drm/etnaviv: Implement mmap as GEM object function
[linux-2.6-microblaze.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99         __le32 csum;    /* Checksum of superblock except for this field. */
100         __le32 flags;
101         __le64 blocknr; /* This block number, dm_block_t. */
102
103         __u8 uuid[16];
104         __le64 magic;
105         __le32 version;
106         __le32 time;
107
108         __le64 trans_id;
109
110         /*
111          * Root held by userspace transactions.
112          */
113         __le64 held_root;
114
115         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118         /*
119          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120          */
121         __le64 data_mapping_root;
122
123         /*
124          * Device detail root mapping dev_id -> device_details
125          */
126         __le64 device_details_root;
127
128         __le32 data_block_size;         /* In 512-byte sectors. */
129
130         __le32 metadata_block_size;     /* In 512-byte sectors. */
131         __le64 metadata_nr_blocks;
132
133         __le32 compat_flags;
134         __le32 compat_ro_flags;
135         __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139         __le64 mapped_blocks;
140         __le64 transaction_id;          /* When created. */
141         __le32 creation_time;
142         __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146         struct hlist_node hash;
147
148         struct block_device *bdev;
149         struct dm_block_manager *bm;
150         struct dm_space_map *metadata_sm;
151         struct dm_space_map *data_sm;
152         struct dm_transaction_manager *tm;
153         struct dm_transaction_manager *nb_tm;
154
155         /*
156          * Two-level btree.
157          * First level holds thin_dev_t.
158          * Second level holds mappings.
159          */
160         struct dm_btree_info info;
161
162         /*
163          * Non-blocking version of the above.
164          */
165         struct dm_btree_info nb_info;
166
167         /*
168          * Just the top level for deleting whole devices.
169          */
170         struct dm_btree_info tl_info;
171
172         /*
173          * Just the bottom level for creating new devices.
174          */
175         struct dm_btree_info bl_info;
176
177         /*
178          * Describes the device details btree.
179          */
180         struct dm_btree_info details_info;
181
182         struct rw_semaphore root_lock;
183         uint32_t time;
184         dm_block_t root;
185         dm_block_t details_root;
186         struct list_head thin_devices;
187         uint64_t trans_id;
188         unsigned long flags;
189         sector_t data_block_size;
190
191         /*
192          * Pre-commit callback.
193          *
194          * This allows the thin provisioning target to run a callback before
195          * the metadata are committed.
196          */
197         dm_pool_pre_commit_fn pre_commit_fn;
198         void *pre_commit_context;
199
200         /*
201          * We reserve a section of the metadata for commit overhead.
202          * All reported space does *not* include this.
203          */
204         dm_block_t metadata_reserve;
205
206         /*
207          * Set if a transaction has to be aborted but the attempt to roll back
208          * to the previous (good) transaction failed.  The only pool metadata
209          * operation possible in this state is the closing of the device.
210          */
211         bool fail_io:1;
212
213         /*
214          * Set once a thin-pool has been accessed through one of the interfaces
215          * that imply the pool is in-service (e.g. thin devices created/deleted,
216          * thin-pool message, metadata snapshots, etc).
217          */
218         bool in_service:1;
219
220         /*
221          * Reading the space map roots can fail, so we read it into these
222          * buffers before the superblock is locked and updated.
223          */
224         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227
228 struct dm_thin_device {
229         struct list_head list;
230         struct dm_pool_metadata *pmd;
231         dm_thin_id id;
232
233         int open_count;
234         bool changed:1;
235         bool aborted_with_changes:1;
236         uint64_t mapped_blocks;
237         uint64_t transaction_id;
238         uint32_t creation_time;
239         uint32_t snapshotted_time;
240 };
241
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245
246 #define SUPERBLOCK_CSUM_XOR 160774
247
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249                                  struct dm_block *b,
250                                  size_t block_size)
251 {
252         struct thin_disk_superblock *disk_super = dm_block_data(b);
253
254         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256                                                       block_size - sizeof(__le32),
257                                                       SUPERBLOCK_CSUM_XOR));
258 }
259
260 static int sb_check(struct dm_block_validator *v,
261                     struct dm_block *b,
262                     size_t block_size)
263 {
264         struct thin_disk_superblock *disk_super = dm_block_data(b);
265         __le32 csum_le;
266
267         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268                 DMERR("sb_check failed: blocknr %llu: "
269                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
270                       (unsigned long long)dm_block_location(b));
271                 return -ENOTBLK;
272         }
273
274         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275                 DMERR("sb_check failed: magic %llu: "
276                       "wanted %llu", le64_to_cpu(disk_super->magic),
277                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278                 return -EILSEQ;
279         }
280
281         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282                                              block_size - sizeof(__le32),
283                                              SUPERBLOCK_CSUM_XOR));
284         if (csum_le != disk_super->csum) {
285                 DMERR("sb_check failed: csum %u: wanted %u",
286                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287                 return -EILSEQ;
288         }
289
290         return 0;
291 }
292
293 static struct dm_block_validator sb_validator = {
294         .name = "superblock",
295         .prepare_for_write = sb_prepare_for_write,
296         .check = sb_check
297 };
298
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305         return (b << 24) | t;
306 }
307
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310         *b = v >> 24;
311         *t = v & ((1 << 24) - 1);
312 }
313
314 static void data_block_inc(void *context, const void *value_le)
315 {
316         struct dm_space_map *sm = context;
317         __le64 v_le;
318         uint64_t b;
319         uint32_t t;
320
321         memcpy(&v_le, value_le, sizeof(v_le));
322         unpack_block_time(le64_to_cpu(v_le), &b, &t);
323         dm_sm_inc_block(sm, b);
324 }
325
326 static void data_block_dec(void *context, const void *value_le)
327 {
328         struct dm_space_map *sm = context;
329         __le64 v_le;
330         uint64_t b;
331         uint32_t t;
332
333         memcpy(&v_le, value_le, sizeof(v_le));
334         unpack_block_time(le64_to_cpu(v_le), &b, &t);
335         dm_sm_dec_block(sm, b);
336 }
337
338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340         __le64 v1_le, v2_le;
341         uint64_t b1, b2;
342         uint32_t t;
343
344         memcpy(&v1_le, value1_le, sizeof(v1_le));
345         memcpy(&v2_le, value2_le, sizeof(v2_le));
346         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348
349         return b1 == b2;
350 }
351
352 static void subtree_inc(void *context, const void *value)
353 {
354         struct dm_btree_info *info = context;
355         __le64 root_le;
356         uint64_t root;
357
358         memcpy(&root_le, value, sizeof(root_le));
359         root = le64_to_cpu(root_le);
360         dm_tm_inc(info->tm, root);
361 }
362
363 static void subtree_dec(void *context, const void *value)
364 {
365         struct dm_btree_info *info = context;
366         __le64 root_le;
367         uint64_t root;
368
369         memcpy(&root_le, value, sizeof(root_le));
370         root = le64_to_cpu(root_le);
371         if (dm_btree_del(info, root))
372                 DMERR("btree delete failed");
373 }
374
375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377         __le64 v1_le, v2_le;
378         memcpy(&v1_le, value1_le, sizeof(v1_le));
379         memcpy(&v2_le, value2_le, sizeof(v2_le));
380
381         return v1_le == v2_le;
382 }
383
384 /*----------------------------------------------------------------*/
385
386 /*
387  * Variant that is used for in-core only changes or code that
388  * shouldn't put the pool in service on its own (e.g. commit).
389  */
390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
391         __acquires(pmd->root_lock)
392 {
393         down_write(&pmd->root_lock);
394 }
395
396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
397 {
398         pmd_write_lock_in_core(pmd);
399         if (unlikely(!pmd->in_service))
400                 pmd->in_service = true;
401 }
402
403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
404         __releases(pmd->root_lock)
405 {
406         up_write(&pmd->root_lock);
407 }
408
409 /*----------------------------------------------------------------*/
410
411 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
412                                 struct dm_block **sblock)
413 {
414         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
415                                      &sb_validator, sblock);
416 }
417
418 static int superblock_lock(struct dm_pool_metadata *pmd,
419                            struct dm_block **sblock)
420 {
421         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
422                                 &sb_validator, sblock);
423 }
424
425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
426 {
427         int r;
428         unsigned i;
429         struct dm_block *b;
430         __le64 *data_le, zero = cpu_to_le64(0);
431         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
432
433         /*
434          * We can't use a validator here - it may be all zeroes.
435          */
436         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
437         if (r)
438                 return r;
439
440         data_le = dm_block_data(b);
441         *result = 1;
442         for (i = 0; i < block_size; i++) {
443                 if (data_le[i] != zero) {
444                         *result = 0;
445                         break;
446                 }
447         }
448
449         dm_bm_unlock(b);
450
451         return 0;
452 }
453
454 static void __setup_btree_details(struct dm_pool_metadata *pmd)
455 {
456         pmd->info.tm = pmd->tm;
457         pmd->info.levels = 2;
458         pmd->info.value_type.context = pmd->data_sm;
459         pmd->info.value_type.size = sizeof(__le64);
460         pmd->info.value_type.inc = data_block_inc;
461         pmd->info.value_type.dec = data_block_dec;
462         pmd->info.value_type.equal = data_block_equal;
463
464         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
465         pmd->nb_info.tm = pmd->nb_tm;
466
467         pmd->tl_info.tm = pmd->tm;
468         pmd->tl_info.levels = 1;
469         pmd->tl_info.value_type.context = &pmd->bl_info;
470         pmd->tl_info.value_type.size = sizeof(__le64);
471         pmd->tl_info.value_type.inc = subtree_inc;
472         pmd->tl_info.value_type.dec = subtree_dec;
473         pmd->tl_info.value_type.equal = subtree_equal;
474
475         pmd->bl_info.tm = pmd->tm;
476         pmd->bl_info.levels = 1;
477         pmd->bl_info.value_type.context = pmd->data_sm;
478         pmd->bl_info.value_type.size = sizeof(__le64);
479         pmd->bl_info.value_type.inc = data_block_inc;
480         pmd->bl_info.value_type.dec = data_block_dec;
481         pmd->bl_info.value_type.equal = data_block_equal;
482
483         pmd->details_info.tm = pmd->tm;
484         pmd->details_info.levels = 1;
485         pmd->details_info.value_type.context = NULL;
486         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
487         pmd->details_info.value_type.inc = NULL;
488         pmd->details_info.value_type.dec = NULL;
489         pmd->details_info.value_type.equal = NULL;
490 }
491
492 static int save_sm_roots(struct dm_pool_metadata *pmd)
493 {
494         int r;
495         size_t len;
496
497         r = dm_sm_root_size(pmd->metadata_sm, &len);
498         if (r < 0)
499                 return r;
500
501         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
502         if (r < 0)
503                 return r;
504
505         r = dm_sm_root_size(pmd->data_sm, &len);
506         if (r < 0)
507                 return r;
508
509         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
510 }
511
512 static void copy_sm_roots(struct dm_pool_metadata *pmd,
513                           struct thin_disk_superblock *disk)
514 {
515         memcpy(&disk->metadata_space_map_root,
516                &pmd->metadata_space_map_root,
517                sizeof(pmd->metadata_space_map_root));
518
519         memcpy(&disk->data_space_map_root,
520                &pmd->data_space_map_root,
521                sizeof(pmd->data_space_map_root));
522 }
523
524 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
525 {
526         int r;
527         struct dm_block *sblock;
528         struct thin_disk_superblock *disk_super;
529         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
530
531         if (bdev_size > THIN_METADATA_MAX_SECTORS)
532                 bdev_size = THIN_METADATA_MAX_SECTORS;
533
534         r = dm_sm_commit(pmd->data_sm);
535         if (r < 0)
536                 return r;
537
538         r = dm_tm_pre_commit(pmd->tm);
539         if (r < 0)
540                 return r;
541
542         r = save_sm_roots(pmd);
543         if (r < 0)
544                 return r;
545
546         r = superblock_lock_zero(pmd, &sblock);
547         if (r)
548                 return r;
549
550         disk_super = dm_block_data(sblock);
551         disk_super->flags = 0;
552         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
553         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
554         disk_super->version = cpu_to_le32(THIN_VERSION);
555         disk_super->time = 0;
556         disk_super->trans_id = 0;
557         disk_super->held_root = 0;
558
559         copy_sm_roots(pmd, disk_super);
560
561         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
562         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
563         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
564         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
565         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
566
567         return dm_tm_commit(pmd->tm, sblock);
568 }
569
570 static int __format_metadata(struct dm_pool_metadata *pmd)
571 {
572         int r;
573
574         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
575                                  &pmd->tm, &pmd->metadata_sm);
576         if (r < 0) {
577                 DMERR("tm_create_with_sm failed");
578                 return r;
579         }
580
581         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
582         if (IS_ERR(pmd->data_sm)) {
583                 DMERR("sm_disk_create failed");
584                 r = PTR_ERR(pmd->data_sm);
585                 goto bad_cleanup_tm;
586         }
587
588         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
589         if (!pmd->nb_tm) {
590                 DMERR("could not create non-blocking clone tm");
591                 r = -ENOMEM;
592                 goto bad_cleanup_data_sm;
593         }
594
595         __setup_btree_details(pmd);
596
597         r = dm_btree_empty(&pmd->info, &pmd->root);
598         if (r < 0)
599                 goto bad_cleanup_nb_tm;
600
601         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
602         if (r < 0) {
603                 DMERR("couldn't create devices root");
604                 goto bad_cleanup_nb_tm;
605         }
606
607         r = __write_initial_superblock(pmd);
608         if (r)
609                 goto bad_cleanup_nb_tm;
610
611         return 0;
612
613 bad_cleanup_nb_tm:
614         dm_tm_destroy(pmd->nb_tm);
615 bad_cleanup_data_sm:
616         dm_sm_destroy(pmd->data_sm);
617 bad_cleanup_tm:
618         dm_tm_destroy(pmd->tm);
619         dm_sm_destroy(pmd->metadata_sm);
620
621         return r;
622 }
623
624 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
625                                      struct dm_pool_metadata *pmd)
626 {
627         uint32_t features;
628
629         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
630         if (features) {
631                 DMERR("could not access metadata due to unsupported optional features (%lx).",
632                       (unsigned long)features);
633                 return -EINVAL;
634         }
635
636         /*
637          * Check for read-only metadata to skip the following RDWR checks.
638          */
639         if (bdev_read_only(pmd->bdev))
640                 return 0;
641
642         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
643         if (features) {
644                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
645                       (unsigned long)features);
646                 return -EINVAL;
647         }
648
649         return 0;
650 }
651
652 static int __open_metadata(struct dm_pool_metadata *pmd)
653 {
654         int r;
655         struct dm_block *sblock;
656         struct thin_disk_superblock *disk_super;
657
658         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
659                             &sb_validator, &sblock);
660         if (r < 0) {
661                 DMERR("couldn't read superblock");
662                 return r;
663         }
664
665         disk_super = dm_block_data(sblock);
666
667         /* Verify the data block size hasn't changed */
668         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
669                 DMERR("changing the data block size (from %u to %llu) is not supported",
670                       le32_to_cpu(disk_super->data_block_size),
671                       (unsigned long long)pmd->data_block_size);
672                 r = -EINVAL;
673                 goto bad_unlock_sblock;
674         }
675
676         r = __check_incompat_features(disk_super, pmd);
677         if (r < 0)
678                 goto bad_unlock_sblock;
679
680         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
681                                disk_super->metadata_space_map_root,
682                                sizeof(disk_super->metadata_space_map_root),
683                                &pmd->tm, &pmd->metadata_sm);
684         if (r < 0) {
685                 DMERR("tm_open_with_sm failed");
686                 goto bad_unlock_sblock;
687         }
688
689         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
690                                        sizeof(disk_super->data_space_map_root));
691         if (IS_ERR(pmd->data_sm)) {
692                 DMERR("sm_disk_open failed");
693                 r = PTR_ERR(pmd->data_sm);
694                 goto bad_cleanup_tm;
695         }
696
697         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
698         if (!pmd->nb_tm) {
699                 DMERR("could not create non-blocking clone tm");
700                 r = -ENOMEM;
701                 goto bad_cleanup_data_sm;
702         }
703
704         __setup_btree_details(pmd);
705         dm_bm_unlock(sblock);
706
707         return 0;
708
709 bad_cleanup_data_sm:
710         dm_sm_destroy(pmd->data_sm);
711 bad_cleanup_tm:
712         dm_tm_destroy(pmd->tm);
713         dm_sm_destroy(pmd->metadata_sm);
714 bad_unlock_sblock:
715         dm_bm_unlock(sblock);
716
717         return r;
718 }
719
720 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
721 {
722         int r, unformatted;
723
724         r = __superblock_all_zeroes(pmd->bm, &unformatted);
725         if (r)
726                 return r;
727
728         if (unformatted)
729                 return format_device ? __format_metadata(pmd) : -EPERM;
730
731         return __open_metadata(pmd);
732 }
733
734 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
735 {
736         int r;
737
738         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
739                                           THIN_MAX_CONCURRENT_LOCKS);
740         if (IS_ERR(pmd->bm)) {
741                 DMERR("could not create block manager");
742                 r = PTR_ERR(pmd->bm);
743                 pmd->bm = NULL;
744                 return r;
745         }
746
747         r = __open_or_format_metadata(pmd, format_device);
748         if (r) {
749                 dm_block_manager_destroy(pmd->bm);
750                 pmd->bm = NULL;
751         }
752
753         return r;
754 }
755
756 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
757 {
758         dm_sm_destroy(pmd->data_sm);
759         dm_sm_destroy(pmd->metadata_sm);
760         dm_tm_destroy(pmd->nb_tm);
761         dm_tm_destroy(pmd->tm);
762         dm_block_manager_destroy(pmd->bm);
763 }
764
765 static int __begin_transaction(struct dm_pool_metadata *pmd)
766 {
767         int r;
768         struct thin_disk_superblock *disk_super;
769         struct dm_block *sblock;
770
771         /*
772          * We re-read the superblock every time.  Shouldn't need to do this
773          * really.
774          */
775         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
776                             &sb_validator, &sblock);
777         if (r)
778                 return r;
779
780         disk_super = dm_block_data(sblock);
781         pmd->time = le32_to_cpu(disk_super->time);
782         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
783         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
784         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
785         pmd->flags = le32_to_cpu(disk_super->flags);
786         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
787
788         dm_bm_unlock(sblock);
789         return 0;
790 }
791
792 static int __write_changed_details(struct dm_pool_metadata *pmd)
793 {
794         int r;
795         struct dm_thin_device *td, *tmp;
796         struct disk_device_details details;
797         uint64_t key;
798
799         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
800                 if (!td->changed)
801                         continue;
802
803                 key = td->id;
804
805                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
806                 details.transaction_id = cpu_to_le64(td->transaction_id);
807                 details.creation_time = cpu_to_le32(td->creation_time);
808                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
809                 __dm_bless_for_disk(&details);
810
811                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
812                                     &key, &details, &pmd->details_root);
813                 if (r)
814                         return r;
815
816                 if (td->open_count)
817                         td->changed = false;
818                 else {
819                         list_del(&td->list);
820                         kfree(td);
821                 }
822         }
823
824         return 0;
825 }
826
827 static int __commit_transaction(struct dm_pool_metadata *pmd)
828 {
829         int r;
830         struct thin_disk_superblock *disk_super;
831         struct dm_block *sblock;
832
833         /*
834          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
835          */
836         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
837         BUG_ON(!rwsem_is_locked(&pmd->root_lock));
838
839         if (unlikely(!pmd->in_service))
840                 return 0;
841
842         if (pmd->pre_commit_fn) {
843                 r = pmd->pre_commit_fn(pmd->pre_commit_context);
844                 if (r < 0) {
845                         DMERR("pre-commit callback failed");
846                         return r;
847                 }
848         }
849
850         r = __write_changed_details(pmd);
851         if (r < 0)
852                 return r;
853
854         r = dm_sm_commit(pmd->data_sm);
855         if (r < 0)
856                 return r;
857
858         r = dm_tm_pre_commit(pmd->tm);
859         if (r < 0)
860                 return r;
861
862         r = save_sm_roots(pmd);
863         if (r < 0)
864                 return r;
865
866         r = superblock_lock(pmd, &sblock);
867         if (r)
868                 return r;
869
870         disk_super = dm_block_data(sblock);
871         disk_super->time = cpu_to_le32(pmd->time);
872         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
873         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
874         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
875         disk_super->flags = cpu_to_le32(pmd->flags);
876
877         copy_sm_roots(pmd, disk_super);
878
879         return dm_tm_commit(pmd->tm, sblock);
880 }
881
882 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
883 {
884         int r;
885         dm_block_t total;
886         dm_block_t max_blocks = 4096; /* 16M */
887
888         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
889         if (r) {
890                 DMERR("could not get size of metadata device");
891                 pmd->metadata_reserve = max_blocks;
892         } else
893                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
894 }
895
896 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
897                                                sector_t data_block_size,
898                                                bool format_device)
899 {
900         int r;
901         struct dm_pool_metadata *pmd;
902
903         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
904         if (!pmd) {
905                 DMERR("could not allocate metadata struct");
906                 return ERR_PTR(-ENOMEM);
907         }
908
909         init_rwsem(&pmd->root_lock);
910         pmd->time = 0;
911         INIT_LIST_HEAD(&pmd->thin_devices);
912         pmd->fail_io = false;
913         pmd->in_service = false;
914         pmd->bdev = bdev;
915         pmd->data_block_size = data_block_size;
916         pmd->pre_commit_fn = NULL;
917         pmd->pre_commit_context = NULL;
918
919         r = __create_persistent_data_objects(pmd, format_device);
920         if (r) {
921                 kfree(pmd);
922                 return ERR_PTR(r);
923         }
924
925         r = __begin_transaction(pmd);
926         if (r < 0) {
927                 if (dm_pool_metadata_close(pmd) < 0)
928                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
929                 return ERR_PTR(r);
930         }
931
932         __set_metadata_reserve(pmd);
933
934         return pmd;
935 }
936
937 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
938 {
939         int r;
940         unsigned open_devices = 0;
941         struct dm_thin_device *td, *tmp;
942
943         down_read(&pmd->root_lock);
944         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
945                 if (td->open_count)
946                         open_devices++;
947                 else {
948                         list_del(&td->list);
949                         kfree(td);
950                 }
951         }
952         up_read(&pmd->root_lock);
953
954         if (open_devices) {
955                 DMERR("attempt to close pmd when %u device(s) are still open",
956                        open_devices);
957                 return -EBUSY;
958         }
959
960         pmd_write_lock_in_core(pmd);
961         if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
962                 r = __commit_transaction(pmd);
963                 if (r < 0)
964                         DMWARN("%s: __commit_transaction() failed, error = %d",
965                                __func__, r);
966         }
967         pmd_write_unlock(pmd);
968         if (!pmd->fail_io)
969                 __destroy_persistent_data_objects(pmd);
970
971         kfree(pmd);
972         return 0;
973 }
974
975 /*
976  * __open_device: Returns @td corresponding to device with id @dev,
977  * creating it if @create is set and incrementing @td->open_count.
978  * On failure, @td is undefined.
979  */
980 static int __open_device(struct dm_pool_metadata *pmd,
981                          dm_thin_id dev, int create,
982                          struct dm_thin_device **td)
983 {
984         int r, changed = 0;
985         struct dm_thin_device *td2;
986         uint64_t key = dev;
987         struct disk_device_details details_le;
988
989         /*
990          * If the device is already open, return it.
991          */
992         list_for_each_entry(td2, &pmd->thin_devices, list)
993                 if (td2->id == dev) {
994                         /*
995                          * May not create an already-open device.
996                          */
997                         if (create)
998                                 return -EEXIST;
999
1000                         td2->open_count++;
1001                         *td = td2;
1002                         return 0;
1003                 }
1004
1005         /*
1006          * Check the device exists.
1007          */
1008         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1009                             &key, &details_le);
1010         if (r) {
1011                 if (r != -ENODATA || !create)
1012                         return r;
1013
1014                 /*
1015                  * Create new device.
1016                  */
1017                 changed = 1;
1018                 details_le.mapped_blocks = 0;
1019                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1020                 details_le.creation_time = cpu_to_le32(pmd->time);
1021                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1022         }
1023
1024         *td = kmalloc(sizeof(**td), GFP_NOIO);
1025         if (!*td)
1026                 return -ENOMEM;
1027
1028         (*td)->pmd = pmd;
1029         (*td)->id = dev;
1030         (*td)->open_count = 1;
1031         (*td)->changed = changed;
1032         (*td)->aborted_with_changes = false;
1033         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1034         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1035         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1036         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1037
1038         list_add(&(*td)->list, &pmd->thin_devices);
1039
1040         return 0;
1041 }
1042
1043 static void __close_device(struct dm_thin_device *td)
1044 {
1045         --td->open_count;
1046 }
1047
1048 static int __create_thin(struct dm_pool_metadata *pmd,
1049                          dm_thin_id dev)
1050 {
1051         int r;
1052         dm_block_t dev_root;
1053         uint64_t key = dev;
1054         struct dm_thin_device *td;
1055         __le64 value;
1056
1057         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1058                             &key, NULL);
1059         if (!r)
1060                 return -EEXIST;
1061
1062         /*
1063          * Create an empty btree for the mappings.
1064          */
1065         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1066         if (r)
1067                 return r;
1068
1069         /*
1070          * Insert it into the main mapping tree.
1071          */
1072         value = cpu_to_le64(dev_root);
1073         __dm_bless_for_disk(&value);
1074         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1075         if (r) {
1076                 dm_btree_del(&pmd->bl_info, dev_root);
1077                 return r;
1078         }
1079
1080         r = __open_device(pmd, dev, 1, &td);
1081         if (r) {
1082                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1083                 dm_btree_del(&pmd->bl_info, dev_root);
1084                 return r;
1085         }
1086         __close_device(td);
1087
1088         return r;
1089 }
1090
1091 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1092 {
1093         int r = -EINVAL;
1094
1095         pmd_write_lock(pmd);
1096         if (!pmd->fail_io)
1097                 r = __create_thin(pmd, dev);
1098         pmd_write_unlock(pmd);
1099
1100         return r;
1101 }
1102
1103 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1104                                   struct dm_thin_device *snap,
1105                                   dm_thin_id origin, uint32_t time)
1106 {
1107         int r;
1108         struct dm_thin_device *td;
1109
1110         r = __open_device(pmd, origin, 0, &td);
1111         if (r)
1112                 return r;
1113
1114         td->changed = true;
1115         td->snapshotted_time = time;
1116
1117         snap->mapped_blocks = td->mapped_blocks;
1118         snap->snapshotted_time = time;
1119         __close_device(td);
1120
1121         return 0;
1122 }
1123
1124 static int __create_snap(struct dm_pool_metadata *pmd,
1125                          dm_thin_id dev, dm_thin_id origin)
1126 {
1127         int r;
1128         dm_block_t origin_root;
1129         uint64_t key = origin, dev_key = dev;
1130         struct dm_thin_device *td;
1131         __le64 value;
1132
1133         /* check this device is unused */
1134         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1135                             &dev_key, NULL);
1136         if (!r)
1137                 return -EEXIST;
1138
1139         /* find the mapping tree for the origin */
1140         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1141         if (r)
1142                 return r;
1143         origin_root = le64_to_cpu(value);
1144
1145         /* clone the origin, an inc will do */
1146         dm_tm_inc(pmd->tm, origin_root);
1147
1148         /* insert into the main mapping tree */
1149         value = cpu_to_le64(origin_root);
1150         __dm_bless_for_disk(&value);
1151         key = dev;
1152         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1153         if (r) {
1154                 dm_tm_dec(pmd->tm, origin_root);
1155                 return r;
1156         }
1157
1158         pmd->time++;
1159
1160         r = __open_device(pmd, dev, 1, &td);
1161         if (r)
1162                 goto bad;
1163
1164         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1165         __close_device(td);
1166
1167         if (r)
1168                 goto bad;
1169
1170         return 0;
1171
1172 bad:
1173         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1174         dm_btree_remove(&pmd->details_info, pmd->details_root,
1175                         &key, &pmd->details_root);
1176         return r;
1177 }
1178
1179 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1180                                  dm_thin_id dev,
1181                                  dm_thin_id origin)
1182 {
1183         int r = -EINVAL;
1184
1185         pmd_write_lock(pmd);
1186         if (!pmd->fail_io)
1187                 r = __create_snap(pmd, dev, origin);
1188         pmd_write_unlock(pmd);
1189
1190         return r;
1191 }
1192
1193 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1194 {
1195         int r;
1196         uint64_t key = dev;
1197         struct dm_thin_device *td;
1198
1199         /* TODO: failure should mark the transaction invalid */
1200         r = __open_device(pmd, dev, 0, &td);
1201         if (r)
1202                 return r;
1203
1204         if (td->open_count > 1) {
1205                 __close_device(td);
1206                 return -EBUSY;
1207         }
1208
1209         list_del(&td->list);
1210         kfree(td);
1211         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1212                             &key, &pmd->details_root);
1213         if (r)
1214                 return r;
1215
1216         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1217         if (r)
1218                 return r;
1219
1220         return 0;
1221 }
1222
1223 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1224                                dm_thin_id dev)
1225 {
1226         int r = -EINVAL;
1227
1228         pmd_write_lock(pmd);
1229         if (!pmd->fail_io)
1230                 r = __delete_device(pmd, dev);
1231         pmd_write_unlock(pmd);
1232
1233         return r;
1234 }
1235
1236 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1237                                         uint64_t current_id,
1238                                         uint64_t new_id)
1239 {
1240         int r = -EINVAL;
1241
1242         pmd_write_lock(pmd);
1243
1244         if (pmd->fail_io)
1245                 goto out;
1246
1247         if (pmd->trans_id != current_id) {
1248                 DMERR("mismatched transaction id");
1249                 goto out;
1250         }
1251
1252         pmd->trans_id = new_id;
1253         r = 0;
1254
1255 out:
1256         pmd_write_unlock(pmd);
1257
1258         return r;
1259 }
1260
1261 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1262                                         uint64_t *result)
1263 {
1264         int r = -EINVAL;
1265
1266         down_read(&pmd->root_lock);
1267         if (!pmd->fail_io) {
1268                 *result = pmd->trans_id;
1269                 r = 0;
1270         }
1271         up_read(&pmd->root_lock);
1272
1273         return r;
1274 }
1275
1276 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1277 {
1278         int r, inc;
1279         struct thin_disk_superblock *disk_super;
1280         struct dm_block *copy, *sblock;
1281         dm_block_t held_root;
1282
1283         /*
1284          * We commit to ensure the btree roots which we increment in a
1285          * moment are up to date.
1286          */
1287         r = __commit_transaction(pmd);
1288         if (r < 0) {
1289                 DMWARN("%s: __commit_transaction() failed, error = %d",
1290                        __func__, r);
1291                 return r;
1292         }
1293
1294         /*
1295          * Copy the superblock.
1296          */
1297         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1298         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1299                                &sb_validator, &copy, &inc);
1300         if (r)
1301                 return r;
1302
1303         BUG_ON(!inc);
1304
1305         held_root = dm_block_location(copy);
1306         disk_super = dm_block_data(copy);
1307
1308         if (le64_to_cpu(disk_super->held_root)) {
1309                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1310
1311                 dm_tm_dec(pmd->tm, held_root);
1312                 dm_tm_unlock(pmd->tm, copy);
1313                 return -EBUSY;
1314         }
1315
1316         /*
1317          * Wipe the spacemap since we're not publishing this.
1318          */
1319         memset(&disk_super->data_space_map_root, 0,
1320                sizeof(disk_super->data_space_map_root));
1321         memset(&disk_super->metadata_space_map_root, 0,
1322                sizeof(disk_super->metadata_space_map_root));
1323
1324         /*
1325          * Increment the data structures that need to be preserved.
1326          */
1327         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1328         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1329         dm_tm_unlock(pmd->tm, copy);
1330
1331         /*
1332          * Write the held root into the superblock.
1333          */
1334         r = superblock_lock(pmd, &sblock);
1335         if (r) {
1336                 dm_tm_dec(pmd->tm, held_root);
1337                 return r;
1338         }
1339
1340         disk_super = dm_block_data(sblock);
1341         disk_super->held_root = cpu_to_le64(held_root);
1342         dm_bm_unlock(sblock);
1343         return 0;
1344 }
1345
1346 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1347 {
1348         int r = -EINVAL;
1349
1350         pmd_write_lock(pmd);
1351         if (!pmd->fail_io)
1352                 r = __reserve_metadata_snap(pmd);
1353         pmd_write_unlock(pmd);
1354
1355         return r;
1356 }
1357
1358 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1359 {
1360         int r;
1361         struct thin_disk_superblock *disk_super;
1362         struct dm_block *sblock, *copy;
1363         dm_block_t held_root;
1364
1365         r = superblock_lock(pmd, &sblock);
1366         if (r)
1367                 return r;
1368
1369         disk_super = dm_block_data(sblock);
1370         held_root = le64_to_cpu(disk_super->held_root);
1371         disk_super->held_root = cpu_to_le64(0);
1372
1373         dm_bm_unlock(sblock);
1374
1375         if (!held_root) {
1376                 DMWARN("No pool metadata snapshot found: nothing to release.");
1377                 return -EINVAL;
1378         }
1379
1380         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1381         if (r)
1382                 return r;
1383
1384         disk_super = dm_block_data(copy);
1385         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1386         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1387         dm_sm_dec_block(pmd->metadata_sm, held_root);
1388
1389         dm_tm_unlock(pmd->tm, copy);
1390
1391         return 0;
1392 }
1393
1394 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1395 {
1396         int r = -EINVAL;
1397
1398         pmd_write_lock(pmd);
1399         if (!pmd->fail_io)
1400                 r = __release_metadata_snap(pmd);
1401         pmd_write_unlock(pmd);
1402
1403         return r;
1404 }
1405
1406 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1407                                dm_block_t *result)
1408 {
1409         int r;
1410         struct thin_disk_superblock *disk_super;
1411         struct dm_block *sblock;
1412
1413         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1414                             &sb_validator, &sblock);
1415         if (r)
1416                 return r;
1417
1418         disk_super = dm_block_data(sblock);
1419         *result = le64_to_cpu(disk_super->held_root);
1420
1421         dm_bm_unlock(sblock);
1422
1423         return 0;
1424 }
1425
1426 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1427                               dm_block_t *result)
1428 {
1429         int r = -EINVAL;
1430
1431         down_read(&pmd->root_lock);
1432         if (!pmd->fail_io)
1433                 r = __get_metadata_snap(pmd, result);
1434         up_read(&pmd->root_lock);
1435
1436         return r;
1437 }
1438
1439 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1440                              struct dm_thin_device **td)
1441 {
1442         int r = -EINVAL;
1443
1444         pmd_write_lock_in_core(pmd);
1445         if (!pmd->fail_io)
1446                 r = __open_device(pmd, dev, 0, td);
1447         pmd_write_unlock(pmd);
1448
1449         return r;
1450 }
1451
1452 int dm_pool_close_thin_device(struct dm_thin_device *td)
1453 {
1454         pmd_write_lock_in_core(td->pmd);
1455         __close_device(td);
1456         pmd_write_unlock(td->pmd);
1457
1458         return 0;
1459 }
1460
1461 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1462 {
1463         return td->id;
1464 }
1465
1466 /*
1467  * Check whether @time (of block creation) is older than @td's last snapshot.
1468  * If so then the associated block is shared with the last snapshot device.
1469  * Any block on a device created *after* the device last got snapshotted is
1470  * necessarily not shared.
1471  */
1472 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1473 {
1474         return td->snapshotted_time > time;
1475 }
1476
1477 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1478                                  struct dm_thin_lookup_result *result)
1479 {
1480         uint64_t block_time = 0;
1481         dm_block_t exception_block;
1482         uint32_t exception_time;
1483
1484         block_time = le64_to_cpu(value);
1485         unpack_block_time(block_time, &exception_block, &exception_time);
1486         result->block = exception_block;
1487         result->shared = __snapshotted_since(td, exception_time);
1488 }
1489
1490 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1491                         int can_issue_io, struct dm_thin_lookup_result *result)
1492 {
1493         int r;
1494         __le64 value;
1495         struct dm_pool_metadata *pmd = td->pmd;
1496         dm_block_t keys[2] = { td->id, block };
1497         struct dm_btree_info *info;
1498
1499         if (can_issue_io) {
1500                 info = &pmd->info;
1501         } else
1502                 info = &pmd->nb_info;
1503
1504         r = dm_btree_lookup(info, pmd->root, keys, &value);
1505         if (!r)
1506                 unpack_lookup_result(td, value, result);
1507
1508         return r;
1509 }
1510
1511 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1512                        int can_issue_io, struct dm_thin_lookup_result *result)
1513 {
1514         int r;
1515         struct dm_pool_metadata *pmd = td->pmd;
1516
1517         down_read(&pmd->root_lock);
1518         if (pmd->fail_io) {
1519                 up_read(&pmd->root_lock);
1520                 return -EINVAL;
1521         }
1522
1523         r = __find_block(td, block, can_issue_io, result);
1524
1525         up_read(&pmd->root_lock);
1526         return r;
1527 }
1528
1529 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1530                                           dm_block_t *vblock,
1531                                           struct dm_thin_lookup_result *result)
1532 {
1533         int r;
1534         __le64 value;
1535         struct dm_pool_metadata *pmd = td->pmd;
1536         dm_block_t keys[2] = { td->id, block };
1537
1538         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1539         if (!r)
1540                 unpack_lookup_result(td, value, result);
1541
1542         return r;
1543 }
1544
1545 static int __find_mapped_range(struct dm_thin_device *td,
1546                                dm_block_t begin, dm_block_t end,
1547                                dm_block_t *thin_begin, dm_block_t *thin_end,
1548                                dm_block_t *pool_begin, bool *maybe_shared)
1549 {
1550         int r;
1551         dm_block_t pool_end;
1552         struct dm_thin_lookup_result lookup;
1553
1554         if (end < begin)
1555                 return -ENODATA;
1556
1557         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1558         if (r)
1559                 return r;
1560
1561         if (begin >= end)
1562                 return -ENODATA;
1563
1564         *thin_begin = begin;
1565         *pool_begin = lookup.block;
1566         *maybe_shared = lookup.shared;
1567
1568         begin++;
1569         pool_end = *pool_begin + 1;
1570         while (begin != end) {
1571                 r = __find_block(td, begin, true, &lookup);
1572                 if (r) {
1573                         if (r == -ENODATA)
1574                                 break;
1575                         else
1576                                 return r;
1577                 }
1578
1579                 if ((lookup.block != pool_end) ||
1580                     (lookup.shared != *maybe_shared))
1581                         break;
1582
1583                 pool_end++;
1584                 begin++;
1585         }
1586
1587         *thin_end = begin;
1588         return 0;
1589 }
1590
1591 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1592                               dm_block_t begin, dm_block_t end,
1593                               dm_block_t *thin_begin, dm_block_t *thin_end,
1594                               dm_block_t *pool_begin, bool *maybe_shared)
1595 {
1596         int r = -EINVAL;
1597         struct dm_pool_metadata *pmd = td->pmd;
1598
1599         down_read(&pmd->root_lock);
1600         if (!pmd->fail_io) {
1601                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1602                                         pool_begin, maybe_shared);
1603         }
1604         up_read(&pmd->root_lock);
1605
1606         return r;
1607 }
1608
1609 static int __insert(struct dm_thin_device *td, dm_block_t block,
1610                     dm_block_t data_block)
1611 {
1612         int r, inserted;
1613         __le64 value;
1614         struct dm_pool_metadata *pmd = td->pmd;
1615         dm_block_t keys[2] = { td->id, block };
1616
1617         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1618         __dm_bless_for_disk(&value);
1619
1620         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1621                                    &pmd->root, &inserted);
1622         if (r)
1623                 return r;
1624
1625         td->changed = true;
1626         if (inserted)
1627                 td->mapped_blocks++;
1628
1629         return 0;
1630 }
1631
1632 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1633                          dm_block_t data_block)
1634 {
1635         int r = -EINVAL;
1636
1637         pmd_write_lock(td->pmd);
1638         if (!td->pmd->fail_io)
1639                 r = __insert(td, block, data_block);
1640         pmd_write_unlock(td->pmd);
1641
1642         return r;
1643 }
1644
1645 static int __remove(struct dm_thin_device *td, dm_block_t block)
1646 {
1647         int r;
1648         struct dm_pool_metadata *pmd = td->pmd;
1649         dm_block_t keys[2] = { td->id, block };
1650
1651         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1652         if (r)
1653                 return r;
1654
1655         td->mapped_blocks--;
1656         td->changed = true;
1657
1658         return 0;
1659 }
1660
1661 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1662 {
1663         int r;
1664         unsigned count, total_count = 0;
1665         struct dm_pool_metadata *pmd = td->pmd;
1666         dm_block_t keys[1] = { td->id };
1667         __le64 value;
1668         dm_block_t mapping_root;
1669
1670         /*
1671          * Find the mapping tree
1672          */
1673         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1674         if (r)
1675                 return r;
1676
1677         /*
1678          * Remove from the mapping tree, taking care to inc the
1679          * ref count so it doesn't get deleted.
1680          */
1681         mapping_root = le64_to_cpu(value);
1682         dm_tm_inc(pmd->tm, mapping_root);
1683         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1684         if (r)
1685                 return r;
1686
1687         /*
1688          * Remove leaves stops at the first unmapped entry, so we have to
1689          * loop round finding mapped ranges.
1690          */
1691         while (begin < end) {
1692                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1693                 if (r == -ENODATA)
1694                         break;
1695
1696                 if (r)
1697                         return r;
1698
1699                 if (begin >= end)
1700                         break;
1701
1702                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1703                 if (r)
1704                         return r;
1705
1706                 total_count += count;
1707         }
1708
1709         td->mapped_blocks -= total_count;
1710         td->changed = true;
1711
1712         /*
1713          * Reinsert the mapping tree.
1714          */
1715         value = cpu_to_le64(mapping_root);
1716         __dm_bless_for_disk(&value);
1717         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1718 }
1719
1720 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1721 {
1722         int r = -EINVAL;
1723
1724         pmd_write_lock(td->pmd);
1725         if (!td->pmd->fail_io)
1726                 r = __remove(td, block);
1727         pmd_write_unlock(td->pmd);
1728
1729         return r;
1730 }
1731
1732 int dm_thin_remove_range(struct dm_thin_device *td,
1733                          dm_block_t begin, dm_block_t end)
1734 {
1735         int r = -EINVAL;
1736
1737         pmd_write_lock(td->pmd);
1738         if (!td->pmd->fail_io)
1739                 r = __remove_range(td, begin, end);
1740         pmd_write_unlock(td->pmd);
1741
1742         return r;
1743 }
1744
1745 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1746 {
1747         int r;
1748         uint32_t ref_count;
1749
1750         down_read(&pmd->root_lock);
1751         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1752         if (!r)
1753                 *result = (ref_count > 1);
1754         up_read(&pmd->root_lock);
1755
1756         return r;
1757 }
1758
1759 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1760 {
1761         int r = 0;
1762
1763         pmd_write_lock(pmd);
1764         for (; b != e; b++) {
1765                 r = dm_sm_inc_block(pmd->data_sm, b);
1766                 if (r)
1767                         break;
1768         }
1769         pmd_write_unlock(pmd);
1770
1771         return r;
1772 }
1773
1774 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1775 {
1776         int r = 0;
1777
1778         pmd_write_lock(pmd);
1779         for (; b != e; b++) {
1780                 r = dm_sm_dec_block(pmd->data_sm, b);
1781                 if (r)
1782                         break;
1783         }
1784         pmd_write_unlock(pmd);
1785
1786         return r;
1787 }
1788
1789 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1790 {
1791         int r;
1792
1793         down_read(&td->pmd->root_lock);
1794         r = td->changed;
1795         up_read(&td->pmd->root_lock);
1796
1797         return r;
1798 }
1799
1800 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1801 {
1802         bool r = false;
1803         struct dm_thin_device *td, *tmp;
1804
1805         down_read(&pmd->root_lock);
1806         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1807                 if (td->changed) {
1808                         r = td->changed;
1809                         break;
1810                 }
1811         }
1812         up_read(&pmd->root_lock);
1813
1814         return r;
1815 }
1816
1817 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1818 {
1819         bool r;
1820
1821         down_read(&td->pmd->root_lock);
1822         r = td->aborted_with_changes;
1823         up_read(&td->pmd->root_lock);
1824
1825         return r;
1826 }
1827
1828 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1829 {
1830         int r = -EINVAL;
1831
1832         pmd_write_lock(pmd);
1833         if (!pmd->fail_io)
1834                 r = dm_sm_new_block(pmd->data_sm, result);
1835         pmd_write_unlock(pmd);
1836
1837         return r;
1838 }
1839
1840 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1841 {
1842         int r = -EINVAL;
1843
1844         /*
1845          * Care is taken to not have commit be what
1846          * triggers putting the thin-pool in-service.
1847          */
1848         pmd_write_lock_in_core(pmd);
1849         if (pmd->fail_io)
1850                 goto out;
1851
1852         r = __commit_transaction(pmd);
1853         if (r < 0)
1854                 goto out;
1855
1856         /*
1857          * Open the next transaction.
1858          */
1859         r = __begin_transaction(pmd);
1860 out:
1861         pmd_write_unlock(pmd);
1862         return r;
1863 }
1864
1865 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1866 {
1867         struct dm_thin_device *td;
1868
1869         list_for_each_entry(td, &pmd->thin_devices, list)
1870                 td->aborted_with_changes = td->changed;
1871 }
1872
1873 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1874 {
1875         int r = -EINVAL;
1876
1877         pmd_write_lock(pmd);
1878         if (pmd->fail_io)
1879                 goto out;
1880
1881         __set_abort_with_changes_flags(pmd);
1882         __destroy_persistent_data_objects(pmd);
1883         r = __create_persistent_data_objects(pmd, false);
1884         if (r)
1885                 pmd->fail_io = true;
1886
1887 out:
1888         pmd_write_unlock(pmd);
1889
1890         return r;
1891 }
1892
1893 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1894 {
1895         int r = -EINVAL;
1896
1897         down_read(&pmd->root_lock);
1898         if (!pmd->fail_io)
1899                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1900         up_read(&pmd->root_lock);
1901
1902         return r;
1903 }
1904
1905 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1906                                           dm_block_t *result)
1907 {
1908         int r = -EINVAL;
1909
1910         down_read(&pmd->root_lock);
1911         if (!pmd->fail_io)
1912                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1913
1914         if (!r) {
1915                 if (*result < pmd->metadata_reserve)
1916                         *result = 0;
1917                 else
1918                         *result -= pmd->metadata_reserve;
1919         }
1920         up_read(&pmd->root_lock);
1921
1922         return r;
1923 }
1924
1925 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1926                                   dm_block_t *result)
1927 {
1928         int r = -EINVAL;
1929
1930         down_read(&pmd->root_lock);
1931         if (!pmd->fail_io)
1932                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1933         up_read(&pmd->root_lock);
1934
1935         return r;
1936 }
1937
1938 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1939 {
1940         int r = -EINVAL;
1941
1942         down_read(&pmd->root_lock);
1943         if (!pmd->fail_io)
1944                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1945         up_read(&pmd->root_lock);
1946
1947         return r;
1948 }
1949
1950 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1951 {
1952         int r = -EINVAL;
1953         struct dm_pool_metadata *pmd = td->pmd;
1954
1955         down_read(&pmd->root_lock);
1956         if (!pmd->fail_io) {
1957                 *result = td->mapped_blocks;
1958                 r = 0;
1959         }
1960         up_read(&pmd->root_lock);
1961
1962         return r;
1963 }
1964
1965 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1966 {
1967         int r;
1968         __le64 value_le;
1969         dm_block_t thin_root;
1970         struct dm_pool_metadata *pmd = td->pmd;
1971
1972         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1973         if (r)
1974                 return r;
1975
1976         thin_root = le64_to_cpu(value_le);
1977
1978         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1979 }
1980
1981 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1982                                      dm_block_t *result)
1983 {
1984         int r = -EINVAL;
1985         struct dm_pool_metadata *pmd = td->pmd;
1986
1987         down_read(&pmd->root_lock);
1988         if (!pmd->fail_io)
1989                 r = __highest_block(td, result);
1990         up_read(&pmd->root_lock);
1991
1992         return r;
1993 }
1994
1995 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1996 {
1997         int r;
1998         dm_block_t old_count;
1999
2000         r = dm_sm_get_nr_blocks(sm, &old_count);
2001         if (r)
2002                 return r;
2003
2004         if (new_count == old_count)
2005                 return 0;
2006
2007         if (new_count < old_count) {
2008                 DMERR("cannot reduce size of space map");
2009                 return -EINVAL;
2010         }
2011
2012         return dm_sm_extend(sm, new_count - old_count);
2013 }
2014
2015 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2016 {
2017         int r = -EINVAL;
2018
2019         pmd_write_lock(pmd);
2020         if (!pmd->fail_io)
2021                 r = __resize_space_map(pmd->data_sm, new_count);
2022         pmd_write_unlock(pmd);
2023
2024         return r;
2025 }
2026
2027 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2028 {
2029         int r = -EINVAL;
2030
2031         pmd_write_lock(pmd);
2032         if (!pmd->fail_io) {
2033                 r = __resize_space_map(pmd->metadata_sm, new_count);
2034                 if (!r)
2035                         __set_metadata_reserve(pmd);
2036         }
2037         pmd_write_unlock(pmd);
2038
2039         return r;
2040 }
2041
2042 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2043 {
2044         pmd_write_lock_in_core(pmd);
2045         dm_bm_set_read_only(pmd->bm);
2046         pmd_write_unlock(pmd);
2047 }
2048
2049 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2050 {
2051         pmd_write_lock_in_core(pmd);
2052         dm_bm_set_read_write(pmd->bm);
2053         pmd_write_unlock(pmd);
2054 }
2055
2056 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2057                                         dm_block_t threshold,
2058                                         dm_sm_threshold_fn fn,
2059                                         void *context)
2060 {
2061         int r;
2062
2063         pmd_write_lock_in_core(pmd);
2064         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2065         pmd_write_unlock(pmd);
2066
2067         return r;
2068 }
2069
2070 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2071                                           dm_pool_pre_commit_fn fn,
2072                                           void *context)
2073 {
2074         pmd_write_lock_in_core(pmd);
2075         pmd->pre_commit_fn = fn;
2076         pmd->pre_commit_context = context;
2077         pmd_write_unlock(pmd);
2078 }
2079
2080 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2081 {
2082         int r = -EINVAL;
2083         struct dm_block *sblock;
2084         struct thin_disk_superblock *disk_super;
2085
2086         pmd_write_lock(pmd);
2087         if (pmd->fail_io)
2088                 goto out;
2089
2090         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2091
2092         r = superblock_lock(pmd, &sblock);
2093         if (r) {
2094                 DMERR("couldn't lock superblock");
2095                 goto out;
2096         }
2097
2098         disk_super = dm_block_data(sblock);
2099         disk_super->flags = cpu_to_le32(pmd->flags);
2100
2101         dm_bm_unlock(sblock);
2102 out:
2103         pmd_write_unlock(pmd);
2104         return r;
2105 }
2106
2107 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2108 {
2109         bool needs_check;
2110
2111         down_read(&pmd->root_lock);
2112         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2113         up_read(&pmd->root_lock);
2114
2115         return needs_check;
2116 }
2117
2118 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2119 {
2120         down_read(&pmd->root_lock);
2121         if (!pmd->fail_io)
2122                 dm_tm_issue_prefetches(pmd->tm);
2123         up_read(&pmd->root_lock);
2124 }