Merge tag 'for-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[linux-2.6-microblaze.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99         __le32 csum;    /* Checksum of superblock except for this field. */
100         __le32 flags;
101         __le64 blocknr; /* This block number, dm_block_t. */
102
103         __u8 uuid[16];
104         __le64 magic;
105         __le32 version;
106         __le32 time;
107
108         __le64 trans_id;
109
110         /*
111          * Root held by userspace transactions.
112          */
113         __le64 held_root;
114
115         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118         /*
119          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120          */
121         __le64 data_mapping_root;
122
123         /*
124          * Device detail root mapping dev_id -> device_details
125          */
126         __le64 device_details_root;
127
128         __le32 data_block_size;         /* In 512-byte sectors. */
129
130         __le32 metadata_block_size;     /* In 512-byte sectors. */
131         __le64 metadata_nr_blocks;
132
133         __le32 compat_flags;
134         __le32 compat_ro_flags;
135         __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139         __le64 mapped_blocks;
140         __le64 transaction_id;          /* When created. */
141         __le32 creation_time;
142         __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146         struct hlist_node hash;
147
148         struct block_device *bdev;
149         struct dm_block_manager *bm;
150         struct dm_space_map *metadata_sm;
151         struct dm_space_map *data_sm;
152         struct dm_transaction_manager *tm;
153         struct dm_transaction_manager *nb_tm;
154
155         /*
156          * Two-level btree.
157          * First level holds thin_dev_t.
158          * Second level holds mappings.
159          */
160         struct dm_btree_info info;
161
162         /*
163          * Non-blocking version of the above.
164          */
165         struct dm_btree_info nb_info;
166
167         /*
168          * Just the top level for deleting whole devices.
169          */
170         struct dm_btree_info tl_info;
171
172         /*
173          * Just the bottom level for creating new devices.
174          */
175         struct dm_btree_info bl_info;
176
177         /*
178          * Describes the device details btree.
179          */
180         struct dm_btree_info details_info;
181
182         struct rw_semaphore root_lock;
183         uint32_t time;
184         dm_block_t root;
185         dm_block_t details_root;
186         struct list_head thin_devices;
187         uint64_t trans_id;
188         unsigned long flags;
189         sector_t data_block_size;
190
191         /*
192          * Set if a transaction has to be aborted but the attempt to roll back
193          * to the previous (good) transaction failed.  The only pool metadata
194          * operation possible in this state is the closing of the device.
195          */
196         bool fail_io:1;
197
198         /*
199          * Reading the space map roots can fail, so we read it into these
200          * buffers before the superblock is locked and updated.
201          */
202         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
203         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
204 };
205
206 struct dm_thin_device {
207         struct list_head list;
208         struct dm_pool_metadata *pmd;
209         dm_thin_id id;
210
211         int open_count;
212         bool changed:1;
213         bool aborted_with_changes:1;
214         uint64_t mapped_blocks;
215         uint64_t transaction_id;
216         uint32_t creation_time;
217         uint32_t snapshotted_time;
218 };
219
220 /*----------------------------------------------------------------
221  * superblock validator
222  *--------------------------------------------------------------*/
223
224 #define SUPERBLOCK_CSUM_XOR 160774
225
226 static void sb_prepare_for_write(struct dm_block_validator *v,
227                                  struct dm_block *b,
228                                  size_t block_size)
229 {
230         struct thin_disk_superblock *disk_super = dm_block_data(b);
231
232         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
233         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
234                                                       block_size - sizeof(__le32),
235                                                       SUPERBLOCK_CSUM_XOR));
236 }
237
238 static int sb_check(struct dm_block_validator *v,
239                     struct dm_block *b,
240                     size_t block_size)
241 {
242         struct thin_disk_superblock *disk_super = dm_block_data(b);
243         __le32 csum_le;
244
245         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
246                 DMERR("sb_check failed: blocknr %llu: "
247                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
248                       (unsigned long long)dm_block_location(b));
249                 return -ENOTBLK;
250         }
251
252         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
253                 DMERR("sb_check failed: magic %llu: "
254                       "wanted %llu", le64_to_cpu(disk_super->magic),
255                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
256                 return -EILSEQ;
257         }
258
259         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
260                                              block_size - sizeof(__le32),
261                                              SUPERBLOCK_CSUM_XOR));
262         if (csum_le != disk_super->csum) {
263                 DMERR("sb_check failed: csum %u: wanted %u",
264                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
265                 return -EILSEQ;
266         }
267
268         return 0;
269 }
270
271 static struct dm_block_validator sb_validator = {
272         .name = "superblock",
273         .prepare_for_write = sb_prepare_for_write,
274         .check = sb_check
275 };
276
277 /*----------------------------------------------------------------
278  * Methods for the btree value types
279  *--------------------------------------------------------------*/
280
281 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
282 {
283         return (b << 24) | t;
284 }
285
286 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
287 {
288         *b = v >> 24;
289         *t = v & ((1 << 24) - 1);
290 }
291
292 static void data_block_inc(void *context, const void *value_le)
293 {
294         struct dm_space_map *sm = context;
295         __le64 v_le;
296         uint64_t b;
297         uint32_t t;
298
299         memcpy(&v_le, value_le, sizeof(v_le));
300         unpack_block_time(le64_to_cpu(v_le), &b, &t);
301         dm_sm_inc_block(sm, b);
302 }
303
304 static void data_block_dec(void *context, const void *value_le)
305 {
306         struct dm_space_map *sm = context;
307         __le64 v_le;
308         uint64_t b;
309         uint32_t t;
310
311         memcpy(&v_le, value_le, sizeof(v_le));
312         unpack_block_time(le64_to_cpu(v_le), &b, &t);
313         dm_sm_dec_block(sm, b);
314 }
315
316 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
317 {
318         __le64 v1_le, v2_le;
319         uint64_t b1, b2;
320         uint32_t t;
321
322         memcpy(&v1_le, value1_le, sizeof(v1_le));
323         memcpy(&v2_le, value2_le, sizeof(v2_le));
324         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
325         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
326
327         return b1 == b2;
328 }
329
330 static void subtree_inc(void *context, const void *value)
331 {
332         struct dm_btree_info *info = context;
333         __le64 root_le;
334         uint64_t root;
335
336         memcpy(&root_le, value, sizeof(root_le));
337         root = le64_to_cpu(root_le);
338         dm_tm_inc(info->tm, root);
339 }
340
341 static void subtree_dec(void *context, const void *value)
342 {
343         struct dm_btree_info *info = context;
344         __le64 root_le;
345         uint64_t root;
346
347         memcpy(&root_le, value, sizeof(root_le));
348         root = le64_to_cpu(root_le);
349         if (dm_btree_del(info, root))
350                 DMERR("btree delete failed");
351 }
352
353 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
354 {
355         __le64 v1_le, v2_le;
356         memcpy(&v1_le, value1_le, sizeof(v1_le));
357         memcpy(&v2_le, value2_le, sizeof(v2_le));
358
359         return v1_le == v2_le;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
365                                 struct dm_block **sblock)
366 {
367         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
368                                      &sb_validator, sblock);
369 }
370
371 static int superblock_lock(struct dm_pool_metadata *pmd,
372                            struct dm_block **sblock)
373 {
374         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
375                                 &sb_validator, sblock);
376 }
377
378 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
379 {
380         int r;
381         unsigned i;
382         struct dm_block *b;
383         __le64 *data_le, zero = cpu_to_le64(0);
384         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
385
386         /*
387          * We can't use a validator here - it may be all zeroes.
388          */
389         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
390         if (r)
391                 return r;
392
393         data_le = dm_block_data(b);
394         *result = 1;
395         for (i = 0; i < block_size; i++) {
396                 if (data_le[i] != zero) {
397                         *result = 0;
398                         break;
399                 }
400         }
401
402         dm_bm_unlock(b);
403
404         return 0;
405 }
406
407 static void __setup_btree_details(struct dm_pool_metadata *pmd)
408 {
409         pmd->info.tm = pmd->tm;
410         pmd->info.levels = 2;
411         pmd->info.value_type.context = pmd->data_sm;
412         pmd->info.value_type.size = sizeof(__le64);
413         pmd->info.value_type.inc = data_block_inc;
414         pmd->info.value_type.dec = data_block_dec;
415         pmd->info.value_type.equal = data_block_equal;
416
417         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
418         pmd->nb_info.tm = pmd->nb_tm;
419
420         pmd->tl_info.tm = pmd->tm;
421         pmd->tl_info.levels = 1;
422         pmd->tl_info.value_type.context = &pmd->bl_info;
423         pmd->tl_info.value_type.size = sizeof(__le64);
424         pmd->tl_info.value_type.inc = subtree_inc;
425         pmd->tl_info.value_type.dec = subtree_dec;
426         pmd->tl_info.value_type.equal = subtree_equal;
427
428         pmd->bl_info.tm = pmd->tm;
429         pmd->bl_info.levels = 1;
430         pmd->bl_info.value_type.context = pmd->data_sm;
431         pmd->bl_info.value_type.size = sizeof(__le64);
432         pmd->bl_info.value_type.inc = data_block_inc;
433         pmd->bl_info.value_type.dec = data_block_dec;
434         pmd->bl_info.value_type.equal = data_block_equal;
435
436         pmd->details_info.tm = pmd->tm;
437         pmd->details_info.levels = 1;
438         pmd->details_info.value_type.context = NULL;
439         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
440         pmd->details_info.value_type.inc = NULL;
441         pmd->details_info.value_type.dec = NULL;
442         pmd->details_info.value_type.equal = NULL;
443 }
444
445 static int save_sm_roots(struct dm_pool_metadata *pmd)
446 {
447         int r;
448         size_t len;
449
450         r = dm_sm_root_size(pmd->metadata_sm, &len);
451         if (r < 0)
452                 return r;
453
454         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
455         if (r < 0)
456                 return r;
457
458         r = dm_sm_root_size(pmd->data_sm, &len);
459         if (r < 0)
460                 return r;
461
462         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
463 }
464
465 static void copy_sm_roots(struct dm_pool_metadata *pmd,
466                           struct thin_disk_superblock *disk)
467 {
468         memcpy(&disk->metadata_space_map_root,
469                &pmd->metadata_space_map_root,
470                sizeof(pmd->metadata_space_map_root));
471
472         memcpy(&disk->data_space_map_root,
473                &pmd->data_space_map_root,
474                sizeof(pmd->data_space_map_root));
475 }
476
477 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
478 {
479         int r;
480         struct dm_block *sblock;
481         struct thin_disk_superblock *disk_super;
482         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
483
484         if (bdev_size > THIN_METADATA_MAX_SECTORS)
485                 bdev_size = THIN_METADATA_MAX_SECTORS;
486
487         r = dm_sm_commit(pmd->data_sm);
488         if (r < 0)
489                 return r;
490
491         r = dm_tm_pre_commit(pmd->tm);
492         if (r < 0)
493                 return r;
494
495         r = save_sm_roots(pmd);
496         if (r < 0)
497                 return r;
498
499         r = superblock_lock_zero(pmd, &sblock);
500         if (r)
501                 return r;
502
503         disk_super = dm_block_data(sblock);
504         disk_super->flags = 0;
505         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
506         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
507         disk_super->version = cpu_to_le32(THIN_VERSION);
508         disk_super->time = 0;
509         disk_super->trans_id = 0;
510         disk_super->held_root = 0;
511
512         copy_sm_roots(pmd, disk_super);
513
514         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
515         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
516         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
517         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
518         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
519
520         return dm_tm_commit(pmd->tm, sblock);
521 }
522
523 static int __format_metadata(struct dm_pool_metadata *pmd)
524 {
525         int r;
526
527         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
528                                  &pmd->tm, &pmd->metadata_sm);
529         if (r < 0) {
530                 DMERR("tm_create_with_sm failed");
531                 return r;
532         }
533
534         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
535         if (IS_ERR(pmd->data_sm)) {
536                 DMERR("sm_disk_create failed");
537                 r = PTR_ERR(pmd->data_sm);
538                 goto bad_cleanup_tm;
539         }
540
541         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
542         if (!pmd->nb_tm) {
543                 DMERR("could not create non-blocking clone tm");
544                 r = -ENOMEM;
545                 goto bad_cleanup_data_sm;
546         }
547
548         __setup_btree_details(pmd);
549
550         r = dm_btree_empty(&pmd->info, &pmd->root);
551         if (r < 0)
552                 goto bad_cleanup_nb_tm;
553
554         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
555         if (r < 0) {
556                 DMERR("couldn't create devices root");
557                 goto bad_cleanup_nb_tm;
558         }
559
560         r = __write_initial_superblock(pmd);
561         if (r)
562                 goto bad_cleanup_nb_tm;
563
564         return 0;
565
566 bad_cleanup_nb_tm:
567         dm_tm_destroy(pmd->nb_tm);
568 bad_cleanup_data_sm:
569         dm_sm_destroy(pmd->data_sm);
570 bad_cleanup_tm:
571         dm_tm_destroy(pmd->tm);
572         dm_sm_destroy(pmd->metadata_sm);
573
574         return r;
575 }
576
577 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
578                                      struct dm_pool_metadata *pmd)
579 {
580         uint32_t features;
581
582         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
583         if (features) {
584                 DMERR("could not access metadata due to unsupported optional features (%lx).",
585                       (unsigned long)features);
586                 return -EINVAL;
587         }
588
589         /*
590          * Check for read-only metadata to skip the following RDWR checks.
591          */
592         if (get_disk_ro(pmd->bdev->bd_disk))
593                 return 0;
594
595         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
596         if (features) {
597                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
598                       (unsigned long)features);
599                 return -EINVAL;
600         }
601
602         return 0;
603 }
604
605 static int __open_metadata(struct dm_pool_metadata *pmd)
606 {
607         int r;
608         struct dm_block *sblock;
609         struct thin_disk_superblock *disk_super;
610
611         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
612                             &sb_validator, &sblock);
613         if (r < 0) {
614                 DMERR("couldn't read superblock");
615                 return r;
616         }
617
618         disk_super = dm_block_data(sblock);
619
620         /* Verify the data block size hasn't changed */
621         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
622                 DMERR("changing the data block size (from %u to %llu) is not supported",
623                       le32_to_cpu(disk_super->data_block_size),
624                       (unsigned long long)pmd->data_block_size);
625                 r = -EINVAL;
626                 goto bad_unlock_sblock;
627         }
628
629         r = __check_incompat_features(disk_super, pmd);
630         if (r < 0)
631                 goto bad_unlock_sblock;
632
633         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
634                                disk_super->metadata_space_map_root,
635                                sizeof(disk_super->metadata_space_map_root),
636                                &pmd->tm, &pmd->metadata_sm);
637         if (r < 0) {
638                 DMERR("tm_open_with_sm failed");
639                 goto bad_unlock_sblock;
640         }
641
642         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
643                                        sizeof(disk_super->data_space_map_root));
644         if (IS_ERR(pmd->data_sm)) {
645                 DMERR("sm_disk_open failed");
646                 r = PTR_ERR(pmd->data_sm);
647                 goto bad_cleanup_tm;
648         }
649
650         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
651         if (!pmd->nb_tm) {
652                 DMERR("could not create non-blocking clone tm");
653                 r = -ENOMEM;
654                 goto bad_cleanup_data_sm;
655         }
656
657         __setup_btree_details(pmd);
658         dm_bm_unlock(sblock);
659
660         return 0;
661
662 bad_cleanup_data_sm:
663         dm_sm_destroy(pmd->data_sm);
664 bad_cleanup_tm:
665         dm_tm_destroy(pmd->tm);
666         dm_sm_destroy(pmd->metadata_sm);
667 bad_unlock_sblock:
668         dm_bm_unlock(sblock);
669
670         return r;
671 }
672
673 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
674 {
675         int r, unformatted;
676
677         r = __superblock_all_zeroes(pmd->bm, &unformatted);
678         if (r)
679                 return r;
680
681         if (unformatted)
682                 return format_device ? __format_metadata(pmd) : -EPERM;
683
684         return __open_metadata(pmd);
685 }
686
687 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
688 {
689         int r;
690
691         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
692                                           THIN_MAX_CONCURRENT_LOCKS);
693         if (IS_ERR(pmd->bm)) {
694                 DMERR("could not create block manager");
695                 return PTR_ERR(pmd->bm);
696         }
697
698         r = __open_or_format_metadata(pmd, format_device);
699         if (r)
700                 dm_block_manager_destroy(pmd->bm);
701
702         return r;
703 }
704
705 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
706 {
707         dm_sm_destroy(pmd->data_sm);
708         dm_sm_destroy(pmd->metadata_sm);
709         dm_tm_destroy(pmd->nb_tm);
710         dm_tm_destroy(pmd->tm);
711         dm_block_manager_destroy(pmd->bm);
712 }
713
714 static int __begin_transaction(struct dm_pool_metadata *pmd)
715 {
716         int r;
717         struct thin_disk_superblock *disk_super;
718         struct dm_block *sblock;
719
720         /*
721          * We re-read the superblock every time.  Shouldn't need to do this
722          * really.
723          */
724         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
725                             &sb_validator, &sblock);
726         if (r)
727                 return r;
728
729         disk_super = dm_block_data(sblock);
730         pmd->time = le32_to_cpu(disk_super->time);
731         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
732         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
733         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
734         pmd->flags = le32_to_cpu(disk_super->flags);
735         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
736
737         dm_bm_unlock(sblock);
738         return 0;
739 }
740
741 static int __write_changed_details(struct dm_pool_metadata *pmd)
742 {
743         int r;
744         struct dm_thin_device *td, *tmp;
745         struct disk_device_details details;
746         uint64_t key;
747
748         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
749                 if (!td->changed)
750                         continue;
751
752                 key = td->id;
753
754                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
755                 details.transaction_id = cpu_to_le64(td->transaction_id);
756                 details.creation_time = cpu_to_le32(td->creation_time);
757                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
758                 __dm_bless_for_disk(&details);
759
760                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
761                                     &key, &details, &pmd->details_root);
762                 if (r)
763                         return r;
764
765                 if (td->open_count)
766                         td->changed = 0;
767                 else {
768                         list_del(&td->list);
769                         kfree(td);
770                 }
771         }
772
773         return 0;
774 }
775
776 static int __commit_transaction(struct dm_pool_metadata *pmd)
777 {
778         int r;
779         struct thin_disk_superblock *disk_super;
780         struct dm_block *sblock;
781
782         /*
783          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
784          */
785         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
786
787         r = __write_changed_details(pmd);
788         if (r < 0)
789                 return r;
790
791         r = dm_sm_commit(pmd->data_sm);
792         if (r < 0)
793                 return r;
794
795         r = dm_tm_pre_commit(pmd->tm);
796         if (r < 0)
797                 return r;
798
799         r = save_sm_roots(pmd);
800         if (r < 0)
801                 return r;
802
803         r = superblock_lock(pmd, &sblock);
804         if (r)
805                 return r;
806
807         disk_super = dm_block_data(sblock);
808         disk_super->time = cpu_to_le32(pmd->time);
809         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
810         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
811         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
812         disk_super->flags = cpu_to_le32(pmd->flags);
813
814         copy_sm_roots(pmd, disk_super);
815
816         return dm_tm_commit(pmd->tm, sblock);
817 }
818
819 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
820                                                sector_t data_block_size,
821                                                bool format_device)
822 {
823         int r;
824         struct dm_pool_metadata *pmd;
825
826         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
827         if (!pmd) {
828                 DMERR("could not allocate metadata struct");
829                 return ERR_PTR(-ENOMEM);
830         }
831
832         init_rwsem(&pmd->root_lock);
833         pmd->time = 0;
834         INIT_LIST_HEAD(&pmd->thin_devices);
835         pmd->fail_io = false;
836         pmd->bdev = bdev;
837         pmd->data_block_size = data_block_size;
838
839         r = __create_persistent_data_objects(pmd, format_device);
840         if (r) {
841                 kfree(pmd);
842                 return ERR_PTR(r);
843         }
844
845         r = __begin_transaction(pmd);
846         if (r < 0) {
847                 if (dm_pool_metadata_close(pmd) < 0)
848                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
849                 return ERR_PTR(r);
850         }
851
852         return pmd;
853 }
854
855 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
856 {
857         int r;
858         unsigned open_devices = 0;
859         struct dm_thin_device *td, *tmp;
860
861         down_read(&pmd->root_lock);
862         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
863                 if (td->open_count)
864                         open_devices++;
865                 else {
866                         list_del(&td->list);
867                         kfree(td);
868                 }
869         }
870         up_read(&pmd->root_lock);
871
872         if (open_devices) {
873                 DMERR("attempt to close pmd when %u device(s) are still open",
874                        open_devices);
875                 return -EBUSY;
876         }
877
878         if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
879                 r = __commit_transaction(pmd);
880                 if (r < 0)
881                         DMWARN("%s: __commit_transaction() failed, error = %d",
882                                __func__, r);
883         }
884
885         if (!pmd->fail_io)
886                 __destroy_persistent_data_objects(pmd);
887
888         kfree(pmd);
889         return 0;
890 }
891
892 /*
893  * __open_device: Returns @td corresponding to device with id @dev,
894  * creating it if @create is set and incrementing @td->open_count.
895  * On failure, @td is undefined.
896  */
897 static int __open_device(struct dm_pool_metadata *pmd,
898                          dm_thin_id dev, int create,
899                          struct dm_thin_device **td)
900 {
901         int r, changed = 0;
902         struct dm_thin_device *td2;
903         uint64_t key = dev;
904         struct disk_device_details details_le;
905
906         /*
907          * If the device is already open, return it.
908          */
909         list_for_each_entry(td2, &pmd->thin_devices, list)
910                 if (td2->id == dev) {
911                         /*
912                          * May not create an already-open device.
913                          */
914                         if (create)
915                                 return -EEXIST;
916
917                         td2->open_count++;
918                         *td = td2;
919                         return 0;
920                 }
921
922         /*
923          * Check the device exists.
924          */
925         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
926                             &key, &details_le);
927         if (r) {
928                 if (r != -ENODATA || !create)
929                         return r;
930
931                 /*
932                  * Create new device.
933                  */
934                 changed = 1;
935                 details_le.mapped_blocks = 0;
936                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
937                 details_le.creation_time = cpu_to_le32(pmd->time);
938                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
939         }
940
941         *td = kmalloc(sizeof(**td), GFP_NOIO);
942         if (!*td)
943                 return -ENOMEM;
944
945         (*td)->pmd = pmd;
946         (*td)->id = dev;
947         (*td)->open_count = 1;
948         (*td)->changed = changed;
949         (*td)->aborted_with_changes = false;
950         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
951         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
952         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
953         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
954
955         list_add(&(*td)->list, &pmd->thin_devices);
956
957         return 0;
958 }
959
960 static void __close_device(struct dm_thin_device *td)
961 {
962         --td->open_count;
963 }
964
965 static int __create_thin(struct dm_pool_metadata *pmd,
966                          dm_thin_id dev)
967 {
968         int r;
969         dm_block_t dev_root;
970         uint64_t key = dev;
971         struct disk_device_details details_le;
972         struct dm_thin_device *td;
973         __le64 value;
974
975         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
976                             &key, &details_le);
977         if (!r)
978                 return -EEXIST;
979
980         /*
981          * Create an empty btree for the mappings.
982          */
983         r = dm_btree_empty(&pmd->bl_info, &dev_root);
984         if (r)
985                 return r;
986
987         /*
988          * Insert it into the main mapping tree.
989          */
990         value = cpu_to_le64(dev_root);
991         __dm_bless_for_disk(&value);
992         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
993         if (r) {
994                 dm_btree_del(&pmd->bl_info, dev_root);
995                 return r;
996         }
997
998         r = __open_device(pmd, dev, 1, &td);
999         if (r) {
1000                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1001                 dm_btree_del(&pmd->bl_info, dev_root);
1002                 return r;
1003         }
1004         __close_device(td);
1005
1006         return r;
1007 }
1008
1009 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1010 {
1011         int r = -EINVAL;
1012
1013         down_write(&pmd->root_lock);
1014         if (!pmd->fail_io)
1015                 r = __create_thin(pmd, dev);
1016         up_write(&pmd->root_lock);
1017
1018         return r;
1019 }
1020
1021 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1022                                   struct dm_thin_device *snap,
1023                                   dm_thin_id origin, uint32_t time)
1024 {
1025         int r;
1026         struct dm_thin_device *td;
1027
1028         r = __open_device(pmd, origin, 0, &td);
1029         if (r)
1030                 return r;
1031
1032         td->changed = 1;
1033         td->snapshotted_time = time;
1034
1035         snap->mapped_blocks = td->mapped_blocks;
1036         snap->snapshotted_time = time;
1037         __close_device(td);
1038
1039         return 0;
1040 }
1041
1042 static int __create_snap(struct dm_pool_metadata *pmd,
1043                          dm_thin_id dev, dm_thin_id origin)
1044 {
1045         int r;
1046         dm_block_t origin_root;
1047         uint64_t key = origin, dev_key = dev;
1048         struct dm_thin_device *td;
1049         struct disk_device_details details_le;
1050         __le64 value;
1051
1052         /* check this device is unused */
1053         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1054                             &dev_key, &details_le);
1055         if (!r)
1056                 return -EEXIST;
1057
1058         /* find the mapping tree for the origin */
1059         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1060         if (r)
1061                 return r;
1062         origin_root = le64_to_cpu(value);
1063
1064         /* clone the origin, an inc will do */
1065         dm_tm_inc(pmd->tm, origin_root);
1066
1067         /* insert into the main mapping tree */
1068         value = cpu_to_le64(origin_root);
1069         __dm_bless_for_disk(&value);
1070         key = dev;
1071         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1072         if (r) {
1073                 dm_tm_dec(pmd->tm, origin_root);
1074                 return r;
1075         }
1076
1077         pmd->time++;
1078
1079         r = __open_device(pmd, dev, 1, &td);
1080         if (r)
1081                 goto bad;
1082
1083         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1084         __close_device(td);
1085
1086         if (r)
1087                 goto bad;
1088
1089         return 0;
1090
1091 bad:
1092         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1093         dm_btree_remove(&pmd->details_info, pmd->details_root,
1094                         &key, &pmd->details_root);
1095         return r;
1096 }
1097
1098 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1099                                  dm_thin_id dev,
1100                                  dm_thin_id origin)
1101 {
1102         int r = -EINVAL;
1103
1104         down_write(&pmd->root_lock);
1105         if (!pmd->fail_io)
1106                 r = __create_snap(pmd, dev, origin);
1107         up_write(&pmd->root_lock);
1108
1109         return r;
1110 }
1111
1112 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1113 {
1114         int r;
1115         uint64_t key = dev;
1116         struct dm_thin_device *td;
1117
1118         /* TODO: failure should mark the transaction invalid */
1119         r = __open_device(pmd, dev, 0, &td);
1120         if (r)
1121                 return r;
1122
1123         if (td->open_count > 1) {
1124                 __close_device(td);
1125                 return -EBUSY;
1126         }
1127
1128         list_del(&td->list);
1129         kfree(td);
1130         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1131                             &key, &pmd->details_root);
1132         if (r)
1133                 return r;
1134
1135         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1136         if (r)
1137                 return r;
1138
1139         return 0;
1140 }
1141
1142 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1143                                dm_thin_id dev)
1144 {
1145         int r = -EINVAL;
1146
1147         down_write(&pmd->root_lock);
1148         if (!pmd->fail_io)
1149                 r = __delete_device(pmd, dev);
1150         up_write(&pmd->root_lock);
1151
1152         return r;
1153 }
1154
1155 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1156                                         uint64_t current_id,
1157                                         uint64_t new_id)
1158 {
1159         int r = -EINVAL;
1160
1161         down_write(&pmd->root_lock);
1162
1163         if (pmd->fail_io)
1164                 goto out;
1165
1166         if (pmd->trans_id != current_id) {
1167                 DMERR("mismatched transaction id");
1168                 goto out;
1169         }
1170
1171         pmd->trans_id = new_id;
1172         r = 0;
1173
1174 out:
1175         up_write(&pmd->root_lock);
1176
1177         return r;
1178 }
1179
1180 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1181                                         uint64_t *result)
1182 {
1183         int r = -EINVAL;
1184
1185         down_read(&pmd->root_lock);
1186         if (!pmd->fail_io) {
1187                 *result = pmd->trans_id;
1188                 r = 0;
1189         }
1190         up_read(&pmd->root_lock);
1191
1192         return r;
1193 }
1194
1195 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1196 {
1197         int r, inc;
1198         struct thin_disk_superblock *disk_super;
1199         struct dm_block *copy, *sblock;
1200         dm_block_t held_root;
1201
1202         /*
1203          * We commit to ensure the btree roots which we increment in a
1204          * moment are up to date.
1205          */
1206         __commit_transaction(pmd);
1207
1208         /*
1209          * Copy the superblock.
1210          */
1211         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1212         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1213                                &sb_validator, &copy, &inc);
1214         if (r)
1215                 return r;
1216
1217         BUG_ON(!inc);
1218
1219         held_root = dm_block_location(copy);
1220         disk_super = dm_block_data(copy);
1221
1222         if (le64_to_cpu(disk_super->held_root)) {
1223                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1224
1225                 dm_tm_dec(pmd->tm, held_root);
1226                 dm_tm_unlock(pmd->tm, copy);
1227                 return -EBUSY;
1228         }
1229
1230         /*
1231          * Wipe the spacemap since we're not publishing this.
1232          */
1233         memset(&disk_super->data_space_map_root, 0,
1234                sizeof(disk_super->data_space_map_root));
1235         memset(&disk_super->metadata_space_map_root, 0,
1236                sizeof(disk_super->metadata_space_map_root));
1237
1238         /*
1239          * Increment the data structures that need to be preserved.
1240          */
1241         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1242         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1243         dm_tm_unlock(pmd->tm, copy);
1244
1245         /*
1246          * Write the held root into the superblock.
1247          */
1248         r = superblock_lock(pmd, &sblock);
1249         if (r) {
1250                 dm_tm_dec(pmd->tm, held_root);
1251                 return r;
1252         }
1253
1254         disk_super = dm_block_data(sblock);
1255         disk_super->held_root = cpu_to_le64(held_root);
1256         dm_bm_unlock(sblock);
1257         return 0;
1258 }
1259
1260 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1261 {
1262         int r = -EINVAL;
1263
1264         down_write(&pmd->root_lock);
1265         if (!pmd->fail_io)
1266                 r = __reserve_metadata_snap(pmd);
1267         up_write(&pmd->root_lock);
1268
1269         return r;
1270 }
1271
1272 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1273 {
1274         int r;
1275         struct thin_disk_superblock *disk_super;
1276         struct dm_block *sblock, *copy;
1277         dm_block_t held_root;
1278
1279         r = superblock_lock(pmd, &sblock);
1280         if (r)
1281                 return r;
1282
1283         disk_super = dm_block_data(sblock);
1284         held_root = le64_to_cpu(disk_super->held_root);
1285         disk_super->held_root = cpu_to_le64(0);
1286
1287         dm_bm_unlock(sblock);
1288
1289         if (!held_root) {
1290                 DMWARN("No pool metadata snapshot found: nothing to release.");
1291                 return -EINVAL;
1292         }
1293
1294         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1295         if (r)
1296                 return r;
1297
1298         disk_super = dm_block_data(copy);
1299         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1300         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1301         dm_sm_dec_block(pmd->metadata_sm, held_root);
1302
1303         dm_tm_unlock(pmd->tm, copy);
1304
1305         return 0;
1306 }
1307
1308 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1309 {
1310         int r = -EINVAL;
1311
1312         down_write(&pmd->root_lock);
1313         if (!pmd->fail_io)
1314                 r = __release_metadata_snap(pmd);
1315         up_write(&pmd->root_lock);
1316
1317         return r;
1318 }
1319
1320 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1321                                dm_block_t *result)
1322 {
1323         int r;
1324         struct thin_disk_superblock *disk_super;
1325         struct dm_block *sblock;
1326
1327         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1328                             &sb_validator, &sblock);
1329         if (r)
1330                 return r;
1331
1332         disk_super = dm_block_data(sblock);
1333         *result = le64_to_cpu(disk_super->held_root);
1334
1335         dm_bm_unlock(sblock);
1336
1337         return 0;
1338 }
1339
1340 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1341                               dm_block_t *result)
1342 {
1343         int r = -EINVAL;
1344
1345         down_read(&pmd->root_lock);
1346         if (!pmd->fail_io)
1347                 r = __get_metadata_snap(pmd, result);
1348         up_read(&pmd->root_lock);
1349
1350         return r;
1351 }
1352
1353 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1354                              struct dm_thin_device **td)
1355 {
1356         int r = -EINVAL;
1357
1358         down_write(&pmd->root_lock);
1359         if (!pmd->fail_io)
1360                 r = __open_device(pmd, dev, 0, td);
1361         up_write(&pmd->root_lock);
1362
1363         return r;
1364 }
1365
1366 int dm_pool_close_thin_device(struct dm_thin_device *td)
1367 {
1368         down_write(&td->pmd->root_lock);
1369         __close_device(td);
1370         up_write(&td->pmd->root_lock);
1371
1372         return 0;
1373 }
1374
1375 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1376 {
1377         return td->id;
1378 }
1379
1380 /*
1381  * Check whether @time (of block creation) is older than @td's last snapshot.
1382  * If so then the associated block is shared with the last snapshot device.
1383  * Any block on a device created *after* the device last got snapshotted is
1384  * necessarily not shared.
1385  */
1386 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1387 {
1388         return td->snapshotted_time > time;
1389 }
1390
1391 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1392                                  struct dm_thin_lookup_result *result)
1393 {
1394         uint64_t block_time = 0;
1395         dm_block_t exception_block;
1396         uint32_t exception_time;
1397
1398         block_time = le64_to_cpu(value);
1399         unpack_block_time(block_time, &exception_block, &exception_time);
1400         result->block = exception_block;
1401         result->shared = __snapshotted_since(td, exception_time);
1402 }
1403
1404 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1405                         int can_issue_io, struct dm_thin_lookup_result *result)
1406 {
1407         int r;
1408         __le64 value;
1409         struct dm_pool_metadata *pmd = td->pmd;
1410         dm_block_t keys[2] = { td->id, block };
1411         struct dm_btree_info *info;
1412
1413         if (can_issue_io) {
1414                 info = &pmd->info;
1415         } else
1416                 info = &pmd->nb_info;
1417
1418         r = dm_btree_lookup(info, pmd->root, keys, &value);
1419         if (!r)
1420                 unpack_lookup_result(td, value, result);
1421
1422         return r;
1423 }
1424
1425 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1426                        int can_issue_io, struct dm_thin_lookup_result *result)
1427 {
1428         int r;
1429         struct dm_pool_metadata *pmd = td->pmd;
1430
1431         down_read(&pmd->root_lock);
1432         if (pmd->fail_io) {
1433                 up_read(&pmd->root_lock);
1434                 return -EINVAL;
1435         }
1436
1437         r = __find_block(td, block, can_issue_io, result);
1438
1439         up_read(&pmd->root_lock);
1440         return r;
1441 }
1442
1443 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1444                                           dm_block_t *vblock,
1445                                           struct dm_thin_lookup_result *result)
1446 {
1447         int r;
1448         __le64 value;
1449         struct dm_pool_metadata *pmd = td->pmd;
1450         dm_block_t keys[2] = { td->id, block };
1451
1452         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1453         if (!r)
1454                 unpack_lookup_result(td, value, result);
1455
1456         return r;
1457 }
1458
1459 static int __find_mapped_range(struct dm_thin_device *td,
1460                                dm_block_t begin, dm_block_t end,
1461                                dm_block_t *thin_begin, dm_block_t *thin_end,
1462                                dm_block_t *pool_begin, bool *maybe_shared)
1463 {
1464         int r;
1465         dm_block_t pool_end;
1466         struct dm_thin_lookup_result lookup;
1467
1468         if (end < begin)
1469                 return -ENODATA;
1470
1471         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1472         if (r)
1473                 return r;
1474
1475         if (begin >= end)
1476                 return -ENODATA;
1477
1478         *thin_begin = begin;
1479         *pool_begin = lookup.block;
1480         *maybe_shared = lookup.shared;
1481
1482         begin++;
1483         pool_end = *pool_begin + 1;
1484         while (begin != end) {
1485                 r = __find_block(td, begin, true, &lookup);
1486                 if (r) {
1487                         if (r == -ENODATA)
1488                                 break;
1489                         else
1490                                 return r;
1491                 }
1492
1493                 if ((lookup.block != pool_end) ||
1494                     (lookup.shared != *maybe_shared))
1495                         break;
1496
1497                 pool_end++;
1498                 begin++;
1499         }
1500
1501         *thin_end = begin;
1502         return 0;
1503 }
1504
1505 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1506                               dm_block_t begin, dm_block_t end,
1507                               dm_block_t *thin_begin, dm_block_t *thin_end,
1508                               dm_block_t *pool_begin, bool *maybe_shared)
1509 {
1510         int r = -EINVAL;
1511         struct dm_pool_metadata *pmd = td->pmd;
1512
1513         down_read(&pmd->root_lock);
1514         if (!pmd->fail_io) {
1515                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1516                                         pool_begin, maybe_shared);
1517         }
1518         up_read(&pmd->root_lock);
1519
1520         return r;
1521 }
1522
1523 static int __insert(struct dm_thin_device *td, dm_block_t block,
1524                     dm_block_t data_block)
1525 {
1526         int r, inserted;
1527         __le64 value;
1528         struct dm_pool_metadata *pmd = td->pmd;
1529         dm_block_t keys[2] = { td->id, block };
1530
1531         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1532         __dm_bless_for_disk(&value);
1533
1534         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1535                                    &pmd->root, &inserted);
1536         if (r)
1537                 return r;
1538
1539         td->changed = 1;
1540         if (inserted)
1541                 td->mapped_blocks++;
1542
1543         return 0;
1544 }
1545
1546 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1547                          dm_block_t data_block)
1548 {
1549         int r = -EINVAL;
1550
1551         down_write(&td->pmd->root_lock);
1552         if (!td->pmd->fail_io)
1553                 r = __insert(td, block, data_block);
1554         up_write(&td->pmd->root_lock);
1555
1556         return r;
1557 }
1558
1559 static int __remove(struct dm_thin_device *td, dm_block_t block)
1560 {
1561         int r;
1562         struct dm_pool_metadata *pmd = td->pmd;
1563         dm_block_t keys[2] = { td->id, block };
1564
1565         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1566         if (r)
1567                 return r;
1568
1569         td->mapped_blocks--;
1570         td->changed = 1;
1571
1572         return 0;
1573 }
1574
1575 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1576 {
1577         int r;
1578         unsigned count, total_count = 0;
1579         struct dm_pool_metadata *pmd = td->pmd;
1580         dm_block_t keys[1] = { td->id };
1581         __le64 value;
1582         dm_block_t mapping_root;
1583
1584         /*
1585          * Find the mapping tree
1586          */
1587         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1588         if (r)
1589                 return r;
1590
1591         /*
1592          * Remove from the mapping tree, taking care to inc the
1593          * ref count so it doesn't get deleted.
1594          */
1595         mapping_root = le64_to_cpu(value);
1596         dm_tm_inc(pmd->tm, mapping_root);
1597         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1598         if (r)
1599                 return r;
1600
1601         /*
1602          * Remove leaves stops at the first unmapped entry, so we have to
1603          * loop round finding mapped ranges.
1604          */
1605         while (begin < end) {
1606                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1607                 if (r == -ENODATA)
1608                         break;
1609
1610                 if (r)
1611                         return r;
1612
1613                 if (begin >= end)
1614                         break;
1615
1616                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1617                 if (r)
1618                         return r;
1619
1620                 total_count += count;
1621         }
1622
1623         td->mapped_blocks -= total_count;
1624         td->changed = 1;
1625
1626         /*
1627          * Reinsert the mapping tree.
1628          */
1629         value = cpu_to_le64(mapping_root);
1630         __dm_bless_for_disk(&value);
1631         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1632 }
1633
1634 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1635 {
1636         int r = -EINVAL;
1637
1638         down_write(&td->pmd->root_lock);
1639         if (!td->pmd->fail_io)
1640                 r = __remove(td, block);
1641         up_write(&td->pmd->root_lock);
1642
1643         return r;
1644 }
1645
1646 int dm_thin_remove_range(struct dm_thin_device *td,
1647                          dm_block_t begin, dm_block_t end)
1648 {
1649         int r = -EINVAL;
1650
1651         down_write(&td->pmd->root_lock);
1652         if (!td->pmd->fail_io)
1653                 r = __remove_range(td, begin, end);
1654         up_write(&td->pmd->root_lock);
1655
1656         return r;
1657 }
1658
1659 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1660 {
1661         int r;
1662         uint32_t ref_count;
1663
1664         down_read(&pmd->root_lock);
1665         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1666         if (!r)
1667                 *result = (ref_count != 0);
1668         up_read(&pmd->root_lock);
1669
1670         return r;
1671 }
1672
1673 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1674 {
1675         int r = 0;
1676
1677         down_write(&pmd->root_lock);
1678         for (; b != e; b++) {
1679                 r = dm_sm_inc_block(pmd->data_sm, b);
1680                 if (r)
1681                         break;
1682         }
1683         up_write(&pmd->root_lock);
1684
1685         return r;
1686 }
1687
1688 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1689 {
1690         int r = 0;
1691
1692         down_write(&pmd->root_lock);
1693         for (; b != e; b++) {
1694                 r = dm_sm_dec_block(pmd->data_sm, b);
1695                 if (r)
1696                         break;
1697         }
1698         up_write(&pmd->root_lock);
1699
1700         return r;
1701 }
1702
1703 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1704 {
1705         int r;
1706
1707         down_read(&td->pmd->root_lock);
1708         r = td->changed;
1709         up_read(&td->pmd->root_lock);
1710
1711         return r;
1712 }
1713
1714 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1715 {
1716         bool r = false;
1717         struct dm_thin_device *td, *tmp;
1718
1719         down_read(&pmd->root_lock);
1720         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1721                 if (td->changed) {
1722                         r = td->changed;
1723                         break;
1724                 }
1725         }
1726         up_read(&pmd->root_lock);
1727
1728         return r;
1729 }
1730
1731 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1732 {
1733         bool r;
1734
1735         down_read(&td->pmd->root_lock);
1736         r = td->aborted_with_changes;
1737         up_read(&td->pmd->root_lock);
1738
1739         return r;
1740 }
1741
1742 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1743 {
1744         int r = -EINVAL;
1745
1746         down_write(&pmd->root_lock);
1747         if (!pmd->fail_io)
1748                 r = dm_sm_new_block(pmd->data_sm, result);
1749         up_write(&pmd->root_lock);
1750
1751         return r;
1752 }
1753
1754 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1755 {
1756         int r = -EINVAL;
1757
1758         down_write(&pmd->root_lock);
1759         if (pmd->fail_io)
1760                 goto out;
1761
1762         r = __commit_transaction(pmd);
1763         if (r <= 0)
1764                 goto out;
1765
1766         /*
1767          * Open the next transaction.
1768          */
1769         r = __begin_transaction(pmd);
1770 out:
1771         up_write(&pmd->root_lock);
1772         return r;
1773 }
1774
1775 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1776 {
1777         struct dm_thin_device *td;
1778
1779         list_for_each_entry(td, &pmd->thin_devices, list)
1780                 td->aborted_with_changes = td->changed;
1781 }
1782
1783 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1784 {
1785         int r = -EINVAL;
1786
1787         down_write(&pmd->root_lock);
1788         if (pmd->fail_io)
1789                 goto out;
1790
1791         __set_abort_with_changes_flags(pmd);
1792         __destroy_persistent_data_objects(pmd);
1793         r = __create_persistent_data_objects(pmd, false);
1794         if (r)
1795                 pmd->fail_io = true;
1796
1797 out:
1798         up_write(&pmd->root_lock);
1799
1800         return r;
1801 }
1802
1803 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1804 {
1805         int r = -EINVAL;
1806
1807         down_read(&pmd->root_lock);
1808         if (!pmd->fail_io)
1809                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1810         up_read(&pmd->root_lock);
1811
1812         return r;
1813 }
1814
1815 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1816                                           dm_block_t *result)
1817 {
1818         int r = -EINVAL;
1819
1820         down_read(&pmd->root_lock);
1821         if (!pmd->fail_io)
1822                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1823         up_read(&pmd->root_lock);
1824
1825         return r;
1826 }
1827
1828 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1829                                   dm_block_t *result)
1830 {
1831         int r = -EINVAL;
1832
1833         down_read(&pmd->root_lock);
1834         if (!pmd->fail_io)
1835                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1836         up_read(&pmd->root_lock);
1837
1838         return r;
1839 }
1840
1841 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1842 {
1843         int r = -EINVAL;
1844
1845         down_read(&pmd->root_lock);
1846         if (!pmd->fail_io)
1847                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1848         up_read(&pmd->root_lock);
1849
1850         return r;
1851 }
1852
1853 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1854 {
1855         int r = -EINVAL;
1856         struct dm_pool_metadata *pmd = td->pmd;
1857
1858         down_read(&pmd->root_lock);
1859         if (!pmd->fail_io) {
1860                 *result = td->mapped_blocks;
1861                 r = 0;
1862         }
1863         up_read(&pmd->root_lock);
1864
1865         return r;
1866 }
1867
1868 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1869 {
1870         int r;
1871         __le64 value_le;
1872         dm_block_t thin_root;
1873         struct dm_pool_metadata *pmd = td->pmd;
1874
1875         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1876         if (r)
1877                 return r;
1878
1879         thin_root = le64_to_cpu(value_le);
1880
1881         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1882 }
1883
1884 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1885                                      dm_block_t *result)
1886 {
1887         int r = -EINVAL;
1888         struct dm_pool_metadata *pmd = td->pmd;
1889
1890         down_read(&pmd->root_lock);
1891         if (!pmd->fail_io)
1892                 r = __highest_block(td, result);
1893         up_read(&pmd->root_lock);
1894
1895         return r;
1896 }
1897
1898 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1899 {
1900         int r;
1901         dm_block_t old_count;
1902
1903         r = dm_sm_get_nr_blocks(sm, &old_count);
1904         if (r)
1905                 return r;
1906
1907         if (new_count == old_count)
1908                 return 0;
1909
1910         if (new_count < old_count) {
1911                 DMERR("cannot reduce size of space map");
1912                 return -EINVAL;
1913         }
1914
1915         return dm_sm_extend(sm, new_count - old_count);
1916 }
1917
1918 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1919 {
1920         int r = -EINVAL;
1921
1922         down_write(&pmd->root_lock);
1923         if (!pmd->fail_io)
1924                 r = __resize_space_map(pmd->data_sm, new_count);
1925         up_write(&pmd->root_lock);
1926
1927         return r;
1928 }
1929
1930 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1931 {
1932         int r = -EINVAL;
1933
1934         down_write(&pmd->root_lock);
1935         if (!pmd->fail_io)
1936                 r = __resize_space_map(pmd->metadata_sm, new_count);
1937         up_write(&pmd->root_lock);
1938
1939         return r;
1940 }
1941
1942 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1943 {
1944         down_write(&pmd->root_lock);
1945         dm_bm_set_read_only(pmd->bm);
1946         up_write(&pmd->root_lock);
1947 }
1948
1949 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1950 {
1951         down_write(&pmd->root_lock);
1952         dm_bm_set_read_write(pmd->bm);
1953         up_write(&pmd->root_lock);
1954 }
1955
1956 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1957                                         dm_block_t threshold,
1958                                         dm_sm_threshold_fn fn,
1959                                         void *context)
1960 {
1961         int r;
1962
1963         down_write(&pmd->root_lock);
1964         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1965         up_write(&pmd->root_lock);
1966
1967         return r;
1968 }
1969
1970 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1971 {
1972         int r;
1973         struct dm_block *sblock;
1974         struct thin_disk_superblock *disk_super;
1975
1976         down_write(&pmd->root_lock);
1977         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1978
1979         r = superblock_lock(pmd, &sblock);
1980         if (r) {
1981                 DMERR("couldn't read superblock");
1982                 goto out;
1983         }
1984
1985         disk_super = dm_block_data(sblock);
1986         disk_super->flags = cpu_to_le32(pmd->flags);
1987
1988         dm_bm_unlock(sblock);
1989 out:
1990         up_write(&pmd->root_lock);
1991         return r;
1992 }
1993
1994 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1995 {
1996         bool needs_check;
1997
1998         down_read(&pmd->root_lock);
1999         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2000         up_read(&pmd->root_lock);
2001
2002         return needs_check;
2003 }
2004
2005 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2006 {
2007         down_read(&pmd->root_lock);
2008         if (!pmd->fail_io)
2009                 dm_tm_issue_prefetches(pmd->tm);
2010         up_read(&pmd->root_lock);
2011 }