Merge tag 'nand/for-4.16' of git://git.infradead.org/linux-mtd into mtd/next
[linux-2.6-microblaze.git] / drivers / md / persistent-data / dm-btree.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "btree"
15
16 /*----------------------------------------------------------------
17  * Array manipulation
18  *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20         __dm_written_to_disk(src)
21 {
22         memcpy(dest, src, len);
23         __dm_unbless_for_disk(src);
24 }
25
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27                          unsigned index, void *elt)
28         __dm_written_to_disk(elt)
29 {
30         if (index < nr_elts)
31                 memmove(base + (elt_size * (index + 1)),
32                         base + (elt_size * index),
33                         (nr_elts - index) * elt_size);
34
35         memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37
38 /*----------------------------------------------------------------*/
39
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42 {
43         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45         while (hi - lo > 1) {
46                 int mid = lo + ((hi - lo) / 2);
47                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49                 if (mid_key == key)
50                         return mid;
51
52                 if (mid_key < key)
53                         lo = mid;
54                 else
55                         hi = mid;
56         }
57
58         return want_hi ? hi : lo;
59 }
60
61 int lower_bound(struct btree_node *n, uint64_t key)
62 {
63         return bsearch(n, key, 0);
64 }
65
66 static int upper_bound(struct btree_node *n, uint64_t key)
67 {
68         return bsearch(n, key, 1);
69 }
70
71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72                   struct dm_btree_value_type *vt)
73 {
74         unsigned i;
75         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76
77         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78                 for (i = 0; i < nr_entries; i++)
79                         dm_tm_inc(tm, value64(n, i));
80         else if (vt->inc)
81                 for (i = 0; i < nr_entries; i++)
82                         vt->inc(vt->context, value_ptr(n, i));
83 }
84
85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
86                       uint64_t key, void *value)
87                       __dm_written_to_disk(value)
88 {
89         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90         __le64 key_le = cpu_to_le64(key);
91
92         if (index > nr_entries ||
93             index >= le32_to_cpu(node->header.max_entries)) {
94                 DMERR("too many entries in btree node for insert");
95                 __dm_unbless_for_disk(value);
96                 return -ENOMEM;
97         }
98
99         __dm_bless_for_disk(&key_le);
100
101         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102         array_insert(value_base(node), value_size, nr_entries, index, value);
103         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104
105         return 0;
106 }
107
108 /*----------------------------------------------------------------*/
109
110 /*
111  * We want 3n entries (for some n).  This works more nicely for repeated
112  * insert remove loops than (2n + 1).
113  */
114 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115 {
116         uint32_t total, n;
117         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118
119         block_size -= sizeof(struct node_header);
120         total = block_size / elt_size;
121         n = total / 3;          /* rounds down */
122
123         return 3 * n;
124 }
125
126 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127 {
128         int r;
129         struct dm_block *b;
130         struct btree_node *n;
131         size_t block_size;
132         uint32_t max_entries;
133
134         r = new_block(info, &b);
135         if (r < 0)
136                 return r;
137
138         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139         max_entries = calc_max_entries(info->value_type.size, block_size);
140
141         n = dm_block_data(b);
142         memset(n, 0, block_size);
143         n->header.flags = cpu_to_le32(LEAF_NODE);
144         n->header.nr_entries = cpu_to_le32(0);
145         n->header.max_entries = cpu_to_le32(max_entries);
146         n->header.value_size = cpu_to_le32(info->value_type.size);
147
148         *root = dm_block_location(b);
149         unlock_block(info, b);
150
151         return 0;
152 }
153 EXPORT_SYMBOL_GPL(dm_btree_empty);
154
155 /*----------------------------------------------------------------*/
156
157 /*
158  * Deletion uses a recursive algorithm, since we have limited stack space
159  * we explicitly manage our own stack on the heap.
160  */
161 #define MAX_SPINE_DEPTH 64
162 struct frame {
163         struct dm_block *b;
164         struct btree_node *n;
165         unsigned level;
166         unsigned nr_children;
167         unsigned current_child;
168 };
169
170 struct del_stack {
171         struct dm_btree_info *info;
172         struct dm_transaction_manager *tm;
173         int top;
174         struct frame spine[MAX_SPINE_DEPTH];
175 };
176
177 static int top_frame(struct del_stack *s, struct frame **f)
178 {
179         if (s->top < 0) {
180                 DMERR("btree deletion stack empty");
181                 return -EINVAL;
182         }
183
184         *f = s->spine + s->top;
185
186         return 0;
187 }
188
189 static int unprocessed_frames(struct del_stack *s)
190 {
191         return s->top >= 0;
192 }
193
194 static void prefetch_children(struct del_stack *s, struct frame *f)
195 {
196         unsigned i;
197         struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198
199         for (i = 0; i < f->nr_children; i++)
200                 dm_bm_prefetch(bm, value64(f->n, i));
201 }
202
203 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204 {
205         return f->level < (info->levels - 1);
206 }
207
208 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209 {
210         int r;
211         uint32_t ref_count;
212
213         if (s->top >= MAX_SPINE_DEPTH - 1) {
214                 DMERR("btree deletion stack out of memory");
215                 return -ENOMEM;
216         }
217
218         r = dm_tm_ref(s->tm, b, &ref_count);
219         if (r)
220                 return r;
221
222         if (ref_count > 1)
223                 /*
224                  * This is a shared node, so we can just decrement it's
225                  * reference counter and leave the children.
226                  */
227                 dm_tm_dec(s->tm, b);
228
229         else {
230                 uint32_t flags;
231                 struct frame *f = s->spine + ++s->top;
232
233                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234                 if (r) {
235                         s->top--;
236                         return r;
237                 }
238
239                 f->n = dm_block_data(f->b);
240                 f->level = level;
241                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242                 f->current_child = 0;
243
244                 flags = le32_to_cpu(f->n->header.flags);
245                 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246                         prefetch_children(s, f);
247         }
248
249         return 0;
250 }
251
252 static void pop_frame(struct del_stack *s)
253 {
254         struct frame *f = s->spine + s->top--;
255
256         dm_tm_dec(s->tm, dm_block_location(f->b));
257         dm_tm_unlock(s->tm, f->b);
258 }
259
260 static void unlock_all_frames(struct del_stack *s)
261 {
262         struct frame *f;
263
264         while (unprocessed_frames(s)) {
265                 f = s->spine + s->top--;
266                 dm_tm_unlock(s->tm, f->b);
267         }
268 }
269
270 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271 {
272         int r;
273         struct del_stack *s;
274
275         /*
276          * dm_btree_del() is called via an ioctl, as such should be
277          * considered an FS op.  We can't recurse back into the FS, so we
278          * allocate GFP_NOFS.
279          */
280         s = kmalloc(sizeof(*s), GFP_NOFS);
281         if (!s)
282                 return -ENOMEM;
283         s->info = info;
284         s->tm = info->tm;
285         s->top = -1;
286
287         r = push_frame(s, root, 0);
288         if (r)
289                 goto out;
290
291         while (unprocessed_frames(s)) {
292                 uint32_t flags;
293                 struct frame *f;
294                 dm_block_t b;
295
296                 r = top_frame(s, &f);
297                 if (r)
298                         goto out;
299
300                 if (f->current_child >= f->nr_children) {
301                         pop_frame(s);
302                         continue;
303                 }
304
305                 flags = le32_to_cpu(f->n->header.flags);
306                 if (flags & INTERNAL_NODE) {
307                         b = value64(f->n, f->current_child);
308                         f->current_child++;
309                         r = push_frame(s, b, f->level);
310                         if (r)
311                                 goto out;
312
313                 } else if (is_internal_level(info, f)) {
314                         b = value64(f->n, f->current_child);
315                         f->current_child++;
316                         r = push_frame(s, b, f->level + 1);
317                         if (r)
318                                 goto out;
319
320                 } else {
321                         if (info->value_type.dec) {
322                                 unsigned i;
323
324                                 for (i = 0; i < f->nr_children; i++)
325                                         info->value_type.dec(info->value_type.context,
326                                                              value_ptr(f->n, i));
327                         }
328                         pop_frame(s);
329                 }
330         }
331 out:
332         if (r) {
333                 /* cleanup all frames of del_stack */
334                 unlock_all_frames(s);
335         }
336         kfree(s);
337
338         return r;
339 }
340 EXPORT_SYMBOL_GPL(dm_btree_del);
341
342 /*----------------------------------------------------------------*/
343
344 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
345                             int (*search_fn)(struct btree_node *, uint64_t),
346                             uint64_t *result_key, void *v, size_t value_size)
347 {
348         int i, r;
349         uint32_t flags, nr_entries;
350
351         do {
352                 r = ro_step(s, block);
353                 if (r < 0)
354                         return r;
355
356                 i = search_fn(ro_node(s), key);
357
358                 flags = le32_to_cpu(ro_node(s)->header.flags);
359                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
360                 if (i < 0 || i >= nr_entries)
361                         return -ENODATA;
362
363                 if (flags & INTERNAL_NODE)
364                         block = value64(ro_node(s), i);
365
366         } while (!(flags & LEAF_NODE));
367
368         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
369         memcpy(v, value_ptr(ro_node(s), i), value_size);
370
371         return 0;
372 }
373
374 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
375                     uint64_t *keys, void *value_le)
376 {
377         unsigned level, last_level = info->levels - 1;
378         int r = -ENODATA;
379         uint64_t rkey;
380         __le64 internal_value_le;
381         struct ro_spine spine;
382
383         init_ro_spine(&spine, info);
384         for (level = 0; level < info->levels; level++) {
385                 size_t size;
386                 void *value_p;
387
388                 if (level == last_level) {
389                         value_p = value_le;
390                         size = info->value_type.size;
391
392                 } else {
393                         value_p = &internal_value_le;
394                         size = sizeof(uint64_t);
395                 }
396
397                 r = btree_lookup_raw(&spine, root, keys[level],
398                                      lower_bound, &rkey,
399                                      value_p, size);
400
401                 if (!r) {
402                         if (rkey != keys[level]) {
403                                 exit_ro_spine(&spine);
404                                 return -ENODATA;
405                         }
406                 } else {
407                         exit_ro_spine(&spine);
408                         return r;
409                 }
410
411                 root = le64_to_cpu(internal_value_le);
412         }
413         exit_ro_spine(&spine);
414
415         return r;
416 }
417 EXPORT_SYMBOL_GPL(dm_btree_lookup);
418
419 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
420                                        uint64_t key, uint64_t *rkey, void *value_le)
421 {
422         int r, i;
423         uint32_t flags, nr_entries;
424         struct dm_block *node;
425         struct btree_node *n;
426
427         r = bn_read_lock(info, root, &node);
428         if (r)
429                 return r;
430
431         n = dm_block_data(node);
432         flags = le32_to_cpu(n->header.flags);
433         nr_entries = le32_to_cpu(n->header.nr_entries);
434
435         if (flags & INTERNAL_NODE) {
436                 i = lower_bound(n, key);
437                 if (i < 0) {
438                         /*
439                          * avoid early -ENODATA return when all entries are
440                          * higher than the search @key.
441                          */
442                         i = 0;
443                 }
444                 if (i >= nr_entries) {
445                         r = -ENODATA;
446                         goto out;
447                 }
448
449                 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450                 if (r == -ENODATA && i < (nr_entries - 1)) {
451                         i++;
452                         r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
453                 }
454
455         } else {
456                 i = upper_bound(n, key);
457                 if (i < 0 || i >= nr_entries) {
458                         r = -ENODATA;
459                         goto out;
460                 }
461
462                 *rkey = le64_to_cpu(n->keys[i]);
463                 memcpy(value_le, value_ptr(n, i), info->value_type.size);
464         }
465 out:
466         dm_tm_unlock(info->tm, node);
467         return r;
468 }
469
470 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
471                          uint64_t *keys, uint64_t *rkey, void *value_le)
472 {
473         unsigned level;
474         int r = -ENODATA;
475         __le64 internal_value_le;
476         struct ro_spine spine;
477
478         init_ro_spine(&spine, info);
479         for (level = 0; level < info->levels - 1u; level++) {
480                 r = btree_lookup_raw(&spine, root, keys[level],
481                                      lower_bound, rkey,
482                                      &internal_value_le, sizeof(uint64_t));
483                 if (r)
484                         goto out;
485
486                 if (*rkey != keys[level]) {
487                         r = -ENODATA;
488                         goto out;
489                 }
490
491                 root = le64_to_cpu(internal_value_le);
492         }
493
494         r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
495 out:
496         exit_ro_spine(&spine);
497         return r;
498 }
499
500 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
501
502 /*
503  * Splits a node by creating a sibling node and shifting half the nodes
504  * contents across.  Assumes there is a parent node, and it has room for
505  * another child.
506  *
507  * Before:
508  *        +--------+
509  *        | Parent |
510  *        +--------+
511  *           |
512  *           v
513  *      +----------+
514  *      | A ++++++ |
515  *      +----------+
516  *
517  *
518  * After:
519  *              +--------+
520  *              | Parent |
521  *              +--------+
522  *                |     |
523  *                v     +------+
524  *          +---------+        |
525  *          | A* +++  |        v
526  *          +---------+   +-------+
527  *                        | B +++ |
528  *                        +-------+
529  *
530  * Where A* is a shadow of A.
531  */
532 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
533                                uint64_t key)
534 {
535         int r;
536         size_t size;
537         unsigned nr_left, nr_right;
538         struct dm_block *left, *right, *parent;
539         struct btree_node *ln, *rn, *pn;
540         __le64 location;
541
542         left = shadow_current(s);
543
544         r = new_block(s->info, &right);
545         if (r < 0)
546                 return r;
547
548         ln = dm_block_data(left);
549         rn = dm_block_data(right);
550
551         nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
552         nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
553
554         ln->header.nr_entries = cpu_to_le32(nr_left);
555
556         rn->header.flags = ln->header.flags;
557         rn->header.nr_entries = cpu_to_le32(nr_right);
558         rn->header.max_entries = ln->header.max_entries;
559         rn->header.value_size = ln->header.value_size;
560         memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
561
562         size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
563                 sizeof(uint64_t) : s->info->value_type.size;
564         memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
565                size * nr_right);
566
567         /*
568          * Patch up the parent
569          */
570         parent = shadow_parent(s);
571
572         pn = dm_block_data(parent);
573         location = cpu_to_le64(dm_block_location(left));
574         __dm_bless_for_disk(&location);
575         memcpy_disk(value_ptr(pn, parent_index),
576                     &location, sizeof(__le64));
577
578         location = cpu_to_le64(dm_block_location(right));
579         __dm_bless_for_disk(&location);
580
581         r = insert_at(sizeof(__le64), pn, parent_index + 1,
582                       le64_to_cpu(rn->keys[0]), &location);
583         if (r) {
584                 unlock_block(s->info, right);
585                 return r;
586         }
587
588         if (key < le64_to_cpu(rn->keys[0])) {
589                 unlock_block(s->info, right);
590                 s->nodes[1] = left;
591         } else {
592                 unlock_block(s->info, left);
593                 s->nodes[1] = right;
594         }
595
596         return 0;
597 }
598
599 /*
600  * Splits a node by creating two new children beneath the given node.
601  *
602  * Before:
603  *        +----------+
604  *        | A ++++++ |
605  *        +----------+
606  *
607  *
608  * After:
609  *      +------------+
610  *      | A (shadow) |
611  *      +------------+
612  *          |   |
613  *   +------+   +----+
614  *   |               |
615  *   v               v
616  * +-------+     +-------+
617  * | B +++ |     | C +++ |
618  * +-------+     +-------+
619  */
620 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
621 {
622         int r;
623         size_t size;
624         unsigned nr_left, nr_right;
625         struct dm_block *left, *right, *new_parent;
626         struct btree_node *pn, *ln, *rn;
627         __le64 val;
628
629         new_parent = shadow_current(s);
630
631         r = new_block(s->info, &left);
632         if (r < 0)
633                 return r;
634
635         r = new_block(s->info, &right);
636         if (r < 0) {
637                 unlock_block(s->info, left);
638                 return r;
639         }
640
641         pn = dm_block_data(new_parent);
642         ln = dm_block_data(left);
643         rn = dm_block_data(right);
644
645         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
646         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
647
648         ln->header.flags = pn->header.flags;
649         ln->header.nr_entries = cpu_to_le32(nr_left);
650         ln->header.max_entries = pn->header.max_entries;
651         ln->header.value_size = pn->header.value_size;
652
653         rn->header.flags = pn->header.flags;
654         rn->header.nr_entries = cpu_to_le32(nr_right);
655         rn->header.max_entries = pn->header.max_entries;
656         rn->header.value_size = pn->header.value_size;
657
658         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
659         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
660
661         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
662                 sizeof(__le64) : s->info->value_type.size;
663         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
664         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
665                nr_right * size);
666
667         /* new_parent should just point to l and r now */
668         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
669         pn->header.nr_entries = cpu_to_le32(2);
670         pn->header.max_entries = cpu_to_le32(
671                 calc_max_entries(sizeof(__le64),
672                                  dm_bm_block_size(
673                                          dm_tm_get_bm(s->info->tm))));
674         pn->header.value_size = cpu_to_le32(sizeof(__le64));
675
676         val = cpu_to_le64(dm_block_location(left));
677         __dm_bless_for_disk(&val);
678         pn->keys[0] = ln->keys[0];
679         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
680
681         val = cpu_to_le64(dm_block_location(right));
682         __dm_bless_for_disk(&val);
683         pn->keys[1] = rn->keys[0];
684         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
685
686         /*
687          * rejig the spine.  This is ugly, since it knows too
688          * much about the spine
689          */
690         if (s->nodes[0] != new_parent) {
691                 unlock_block(s->info, s->nodes[0]);
692                 s->nodes[0] = new_parent;
693         }
694         if (key < le64_to_cpu(rn->keys[0])) {
695                 unlock_block(s->info, right);
696                 s->nodes[1] = left;
697         } else {
698                 unlock_block(s->info, left);
699                 s->nodes[1] = right;
700         }
701         s->count = 2;
702
703         return 0;
704 }
705
706 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
707                             struct dm_btree_value_type *vt,
708                             uint64_t key, unsigned *index)
709 {
710         int r, i = *index, top = 1;
711         struct btree_node *node;
712
713         for (;;) {
714                 r = shadow_step(s, root, vt);
715                 if (r < 0)
716                         return r;
717
718                 node = dm_block_data(shadow_current(s));
719
720                 /*
721                  * We have to patch up the parent node, ugly, but I don't
722                  * see a way to do this automatically as part of the spine
723                  * op.
724                  */
725                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
726                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
727
728                         __dm_bless_for_disk(&location);
729                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
730                                     &location, sizeof(__le64));
731                 }
732
733                 node = dm_block_data(shadow_current(s));
734
735                 if (node->header.nr_entries == node->header.max_entries) {
736                         if (top)
737                                 r = btree_split_beneath(s, key);
738                         else
739                                 r = btree_split_sibling(s, i, key);
740
741                         if (r < 0)
742                                 return r;
743                 }
744
745                 node = dm_block_data(shadow_current(s));
746
747                 i = lower_bound(node, key);
748
749                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
750                         break;
751
752                 if (i < 0) {
753                         /* change the bounds on the lowest key */
754                         node->keys[0] = cpu_to_le64(key);
755                         i = 0;
756                 }
757
758                 root = value64(node, i);
759                 top = 0;
760         }
761
762         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
763                 i++;
764
765         *index = i;
766         return 0;
767 }
768
769 static bool need_insert(struct btree_node *node, uint64_t *keys,
770                         unsigned level, unsigned index)
771 {
772         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
773                 (le64_to_cpu(node->keys[index]) != keys[level]));
774 }
775
776 static int insert(struct dm_btree_info *info, dm_block_t root,
777                   uint64_t *keys, void *value, dm_block_t *new_root,
778                   int *inserted)
779                   __dm_written_to_disk(value)
780 {
781         int r;
782         unsigned level, index = -1, last_level = info->levels - 1;
783         dm_block_t block = root;
784         struct shadow_spine spine;
785         struct btree_node *n;
786         struct dm_btree_value_type le64_type;
787
788         init_le64_type(info->tm, &le64_type);
789         init_shadow_spine(&spine, info);
790
791         for (level = 0; level < (info->levels - 1); level++) {
792                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
793                 if (r < 0)
794                         goto bad;
795
796                 n = dm_block_data(shadow_current(&spine));
797
798                 if (need_insert(n, keys, level, index)) {
799                         dm_block_t new_tree;
800                         __le64 new_le;
801
802                         r = dm_btree_empty(info, &new_tree);
803                         if (r < 0)
804                                 goto bad;
805
806                         new_le = cpu_to_le64(new_tree);
807                         __dm_bless_for_disk(&new_le);
808
809                         r = insert_at(sizeof(uint64_t), n, index,
810                                       keys[level], &new_le);
811                         if (r)
812                                 goto bad;
813                 }
814
815                 if (level < last_level)
816                         block = value64(n, index);
817         }
818
819         r = btree_insert_raw(&spine, block, &info->value_type,
820                              keys[level], &index);
821         if (r < 0)
822                 goto bad;
823
824         n = dm_block_data(shadow_current(&spine));
825
826         if (need_insert(n, keys, level, index)) {
827                 if (inserted)
828                         *inserted = 1;
829
830                 r = insert_at(info->value_type.size, n, index,
831                               keys[level], value);
832                 if (r)
833                         goto bad_unblessed;
834         } else {
835                 if (inserted)
836                         *inserted = 0;
837
838                 if (info->value_type.dec &&
839                     (!info->value_type.equal ||
840                      !info->value_type.equal(
841                              info->value_type.context,
842                              value_ptr(n, index),
843                              value))) {
844                         info->value_type.dec(info->value_type.context,
845                                              value_ptr(n, index));
846                 }
847                 memcpy_disk(value_ptr(n, index),
848                             value, info->value_type.size);
849         }
850
851         *new_root = shadow_root(&spine);
852         exit_shadow_spine(&spine);
853
854         return 0;
855
856 bad:
857         __dm_unbless_for_disk(value);
858 bad_unblessed:
859         exit_shadow_spine(&spine);
860         return r;
861 }
862
863 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
864                     uint64_t *keys, void *value, dm_block_t *new_root)
865                     __dm_written_to_disk(value)
866 {
867         return insert(info, root, keys, value, new_root, NULL);
868 }
869 EXPORT_SYMBOL_GPL(dm_btree_insert);
870
871 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
872                            uint64_t *keys, void *value, dm_block_t *new_root,
873                            int *inserted)
874                            __dm_written_to_disk(value)
875 {
876         return insert(info, root, keys, value, new_root, inserted);
877 }
878 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
879
880 /*----------------------------------------------------------------*/
881
882 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
883                     uint64_t *result_key, dm_block_t *next_block)
884 {
885         int i, r;
886         uint32_t flags;
887
888         do {
889                 r = ro_step(s, block);
890                 if (r < 0)
891                         return r;
892
893                 flags = le32_to_cpu(ro_node(s)->header.flags);
894                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
895                 if (!i)
896                         return -ENODATA;
897                 else
898                         i--;
899
900                 if (find_highest)
901                         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
902                 else
903                         *result_key = le64_to_cpu(ro_node(s)->keys[0]);
904
905                 if (next_block || flags & INTERNAL_NODE) {
906                         if (find_highest)
907                                 block = value64(ro_node(s), i);
908                         else
909                                 block = value64(ro_node(s), 0);
910                 }
911
912         } while (flags & INTERNAL_NODE);
913
914         if (next_block)
915                 *next_block = block;
916         return 0;
917 }
918
919 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
920                              bool find_highest, uint64_t *result_keys)
921 {
922         int r = 0, count = 0, level;
923         struct ro_spine spine;
924
925         init_ro_spine(&spine, info);
926         for (level = 0; level < info->levels; level++) {
927                 r = find_key(&spine, root, find_highest, result_keys + level,
928                              level == info->levels - 1 ? NULL : &root);
929                 if (r == -ENODATA) {
930                         r = 0;
931                         break;
932
933                 } else if (r)
934                         break;
935
936                 count++;
937         }
938         exit_ro_spine(&spine);
939
940         return r ? r : count;
941 }
942
943 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
944                               uint64_t *result_keys)
945 {
946         return dm_btree_find_key(info, root, true, result_keys);
947 }
948 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
949
950 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
951                              uint64_t *result_keys)
952 {
953         return dm_btree_find_key(info, root, false, result_keys);
954 }
955 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
956
957 /*----------------------------------------------------------------*/
958
959 /*
960  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
961  * space.  Also this only works for single level trees.
962  */
963 static int walk_node(struct dm_btree_info *info, dm_block_t block,
964                      int (*fn)(void *context, uint64_t *keys, void *leaf),
965                      void *context)
966 {
967         int r;
968         unsigned i, nr;
969         struct dm_block *node;
970         struct btree_node *n;
971         uint64_t keys;
972
973         r = bn_read_lock(info, block, &node);
974         if (r)
975                 return r;
976
977         n = dm_block_data(node);
978
979         nr = le32_to_cpu(n->header.nr_entries);
980         for (i = 0; i < nr; i++) {
981                 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
982                         r = walk_node(info, value64(n, i), fn, context);
983                         if (r)
984                                 goto out;
985                 } else {
986                         keys = le64_to_cpu(*key_ptr(n, i));
987                         r = fn(context, &keys, value_ptr(n, i));
988                         if (r)
989                                 goto out;
990                 }
991         }
992
993 out:
994         dm_tm_unlock(info->tm, node);
995         return r;
996 }
997
998 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
999                   int (*fn)(void *context, uint64_t *keys, void *leaf),
1000                   void *context)
1001 {
1002         BUG_ON(info->levels > 1);
1003         return walk_node(info, root, fn, context);
1004 }
1005 EXPORT_SYMBOL_GPL(dm_btree_walk);
1006
1007 /*----------------------------------------------------------------*/
1008
1009 static void prefetch_values(struct dm_btree_cursor *c)
1010 {
1011         unsigned i, nr;
1012         __le64 value_le;
1013         struct cursor_node *n = c->nodes + c->depth - 1;
1014         struct btree_node *bn = dm_block_data(n->b);
1015         struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1016
1017         BUG_ON(c->info->value_type.size != sizeof(value_le));
1018
1019         nr = le32_to_cpu(bn->header.nr_entries);
1020         for (i = 0; i < nr; i++) {
1021                 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1022                 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1023         }
1024 }
1025
1026 static bool leaf_node(struct dm_btree_cursor *c)
1027 {
1028         struct cursor_node *n = c->nodes + c->depth - 1;
1029         struct btree_node *bn = dm_block_data(n->b);
1030
1031         return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1032 }
1033
1034 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1035 {
1036         int r;
1037         struct cursor_node *n = c->nodes + c->depth;
1038
1039         if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1040                 DMERR("couldn't push cursor node, stack depth too high");
1041                 return -EINVAL;
1042         }
1043
1044         r = bn_read_lock(c->info, b, &n->b);
1045         if (r)
1046                 return r;
1047
1048         n->index = 0;
1049         c->depth++;
1050
1051         if (c->prefetch_leaves || !leaf_node(c))
1052                 prefetch_values(c);
1053
1054         return 0;
1055 }
1056
1057 static void pop_node(struct dm_btree_cursor *c)
1058 {
1059         c->depth--;
1060         unlock_block(c->info, c->nodes[c->depth].b);
1061 }
1062
1063 static int inc_or_backtrack(struct dm_btree_cursor *c)
1064 {
1065         struct cursor_node *n;
1066         struct btree_node *bn;
1067
1068         for (;;) {
1069                 if (!c->depth)
1070                         return -ENODATA;
1071
1072                 n = c->nodes + c->depth - 1;
1073                 bn = dm_block_data(n->b);
1074
1075                 n->index++;
1076                 if (n->index < le32_to_cpu(bn->header.nr_entries))
1077                         break;
1078
1079                 pop_node(c);
1080         }
1081
1082         return 0;
1083 }
1084
1085 static int find_leaf(struct dm_btree_cursor *c)
1086 {
1087         int r = 0;
1088         struct cursor_node *n;
1089         struct btree_node *bn;
1090         __le64 value_le;
1091
1092         for (;;) {
1093                 n = c->nodes + c->depth - 1;
1094                 bn = dm_block_data(n->b);
1095
1096                 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1097                         break;
1098
1099                 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1100                 r = push_node(c, le64_to_cpu(value_le));
1101                 if (r) {
1102                         DMERR("push_node failed");
1103                         break;
1104                 }
1105         }
1106
1107         if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1108                 return -ENODATA;
1109
1110         return r;
1111 }
1112
1113 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1114                           bool prefetch_leaves, struct dm_btree_cursor *c)
1115 {
1116         int r;
1117
1118         c->info = info;
1119         c->root = root;
1120         c->depth = 0;
1121         c->prefetch_leaves = prefetch_leaves;
1122
1123         r = push_node(c, root);
1124         if (r)
1125                 return r;
1126
1127         return find_leaf(c);
1128 }
1129 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1130
1131 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1132 {
1133         while (c->depth)
1134                 pop_node(c);
1135 }
1136 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1137
1138 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1139 {
1140         int r = inc_or_backtrack(c);
1141         if (!r) {
1142                 r = find_leaf(c);
1143                 if (r)
1144                         DMERR("find_leaf failed");
1145         }
1146
1147         return r;
1148 }
1149 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1150
1151 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1152 {
1153         int r = 0;
1154
1155         while (count-- && !r)
1156                 r = dm_btree_cursor_next(c);
1157
1158         return r;
1159 }
1160 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1161
1162 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1163 {
1164         if (c->depth) {
1165                 struct cursor_node *n = c->nodes + c->depth - 1;
1166                 struct btree_node *bn = dm_block_data(n->b);
1167
1168                 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1169                         return -EINVAL;
1170
1171                 *key = le64_to_cpu(*key_ptr(bn, n->index));
1172                 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1173                 return 0;
1174
1175         } else
1176                 return -ENODATA;
1177 }
1178 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);