block: Add bio_max_segs
[linux-2.6-microblaze.git] / drivers / md / dm-log-writes.c
1 /*
2  * Copyright (C) 2014 Facebook. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include <linux/device-mapper.h>
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/blkdev.h>
12 #include <linux/bio.h>
13 #include <linux/dax.h>
14 #include <linux/slab.h>
15 #include <linux/kthread.h>
16 #include <linux/freezer.h>
17 #include <linux/uio.h>
18
19 #define DM_MSG_PREFIX "log-writes"
20
21 /*
22  * This target will sequentially log all writes to the target device onto the
23  * log device.  This is helpful for replaying writes to check for fs consistency
24  * at all times.  This target provides a mechanism to mark specific events to
25  * check data at a later time.  So for example you would:
26  *
27  * write data
28  * fsync
29  * dmsetup message /dev/whatever mark mymark
30  * unmount /mnt/test
31  *
32  * Then replay the log up to mymark and check the contents of the replay to
33  * verify it matches what was written.
34  *
35  * We log writes only after they have been flushed, this makes the log describe
36  * close to the order in which the data hits the actual disk, not its cache.  So
37  * for example the following sequence (W means write, C means complete)
38  *
39  * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
40  *
41  * Would result in the log looking like this:
42  *
43  * c,a,b,flush,fuad,<other writes>,<next flush>
44  *
45  * This is meant to help expose problems where file systems do not properly wait
46  * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
47  * completes it is added to the log as it should be on disk.
48  *
49  * We treat DISCARDs as if they don't bypass cache so that they are logged in
50  * order of completion along with the normal writes.  If we didn't do it this
51  * way we would process all the discards first and then write all the data, when
52  * in fact we want to do the data and the discard in the order that they
53  * completed.
54  */
55 #define LOG_FLUSH_FLAG          (1 << 0)
56 #define LOG_FUA_FLAG            (1 << 1)
57 #define LOG_DISCARD_FLAG        (1 << 2)
58 #define LOG_MARK_FLAG           (1 << 3)
59 #define LOG_METADATA_FLAG       (1 << 4)
60
61 #define WRITE_LOG_VERSION 1ULL
62 #define WRITE_LOG_MAGIC 0x6a736677736872ULL
63 #define WRITE_LOG_SUPER_SECTOR 0
64
65 /*
66  * The disk format for this is braindead simple.
67  *
68  * At byte 0 we have our super, followed by the following sequence for
69  * nr_entries:
70  *
71  * [   1 sector    ][  entry->nr_sectors ]
72  * [log_write_entry][    data written    ]
73  *
74  * The log_write_entry takes up a full sector so we can have arbitrary length
75  * marks and it leaves us room for extra content in the future.
76  */
77
78 /*
79  * Basic info about the log for userspace.
80  */
81 struct log_write_super {
82         __le64 magic;
83         __le64 version;
84         __le64 nr_entries;
85         __le32 sectorsize;
86 };
87
88 /*
89  * sector - the sector we wrote.
90  * nr_sectors - the number of sectors we wrote.
91  * flags - flags for this log entry.
92  * data_len - the size of the data in this log entry, this is for private log
93  * entry stuff, the MARK data provided by userspace for example.
94  */
95 struct log_write_entry {
96         __le64 sector;
97         __le64 nr_sectors;
98         __le64 flags;
99         __le64 data_len;
100 };
101
102 struct log_writes_c {
103         struct dm_dev *dev;
104         struct dm_dev *logdev;
105         u64 logged_entries;
106         u32 sectorsize;
107         u32 sectorshift;
108         atomic_t io_blocks;
109         atomic_t pending_blocks;
110         sector_t next_sector;
111         sector_t end_sector;
112         bool logging_enabled;
113         bool device_supports_discard;
114         spinlock_t blocks_lock;
115         struct list_head unflushed_blocks;
116         struct list_head logging_blocks;
117         wait_queue_head_t wait;
118         struct task_struct *log_kthread;
119         struct completion super_done;
120 };
121
122 struct pending_block {
123         int vec_cnt;
124         u64 flags;
125         sector_t sector;
126         sector_t nr_sectors;
127         char *data;
128         u32 datalen;
129         struct list_head list;
130         struct bio_vec vecs[];
131 };
132
133 struct per_bio_data {
134         struct pending_block *block;
135 };
136
137 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
138                                           sector_t sectors)
139 {
140         return sectors >> (lc->sectorshift - SECTOR_SHIFT);
141 }
142
143 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
144                                           sector_t sectors)
145 {
146         return sectors << (lc->sectorshift - SECTOR_SHIFT);
147 }
148
149 static void put_pending_block(struct log_writes_c *lc)
150 {
151         if (atomic_dec_and_test(&lc->pending_blocks)) {
152                 smp_mb__after_atomic();
153                 if (waitqueue_active(&lc->wait))
154                         wake_up(&lc->wait);
155         }
156 }
157
158 static void put_io_block(struct log_writes_c *lc)
159 {
160         if (atomic_dec_and_test(&lc->io_blocks)) {
161                 smp_mb__after_atomic();
162                 if (waitqueue_active(&lc->wait))
163                         wake_up(&lc->wait);
164         }
165 }
166
167 static void log_end_io(struct bio *bio)
168 {
169         struct log_writes_c *lc = bio->bi_private;
170
171         if (bio->bi_status) {
172                 unsigned long flags;
173
174                 DMERR("Error writing log block, error=%d", bio->bi_status);
175                 spin_lock_irqsave(&lc->blocks_lock, flags);
176                 lc->logging_enabled = false;
177                 spin_unlock_irqrestore(&lc->blocks_lock, flags);
178         }
179
180         bio_free_pages(bio);
181         put_io_block(lc);
182         bio_put(bio);
183 }
184
185 static void log_end_super(struct bio *bio)
186 {
187         struct log_writes_c *lc = bio->bi_private;
188
189         complete(&lc->super_done);
190         log_end_io(bio);
191 }
192
193 /*
194  * Meant to be called if there is an error, it will free all the pages
195  * associated with the block.
196  */
197 static void free_pending_block(struct log_writes_c *lc,
198                                struct pending_block *block)
199 {
200         int i;
201
202         for (i = 0; i < block->vec_cnt; i++) {
203                 if (block->vecs[i].bv_page)
204                         __free_page(block->vecs[i].bv_page);
205         }
206         kfree(block->data);
207         kfree(block);
208         put_pending_block(lc);
209 }
210
211 static int write_metadata(struct log_writes_c *lc, void *entry,
212                           size_t entrylen, void *data, size_t datalen,
213                           sector_t sector)
214 {
215         struct bio *bio;
216         struct page *page;
217         void *ptr;
218         size_t ret;
219
220         bio = bio_alloc(GFP_KERNEL, 1);
221         if (!bio) {
222                 DMERR("Couldn't alloc log bio");
223                 goto error;
224         }
225         bio->bi_iter.bi_size = 0;
226         bio->bi_iter.bi_sector = sector;
227         bio_set_dev(bio, lc->logdev->bdev);
228         bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
229                           log_end_super : log_end_io;
230         bio->bi_private = lc;
231         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
232
233         page = alloc_page(GFP_KERNEL);
234         if (!page) {
235                 DMERR("Couldn't alloc log page");
236                 bio_put(bio);
237                 goto error;
238         }
239
240         ptr = kmap_atomic(page);
241         memcpy(ptr, entry, entrylen);
242         if (datalen)
243                 memcpy(ptr + entrylen, data, datalen);
244         memset(ptr + entrylen + datalen, 0,
245                lc->sectorsize - entrylen - datalen);
246         kunmap_atomic(ptr);
247
248         ret = bio_add_page(bio, page, lc->sectorsize, 0);
249         if (ret != lc->sectorsize) {
250                 DMERR("Couldn't add page to the log block");
251                 goto error_bio;
252         }
253         submit_bio(bio);
254         return 0;
255 error_bio:
256         bio_put(bio);
257         __free_page(page);
258 error:
259         put_io_block(lc);
260         return -1;
261 }
262
263 static int write_inline_data(struct log_writes_c *lc, void *entry,
264                              size_t entrylen, void *data, size_t datalen,
265                              sector_t sector)
266 {
267         int bio_pages, pg_datalen, pg_sectorlen, i;
268         struct page *page;
269         struct bio *bio;
270         size_t ret;
271         void *ptr;
272
273         while (datalen) {
274                 bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
275
276                 atomic_inc(&lc->io_blocks);
277
278                 bio = bio_alloc(GFP_KERNEL, bio_pages);
279                 if (!bio) {
280                         DMERR("Couldn't alloc inline data bio");
281                         goto error;
282                 }
283
284                 bio->bi_iter.bi_size = 0;
285                 bio->bi_iter.bi_sector = sector;
286                 bio_set_dev(bio, lc->logdev->bdev);
287                 bio->bi_end_io = log_end_io;
288                 bio->bi_private = lc;
289                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
290
291                 for (i = 0; i < bio_pages; i++) {
292                         pg_datalen = min_t(int, datalen, PAGE_SIZE);
293                         pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
294
295                         page = alloc_page(GFP_KERNEL);
296                         if (!page) {
297                                 DMERR("Couldn't alloc inline data page");
298                                 goto error_bio;
299                         }
300
301                         ptr = kmap_atomic(page);
302                         memcpy(ptr, data, pg_datalen);
303                         if (pg_sectorlen > pg_datalen)
304                                 memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
305                         kunmap_atomic(ptr);
306
307                         ret = bio_add_page(bio, page, pg_sectorlen, 0);
308                         if (ret != pg_sectorlen) {
309                                 DMERR("Couldn't add page of inline data");
310                                 __free_page(page);
311                                 goto error_bio;
312                         }
313
314                         datalen -= pg_datalen;
315                         data    += pg_datalen;
316                 }
317                 submit_bio(bio);
318
319                 sector += bio_pages * PAGE_SECTORS;
320         }
321         return 0;
322 error_bio:
323         bio_free_pages(bio);
324         bio_put(bio);
325 error:
326         put_io_block(lc);
327         return -1;
328 }
329
330 static int log_one_block(struct log_writes_c *lc,
331                          struct pending_block *block, sector_t sector)
332 {
333         struct bio *bio;
334         struct log_write_entry entry;
335         size_t metadatalen, ret;
336         int i;
337
338         entry.sector = cpu_to_le64(block->sector);
339         entry.nr_sectors = cpu_to_le64(block->nr_sectors);
340         entry.flags = cpu_to_le64(block->flags);
341         entry.data_len = cpu_to_le64(block->datalen);
342
343         metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
344         if (write_metadata(lc, &entry, sizeof(entry), block->data,
345                            metadatalen, sector)) {
346                 free_pending_block(lc, block);
347                 return -1;
348         }
349
350         sector += dev_to_bio_sectors(lc, 1);
351
352         if (block->datalen && metadatalen == 0) {
353                 if (write_inline_data(lc, &entry, sizeof(entry), block->data,
354                                       block->datalen, sector)) {
355                         free_pending_block(lc, block);
356                         return -1;
357                 }
358                 /* we don't support both inline data & bio data */
359                 goto out;
360         }
361
362         if (!block->vec_cnt)
363                 goto out;
364
365         atomic_inc(&lc->io_blocks);
366         bio = bio_alloc(GFP_KERNEL, bio_max_segs(block->vec_cnt));
367         if (!bio) {
368                 DMERR("Couldn't alloc log bio");
369                 goto error;
370         }
371         bio->bi_iter.bi_size = 0;
372         bio->bi_iter.bi_sector = sector;
373         bio_set_dev(bio, lc->logdev->bdev);
374         bio->bi_end_io = log_end_io;
375         bio->bi_private = lc;
376         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
377
378         for (i = 0; i < block->vec_cnt; i++) {
379                 /*
380                  * The page offset is always 0 because we allocate a new page
381                  * for every bvec in the original bio for simplicity sake.
382                  */
383                 ret = bio_add_page(bio, block->vecs[i].bv_page,
384                                    block->vecs[i].bv_len, 0);
385                 if (ret != block->vecs[i].bv_len) {
386                         atomic_inc(&lc->io_blocks);
387                         submit_bio(bio);
388                         bio = bio_alloc(GFP_KERNEL,
389                                         bio_max_segs(block->vec_cnt - i));
390                         if (!bio) {
391                                 DMERR("Couldn't alloc log bio");
392                                 goto error;
393                         }
394                         bio->bi_iter.bi_size = 0;
395                         bio->bi_iter.bi_sector = sector;
396                         bio_set_dev(bio, lc->logdev->bdev);
397                         bio->bi_end_io = log_end_io;
398                         bio->bi_private = lc;
399                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
400
401                         ret = bio_add_page(bio, block->vecs[i].bv_page,
402                                            block->vecs[i].bv_len, 0);
403                         if (ret != block->vecs[i].bv_len) {
404                                 DMERR("Couldn't add page on new bio?");
405                                 bio_put(bio);
406                                 goto error;
407                         }
408                 }
409                 sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
410         }
411         submit_bio(bio);
412 out:
413         kfree(block->data);
414         kfree(block);
415         put_pending_block(lc);
416         return 0;
417 error:
418         free_pending_block(lc, block);
419         put_io_block(lc);
420         return -1;
421 }
422
423 static int log_super(struct log_writes_c *lc)
424 {
425         struct log_write_super super;
426
427         super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
428         super.version = cpu_to_le64(WRITE_LOG_VERSION);
429         super.nr_entries = cpu_to_le64(lc->logged_entries);
430         super.sectorsize = cpu_to_le32(lc->sectorsize);
431
432         if (write_metadata(lc, &super, sizeof(super), NULL, 0,
433                            WRITE_LOG_SUPER_SECTOR)) {
434                 DMERR("Couldn't write super");
435                 return -1;
436         }
437
438         /*
439          * Super sector should be writen in-order, otherwise the
440          * nr_entries could be rewritten incorrectly by an old bio.
441          */
442         wait_for_completion_io(&lc->super_done);
443
444         return 0;
445 }
446
447 static inline sector_t logdev_last_sector(struct log_writes_c *lc)
448 {
449         return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT;
450 }
451
452 static int log_writes_kthread(void *arg)
453 {
454         struct log_writes_c *lc = (struct log_writes_c *)arg;
455         sector_t sector = 0;
456
457         while (!kthread_should_stop()) {
458                 bool super = false;
459                 bool logging_enabled;
460                 struct pending_block *block = NULL;
461                 int ret;
462
463                 spin_lock_irq(&lc->blocks_lock);
464                 if (!list_empty(&lc->logging_blocks)) {
465                         block = list_first_entry(&lc->logging_blocks,
466                                                  struct pending_block, list);
467                         list_del_init(&block->list);
468                         if (!lc->logging_enabled)
469                                 goto next;
470
471                         sector = lc->next_sector;
472                         if (!(block->flags & LOG_DISCARD_FLAG))
473                                 lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
474                         lc->next_sector += dev_to_bio_sectors(lc, 1);
475
476                         /*
477                          * Apparently the size of the device may not be known
478                          * right away, so handle this properly.
479                          */
480                         if (!lc->end_sector)
481                                 lc->end_sector = logdev_last_sector(lc);
482                         if (lc->end_sector &&
483                             lc->next_sector >= lc->end_sector) {
484                                 DMERR("Ran out of space on the logdev");
485                                 lc->logging_enabled = false;
486                                 goto next;
487                         }
488                         lc->logged_entries++;
489                         atomic_inc(&lc->io_blocks);
490
491                         super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
492                         if (super)
493                                 atomic_inc(&lc->io_blocks);
494                 }
495 next:
496                 logging_enabled = lc->logging_enabled;
497                 spin_unlock_irq(&lc->blocks_lock);
498                 if (block) {
499                         if (logging_enabled) {
500                                 ret = log_one_block(lc, block, sector);
501                                 if (!ret && super)
502                                         ret = log_super(lc);
503                                 if (ret) {
504                                         spin_lock_irq(&lc->blocks_lock);
505                                         lc->logging_enabled = false;
506                                         spin_unlock_irq(&lc->blocks_lock);
507                                 }
508                         } else
509                                 free_pending_block(lc, block);
510                         continue;
511                 }
512
513                 if (!try_to_freeze()) {
514                         set_current_state(TASK_INTERRUPTIBLE);
515                         if (!kthread_should_stop() &&
516                             list_empty(&lc->logging_blocks))
517                                 schedule();
518                         __set_current_state(TASK_RUNNING);
519                 }
520         }
521         return 0;
522 }
523
524 /*
525  * Construct a log-writes mapping:
526  * log-writes <dev_path> <log_dev_path>
527  */
528 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
529 {
530         struct log_writes_c *lc;
531         struct dm_arg_set as;
532         const char *devname, *logdevname;
533         int ret;
534
535         as.argc = argc;
536         as.argv = argv;
537
538         if (argc < 2) {
539                 ti->error = "Invalid argument count";
540                 return -EINVAL;
541         }
542
543         lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
544         if (!lc) {
545                 ti->error = "Cannot allocate context";
546                 return -ENOMEM;
547         }
548         spin_lock_init(&lc->blocks_lock);
549         INIT_LIST_HEAD(&lc->unflushed_blocks);
550         INIT_LIST_HEAD(&lc->logging_blocks);
551         init_waitqueue_head(&lc->wait);
552         init_completion(&lc->super_done);
553         atomic_set(&lc->io_blocks, 0);
554         atomic_set(&lc->pending_blocks, 0);
555
556         devname = dm_shift_arg(&as);
557         ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
558         if (ret) {
559                 ti->error = "Device lookup failed";
560                 goto bad;
561         }
562
563         logdevname = dm_shift_arg(&as);
564         ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
565                             &lc->logdev);
566         if (ret) {
567                 ti->error = "Log device lookup failed";
568                 dm_put_device(ti, lc->dev);
569                 goto bad;
570         }
571
572         lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
573         lc->sectorshift = ilog2(lc->sectorsize);
574         lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
575         if (IS_ERR(lc->log_kthread)) {
576                 ret = PTR_ERR(lc->log_kthread);
577                 ti->error = "Couldn't alloc kthread";
578                 dm_put_device(ti, lc->dev);
579                 dm_put_device(ti, lc->logdev);
580                 goto bad;
581         }
582
583         /*
584          * next_sector is in 512b sectors to correspond to what bi_sector expects.
585          * The super starts at sector 0, and the next_sector is the next logical
586          * one based on the sectorsize of the device.
587          */
588         lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
589         lc->logging_enabled = true;
590         lc->end_sector = logdev_last_sector(lc);
591         lc->device_supports_discard = true;
592
593         ti->num_flush_bios = 1;
594         ti->flush_supported = true;
595         ti->num_discard_bios = 1;
596         ti->discards_supported = true;
597         ti->per_io_data_size = sizeof(struct per_bio_data);
598         ti->private = lc;
599         return 0;
600
601 bad:
602         kfree(lc);
603         return ret;
604 }
605
606 static int log_mark(struct log_writes_c *lc, char *data)
607 {
608         struct pending_block *block;
609         size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
610
611         block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
612         if (!block) {
613                 DMERR("Error allocating pending block");
614                 return -ENOMEM;
615         }
616
617         block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
618         if (!block->data) {
619                 DMERR("Error copying mark data");
620                 kfree(block);
621                 return -ENOMEM;
622         }
623         atomic_inc(&lc->pending_blocks);
624         block->datalen = strlen(block->data);
625         block->flags |= LOG_MARK_FLAG;
626         spin_lock_irq(&lc->blocks_lock);
627         list_add_tail(&block->list, &lc->logging_blocks);
628         spin_unlock_irq(&lc->blocks_lock);
629         wake_up_process(lc->log_kthread);
630         return 0;
631 }
632
633 static void log_writes_dtr(struct dm_target *ti)
634 {
635         struct log_writes_c *lc = ti->private;
636
637         spin_lock_irq(&lc->blocks_lock);
638         list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
639         spin_unlock_irq(&lc->blocks_lock);
640
641         /*
642          * This is just nice to have since it'll update the super to include the
643          * unflushed blocks, if it fails we don't really care.
644          */
645         log_mark(lc, "dm-log-writes-end");
646         wake_up_process(lc->log_kthread);
647         wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
648                    !atomic_read(&lc->pending_blocks));
649         kthread_stop(lc->log_kthread);
650
651         WARN_ON(!list_empty(&lc->logging_blocks));
652         WARN_ON(!list_empty(&lc->unflushed_blocks));
653         dm_put_device(ti, lc->dev);
654         dm_put_device(ti, lc->logdev);
655         kfree(lc);
656 }
657
658 static void normal_map_bio(struct dm_target *ti, struct bio *bio)
659 {
660         struct log_writes_c *lc = ti->private;
661
662         bio_set_dev(bio, lc->dev->bdev);
663 }
664
665 static int log_writes_map(struct dm_target *ti, struct bio *bio)
666 {
667         struct log_writes_c *lc = ti->private;
668         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
669         struct pending_block *block;
670         struct bvec_iter iter;
671         struct bio_vec bv;
672         size_t alloc_size;
673         int i = 0;
674         bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
675         bool fua_bio = (bio->bi_opf & REQ_FUA);
676         bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
677         bool meta_bio = (bio->bi_opf & REQ_META);
678
679         pb->block = NULL;
680
681         /* Don't bother doing anything if logging has been disabled */
682         if (!lc->logging_enabled)
683                 goto map_bio;
684
685         /*
686          * Map reads as normal.
687          */
688         if (bio_data_dir(bio) == READ)
689                 goto map_bio;
690
691         /* No sectors and not a flush?  Don't care */
692         if (!bio_sectors(bio) && !flush_bio)
693                 goto map_bio;
694
695         /*
696          * Discards will have bi_size set but there's no actual data, so just
697          * allocate the size of the pending block.
698          */
699         if (discard_bio)
700                 alloc_size = sizeof(struct pending_block);
701         else
702                 alloc_size = struct_size(block, vecs, bio_segments(bio));
703
704         block = kzalloc(alloc_size, GFP_NOIO);
705         if (!block) {
706                 DMERR("Error allocating pending block");
707                 spin_lock_irq(&lc->blocks_lock);
708                 lc->logging_enabled = false;
709                 spin_unlock_irq(&lc->blocks_lock);
710                 return DM_MAPIO_KILL;
711         }
712         INIT_LIST_HEAD(&block->list);
713         pb->block = block;
714         atomic_inc(&lc->pending_blocks);
715
716         if (flush_bio)
717                 block->flags |= LOG_FLUSH_FLAG;
718         if (fua_bio)
719                 block->flags |= LOG_FUA_FLAG;
720         if (discard_bio)
721                 block->flags |= LOG_DISCARD_FLAG;
722         if (meta_bio)
723                 block->flags |= LOG_METADATA_FLAG;
724
725         block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
726         block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
727
728         /* We don't need the data, just submit */
729         if (discard_bio) {
730                 WARN_ON(flush_bio || fua_bio);
731                 if (lc->device_supports_discard)
732                         goto map_bio;
733                 bio_endio(bio);
734                 return DM_MAPIO_SUBMITTED;
735         }
736
737         /* Flush bio, splice the unflushed blocks onto this list and submit */
738         if (flush_bio && !bio_sectors(bio)) {
739                 spin_lock_irq(&lc->blocks_lock);
740                 list_splice_init(&lc->unflushed_blocks, &block->list);
741                 spin_unlock_irq(&lc->blocks_lock);
742                 goto map_bio;
743         }
744
745         /*
746          * We will write this bio somewhere else way later so we need to copy
747          * the actual contents into new pages so we know the data will always be
748          * there.
749          *
750          * We do this because this could be a bio from O_DIRECT in which case we
751          * can't just hold onto the page until some later point, we have to
752          * manually copy the contents.
753          */
754         bio_for_each_segment(bv, bio, iter) {
755                 struct page *page;
756                 void *src, *dst;
757
758                 page = alloc_page(GFP_NOIO);
759                 if (!page) {
760                         DMERR("Error allocing page");
761                         free_pending_block(lc, block);
762                         spin_lock_irq(&lc->blocks_lock);
763                         lc->logging_enabled = false;
764                         spin_unlock_irq(&lc->blocks_lock);
765                         return DM_MAPIO_KILL;
766                 }
767
768                 src = kmap_atomic(bv.bv_page);
769                 dst = kmap_atomic(page);
770                 memcpy(dst, src + bv.bv_offset, bv.bv_len);
771                 kunmap_atomic(dst);
772                 kunmap_atomic(src);
773                 block->vecs[i].bv_page = page;
774                 block->vecs[i].bv_len = bv.bv_len;
775                 block->vec_cnt++;
776                 i++;
777         }
778
779         /* Had a flush with data in it, weird */
780         if (flush_bio) {
781                 spin_lock_irq(&lc->blocks_lock);
782                 list_splice_init(&lc->unflushed_blocks, &block->list);
783                 spin_unlock_irq(&lc->blocks_lock);
784         }
785 map_bio:
786         normal_map_bio(ti, bio);
787         return DM_MAPIO_REMAPPED;
788 }
789
790 static int normal_end_io(struct dm_target *ti, struct bio *bio,
791                 blk_status_t *error)
792 {
793         struct log_writes_c *lc = ti->private;
794         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
795
796         if (bio_data_dir(bio) == WRITE && pb->block) {
797                 struct pending_block *block = pb->block;
798                 unsigned long flags;
799
800                 spin_lock_irqsave(&lc->blocks_lock, flags);
801                 if (block->flags & LOG_FLUSH_FLAG) {
802                         list_splice_tail_init(&block->list, &lc->logging_blocks);
803                         list_add_tail(&block->list, &lc->logging_blocks);
804                         wake_up_process(lc->log_kthread);
805                 } else if (block->flags & LOG_FUA_FLAG) {
806                         list_add_tail(&block->list, &lc->logging_blocks);
807                         wake_up_process(lc->log_kthread);
808                 } else
809                         list_add_tail(&block->list, &lc->unflushed_blocks);
810                 spin_unlock_irqrestore(&lc->blocks_lock, flags);
811         }
812
813         return DM_ENDIO_DONE;
814 }
815
816 /*
817  * INFO format: <logged entries> <highest allocated sector>
818  */
819 static void log_writes_status(struct dm_target *ti, status_type_t type,
820                               unsigned status_flags, char *result,
821                               unsigned maxlen)
822 {
823         unsigned sz = 0;
824         struct log_writes_c *lc = ti->private;
825
826         switch (type) {
827         case STATUSTYPE_INFO:
828                 DMEMIT("%llu %llu", lc->logged_entries,
829                        (unsigned long long)lc->next_sector - 1);
830                 if (!lc->logging_enabled)
831                         DMEMIT(" logging_disabled");
832                 break;
833
834         case STATUSTYPE_TABLE:
835                 DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
836                 break;
837         }
838 }
839
840 static int log_writes_prepare_ioctl(struct dm_target *ti,
841                                     struct block_device **bdev)
842 {
843         struct log_writes_c *lc = ti->private;
844         struct dm_dev *dev = lc->dev;
845
846         *bdev = dev->bdev;
847         /*
848          * Only pass ioctls through if the device sizes match exactly.
849          */
850         if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
851                 return 1;
852         return 0;
853 }
854
855 static int log_writes_iterate_devices(struct dm_target *ti,
856                                       iterate_devices_callout_fn fn,
857                                       void *data)
858 {
859         struct log_writes_c *lc = ti->private;
860
861         return fn(ti, lc->dev, 0, ti->len, data);
862 }
863
864 /*
865  * Messages supported:
866  *   mark <mark data> - specify the marked data.
867  */
868 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
869                               char *result, unsigned maxlen)
870 {
871         int r = -EINVAL;
872         struct log_writes_c *lc = ti->private;
873
874         if (argc != 2) {
875                 DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
876                 return r;
877         }
878
879         if (!strcasecmp(argv[0], "mark"))
880                 r = log_mark(lc, argv[1]);
881         else
882                 DMWARN("Unrecognised log writes target message received: %s", argv[0]);
883
884         return r;
885 }
886
887 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
888 {
889         struct log_writes_c *lc = ti->private;
890         struct request_queue *q = bdev_get_queue(lc->dev->bdev);
891
892         if (!q || !blk_queue_discard(q)) {
893                 lc->device_supports_discard = false;
894                 limits->discard_granularity = lc->sectorsize;
895                 limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
896         }
897         limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
898         limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
899         limits->io_min = limits->physical_block_size;
900 }
901
902 #if IS_ENABLED(CONFIG_DAX_DRIVER)
903 static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes,
904                    struct iov_iter *i)
905 {
906         struct pending_block *block;
907
908         if (!bytes)
909                 return 0;
910
911         block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
912         if (!block) {
913                 DMERR("Error allocating dax pending block");
914                 return -ENOMEM;
915         }
916
917         block->data = kzalloc(bytes, GFP_KERNEL);
918         if (!block->data) {
919                 DMERR("Error allocating dax data space");
920                 kfree(block);
921                 return -ENOMEM;
922         }
923
924         /* write data provided via the iterator */
925         if (!copy_from_iter(block->data, bytes, i)) {
926                 DMERR("Error copying dax data");
927                 kfree(block->data);
928                 kfree(block);
929                 return -EIO;
930         }
931
932         /* rewind the iterator so that the block driver can use it */
933         iov_iter_revert(i, bytes);
934
935         block->datalen = bytes;
936         block->sector = bio_to_dev_sectors(lc, sector);
937         block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift;
938
939         atomic_inc(&lc->pending_blocks);
940         spin_lock_irq(&lc->blocks_lock);
941         list_add_tail(&block->list, &lc->unflushed_blocks);
942         spin_unlock_irq(&lc->blocks_lock);
943         wake_up_process(lc->log_kthread);
944
945         return 0;
946 }
947
948 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
949                                          long nr_pages, void **kaddr, pfn_t *pfn)
950 {
951         struct log_writes_c *lc = ti->private;
952         sector_t sector = pgoff * PAGE_SECTORS;
953         int ret;
954
955         ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff);
956         if (ret)
957                 return ret;
958         return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn);
959 }
960
961 static size_t log_writes_dax_copy_from_iter(struct dm_target *ti,
962                                             pgoff_t pgoff, void *addr, size_t bytes,
963                                             struct iov_iter *i)
964 {
965         struct log_writes_c *lc = ti->private;
966         sector_t sector = pgoff * PAGE_SECTORS;
967         int err;
968
969         if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
970                 return 0;
971
972         /* Don't bother doing anything if logging has been disabled */
973         if (!lc->logging_enabled)
974                 goto dax_copy;
975
976         err = log_dax(lc, sector, bytes, i);
977         if (err) {
978                 DMWARN("Error %d logging DAX write", err);
979                 return 0;
980         }
981 dax_copy:
982         return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
983 }
984
985 static size_t log_writes_dax_copy_to_iter(struct dm_target *ti,
986                                           pgoff_t pgoff, void *addr, size_t bytes,
987                                           struct iov_iter *i)
988 {
989         struct log_writes_c *lc = ti->private;
990         sector_t sector = pgoff * PAGE_SECTORS;
991
992         if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
993                 return 0;
994         return dax_copy_to_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
995 }
996
997 static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
998                                           size_t nr_pages)
999 {
1000         int ret;
1001         struct log_writes_c *lc = ti->private;
1002         sector_t sector = pgoff * PAGE_SECTORS;
1003
1004         ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages << PAGE_SHIFT,
1005                              &pgoff);
1006         if (ret)
1007                 return ret;
1008         return dax_zero_page_range(lc->dev->dax_dev, pgoff,
1009                                    nr_pages << PAGE_SHIFT);
1010 }
1011
1012 #else
1013 #define log_writes_dax_direct_access NULL
1014 #define log_writes_dax_copy_from_iter NULL
1015 #define log_writes_dax_copy_to_iter NULL
1016 #define log_writes_dax_zero_page_range NULL
1017 #endif
1018
1019 static struct target_type log_writes_target = {
1020         .name   = "log-writes",
1021         .version = {1, 1, 0},
1022         .module = THIS_MODULE,
1023         .ctr    = log_writes_ctr,
1024         .dtr    = log_writes_dtr,
1025         .map    = log_writes_map,
1026         .end_io = normal_end_io,
1027         .status = log_writes_status,
1028         .prepare_ioctl = log_writes_prepare_ioctl,
1029         .message = log_writes_message,
1030         .iterate_devices = log_writes_iterate_devices,
1031         .io_hints = log_writes_io_hints,
1032         .direct_access = log_writes_dax_direct_access,
1033         .dax_copy_from_iter = log_writes_dax_copy_from_iter,
1034         .dax_copy_to_iter = log_writes_dax_copy_to_iter,
1035         .dax_zero_page_range = log_writes_dax_zero_page_range,
1036 };
1037
1038 static int __init dm_log_writes_init(void)
1039 {
1040         int r = dm_register_target(&log_writes_target);
1041
1042         if (r < 0)
1043                 DMERR("register failed %d", r);
1044
1045         return r;
1046 }
1047
1048 static void __exit dm_log_writes_exit(void)
1049 {
1050         dm_unregister_target(&log_writes_target);
1051 }
1052
1053 module_init(dm_log_writes_init);
1054 module_exit(dm_log_writes_exit);
1055
1056 MODULE_DESCRIPTION(DM_NAME " log writes target");
1057 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
1058 MODULE_LICENSE("GPL");