Merge branch 'resizex' (patches from Maciej)
[linux-2.6-microblaze.git] / drivers / md / raid1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS         \
41         ((1L << MD_HAS_JOURNAL) |       \
42          (1L << MD_JOURNAL_CLEAN) |     \
43          (1L << MD_HAS_PPL) |           \
44          (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define raid1_log(md, fmt, args...)                             \
50         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52 #include "raid1-10.c"
53
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57                      START, LAST, static inline, raid1_rb);
58
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60                                 struct serial_info *si, int idx)
61 {
62         unsigned long flags;
63         int ret = 0;
64         sector_t lo = r1_bio->sector;
65         sector_t hi = lo + r1_bio->sectors;
66         struct serial_in_rdev *serial = &rdev->serial[idx];
67
68         spin_lock_irqsave(&serial->serial_lock, flags);
69         /* collision happened */
70         if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71                 ret = -EBUSY;
72         else {
73                 si->start = lo;
74                 si->last = hi;
75                 raid1_rb_insert(si, &serial->serial_rb);
76         }
77         spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79         return ret;
80 }
81
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84         struct mddev *mddev = rdev->mddev;
85         struct serial_info *si;
86         int idx = sector_to_idx(r1_bio->sector);
87         struct serial_in_rdev *serial = &rdev->serial[idx];
88
89         if (WARN_ON(!mddev->serial_info_pool))
90                 return;
91         si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92         wait_event(serial->serial_io_wait,
93                    check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98         struct serial_info *si;
99         unsigned long flags;
100         int found = 0;
101         struct mddev *mddev = rdev->mddev;
102         int idx = sector_to_idx(lo);
103         struct serial_in_rdev *serial = &rdev->serial[idx];
104
105         spin_lock_irqsave(&serial->serial_lock, flags);
106         for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107              si; si = raid1_rb_iter_next(si, lo, hi)) {
108                 if (si->start == lo && si->last == hi) {
109                         raid1_rb_remove(si, &serial->serial_rb);
110                         mempool_free(si, mddev->serial_info_pool);
111                         found = 1;
112                         break;
113                 }
114         }
115         if (!found)
116                 WARN(1, "The write IO is not recorded for serialization\n");
117         spin_unlock_irqrestore(&serial->serial_lock, flags);
118         wake_up(&serial->serial_io_wait);
119 }
120
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127         return get_resync_pages(bio)->raid_bio;
128 }
129
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132         struct pool_info *pi = data;
133         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135         /* allocate a r1bio with room for raid_disks entries in the bios array */
136         return kzalloc(size, gfp_flags);
137 }
138
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148         struct pool_info *pi = data;
149         struct r1bio *r1_bio;
150         struct bio *bio;
151         int need_pages;
152         int j;
153         struct resync_pages *rps;
154
155         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156         if (!r1_bio)
157                 return NULL;
158
159         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160                             gfp_flags);
161         if (!rps)
162                 goto out_free_r1bio;
163
164         /*
165          * Allocate bios : 1 for reading, n-1 for writing
166          */
167         for (j = pi->raid_disks ; j-- ; ) {
168                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169                 if (!bio)
170                         goto out_free_bio;
171                 r1_bio->bios[j] = bio;
172         }
173         /*
174          * Allocate RESYNC_PAGES data pages and attach them to
175          * the first bio.
176          * If this is a user-requested check/repair, allocate
177          * RESYNC_PAGES for each bio.
178          */
179         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180                 need_pages = pi->raid_disks;
181         else
182                 need_pages = 1;
183         for (j = 0; j < pi->raid_disks; j++) {
184                 struct resync_pages *rp = &rps[j];
185
186                 bio = r1_bio->bios[j];
187
188                 if (j < need_pages) {
189                         if (resync_alloc_pages(rp, gfp_flags))
190                                 goto out_free_pages;
191                 } else {
192                         memcpy(rp, &rps[0], sizeof(*rp));
193                         resync_get_all_pages(rp);
194                 }
195
196                 rp->raid_bio = r1_bio;
197                 bio->bi_private = rp;
198         }
199
200         r1_bio->master_bio = NULL;
201
202         return r1_bio;
203
204 out_free_pages:
205         while (--j >= 0)
206                 resync_free_pages(&rps[j]);
207
208 out_free_bio:
209         while (++j < pi->raid_disks)
210                 bio_put(r1_bio->bios[j]);
211         kfree(rps);
212
213 out_free_r1bio:
214         rbio_pool_free(r1_bio, data);
215         return NULL;
216 }
217
218 static void r1buf_pool_free(void *__r1_bio, void *data)
219 {
220         struct pool_info *pi = data;
221         int i;
222         struct r1bio *r1bio = __r1_bio;
223         struct resync_pages *rp = NULL;
224
225         for (i = pi->raid_disks; i--; ) {
226                 rp = get_resync_pages(r1bio->bios[i]);
227                 resync_free_pages(rp);
228                 bio_put(r1bio->bios[i]);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r1bio, data);
235 }
236
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->raid_disks * 2; i++) {
242                 struct bio **bio = r1_bio->bios + i;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246         }
247 }
248
249 static void free_r1bio(struct r1bio *r1_bio)
250 {
251         struct r1conf *conf = r1_bio->mddev->private;
252
253         put_all_bios(conf, r1_bio);
254         mempool_free(r1_bio, &conf->r1bio_pool);
255 }
256
257 static void put_buf(struct r1bio *r1_bio)
258 {
259         struct r1conf *conf = r1_bio->mddev->private;
260         sector_t sect = r1_bio->sector;
261         int i;
262
263         for (i = 0; i < conf->raid_disks * 2; i++) {
264                 struct bio *bio = r1_bio->bios[i];
265                 if (bio->bi_end_io)
266                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267         }
268
269         mempool_free(r1_bio, &conf->r1buf_pool);
270
271         lower_barrier(conf, sect);
272 }
273
274 static void reschedule_retry(struct r1bio *r1_bio)
275 {
276         unsigned long flags;
277         struct mddev *mddev = r1_bio->mddev;
278         struct r1conf *conf = mddev->private;
279         int idx;
280
281         idx = sector_to_idx(r1_bio->sector);
282         spin_lock_irqsave(&conf->device_lock, flags);
283         list_add(&r1_bio->retry_list, &conf->retry_list);
284         atomic_inc(&conf->nr_queued[idx]);
285         spin_unlock_irqrestore(&conf->device_lock, flags);
286
287         wake_up(&conf->wait_barrier);
288         md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void call_bio_endio(struct r1bio *r1_bio)
297 {
298         struct bio *bio = r1_bio->master_bio;
299
300         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301                 bio->bi_status = BLK_STS_IOERR;
302
303         bio_endio(bio);
304 }
305
306 static void raid_end_bio_io(struct r1bio *r1_bio)
307 {
308         struct bio *bio = r1_bio->master_bio;
309         struct r1conf *conf = r1_bio->mddev->private;
310
311         /* if nobody has done the final endio yet, do it now */
312         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
313                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
314                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
315                          (unsigned long long) bio->bi_iter.bi_sector,
316                          (unsigned long long) bio_end_sector(bio) - 1);
317
318                 call_bio_endio(r1_bio);
319         }
320         /*
321          * Wake up any possible resync thread that waits for the device
322          * to go idle.  All I/Os, even write-behind writes, are done.
323          */
324         allow_barrier(conf, r1_bio->sector);
325
326         free_r1bio(r1_bio);
327 }
328
329 /*
330  * Update disk head position estimator based on IRQ completion info.
331  */
332 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
333 {
334         struct r1conf *conf = r1_bio->mddev->private;
335
336         conf->mirrors[disk].head_position =
337                 r1_bio->sector + (r1_bio->sectors);
338 }
339
340 /*
341  * Find the disk number which triggered given bio
342  */
343 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
344 {
345         int mirror;
346         struct r1conf *conf = r1_bio->mddev->private;
347         int raid_disks = conf->raid_disks;
348
349         for (mirror = 0; mirror < raid_disks * 2; mirror++)
350                 if (r1_bio->bios[mirror] == bio)
351                         break;
352
353         BUG_ON(mirror == raid_disks * 2);
354         update_head_pos(mirror, r1_bio);
355
356         return mirror;
357 }
358
359 static void raid1_end_read_request(struct bio *bio)
360 {
361         int uptodate = !bio->bi_status;
362         struct r1bio *r1_bio = bio->bi_private;
363         struct r1conf *conf = r1_bio->mddev->private;
364         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
365
366         /*
367          * this branch is our 'one mirror IO has finished' event handler:
368          */
369         update_head_pos(r1_bio->read_disk, r1_bio);
370
371         if (uptodate)
372                 set_bit(R1BIO_Uptodate, &r1_bio->state);
373         else if (test_bit(FailFast, &rdev->flags) &&
374                  test_bit(R1BIO_FailFast, &r1_bio->state))
375                 /* This was a fail-fast read so we definitely
376                  * want to retry */
377                 ;
378         else {
379                 /* If all other devices have failed, we want to return
380                  * the error upwards rather than fail the last device.
381                  * Here we redefine "uptodate" to mean "Don't want to retry"
382                  */
383                 unsigned long flags;
384                 spin_lock_irqsave(&conf->device_lock, flags);
385                 if (r1_bio->mddev->degraded == conf->raid_disks ||
386                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
387                      test_bit(In_sync, &rdev->flags)))
388                         uptodate = 1;
389                 spin_unlock_irqrestore(&conf->device_lock, flags);
390         }
391
392         if (uptodate) {
393                 raid_end_bio_io(r1_bio);
394                 rdev_dec_pending(rdev, conf->mddev);
395         } else {
396                 /*
397                  * oops, read error:
398                  */
399                 char b[BDEVNAME_SIZE];
400                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
401                                    mdname(conf->mddev),
402                                    bdevname(rdev->bdev, b),
403                                    (unsigned long long)r1_bio->sector);
404                 set_bit(R1BIO_ReadError, &r1_bio->state);
405                 reschedule_retry(r1_bio);
406                 /* don't drop the reference on read_disk yet */
407         }
408 }
409
410 static void close_write(struct r1bio *r1_bio)
411 {
412         /* it really is the end of this request */
413         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
414                 bio_free_pages(r1_bio->behind_master_bio);
415                 bio_put(r1_bio->behind_master_bio);
416                 r1_bio->behind_master_bio = NULL;
417         }
418         /* clear the bitmap if all writes complete successfully */
419         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
420                            r1_bio->sectors,
421                            !test_bit(R1BIO_Degraded, &r1_bio->state),
422                            test_bit(R1BIO_BehindIO, &r1_bio->state));
423         md_write_end(r1_bio->mddev);
424 }
425
426 static void r1_bio_write_done(struct r1bio *r1_bio)
427 {
428         if (!atomic_dec_and_test(&r1_bio->remaining))
429                 return;
430
431         if (test_bit(R1BIO_WriteError, &r1_bio->state))
432                 reschedule_retry(r1_bio);
433         else {
434                 close_write(r1_bio);
435                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
436                         reschedule_retry(r1_bio);
437                 else
438                         raid_end_bio_io(r1_bio);
439         }
440 }
441
442 static void raid1_end_write_request(struct bio *bio)
443 {
444         struct r1bio *r1_bio = bio->bi_private;
445         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
446         struct r1conf *conf = r1_bio->mddev->private;
447         struct bio *to_put = NULL;
448         int mirror = find_bio_disk(r1_bio, bio);
449         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
450         bool discard_error;
451         sector_t lo = r1_bio->sector;
452         sector_t hi = r1_bio->sector + r1_bio->sectors;
453
454         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
455
456         /*
457          * 'one mirror IO has finished' event handler:
458          */
459         if (bio->bi_status && !discard_error) {
460                 set_bit(WriteErrorSeen, &rdev->flags);
461                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
462                         set_bit(MD_RECOVERY_NEEDED, &
463                                 conf->mddev->recovery);
464
465                 if (test_bit(FailFast, &rdev->flags) &&
466                     (bio->bi_opf & MD_FAILFAST) &&
467                     /* We never try FailFast to WriteMostly devices */
468                     !test_bit(WriteMostly, &rdev->flags)) {
469                         md_error(r1_bio->mddev, rdev);
470                 }
471
472                 /*
473                  * When the device is faulty, it is not necessary to
474                  * handle write error.
475                  * For failfast, this is the only remaining device,
476                  * We need to retry the write without FailFast.
477                  */
478                 if (!test_bit(Faulty, &rdev->flags))
479                         set_bit(R1BIO_WriteError, &r1_bio->state);
480                 else {
481                         /* Fail the request */
482                         set_bit(R1BIO_Degraded, &r1_bio->state);
483                         /* Finished with this branch */
484                         r1_bio->bios[mirror] = NULL;
485                         to_put = bio;
486                 }
487         } else {
488                 /*
489                  * Set R1BIO_Uptodate in our master bio, so that we
490                  * will return a good error code for to the higher
491                  * levels even if IO on some other mirrored buffer
492                  * fails.
493                  *
494                  * The 'master' represents the composite IO operation
495                  * to user-side. So if something waits for IO, then it
496                  * will wait for the 'master' bio.
497                  */
498                 sector_t first_bad;
499                 int bad_sectors;
500
501                 r1_bio->bios[mirror] = NULL;
502                 to_put = bio;
503                 /*
504                  * Do not set R1BIO_Uptodate if the current device is
505                  * rebuilding or Faulty. This is because we cannot use
506                  * such device for properly reading the data back (we could
507                  * potentially use it, if the current write would have felt
508                  * before rdev->recovery_offset, but for simplicity we don't
509                  * check this here.
510                  */
511                 if (test_bit(In_sync, &rdev->flags) &&
512                     !test_bit(Faulty, &rdev->flags))
513                         set_bit(R1BIO_Uptodate, &r1_bio->state);
514
515                 /* Maybe we can clear some bad blocks. */
516                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
517                                 &first_bad, &bad_sectors) && !discard_error) {
518                         r1_bio->bios[mirror] = IO_MADE_GOOD;
519                         set_bit(R1BIO_MadeGood, &r1_bio->state);
520                 }
521         }
522
523         if (behind) {
524                 if (test_bit(CollisionCheck, &rdev->flags))
525                         remove_serial(rdev, lo, hi);
526                 if (test_bit(WriteMostly, &rdev->flags))
527                         atomic_dec(&r1_bio->behind_remaining);
528
529                 /*
530                  * In behind mode, we ACK the master bio once the I/O
531                  * has safely reached all non-writemostly
532                  * disks. Setting the Returned bit ensures that this
533                  * gets done only once -- we don't ever want to return
534                  * -EIO here, instead we'll wait
535                  */
536                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
537                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
538                         /* Maybe we can return now */
539                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
540                                 struct bio *mbio = r1_bio->master_bio;
541                                 pr_debug("raid1: behind end write sectors"
542                                          " %llu-%llu\n",
543                                          (unsigned long long) mbio->bi_iter.bi_sector,
544                                          (unsigned long long) bio_end_sector(mbio) - 1);
545                                 call_bio_endio(r1_bio);
546                         }
547                 }
548         } else if (rdev->mddev->serialize_policy)
549                 remove_serial(rdev, lo, hi);
550         if (r1_bio->bios[mirror] == NULL)
551                 rdev_dec_pending(rdev, conf->mddev);
552
553         /*
554          * Let's see if all mirrored write operations have finished
555          * already.
556          */
557         r1_bio_write_done(r1_bio);
558
559         if (to_put)
560                 bio_put(to_put);
561 }
562
563 static sector_t align_to_barrier_unit_end(sector_t start_sector,
564                                           sector_t sectors)
565 {
566         sector_t len;
567
568         WARN_ON(sectors == 0);
569         /*
570          * len is the number of sectors from start_sector to end of the
571          * barrier unit which start_sector belongs to.
572          */
573         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
574               start_sector;
575
576         if (len > sectors)
577                 len = sectors;
578
579         return len;
580 }
581
582 /*
583  * This routine returns the disk from which the requested read should
584  * be done. There is a per-array 'next expected sequential IO' sector
585  * number - if this matches on the next IO then we use the last disk.
586  * There is also a per-disk 'last know head position' sector that is
587  * maintained from IRQ contexts, both the normal and the resync IO
588  * completion handlers update this position correctly. If there is no
589  * perfect sequential match then we pick the disk whose head is closest.
590  *
591  * If there are 2 mirrors in the same 2 devices, performance degrades
592  * because position is mirror, not device based.
593  *
594  * The rdev for the device selected will have nr_pending incremented.
595  */
596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
597 {
598         const sector_t this_sector = r1_bio->sector;
599         int sectors;
600         int best_good_sectors;
601         int best_disk, best_dist_disk, best_pending_disk;
602         int has_nonrot_disk;
603         int disk;
604         sector_t best_dist;
605         unsigned int min_pending;
606         struct md_rdev *rdev;
607         int choose_first;
608         int choose_next_idle;
609
610         rcu_read_lock();
611         /*
612          * Check if we can balance. We can balance on the whole
613          * device if no resync is going on, or below the resync window.
614          * We take the first readable disk when above the resync window.
615          */
616  retry:
617         sectors = r1_bio->sectors;
618         best_disk = -1;
619         best_dist_disk = -1;
620         best_dist = MaxSector;
621         best_pending_disk = -1;
622         min_pending = UINT_MAX;
623         best_good_sectors = 0;
624         has_nonrot_disk = 0;
625         choose_next_idle = 0;
626         clear_bit(R1BIO_FailFast, &r1_bio->state);
627
628         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
629             (mddev_is_clustered(conf->mddev) &&
630             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
631                     this_sector + sectors)))
632                 choose_first = 1;
633         else
634                 choose_first = 0;
635
636         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637                 sector_t dist;
638                 sector_t first_bad;
639                 int bad_sectors;
640                 unsigned int pending;
641                 bool nonrot;
642
643                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
644                 if (r1_bio->bios[disk] == IO_BLOCKED
645                     || rdev == NULL
646                     || test_bit(Faulty, &rdev->flags))
647                         continue;
648                 if (!test_bit(In_sync, &rdev->flags) &&
649                     rdev->recovery_offset < this_sector + sectors)
650                         continue;
651                 if (test_bit(WriteMostly, &rdev->flags)) {
652                         /* Don't balance among write-mostly, just
653                          * use the first as a last resort */
654                         if (best_dist_disk < 0) {
655                                 if (is_badblock(rdev, this_sector, sectors,
656                                                 &first_bad, &bad_sectors)) {
657                                         if (first_bad <= this_sector)
658                                                 /* Cannot use this */
659                                                 continue;
660                                         best_good_sectors = first_bad - this_sector;
661                                 } else
662                                         best_good_sectors = sectors;
663                                 best_dist_disk = disk;
664                                 best_pending_disk = disk;
665                         }
666                         continue;
667                 }
668                 /* This is a reasonable device to use.  It might
669                  * even be best.
670                  */
671                 if (is_badblock(rdev, this_sector, sectors,
672                                 &first_bad, &bad_sectors)) {
673                         if (best_dist < MaxSector)
674                                 /* already have a better device */
675                                 continue;
676                         if (first_bad <= this_sector) {
677                                 /* cannot read here. If this is the 'primary'
678                                  * device, then we must not read beyond
679                                  * bad_sectors from another device..
680                                  */
681                                 bad_sectors -= (this_sector - first_bad);
682                                 if (choose_first && sectors > bad_sectors)
683                                         sectors = bad_sectors;
684                                 if (best_good_sectors > sectors)
685                                         best_good_sectors = sectors;
686
687                         } else {
688                                 sector_t good_sectors = first_bad - this_sector;
689                                 if (good_sectors > best_good_sectors) {
690                                         best_good_sectors = good_sectors;
691                                         best_disk = disk;
692                                 }
693                                 if (choose_first)
694                                         break;
695                         }
696                         continue;
697                 } else {
698                         if ((sectors > best_good_sectors) && (best_disk >= 0))
699                                 best_disk = -1;
700                         best_good_sectors = sectors;
701                 }
702
703                 if (best_disk >= 0)
704                         /* At least two disks to choose from so failfast is OK */
705                         set_bit(R1BIO_FailFast, &r1_bio->state);
706
707                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
708                 has_nonrot_disk |= nonrot;
709                 pending = atomic_read(&rdev->nr_pending);
710                 dist = abs(this_sector - conf->mirrors[disk].head_position);
711                 if (choose_first) {
712                         best_disk = disk;
713                         break;
714                 }
715                 /* Don't change to another disk for sequential reads */
716                 if (conf->mirrors[disk].next_seq_sect == this_sector
717                     || dist == 0) {
718                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
719                         struct raid1_info *mirror = &conf->mirrors[disk];
720
721                         best_disk = disk;
722                         /*
723                          * If buffered sequential IO size exceeds optimal
724                          * iosize, check if there is idle disk. If yes, choose
725                          * the idle disk. read_balance could already choose an
726                          * idle disk before noticing it's a sequential IO in
727                          * this disk. This doesn't matter because this disk
728                          * will idle, next time it will be utilized after the
729                          * first disk has IO size exceeds optimal iosize. In
730                          * this way, iosize of the first disk will be optimal
731                          * iosize at least. iosize of the second disk might be
732                          * small, but not a big deal since when the second disk
733                          * starts IO, the first disk is likely still busy.
734                          */
735                         if (nonrot && opt_iosize > 0 &&
736                             mirror->seq_start != MaxSector &&
737                             mirror->next_seq_sect > opt_iosize &&
738                             mirror->next_seq_sect - opt_iosize >=
739                             mirror->seq_start) {
740                                 choose_next_idle = 1;
741                                 continue;
742                         }
743                         break;
744                 }
745
746                 if (choose_next_idle)
747                         continue;
748
749                 if (min_pending > pending) {
750                         min_pending = pending;
751                         best_pending_disk = disk;
752                 }
753
754                 if (dist < best_dist) {
755                         best_dist = dist;
756                         best_dist_disk = disk;
757                 }
758         }
759
760         /*
761          * If all disks are rotational, choose the closest disk. If any disk is
762          * non-rotational, choose the disk with less pending request even the
763          * disk is rotational, which might/might not be optimal for raids with
764          * mixed ratation/non-rotational disks depending on workload.
765          */
766         if (best_disk == -1) {
767                 if (has_nonrot_disk || min_pending == 0)
768                         best_disk = best_pending_disk;
769                 else
770                         best_disk = best_dist_disk;
771         }
772
773         if (best_disk >= 0) {
774                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
775                 if (!rdev)
776                         goto retry;
777                 atomic_inc(&rdev->nr_pending);
778                 sectors = best_good_sectors;
779
780                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
781                         conf->mirrors[best_disk].seq_start = this_sector;
782
783                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
784         }
785         rcu_read_unlock();
786         *max_sectors = sectors;
787
788         return best_disk;
789 }
790
791 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
792 {
793         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
794         md_bitmap_unplug(conf->mddev->bitmap);
795         wake_up(&conf->wait_barrier);
796
797         while (bio) { /* submit pending writes */
798                 struct bio *next = bio->bi_next;
799                 struct md_rdev *rdev = (void *)bio->bi_bdev;
800                 bio->bi_next = NULL;
801                 bio_set_dev(bio, rdev->bdev);
802                 if (test_bit(Faulty, &rdev->flags)) {
803                         bio_io_error(bio);
804                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805                                     !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
806                         /* Just ignore it */
807                         bio_endio(bio);
808                 else
809                         submit_bio_noacct(bio);
810                 bio = next;
811                 cond_resched();
812         }
813 }
814
815 static void flush_pending_writes(struct r1conf *conf)
816 {
817         /* Any writes that have been queued but are awaiting
818          * bitmap updates get flushed here.
819          */
820         spin_lock_irq(&conf->device_lock);
821
822         if (conf->pending_bio_list.head) {
823                 struct blk_plug plug;
824                 struct bio *bio;
825
826                 bio = bio_list_get(&conf->pending_bio_list);
827                 conf->pending_count = 0;
828                 spin_unlock_irq(&conf->device_lock);
829
830                 /*
831                  * As this is called in a wait_event() loop (see freeze_array),
832                  * current->state might be TASK_UNINTERRUPTIBLE which will
833                  * cause a warning when we prepare to wait again.  As it is
834                  * rare that this path is taken, it is perfectly safe to force
835                  * us to go around the wait_event() loop again, so the warning
836                  * is a false-positive.  Silence the warning by resetting
837                  * thread state
838                  */
839                 __set_current_state(TASK_RUNNING);
840                 blk_start_plug(&plug);
841                 flush_bio_list(conf, bio);
842                 blk_finish_plug(&plug);
843         } else
844                 spin_unlock_irq(&conf->device_lock);
845 }
846
847 /* Barriers....
848  * Sometimes we need to suspend IO while we do something else,
849  * either some resync/recovery, or reconfigure the array.
850  * To do this we raise a 'barrier'.
851  * The 'barrier' is a counter that can be raised multiple times
852  * to count how many activities are happening which preclude
853  * normal IO.
854  * We can only raise the barrier if there is no pending IO.
855  * i.e. if nr_pending == 0.
856  * We choose only to raise the barrier if no-one is waiting for the
857  * barrier to go down.  This means that as soon as an IO request
858  * is ready, no other operations which require a barrier will start
859  * until the IO request has had a chance.
860  *
861  * So: regular IO calls 'wait_barrier'.  When that returns there
862  *    is no backgroup IO happening,  It must arrange to call
863  *    allow_barrier when it has finished its IO.
864  * backgroup IO calls must call raise_barrier.  Once that returns
865  *    there is no normal IO happeing.  It must arrange to call
866  *    lower_barrier when the particular background IO completes.
867  *
868  * If resync/recovery is interrupted, returns -EINTR;
869  * Otherwise, returns 0.
870  */
871 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
872 {
873         int idx = sector_to_idx(sector_nr);
874
875         spin_lock_irq(&conf->resync_lock);
876
877         /* Wait until no block IO is waiting */
878         wait_event_lock_irq(conf->wait_barrier,
879                             !atomic_read(&conf->nr_waiting[idx]),
880                             conf->resync_lock);
881
882         /* block any new IO from starting */
883         atomic_inc(&conf->barrier[idx]);
884         /*
885          * In raise_barrier() we firstly increase conf->barrier[idx] then
886          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
887          * increase conf->nr_pending[idx] then check conf->barrier[idx].
888          * A memory barrier here to make sure conf->nr_pending[idx] won't
889          * be fetched before conf->barrier[idx] is increased. Otherwise
890          * there will be a race between raise_barrier() and _wait_barrier().
891          */
892         smp_mb__after_atomic();
893
894         /* For these conditions we must wait:
895          * A: while the array is in frozen state
896          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
897          *    existing in corresponding I/O barrier bucket.
898          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
899          *    max resync count which allowed on current I/O barrier bucket.
900          */
901         wait_event_lock_irq(conf->wait_barrier,
902                             (!conf->array_frozen &&
903                              !atomic_read(&conf->nr_pending[idx]) &&
904                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
905                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
906                             conf->resync_lock);
907
908         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
909                 atomic_dec(&conf->barrier[idx]);
910                 spin_unlock_irq(&conf->resync_lock);
911                 wake_up(&conf->wait_barrier);
912                 return -EINTR;
913         }
914
915         atomic_inc(&conf->nr_sync_pending);
916         spin_unlock_irq(&conf->resync_lock);
917
918         return 0;
919 }
920
921 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
922 {
923         int idx = sector_to_idx(sector_nr);
924
925         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
926
927         atomic_dec(&conf->barrier[idx]);
928         atomic_dec(&conf->nr_sync_pending);
929         wake_up(&conf->wait_barrier);
930 }
931
932 static void _wait_barrier(struct r1conf *conf, int idx)
933 {
934         /*
935          * We need to increase conf->nr_pending[idx] very early here,
936          * then raise_barrier() can be blocked when it waits for
937          * conf->nr_pending[idx] to be 0. Then we can avoid holding
938          * conf->resync_lock when there is no barrier raised in same
939          * barrier unit bucket. Also if the array is frozen, I/O
940          * should be blocked until array is unfrozen.
941          */
942         atomic_inc(&conf->nr_pending[idx]);
943         /*
944          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945          * check conf->barrier[idx]. In raise_barrier() we firstly increase
946          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947          * barrier is necessary here to make sure conf->barrier[idx] won't be
948          * fetched before conf->nr_pending[idx] is increased. Otherwise there
949          * will be a race between _wait_barrier() and raise_barrier().
950          */
951         smp_mb__after_atomic();
952
953         /*
954          * Don't worry about checking two atomic_t variables at same time
955          * here. If during we check conf->barrier[idx], the array is
956          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957          * 0, it is safe to return and make the I/O continue. Because the
958          * array is frozen, all I/O returned here will eventually complete
959          * or be queued, no race will happen. See code comment in
960          * frozen_array().
961          */
962         if (!READ_ONCE(conf->array_frozen) &&
963             !atomic_read(&conf->barrier[idx]))
964                 return;
965
966         /*
967          * After holding conf->resync_lock, conf->nr_pending[idx]
968          * should be decreased before waiting for barrier to drop.
969          * Otherwise, we may encounter a race condition because
970          * raise_barrer() might be waiting for conf->nr_pending[idx]
971          * to be 0 at same time.
972          */
973         spin_lock_irq(&conf->resync_lock);
974         atomic_inc(&conf->nr_waiting[idx]);
975         atomic_dec(&conf->nr_pending[idx]);
976         /*
977          * In case freeze_array() is waiting for
978          * get_unqueued_pending() == extra
979          */
980         wake_up(&conf->wait_barrier);
981         /* Wait for the barrier in same barrier unit bucket to drop. */
982         wait_event_lock_irq(conf->wait_barrier,
983                             !conf->array_frozen &&
984                              !atomic_read(&conf->barrier[idx]),
985                             conf->resync_lock);
986         atomic_inc(&conf->nr_pending[idx]);
987         atomic_dec(&conf->nr_waiting[idx]);
988         spin_unlock_irq(&conf->resync_lock);
989 }
990
991 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
992 {
993         int idx = sector_to_idx(sector_nr);
994
995         /*
996          * Very similar to _wait_barrier(). The difference is, for read
997          * I/O we don't need wait for sync I/O, but if the whole array
998          * is frozen, the read I/O still has to wait until the array is
999          * unfrozen. Since there is no ordering requirement with
1000          * conf->barrier[idx] here, memory barrier is unnecessary as well.
1001          */
1002         atomic_inc(&conf->nr_pending[idx]);
1003
1004         if (!READ_ONCE(conf->array_frozen))
1005                 return;
1006
1007         spin_lock_irq(&conf->resync_lock);
1008         atomic_inc(&conf->nr_waiting[idx]);
1009         atomic_dec(&conf->nr_pending[idx]);
1010         /*
1011          * In case freeze_array() is waiting for
1012          * get_unqueued_pending() == extra
1013          */
1014         wake_up(&conf->wait_barrier);
1015         /* Wait for array to be unfrozen */
1016         wait_event_lock_irq(conf->wait_barrier,
1017                             !conf->array_frozen,
1018                             conf->resync_lock);
1019         atomic_inc(&conf->nr_pending[idx]);
1020         atomic_dec(&conf->nr_waiting[idx]);
1021         spin_unlock_irq(&conf->resync_lock);
1022 }
1023
1024 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1025 {
1026         int idx = sector_to_idx(sector_nr);
1027
1028         _wait_barrier(conf, idx);
1029 }
1030
1031 static void _allow_barrier(struct r1conf *conf, int idx)
1032 {
1033         atomic_dec(&conf->nr_pending[idx]);
1034         wake_up(&conf->wait_barrier);
1035 }
1036
1037 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1038 {
1039         int idx = sector_to_idx(sector_nr);
1040
1041         _allow_barrier(conf, idx);
1042 }
1043
1044 /* conf->resync_lock should be held */
1045 static int get_unqueued_pending(struct r1conf *conf)
1046 {
1047         int idx, ret;
1048
1049         ret = atomic_read(&conf->nr_sync_pending);
1050         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1051                 ret += atomic_read(&conf->nr_pending[idx]) -
1052                         atomic_read(&conf->nr_queued[idx]);
1053
1054         return ret;
1055 }
1056
1057 static void freeze_array(struct r1conf *conf, int extra)
1058 {
1059         /* Stop sync I/O and normal I/O and wait for everything to
1060          * go quiet.
1061          * This is called in two situations:
1062          * 1) management command handlers (reshape, remove disk, quiesce).
1063          * 2) one normal I/O request failed.
1064
1065          * After array_frozen is set to 1, new sync IO will be blocked at
1066          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1067          * or wait_read_barrier(). The flying I/Os will either complete or be
1068          * queued. When everything goes quite, there are only queued I/Os left.
1069
1070          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1071          * barrier bucket index which this I/O request hits. When all sync and
1072          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1073          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1074          * in handle_read_error(), we may call freeze_array() before trying to
1075          * fix the read error. In this case, the error read I/O is not queued,
1076          * so get_unqueued_pending() == 1.
1077          *
1078          * Therefore before this function returns, we need to wait until
1079          * get_unqueued_pendings(conf) gets equal to extra. For
1080          * normal I/O context, extra is 1, in rested situations extra is 0.
1081          */
1082         spin_lock_irq(&conf->resync_lock);
1083         conf->array_frozen = 1;
1084         raid1_log(conf->mddev, "wait freeze");
1085         wait_event_lock_irq_cmd(
1086                 conf->wait_barrier,
1087                 get_unqueued_pending(conf) == extra,
1088                 conf->resync_lock,
1089                 flush_pending_writes(conf));
1090         spin_unlock_irq(&conf->resync_lock);
1091 }
1092 static void unfreeze_array(struct r1conf *conf)
1093 {
1094         /* reverse the effect of the freeze */
1095         spin_lock_irq(&conf->resync_lock);
1096         conf->array_frozen = 0;
1097         spin_unlock_irq(&conf->resync_lock);
1098         wake_up(&conf->wait_barrier);
1099 }
1100
1101 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1102                                            struct bio *bio)
1103 {
1104         int size = bio->bi_iter.bi_size;
1105         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1106         int i = 0;
1107         struct bio *behind_bio = NULL;
1108
1109         behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1110         if (!behind_bio)
1111                 return;
1112
1113         /* discard op, we don't support writezero/writesame yet */
1114         if (!bio_has_data(bio)) {
1115                 behind_bio->bi_iter.bi_size = size;
1116                 goto skip_copy;
1117         }
1118
1119         behind_bio->bi_write_hint = bio->bi_write_hint;
1120
1121         while (i < vcnt && size) {
1122                 struct page *page;
1123                 int len = min_t(int, PAGE_SIZE, size);
1124
1125                 page = alloc_page(GFP_NOIO);
1126                 if (unlikely(!page))
1127                         goto free_pages;
1128
1129                 bio_add_page(behind_bio, page, len, 0);
1130
1131                 size -= len;
1132                 i++;
1133         }
1134
1135         bio_copy_data(behind_bio, bio);
1136 skip_copy:
1137         r1_bio->behind_master_bio = behind_bio;
1138         set_bit(R1BIO_BehindIO, &r1_bio->state);
1139
1140         return;
1141
1142 free_pages:
1143         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1144                  bio->bi_iter.bi_size);
1145         bio_free_pages(behind_bio);
1146         bio_put(behind_bio);
1147 }
1148
1149 struct raid1_plug_cb {
1150         struct blk_plug_cb      cb;
1151         struct bio_list         pending;
1152         int                     pending_cnt;
1153 };
1154
1155 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1156 {
1157         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1158                                                   cb);
1159         struct mddev *mddev = plug->cb.data;
1160         struct r1conf *conf = mddev->private;
1161         struct bio *bio;
1162
1163         if (from_schedule || current->bio_list) {
1164                 spin_lock_irq(&conf->device_lock);
1165                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1166                 conf->pending_count += plug->pending_cnt;
1167                 spin_unlock_irq(&conf->device_lock);
1168                 wake_up(&conf->wait_barrier);
1169                 md_wakeup_thread(mddev->thread);
1170                 kfree(plug);
1171                 return;
1172         }
1173
1174         /* we aren't scheduling, so we can do the write-out directly. */
1175         bio = bio_list_get(&plug->pending);
1176         flush_bio_list(conf, bio);
1177         kfree(plug);
1178 }
1179
1180 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1181 {
1182         r1_bio->master_bio = bio;
1183         r1_bio->sectors = bio_sectors(bio);
1184         r1_bio->state = 0;
1185         r1_bio->mddev = mddev;
1186         r1_bio->sector = bio->bi_iter.bi_sector;
1187 }
1188
1189 static inline struct r1bio *
1190 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1191 {
1192         struct r1conf *conf = mddev->private;
1193         struct r1bio *r1_bio;
1194
1195         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1196         /* Ensure no bio records IO_BLOCKED */
1197         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1198         init_r1bio(r1_bio, mddev, bio);
1199         return r1_bio;
1200 }
1201
1202 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1203                                int max_read_sectors, struct r1bio *r1_bio)
1204 {
1205         struct r1conf *conf = mddev->private;
1206         struct raid1_info *mirror;
1207         struct bio *read_bio;
1208         struct bitmap *bitmap = mddev->bitmap;
1209         const int op = bio_op(bio);
1210         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1211         int max_sectors;
1212         int rdisk;
1213         bool print_msg = !!r1_bio;
1214         char b[BDEVNAME_SIZE];
1215
1216         /*
1217          * If r1_bio is set, we are blocking the raid1d thread
1218          * so there is a tiny risk of deadlock.  So ask for
1219          * emergency memory if needed.
1220          */
1221         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1222
1223         if (print_msg) {
1224                 /* Need to get the block device name carefully */
1225                 struct md_rdev *rdev;
1226                 rcu_read_lock();
1227                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1228                 if (rdev)
1229                         bdevname(rdev->bdev, b);
1230                 else
1231                         strcpy(b, "???");
1232                 rcu_read_unlock();
1233         }
1234
1235         /*
1236          * Still need barrier for READ in case that whole
1237          * array is frozen.
1238          */
1239         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1240
1241         if (!r1_bio)
1242                 r1_bio = alloc_r1bio(mddev, bio);
1243         else
1244                 init_r1bio(r1_bio, mddev, bio);
1245         r1_bio->sectors = max_read_sectors;
1246
1247         /*
1248          * make_request() can abort the operation when read-ahead is being
1249          * used and no empty request is available.
1250          */
1251         rdisk = read_balance(conf, r1_bio, &max_sectors);
1252
1253         if (rdisk < 0) {
1254                 /* couldn't find anywhere to read from */
1255                 if (print_msg) {
1256                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1257                                             mdname(mddev),
1258                                             b,
1259                                             (unsigned long long)r1_bio->sector);
1260                 }
1261                 raid_end_bio_io(r1_bio);
1262                 return;
1263         }
1264         mirror = conf->mirrors + rdisk;
1265
1266         if (print_msg)
1267                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1268                                     mdname(mddev),
1269                                     (unsigned long long)r1_bio->sector,
1270                                     bdevname(mirror->rdev->bdev, b));
1271
1272         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1273             bitmap) {
1274                 /*
1275                  * Reading from a write-mostly device must take care not to
1276                  * over-take any writes that are 'behind'
1277                  */
1278                 raid1_log(mddev, "wait behind writes");
1279                 wait_event(bitmap->behind_wait,
1280                            atomic_read(&bitmap->behind_writes) == 0);
1281         }
1282
1283         if (max_sectors < bio_sectors(bio)) {
1284                 struct bio *split = bio_split(bio, max_sectors,
1285                                               gfp, &conf->bio_split);
1286                 bio_chain(split, bio);
1287                 submit_bio_noacct(bio);
1288                 bio = split;
1289                 r1_bio->master_bio = bio;
1290                 r1_bio->sectors = max_sectors;
1291         }
1292
1293         r1_bio->read_disk = rdisk;
1294
1295         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1296
1297         r1_bio->bios[rdisk] = read_bio;
1298
1299         read_bio->bi_iter.bi_sector = r1_bio->sector +
1300                 mirror->rdev->data_offset;
1301         bio_set_dev(read_bio, mirror->rdev->bdev);
1302         read_bio->bi_end_io = raid1_end_read_request;
1303         bio_set_op_attrs(read_bio, op, do_sync);
1304         if (test_bit(FailFast, &mirror->rdev->flags) &&
1305             test_bit(R1BIO_FailFast, &r1_bio->state))
1306                 read_bio->bi_opf |= MD_FAILFAST;
1307         read_bio->bi_private = r1_bio;
1308
1309         if (mddev->gendisk)
1310                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1311                                       r1_bio->sector);
1312
1313         submit_bio_noacct(read_bio);
1314 }
1315
1316 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1317                                 int max_write_sectors)
1318 {
1319         struct r1conf *conf = mddev->private;
1320         struct r1bio *r1_bio;
1321         int i, disks;
1322         struct bitmap *bitmap = mddev->bitmap;
1323         unsigned long flags;
1324         struct md_rdev *blocked_rdev;
1325         struct blk_plug_cb *cb;
1326         struct raid1_plug_cb *plug = NULL;
1327         int first_clone;
1328         int max_sectors;
1329
1330         if (mddev_is_clustered(mddev) &&
1331              md_cluster_ops->area_resyncing(mddev, WRITE,
1332                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1333
1334                 DEFINE_WAIT(w);
1335                 for (;;) {
1336                         prepare_to_wait(&conf->wait_barrier,
1337                                         &w, TASK_IDLE);
1338                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1339                                                         bio->bi_iter.bi_sector,
1340                                                         bio_end_sector(bio)))
1341                                 break;
1342                         schedule();
1343                 }
1344                 finish_wait(&conf->wait_barrier, &w);
1345         }
1346
1347         /*
1348          * Register the new request and wait if the reconstruction
1349          * thread has put up a bar for new requests.
1350          * Continue immediately if no resync is active currently.
1351          */
1352         wait_barrier(conf, bio->bi_iter.bi_sector);
1353
1354         r1_bio = alloc_r1bio(mddev, bio);
1355         r1_bio->sectors = max_write_sectors;
1356
1357         if (conf->pending_count >= max_queued_requests) {
1358                 md_wakeup_thread(mddev->thread);
1359                 raid1_log(mddev, "wait queued");
1360                 wait_event(conf->wait_barrier,
1361                            conf->pending_count < max_queued_requests);
1362         }
1363         /* first select target devices under rcu_lock and
1364          * inc refcount on their rdev.  Record them by setting
1365          * bios[x] to bio
1366          * If there are known/acknowledged bad blocks on any device on
1367          * which we have seen a write error, we want to avoid writing those
1368          * blocks.
1369          * This potentially requires several writes to write around
1370          * the bad blocks.  Each set of writes gets it's own r1bio
1371          * with a set of bios attached.
1372          */
1373
1374         disks = conf->raid_disks * 2;
1375  retry_write:
1376         blocked_rdev = NULL;
1377         rcu_read_lock();
1378         max_sectors = r1_bio->sectors;
1379         for (i = 0;  i < disks; i++) {
1380                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1381                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1382                         atomic_inc(&rdev->nr_pending);
1383                         blocked_rdev = rdev;
1384                         break;
1385                 }
1386                 r1_bio->bios[i] = NULL;
1387                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1388                         if (i < conf->raid_disks)
1389                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1390                         continue;
1391                 }
1392
1393                 atomic_inc(&rdev->nr_pending);
1394                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1395                         sector_t first_bad;
1396                         int bad_sectors;
1397                         int is_bad;
1398
1399                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1400                                              &first_bad, &bad_sectors);
1401                         if (is_bad < 0) {
1402                                 /* mustn't write here until the bad block is
1403                                  * acknowledged*/
1404                                 set_bit(BlockedBadBlocks, &rdev->flags);
1405                                 blocked_rdev = rdev;
1406                                 break;
1407                         }
1408                         if (is_bad && first_bad <= r1_bio->sector) {
1409                                 /* Cannot write here at all */
1410                                 bad_sectors -= (r1_bio->sector - first_bad);
1411                                 if (bad_sectors < max_sectors)
1412                                         /* mustn't write more than bad_sectors
1413                                          * to other devices yet
1414                                          */
1415                                         max_sectors = bad_sectors;
1416                                 rdev_dec_pending(rdev, mddev);
1417                                 /* We don't set R1BIO_Degraded as that
1418                                  * only applies if the disk is
1419                                  * missing, so it might be re-added,
1420                                  * and we want to know to recover this
1421                                  * chunk.
1422                                  * In this case the device is here,
1423                                  * and the fact that this chunk is not
1424                                  * in-sync is recorded in the bad
1425                                  * block log
1426                                  */
1427                                 continue;
1428                         }
1429                         if (is_bad) {
1430                                 int good_sectors = first_bad - r1_bio->sector;
1431                                 if (good_sectors < max_sectors)
1432                                         max_sectors = good_sectors;
1433                         }
1434                 }
1435                 r1_bio->bios[i] = bio;
1436         }
1437         rcu_read_unlock();
1438
1439         if (unlikely(blocked_rdev)) {
1440                 /* Wait for this device to become unblocked */
1441                 int j;
1442
1443                 for (j = 0; j < i; j++)
1444                         if (r1_bio->bios[j])
1445                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1446                 r1_bio->state = 0;
1447                 allow_barrier(conf, bio->bi_iter.bi_sector);
1448                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1449                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1450                 wait_barrier(conf, bio->bi_iter.bi_sector);
1451                 goto retry_write;
1452         }
1453
1454         if (max_sectors < bio_sectors(bio)) {
1455                 struct bio *split = bio_split(bio, max_sectors,
1456                                               GFP_NOIO, &conf->bio_split);
1457                 bio_chain(split, bio);
1458                 submit_bio_noacct(bio);
1459                 bio = split;
1460                 r1_bio->master_bio = bio;
1461                 r1_bio->sectors = max_sectors;
1462         }
1463
1464         atomic_set(&r1_bio->remaining, 1);
1465         atomic_set(&r1_bio->behind_remaining, 0);
1466
1467         first_clone = 1;
1468
1469         for (i = 0; i < disks; i++) {
1470                 struct bio *mbio = NULL;
1471                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1472                 if (!r1_bio->bios[i])
1473                         continue;
1474
1475                 if (first_clone) {
1476                         /* do behind I/O ?
1477                          * Not if there are too many, or cannot
1478                          * allocate memory, or a reader on WriteMostly
1479                          * is waiting for behind writes to flush */
1480                         if (bitmap &&
1481                             (atomic_read(&bitmap->behind_writes)
1482                              < mddev->bitmap_info.max_write_behind) &&
1483                             !waitqueue_active(&bitmap->behind_wait)) {
1484                                 alloc_behind_master_bio(r1_bio, bio);
1485                         }
1486
1487                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1488                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1489                         first_clone = 0;
1490                 }
1491
1492                 if (r1_bio->behind_master_bio)
1493                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1494                                               GFP_NOIO, &mddev->bio_set);
1495                 else
1496                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1497
1498                 if (r1_bio->behind_master_bio) {
1499                         if (test_bit(CollisionCheck, &rdev->flags))
1500                                 wait_for_serialization(rdev, r1_bio);
1501                         if (test_bit(WriteMostly, &rdev->flags))
1502                                 atomic_inc(&r1_bio->behind_remaining);
1503                 } else if (mddev->serialize_policy)
1504                         wait_for_serialization(rdev, r1_bio);
1505
1506                 r1_bio->bios[i] = mbio;
1507
1508                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1509                                    conf->mirrors[i].rdev->data_offset);
1510                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1511                 mbio->bi_end_io = raid1_end_write_request;
1512                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1513                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1514                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1515                     conf->raid_disks - mddev->degraded > 1)
1516                         mbio->bi_opf |= MD_FAILFAST;
1517                 mbio->bi_private = r1_bio;
1518
1519                 atomic_inc(&r1_bio->remaining);
1520
1521                 if (mddev->gendisk)
1522                         trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1523                                               r1_bio->sector);
1524                 /* flush_pending_writes() needs access to the rdev so...*/
1525                 mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
1526
1527                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1528                 if (cb)
1529                         plug = container_of(cb, struct raid1_plug_cb, cb);
1530                 else
1531                         plug = NULL;
1532                 if (plug) {
1533                         bio_list_add(&plug->pending, mbio);
1534                         plug->pending_cnt++;
1535                 } else {
1536                         spin_lock_irqsave(&conf->device_lock, flags);
1537                         bio_list_add(&conf->pending_bio_list, mbio);
1538                         conf->pending_count++;
1539                         spin_unlock_irqrestore(&conf->device_lock, flags);
1540                         md_wakeup_thread(mddev->thread);
1541                 }
1542         }
1543
1544         r1_bio_write_done(r1_bio);
1545
1546         /* In case raid1d snuck in to freeze_array */
1547         wake_up(&conf->wait_barrier);
1548 }
1549
1550 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1551 {
1552         sector_t sectors;
1553
1554         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1555             && md_flush_request(mddev, bio))
1556                 return true;
1557
1558         /*
1559          * There is a limit to the maximum size, but
1560          * the read/write handler might find a lower limit
1561          * due to bad blocks.  To avoid multiple splits,
1562          * we pass the maximum number of sectors down
1563          * and let the lower level perform the split.
1564          */
1565         sectors = align_to_barrier_unit_end(
1566                 bio->bi_iter.bi_sector, bio_sectors(bio));
1567
1568         if (bio_data_dir(bio) == READ)
1569                 raid1_read_request(mddev, bio, sectors, NULL);
1570         else {
1571                 if (!md_write_start(mddev,bio))
1572                         return false;
1573                 raid1_write_request(mddev, bio, sectors);
1574         }
1575         return true;
1576 }
1577
1578 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1579 {
1580         struct r1conf *conf = mddev->private;
1581         int i;
1582
1583         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1584                    conf->raid_disks - mddev->degraded);
1585         rcu_read_lock();
1586         for (i = 0; i < conf->raid_disks; i++) {
1587                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1588                 seq_printf(seq, "%s",
1589                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1590         }
1591         rcu_read_unlock();
1592         seq_printf(seq, "]");
1593 }
1594
1595 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1596 {
1597         char b[BDEVNAME_SIZE];
1598         struct r1conf *conf = mddev->private;
1599         unsigned long flags;
1600
1601         /*
1602          * If it is not operational, then we have already marked it as dead
1603          * else if it is the last working disks with "fail_last_dev == false",
1604          * ignore the error, let the next level up know.
1605          * else mark the drive as failed
1606          */
1607         spin_lock_irqsave(&conf->device_lock, flags);
1608         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1609             && (conf->raid_disks - mddev->degraded) == 1) {
1610                 /*
1611                  * Don't fail the drive, act as though we were just a
1612                  * normal single drive.
1613                  * However don't try a recovery from this drive as
1614                  * it is very likely to fail.
1615                  */
1616                 conf->recovery_disabled = mddev->recovery_disabled;
1617                 spin_unlock_irqrestore(&conf->device_lock, flags);
1618                 return;
1619         }
1620         set_bit(Blocked, &rdev->flags);
1621         if (test_and_clear_bit(In_sync, &rdev->flags))
1622                 mddev->degraded++;
1623         set_bit(Faulty, &rdev->flags);
1624         spin_unlock_irqrestore(&conf->device_lock, flags);
1625         /*
1626          * if recovery is running, make sure it aborts.
1627          */
1628         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1629         set_mask_bits(&mddev->sb_flags, 0,
1630                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1631         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1632                 "md/raid1:%s: Operation continuing on %d devices.\n",
1633                 mdname(mddev), bdevname(rdev->bdev, b),
1634                 mdname(mddev), conf->raid_disks - mddev->degraded);
1635 }
1636
1637 static void print_conf(struct r1conf *conf)
1638 {
1639         int i;
1640
1641         pr_debug("RAID1 conf printout:\n");
1642         if (!conf) {
1643                 pr_debug("(!conf)\n");
1644                 return;
1645         }
1646         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1647                  conf->raid_disks);
1648
1649         rcu_read_lock();
1650         for (i = 0; i < conf->raid_disks; i++) {
1651                 char b[BDEVNAME_SIZE];
1652                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1653                 if (rdev)
1654                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1655                                  i, !test_bit(In_sync, &rdev->flags),
1656                                  !test_bit(Faulty, &rdev->flags),
1657                                  bdevname(rdev->bdev,b));
1658         }
1659         rcu_read_unlock();
1660 }
1661
1662 static void close_sync(struct r1conf *conf)
1663 {
1664         int idx;
1665
1666         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1667                 _wait_barrier(conf, idx);
1668                 _allow_barrier(conf, idx);
1669         }
1670
1671         mempool_exit(&conf->r1buf_pool);
1672 }
1673
1674 static int raid1_spare_active(struct mddev *mddev)
1675 {
1676         int i;
1677         struct r1conf *conf = mddev->private;
1678         int count = 0;
1679         unsigned long flags;
1680
1681         /*
1682          * Find all failed disks within the RAID1 configuration
1683          * and mark them readable.
1684          * Called under mddev lock, so rcu protection not needed.
1685          * device_lock used to avoid races with raid1_end_read_request
1686          * which expects 'In_sync' flags and ->degraded to be consistent.
1687          */
1688         spin_lock_irqsave(&conf->device_lock, flags);
1689         for (i = 0; i < conf->raid_disks; i++) {
1690                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1691                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1692                 if (repl
1693                     && !test_bit(Candidate, &repl->flags)
1694                     && repl->recovery_offset == MaxSector
1695                     && !test_bit(Faulty, &repl->flags)
1696                     && !test_and_set_bit(In_sync, &repl->flags)) {
1697                         /* replacement has just become active */
1698                         if (!rdev ||
1699                             !test_and_clear_bit(In_sync, &rdev->flags))
1700                                 count++;
1701                         if (rdev) {
1702                                 /* Replaced device not technically
1703                                  * faulty, but we need to be sure
1704                                  * it gets removed and never re-added
1705                                  */
1706                                 set_bit(Faulty, &rdev->flags);
1707                                 sysfs_notify_dirent_safe(
1708                                         rdev->sysfs_state);
1709                         }
1710                 }
1711                 if (rdev
1712                     && rdev->recovery_offset == MaxSector
1713                     && !test_bit(Faulty, &rdev->flags)
1714                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1715                         count++;
1716                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1717                 }
1718         }
1719         mddev->degraded -= count;
1720         spin_unlock_irqrestore(&conf->device_lock, flags);
1721
1722         print_conf(conf);
1723         return count;
1724 }
1725
1726 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728         struct r1conf *conf = mddev->private;
1729         int err = -EEXIST;
1730         int mirror = 0;
1731         struct raid1_info *p;
1732         int first = 0;
1733         int last = conf->raid_disks - 1;
1734
1735         if (mddev->recovery_disabled == conf->recovery_disabled)
1736                 return -EBUSY;
1737
1738         if (md_integrity_add_rdev(rdev, mddev))
1739                 return -ENXIO;
1740
1741         if (rdev->raid_disk >= 0)
1742                 first = last = rdev->raid_disk;
1743
1744         /*
1745          * find the disk ... but prefer rdev->saved_raid_disk
1746          * if possible.
1747          */
1748         if (rdev->saved_raid_disk >= 0 &&
1749             rdev->saved_raid_disk >= first &&
1750             rdev->saved_raid_disk < conf->raid_disks &&
1751             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1752                 first = last = rdev->saved_raid_disk;
1753
1754         for (mirror = first; mirror <= last; mirror++) {
1755                 p = conf->mirrors + mirror;
1756                 if (!p->rdev) {
1757                         if (mddev->gendisk)
1758                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1759                                                   rdev->data_offset << 9);
1760
1761                         p->head_position = 0;
1762                         rdev->raid_disk = mirror;
1763                         err = 0;
1764                         /* As all devices are equivalent, we don't need a full recovery
1765                          * if this was recently any drive of the array
1766                          */
1767                         if (rdev->saved_raid_disk < 0)
1768                                 conf->fullsync = 1;
1769                         rcu_assign_pointer(p->rdev, rdev);
1770                         break;
1771                 }
1772                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1773                     p[conf->raid_disks].rdev == NULL) {
1774                         /* Add this device as a replacement */
1775                         clear_bit(In_sync, &rdev->flags);
1776                         set_bit(Replacement, &rdev->flags);
1777                         rdev->raid_disk = mirror;
1778                         err = 0;
1779                         conf->fullsync = 1;
1780                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1781                         break;
1782                 }
1783         }
1784         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1785                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1786         print_conf(conf);
1787         return err;
1788 }
1789
1790 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1791 {
1792         struct r1conf *conf = mddev->private;
1793         int err = 0;
1794         int number = rdev->raid_disk;
1795         struct raid1_info *p = conf->mirrors + number;
1796
1797         if (rdev != p->rdev)
1798                 p = conf->mirrors + conf->raid_disks + number;
1799
1800         print_conf(conf);
1801         if (rdev == p->rdev) {
1802                 if (test_bit(In_sync, &rdev->flags) ||
1803                     atomic_read(&rdev->nr_pending)) {
1804                         err = -EBUSY;
1805                         goto abort;
1806                 }
1807                 /* Only remove non-faulty devices if recovery
1808                  * is not possible.
1809                  */
1810                 if (!test_bit(Faulty, &rdev->flags) &&
1811                     mddev->recovery_disabled != conf->recovery_disabled &&
1812                     mddev->degraded < conf->raid_disks) {
1813                         err = -EBUSY;
1814                         goto abort;
1815                 }
1816                 p->rdev = NULL;
1817                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1818                         synchronize_rcu();
1819                         if (atomic_read(&rdev->nr_pending)) {
1820                                 /* lost the race, try later */
1821                                 err = -EBUSY;
1822                                 p->rdev = rdev;
1823                                 goto abort;
1824                         }
1825                 }
1826                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1827                         /* We just removed a device that is being replaced.
1828                          * Move down the replacement.  We drain all IO before
1829                          * doing this to avoid confusion.
1830                          */
1831                         struct md_rdev *repl =
1832                                 conf->mirrors[conf->raid_disks + number].rdev;
1833                         freeze_array(conf, 0);
1834                         if (atomic_read(&repl->nr_pending)) {
1835                                 /* It means that some queued IO of retry_list
1836                                  * hold repl. Thus, we cannot set replacement
1837                                  * as NULL, avoiding rdev NULL pointer
1838                                  * dereference in sync_request_write and
1839                                  * handle_write_finished.
1840                                  */
1841                                 err = -EBUSY;
1842                                 unfreeze_array(conf);
1843                                 goto abort;
1844                         }
1845                         clear_bit(Replacement, &repl->flags);
1846                         p->rdev = repl;
1847                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1848                         unfreeze_array(conf);
1849                 }
1850
1851                 clear_bit(WantReplacement, &rdev->flags);
1852                 err = md_integrity_register(mddev);
1853         }
1854 abort:
1855
1856         print_conf(conf);
1857         return err;
1858 }
1859
1860 static void end_sync_read(struct bio *bio)
1861 {
1862         struct r1bio *r1_bio = get_resync_r1bio(bio);
1863
1864         update_head_pos(r1_bio->read_disk, r1_bio);
1865
1866         /*
1867          * we have read a block, now it needs to be re-written,
1868          * or re-read if the read failed.
1869          * We don't do much here, just schedule handling by raid1d
1870          */
1871         if (!bio->bi_status)
1872                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1873
1874         if (atomic_dec_and_test(&r1_bio->remaining))
1875                 reschedule_retry(r1_bio);
1876 }
1877
1878 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1879 {
1880         sector_t sync_blocks = 0;
1881         sector_t s = r1_bio->sector;
1882         long sectors_to_go = r1_bio->sectors;
1883
1884         /* make sure these bits don't get cleared. */
1885         do {
1886                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1887                 s += sync_blocks;
1888                 sectors_to_go -= sync_blocks;
1889         } while (sectors_to_go > 0);
1890 }
1891
1892 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1893 {
1894         if (atomic_dec_and_test(&r1_bio->remaining)) {
1895                 struct mddev *mddev = r1_bio->mddev;
1896                 int s = r1_bio->sectors;
1897
1898                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1899                     test_bit(R1BIO_WriteError, &r1_bio->state))
1900                         reschedule_retry(r1_bio);
1901                 else {
1902                         put_buf(r1_bio);
1903                         md_done_sync(mddev, s, uptodate);
1904                 }
1905         }
1906 }
1907
1908 static void end_sync_write(struct bio *bio)
1909 {
1910         int uptodate = !bio->bi_status;
1911         struct r1bio *r1_bio = get_resync_r1bio(bio);
1912         struct mddev *mddev = r1_bio->mddev;
1913         struct r1conf *conf = mddev->private;
1914         sector_t first_bad;
1915         int bad_sectors;
1916         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1917
1918         if (!uptodate) {
1919                 abort_sync_write(mddev, r1_bio);
1920                 set_bit(WriteErrorSeen, &rdev->flags);
1921                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1922                         set_bit(MD_RECOVERY_NEEDED, &
1923                                 mddev->recovery);
1924                 set_bit(R1BIO_WriteError, &r1_bio->state);
1925         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1926                                &first_bad, &bad_sectors) &&
1927                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1928                                 r1_bio->sector,
1929                                 r1_bio->sectors,
1930                                 &first_bad, &bad_sectors)
1931                 )
1932                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1933
1934         put_sync_write_buf(r1_bio, uptodate);
1935 }
1936
1937 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1938                             int sectors, struct page *page, int rw)
1939 {
1940         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1941                 /* success */
1942                 return 1;
1943         if (rw == WRITE) {
1944                 set_bit(WriteErrorSeen, &rdev->flags);
1945                 if (!test_and_set_bit(WantReplacement,
1946                                       &rdev->flags))
1947                         set_bit(MD_RECOVERY_NEEDED, &
1948                                 rdev->mddev->recovery);
1949         }
1950         /* need to record an error - either for the block or the device */
1951         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1952                 md_error(rdev->mddev, rdev);
1953         return 0;
1954 }
1955
1956 static int fix_sync_read_error(struct r1bio *r1_bio)
1957 {
1958         /* Try some synchronous reads of other devices to get
1959          * good data, much like with normal read errors.  Only
1960          * read into the pages we already have so we don't
1961          * need to re-issue the read request.
1962          * We don't need to freeze the array, because being in an
1963          * active sync request, there is no normal IO, and
1964          * no overlapping syncs.
1965          * We don't need to check is_badblock() again as we
1966          * made sure that anything with a bad block in range
1967          * will have bi_end_io clear.
1968          */
1969         struct mddev *mddev = r1_bio->mddev;
1970         struct r1conf *conf = mddev->private;
1971         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1972         struct page **pages = get_resync_pages(bio)->pages;
1973         sector_t sect = r1_bio->sector;
1974         int sectors = r1_bio->sectors;
1975         int idx = 0;
1976         struct md_rdev *rdev;
1977
1978         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1979         if (test_bit(FailFast, &rdev->flags)) {
1980                 /* Don't try recovering from here - just fail it
1981                  * ... unless it is the last working device of course */
1982                 md_error(mddev, rdev);
1983                 if (test_bit(Faulty, &rdev->flags))
1984                         /* Don't try to read from here, but make sure
1985                          * put_buf does it's thing
1986                          */
1987                         bio->bi_end_io = end_sync_write;
1988         }
1989
1990         while(sectors) {
1991                 int s = sectors;
1992                 int d = r1_bio->read_disk;
1993                 int success = 0;
1994                 int start;
1995
1996                 if (s > (PAGE_SIZE>>9))
1997                         s = PAGE_SIZE >> 9;
1998                 do {
1999                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2000                                 /* No rcu protection needed here devices
2001                                  * can only be removed when no resync is
2002                                  * active, and resync is currently active
2003                                  */
2004                                 rdev = conf->mirrors[d].rdev;
2005                                 if (sync_page_io(rdev, sect, s<<9,
2006                                                  pages[idx],
2007                                                  REQ_OP_READ, 0, false)) {
2008                                         success = 1;
2009                                         break;
2010                                 }
2011                         }
2012                         d++;
2013                         if (d == conf->raid_disks * 2)
2014                                 d = 0;
2015                 } while (!success && d != r1_bio->read_disk);
2016
2017                 if (!success) {
2018                         char b[BDEVNAME_SIZE];
2019                         int abort = 0;
2020                         /* Cannot read from anywhere, this block is lost.
2021                          * Record a bad block on each device.  If that doesn't
2022                          * work just disable and interrupt the recovery.
2023                          * Don't fail devices as that won't really help.
2024                          */
2025                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2026                                             mdname(mddev), bio_devname(bio, b),
2027                                             (unsigned long long)r1_bio->sector);
2028                         for (d = 0; d < conf->raid_disks * 2; d++) {
2029                                 rdev = conf->mirrors[d].rdev;
2030                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2031                                         continue;
2032                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2033                                         abort = 1;
2034                         }
2035                         if (abort) {
2036                                 conf->recovery_disabled =
2037                                         mddev->recovery_disabled;
2038                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2039                                 md_done_sync(mddev, r1_bio->sectors, 0);
2040                                 put_buf(r1_bio);
2041                                 return 0;
2042                         }
2043                         /* Try next page */
2044                         sectors -= s;
2045                         sect += s;
2046                         idx++;
2047                         continue;
2048                 }
2049
2050                 start = d;
2051                 /* write it back and re-read */
2052                 while (d != r1_bio->read_disk) {
2053                         if (d == 0)
2054                                 d = conf->raid_disks * 2;
2055                         d--;
2056                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2057                                 continue;
2058                         rdev = conf->mirrors[d].rdev;
2059                         if (r1_sync_page_io(rdev, sect, s,
2060                                             pages[idx],
2061                                             WRITE) == 0) {
2062                                 r1_bio->bios[d]->bi_end_io = NULL;
2063                                 rdev_dec_pending(rdev, mddev);
2064                         }
2065                 }
2066                 d = start;
2067                 while (d != r1_bio->read_disk) {
2068                         if (d == 0)
2069                                 d = conf->raid_disks * 2;
2070                         d--;
2071                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2072                                 continue;
2073                         rdev = conf->mirrors[d].rdev;
2074                         if (r1_sync_page_io(rdev, sect, s,
2075                                             pages[idx],
2076                                             READ) != 0)
2077                                 atomic_add(s, &rdev->corrected_errors);
2078                 }
2079                 sectors -= s;
2080                 sect += s;
2081                 idx ++;
2082         }
2083         set_bit(R1BIO_Uptodate, &r1_bio->state);
2084         bio->bi_status = 0;
2085         return 1;
2086 }
2087
2088 static void process_checks(struct r1bio *r1_bio)
2089 {
2090         /* We have read all readable devices.  If we haven't
2091          * got the block, then there is no hope left.
2092          * If we have, then we want to do a comparison
2093          * and skip the write if everything is the same.
2094          * If any blocks failed to read, then we need to
2095          * attempt an over-write
2096          */
2097         struct mddev *mddev = r1_bio->mddev;
2098         struct r1conf *conf = mddev->private;
2099         int primary;
2100         int i;
2101         int vcnt;
2102
2103         /* Fix variable parts of all bios */
2104         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2105         for (i = 0; i < conf->raid_disks * 2; i++) {
2106                 blk_status_t status;
2107                 struct bio *b = r1_bio->bios[i];
2108                 struct resync_pages *rp = get_resync_pages(b);
2109                 if (b->bi_end_io != end_sync_read)
2110                         continue;
2111                 /* fixup the bio for reuse, but preserve errno */
2112                 status = b->bi_status;
2113                 bio_reset(b);
2114                 b->bi_status = status;
2115                 b->bi_iter.bi_sector = r1_bio->sector +
2116                         conf->mirrors[i].rdev->data_offset;
2117                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2118                 b->bi_end_io = end_sync_read;
2119                 rp->raid_bio = r1_bio;
2120                 b->bi_private = rp;
2121
2122                 /* initialize bvec table again */
2123                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2124         }
2125         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2126                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2127                     !r1_bio->bios[primary]->bi_status) {
2128                         r1_bio->bios[primary]->bi_end_io = NULL;
2129                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2130                         break;
2131                 }
2132         r1_bio->read_disk = primary;
2133         for (i = 0; i < conf->raid_disks * 2; i++) {
2134                 int j = 0;
2135                 struct bio *pbio = r1_bio->bios[primary];
2136                 struct bio *sbio = r1_bio->bios[i];
2137                 blk_status_t status = sbio->bi_status;
2138                 struct page **ppages = get_resync_pages(pbio)->pages;
2139                 struct page **spages = get_resync_pages(sbio)->pages;
2140                 struct bio_vec *bi;
2141                 int page_len[RESYNC_PAGES] = { 0 };
2142                 struct bvec_iter_all iter_all;
2143
2144                 if (sbio->bi_end_io != end_sync_read)
2145                         continue;
2146                 /* Now we can 'fixup' the error value */
2147                 sbio->bi_status = 0;
2148
2149                 bio_for_each_segment_all(bi, sbio, iter_all)
2150                         page_len[j++] = bi->bv_len;
2151
2152                 if (!status) {
2153                         for (j = vcnt; j-- ; ) {
2154                                 if (memcmp(page_address(ppages[j]),
2155                                            page_address(spages[j]),
2156                                            page_len[j]))
2157                                         break;
2158                         }
2159                 } else
2160                         j = 0;
2161                 if (j >= 0)
2162                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2163                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2164                               && !status)) {
2165                         /* No need to write to this device. */
2166                         sbio->bi_end_io = NULL;
2167                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2168                         continue;
2169                 }
2170
2171                 bio_copy_data(sbio, pbio);
2172         }
2173 }
2174
2175 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2176 {
2177         struct r1conf *conf = mddev->private;
2178         int i;
2179         int disks = conf->raid_disks * 2;
2180         struct bio *wbio;
2181
2182         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2183                 /* ouch - failed to read all of that. */
2184                 if (!fix_sync_read_error(r1_bio))
2185                         return;
2186
2187         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2188                 process_checks(r1_bio);
2189
2190         /*
2191          * schedule writes
2192          */
2193         atomic_set(&r1_bio->remaining, 1);
2194         for (i = 0; i < disks ; i++) {
2195                 wbio = r1_bio->bios[i];
2196                 if (wbio->bi_end_io == NULL ||
2197                     (wbio->bi_end_io == end_sync_read &&
2198                      (i == r1_bio->read_disk ||
2199                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2200                         continue;
2201                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2202                         abort_sync_write(mddev, r1_bio);
2203                         continue;
2204                 }
2205
2206                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2207                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2208                         wbio->bi_opf |= MD_FAILFAST;
2209
2210                 wbio->bi_end_io = end_sync_write;
2211                 atomic_inc(&r1_bio->remaining);
2212                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2213
2214                 submit_bio_noacct(wbio);
2215         }
2216
2217         put_sync_write_buf(r1_bio, 1);
2218 }
2219
2220 /*
2221  * This is a kernel thread which:
2222  *
2223  *      1.      Retries failed read operations on working mirrors.
2224  *      2.      Updates the raid superblock when problems encounter.
2225  *      3.      Performs writes following reads for array synchronising.
2226  */
2227
2228 static void fix_read_error(struct r1conf *conf, int read_disk,
2229                            sector_t sect, int sectors)
2230 {
2231         struct mddev *mddev = conf->mddev;
2232         while(sectors) {
2233                 int s = sectors;
2234                 int d = read_disk;
2235                 int success = 0;
2236                 int start;
2237                 struct md_rdev *rdev;
2238
2239                 if (s > (PAGE_SIZE>>9))
2240                         s = PAGE_SIZE >> 9;
2241
2242                 do {
2243                         sector_t first_bad;
2244                         int bad_sectors;
2245
2246                         rcu_read_lock();
2247                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2248                         if (rdev &&
2249                             (test_bit(In_sync, &rdev->flags) ||
2250                              (!test_bit(Faulty, &rdev->flags) &&
2251                               rdev->recovery_offset >= sect + s)) &&
2252                             is_badblock(rdev, sect, s,
2253                                         &first_bad, &bad_sectors) == 0) {
2254                                 atomic_inc(&rdev->nr_pending);
2255                                 rcu_read_unlock();
2256                                 if (sync_page_io(rdev, sect, s<<9,
2257                                          conf->tmppage, REQ_OP_READ, 0, false))
2258                                         success = 1;
2259                                 rdev_dec_pending(rdev, mddev);
2260                                 if (success)
2261                                         break;
2262                         } else
2263                                 rcu_read_unlock();
2264                         d++;
2265                         if (d == conf->raid_disks * 2)
2266                                 d = 0;
2267                 } while (!success && d != read_disk);
2268
2269                 if (!success) {
2270                         /* Cannot read from anywhere - mark it bad */
2271                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2272                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2273                                 md_error(mddev, rdev);
2274                         break;
2275                 }
2276                 /* write it back and re-read */
2277                 start = d;
2278                 while (d != read_disk) {
2279                         if (d==0)
2280                                 d = conf->raid_disks * 2;
2281                         d--;
2282                         rcu_read_lock();
2283                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2284                         if (rdev &&
2285                             !test_bit(Faulty, &rdev->flags)) {
2286                                 atomic_inc(&rdev->nr_pending);
2287                                 rcu_read_unlock();
2288                                 r1_sync_page_io(rdev, sect, s,
2289                                                 conf->tmppage, WRITE);
2290                                 rdev_dec_pending(rdev, mddev);
2291                         } else
2292                                 rcu_read_unlock();
2293                 }
2294                 d = start;
2295                 while (d != read_disk) {
2296                         char b[BDEVNAME_SIZE];
2297                         if (d==0)
2298                                 d = conf->raid_disks * 2;
2299                         d--;
2300                         rcu_read_lock();
2301                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2302                         if (rdev &&
2303                             !test_bit(Faulty, &rdev->flags)) {
2304                                 atomic_inc(&rdev->nr_pending);
2305                                 rcu_read_unlock();
2306                                 if (r1_sync_page_io(rdev, sect, s,
2307                                                     conf->tmppage, READ)) {
2308                                         atomic_add(s, &rdev->corrected_errors);
2309                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2310                                                 mdname(mddev), s,
2311                                                 (unsigned long long)(sect +
2312                                                                      rdev->data_offset),
2313                                                 bdevname(rdev->bdev, b));
2314                                 }
2315                                 rdev_dec_pending(rdev, mddev);
2316                         } else
2317                                 rcu_read_unlock();
2318                 }
2319                 sectors -= s;
2320                 sect += s;
2321         }
2322 }
2323
2324 static int narrow_write_error(struct r1bio *r1_bio, int i)
2325 {
2326         struct mddev *mddev = r1_bio->mddev;
2327         struct r1conf *conf = mddev->private;
2328         struct md_rdev *rdev = conf->mirrors[i].rdev;
2329
2330         /* bio has the data to be written to device 'i' where
2331          * we just recently had a write error.
2332          * We repeatedly clone the bio and trim down to one block,
2333          * then try the write.  Where the write fails we record
2334          * a bad block.
2335          * It is conceivable that the bio doesn't exactly align with
2336          * blocks.  We must handle this somehow.
2337          *
2338          * We currently own a reference on the rdev.
2339          */
2340
2341         int block_sectors;
2342         sector_t sector;
2343         int sectors;
2344         int sect_to_write = r1_bio->sectors;
2345         int ok = 1;
2346
2347         if (rdev->badblocks.shift < 0)
2348                 return 0;
2349
2350         block_sectors = roundup(1 << rdev->badblocks.shift,
2351                                 bdev_logical_block_size(rdev->bdev) >> 9);
2352         sector = r1_bio->sector;
2353         sectors = ((sector + block_sectors)
2354                    & ~(sector_t)(block_sectors - 1))
2355                 - sector;
2356
2357         while (sect_to_write) {
2358                 struct bio *wbio;
2359                 if (sectors > sect_to_write)
2360                         sectors = sect_to_write;
2361                 /* Write at 'sector' for 'sectors'*/
2362
2363                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2364                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2365                                               GFP_NOIO,
2366                                               &mddev->bio_set);
2367                 } else {
2368                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2369                                               &mddev->bio_set);
2370                 }
2371
2372                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2373                 wbio->bi_iter.bi_sector = r1_bio->sector;
2374                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2375
2376                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2377                 wbio->bi_iter.bi_sector += rdev->data_offset;
2378                 bio_set_dev(wbio, rdev->bdev);
2379
2380                 if (submit_bio_wait(wbio) < 0)
2381                         /* failure! */
2382                         ok = rdev_set_badblocks(rdev, sector,
2383                                                 sectors, 0)
2384                                 && ok;
2385
2386                 bio_put(wbio);
2387                 sect_to_write -= sectors;
2388                 sector += sectors;
2389                 sectors = block_sectors;
2390         }
2391         return ok;
2392 }
2393
2394 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2395 {
2396         int m;
2397         int s = r1_bio->sectors;
2398         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2399                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2400                 struct bio *bio = r1_bio->bios[m];
2401                 if (bio->bi_end_io == NULL)
2402                         continue;
2403                 if (!bio->bi_status &&
2404                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2405                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2406                 }
2407                 if (bio->bi_status &&
2408                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2409                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2410                                 md_error(conf->mddev, rdev);
2411                 }
2412         }
2413         put_buf(r1_bio);
2414         md_done_sync(conf->mddev, s, 1);
2415 }
2416
2417 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2418 {
2419         int m, idx;
2420         bool fail = false;
2421
2422         for (m = 0; m < conf->raid_disks * 2 ; m++)
2423                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2424                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2425                         rdev_clear_badblocks(rdev,
2426                                              r1_bio->sector,
2427                                              r1_bio->sectors, 0);
2428                         rdev_dec_pending(rdev, conf->mddev);
2429                 } else if (r1_bio->bios[m] != NULL) {
2430                         /* This drive got a write error.  We need to
2431                          * narrow down and record precise write
2432                          * errors.
2433                          */
2434                         fail = true;
2435                         if (!narrow_write_error(r1_bio, m)) {
2436                                 md_error(conf->mddev,
2437                                          conf->mirrors[m].rdev);
2438                                 /* an I/O failed, we can't clear the bitmap */
2439                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2440                         }
2441                         rdev_dec_pending(conf->mirrors[m].rdev,
2442                                          conf->mddev);
2443                 }
2444         if (fail) {
2445                 spin_lock_irq(&conf->device_lock);
2446                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2447                 idx = sector_to_idx(r1_bio->sector);
2448                 atomic_inc(&conf->nr_queued[idx]);
2449                 spin_unlock_irq(&conf->device_lock);
2450                 /*
2451                  * In case freeze_array() is waiting for condition
2452                  * get_unqueued_pending() == extra to be true.
2453                  */
2454                 wake_up(&conf->wait_barrier);
2455                 md_wakeup_thread(conf->mddev->thread);
2456         } else {
2457                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2458                         close_write(r1_bio);
2459                 raid_end_bio_io(r1_bio);
2460         }
2461 }
2462
2463 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2464 {
2465         struct mddev *mddev = conf->mddev;
2466         struct bio *bio;
2467         struct md_rdev *rdev;
2468
2469         clear_bit(R1BIO_ReadError, &r1_bio->state);
2470         /* we got a read error. Maybe the drive is bad.  Maybe just
2471          * the block and we can fix it.
2472          * We freeze all other IO, and try reading the block from
2473          * other devices.  When we find one, we re-write
2474          * and check it that fixes the read error.
2475          * This is all done synchronously while the array is
2476          * frozen
2477          */
2478
2479         bio = r1_bio->bios[r1_bio->read_disk];
2480         bio_put(bio);
2481         r1_bio->bios[r1_bio->read_disk] = NULL;
2482
2483         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2484         if (mddev->ro == 0
2485             && !test_bit(FailFast, &rdev->flags)) {
2486                 freeze_array(conf, 1);
2487                 fix_read_error(conf, r1_bio->read_disk,
2488                                r1_bio->sector, r1_bio->sectors);
2489                 unfreeze_array(conf);
2490         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2491                 md_error(mddev, rdev);
2492         } else {
2493                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2494         }
2495
2496         rdev_dec_pending(rdev, conf->mddev);
2497         allow_barrier(conf, r1_bio->sector);
2498         bio = r1_bio->master_bio;
2499
2500         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2501         r1_bio->state = 0;
2502         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2503 }
2504
2505 static void raid1d(struct md_thread *thread)
2506 {
2507         struct mddev *mddev = thread->mddev;
2508         struct r1bio *r1_bio;
2509         unsigned long flags;
2510         struct r1conf *conf = mddev->private;
2511         struct list_head *head = &conf->retry_list;
2512         struct blk_plug plug;
2513         int idx;
2514
2515         md_check_recovery(mddev);
2516
2517         if (!list_empty_careful(&conf->bio_end_io_list) &&
2518             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2519                 LIST_HEAD(tmp);
2520                 spin_lock_irqsave(&conf->device_lock, flags);
2521                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2522                         list_splice_init(&conf->bio_end_io_list, &tmp);
2523                 spin_unlock_irqrestore(&conf->device_lock, flags);
2524                 while (!list_empty(&tmp)) {
2525                         r1_bio = list_first_entry(&tmp, struct r1bio,
2526                                                   retry_list);
2527                         list_del(&r1_bio->retry_list);
2528                         idx = sector_to_idx(r1_bio->sector);
2529                         atomic_dec(&conf->nr_queued[idx]);
2530                         if (mddev->degraded)
2531                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2532                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2533                                 close_write(r1_bio);
2534                         raid_end_bio_io(r1_bio);
2535                 }
2536         }
2537
2538         blk_start_plug(&plug);
2539         for (;;) {
2540
2541                 flush_pending_writes(conf);
2542
2543                 spin_lock_irqsave(&conf->device_lock, flags);
2544                 if (list_empty(head)) {
2545                         spin_unlock_irqrestore(&conf->device_lock, flags);
2546                         break;
2547                 }
2548                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2549                 list_del(head->prev);
2550                 idx = sector_to_idx(r1_bio->sector);
2551                 atomic_dec(&conf->nr_queued[idx]);
2552                 spin_unlock_irqrestore(&conf->device_lock, flags);
2553
2554                 mddev = r1_bio->mddev;
2555                 conf = mddev->private;
2556                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2557                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2558                             test_bit(R1BIO_WriteError, &r1_bio->state))
2559                                 handle_sync_write_finished(conf, r1_bio);
2560                         else
2561                                 sync_request_write(mddev, r1_bio);
2562                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2563                            test_bit(R1BIO_WriteError, &r1_bio->state))
2564                         handle_write_finished(conf, r1_bio);
2565                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2566                         handle_read_error(conf, r1_bio);
2567                 else
2568                         WARN_ON_ONCE(1);
2569
2570                 cond_resched();
2571                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2572                         md_check_recovery(mddev);
2573         }
2574         blk_finish_plug(&plug);
2575 }
2576
2577 static int init_resync(struct r1conf *conf)
2578 {
2579         int buffs;
2580
2581         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2582         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2583
2584         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2585                             r1buf_pool_free, conf->poolinfo);
2586 }
2587
2588 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2589 {
2590         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2591         struct resync_pages *rps;
2592         struct bio *bio;
2593         int i;
2594
2595         for (i = conf->poolinfo->raid_disks; i--; ) {
2596                 bio = r1bio->bios[i];
2597                 rps = bio->bi_private;
2598                 bio_reset(bio);
2599                 bio->bi_private = rps;
2600         }
2601         r1bio->master_bio = NULL;
2602         return r1bio;
2603 }
2604
2605 /*
2606  * perform a "sync" on one "block"
2607  *
2608  * We need to make sure that no normal I/O request - particularly write
2609  * requests - conflict with active sync requests.
2610  *
2611  * This is achieved by tracking pending requests and a 'barrier' concept
2612  * that can be installed to exclude normal IO requests.
2613  */
2614
2615 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2616                                    int *skipped)
2617 {
2618         struct r1conf *conf = mddev->private;
2619         struct r1bio *r1_bio;
2620         struct bio *bio;
2621         sector_t max_sector, nr_sectors;
2622         int disk = -1;
2623         int i;
2624         int wonly = -1;
2625         int write_targets = 0, read_targets = 0;
2626         sector_t sync_blocks;
2627         int still_degraded = 0;
2628         int good_sectors = RESYNC_SECTORS;
2629         int min_bad = 0; /* number of sectors that are bad in all devices */
2630         int idx = sector_to_idx(sector_nr);
2631         int page_idx = 0;
2632
2633         if (!mempool_initialized(&conf->r1buf_pool))
2634                 if (init_resync(conf))
2635                         return 0;
2636
2637         max_sector = mddev->dev_sectors;
2638         if (sector_nr >= max_sector) {
2639                 /* If we aborted, we need to abort the
2640                  * sync on the 'current' bitmap chunk (there will
2641                  * only be one in raid1 resync.
2642                  * We can find the current addess in mddev->curr_resync
2643                  */
2644                 if (mddev->curr_resync < max_sector) /* aborted */
2645                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2646                                            &sync_blocks, 1);
2647                 else /* completed sync */
2648                         conf->fullsync = 0;
2649
2650                 md_bitmap_close_sync(mddev->bitmap);
2651                 close_sync(conf);
2652
2653                 if (mddev_is_clustered(mddev)) {
2654                         conf->cluster_sync_low = 0;
2655                         conf->cluster_sync_high = 0;
2656                 }
2657                 return 0;
2658         }
2659
2660         if (mddev->bitmap == NULL &&
2661             mddev->recovery_cp == MaxSector &&
2662             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2663             conf->fullsync == 0) {
2664                 *skipped = 1;
2665                 return max_sector - sector_nr;
2666         }
2667         /* before building a request, check if we can skip these blocks..
2668          * This call the bitmap_start_sync doesn't actually record anything
2669          */
2670         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2671             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2672                 /* We can skip this block, and probably several more */
2673                 *skipped = 1;
2674                 return sync_blocks;
2675         }
2676
2677         /*
2678          * If there is non-resync activity waiting for a turn, then let it
2679          * though before starting on this new sync request.
2680          */
2681         if (atomic_read(&conf->nr_waiting[idx]))
2682                 schedule_timeout_uninterruptible(1);
2683
2684         /* we are incrementing sector_nr below. To be safe, we check against
2685          * sector_nr + two times RESYNC_SECTORS
2686          */
2687
2688         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2689                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2690
2691
2692         if (raise_barrier(conf, sector_nr))
2693                 return 0;
2694
2695         r1_bio = raid1_alloc_init_r1buf(conf);
2696
2697         rcu_read_lock();
2698         /*
2699          * If we get a correctably read error during resync or recovery,
2700          * we might want to read from a different device.  So we
2701          * flag all drives that could conceivably be read from for READ,
2702          * and any others (which will be non-In_sync devices) for WRITE.
2703          * If a read fails, we try reading from something else for which READ
2704          * is OK.
2705          */
2706
2707         r1_bio->mddev = mddev;
2708         r1_bio->sector = sector_nr;
2709         r1_bio->state = 0;
2710         set_bit(R1BIO_IsSync, &r1_bio->state);
2711         /* make sure good_sectors won't go across barrier unit boundary */
2712         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2713
2714         for (i = 0; i < conf->raid_disks * 2; i++) {
2715                 struct md_rdev *rdev;
2716                 bio = r1_bio->bios[i];
2717
2718                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2719                 if (rdev == NULL ||
2720                     test_bit(Faulty, &rdev->flags)) {
2721                         if (i < conf->raid_disks)
2722                                 still_degraded = 1;
2723                 } else if (!test_bit(In_sync, &rdev->flags)) {
2724                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2725                         bio->bi_end_io = end_sync_write;
2726                         write_targets ++;
2727                 } else {
2728                         /* may need to read from here */
2729                         sector_t first_bad = MaxSector;
2730                         int bad_sectors;
2731
2732                         if (is_badblock(rdev, sector_nr, good_sectors,
2733                                         &first_bad, &bad_sectors)) {
2734                                 if (first_bad > sector_nr)
2735                                         good_sectors = first_bad - sector_nr;
2736                                 else {
2737                                         bad_sectors -= (sector_nr - first_bad);
2738                                         if (min_bad == 0 ||
2739                                             min_bad > bad_sectors)
2740                                                 min_bad = bad_sectors;
2741                                 }
2742                         }
2743                         if (sector_nr < first_bad) {
2744                                 if (test_bit(WriteMostly, &rdev->flags)) {
2745                                         if (wonly < 0)
2746                                                 wonly = i;
2747                                 } else {
2748                                         if (disk < 0)
2749                                                 disk = i;
2750                                 }
2751                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2752                                 bio->bi_end_io = end_sync_read;
2753                                 read_targets++;
2754                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2755                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2756                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2757                                 /*
2758                                  * The device is suitable for reading (InSync),
2759                                  * but has bad block(s) here. Let's try to correct them,
2760                                  * if we are doing resync or repair. Otherwise, leave
2761                                  * this device alone for this sync request.
2762                                  */
2763                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2764                                 bio->bi_end_io = end_sync_write;
2765                                 write_targets++;
2766                         }
2767                 }
2768                 if (rdev && bio->bi_end_io) {
2769                         atomic_inc(&rdev->nr_pending);
2770                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2771                         bio_set_dev(bio, rdev->bdev);
2772                         if (test_bit(FailFast, &rdev->flags))
2773                                 bio->bi_opf |= MD_FAILFAST;
2774                 }
2775         }
2776         rcu_read_unlock();
2777         if (disk < 0)
2778                 disk = wonly;
2779         r1_bio->read_disk = disk;
2780
2781         if (read_targets == 0 && min_bad > 0) {
2782                 /* These sectors are bad on all InSync devices, so we
2783                  * need to mark them bad on all write targets
2784                  */
2785                 int ok = 1;
2786                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2787                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2788                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2789                                 ok = rdev_set_badblocks(rdev, sector_nr,
2790                                                         min_bad, 0
2791                                         ) && ok;
2792                         }
2793                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2794                 *skipped = 1;
2795                 put_buf(r1_bio);
2796
2797                 if (!ok) {
2798                         /* Cannot record the badblocks, so need to
2799                          * abort the resync.
2800                          * If there are multiple read targets, could just
2801                          * fail the really bad ones ???
2802                          */
2803                         conf->recovery_disabled = mddev->recovery_disabled;
2804                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2805                         return 0;
2806                 } else
2807                         return min_bad;
2808
2809         }
2810         if (min_bad > 0 && min_bad < good_sectors) {
2811                 /* only resync enough to reach the next bad->good
2812                  * transition */
2813                 good_sectors = min_bad;
2814         }
2815
2816         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2817                 /* extra read targets are also write targets */
2818                 write_targets += read_targets-1;
2819
2820         if (write_targets == 0 || read_targets == 0) {
2821                 /* There is nowhere to write, so all non-sync
2822                  * drives must be failed - so we are finished
2823                  */
2824                 sector_t rv;
2825                 if (min_bad > 0)
2826                         max_sector = sector_nr + min_bad;
2827                 rv = max_sector - sector_nr;
2828                 *skipped = 1;
2829                 put_buf(r1_bio);
2830                 return rv;
2831         }
2832
2833         if (max_sector > mddev->resync_max)
2834                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2835         if (max_sector > sector_nr + good_sectors)
2836                 max_sector = sector_nr + good_sectors;
2837         nr_sectors = 0;
2838         sync_blocks = 0;
2839         do {
2840                 struct page *page;
2841                 int len = PAGE_SIZE;
2842                 if (sector_nr + (len>>9) > max_sector)
2843                         len = (max_sector - sector_nr) << 9;
2844                 if (len == 0)
2845                         break;
2846                 if (sync_blocks == 0) {
2847                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2848                                                   &sync_blocks, still_degraded) &&
2849                             !conf->fullsync &&
2850                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2851                                 break;
2852                         if ((len >> 9) > sync_blocks)
2853                                 len = sync_blocks<<9;
2854                 }
2855
2856                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2857                         struct resync_pages *rp;
2858
2859                         bio = r1_bio->bios[i];
2860                         rp = get_resync_pages(bio);
2861                         if (bio->bi_end_io) {
2862                                 page = resync_fetch_page(rp, page_idx);
2863
2864                                 /*
2865                                  * won't fail because the vec table is big
2866                                  * enough to hold all these pages
2867                                  */
2868                                 bio_add_page(bio, page, len, 0);
2869                         }
2870                 }
2871                 nr_sectors += len>>9;
2872                 sector_nr += len>>9;
2873                 sync_blocks -= (len>>9);
2874         } while (++page_idx < RESYNC_PAGES);
2875
2876         r1_bio->sectors = nr_sectors;
2877
2878         if (mddev_is_clustered(mddev) &&
2879                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2880                 conf->cluster_sync_low = mddev->curr_resync_completed;
2881                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2882                 /* Send resync message */
2883                 md_cluster_ops->resync_info_update(mddev,
2884                                 conf->cluster_sync_low,
2885                                 conf->cluster_sync_high);
2886         }
2887
2888         /* For a user-requested sync, we read all readable devices and do a
2889          * compare
2890          */
2891         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2892                 atomic_set(&r1_bio->remaining, read_targets);
2893                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2894                         bio = r1_bio->bios[i];
2895                         if (bio->bi_end_io == end_sync_read) {
2896                                 read_targets--;
2897                                 md_sync_acct_bio(bio, nr_sectors);
2898                                 if (read_targets == 1)
2899                                         bio->bi_opf &= ~MD_FAILFAST;
2900                                 submit_bio_noacct(bio);
2901                         }
2902                 }
2903         } else {
2904                 atomic_set(&r1_bio->remaining, 1);
2905                 bio = r1_bio->bios[r1_bio->read_disk];
2906                 md_sync_acct_bio(bio, nr_sectors);
2907                 if (read_targets == 1)
2908                         bio->bi_opf &= ~MD_FAILFAST;
2909                 submit_bio_noacct(bio);
2910         }
2911         return nr_sectors;
2912 }
2913
2914 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2915 {
2916         if (sectors)
2917                 return sectors;
2918
2919         return mddev->dev_sectors;
2920 }
2921
2922 static struct r1conf *setup_conf(struct mddev *mddev)
2923 {
2924         struct r1conf *conf;
2925         int i;
2926         struct raid1_info *disk;
2927         struct md_rdev *rdev;
2928         int err = -ENOMEM;
2929
2930         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2931         if (!conf)
2932                 goto abort;
2933
2934         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2935                                    sizeof(atomic_t), GFP_KERNEL);
2936         if (!conf->nr_pending)
2937                 goto abort;
2938
2939         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2940                                    sizeof(atomic_t), GFP_KERNEL);
2941         if (!conf->nr_waiting)
2942                 goto abort;
2943
2944         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2945                                   sizeof(atomic_t), GFP_KERNEL);
2946         if (!conf->nr_queued)
2947                 goto abort;
2948
2949         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2950                                 sizeof(atomic_t), GFP_KERNEL);
2951         if (!conf->barrier)
2952                 goto abort;
2953
2954         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2955                                             mddev->raid_disks, 2),
2956                                 GFP_KERNEL);
2957         if (!conf->mirrors)
2958                 goto abort;
2959
2960         conf->tmppage = alloc_page(GFP_KERNEL);
2961         if (!conf->tmppage)
2962                 goto abort;
2963
2964         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2965         if (!conf->poolinfo)
2966                 goto abort;
2967         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2968         err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2969                            rbio_pool_free, conf->poolinfo);
2970         if (err)
2971                 goto abort;
2972
2973         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2974         if (err)
2975                 goto abort;
2976
2977         conf->poolinfo->mddev = mddev;
2978
2979         err = -EINVAL;
2980         spin_lock_init(&conf->device_lock);
2981         rdev_for_each(rdev, mddev) {
2982                 int disk_idx = rdev->raid_disk;
2983                 if (disk_idx >= mddev->raid_disks
2984                     || disk_idx < 0)
2985                         continue;
2986                 if (test_bit(Replacement, &rdev->flags))
2987                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2988                 else
2989                         disk = conf->mirrors + disk_idx;
2990
2991                 if (disk->rdev)
2992                         goto abort;
2993                 disk->rdev = rdev;
2994                 disk->head_position = 0;
2995                 disk->seq_start = MaxSector;
2996         }
2997         conf->raid_disks = mddev->raid_disks;
2998         conf->mddev = mddev;
2999         INIT_LIST_HEAD(&conf->retry_list);
3000         INIT_LIST_HEAD(&conf->bio_end_io_list);
3001
3002         spin_lock_init(&conf->resync_lock);
3003         init_waitqueue_head(&conf->wait_barrier);
3004
3005         bio_list_init(&conf->pending_bio_list);
3006         conf->pending_count = 0;
3007         conf->recovery_disabled = mddev->recovery_disabled - 1;
3008
3009         err = -EIO;
3010         for (i = 0; i < conf->raid_disks * 2; i++) {
3011
3012                 disk = conf->mirrors + i;
3013
3014                 if (i < conf->raid_disks &&
3015                     disk[conf->raid_disks].rdev) {
3016                         /* This slot has a replacement. */
3017                         if (!disk->rdev) {
3018                                 /* No original, just make the replacement
3019                                  * a recovering spare
3020                                  */
3021                                 disk->rdev =
3022                                         disk[conf->raid_disks].rdev;
3023                                 disk[conf->raid_disks].rdev = NULL;
3024                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3025                                 /* Original is not in_sync - bad */
3026                                 goto abort;
3027                 }
3028
3029                 if (!disk->rdev ||
3030                     !test_bit(In_sync, &disk->rdev->flags)) {
3031                         disk->head_position = 0;
3032                         if (disk->rdev &&
3033                             (disk->rdev->saved_raid_disk < 0))
3034                                 conf->fullsync = 1;
3035                 }
3036         }
3037
3038         err = -ENOMEM;
3039         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3040         if (!conf->thread)
3041                 goto abort;
3042
3043         return conf;
3044
3045  abort:
3046         if (conf) {
3047                 mempool_exit(&conf->r1bio_pool);
3048                 kfree(conf->mirrors);
3049                 safe_put_page(conf->tmppage);
3050                 kfree(conf->poolinfo);
3051                 kfree(conf->nr_pending);
3052                 kfree(conf->nr_waiting);
3053                 kfree(conf->nr_queued);
3054                 kfree(conf->barrier);
3055                 bioset_exit(&conf->bio_split);
3056                 kfree(conf);
3057         }
3058         return ERR_PTR(err);
3059 }
3060
3061 static void raid1_free(struct mddev *mddev, void *priv);
3062 static int raid1_run(struct mddev *mddev)
3063 {
3064         struct r1conf *conf;
3065         int i;
3066         struct md_rdev *rdev;
3067         int ret;
3068         bool discard_supported = false;
3069
3070         if (mddev->level != 1) {
3071                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3072                         mdname(mddev), mddev->level);
3073                 return -EIO;
3074         }
3075         if (mddev->reshape_position != MaxSector) {
3076                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3077                         mdname(mddev));
3078                 return -EIO;
3079         }
3080         if (mddev_init_writes_pending(mddev) < 0)
3081                 return -ENOMEM;
3082         /*
3083          * copy the already verified devices into our private RAID1
3084          * bookkeeping area. [whatever we allocate in run(),
3085          * should be freed in raid1_free()]
3086          */
3087         if (mddev->private == NULL)
3088                 conf = setup_conf(mddev);
3089         else
3090                 conf = mddev->private;
3091
3092         if (IS_ERR(conf))
3093                 return PTR_ERR(conf);
3094
3095         if (mddev->queue) {
3096                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3097                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3098         }
3099
3100         rdev_for_each(rdev, mddev) {
3101                 if (!mddev->gendisk)
3102                         continue;
3103                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3104                                   rdev->data_offset << 9);
3105                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3106                         discard_supported = true;
3107         }
3108
3109         mddev->degraded = 0;
3110         for (i = 0; i < conf->raid_disks; i++)
3111                 if (conf->mirrors[i].rdev == NULL ||
3112                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3113                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3114                         mddev->degraded++;
3115         /*
3116          * RAID1 needs at least one disk in active
3117          */
3118         if (conf->raid_disks - mddev->degraded < 1) {
3119                 ret = -EINVAL;
3120                 goto abort;
3121         }
3122
3123         if (conf->raid_disks - mddev->degraded == 1)
3124                 mddev->recovery_cp = MaxSector;
3125
3126         if (mddev->recovery_cp != MaxSector)
3127                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3128                         mdname(mddev));
3129         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3130                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3131                 mddev->raid_disks);
3132
3133         /*
3134          * Ok, everything is just fine now
3135          */
3136         mddev->thread = conf->thread;
3137         conf->thread = NULL;
3138         mddev->private = conf;
3139         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3140
3141         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3142
3143         if (mddev->queue) {
3144                 if (discard_supported)
3145                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3146                                                 mddev->queue);
3147                 else
3148                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3149                                                   mddev->queue);
3150         }
3151
3152         ret = md_integrity_register(mddev);
3153         if (ret) {
3154                 md_unregister_thread(&mddev->thread);
3155                 goto abort;
3156         }
3157         return 0;
3158
3159 abort:
3160         raid1_free(mddev, conf);
3161         return ret;
3162 }
3163
3164 static void raid1_free(struct mddev *mddev, void *priv)
3165 {
3166         struct r1conf *conf = priv;
3167
3168         mempool_exit(&conf->r1bio_pool);
3169         kfree(conf->mirrors);
3170         safe_put_page(conf->tmppage);
3171         kfree(conf->poolinfo);
3172         kfree(conf->nr_pending);
3173         kfree(conf->nr_waiting);
3174         kfree(conf->nr_queued);
3175         kfree(conf->barrier);
3176         bioset_exit(&conf->bio_split);
3177         kfree(conf);
3178 }
3179
3180 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3181 {
3182         /* no resync is happening, and there is enough space
3183          * on all devices, so we can resize.
3184          * We need to make sure resync covers any new space.
3185          * If the array is shrinking we should possibly wait until
3186          * any io in the removed space completes, but it hardly seems
3187          * worth it.
3188          */
3189         sector_t newsize = raid1_size(mddev, sectors, 0);
3190         if (mddev->external_size &&
3191             mddev->array_sectors > newsize)
3192                 return -EINVAL;
3193         if (mddev->bitmap) {
3194                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3195                 if (ret)
3196                         return ret;
3197         }
3198         md_set_array_sectors(mddev, newsize);
3199         if (sectors > mddev->dev_sectors &&
3200             mddev->recovery_cp > mddev->dev_sectors) {
3201                 mddev->recovery_cp = mddev->dev_sectors;
3202                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3203         }
3204         mddev->dev_sectors = sectors;
3205         mddev->resync_max_sectors = sectors;
3206         return 0;
3207 }
3208
3209 static int raid1_reshape(struct mddev *mddev)
3210 {
3211         /* We need to:
3212          * 1/ resize the r1bio_pool
3213          * 2/ resize conf->mirrors
3214          *
3215          * We allocate a new r1bio_pool if we can.
3216          * Then raise a device barrier and wait until all IO stops.
3217          * Then resize conf->mirrors and swap in the new r1bio pool.
3218          *
3219          * At the same time, we "pack" the devices so that all the missing
3220          * devices have the higher raid_disk numbers.
3221          */
3222         mempool_t newpool, oldpool;
3223         struct pool_info *newpoolinfo;
3224         struct raid1_info *newmirrors;
3225         struct r1conf *conf = mddev->private;
3226         int cnt, raid_disks;
3227         unsigned long flags;
3228         int d, d2;
3229         int ret;
3230
3231         memset(&newpool, 0, sizeof(newpool));
3232         memset(&oldpool, 0, sizeof(oldpool));
3233
3234         /* Cannot change chunk_size, layout, or level */
3235         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3236             mddev->layout != mddev->new_layout ||
3237             mddev->level != mddev->new_level) {
3238                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3239                 mddev->new_layout = mddev->layout;
3240                 mddev->new_level = mddev->level;
3241                 return -EINVAL;
3242         }
3243
3244         if (!mddev_is_clustered(mddev))
3245                 md_allow_write(mddev);
3246
3247         raid_disks = mddev->raid_disks + mddev->delta_disks;
3248
3249         if (raid_disks < conf->raid_disks) {
3250                 cnt=0;
3251                 for (d= 0; d < conf->raid_disks; d++)
3252                         if (conf->mirrors[d].rdev)
3253                                 cnt++;
3254                 if (cnt > raid_disks)
3255                         return -EBUSY;
3256         }
3257
3258         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3259         if (!newpoolinfo)
3260                 return -ENOMEM;
3261         newpoolinfo->mddev = mddev;
3262         newpoolinfo->raid_disks = raid_disks * 2;
3263
3264         ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3265                            rbio_pool_free, newpoolinfo);
3266         if (ret) {
3267                 kfree(newpoolinfo);
3268                 return ret;
3269         }
3270         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3271                                          raid_disks, 2),
3272                              GFP_KERNEL);
3273         if (!newmirrors) {
3274                 kfree(newpoolinfo);
3275                 mempool_exit(&newpool);
3276                 return -ENOMEM;
3277         }
3278
3279         freeze_array(conf, 0);
3280
3281         /* ok, everything is stopped */
3282         oldpool = conf->r1bio_pool;
3283         conf->r1bio_pool = newpool;
3284
3285         for (d = d2 = 0; d < conf->raid_disks; d++) {
3286                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3287                 if (rdev && rdev->raid_disk != d2) {
3288                         sysfs_unlink_rdev(mddev, rdev);
3289                         rdev->raid_disk = d2;
3290                         sysfs_unlink_rdev(mddev, rdev);
3291                         if (sysfs_link_rdev(mddev, rdev))
3292                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3293                                         mdname(mddev), rdev->raid_disk);
3294                 }
3295                 if (rdev)
3296                         newmirrors[d2++].rdev = rdev;
3297         }
3298         kfree(conf->mirrors);
3299         conf->mirrors = newmirrors;
3300         kfree(conf->poolinfo);
3301         conf->poolinfo = newpoolinfo;
3302
3303         spin_lock_irqsave(&conf->device_lock, flags);
3304         mddev->degraded += (raid_disks - conf->raid_disks);
3305         spin_unlock_irqrestore(&conf->device_lock, flags);
3306         conf->raid_disks = mddev->raid_disks = raid_disks;
3307         mddev->delta_disks = 0;
3308
3309         unfreeze_array(conf);
3310
3311         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3312         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3313         md_wakeup_thread(mddev->thread);
3314
3315         mempool_exit(&oldpool);
3316         return 0;
3317 }
3318
3319 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3320 {
3321         struct r1conf *conf = mddev->private;
3322
3323         if (quiesce)
3324                 freeze_array(conf, 0);
3325         else
3326                 unfreeze_array(conf);
3327 }
3328
3329 static void *raid1_takeover(struct mddev *mddev)
3330 {
3331         /* raid1 can take over:
3332          *  raid5 with 2 devices, any layout or chunk size
3333          */
3334         if (mddev->level == 5 && mddev->raid_disks == 2) {
3335                 struct r1conf *conf;
3336                 mddev->new_level = 1;
3337                 mddev->new_layout = 0;
3338                 mddev->new_chunk_sectors = 0;
3339                 conf = setup_conf(mddev);
3340                 if (!IS_ERR(conf)) {
3341                         /* Array must appear to be quiesced */
3342                         conf->array_frozen = 1;
3343                         mddev_clear_unsupported_flags(mddev,
3344                                 UNSUPPORTED_MDDEV_FLAGS);
3345                 }
3346                 return conf;
3347         }
3348         return ERR_PTR(-EINVAL);
3349 }
3350
3351 static struct md_personality raid1_personality =
3352 {
3353         .name           = "raid1",
3354         .level          = 1,
3355         .owner          = THIS_MODULE,
3356         .make_request   = raid1_make_request,
3357         .run            = raid1_run,
3358         .free           = raid1_free,
3359         .status         = raid1_status,
3360         .error_handler  = raid1_error,
3361         .hot_add_disk   = raid1_add_disk,
3362         .hot_remove_disk= raid1_remove_disk,
3363         .spare_active   = raid1_spare_active,
3364         .sync_request   = raid1_sync_request,
3365         .resize         = raid1_resize,
3366         .size           = raid1_size,
3367         .check_reshape  = raid1_reshape,
3368         .quiesce        = raid1_quiesce,
3369         .takeover       = raid1_takeover,
3370 };
3371
3372 static int __init raid_init(void)
3373 {
3374         return register_md_personality(&raid1_personality);
3375 }
3376
3377 static void raid_exit(void)
3378 {
3379         unregister_md_personality(&raid1_personality);
3380 }
3381
3382 module_init(raid_init);
3383 module_exit(raid_exit);
3384 MODULE_LICENSE("GPL");
3385 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3386 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3387 MODULE_ALIAS("md-raid1");
3388 MODULE_ALIAS("md-level-1");
3389
3390 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);