Merge tag 'for-linus-5.14-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99         __le32 csum;    /* Checksum of superblock except for this field. */
100         __le32 flags;
101         __le64 blocknr; /* This block number, dm_block_t. */
102
103         __u8 uuid[16];
104         __le64 magic;
105         __le32 version;
106         __le32 time;
107
108         __le64 trans_id;
109
110         /*
111          * Root held by userspace transactions.
112          */
113         __le64 held_root;
114
115         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118         /*
119          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120          */
121         __le64 data_mapping_root;
122
123         /*
124          * Device detail root mapping dev_id -> device_details
125          */
126         __le64 device_details_root;
127
128         __le32 data_block_size;         /* In 512-byte sectors. */
129
130         __le32 metadata_block_size;     /* In 512-byte sectors. */
131         __le64 metadata_nr_blocks;
132
133         __le32 compat_flags;
134         __le32 compat_ro_flags;
135         __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139         __le64 mapped_blocks;
140         __le64 transaction_id;          /* When created. */
141         __le32 creation_time;
142         __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146         struct hlist_node hash;
147
148         struct block_device *bdev;
149         struct dm_block_manager *bm;
150         struct dm_space_map *metadata_sm;
151         struct dm_space_map *data_sm;
152         struct dm_transaction_manager *tm;
153         struct dm_transaction_manager *nb_tm;
154
155         /*
156          * Two-level btree.
157          * First level holds thin_dev_t.
158          * Second level holds mappings.
159          */
160         struct dm_btree_info info;
161
162         /*
163          * Non-blocking version of the above.
164          */
165         struct dm_btree_info nb_info;
166
167         /*
168          * Just the top level for deleting whole devices.
169          */
170         struct dm_btree_info tl_info;
171
172         /*
173          * Just the bottom level for creating new devices.
174          */
175         struct dm_btree_info bl_info;
176
177         /*
178          * Describes the device details btree.
179          */
180         struct dm_btree_info details_info;
181
182         struct rw_semaphore root_lock;
183         uint32_t time;
184         dm_block_t root;
185         dm_block_t details_root;
186         struct list_head thin_devices;
187         uint64_t trans_id;
188         unsigned long flags;
189         sector_t data_block_size;
190
191         /*
192          * Pre-commit callback.
193          *
194          * This allows the thin provisioning target to run a callback before
195          * the metadata are committed.
196          */
197         dm_pool_pre_commit_fn pre_commit_fn;
198         void *pre_commit_context;
199
200         /*
201          * We reserve a section of the metadata for commit overhead.
202          * All reported space does *not* include this.
203          */
204         dm_block_t metadata_reserve;
205
206         /*
207          * Set if a transaction has to be aborted but the attempt to roll back
208          * to the previous (good) transaction failed.  The only pool metadata
209          * operation possible in this state is the closing of the device.
210          */
211         bool fail_io:1;
212
213         /*
214          * Set once a thin-pool has been accessed through one of the interfaces
215          * that imply the pool is in-service (e.g. thin devices created/deleted,
216          * thin-pool message, metadata snapshots, etc).
217          */
218         bool in_service:1;
219
220         /*
221          * Reading the space map roots can fail, so we read it into these
222          * buffers before the superblock is locked and updated.
223          */
224         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227
228 struct dm_thin_device {
229         struct list_head list;
230         struct dm_pool_metadata *pmd;
231         dm_thin_id id;
232
233         int open_count;
234         bool changed:1;
235         bool aborted_with_changes:1;
236         uint64_t mapped_blocks;
237         uint64_t transaction_id;
238         uint32_t creation_time;
239         uint32_t snapshotted_time;
240 };
241
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245
246 #define SUPERBLOCK_CSUM_XOR 160774
247
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249                                  struct dm_block *b,
250                                  size_t block_size)
251 {
252         struct thin_disk_superblock *disk_super = dm_block_data(b);
253
254         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256                                                       block_size - sizeof(__le32),
257                                                       SUPERBLOCK_CSUM_XOR));
258 }
259
260 static int sb_check(struct dm_block_validator *v,
261                     struct dm_block *b,
262                     size_t block_size)
263 {
264         struct thin_disk_superblock *disk_super = dm_block_data(b);
265         __le32 csum_le;
266
267         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268                 DMERR("sb_check failed: blocknr %llu: "
269                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
270                       (unsigned long long)dm_block_location(b));
271                 return -ENOTBLK;
272         }
273
274         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275                 DMERR("sb_check failed: magic %llu: "
276                       "wanted %llu", le64_to_cpu(disk_super->magic),
277                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278                 return -EILSEQ;
279         }
280
281         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282                                              block_size - sizeof(__le32),
283                                              SUPERBLOCK_CSUM_XOR));
284         if (csum_le != disk_super->csum) {
285                 DMERR("sb_check failed: csum %u: wanted %u",
286                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287                 return -EILSEQ;
288         }
289
290         return 0;
291 }
292
293 static struct dm_block_validator sb_validator = {
294         .name = "superblock",
295         .prepare_for_write = sb_prepare_for_write,
296         .check = sb_check
297 };
298
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305         return (b << 24) | t;
306 }
307
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310         *b = v >> 24;
311         *t = v & ((1 << 24) - 1);
312 }
313
314 /*
315  * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
316  * possible.  'with_runs' reads contiguous runs of blocks, and calls the
317  * given sm function.
318  */
319 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
320
321 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
322 {
323         uint64_t b, begin, end;
324         uint32_t t;
325         bool in_run = false;
326         unsigned i;
327
328         for (i = 0; i < count; i++, value_le++) {
329                 /* We know value_le is 8 byte aligned */
330                 unpack_block_time(le64_to_cpu(*value_le), &b, &t);
331
332                 if (in_run) {
333                         if (b == end) {
334                                 end++;
335                         } else {
336                                 fn(sm, begin, end);
337                                 begin = b;
338                                 end = b + 1;
339                         }
340                 } else {
341                         in_run = true;
342                         begin = b;
343                         end = b + 1;
344                 }
345         }
346
347         if (in_run)
348                 fn(sm, begin, end);
349 }
350
351 static void data_block_inc(void *context, const void *value_le, unsigned count)
352 {
353         with_runs((struct dm_space_map *) context,
354                   (const __le64 *) value_le, count, dm_sm_inc_blocks);
355 }
356
357 static void data_block_dec(void *context, const void *value_le, unsigned count)
358 {
359         with_runs((struct dm_space_map *) context,
360                   (const __le64 *) value_le, count, dm_sm_dec_blocks);
361 }
362
363 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
364 {
365         __le64 v1_le, v2_le;
366         uint64_t b1, b2;
367         uint32_t t;
368
369         memcpy(&v1_le, value1_le, sizeof(v1_le));
370         memcpy(&v2_le, value2_le, sizeof(v2_le));
371         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
372         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
373
374         return b1 == b2;
375 }
376
377 static void subtree_inc(void *context, const void *value, unsigned count)
378 {
379         struct dm_btree_info *info = context;
380         const __le64 *root_le = value;
381         unsigned i;
382
383         for (i = 0; i < count; i++, root_le++)
384                 dm_tm_inc(info->tm, le64_to_cpu(*root_le));
385 }
386
387 static void subtree_dec(void *context, const void *value, unsigned count)
388 {
389         struct dm_btree_info *info = context;
390         const __le64 *root_le = value;
391         unsigned i;
392
393         for (i = 0; i < count; i++, root_le++)
394                 if (dm_btree_del(info, le64_to_cpu(*root_le)))
395                         DMERR("btree delete failed");
396 }
397
398 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
399 {
400         __le64 v1_le, v2_le;
401         memcpy(&v1_le, value1_le, sizeof(v1_le));
402         memcpy(&v2_le, value2_le, sizeof(v2_le));
403
404         return v1_le == v2_le;
405 }
406
407 /*----------------------------------------------------------------*/
408
409 /*
410  * Variant that is used for in-core only changes or code that
411  * shouldn't put the pool in service on its own (e.g. commit).
412  */
413 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
414         __acquires(pmd->root_lock)
415 {
416         down_write(&pmd->root_lock);
417 }
418
419 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
420 {
421         pmd_write_lock_in_core(pmd);
422         if (unlikely(!pmd->in_service))
423                 pmd->in_service = true;
424 }
425
426 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
427         __releases(pmd->root_lock)
428 {
429         up_write(&pmd->root_lock);
430 }
431
432 /*----------------------------------------------------------------*/
433
434 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
435                                 struct dm_block **sblock)
436 {
437         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
438                                      &sb_validator, sblock);
439 }
440
441 static int superblock_lock(struct dm_pool_metadata *pmd,
442                            struct dm_block **sblock)
443 {
444         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
445                                 &sb_validator, sblock);
446 }
447
448 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
449 {
450         int r;
451         unsigned i;
452         struct dm_block *b;
453         __le64 *data_le, zero = cpu_to_le64(0);
454         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
455
456         /*
457          * We can't use a validator here - it may be all zeroes.
458          */
459         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
460         if (r)
461                 return r;
462
463         data_le = dm_block_data(b);
464         *result = 1;
465         for (i = 0; i < block_size; i++) {
466                 if (data_le[i] != zero) {
467                         *result = 0;
468                         break;
469                 }
470         }
471
472         dm_bm_unlock(b);
473
474         return 0;
475 }
476
477 static void __setup_btree_details(struct dm_pool_metadata *pmd)
478 {
479         pmd->info.tm = pmd->tm;
480         pmd->info.levels = 2;
481         pmd->info.value_type.context = pmd->data_sm;
482         pmd->info.value_type.size = sizeof(__le64);
483         pmd->info.value_type.inc = data_block_inc;
484         pmd->info.value_type.dec = data_block_dec;
485         pmd->info.value_type.equal = data_block_equal;
486
487         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
488         pmd->nb_info.tm = pmd->nb_tm;
489
490         pmd->tl_info.tm = pmd->tm;
491         pmd->tl_info.levels = 1;
492         pmd->tl_info.value_type.context = &pmd->bl_info;
493         pmd->tl_info.value_type.size = sizeof(__le64);
494         pmd->tl_info.value_type.inc = subtree_inc;
495         pmd->tl_info.value_type.dec = subtree_dec;
496         pmd->tl_info.value_type.equal = subtree_equal;
497
498         pmd->bl_info.tm = pmd->tm;
499         pmd->bl_info.levels = 1;
500         pmd->bl_info.value_type.context = pmd->data_sm;
501         pmd->bl_info.value_type.size = sizeof(__le64);
502         pmd->bl_info.value_type.inc = data_block_inc;
503         pmd->bl_info.value_type.dec = data_block_dec;
504         pmd->bl_info.value_type.equal = data_block_equal;
505
506         pmd->details_info.tm = pmd->tm;
507         pmd->details_info.levels = 1;
508         pmd->details_info.value_type.context = NULL;
509         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
510         pmd->details_info.value_type.inc = NULL;
511         pmd->details_info.value_type.dec = NULL;
512         pmd->details_info.value_type.equal = NULL;
513 }
514
515 static int save_sm_roots(struct dm_pool_metadata *pmd)
516 {
517         int r;
518         size_t len;
519
520         r = dm_sm_root_size(pmd->metadata_sm, &len);
521         if (r < 0)
522                 return r;
523
524         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
525         if (r < 0)
526                 return r;
527
528         r = dm_sm_root_size(pmd->data_sm, &len);
529         if (r < 0)
530                 return r;
531
532         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
533 }
534
535 static void copy_sm_roots(struct dm_pool_metadata *pmd,
536                           struct thin_disk_superblock *disk)
537 {
538         memcpy(&disk->metadata_space_map_root,
539                &pmd->metadata_space_map_root,
540                sizeof(pmd->metadata_space_map_root));
541
542         memcpy(&disk->data_space_map_root,
543                &pmd->data_space_map_root,
544                sizeof(pmd->data_space_map_root));
545 }
546
547 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
548 {
549         int r;
550         struct dm_block *sblock;
551         struct thin_disk_superblock *disk_super;
552         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
553
554         if (bdev_size > THIN_METADATA_MAX_SECTORS)
555                 bdev_size = THIN_METADATA_MAX_SECTORS;
556
557         r = dm_sm_commit(pmd->data_sm);
558         if (r < 0)
559                 return r;
560
561         r = dm_tm_pre_commit(pmd->tm);
562         if (r < 0)
563                 return r;
564
565         r = save_sm_roots(pmd);
566         if (r < 0)
567                 return r;
568
569         r = superblock_lock_zero(pmd, &sblock);
570         if (r)
571                 return r;
572
573         disk_super = dm_block_data(sblock);
574         disk_super->flags = 0;
575         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
576         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
577         disk_super->version = cpu_to_le32(THIN_VERSION);
578         disk_super->time = 0;
579         disk_super->trans_id = 0;
580         disk_super->held_root = 0;
581
582         copy_sm_roots(pmd, disk_super);
583
584         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
585         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
586         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
587         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
588         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
589
590         return dm_tm_commit(pmd->tm, sblock);
591 }
592
593 static int __format_metadata(struct dm_pool_metadata *pmd)
594 {
595         int r;
596
597         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
598                                  &pmd->tm, &pmd->metadata_sm);
599         if (r < 0) {
600                 DMERR("tm_create_with_sm failed");
601                 return r;
602         }
603
604         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
605         if (IS_ERR(pmd->data_sm)) {
606                 DMERR("sm_disk_create failed");
607                 r = PTR_ERR(pmd->data_sm);
608                 goto bad_cleanup_tm;
609         }
610
611         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
612         if (!pmd->nb_tm) {
613                 DMERR("could not create non-blocking clone tm");
614                 r = -ENOMEM;
615                 goto bad_cleanup_data_sm;
616         }
617
618         __setup_btree_details(pmd);
619
620         r = dm_btree_empty(&pmd->info, &pmd->root);
621         if (r < 0)
622                 goto bad_cleanup_nb_tm;
623
624         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
625         if (r < 0) {
626                 DMERR("couldn't create devices root");
627                 goto bad_cleanup_nb_tm;
628         }
629
630         r = __write_initial_superblock(pmd);
631         if (r)
632                 goto bad_cleanup_nb_tm;
633
634         return 0;
635
636 bad_cleanup_nb_tm:
637         dm_tm_destroy(pmd->nb_tm);
638 bad_cleanup_data_sm:
639         dm_sm_destroy(pmd->data_sm);
640 bad_cleanup_tm:
641         dm_tm_destroy(pmd->tm);
642         dm_sm_destroy(pmd->metadata_sm);
643
644         return r;
645 }
646
647 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
648                                      struct dm_pool_metadata *pmd)
649 {
650         uint32_t features;
651
652         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
653         if (features) {
654                 DMERR("could not access metadata due to unsupported optional features (%lx).",
655                       (unsigned long)features);
656                 return -EINVAL;
657         }
658
659         /*
660          * Check for read-only metadata to skip the following RDWR checks.
661          */
662         if (bdev_read_only(pmd->bdev))
663                 return 0;
664
665         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
666         if (features) {
667                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
668                       (unsigned long)features);
669                 return -EINVAL;
670         }
671
672         return 0;
673 }
674
675 static int __open_metadata(struct dm_pool_metadata *pmd)
676 {
677         int r;
678         struct dm_block *sblock;
679         struct thin_disk_superblock *disk_super;
680
681         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
682                             &sb_validator, &sblock);
683         if (r < 0) {
684                 DMERR("couldn't read superblock");
685                 return r;
686         }
687
688         disk_super = dm_block_data(sblock);
689
690         /* Verify the data block size hasn't changed */
691         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
692                 DMERR("changing the data block size (from %u to %llu) is not supported",
693                       le32_to_cpu(disk_super->data_block_size),
694                       (unsigned long long)pmd->data_block_size);
695                 r = -EINVAL;
696                 goto bad_unlock_sblock;
697         }
698
699         r = __check_incompat_features(disk_super, pmd);
700         if (r < 0)
701                 goto bad_unlock_sblock;
702
703         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
704                                disk_super->metadata_space_map_root,
705                                sizeof(disk_super->metadata_space_map_root),
706                                &pmd->tm, &pmd->metadata_sm);
707         if (r < 0) {
708                 DMERR("tm_open_with_sm failed");
709                 goto bad_unlock_sblock;
710         }
711
712         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
713                                        sizeof(disk_super->data_space_map_root));
714         if (IS_ERR(pmd->data_sm)) {
715                 DMERR("sm_disk_open failed");
716                 r = PTR_ERR(pmd->data_sm);
717                 goto bad_cleanup_tm;
718         }
719
720         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
721         if (!pmd->nb_tm) {
722                 DMERR("could not create non-blocking clone tm");
723                 r = -ENOMEM;
724                 goto bad_cleanup_data_sm;
725         }
726
727         __setup_btree_details(pmd);
728         dm_bm_unlock(sblock);
729
730         return 0;
731
732 bad_cleanup_data_sm:
733         dm_sm_destroy(pmd->data_sm);
734 bad_cleanup_tm:
735         dm_tm_destroy(pmd->tm);
736         dm_sm_destroy(pmd->metadata_sm);
737 bad_unlock_sblock:
738         dm_bm_unlock(sblock);
739
740         return r;
741 }
742
743 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
744 {
745         int r, unformatted;
746
747         r = __superblock_all_zeroes(pmd->bm, &unformatted);
748         if (r)
749                 return r;
750
751         if (unformatted)
752                 return format_device ? __format_metadata(pmd) : -EPERM;
753
754         return __open_metadata(pmd);
755 }
756
757 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
758 {
759         int r;
760
761         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
762                                           THIN_MAX_CONCURRENT_LOCKS);
763         if (IS_ERR(pmd->bm)) {
764                 DMERR("could not create block manager");
765                 r = PTR_ERR(pmd->bm);
766                 pmd->bm = NULL;
767                 return r;
768         }
769
770         r = __open_or_format_metadata(pmd, format_device);
771         if (r) {
772                 dm_block_manager_destroy(pmd->bm);
773                 pmd->bm = NULL;
774         }
775
776         return r;
777 }
778
779 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
780 {
781         dm_sm_destroy(pmd->data_sm);
782         dm_sm_destroy(pmd->metadata_sm);
783         dm_tm_destroy(pmd->nb_tm);
784         dm_tm_destroy(pmd->tm);
785         dm_block_manager_destroy(pmd->bm);
786 }
787
788 static int __begin_transaction(struct dm_pool_metadata *pmd)
789 {
790         int r;
791         struct thin_disk_superblock *disk_super;
792         struct dm_block *sblock;
793
794         /*
795          * We re-read the superblock every time.  Shouldn't need to do this
796          * really.
797          */
798         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
799                             &sb_validator, &sblock);
800         if (r)
801                 return r;
802
803         disk_super = dm_block_data(sblock);
804         pmd->time = le32_to_cpu(disk_super->time);
805         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
806         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
807         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
808         pmd->flags = le32_to_cpu(disk_super->flags);
809         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
810
811         dm_bm_unlock(sblock);
812         return 0;
813 }
814
815 static int __write_changed_details(struct dm_pool_metadata *pmd)
816 {
817         int r;
818         struct dm_thin_device *td, *tmp;
819         struct disk_device_details details;
820         uint64_t key;
821
822         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
823                 if (!td->changed)
824                         continue;
825
826                 key = td->id;
827
828                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
829                 details.transaction_id = cpu_to_le64(td->transaction_id);
830                 details.creation_time = cpu_to_le32(td->creation_time);
831                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
832                 __dm_bless_for_disk(&details);
833
834                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
835                                     &key, &details, &pmd->details_root);
836                 if (r)
837                         return r;
838
839                 if (td->open_count)
840                         td->changed = false;
841                 else {
842                         list_del(&td->list);
843                         kfree(td);
844                 }
845         }
846
847         return 0;
848 }
849
850 static int __commit_transaction(struct dm_pool_metadata *pmd)
851 {
852         int r;
853         struct thin_disk_superblock *disk_super;
854         struct dm_block *sblock;
855
856         /*
857          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
858          */
859         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
860         BUG_ON(!rwsem_is_locked(&pmd->root_lock));
861
862         if (unlikely(!pmd->in_service))
863                 return 0;
864
865         if (pmd->pre_commit_fn) {
866                 r = pmd->pre_commit_fn(pmd->pre_commit_context);
867                 if (r < 0) {
868                         DMERR("pre-commit callback failed");
869                         return r;
870                 }
871         }
872
873         r = __write_changed_details(pmd);
874         if (r < 0)
875                 return r;
876
877         r = dm_sm_commit(pmd->data_sm);
878         if (r < 0)
879                 return r;
880
881         r = dm_tm_pre_commit(pmd->tm);
882         if (r < 0)
883                 return r;
884
885         r = save_sm_roots(pmd);
886         if (r < 0)
887                 return r;
888
889         r = superblock_lock(pmd, &sblock);
890         if (r)
891                 return r;
892
893         disk_super = dm_block_data(sblock);
894         disk_super->time = cpu_to_le32(pmd->time);
895         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
896         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
897         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
898         disk_super->flags = cpu_to_le32(pmd->flags);
899
900         copy_sm_roots(pmd, disk_super);
901
902         return dm_tm_commit(pmd->tm, sblock);
903 }
904
905 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
906 {
907         int r;
908         dm_block_t total;
909         dm_block_t max_blocks = 4096; /* 16M */
910
911         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
912         if (r) {
913                 DMERR("could not get size of metadata device");
914                 pmd->metadata_reserve = max_blocks;
915         } else
916                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
917 }
918
919 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
920                                                sector_t data_block_size,
921                                                bool format_device)
922 {
923         int r;
924         struct dm_pool_metadata *pmd;
925
926         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
927         if (!pmd) {
928                 DMERR("could not allocate metadata struct");
929                 return ERR_PTR(-ENOMEM);
930         }
931
932         init_rwsem(&pmd->root_lock);
933         pmd->time = 0;
934         INIT_LIST_HEAD(&pmd->thin_devices);
935         pmd->fail_io = false;
936         pmd->in_service = false;
937         pmd->bdev = bdev;
938         pmd->data_block_size = data_block_size;
939         pmd->pre_commit_fn = NULL;
940         pmd->pre_commit_context = NULL;
941
942         r = __create_persistent_data_objects(pmd, format_device);
943         if (r) {
944                 kfree(pmd);
945                 return ERR_PTR(r);
946         }
947
948         r = __begin_transaction(pmd);
949         if (r < 0) {
950                 if (dm_pool_metadata_close(pmd) < 0)
951                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
952                 return ERR_PTR(r);
953         }
954
955         __set_metadata_reserve(pmd);
956
957         return pmd;
958 }
959
960 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
961 {
962         int r;
963         unsigned open_devices = 0;
964         struct dm_thin_device *td, *tmp;
965
966         down_read(&pmd->root_lock);
967         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
968                 if (td->open_count)
969                         open_devices++;
970                 else {
971                         list_del(&td->list);
972                         kfree(td);
973                 }
974         }
975         up_read(&pmd->root_lock);
976
977         if (open_devices) {
978                 DMERR("attempt to close pmd when %u device(s) are still open",
979                        open_devices);
980                 return -EBUSY;
981         }
982
983         pmd_write_lock_in_core(pmd);
984         if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
985                 r = __commit_transaction(pmd);
986                 if (r < 0)
987                         DMWARN("%s: __commit_transaction() failed, error = %d",
988                                __func__, r);
989         }
990         pmd_write_unlock(pmd);
991         if (!pmd->fail_io)
992                 __destroy_persistent_data_objects(pmd);
993
994         kfree(pmd);
995         return 0;
996 }
997
998 /*
999  * __open_device: Returns @td corresponding to device with id @dev,
1000  * creating it if @create is set and incrementing @td->open_count.
1001  * On failure, @td is undefined.
1002  */
1003 static int __open_device(struct dm_pool_metadata *pmd,
1004                          dm_thin_id dev, int create,
1005                          struct dm_thin_device **td)
1006 {
1007         int r, changed = 0;
1008         struct dm_thin_device *td2;
1009         uint64_t key = dev;
1010         struct disk_device_details details_le;
1011
1012         /*
1013          * If the device is already open, return it.
1014          */
1015         list_for_each_entry(td2, &pmd->thin_devices, list)
1016                 if (td2->id == dev) {
1017                         /*
1018                          * May not create an already-open device.
1019                          */
1020                         if (create)
1021                                 return -EEXIST;
1022
1023                         td2->open_count++;
1024                         *td = td2;
1025                         return 0;
1026                 }
1027
1028         /*
1029          * Check the device exists.
1030          */
1031         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1032                             &key, &details_le);
1033         if (r) {
1034                 if (r != -ENODATA || !create)
1035                         return r;
1036
1037                 /*
1038                  * Create new device.
1039                  */
1040                 changed = 1;
1041                 details_le.mapped_blocks = 0;
1042                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1043                 details_le.creation_time = cpu_to_le32(pmd->time);
1044                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1045         }
1046
1047         *td = kmalloc(sizeof(**td), GFP_NOIO);
1048         if (!*td)
1049                 return -ENOMEM;
1050
1051         (*td)->pmd = pmd;
1052         (*td)->id = dev;
1053         (*td)->open_count = 1;
1054         (*td)->changed = changed;
1055         (*td)->aborted_with_changes = false;
1056         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1057         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1058         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1059         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1060
1061         list_add(&(*td)->list, &pmd->thin_devices);
1062
1063         return 0;
1064 }
1065
1066 static void __close_device(struct dm_thin_device *td)
1067 {
1068         --td->open_count;
1069 }
1070
1071 static int __create_thin(struct dm_pool_metadata *pmd,
1072                          dm_thin_id dev)
1073 {
1074         int r;
1075         dm_block_t dev_root;
1076         uint64_t key = dev;
1077         struct dm_thin_device *td;
1078         __le64 value;
1079
1080         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1081                             &key, NULL);
1082         if (!r)
1083                 return -EEXIST;
1084
1085         /*
1086          * Create an empty btree for the mappings.
1087          */
1088         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1089         if (r)
1090                 return r;
1091
1092         /*
1093          * Insert it into the main mapping tree.
1094          */
1095         value = cpu_to_le64(dev_root);
1096         __dm_bless_for_disk(&value);
1097         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1098         if (r) {
1099                 dm_btree_del(&pmd->bl_info, dev_root);
1100                 return r;
1101         }
1102
1103         r = __open_device(pmd, dev, 1, &td);
1104         if (r) {
1105                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1106                 dm_btree_del(&pmd->bl_info, dev_root);
1107                 return r;
1108         }
1109         __close_device(td);
1110
1111         return r;
1112 }
1113
1114 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1115 {
1116         int r = -EINVAL;
1117
1118         pmd_write_lock(pmd);
1119         if (!pmd->fail_io)
1120                 r = __create_thin(pmd, dev);
1121         pmd_write_unlock(pmd);
1122
1123         return r;
1124 }
1125
1126 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1127                                   struct dm_thin_device *snap,
1128                                   dm_thin_id origin, uint32_t time)
1129 {
1130         int r;
1131         struct dm_thin_device *td;
1132
1133         r = __open_device(pmd, origin, 0, &td);
1134         if (r)
1135                 return r;
1136
1137         td->changed = true;
1138         td->snapshotted_time = time;
1139
1140         snap->mapped_blocks = td->mapped_blocks;
1141         snap->snapshotted_time = time;
1142         __close_device(td);
1143
1144         return 0;
1145 }
1146
1147 static int __create_snap(struct dm_pool_metadata *pmd,
1148                          dm_thin_id dev, dm_thin_id origin)
1149 {
1150         int r;
1151         dm_block_t origin_root;
1152         uint64_t key = origin, dev_key = dev;
1153         struct dm_thin_device *td;
1154         __le64 value;
1155
1156         /* check this device is unused */
1157         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1158                             &dev_key, NULL);
1159         if (!r)
1160                 return -EEXIST;
1161
1162         /* find the mapping tree for the origin */
1163         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1164         if (r)
1165                 return r;
1166         origin_root = le64_to_cpu(value);
1167
1168         /* clone the origin, an inc will do */
1169         dm_tm_inc(pmd->tm, origin_root);
1170
1171         /* insert into the main mapping tree */
1172         value = cpu_to_le64(origin_root);
1173         __dm_bless_for_disk(&value);
1174         key = dev;
1175         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1176         if (r) {
1177                 dm_tm_dec(pmd->tm, origin_root);
1178                 return r;
1179         }
1180
1181         pmd->time++;
1182
1183         r = __open_device(pmd, dev, 1, &td);
1184         if (r)
1185                 goto bad;
1186
1187         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1188         __close_device(td);
1189
1190         if (r)
1191                 goto bad;
1192
1193         return 0;
1194
1195 bad:
1196         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1197         dm_btree_remove(&pmd->details_info, pmd->details_root,
1198                         &key, &pmd->details_root);
1199         return r;
1200 }
1201
1202 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1203                                  dm_thin_id dev,
1204                                  dm_thin_id origin)
1205 {
1206         int r = -EINVAL;
1207
1208         pmd_write_lock(pmd);
1209         if (!pmd->fail_io)
1210                 r = __create_snap(pmd, dev, origin);
1211         pmd_write_unlock(pmd);
1212
1213         return r;
1214 }
1215
1216 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1217 {
1218         int r;
1219         uint64_t key = dev;
1220         struct dm_thin_device *td;
1221
1222         /* TODO: failure should mark the transaction invalid */
1223         r = __open_device(pmd, dev, 0, &td);
1224         if (r)
1225                 return r;
1226
1227         if (td->open_count > 1) {
1228                 __close_device(td);
1229                 return -EBUSY;
1230         }
1231
1232         list_del(&td->list);
1233         kfree(td);
1234         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1235                             &key, &pmd->details_root);
1236         if (r)
1237                 return r;
1238
1239         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1240         if (r)
1241                 return r;
1242
1243         return 0;
1244 }
1245
1246 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1247                                dm_thin_id dev)
1248 {
1249         int r = -EINVAL;
1250
1251         pmd_write_lock(pmd);
1252         if (!pmd->fail_io)
1253                 r = __delete_device(pmd, dev);
1254         pmd_write_unlock(pmd);
1255
1256         return r;
1257 }
1258
1259 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1260                                         uint64_t current_id,
1261                                         uint64_t new_id)
1262 {
1263         int r = -EINVAL;
1264
1265         pmd_write_lock(pmd);
1266
1267         if (pmd->fail_io)
1268                 goto out;
1269
1270         if (pmd->trans_id != current_id) {
1271                 DMERR("mismatched transaction id");
1272                 goto out;
1273         }
1274
1275         pmd->trans_id = new_id;
1276         r = 0;
1277
1278 out:
1279         pmd_write_unlock(pmd);
1280
1281         return r;
1282 }
1283
1284 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1285                                         uint64_t *result)
1286 {
1287         int r = -EINVAL;
1288
1289         down_read(&pmd->root_lock);
1290         if (!pmd->fail_io) {
1291                 *result = pmd->trans_id;
1292                 r = 0;
1293         }
1294         up_read(&pmd->root_lock);
1295
1296         return r;
1297 }
1298
1299 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1300 {
1301         int r, inc;
1302         struct thin_disk_superblock *disk_super;
1303         struct dm_block *copy, *sblock;
1304         dm_block_t held_root;
1305
1306         /*
1307          * We commit to ensure the btree roots which we increment in a
1308          * moment are up to date.
1309          */
1310         r = __commit_transaction(pmd);
1311         if (r < 0) {
1312                 DMWARN("%s: __commit_transaction() failed, error = %d",
1313                        __func__, r);
1314                 return r;
1315         }
1316
1317         /*
1318          * Copy the superblock.
1319          */
1320         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1321         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1322                                &sb_validator, &copy, &inc);
1323         if (r)
1324                 return r;
1325
1326         BUG_ON(!inc);
1327
1328         held_root = dm_block_location(copy);
1329         disk_super = dm_block_data(copy);
1330
1331         if (le64_to_cpu(disk_super->held_root)) {
1332                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1333
1334                 dm_tm_dec(pmd->tm, held_root);
1335                 dm_tm_unlock(pmd->tm, copy);
1336                 return -EBUSY;
1337         }
1338
1339         /*
1340          * Wipe the spacemap since we're not publishing this.
1341          */
1342         memset(&disk_super->data_space_map_root, 0,
1343                sizeof(disk_super->data_space_map_root));
1344         memset(&disk_super->metadata_space_map_root, 0,
1345                sizeof(disk_super->metadata_space_map_root));
1346
1347         /*
1348          * Increment the data structures that need to be preserved.
1349          */
1350         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1351         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1352         dm_tm_unlock(pmd->tm, copy);
1353
1354         /*
1355          * Write the held root into the superblock.
1356          */
1357         r = superblock_lock(pmd, &sblock);
1358         if (r) {
1359                 dm_tm_dec(pmd->tm, held_root);
1360                 return r;
1361         }
1362
1363         disk_super = dm_block_data(sblock);
1364         disk_super->held_root = cpu_to_le64(held_root);
1365         dm_bm_unlock(sblock);
1366         return 0;
1367 }
1368
1369 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1370 {
1371         int r = -EINVAL;
1372
1373         pmd_write_lock(pmd);
1374         if (!pmd->fail_io)
1375                 r = __reserve_metadata_snap(pmd);
1376         pmd_write_unlock(pmd);
1377
1378         return r;
1379 }
1380
1381 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1382 {
1383         int r;
1384         struct thin_disk_superblock *disk_super;
1385         struct dm_block *sblock, *copy;
1386         dm_block_t held_root;
1387
1388         r = superblock_lock(pmd, &sblock);
1389         if (r)
1390                 return r;
1391
1392         disk_super = dm_block_data(sblock);
1393         held_root = le64_to_cpu(disk_super->held_root);
1394         disk_super->held_root = cpu_to_le64(0);
1395
1396         dm_bm_unlock(sblock);
1397
1398         if (!held_root) {
1399                 DMWARN("No pool metadata snapshot found: nothing to release.");
1400                 return -EINVAL;
1401         }
1402
1403         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1404         if (r)
1405                 return r;
1406
1407         disk_super = dm_block_data(copy);
1408         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1409         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1410         dm_sm_dec_block(pmd->metadata_sm, held_root);
1411
1412         dm_tm_unlock(pmd->tm, copy);
1413
1414         return 0;
1415 }
1416
1417 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1418 {
1419         int r = -EINVAL;
1420
1421         pmd_write_lock(pmd);
1422         if (!pmd->fail_io)
1423                 r = __release_metadata_snap(pmd);
1424         pmd_write_unlock(pmd);
1425
1426         return r;
1427 }
1428
1429 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1430                                dm_block_t *result)
1431 {
1432         int r;
1433         struct thin_disk_superblock *disk_super;
1434         struct dm_block *sblock;
1435
1436         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1437                             &sb_validator, &sblock);
1438         if (r)
1439                 return r;
1440
1441         disk_super = dm_block_data(sblock);
1442         *result = le64_to_cpu(disk_super->held_root);
1443
1444         dm_bm_unlock(sblock);
1445
1446         return 0;
1447 }
1448
1449 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1450                               dm_block_t *result)
1451 {
1452         int r = -EINVAL;
1453
1454         down_read(&pmd->root_lock);
1455         if (!pmd->fail_io)
1456                 r = __get_metadata_snap(pmd, result);
1457         up_read(&pmd->root_lock);
1458
1459         return r;
1460 }
1461
1462 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1463                              struct dm_thin_device **td)
1464 {
1465         int r = -EINVAL;
1466
1467         pmd_write_lock_in_core(pmd);
1468         if (!pmd->fail_io)
1469                 r = __open_device(pmd, dev, 0, td);
1470         pmd_write_unlock(pmd);
1471
1472         return r;
1473 }
1474
1475 int dm_pool_close_thin_device(struct dm_thin_device *td)
1476 {
1477         pmd_write_lock_in_core(td->pmd);
1478         __close_device(td);
1479         pmd_write_unlock(td->pmd);
1480
1481         return 0;
1482 }
1483
1484 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1485 {
1486         return td->id;
1487 }
1488
1489 /*
1490  * Check whether @time (of block creation) is older than @td's last snapshot.
1491  * If so then the associated block is shared with the last snapshot device.
1492  * Any block on a device created *after* the device last got snapshotted is
1493  * necessarily not shared.
1494  */
1495 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1496 {
1497         return td->snapshotted_time > time;
1498 }
1499
1500 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1501                                  struct dm_thin_lookup_result *result)
1502 {
1503         uint64_t block_time = 0;
1504         dm_block_t exception_block;
1505         uint32_t exception_time;
1506
1507         block_time = le64_to_cpu(value);
1508         unpack_block_time(block_time, &exception_block, &exception_time);
1509         result->block = exception_block;
1510         result->shared = __snapshotted_since(td, exception_time);
1511 }
1512
1513 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1514                         int can_issue_io, struct dm_thin_lookup_result *result)
1515 {
1516         int r;
1517         __le64 value;
1518         struct dm_pool_metadata *pmd = td->pmd;
1519         dm_block_t keys[2] = { td->id, block };
1520         struct dm_btree_info *info;
1521
1522         if (can_issue_io) {
1523                 info = &pmd->info;
1524         } else
1525                 info = &pmd->nb_info;
1526
1527         r = dm_btree_lookup(info, pmd->root, keys, &value);
1528         if (!r)
1529                 unpack_lookup_result(td, value, result);
1530
1531         return r;
1532 }
1533
1534 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1535                        int can_issue_io, struct dm_thin_lookup_result *result)
1536 {
1537         int r;
1538         struct dm_pool_metadata *pmd = td->pmd;
1539
1540         down_read(&pmd->root_lock);
1541         if (pmd->fail_io) {
1542                 up_read(&pmd->root_lock);
1543                 return -EINVAL;
1544         }
1545
1546         r = __find_block(td, block, can_issue_io, result);
1547
1548         up_read(&pmd->root_lock);
1549         return r;
1550 }
1551
1552 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1553                                           dm_block_t *vblock,
1554                                           struct dm_thin_lookup_result *result)
1555 {
1556         int r;
1557         __le64 value;
1558         struct dm_pool_metadata *pmd = td->pmd;
1559         dm_block_t keys[2] = { td->id, block };
1560
1561         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1562         if (!r)
1563                 unpack_lookup_result(td, value, result);
1564
1565         return r;
1566 }
1567
1568 static int __find_mapped_range(struct dm_thin_device *td,
1569                                dm_block_t begin, dm_block_t end,
1570                                dm_block_t *thin_begin, dm_block_t *thin_end,
1571                                dm_block_t *pool_begin, bool *maybe_shared)
1572 {
1573         int r;
1574         dm_block_t pool_end;
1575         struct dm_thin_lookup_result lookup;
1576
1577         if (end < begin)
1578                 return -ENODATA;
1579
1580         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1581         if (r)
1582                 return r;
1583
1584         if (begin >= end)
1585                 return -ENODATA;
1586
1587         *thin_begin = begin;
1588         *pool_begin = lookup.block;
1589         *maybe_shared = lookup.shared;
1590
1591         begin++;
1592         pool_end = *pool_begin + 1;
1593         while (begin != end) {
1594                 r = __find_block(td, begin, true, &lookup);
1595                 if (r) {
1596                         if (r == -ENODATA)
1597                                 break;
1598                         else
1599                                 return r;
1600                 }
1601
1602                 if ((lookup.block != pool_end) ||
1603                     (lookup.shared != *maybe_shared))
1604                         break;
1605
1606                 pool_end++;
1607                 begin++;
1608         }
1609
1610         *thin_end = begin;
1611         return 0;
1612 }
1613
1614 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1615                               dm_block_t begin, dm_block_t end,
1616                               dm_block_t *thin_begin, dm_block_t *thin_end,
1617                               dm_block_t *pool_begin, bool *maybe_shared)
1618 {
1619         int r = -EINVAL;
1620         struct dm_pool_metadata *pmd = td->pmd;
1621
1622         down_read(&pmd->root_lock);
1623         if (!pmd->fail_io) {
1624                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1625                                         pool_begin, maybe_shared);
1626         }
1627         up_read(&pmd->root_lock);
1628
1629         return r;
1630 }
1631
1632 static int __insert(struct dm_thin_device *td, dm_block_t block,
1633                     dm_block_t data_block)
1634 {
1635         int r, inserted;
1636         __le64 value;
1637         struct dm_pool_metadata *pmd = td->pmd;
1638         dm_block_t keys[2] = { td->id, block };
1639
1640         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1641         __dm_bless_for_disk(&value);
1642
1643         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1644                                    &pmd->root, &inserted);
1645         if (r)
1646                 return r;
1647
1648         td->changed = true;
1649         if (inserted)
1650                 td->mapped_blocks++;
1651
1652         return 0;
1653 }
1654
1655 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1656                          dm_block_t data_block)
1657 {
1658         int r = -EINVAL;
1659
1660         pmd_write_lock(td->pmd);
1661         if (!td->pmd->fail_io)
1662                 r = __insert(td, block, data_block);
1663         pmd_write_unlock(td->pmd);
1664
1665         return r;
1666 }
1667
1668 static int __remove(struct dm_thin_device *td, dm_block_t block)
1669 {
1670         int r;
1671         struct dm_pool_metadata *pmd = td->pmd;
1672         dm_block_t keys[2] = { td->id, block };
1673
1674         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1675         if (r)
1676                 return r;
1677
1678         td->mapped_blocks--;
1679         td->changed = true;
1680
1681         return 0;
1682 }
1683
1684 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1685 {
1686         int r;
1687         unsigned count, total_count = 0;
1688         struct dm_pool_metadata *pmd = td->pmd;
1689         dm_block_t keys[1] = { td->id };
1690         __le64 value;
1691         dm_block_t mapping_root;
1692
1693         /*
1694          * Find the mapping tree
1695          */
1696         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1697         if (r)
1698                 return r;
1699
1700         /*
1701          * Remove from the mapping tree, taking care to inc the
1702          * ref count so it doesn't get deleted.
1703          */
1704         mapping_root = le64_to_cpu(value);
1705         dm_tm_inc(pmd->tm, mapping_root);
1706         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1707         if (r)
1708                 return r;
1709
1710         /*
1711          * Remove leaves stops at the first unmapped entry, so we have to
1712          * loop round finding mapped ranges.
1713          */
1714         while (begin < end) {
1715                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1716                 if (r == -ENODATA)
1717                         break;
1718
1719                 if (r)
1720                         return r;
1721
1722                 if (begin >= end)
1723                         break;
1724
1725                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1726                 if (r)
1727                         return r;
1728
1729                 total_count += count;
1730         }
1731
1732         td->mapped_blocks -= total_count;
1733         td->changed = true;
1734
1735         /*
1736          * Reinsert the mapping tree.
1737          */
1738         value = cpu_to_le64(mapping_root);
1739         __dm_bless_for_disk(&value);
1740         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1741 }
1742
1743 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1744 {
1745         int r = -EINVAL;
1746
1747         pmd_write_lock(td->pmd);
1748         if (!td->pmd->fail_io)
1749                 r = __remove(td, block);
1750         pmd_write_unlock(td->pmd);
1751
1752         return r;
1753 }
1754
1755 int dm_thin_remove_range(struct dm_thin_device *td,
1756                          dm_block_t begin, dm_block_t end)
1757 {
1758         int r = -EINVAL;
1759
1760         pmd_write_lock(td->pmd);
1761         if (!td->pmd->fail_io)
1762                 r = __remove_range(td, begin, end);
1763         pmd_write_unlock(td->pmd);
1764
1765         return r;
1766 }
1767
1768 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1769 {
1770         int r;
1771         uint32_t ref_count;
1772
1773         down_read(&pmd->root_lock);
1774         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1775         if (!r)
1776                 *result = (ref_count > 1);
1777         up_read(&pmd->root_lock);
1778
1779         return r;
1780 }
1781
1782 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1783 {
1784         int r = 0;
1785
1786         pmd_write_lock(pmd);
1787         r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1788         pmd_write_unlock(pmd);
1789
1790         return r;
1791 }
1792
1793 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1794 {
1795         int r = 0;
1796
1797         pmd_write_lock(pmd);
1798         r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1799         pmd_write_unlock(pmd);
1800
1801         return r;
1802 }
1803
1804 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1805 {
1806         int r;
1807
1808         down_read(&td->pmd->root_lock);
1809         r = td->changed;
1810         up_read(&td->pmd->root_lock);
1811
1812         return r;
1813 }
1814
1815 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1816 {
1817         bool r = false;
1818         struct dm_thin_device *td, *tmp;
1819
1820         down_read(&pmd->root_lock);
1821         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1822                 if (td->changed) {
1823                         r = td->changed;
1824                         break;
1825                 }
1826         }
1827         up_read(&pmd->root_lock);
1828
1829         return r;
1830 }
1831
1832 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1833 {
1834         bool r;
1835
1836         down_read(&td->pmd->root_lock);
1837         r = td->aborted_with_changes;
1838         up_read(&td->pmd->root_lock);
1839
1840         return r;
1841 }
1842
1843 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1844 {
1845         int r = -EINVAL;
1846
1847         pmd_write_lock(pmd);
1848         if (!pmd->fail_io)
1849                 r = dm_sm_new_block(pmd->data_sm, result);
1850         pmd_write_unlock(pmd);
1851
1852         return r;
1853 }
1854
1855 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1856 {
1857         int r = -EINVAL;
1858
1859         /*
1860          * Care is taken to not have commit be what
1861          * triggers putting the thin-pool in-service.
1862          */
1863         pmd_write_lock_in_core(pmd);
1864         if (pmd->fail_io)
1865                 goto out;
1866
1867         r = __commit_transaction(pmd);
1868         if (r < 0)
1869                 goto out;
1870
1871         /*
1872          * Open the next transaction.
1873          */
1874         r = __begin_transaction(pmd);
1875 out:
1876         pmd_write_unlock(pmd);
1877         return r;
1878 }
1879
1880 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1881 {
1882         struct dm_thin_device *td;
1883
1884         list_for_each_entry(td, &pmd->thin_devices, list)
1885                 td->aborted_with_changes = td->changed;
1886 }
1887
1888 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1889 {
1890         int r = -EINVAL;
1891
1892         pmd_write_lock(pmd);
1893         if (pmd->fail_io)
1894                 goto out;
1895
1896         __set_abort_with_changes_flags(pmd);
1897         __destroy_persistent_data_objects(pmd);
1898         r = __create_persistent_data_objects(pmd, false);
1899         if (r)
1900                 pmd->fail_io = true;
1901
1902 out:
1903         pmd_write_unlock(pmd);
1904
1905         return r;
1906 }
1907
1908 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1909 {
1910         int r = -EINVAL;
1911
1912         down_read(&pmd->root_lock);
1913         if (!pmd->fail_io)
1914                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1915         up_read(&pmd->root_lock);
1916
1917         return r;
1918 }
1919
1920 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1921                                           dm_block_t *result)
1922 {
1923         int r = -EINVAL;
1924
1925         down_read(&pmd->root_lock);
1926         if (!pmd->fail_io)
1927                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1928
1929         if (!r) {
1930                 if (*result < pmd->metadata_reserve)
1931                         *result = 0;
1932                 else
1933                         *result -= pmd->metadata_reserve;
1934         }
1935         up_read(&pmd->root_lock);
1936
1937         return r;
1938 }
1939
1940 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1941                                   dm_block_t *result)
1942 {
1943         int r = -EINVAL;
1944
1945         down_read(&pmd->root_lock);
1946         if (!pmd->fail_io)
1947                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1948         up_read(&pmd->root_lock);
1949
1950         return r;
1951 }
1952
1953 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1954 {
1955         int r = -EINVAL;
1956
1957         down_read(&pmd->root_lock);
1958         if (!pmd->fail_io)
1959                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1960         up_read(&pmd->root_lock);
1961
1962         return r;
1963 }
1964
1965 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1966 {
1967         int r = -EINVAL;
1968         struct dm_pool_metadata *pmd = td->pmd;
1969
1970         down_read(&pmd->root_lock);
1971         if (!pmd->fail_io) {
1972                 *result = td->mapped_blocks;
1973                 r = 0;
1974         }
1975         up_read(&pmd->root_lock);
1976
1977         return r;
1978 }
1979
1980 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1981 {
1982         int r;
1983         __le64 value_le;
1984         dm_block_t thin_root;
1985         struct dm_pool_metadata *pmd = td->pmd;
1986
1987         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1988         if (r)
1989                 return r;
1990
1991         thin_root = le64_to_cpu(value_le);
1992
1993         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1994 }
1995
1996 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1997                                      dm_block_t *result)
1998 {
1999         int r = -EINVAL;
2000         struct dm_pool_metadata *pmd = td->pmd;
2001
2002         down_read(&pmd->root_lock);
2003         if (!pmd->fail_io)
2004                 r = __highest_block(td, result);
2005         up_read(&pmd->root_lock);
2006
2007         return r;
2008 }
2009
2010 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2011 {
2012         int r;
2013         dm_block_t old_count;
2014
2015         r = dm_sm_get_nr_blocks(sm, &old_count);
2016         if (r)
2017                 return r;
2018
2019         if (new_count == old_count)
2020                 return 0;
2021
2022         if (new_count < old_count) {
2023                 DMERR("cannot reduce size of space map");
2024                 return -EINVAL;
2025         }
2026
2027         return dm_sm_extend(sm, new_count - old_count);
2028 }
2029
2030 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2031 {
2032         int r = -EINVAL;
2033
2034         pmd_write_lock(pmd);
2035         if (!pmd->fail_io)
2036                 r = __resize_space_map(pmd->data_sm, new_count);
2037         pmd_write_unlock(pmd);
2038
2039         return r;
2040 }
2041
2042 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2043 {
2044         int r = -EINVAL;
2045
2046         pmd_write_lock(pmd);
2047         if (!pmd->fail_io) {
2048                 r = __resize_space_map(pmd->metadata_sm, new_count);
2049                 if (!r)
2050                         __set_metadata_reserve(pmd);
2051         }
2052         pmd_write_unlock(pmd);
2053
2054         return r;
2055 }
2056
2057 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2058 {
2059         pmd_write_lock_in_core(pmd);
2060         dm_bm_set_read_only(pmd->bm);
2061         pmd_write_unlock(pmd);
2062 }
2063
2064 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2065 {
2066         pmd_write_lock_in_core(pmd);
2067         dm_bm_set_read_write(pmd->bm);
2068         pmd_write_unlock(pmd);
2069 }
2070
2071 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2072                                         dm_block_t threshold,
2073                                         dm_sm_threshold_fn fn,
2074                                         void *context)
2075 {
2076         int r;
2077
2078         pmd_write_lock_in_core(pmd);
2079         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2080         pmd_write_unlock(pmd);
2081
2082         return r;
2083 }
2084
2085 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2086                                           dm_pool_pre_commit_fn fn,
2087                                           void *context)
2088 {
2089         pmd_write_lock_in_core(pmd);
2090         pmd->pre_commit_fn = fn;
2091         pmd->pre_commit_context = context;
2092         pmd_write_unlock(pmd);
2093 }
2094
2095 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2096 {
2097         int r = -EINVAL;
2098         struct dm_block *sblock;
2099         struct thin_disk_superblock *disk_super;
2100
2101         pmd_write_lock(pmd);
2102         if (pmd->fail_io)
2103                 goto out;
2104
2105         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2106
2107         r = superblock_lock(pmd, &sblock);
2108         if (r) {
2109                 DMERR("couldn't lock superblock");
2110                 goto out;
2111         }
2112
2113         disk_super = dm_block_data(sblock);
2114         disk_super->flags = cpu_to_le32(pmd->flags);
2115
2116         dm_bm_unlock(sblock);
2117 out:
2118         pmd_write_unlock(pmd);
2119         return r;
2120 }
2121
2122 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2123 {
2124         bool needs_check;
2125
2126         down_read(&pmd->root_lock);
2127         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2128         up_read(&pmd->root_lock);
2129
2130         return needs_check;
2131 }
2132
2133 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2134 {
2135         down_read(&pmd->root_lock);
2136         if (!pmd->fail_io)
2137                 dm_tm_issue_prefetches(pmd->tm);
2138         up_read(&pmd->root_lock);
2139 }