl != r10_bio->read_slot) {
2742                         char b[BDEVNAME_SIZE];
2743
2744                         if (sl==0)
2745                                 sl = conf->copies;
2746                         sl--;
2747                         d = r10_bio->devs[sl].devnum;
2748                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2749                         if (!rdev ||
2750                             test_bit(Faulty, &rdev->flags) ||
2751                             !test_bit(In_sync, &rdev->flags))
2752                                 continue;
2753
2754                         atomic_inc(&rdev->nr_pending);
2755                         rcu_read_unlock();
2756                         if (r10_sync_page_io(rdev,
2757                                              r10_bio->devs[sl].addr +
2758                                              sect,
2759                                              s, conf->tmppage, WRITE)
2760                             == 0) {
2761                                 /* Well, this device is dead */
2762                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2763                                           mdname(mddev), s,
2764                                           (unsigned long long)(
2765                                                   sect +
2766                                                   choose_data_offset(r10_bio,
2767                                                                      rdev)),
2768                                           bdevname(rdev->bdev, b));
2769                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2770                                           mdname(mddev),
2771                                           bdevname(rdev->bdev, b));
2772                         }
2773                         rdev_dec_pending(rdev, mddev);
2774                         rcu_read_lock();
2775                 }
2776                 sl = start;
2777                 while (sl != r10_bio->read_slot) {
2778                         char b[BDEVNAME_SIZE];
2779
2780                         if (sl==0)
2781                                 sl = conf->copies;
2782                         sl--;
2783                         d = r10_bio->devs[sl].devnum;
2784                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2785                         if (!rdev ||
2786                             test_bit(Faulty, &rdev->flags) ||
2787                             !test_bit(In_sync, &rdev->flags))
2788                                 continue;
2789
2790                         atomic_inc(&rdev->nr_pending);
2791                         rcu_read_unlock();
2792                         switch (r10_sync_page_io(rdev,
2793                                              r10_bio->devs[sl].addr +
2794                                              sect,
2795                                              s, conf->tmppage,
2796                                                  READ)) {
2797                         case 0:
2798                                 /* Well, this device is dead */
2799                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2800                                        mdname(mddev), s,
2801                                        (unsigned long long)(
2802                                                sect +
2803                                                choose_data_offset(r10_bio, rdev)),
2804                                        bdevname(rdev->bdev, b));
2805                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2806                                        mdname(mddev),
2807                                        bdevname(rdev->bdev, b));
2808                                 break;
2809                         case 1:
2810                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2811                                        mdname(mddev), s,
2812                                        (unsigned long long)(
2813                                                sect +
2814                                                choose_data_offset(r10_bio, rdev)),
2815                                        bdevname(rdev->bdev, b));
2816                                 atomic_add(s, &rdev->corrected_errors);
2817                         }
2818
2819                         rdev_dec_pending(rdev, mddev);
2820                         rcu_read_lock();
2821                 }
2822                 rcu_read_unlock();
2823
2824                 sectors -= s;
2825                 sect += s;
2826         }
2827 }
2828
2829 static int narrow_write_error(struct r10bio *r10_bio, int i)
2830 {
2831         struct bio *bio = r10_bio->master_bio;
2832         struct mddev *mddev = r10_bio->mddev;
2833         struct r10conf *conf = mddev->private;
2834         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2835         /* bio has the data to be written to slot 'i' where
2836          * we just recently had a write error.
2837          * We repeatedly clone the bio and trim down to one block,
2838          * then try the write.  Where the write fails we record
2839          * a bad block.
2840          * It is conceivable that the bio doesn't exactly align with
2841          * blocks.  We must handle this.
2842          *
2843          * We currently own a reference to the rdev.
2844          */
2845
2846         int block_sectors;
2847         sector_t sector;
2848         int sectors;
2849         int sect_to_write = r10_bio->sectors;
2850         int ok = 1;
2851
2852         if (rdev->badblocks.shift < 0)
2853                 return 0;
2854
2855         block_sectors = roundup(1 << rdev->badblocks.shift,
2856                                 bdev_logical_block_size(rdev->bdev) >> 9);
2857         sector = r10_bio->sector;
2858         sectors = ((r10_bio->sector + block_sectors)
2859                    & ~(sector_t)(block_sectors - 1))
2860                 - sector;
2861
2862         while (sect_to_write) {
2863                 struct bio *wbio;
2864                 sector_t wsector;
2865                 if (sectors > sect_to_write)
2866                         sectors = sect_to_write;
2867                 /* Write at 'sector' for 'sectors' */
2868                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2869                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2870                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2871                 wbio->bi_iter.bi_sector = wsector +
2872                                    choose_data_offset(r10_bio, rdev);
2873                 bio_set_dev(wbio, rdev->bdev);
2874                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2875
2876                 if (submit_bio_wait(wbio) < 0)
2877                         /* Failure! */
2878                         ok = rdev_set_badblocks(rdev, wsector,
2879                                                 sectors, 0)
2880                                 && ok;
2881
2882                 bio_put(wbio);
2883                 sect_to_write -= sectors;
2884                 sector += sectors;
2885                 sectors = block_sectors;
2886         }
2887         return ok;
2888 }
2889
2890 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2891 {
2892         int slot = r10_bio->read_slot;
2893         struct bio *bio;
2894         struct r10conf *conf = mddev->private;
2895         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2896
2897         /* we got a read error. Maybe the drive is bad.  Maybe just
2898          * the block and we can fix it.
2899          * We freeze all other IO, and try reading the block from
2900          * other devices.  When we find one, we re-write
2901          * and check it that fixes the read error.
2902          * This is all done synchronously while the array is
2903          * frozen.
2904          */
2905         bio = r10_bio->devs[slot].bio;
2906         bio_put(bio);
2907         r10_bio->devs[slot].bio = NULL;
2908
2909         if (mddev->ro)
2910                 r10_bio->devs[slot].bio = IO_BLOCKED;
2911         else if (!test_bit(FailFast, &rdev->flags)) {
2912                 freeze_array(conf, 1);
2913                 fix_read_error(conf, mddev, r10_bio);
2914                 unfreeze_array(conf);
2915         } else
2916                 md_error(mddev, rdev);
2917
2918         rdev_dec_pending(rdev, mddev);
2919         allow_barrier(conf);
2920         r10_bio->state = 0;
2921         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2922 }
2923
2924 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2925 {
2926         /* Some sort of write request has finished and it
2927          * succeeded in writing where we thought there was a
2928          * bad block.  So forget the bad block.
2929          * Or possibly if failed and we need to record
2930          * a bad block.
2931          */
2932         int m;
2933         struct md_rdev *rdev;
2934
2935         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2936             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2937                 for (m = 0; m < conf->copies; m++) {
2938                         int dev = r10_bio->devs[m].devnum;
2939                         rdev = conf->mirrors[dev].rdev;
2940                         if (r10_bio->devs[m].bio == NULL ||
2941                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2942                                 continue;
2943                         if (!r10_bio->devs[m].bio->bi_status) {
2944                                 rdev_clear_badblocks(
2945                                         rdev,
2946                                         r10_bio->devs[m].addr,
2947                                         r10_bio->sectors, 0);
2948                         } else {
2949                                 if (!rdev_set_badblocks(
2950                                             rdev,
2951                                             r10_bio->devs[m].addr,
2952                                             r10_bio->sectors, 0))
2953                                         md_error(conf->mddev, rdev);
2954                         }
2955                         rdev = conf->mirrors[dev].replacement;
2956                         if (r10_bio->devs[m].repl_bio == NULL ||
2957                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2958                                 continue;
2959
2960                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2961                                 rdev_clear_badblocks(
2962                                         rdev,
2963                                         r10_bio->devs[m].addr,
2964                                         r10_bio->sectors, 0);
2965                         } else {
2966                                 if (!rdev_set_badblocks(
2967                                             rdev,
2968                                             r10_bio->devs[m].addr,
2969                                             r10_bio->sectors, 0))
2970                                         md_error(conf->mddev, rdev);
2971                         }
2972                 }
2973                 put_buf(r10_bio);
2974         } else {
2975                 bool fail = false;
2976                 for (m = 0; m < conf->copies; m++) {
2977                         int dev = r10_bio->devs[m].devnum;
2978                         struct bio *bio = r10_bio->devs[m].bio;
2979                         rdev = conf->mirrors[dev].rdev;
2980                         if (bio == IO_MADE_GOOD) {
2981                                 rdev_clear_badblocks(
2982                                         rdev,
2983                                         r10_bio->devs[m].addr,
2984                                         r10_bio->sectors, 0);
2985                                 rdev_dec_pending(rdev, conf->mddev);
2986                         } else if (bio != NULL && bio->bi_status) {
2987                                 fail = true;
2988                                 if (!narrow_write_error(r10_bio, m)) {
2989                                         md_error(conf->mddev, rdev);
2990                                         set_bit(R10BIO_Degraded,
2991                                                 &r10_bio->state);
2992                                 }
2993                                 rdev_dec_pending(rdev, conf->mddev);
2994                         }
2995                         bio = r10_bio->devs[m].repl_bio;
2996                         rdev = conf->mirrors[dev].replacement;
2997                         if (rdev && bio == IO_MADE_GOOD) {
2998                                 rdev_clear_badblocks(
2999                                         rdev,
3000                                         r10_bio->devs[m].addr,
3001                                         r10_bio->sectors, 0);
3002                                 rdev_dec_pending(rdev, conf->mddev);
3003                         }
3004                 }
3005                 if (fail) {
3006                         spin_lock_irq(&conf->device_lock);
3007                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3008                         conf->nr_queued++;
3009                         spin_unlock_irq(&conf->device_lock);
3010                         /*
3011                          * In case freeze_array() is waiting for condition
3012                          * nr_pending == nr_queued + extra to be true.
3013                          */
3014                         wake_up(&conf->wait_barrier);
3015                         md_wakeup_thread(conf->mddev->thread);
3016                 } else {
3017                         if (test_bit(R10BIO_WriteError,
3018                                      &r10_bio->state))
3019                                 close_write(r10_bio);
3020                         raid_end_bio_io(r10_bio);
3021                 }
3022         }
3023 }
3024
3025 static void raid10d(struct md_thread *thread)
3026 {
3027         struct mddev *mddev = thread->mddev;
3028         struct r10bio *r10_bio;
3029         unsigned long flags;
3030         struct r10conf *conf = mddev->private;
3031         struct list_head *head = &conf->retry_list;
3032         struct blk_plug plug;
3033
3034         md_check_recovery(mddev);
3035
3036         if (!list_empty_careful(&conf->bio_end_io_list) &&
3037             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3038                 LIST_HEAD(tmp);
3039                 spin_lock_irqsave(&conf->device_lock, flags);
3040                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3041                         while (!list_empty(&conf->bio_end_io_list)) {
3042                                 list_move(conf->bio_end_io_list.prev, &tmp);
3043                                 conf->nr_queued--;
3044                         }
3045                 }
3046                 spin_unlock_irqrestore(&conf->device_lock, flags);
3047                 while (!list_empty(&tmp)) {
3048                         r10_bio = list_first_entry(&tmp, struct r10bio,
3049                                                    retry_list);
3050                         list_del(&r10_bio->retry_list);
3051                         if (mddev->degraded)
3052                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3053
3054                         if (test_bit(R10BIO_WriteError,
3055                                      &r10_bio->state))
3056                                 close_write(r10_bio);
3057                         raid_end_bio_io(r10_bio);
3058                 }
3059         }
3060
3061         blk_start_plug(&plug);
3062         for (;;) {
3063
3064                 flush_pending_writes(conf);
3065
3066                 spin_lock_irqsave(&conf->device_lock, flags);
3067                 if (list_empty(head)) {
3068                         spin_unlock_irqrestore(&conf->device_lock, flags);
3069                         break;
3070                 }
3071                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3072                 list_del(head->prev);
3073                 conf->nr_queued--;
3074                 spin_unlock_irqrestore(&conf->device_lock, flags);
3075
3076                 mddev = r10_bio->mddev;
3077                 conf = mddev->private;
3078                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3079                     test_bit(R10BIO_WriteError, &r10_bio->state))
3080                         handle_write_completed(conf, r10_bio);
3081                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3082                         reshape_request_write(mddev, r10_bio);
3083                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3084                         sync_request_write(mddev, r10_bio);
3085                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3086                         recovery_request_write(mddev, r10_bio);
3087                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3088                         handle_read_error(mddev, r10_bio);
3089                 else
3090                         WARN_ON_ONCE(1);
3091
3092                 cond_resched();
3093                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3094                         md_check_recovery(mddev);
3095         }
3096         blk_finish_plug(&plug);
3097 }
3098
3099 static int init_resync(struct r10conf *conf)
3100 {
3101         int ret, buffs, i;
3102
3103         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3104         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3105         conf->have_replacement = 0;
3106         for (i = 0; i < conf->geo.raid_disks; i++)
3107                 if (conf->mirrors[i].replacement)
3108                         conf->have_replacement = 1;
3109         ret = mempool_init(&conf->r10buf_pool, buffs,
3110                            r10buf_pool_alloc, r10buf_pool_free, conf);
3111         if (ret)
3112                 return ret;
3113         conf->next_resync = 0;
3114         return 0;
3115 }
3116
3117 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3118 {
3119         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3120         struct rsync_pages *rp;
3121         struct bio *bio;
3122         int nalloc;
3123         int i;
3124
3125         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3126             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3127                 nalloc = conf->copies; /* resync */
3128         else
3129                 nalloc = 2; /* recovery */
3130
3131         for (i = 0; i < nalloc; i++) {
3132                 bio = r10bio->devs[i].bio;
3133                 rp = bio->bi_private;
3134                 bio_reset(bio);
3135                 bio->bi_private = rp;
3136                 bio = r10bio->devs[i].repl_bio;
3137                 if (bio) {
3138                         rp = bio->bi_private;
3139                         bio_reset(bio);
3140                         bio->bi_private = rp;
3141                 }
3142         }
3143         return r10bio;
3144 }
3145
3146 /*
3147  * Set cluster_sync_high since we need other nodes to add the
3148  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3149  */
3150 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3151 {
3152         sector_t window_size;
3153         int extra_chunk, chunks;
3154
3155         /*
3156          * First, here we define "stripe" as a unit which across
3157          * all member devices one time, so we get chunks by use
3158          * raid_disks / near_copies. Otherwise, if near_copies is
3159          * close to raid_disks, then resync window could increases
3160          * linearly with the increase of raid_disks, which means
3161          * we will suspend a really large IO window while it is not
3162          * necessary. If raid_disks is not divisible by near_copies,
3163          * an extra chunk is needed to ensure the whole "stripe" is
3164          * covered.
3165          */
3166
3167         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3168         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3169                 extra_chunk = 0;
3170         else
3171                 extra_chunk = 1;
3172         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3173
3174         /*
3175          * At least use a 32M window to align with raid1's resync window
3176          */
3177         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3178                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3179
3180         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3181 }
3182
3183 /*
3184  * perform a "sync" on one "block"
3185  *
3186  * We need to make sure that no normal I/O request - particularly write
3187  * requests - conflict with active sync requests.
3188  *
3189  * This is achieved by tracking pending requests and a 'barrier' concept
3190  * that can be installed to exclude normal IO requests.
3191  *
3192  * Resync and recovery are handled very differently.
3193  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3194  *
3195  * For resync, we iterate over virtual addresses, read all copies,
3196  * and update if there are differences.  If only one copy is live,
3197  * skip it.
3198  * For recovery, we iterate over physical addresses, read a good
3199  * value for each non-in_sync drive, and over-write.
3200  *
3201  * So, for recovery we may have several outstanding complex requests for a
3202  * given address, one for each out-of-sync device.  We model this by allocating
3203  * a number of r10_bio structures, one for each out-of-sync device.
3204  * As we setup these structures, we collect all bio's together into a list
3205  * which we then process collectively to add pages, and then process again
3206  * to pass to submit_bio_noacct.
3207  *
3208  * The r10_bio structures are linked using a borrowed master_bio pointer.
3209  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3210  * has its remaining count decremented to 0, the whole complex operation
3211  * is complete.
3212  *
3213  */
3214
3215 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3216                              int *skipped)
3217 {
3218         struct r10conf *conf = mddev->private;
3219         struct r10bio *r10_bio;
3220         struct bio *biolist = NULL, *bio;
3221         sector_t max_sector, nr_sectors;
3222         int i;
3223         int max_sync;
3224         sector_t sync_blocks;
3225         sector_t sectors_skipped = 0;
3226         int chunks_skipped = 0;
3227         sector_t chunk_mask = conf->geo.chunk_mask;
3228         int page_idx = 0;
3229
3230         if (!mempool_initialized(&conf->r10buf_pool))
3231                 if (init_resync(conf))
3232                         return 0;
3233
3234         /*
3235          * Allow skipping a full rebuild for incremental assembly
3236          * of a clean array, like RAID1 does.
3237          */
3238         if (mddev->bitmap == NULL &&
3239             mddev->recovery_cp == MaxSector &&
3240             mddev->reshape_position == MaxSector &&
3241             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3242             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3243             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3244             conf->fullsync == 0) {
3245                 *skipped = 1;
3246                 return mddev->dev_sectors - sector_nr;
3247         }
3248
3249  skipped:
3250         max_sector = mddev->dev_sectors;
3251         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3252             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3253                 max_sector = mddev->resync_max_sectors;
3254         if (sector_nr >= max_sector) {
3255                 conf->cluster_sync_low = 0;
3256                 conf->cluster_sync_high = 0;
3257
3258                 /* If we aborted, we need to abort the
3259                  * sync on the 'current' bitmap chucks (there can
3260                  * be several when recovering multiple devices).
3261                  * as we may have started syncing it but not finished.
3262                  * We can find the current address in
3263                  * mddev->curr_resync, but for recovery,
3264                  * we need to convert that to several
3265                  * virtual addresses.
3266                  */
3267                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3268                         end_reshape(conf);
3269                         close_sync(conf);
3270                         return 0;
3271                 }
3272
3273                 if (mddev->curr_resync < max_sector) { /* aborted */
3274                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3275                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3276                                                    &sync_blocks, 1);
3277                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3278                                 sector_t sect =
3279                                         raid10_find_virt(conf, mddev->curr_resync, i);
3280                                 md_bitmap_end_sync(mddev->bitmap, sect,
3281                                                    &sync_blocks, 1);
3282                         }
3283                 } else {
3284                         /* completed sync */
3285                         if ((!mddev->bitmap || conf->fullsync)
3286                             && conf->have_replacement
3287                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3288                                 /* Completed a full sync so the replacements
3289                                  * are now fully recovered.
3290                                  */
3291                                 rcu_read_lock();
3292                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3293                                         struct md_rdev *rdev =
3294                                                 rcu_dereference(conf->mirrors[i].replacement);
3295                                         if (rdev)
3296                                                 rdev->recovery_offset = MaxSector;
3297                                 }
3298                                 rcu_read_unlock();
3299                         }
3300                         conf->fullsync = 0;
3301                 }
3302                 md_bitmap_close_sync(mddev->bitmap);
3303                 close_sync(conf);
3304                 *skipped = 1;
3305                 return sectors_skipped;
3306         }
3307
3308         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3309                 return reshape_request(mddev, sector_nr, skipped);
3310
3311         if (chunks_skipped >= conf->geo.raid_disks) {
3312                 /* if there has been nothing to do on any drive,
3313                  * then there is nothing to do at all..
3314                  */
3315                 *skipped = 1;
3316                 return (max_sector - sector_nr) + sectors_skipped;
3317         }
3318
3319         if (max_sector > mddev->resync_max)
3320                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3321
3322         /* make sure whole request will fit in a chunk - if chunks
3323          * are meaningful
3324          */
3325         if (conf->geo.near_copies < conf->geo.raid_disks &&
3326             max_sector > (sector_nr | chunk_mask))
3327                 max_sector = (sector_nr | chunk_mask) + 1;
3328
3329         /*
3330          * If there is non-resync activity waiting for a turn, then let it
3331          * though before starting on this new sync request.
3332          */
3333         if (conf->nr_waiting)
3334                 schedule_timeout_uninterruptible(1);
3335
3336         /* Again, very different code for resync and recovery.
3337          * Both must result in an r10bio with a list of bios that
3338          * have bi_end_io, bi_sector, bi_bdev set,
3339          * and bi_private set to the r10bio.
3340          * For recovery, we may actually create several r10bios
3341          * with 2 bios in each, that correspond to the bios in the main one.
3342          * In this case, the subordinate r10bios link back through a
3343          * borrowed master_bio pointer, and the counter in the master
3344          * includes a ref from each subordinate.
3345          */
3346         /* First, we decide what to do and set ->bi_end_io
3347          * To end_sync_read if we want to read, and
3348          * end_sync_write if we will want to write.
3349          */
3350
3351         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3352         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3353                 /* recovery... the complicated one */
3354                 int j;
3355                 r10_bio = NULL;
3356
3357                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3358                         int still_degraded;
3359                         struct r10bio *rb2;
3360                         sector_t sect;
3361                         int must_sync;
3362                         int any_working;
3363                         int need_recover = 0;
3364                         int need_replace = 0;
3365                         struct raid10_info *mirror = &conf->mirrors[i];
3366                         struct md_rdev *mrdev, *mreplace;
3367
3368                         rcu_read_lock();
3369                         mrdev = rcu_dereference(mirror->rdev);
3370                         mreplace = rcu_dereference(mirror->replacement);
3371
3372                         if (mrdev != NULL &&
3373                             !test_bit(Faulty, &mrdev->flags) &&
3374                             !test_bit(In_sync, &mrdev->flags))
3375                                 need_recover = 1;
3376                         if (mreplace != NULL &&
3377                             !test_bit(Faulty, &mreplace->flags))
3378                                 need_replace = 1;
3379
3380                         if (!need_recover && !need_replace) {
3381                                 rcu_read_unlock();
3382                                 continue;
3383                         }
3384
3385                         still_degraded = 0;
3386                         /* want to reconstruct this device */
3387                         rb2 = r10_bio;
3388                         sect = raid10_find_virt(conf, sector_nr, i);
3389                         if (sect >= mddev->resync_max_sectors) {
3390                                 /* last stripe is not complete - don't
3391                                  * try to recover this sector.
3392                                  */
3393                                 rcu_read_unlock();
3394                                 continue;
3395                         }
3396                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3397                                 mreplace = NULL;
3398                         /* Unless we are doing a full sync, or a replacement
3399                          * we only need to recover the block if it is set in
3400                          * the bitmap
3401                          */
3402                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3403                                                          &sync_blocks, 1);
3404                         if (sync_blocks < max_sync)
3405                                 max_sync = sync_blocks;
3406                         if (!must_sync &&
3407                             mreplace == NULL &&
3408                             !conf->fullsync) {
3409                                 /* yep, skip the sync_blocks here, but don't assume
3410                                  * that there will never be anything to do here
3411                                  */
3412                                 chunks_skipped = -1;
3413                                 rcu_read_unlock();
3414                                 continue;
3415                         }
3416                         atomic_inc(&mrdev->nr_pending);
3417                         if (mreplace)
3418                                 atomic_inc(&mreplace->nr_pending);
3419                         rcu_read_unlock();
3420
3421                         r10_bio = raid10_alloc_init_r10buf(conf);
3422                         r10_bio->state = 0;
3423                         raise_barrier(conf, rb2 != NULL);
3424                         atomic_set(&r10_bio->remaining, 0);
3425
3426                         r10_bio->master_bio = (struct bio*)rb2;
3427                         if (rb2)
3428                                 atomic_inc(&rb2->remaining);
3429                         r10_bio->mddev = mddev;
3430                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3431                         r10_bio->sector = sect;
3432
3433                         raid10_find_phys(conf, r10_bio);
3434
3435                         /* Need to check if the array will still be
3436                          * degraded
3437                          */
3438                         rcu_read_lock();
3439                         for (j = 0; j < conf->geo.raid_disks; j++) {
3440                                 struct md_rdev *rdev = rcu_dereference(
3441                                         conf->mirrors[j].rdev);
3442                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3443                                         still_degraded = 1;
3444                                         break;
3445                                 }
3446                         }
3447
3448                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3449                                                          &sync_blocks, still_degraded);
3450
3451                         any_working = 0;
3452                         for (j=0; j<conf->copies;j++) {
3453                                 int k;
3454                                 int d = r10_bio->devs[j].devnum;
3455                                 sector_t from_addr, to_addr;
3456                                 struct md_rdev *rdev =
3457                                         rcu_dereference(conf->mirrors[d].rdev);
3458                                 sector_t sector, first_bad;
3459                                 int bad_sectors;
3460                                 if (!rdev ||
3461                                     !test_bit(In_sync, &rdev->flags))
3462                                         continue;
3463                                 /* This is where we read from */
3464                                 any_working = 1;
3465                                 sector = r10_bio->devs[j].addr;
3466
3467                                 if (is_badblock(rdev, sector, max_sync,
3468                                                 &first_bad, &bad_sectors)) {
3469                                         if (first_bad > sector)
3470                                                 max_sync = first_bad - sector;
3471                                         else {
3472                                                 bad_sectors -= (sector
3473                                                                 - first_bad);
3474                                                 if (max_sync > bad_sectors)
3475                                                         max_sync = bad_sectors;
3476                                                 continue;
3477                                         }
3478                                 }
3479                                 bio = r10_bio->devs[0].bio;
3480                                 bio->bi_next = biolist;
3481                                 biolist = bio;
3482                                 bio->bi_end_io = end_sync_read;
3483                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3484                                 if (test_bit(FailFast, &rdev->flags))
3485                                         bio->bi_opf |= MD_FAILFAST;
3486                                 from_addr = r10_bio->devs[j].addr;
3487                                 bio->bi_iter.bi_sector = from_addr +
3488                                         rdev->data_offset;
3489                                 bio_set_dev(bio, rdev->bdev);
3490                                 atomic_inc(&rdev->nr_pending);
3491                                 /* and we write to 'i' (if not in_sync) */
3492
3493                                 for (k=0; k<conf->copies; k++)
3494                                         if (r10_bio->devs[k].devnum == i)
3495                                                 break;
3496                                 BUG_ON(k == conf->copies);
3497                                 to_addr = r10_bio->devs[k].addr;
3498                                 r10_bio->devs[0].devnum = d;
3499                                 r10_bio->devs[0].addr = from_addr;
3500                                 r10_bio->devs[1].devnum = i;
3501                                 r10_bio->devs[1].addr = to_addr;
3502
3503                                 if (need_recover) {
3504                                         bio = r10_bio->devs[1].bio;
3505                                         bio->bi_next = biolist;
3506                                         biolist = bio;
3507                                         bio->bi_end_io = end_sync_write;
3508                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3509                                         bio->bi_iter.bi_sector = to_addr
3510                                                 + mrdev->data_offset;
3511                                         bio_set_dev(bio, mrdev->bdev);
3512                                         atomic_inc(&r10_bio->remaining);
3513                                 } else
3514                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3515
3516                                 /* and maybe write to replacement */
3517                                 bio = r10_bio->devs[1].repl_bio;
3518                                 if (bio)
3519                                         bio->bi_end_io = NULL;
3520                                 /* Note: if need_replace, then bio
3521                                  * cannot be NULL as r10buf_pool_alloc will
3522                                  * have allocated it.
3523                                  */
3524                                 if (!need_replace)
3525                                         break;
3526                                 bio->bi_next = biolist;
3527                                 biolist = bio;
3528                                 bio->bi_end_io = end_sync_write;
3529                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3530                                 bio->bi_iter.bi_sector = to_addr +
3531                                         mreplace->data_offset;
3532                                 bio_set_dev(bio, mreplace->bdev);
3533                                 atomic_inc(&r10_bio->remaining);
3534                                 break;
3535                         }
3536                         rcu_read_unlock();
3537                         if (j == conf->copies) {
3538                                 /* Cannot recover, so abort the recovery or
3539                                  * record a bad block */
3540                                 if (any_working) {
3541                                         /* problem is that there are bad blocks
3542                                          * on other device(s)
3543                                          */
3544                                         int k;
3545                                         for (k = 0; k < conf->copies; k++)
3546                                                 if (r10_bio->devs[k].devnum == i)
3547                                                         break;
3548                                         if (!test_bit(In_sync,
3549                                                       &mrdev->flags)
3550                                             && !rdev_set_badblocks(
3551                                                     mrdev,
3552                                                     r10_bio->devs[k].addr,
3553                                                     max_sync, 0))
3554                                                 any_working = 0;
3555                                         if (mreplace &&
3556                                             !rdev_set_badblocks(
3557                                                     mreplace,
3558                                                     r10_bio->devs[k].addr,
3559                                                     max_sync, 0))
3560                                                 any_working = 0;
3561                                 }
3562                                 if (!any_working)  {
3563                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3564                                                               &mddev->recovery))
3565                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3566                                                        mdname(mddev));
3567                                         mirror->recovery_disabled
3568                                                 = mddev->recovery_disabled;
3569                                 }
3570                                 put_buf(r10_bio);
3571                                 if (rb2)
3572                                         atomic_dec(&rb2->remaining);
3573                                 r10_bio = rb2;
3574                                 rdev_dec_pending(mrdev, mddev);
3575                                 if (mreplace)
3576                                         rdev_dec_pending(mreplace, mddev);
3577                                 break;
3578                         }
3579                         rdev_dec_pending(mrdev, mddev);
3580                         if (mreplace)
3581                                 rdev_dec_pending(mreplace, mddev);
3582                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3583                                 /* Only want this if there is elsewhere to
3584                                  * read from. 'j' is currently the first
3585                                  * readable copy.
3586                                  */
3587                                 int targets = 1;
3588                                 for (; j < conf->copies; j++) {
3589                                         int d = r10_bio->devs[j].devnum;
3590                                         if (conf->mirrors[d].rdev &&
3591                                             test_bit(In_sync,
3592                                                       &conf->mirrors[d].rdev->flags))
3593                                                 targets++;
3594                                 }
3595                                 if (targets == 1)
3596                                         r10_bio->devs[0].bio->bi_opf
3597                                                 &= ~MD_FAILFAST;
3598                         }
3599                 }
3600                 if (biolist == NULL) {
3601                         while (r10_bio) {
3602                                 struct r10bio *rb2 = r10_bio;
3603                                 r10_bio = (struct r10bio*) rb2->master_bio;
3604                                 rb2->master_bio = NULL;
3605                                 put_buf(rb2);
3606                         }
3607                         goto giveup;
3608                 }
3609         } else {
3610                 /* resync. Schedule a read for every block at this virt offset */
3611                 int count = 0;
3612
3613                 /*
3614                  * Since curr_resync_completed could probably not update in
3615                  * time, and we will set cluster_sync_low based on it.
3616                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3617                  * safety reason, which ensures curr_resync_completed is
3618                  * updated in bitmap_cond_end_sync.
3619                  */
3620                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3621                                         mddev_is_clustered(mddev) &&
3622                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3623
3624                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3625                                           &sync_blocks, mddev->degraded) &&
3626                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3627                                                  &mddev->recovery)) {
3628                         /* We can skip this block */
3629                         *skipped = 1;
3630                         return sync_blocks + sectors_skipped;
3631                 }
3632                 if (sync_blocks < max_sync)
3633                         max_sync = sync_blocks;
3634                 r10_bio = raid10_alloc_init_r10buf(conf);
3635                 r10_bio->state = 0;
3636
3637                 r10_bio->mddev = mddev;
3638                 atomic_set(&r10_bio->remaining, 0);
3639                 raise_barrier(conf, 0);
3640                 conf->next_resync = sector_nr;
3641
3642                 r10_bio->master_bio = NULL;
3643                 r10_bio->sector = sector_nr;
3644                 set_bit(R10BIO_IsSync, &r10_bio->state);
3645                 raid10_find_phys(conf, r10_bio);
3646                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3647
3648                 for (i = 0; i < conf->copies; i++) {
3649                         int d = r10_bio->devs[i].devnum;
3650                         sector_t first_bad, sector;
3651                         int bad_sectors;
3652                         struct md_rdev *rdev;
3653
3654                         if (r10_bio->devs[i].repl_bio)
3655                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3656
3657                         bio = r10_bio->devs[i].bio;
3658                         bio->bi_status = BLK_STS_IOERR;
3659                         rcu_read_lock();
3660                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3661                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3662                                 rcu_read_unlock();
3663                                 continue;
3664                         }
3665                         sector = r10_bio->devs[i].addr;
3666                         if (is_badblock(rdev, sector, max_sync,
3667                                         &first_bad, &bad_sectors)) {
3668                                 if (first_bad > sector)
3669                                         max_sync = first_bad - sector;
3670                                 else {
3671                                         bad_sectors -= (sector - first_bad);
3672                                         if (max_sync > bad_sectors)
3673                                                 max_sync = bad_sectors;
3674                                         rcu_read_unlock();
3675                                         continue;
3676                                 }
3677                         }
3678                         atomic_inc(&rdev->nr_pending);
3679                         atomic_inc(&r10_bio->remaining);
3680                         bio->bi_next = biolist;
3681                         biolist = bio;
3682                         bio->bi_end_io = end_sync_read;
3683                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3684                         if (test_bit(FailFast, &rdev->flags))
3685                                 bio->bi_opf |= MD_FAILFAST;
3686                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3687                         bio_set_dev(bio, rdev->bdev);
3688                         count++;
3689
3690                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3691                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3692                                 rcu_read_unlock();
3693                                 continue;
3694                         }
3695                         atomic_inc(&rdev->nr_pending);
3696
3697                         /* Need to set up for writing to the replacement */
3698                         bio = r10_bio->devs[i].repl_bio;
3699                         bio->bi_status = BLK_STS_IOERR;
3700
3701                         sector = r10_bio->devs[i].addr;
3702                         bio->bi_next = biolist;
3703                         biolist = bio;
3704                         bio->bi_end_io = end_sync_write;
3705                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3706                         if (test_bit(FailFast, &rdev->flags))
3707                                 bio->bi_opf |= MD_FAILFAST;
3708                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3709                         bio_set_dev(bio, rdev->bdev);
3710                         count++;
3711                         rcu_read_unlock();
3712                 }
3713
3714                 if (count < 2) {
3715                         for (i=0; i<conf->copies; i++) {
3716                                 int d = r10_bio->devs[i].devnum;
3717                                 if (r10_bio->devs[i].bio->bi_end_io)
3718                                         rdev_dec_pending(conf->mirrors[d].rdev,
3719                                                          mddev);
3720                                 if (r10_bio->devs[i].repl_bio &&
3721                                     r10_bio->devs[i].repl_bio->bi_end_io)
3722                                         rdev_dec_pending(
3723                                                 conf->mirrors[d].replacement,
3724                                                 mddev);
3725                         }
3726                         put_buf(r10_bio);
3727                         biolist = NULL;
3728                         goto giveup;
3729                 }
3730         }
3731
3732         nr_sectors = 0;
3733         if (sector_nr + max_sync < max_sector)
3734                 max_sector = sector_nr + max_sync;
3735         do {
3736                 struct page *page;
3737                 int len = PAGE_SIZE;
3738                 if (sector_nr + (len>>9) > max_sector)
3739                         len = (max_sector - sector_nr) << 9;
3740                 if (len == 0)
3741                         break;
3742                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3743                         struct resync_pages *rp = get_resync_pages(bio);
3744                         page = resync_fetch_page(rp, page_idx);
3745                         /*
3746                          * won't fail because the vec table is big enough
3747                          * to hold all these pages
3748                          */
3749                         bio_add_page(bio, page, len, 0);
3750                 }
3751                 nr_sectors += len>>9;
3752                 sector_nr += len>>9;
3753         } while (++page_idx < RESYNC_PAGES);
3754         r10_bio->sectors = nr_sectors;
3755
3756         if (mddev_is_clustered(mddev) &&
3757             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3758                 /* It is resync not recovery */
3759                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3760                         conf->cluster_sync_low = mddev->curr_resync_completed;
3761                         raid10_set_cluster_sync_high(conf);
3762                         /* Send resync message */
3763                         md_cluster_ops->resync_info_update(mddev,
3764                                                 conf->cluster_sync_low,
3765                                                 conf->cluster_sync_high);
3766                 }
3767         } else if (mddev_is_clustered(mddev)) {
3768                 /* This is recovery not resync */
3769                 sector_t sect_va1, sect_va2;
3770                 bool broadcast_msg = false;
3771
3772                 for (i = 0; i < conf->geo.raid_disks; i++) {
3773                         /*
3774                          * sector_nr is a device address for recovery, so we
3775                          * need translate it to array address before compare
3776                          * with cluster_sync_high.
3777                          */
3778                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3779
3780                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3781                                 broadcast_msg = true;
3782                                 /*
3783                                  * curr_resync_completed is similar as
3784                                  * sector_nr, so make the translation too.
3785                                  */
3786                                 sect_va2 = raid10_find_virt(conf,
3787                                         mddev->curr_resync_completed, i);
3788
3789                                 if (conf->cluster_sync_low == 0 ||
3790                                     conf->cluster_sync_low > sect_va2)
3791                                         conf->cluster_sync_low = sect_va2;
3792                         }
3793                 }
3794                 if (broadcast_msg) {
3795                         raid10_set_cluster_sync_high(conf);
3796                         md_cluster_ops->resync_info_update(mddev,
3797                                                 conf->cluster_sync_low,
3798                                                 conf->cluster_sync_high);
3799                 }
3800         }
3801
3802         while (biolist) {
3803                 bio = biolist;
3804                 biolist = biolist->bi_next;
3805
3806                 bio->bi_next = NULL;
3807                 r10_bio = get_resync_r10bio(bio);
3808                 r10_bio->sectors = nr_sectors;
3809
3810                 if (bio->bi_end_io == end_sync_read) {
3811                         md_sync_acct_bio(bio, nr_sectors);
3812                         bio->bi_status = 0;
3813                         submit_bio_noacct(bio);
3814                 }
3815         }
3816
3817         if (sectors_skipped)
3818                 /* pretend they weren't skipped, it makes
3819                  * no important difference in this case
3820                  */
3821                 md_done_sync(mddev, sectors_skipped, 1);
3822
3823         return sectors_skipped + nr_sectors;
3824  giveup:
3825         /* There is nowhere to write, so all non-sync
3826          * drives must be failed or in resync, all drives
3827          * have a bad block, so try the next chunk...
3828          */
3829         if (sector_nr + max_sync < max_sector)
3830                 max_sector = sector_nr + max_sync;
3831
3832         sectors_skipped += (max_sector - sector_nr);
3833         chunks_skipped ++;
3834         sector_nr = max_sector;
3835         goto skipped;
3836 }
3837
3838 static sector_t
3839 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3840 {
3841         sector_t size;
3842         struct r10conf *conf = mddev->private;
3843
3844         if (!raid_disks)
3845                 raid_disks = min(conf->geo.raid_disks,
3846                                  conf->prev.raid_disks);
3847         if (!sectors)
3848                 sectors = conf->dev_sectors;
3849
3850         size = sectors >> conf->geo.chunk_shift;
3851         sector_div(size, conf->geo.far_copies);
3852         size = size * raid_disks;
3853         sector_div(size, conf->geo.near_copies);
3854
3855         return size << conf->geo.chunk_shift;
3856 }
3857
3858 static void calc_sectors(struct r10conf *conf, sector_t size)
3859 {
3860         /* Calculate the number of sectors-per-device that will
3861          * actually be used, and set conf->dev_sectors and
3862          * conf->stride
3863          */
3864
3865         size = size >> conf->geo.chunk_shift;
3866         sector_div(size, conf->geo.far_copies);
3867         size = size * conf->geo.raid_disks;
3868         sector_div(size, conf->geo.near_copies);
3869         /* 'size' is now the number of chunks in the array */
3870         /* calculate "used chunks per device" */
3871         size = size * conf->copies;
3872
3873         /* We need to round up when dividing by raid_disks to
3874          * get the stride size.
3875          */
3876         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3877
3878         conf->dev_sectors = size << conf->geo.chunk_shift;
3879
3880         if (conf->geo.far_offset)
3881                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3882         else {
3883                 sector_div(size, conf->geo.far_copies);
3884                 conf->geo.stride = size << conf->geo.chunk_shift;
3885         }
3886 }
3887
3888 enum geo_type {geo_new, geo_old, geo_start};
3889 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3890 {
3891         int nc, fc, fo;
3892         int layout, chunk, disks;
3893         switch (new) {
3894         case geo_old:
3895                 layout = mddev->layout;
3896                 chunk = mddev->chunk_sectors;
3897                 disks = mddev->raid_disks - mddev->delta_disks;
3898                 break;
3899         case geo_new:
3900                 layout = mddev->new_layout;
3901                 chunk = mddev->new_chunk_sectors;
3902                 disks = mddev->raid_disks;
3903                 break;
3904         default: /* avoid 'may be unused' warnings */
3905         case geo_start: /* new when starting reshape - raid_disks not
3906                          * updated yet. */
3907                 layout = mddev->new_layout;
3908                 chunk = mddev->new_chunk_sectors;
3909                 disks = mddev->raid_disks + mddev->delta_disks;
3910                 break;
3911         }
3912         if (layout >> 19)
3913                 return -1;
3914         if (chunk < (PAGE_SIZE >> 9) ||
3915             !is_power_of_2(chunk))
3916                 return -2;
3917         nc = layout & 255;
3918         fc = (layout >> 8) & 255;
3919         fo = layout & (1<<16);
3920         geo->raid_disks = disks;
3921         geo->near_copies = nc;
3922         geo->far_copies = fc;
3923         geo->far_offset = fo;
3924         switch (layout >> 17) {
3925         case 0: /* original layout.  simple but not always optimal */
3926                 geo->far_set_size = disks;
3927                 break;
3928         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3929                  * actually using this, but leave code here just in case.*/
3930                 geo->far_set_size = disks/fc;
3931                 WARN(geo->far_set_size < fc,
3932                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3933                 break;
3934         case 2: /* "improved" layout fixed to match documentation */
3935                 geo->far_set_size = fc * nc;
3936                 break;
3937         default: /* Not a valid layout */
3938                 return -1;
3939         }
3940         geo->chunk_mask = chunk - 1;
3941         geo->chunk_shift = ffz(~chunk);
3942         return nc*fc;
3943 }
3944
3945 static struct r10conf *setup_conf(struct mddev *mddev)
3946 {
3947         struct r10conf *conf = NULL;
3948         int err = -EINVAL;
3949         struct geom geo;
3950         int copies;
3951
3952         copies = setup_geo(&geo, mddev, geo_new);
3953
3954         if (copies == -2) {
3955                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3956                         mdname(mddev), PAGE_SIZE);
3957                 goto out;
3958         }
3959
3960         if (copies < 2 || copies > mddev->raid_disks) {
3961                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3962                         mdname(mddev), mddev->new_layout);
3963                 goto out;
3964         }
3965
3966         err = -ENOMEM;
3967         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3968         if (!conf)
3969                 goto out;
3970
3971         /* FIXME calc properly */
3972         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3973                                 sizeof(struct raid10_info),
3974                                 GFP_KERNEL);
3975         if (!conf->mirrors)
3976                 goto out;
3977
3978         conf->tmppage = alloc_page(GFP_KERNEL);
3979         if (!conf->tmppage)
3980                 goto out;
3981
3982         conf->geo = geo;
3983         conf->copies = copies;
3984         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3985                            rbio_pool_free, conf);
3986         if (err)
3987                 goto out;
3988
3989         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3990         if (err)
3991                 goto out;
3992
3993         calc_sectors(conf, mddev->dev_sectors);
3994         if (mddev->reshape_position == MaxSector) {
3995                 conf->prev = conf->geo;
3996                 conf->reshape_progress = MaxSector;
3997         } else {
3998                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3999                         err = -EINVAL;
4000                         goto out;
4001                 }
4002                 conf->reshape_progress = mddev->reshape_position;
4003                 if (conf->prev.far_offset)
4004                         conf->prev.stride = 1 << conf->prev.chunk_shift;
4005                 else
4006                         /* far_copies must be 1 */
4007                         conf->prev.stride = conf->dev_sectors;
4008         }
4009         conf->reshape_safe = conf->reshape_progress;
4010         spin_lock_init(&conf->device_lock);
4011         INIT_LIST_HEAD(&conf->retry_list);
4012         INIT_LIST_HEAD(&conf->bio_end_io_list);
4013
4014         spin_lock_init(&conf->resync_lock);
4015         init_waitqueue_head(&conf->wait_barrier);
4016         atomic_set(&conf->nr_pending, 0);
4017
4018         err = -ENOMEM;
4019         conf->thread = md_register_thread(raid10d, mddev, "raid10");
4020         if (!conf->thread)
4021                 goto out;
4022
4023         conf->mddev = mddev;
4024         return conf;
4025
4026  out:
4027         if (conf) {
4028                 mempool_exit(&conf->r10bio_pool);
4029                 kfree(conf->mirrors);
4030                 safe_put_page(conf->tmppage);
4031                 bioset_exit(&conf->bio_split);
4032                 kfree(conf);
4033         }
4034         return ERR_PTR(err);
4035 }
4036
4037 static void raid10_set_io_opt(struct r10conf *conf)
4038 {
4039         int raid_disks = conf->geo.raid_disks;
4040
4041         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4042                 raid_disks /= conf->geo.near_copies;
4043         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4044                          raid_disks);
4045 }
4046
4047 static int raid10_run(struct mddev *mddev)
4048 {
4049         struct r10conf *conf;
4050         int i, disk_idx;
4051         struct raid10_info *disk;
4052         struct md_rdev *rdev;
4053         sector_t size;
4054         sector_t min_offset_diff = 0;
4055         int first = 1;
4056         bool discard_supported = false;
4057
4058         if (mddev_init_writes_pending(mddev) < 0)
4059                 return -ENOMEM;
4060
4061         if (mddev->private == NULL) {
4062                 conf = setup_conf(mddev);
4063                 if (IS_ERR(conf))
4064                         return PTR_ERR(conf);
4065                 mddev->private = conf;
4066         }
4067         conf = mddev->private;
4068         if (!conf)
4069                 goto out;
4070
4071         if (mddev_is_clustered(conf->mddev)) {
4072                 int fc, fo;
4073
4074                 fc = (mddev->layout >> 8) & 255;
4075                 fo = mddev->layout & (1<<16);
4076                 if (fc > 1 || fo > 0) {
4077                         pr_err("only near layout is supported by clustered"
4078                                 " raid10\n");
4079                         goto out_free_conf;
4080                 }
4081         }
4082
4083         mddev->thread = conf->thread;
4084         conf->thread = NULL;
4085
4086         if (mddev->queue) {
4087                 blk_queue_max_discard_sectors(mddev->queue,
4088                                               UINT_MAX);
4089                 blk_queue_max_write_same_sectors(mddev->queue, 0);
4090                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4091                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4092                 raid10_set_io_opt(conf);
4093         }
4094
4095         rdev_for_each(rdev, mddev) {
4096                 long long diff;
4097
4098                 disk_idx = rdev->raid_disk;
4099                 if (disk_idx < 0)
4100                         continue;
4101                 if (disk_idx >= conf->geo.raid_disks &&
4102                     disk_idx >= conf->prev.raid_disks)
4103                         continue;
4104                 disk = conf->mirrors + disk_idx;
4105
4106                 if (test_bit(Replacement, &rdev->flags)) {
4107                         if (disk->replacement)
4108                                 goto out_free_conf;
4109                         disk->replacement = rdev;
4110                 } else {
4111                         if (disk->rdev)
4112                                 goto out_free_conf;
4113                         disk->rdev = rdev;
4114                 }
4115                 diff = (rdev->new_data_offset - rdev->data_offset);
4116                 if (!mddev->reshape_backwards)
4117                         diff = -diff;
4118                 if (diff < 0)
4119                         diff = 0;
4120                 if (first || diff < min_offset_diff)
4121                         min_offset_diff = diff;
4122
4123                 if (mddev->gendisk)
4124                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4125                                           rdev->data_offset << 9);
4126
4127                 disk->head_position = 0;
4128
4129                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4130                         discard_supported = true;
4131                 first = 0;
4132         }
4133
4134         if (mddev->queue) {
4135                 if (discard_supported)
4136                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4137                                                 mddev->queue);
4138                 else
4139                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4140                                                   mddev->queue);
4141         }
4142         /* need to check that every block has at least one working mirror */
4143         if (!enough(conf, -1)) {
4144                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4145                        mdname(mddev));
4146                 goto out_free_conf;
4147         }
4148
4149         if (conf->reshape_progress != MaxSector) {
4150                 /* must ensure that shape change is supported */
4151                 if (conf->geo.far_copies != 1 &&
4152                     conf->geo.far_offset == 0)
4153                         goto out_free_conf;
4154                 if (conf->prev.far_copies != 1 &&
4155                     conf->prev.far_offset == 0)
4156                         goto out_free_conf;
4157         }
4158
4159         mddev->degraded = 0;
4160         for (i = 0;
4161              i < conf->geo.raid_disks
4162                      || i < conf->prev.raid_disks;
4163              i++) {
4164
4165                 disk = conf->mirrors + i;
4166
4167                 if (!disk->rdev && disk->replacement) {
4168                         /* The replacement is all we have - use it */
4169                         disk->rdev = disk->replacement;
4170                         disk->replacement = NULL;
4171                         clear_bit(Replacement, &disk->rdev->flags);
4172                 }
4173
4174                 if (!disk->rdev ||
4175                     !test_bit(In_sync, &disk->rdev->flags)) {
4176                         disk->head_position = 0;
4177                         mddev->degraded++;
4178                         if (disk->rdev &&
4179                             disk->rdev->saved_raid_disk < 0)
4180                                 conf->fullsync = 1;
4181                 }
4182
4183                 if (disk->replacement &&
4184                     !test_bit(In_sync, &disk->replacement->flags) &&
4185                     disk->replacement->saved_raid_disk < 0) {
4186                         conf->fullsync = 1;
4187                 }
4188
4189                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4190         }
4191
4192         if (mddev->recovery_cp != MaxSector)
4193                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4194                           mdname(mddev));
4195         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4196                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4197                 conf->geo.raid_disks);
4198         /*
4199          * Ok, everything is just fine now
4200          */
4201         mddev->dev_sectors = conf->dev_sectors;
4202         size = raid10_size(mddev, 0, 0);
4203         md_set_array_sectors(mddev, size);
4204         mddev->resync_max_sectors = size;
4205         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4206
4207         if (md_integrity_register(mddev))
4208                 goto out_free_conf;
4209
4210         if (conf->reshape_progress != MaxSector) {
4211                 unsigned long before_length, after_length;
4212
4213                 before_length = ((1 << conf->prev.chunk_shift) *
4214                                  conf->prev.far_copies);
4215                 after_length = ((1 << conf->geo.chunk_shift) *
4216                                 conf->geo.far_copies);
4217
4218                 if (max(before_length, after_length) > min_offset_diff) {
4219                         /* This cannot work */
4220                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4221                         goto out_free_conf;
4222                 }
4223                 conf->offset_diff = min_offset_diff;
4224
4225                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4226                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4227                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4228                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4229                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4230                                                         "reshape");
4231                 if (!mddev->sync_thread)
4232                         goto out_free_conf;
4233         }
4234
4235         return 0;
4236
4237 out_free_conf:
4238         md_unregister_thread(&mddev->thread);
4239         mempool_exit(&conf->r10bio_pool);
4240         safe_put_page(conf->tmppage);
4241         kfree(conf->mirrors);
4242         kfree(conf);
4243         mddev->private = NULL;
4244 out:
4245         return -EIO;
4246 }
4247
4248 static void raid10_free(struct mddev *mddev, void *priv)
4249 {
4250         struct r10conf *conf = priv;
4251
4252         mempool_exit(&conf->r10bio_pool);
4253         safe_put_page(conf->tmppage);
4254         kfree(conf->mirrors);
4255         kfree(conf->mirrors_old);
4256         kfree(conf->mirrors_new);
4257         bioset_exit(&conf->bio_split);
4258         kfree(conf);
4259 }
4260
4261 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4262 {
4263         struct r10conf *conf = mddev->private;
4264
4265         if (quiesce)
4266                 raise_barrier(conf, 0);
4267         else
4268                 lower_barrier(conf);
4269 }
4270
4271 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4272 {
4273         /* Resize of 'far' arrays is not supported.
4274          * For 'near' and 'offset' arrays we can set the
4275          * number of sectors used to be an appropriate multiple
4276          * of the chunk size.
4277          * For 'offset', this is far_copies*chunksize.
4278          * For 'near' the multiplier is the LCM of
4279          * near_copies and raid_disks.
4280          * So if far_copies > 1 && !far_offset, fail.
4281          * Else find LCM(raid_disks, near_copy)*far_copies and
4282          * multiply by chunk_size.  Then round to this number.
4283          * This is mostly done by raid10_size()
4284          */
4285         struct r10conf *conf = mddev->private;
4286         sector_t oldsize, size;
4287
4288         if (mddev->reshape_position != MaxSector)
4289                 return -EBUSY;
4290
4291         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4292                 return -EINVAL;
4293
4294         oldsize = raid10_size(mddev, 0, 0);
4295         size = raid10_size(mddev, sectors, 0);
4296         if (mddev->external_size &&
4297             mddev->array_sectors > size)
4298                 return -EINVAL;
4299         if (mddev->bitmap) {
4300                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4301                 if (ret)
4302                         return ret;
4303         }
4304         md_set_array_sectors(mddev, size);
4305         if (sectors > mddev->dev_sectors &&
4306             mddev->recovery_cp > oldsize) {
4307                 mddev->recovery_cp = oldsize;
4308                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4309         }
4310         calc_sectors(conf, sectors);
4311         mddev->dev_sectors = conf->dev_sectors;
4312         mddev->resync_max_sectors = size;
4313         return 0;
4314 }
4315
4316 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4317 {
4318         struct md_rdev *rdev;
4319         struct r10conf *conf;
4320
4321         if (mddev->degraded > 0) {
4322                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4323                         mdname(mddev));
4324                 return ERR_PTR(-EINVAL);
4325         }
4326         sector_div(size, devs);
4327
4328         /* Set new parameters */
4329         mddev->new_level = 10;
4330         /* new layout: far_copies = 1, near_copies = 2 */
4331         mddev->new_layout = (1<<8) + 2;
4332         mddev->new_chunk_sectors = mddev->chunk_sectors;
4333         mddev->delta_disks = mddev->raid_disks;
4334         mddev->raid_disks *= 2;
4335         /* make sure it will be not marked as dirty */
4336         mddev->recovery_cp = MaxSector;
4337         mddev->dev_sectors = size;
4338
4339         conf = setup_conf(mddev);
4340         if (!IS_ERR(conf)) {
4341                 rdev_for_each(rdev, mddev)
4342                         if (rdev->raid_disk >= 0) {
4343                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4344                                 rdev->sectors = size;
4345                         }
4346                 conf->barrier = 1;
4347         }
4348
4349         return conf;
4350 }
4351
4352 static void *raid10_takeover(struct mddev *mddev)
4353 {
4354         struct r0conf *raid0_conf;
4355
4356         /* raid10 can take over:
4357          *  raid0 - providing it has only two drives
4358          */
4359         if (mddev->level == 0) {
4360                 /* for raid0 takeover only one zone is supported */
4361                 raid0_conf = mddev->private;
4362                 if (raid0_conf->nr_strip_zones > 1) {
4363                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4364                                 mdname(mddev));
4365                         return ERR_PTR(-EINVAL);
4366                 }
4367                 return raid10_takeover_raid0(mddev,
4368                         raid0_conf->strip_zone->zone_end,
4369                         raid0_conf->strip_zone->nb_dev);
4370         }
4371         return ERR_PTR(-EINVAL);
4372 }
4373
4374 static int raid10_check_reshape(struct mddev *mddev)
4375 {
4376         /* Called when there is a request to change
4377          * - layout (to ->new_layout)
4378          * - chunk size (to ->new_chunk_sectors)
4379          * - raid_disks (by delta_disks)
4380          * or when trying to restart a reshape that was ongoing.
4381          *
4382          * We need to validate the request and possibly allocate
4383          * space if that might be an issue later.
4384          *
4385          * Currently we reject any reshape of a 'far' mode array,
4386          * allow chunk size to change if new is generally acceptable,
4387          * allow raid_disks to increase, and allow
4388          * a switch between 'near' mode and 'offset' mode.
4389          */
4390         struct r10conf *conf = mddev->private;
4391         struct geom geo;
4392
4393         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4394                 return -EINVAL;
4395
4396         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4397                 /* mustn't change number of copies */
4398                 return -EINVAL;
4399         if (geo.far_copies > 1 && !geo.far_offset)
4400                 /* Cannot switch to 'far' mode */
4401                 return -EINVAL;
4402
4403         if (mddev->array_sectors & geo.chunk_mask)
4404                         /* not factor of array size */
4405                         return -EINVAL;
4406
4407         if (!enough(conf, -1))
4408                 return -EINVAL;
4409
4410         kfree(conf->mirrors_new);
4411         conf->mirrors_new = NULL;
4412         if (mddev->delta_disks > 0) {
4413                 /* allocate new 'mirrors' list */
4414                 conf->mirrors_new =
4415                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4416                                 sizeof(struct raid10_info),
4417                                 GFP_KERNEL);
4418                 if (!conf->mirrors_new)
4419                         return -ENOMEM;
4420         }
4421         return 0;
4422 }
4423
4424 /*
4425  * Need to check if array has failed when deciding whether to:
4426  *  - start an array
4427  *  - remove non-faulty devices
4428  *  - add a spare
4429  *  - allow a reshape
4430  * This determination is simple when no reshape is happening.
4431  * However if there is a reshape, we need to carefully check
4432  * both the before and after sections.
4433  * This is because some failed devices may only affect one
4434  * of the two sections, and some non-in_sync devices may
4435  * be insync in the section most affected by failed devices.
4436  */
4437 static int calc_degraded(struct r10conf *conf)
4438 {
4439         int degraded, degraded2;
4440         int i;
4441
4442         rcu_read_lock();
4443         degraded = 0;
4444         /* 'prev' section first */
4445         for (i = 0; i < conf->prev.raid_disks; i++) {
4446                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4447                 if (!rdev || test_bit(Faulty, &rdev->flags))
4448                         degraded++;
4449                 else if (!test_bit(In_sync, &rdev->flags))
4450                         /* When we can reduce the number of devices in
4451                          * an array, this might not contribute to
4452                          * 'degraded'.  It does now.
4453                          */
4454                         degraded++;
4455         }
4456         rcu_read_unlock();
4457         if (conf->geo.raid_disks == conf->prev.raid_disks)
4458                 return degraded;
4459         rcu_read_lock();
4460         degraded2 = 0;
4461         for (i = 0; i < conf->geo.raid_disks; i++) {
4462                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4463                 if (!rdev || test_bit(Faulty, &rdev->flags))
4464                         degraded2++;
4465                 else if (!test_bit(In_sync, &rdev->flags)) {
4466                         /* If reshape is increasing the number of devices,
4467                          * this section has already been recovered, so
4468                          * it doesn't contribute to degraded.
4469                          * else it does.
4470                          */
4471                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4472                                 degraded2++;
4473                 }
4474         }
4475         rcu_read_unlock();
4476         if (degraded2 > degraded)
4477                 return degraded2;
4478         return degraded;
4479 }
4480
4481 static int raid10_start_reshape(struct mddev *mddev)
4482 {
4483         /* A 'reshape' has been requested. This commits
4484          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4485          * This also checks if there are enough spares and adds them
4486          * to the array.
4487          * We currently require enough spares to make the final
4488          * array non-degraded.  We also require that the difference
4489          * between old and new data_offset - on each device - is
4490          * enough that we never risk over-writing.
4491          */
4492
4493         unsigned long before_length, after_length;
4494         sector_t min_offset_diff = 0;
4495         int first = 1;
4496         struct geom new;
4497         struct r10conf *conf = mddev->private;
4498         struct md_rdev *rdev;
4499         int spares = 0;
4500         int ret;
4501
4502         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4503                 return -EBUSY;
4504
4505         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4506                 return -EINVAL;
4507
4508         before_length = ((1 << conf->prev.chunk_shift) *
4509                          conf->prev.far_copies);
4510         after_length = ((1 << conf->geo.chunk_shift) *
4511                         conf->geo.far_copies);
4512
4513         rdev_for_each(rdev, mddev) {
4514                 if (!test_bit(In_sync, &rdev->flags)
4515                     && !test_bit(Faulty, &rdev->flags))
4516                         spares++;
4517                 if (rdev->raid_disk >= 0) {
4518                         long long diff = (rdev->new_data_offset
4519                                           - rdev->data_offset);
4520                         if (!mddev->reshape_backwards)
4521                                 diff = -diff;
4522                         if (diff < 0)
4523                                 diff = 0;
4524                         if (first || diff < min_offset_diff)
4525                                 min_offset_diff = diff;
4526                         first = 0;
4527                 }
4528         }
4529
4530         if (max(before_length, after_length) > min_offset_diff)
4531                 return -EINVAL;
4532
4533         if (spares < mddev->delta_disks)
4534                 return -EINVAL;
4535
4536         conf->offset_diff = min_offset_diff;
4537         spin_lock_irq(&conf->device_lock);
4538         if (conf->mirrors_new) {
4539                 memcpy(conf->mirrors_new, conf->mirrors,
4540                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4541                 smp_mb();
4542                 kfree(conf->mirrors_old);
4543                 conf->mirrors_old = conf->mirrors;
4544                 conf->mirrors = conf->mirrors_new;
4545                 conf->mirrors_new = NULL;
4546         }
4547         setup_geo(&conf->geo, mddev, geo_start);
4548         smp_mb();
4549         if (mddev->reshape_backwards) {
4550                 sector_t size = raid10_size(mddev, 0, 0);
4551                 if (size < mddev->array_sectors) {
4552                         spin_unlock_irq(&conf->device_lock);
4553                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4554                                 mdname(mddev));
4555                         return -EINVAL;
4556                 }
4557                 mddev->resync_max_sectors = size;
4558                 conf->reshape_progress = size;
4559         } else
4560                 conf->reshape_progress = 0;
4561         conf->reshape_safe = conf->reshape_progress;
4562         spin_unlock_irq(&conf->device_lock);
4563
4564         if (mddev->delta_disks && mddev->bitmap) {
4565                 struct mdp_superblock_1 *sb = NULL;
4566                 sector_t oldsize, newsize;
4567
4568                 oldsize = raid10_size(mddev, 0, 0);
4569                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4570
4571                 if (!mddev_is_clustered(mddev)) {
4572                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4573                         if (ret)
4574                                 goto abort;
4575                         else
4576                                 goto out;
4577                 }
4578
4579                 rdev_for_each(rdev, mddev) {
4580                         if (rdev->raid_disk > -1 &&
4581                             !test_bit(Faulty, &rdev->flags))
4582                                 sb = page_address(rdev->sb_page);
4583                 }
4584
4585                 /*
4586                  * some node is already performing reshape, and no need to
4587                  * call md_bitmap_resize again since it should be called when
4588                  * receiving BITMAP_RESIZE msg
4589                  */
4590                 if ((sb && (le32_to_cpu(sb->feature_map) &
4591                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4592                         goto out;
4593
4594                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4595                 if (ret)
4596                         goto abort;
4597
4598                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4599                 if (ret) {
4600                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4601                         goto abort;
4602                 }
4603         }
4604 out:
4605         if (mddev->delta_disks > 0) {
4606                 rdev_for_each(rdev, mddev)
4607                         if (rdev->raid_disk < 0 &&
4608                             !test_bit(Faulty, &rdev->flags)) {
4609                                 if (raid10_add_disk(mddev, rdev) == 0) {
4610                                         if (rdev->raid_disk >=
4611                                             conf->prev.raid_disks)
4612                                                 set_bit(In_sync, &rdev->flags);
4613                                         else
4614                                                 rdev->recovery_offset = 0;
4615
4616                                         /* Failure here is OK */
4617                                         sysfs_link_rdev(mddev, rdev);
4618                                 }
4619                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4620                                    && !test_bit(Faulty, &rdev->flags)) {
4621                                 /* This is a spare that was manually added */
4622                                 set_bit(In_sync, &rdev->flags);
4623                         }
4624         }
4625         /* When a reshape changes the number of devices,
4626          * ->degraded is measured against the larger of the
4627          * pre and  post numbers.
4628          */
4629         spin_lock_irq(&conf->device_lock);
4630         mddev->degraded = calc_degraded(conf);
4631         spin_unlock_irq(&conf->device_lock);
4632         mddev->raid_disks = conf->geo.raid_disks;
4633         mddev->reshape_position = conf->reshape_progress;
4634         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4635
4636         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4637         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4638         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4639         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4640         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4641
4642         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4643                                                 "reshape");
4644         if (!mddev->sync_thread) {
4645                 ret = -EAGAIN;
4646                 goto abort;
4647         }
4648         conf->reshape_checkpoint = jiffies;
4649         md_wakeup_thread(mddev->sync_thread);
4650         md_new_event(mddev);
4651         return 0;
4652
4653 abort:
4654         mddev->recovery = 0;
4655         spin_lock_irq(&conf->device_lock);
4656         conf->geo = conf->prev;
4657         mddev->raid_disks = conf->geo.raid_disks;
4658         rdev_for_each(rdev, mddev)
4659                 rdev->new_data_offset = rdev->data_offset;
4660         smp_wmb();
4661         conf->reshape_progress = MaxSector;
4662         conf->reshape_safe = MaxSector;
4663         mddev->reshape_position = MaxSector;
4664         spin_unlock_irq(&conf->device_lock);
4665         return ret;
4666 }
4667
4668 /* Calculate the last device-address that could contain
4669  * any block from the chunk that includes the array-address 's'
4670  * and report the next address.
4671  * i.e. the address returned will be chunk-aligned and after
4672  * any data that is in the chunk containing 's'.
4673  */
4674 static sector_t last_dev_address(sector_t s, struct geom *geo)
4675 {
4676         s = (s | geo->chunk_mask) + 1;
4677         s >>= geo->chunk_shift;
4678         s *= geo->near_copies;
4679         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4680         s *= geo->far_copies;
4681         s <<= geo->chunk_shift;
4682         return s;
4683 }
4684
4685 /* Calculate the first device-address that could contain
4686  * any block from the chunk that includes the array-address 's'.
4687  * This too will be the start of a chunk
4688  */
4689 static sector_t first_dev_address(sector_t s, struct geom *geo)
4690 {
4691         s >>= geo->chunk_shift;
4692         s *= geo->near_copies;
4693         sector_div(s, geo->raid_disks);
4694         s *= geo->far_copies;
4695         s <<= geo->chunk_shift;
4696         return s;
4697 }
4698
4699 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4700                                 int *skipped)
4701 {
4702         /* We simply copy at most one chunk (smallest of old and new)
4703          * at a time, possibly less if that exceeds RESYNC_PAGES,
4704          * or we hit a bad block or something.
4705          * This might mean we pause for normal IO in the middle of
4706          * a chunk, but that is not a problem as mddev->reshape_position
4707          * can record any location.
4708          *
4709          * If we will want to write to a location that isn't
4710          * yet recorded as 'safe' (i.e. in metadata on disk) then
4711          * we need to flush all reshape requests and update the metadata.
4712          *
4713          * When reshaping forwards (e.g. to more devices), we interpret
4714          * 'safe' as the earliest block which might not have been copied
4715          * down yet.  We divide this by previous stripe size and multiply
4716          * by previous stripe length to get lowest device offset that we
4717          * cannot write to yet.
4718          * We interpret 'sector_nr' as an address that we want to write to.
4719          * From this we use last_device_address() to find where we might
4720          * write to, and first_device_address on the  'safe' position.
4721          * If this 'next' write position is after the 'safe' position,
4722          * we must update the metadata to increase the 'safe' position.
4723          *
4724          * When reshaping backwards, we round in the opposite direction
4725          * and perform the reverse test:  next write position must not be
4726          * less than current safe position.
4727          *
4728          * In all this the minimum difference in data offsets
4729          * (conf->offset_diff - always positive) allows a bit of slack,
4730          * so next can be after 'safe', but not by more than offset_diff
4731          *
4732          * We need to prepare all the bios here before we start any IO
4733          * to ensure the size we choose is acceptable to all devices.
4734          * The means one for each copy for write-out and an extra one for
4735          * read-in.
4736          * We store the read-in bio in ->master_bio and the others in
4737          * ->devs[x].bio and ->devs[x].repl_bio.
4738          */
4739         struct r10conf *conf = mddev->private;
4740         struct r10bio *r10_bio;
4741         sector_t next, safe, last;
4742         int max_sectors;
4743         int nr_sectors;
4744         int s;
4745         struct md_rdev *rdev;
4746         int need_flush = 0;
4747         struct bio *blist;
4748         struct bio *bio, *read_bio;
4749         int sectors_done = 0;
4750         struct page **pages;
4751
4752         if (sector_nr == 0) {
4753                 /* If restarting in the middle, skip the initial sectors */
4754                 if (mddev->reshape_backwards &&
4755                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4756                         sector_nr = (raid10_size(mddev, 0, 0)
4757                                      - conf->reshape_progress);
4758                 } else if (!mddev->reshape_backwards &&
4759                            conf->reshape_progress > 0)
4760                         sector_nr = conf->reshape_progress;
4761                 if (sector_nr) {
4762                         mddev->curr_resync_completed = sector_nr;
4763                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4764                         *skipped = 1;
4765                         return sector_nr;
4766                 }
4767         }
4768
4769         /* We don't use sector_nr to track where we are up to
4770          * as that doesn't work well for ->reshape_backwards.
4771          * So just use ->reshape_progress.
4772          */
4773         if (mddev->reshape_backwards) {
4774                 /* 'next' is the earliest device address that we might
4775                  * write to for this chunk in the new layout
4776                  */
4777                 next = first_dev_address(conf->reshape_progress - 1,
4778                                          &conf->geo);
4779
4780                 /* 'safe' is the last device address that we might read from
4781                  * in the old layout after a restart
4782                  */
4783                 safe = last_dev_address(conf->reshape_safe - 1,
4784                                         &conf->prev);
4785
4786                 if (next + conf->offset_diff < safe)
4787                         need_flush = 1;
4788
4789                 last = conf->reshape_progress - 1;
4790                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4791                                                & conf->prev.chunk_mask);
4792                 if (sector_nr + RESYNC_SECTORS < last)
4793                         sector_nr = last + 1 - RESYNC_SECTORS;
4794         } else {
4795                 /* 'next' is after the last device address that we
4796                  * might write to for this chunk in the new layout
4797                  */
4798                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4799
4800                 /* 'safe' is the earliest device address that we might
4801                  * read from in the old layout after a restart
4802                  */
4803                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4804
4805                 /* Need to update metadata if 'next' might be beyond 'safe'
4806                  * as that would possibly corrupt data
4807                  */
4808                 if (next > safe + conf->offset_diff)
4809                         need_flush = 1;
4810
4811                 sector_nr = conf->reshape_progress;
4812                 last  = sector_nr | (conf->geo.chunk_mask
4813                                      & conf->prev.chunk_mask);
4814
4815                 if (sector_nr + RESYNC_SECTORS <= last)
4816                         last = sector_nr + RESYNC_SECTORS - 1;
4817         }
4818
4819         if (need_flush ||
4820             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4821                 /* Need to update reshape_position in metadata */
4822                 wait_barrier(conf);
4823                 mddev->reshape_position = conf->reshape_progress;
4824                 if (mddev->reshape_backwards)
4825                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4826                                 - conf->reshape_progress;
4827                 else
4828                         mddev->curr_resync_completed = conf->reshape_progress;
4829                 conf->reshape_checkpoint = jiffies;
4830                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4831                 md_wakeup_thread(mddev->thread);
4832                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4833                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4834                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4835                         allow_barrier(conf);
4836                         return sectors_done;
4837                 }
4838                 conf->reshape_safe = mddev->reshape_position;
4839                 allow_barrier(conf);
4840         }
4841
4842         raise_barrier(conf, 0);
4843 read_more:
4844         /* Now schedule reads for blocks from sector_nr to last */
4845         r10_bio = raid10_alloc_init_r10buf(conf);
4846         r10_bio->state = 0;
4847         raise_barrier(conf, 1);
4848         atomic_set(&r10_bio->remaining, 0);
4849         r10_bio->mddev = mddev;
4850         r10_bio->sector = sector_nr;
4851         set_bit(R10BIO_IsReshape, &r10_bio->state);
4852         r10_bio->sectors = last - sector_nr + 1;
4853         rdev = read_balance(conf, r10_bio, &max_sectors);
4854         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4855
4856         if (!rdev) {
4857                 /* Cannot read from here, so need to record bad blocks
4858                  * on all the target devices.
4859                  */
4860                 // FIXME
4861                 mempool_free(r10_bio, &conf->r10buf_pool);
4862                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4863                 return sectors_done;
4864         }
4865
4866         read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4867
4868         bio_set_dev(read_bio, rdev->bdev);
4869         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4870                                + rdev->data_offset);
4871         read_bio->bi_private = r10_bio;
4872         read_bio->bi_end_io = end_reshape_read;
4873         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4874         r10_bio->master_bio = read_bio;
4875         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4876
4877         /*
4878          * Broadcast RESYNC message to other nodes, so all nodes would not
4879          * write to the region to avoid conflict.
4880         */
4881         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4882                 struct mdp_superblock_1 *sb = NULL;
4883                 int sb_reshape_pos = 0;
4884
4885                 conf->cluster_sync_low = sector_nr;
4886                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4887                 sb = page_address(rdev->sb_page);
4888                 if (sb) {
4889                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4890                         /*
4891                          * Set cluster_sync_low again if next address for array
4892                          * reshape is less than cluster_sync_low. Since we can't
4893                          * update cluster_sync_low until it has finished reshape.
4894                          */
4895                         if (sb_reshape_pos < conf->cluster_sync_low)
4896                                 conf->cluster_sync_low = sb_reshape_pos;
4897                 }
4898
4899                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4900                                                           conf->cluster_sync_high);
4901         }
4902
4903         /* Now find the locations in the new layout */
4904         __raid10_find_phys(&conf->geo, r10_bio);
4905
4906         blist = read_bio;
4907         read_bio->bi_next = NULL;
4908
4909         rcu_read_lock();
4910         for (s = 0; s < conf->copies*2; s++) {
4911                 struct bio *b;
4912                 int d = r10_bio->devs[s/2].devnum;
4913                 struct md_rdev *rdev2;
4914                 if (s&1) {
4915                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4916                         b = r10_bio->devs[s/2].repl_bio;
4917                 } else {
4918                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4919                         b = r10_bio->devs[s/2].bio;
4920                 }
4921                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4922                         continue;
4923
4924                 bio_set_dev(b, rdev2->bdev);
4925                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4926                         rdev2->new_data_offset;
4927                 b->bi_end_io = end_reshape_write;
4928                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4929                 b->bi_next = blist;
4930                 blist = b;
4931         }
4932
4933         /* Now add as many pages as possible to all of these bios. */
4934
4935         nr_sectors = 0;
4936         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4937         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4938                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4939                 int len = (max_sectors - s) << 9;
4940                 if (len > PAGE_SIZE)
4941                         len = PAGE_SIZE;
4942                 for (bio = blist; bio ; bio = bio->bi_next) {
4943                         /*
4944                          * won't fail because the vec table is big enough
4945                          * to hold all these pages
4946                          */
4947                         bio_add_page(bio, page, len, 0);
4948                 }
4949                 sector_nr += len >> 9;
4950                 nr_sectors += len >> 9;
4951         }
4952         rcu_read_unlock();
4953         r10_bio->sectors = nr_sectors;
4954
4955         /* Now submit the read */
4956         md_sync_acct_bio(read_bio, r10_bio->sectors);
4957         atomic_inc(&r10_bio->remaining);
4958         read_bio->bi_next = NULL;
4959         submit_bio_noacct(read_bio);
4960         sectors_done += nr_sectors;
4961         if (sector_nr <= last)
4962                 goto read_more;
4963
4964         lower_barrier(conf);
4965
4966         /* Now that we have done the whole section we can
4967          * update reshape_progress
4968          */
4969         if (mddev->reshape_backwards)
4970                 conf->reshape_progress -= sectors_done;
4971         else
4972                 conf->reshape_progress += sectors_done;
4973
4974         return sectors_done;
4975 }
4976
4977 static void end_reshape_request(struct r10bio *r10_bio);
4978 static int handle_reshape_read_error(struct mddev *mddev,
4979                                      struct r10bio *r10_bio);
4980 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4981 {
4982         /* Reshape read completed.  Hopefully we have a block
4983          * to write out.
4984          * If we got a read error then we do sync 1-page reads from
4985          * elsewhere until we find the data - or give up.
4986          */
4987         struct r10conf *conf = mddev->private;
4988         int s;
4989
4990         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4991                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4992                         /* Reshape has been aborted */
4993                         md_done_sync(mddev, r10_bio->sectors, 0);
4994                         return;
4995                 }
4996
4997         /* We definitely have the data in the pages, schedule the
4998          * writes.
4999          */
5000         atomic_set(&r10_bio->remaining, 1);
5001         for (s = 0; s < conf->copies*2; s++) {
5002                 struct bio *b;
5003                 int d = r10_bio->devs[s/2].devnum;
5004                 struct md_rdev *rdev;
5005                 rcu_read_lock();
5006                 if (s&1) {
5007                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5008                         b = r10_bio->devs[s/2].repl_bio;
5009                 } else {
5010                         rdev = rcu_dereference(conf->mirrors[d].rdev);
5011                         b = r10_bio->devs[s/2].bio;
5012                 }
5013                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5014                         rcu_read_unlock();
5015                         continue;
5016                 }
5017                 atomic_inc(&rdev->nr_pending);
5018                 rcu_read_unlock();
5019                 md_sync_acct_bio(b, r10_bio->sectors);
5020                 atomic_inc(&r10_bio->remaining);
5021                 b->bi_next = NULL;
5022                 submit_bio_noacct(b);
5023         }
5024         end_reshape_request(r10_bio);
5025 }
5026
5027 static void end_reshape(struct r10conf *conf)
5028 {
5029         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5030                 return;
5031
5032         spin_lock_irq(&conf->device_lock);
5033         conf->prev = conf->geo;
5034         md_finish_reshape(conf->mddev);
5035         smp_wmb();
5036         conf->reshape_progress = MaxSector;
5037         conf->reshape_safe = MaxSector;
5038         spin_unlock_irq(&conf->device_lock);
5039
5040         if (conf->mddev->queue)
5041                 raid10_set_io_opt(conf);
5042         conf->fullsync = 0;
5043 }
5044
5045 static void raid10_update_reshape_pos(struct mddev *mddev)
5046 {
5047         struct r10conf *conf = mddev->private;
5048         sector_t lo, hi;
5049
5050         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5051         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5052             || mddev->reshape_position == MaxSector)
5053                 conf->reshape_progress = mddev->reshape_position;
5054         else
5055                 WARN_ON_ONCE(1);
5056 }
5057
5058 static int handle_reshape_read_error(struct mddev *mddev,
5059                                      struct r10bio *r10_bio)
5060 {
5061         /* Use sync reads to get the blocks from somewhere else */
5062         int sectors = r10_bio->sectors;
5063         struct r10conf *conf = mddev->private;
5064         struct r10bio *r10b;
5065         int slot = 0;
5066         int idx = 0;
5067         struct page **pages;
5068
5069         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5070         if (!r10b) {
5071                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5072                 return -ENOMEM;
5073         }
5074
5075         /* reshape IOs share pages from .devs[0].bio */
5076         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5077
5078         r10b->sector = r10_bio->sector;
5079         __raid10_find_phys(&conf->prev, r10b);
5080
5081         while (sectors) {
5082                 int s = sectors;
5083                 int success = 0;
5084                 int first_slot = slot;
5085
5086                 if (s > (PAGE_SIZE >> 9))
5087                         s = PAGE_SIZE >> 9;
5088
5089                 rcu_read_lock();
5090                 while (!success) {
5091                         int d = r10b->devs[slot].devnum;
5092                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5093                         sector_t addr;
5094                         if (rdev == NULL ||
5095                             test_bit(Faulty, &rdev->flags) ||
5096                             !test_bit(In_sync, &rdev->flags))
5097                                 goto failed;
5098
5099                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5100                         atomic_inc(&rdev->nr_pending);
5101                         rcu_read_unlock();
5102                         success = sync_page_io(rdev,
5103                                                addr,
5104                                                s << 9,
5105                                                pages[idx],
5106                                                REQ_OP_READ, 0, false);
5107                         rdev_dec_pending(rdev, mddev);
5108                         rcu_read_lock();
5109                         if (success)
5110                                 break;
5111                 failed:
5112                         slot++;
5113                         if (slot >= conf->copies)
5114                                 slot = 0;
5115                         if (slot == first_slot)
5116                                 break;
5117                 }
5118                 rcu_read_unlock();
5119                 if (!success) {
5120                         /* couldn't read this block, must give up */
5121                         set_bit(MD_RECOVERY_INTR,
5122                                 &mddev->recovery);
5123                         kfree(r10b);
5124                         return -EIO;
5125                 }
5126                 sectors -= s;
5127                 idx++;
5128         }
5129         kfree(r10b);
5130         return 0;
5131 }
5132
5133 static void end_reshape_write(struct bio *bio)
5134 {
5135         struct r10bio *r10_bio = get_resync_r10bio(bio);
5136         struct mddev *mddev = r10_bio->mddev;
5137         struct r10conf *conf = mddev->private;
5138         int d;
5139         int slot;
5140         int repl;
5141         struct md_rdev *rdev = NULL;
5142
5143         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5144         if (repl)
5145                 rdev = conf->mirrors[d].replacement;
5146         if (!rdev) {
5147                 smp_mb();
5148                 rdev = conf->mirrors[d].rdev;
5149         }
5150
5151         if (bio->bi_status) {
5152                 /* FIXME should record badblock */
5153                 md_error(mddev, rdev);
5154         }
5155
5156         rdev_dec_pending(rdev, mddev);
5157         end_reshape_request(r10_bio);
5158 }
5159
5160 static void end_reshape_request(struct r10bio *r10_bio)
5161 {
5162         if (!atomic_dec_and_test(&r10_bio->remaining))
5163                 return;
5164         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5165         bio_put(r10_bio->master_bio);
5166         put_buf(r10_bio);
5167 }
5168
5169 static void raid10_finish_reshape(struct mddev *mddev)
5170 {
5171         struct r10conf *conf = mddev->private;
5172
5173         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5174                 return;
5175
5176         if (mddev->delta_disks > 0) {
5177                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5178                         mddev->recovery_cp = mddev->resync_max_sectors;
5179                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5180                 }
5181                 mddev->resync_max_sectors = mddev->array_sectors;
5182         } else {
5183                 int d;
5184                 rcu_read_lock();
5185                 for (d = conf->geo.raid_disks ;
5186                      d < conf->geo.raid_disks - mddev->delta_disks;
5187                      d++) {
5188                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5189                         if (rdev)
5190                                 clear_bit(In_sync, &rdev->flags);
5191                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5192                         if (rdev)
5193                                 clear_bit(In_sync, &rdev->flags);
5194                 }
5195                 rcu_read_unlock();
5196         }
5197         mddev->layout = mddev->new_layout;
5198         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5199         mddev->reshape_position = MaxSector;
5200         mddev->delta_disks = 0;
5201         mddev->reshape_backwards = 0;
5202 }
5203
5204 static struct md_personality raid10_personality =
5205 {
5206         .name           = "raid10",
5207         .level          = 10,
5208         .owner          = THIS_MODULE,
5209         .make_request   = raid10_make_request,
5210         .run            = raid10_run,
5211         .free           = raid10_free,
5212         .status         = raid10_status,
5213         .error_handler  = raid10_error,
5214         .hot_add_disk   = raid10_add_disk,
5215         .hot_remove_disk= raid10_remove_disk,
5216         .spare_active   = raid10_spare_active,
5217         .sync_request   = raid10_sync_request,
5218         .quiesce        = raid10_quiesce,
5219         .size           = raid10_size,
5220         .resize         = raid10_resize,
5221         .takeover       = raid10_takeover,
5222         .check_reshape  = raid10_check_reshape,
5223         .start_reshape  = raid10_start_reshape,
5224         .finish_reshape = raid10_finish_reshape,
5225         .update_reshape_pos = raid10_update_reshape_pos,
5226 };
5227
5228 static int __init raid_init(void)
5229 {
5230         return register_md_personality(&raid10_personality);
5231 }
5232
5233 static void raid_exit(void)
5234 {
5235         unregister_md_personality(&raid10_personality);
5236 }
5237
5238 module_init(raid_init);
5239 module_exit(raid_exit);
5240 MODULE_LICENSE("GPL");
5241 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5242 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5243 MODULE_ALIAS("md-raid10");
5244 MODULE_ALIAS("md-level-10");
5245
5246 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);