RDMA/mlx5: Verify that DM operation is reasonable
[linux-2.6-microblaze.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS      32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
31 #define DEFAULT_BUFFER_SECTORS          128
32 #define DEFAULT_JOURNAL_WATERMARK       50
33 #define DEFAULT_SYNC_MSEC               10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS     3
36 #define MAX_LOG2_INTERLEAVE_SECTORS     31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
38 #define RECALC_SECTORS                  32768
39 #define RECALC_WRITE_SUPER              16
40 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
42 #define DISCARD_FILLER                  0xf6
43 #define SALT_SIZE                       16
44
45 /*
46  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
47  * so it should not be enabled in the official kernel
48  */
49 //#define DEBUG_PRINT
50 //#define INTERNAL_VERIFY
51
52 /*
53  * On disk structures
54  */
55
56 #define SB_MAGIC                        "integrt"
57 #define SB_VERSION_1                    1
58 #define SB_VERSION_2                    2
59 #define SB_VERSION_3                    3
60 #define SB_VERSION_4                    4
61 #define SB_VERSION_5                    5
62 #define SB_SECTORS                      8
63 #define MAX_SECTORS_PER_BLOCK           8
64
65 struct superblock {
66         __u8 magic[8];
67         __u8 version;
68         __u8 log2_interleave_sectors;
69         __u16 integrity_tag_size;
70         __u32 journal_sections;
71         __u64 provided_data_sectors;    /* userspace uses this value */
72         __u32 flags;
73         __u8 log2_sectors_per_block;
74         __u8 log2_blocks_per_bitmap_bit;
75         __u8 pad[2];
76         __u64 recalc_sector;
77         __u8 pad2[8];
78         __u8 salt[SALT_SIZE];
79 };
80
81 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
82 #define SB_FLAG_RECALCULATING           0x2
83 #define SB_FLAG_DIRTY_BITMAP            0x4
84 #define SB_FLAG_FIXED_PADDING           0x8
85 #define SB_FLAG_FIXED_HMAC              0x10
86
87 #define JOURNAL_ENTRY_ROUNDUP           8
88
89 typedef __u64 commit_id_t;
90 #define JOURNAL_MAC_PER_SECTOR          8
91
92 struct journal_entry {
93         union {
94                 struct {
95                         __u32 sector_lo;
96                         __u32 sector_hi;
97                 } s;
98                 __u64 sector;
99         } u;
100         commit_id_t last_bytes[];
101         /* __u8 tag[0]; */
102 };
103
104 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
105
106 #if BITS_PER_LONG == 64
107 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
108 #else
109 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
110 #endif
111 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
112 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
113 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
114 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
115 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
116
117 #define JOURNAL_BLOCK_SECTORS           8
118 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
119 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
120
121 struct journal_sector {
122         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
123         __u8 mac[JOURNAL_MAC_PER_SECTOR];
124         commit_id_t commit_id;
125 };
126
127 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
128
129 #define METADATA_PADDING_SECTORS        8
130
131 #define N_COMMIT_IDS                    4
132
133 static unsigned char prev_commit_seq(unsigned char seq)
134 {
135         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
136 }
137
138 static unsigned char next_commit_seq(unsigned char seq)
139 {
140         return (seq + 1) % N_COMMIT_IDS;
141 }
142
143 /*
144  * In-memory structures
145  */
146
147 struct journal_node {
148         struct rb_node node;
149         sector_t sector;
150 };
151
152 struct alg_spec {
153         char *alg_string;
154         char *key_string;
155         __u8 *key;
156         unsigned key_size;
157 };
158
159 struct dm_integrity_c {
160         struct dm_dev *dev;
161         struct dm_dev *meta_dev;
162         unsigned tag_size;
163         __s8 log2_tag_size;
164         sector_t start;
165         mempool_t journal_io_mempool;
166         struct dm_io_client *io;
167         struct dm_bufio_client *bufio;
168         struct workqueue_struct *metadata_wq;
169         struct superblock *sb;
170         unsigned journal_pages;
171         unsigned n_bitmap_blocks;
172
173         struct page_list *journal;
174         struct page_list *journal_io;
175         struct page_list *journal_xor;
176         struct page_list *recalc_bitmap;
177         struct page_list *may_write_bitmap;
178         struct bitmap_block_status *bbs;
179         unsigned bitmap_flush_interval;
180         int synchronous_mode;
181         struct bio_list synchronous_bios;
182         struct delayed_work bitmap_flush_work;
183
184         struct crypto_skcipher *journal_crypt;
185         struct scatterlist **journal_scatterlist;
186         struct scatterlist **journal_io_scatterlist;
187         struct skcipher_request **sk_requests;
188
189         struct crypto_shash *journal_mac;
190
191         struct journal_node *journal_tree;
192         struct rb_root journal_tree_root;
193
194         sector_t provided_data_sectors;
195
196         unsigned short journal_entry_size;
197         unsigned char journal_entries_per_sector;
198         unsigned char journal_section_entries;
199         unsigned short journal_section_sectors;
200         unsigned journal_sections;
201         unsigned journal_entries;
202         sector_t data_device_sectors;
203         sector_t meta_device_sectors;
204         unsigned initial_sectors;
205         unsigned metadata_run;
206         __s8 log2_metadata_run;
207         __u8 log2_buffer_sectors;
208         __u8 sectors_per_block;
209         __u8 log2_blocks_per_bitmap_bit;
210
211         unsigned char mode;
212
213         int failed;
214
215         struct crypto_shash *internal_hash;
216
217         struct dm_target *ti;
218
219         /* these variables are locked with endio_wait.lock */
220         struct rb_root in_progress;
221         struct list_head wait_list;
222         wait_queue_head_t endio_wait;
223         struct workqueue_struct *wait_wq;
224         struct workqueue_struct *offload_wq;
225
226         unsigned char commit_seq;
227         commit_id_t commit_ids[N_COMMIT_IDS];
228
229         unsigned committed_section;
230         unsigned n_committed_sections;
231
232         unsigned uncommitted_section;
233         unsigned n_uncommitted_sections;
234
235         unsigned free_section;
236         unsigned char free_section_entry;
237         unsigned free_sectors;
238
239         unsigned free_sectors_threshold;
240
241         struct workqueue_struct *commit_wq;
242         struct work_struct commit_work;
243
244         struct workqueue_struct *writer_wq;
245         struct work_struct writer_work;
246
247         struct workqueue_struct *recalc_wq;
248         struct work_struct recalc_work;
249         u8 *recalc_buffer;
250         u8 *recalc_tags;
251
252         struct bio_list flush_bio_list;
253
254         unsigned long autocommit_jiffies;
255         struct timer_list autocommit_timer;
256         unsigned autocommit_msec;
257
258         wait_queue_head_t copy_to_journal_wait;
259
260         struct completion crypto_backoff;
261
262         bool journal_uptodate;
263         bool just_formatted;
264         bool recalculate_flag;
265         bool reset_recalculate_flag;
266         bool discard;
267         bool fix_padding;
268         bool fix_hmac;
269         bool legacy_recalculate;
270
271         struct alg_spec internal_hash_alg;
272         struct alg_spec journal_crypt_alg;
273         struct alg_spec journal_mac_alg;
274
275         atomic64_t number_of_mismatches;
276
277         struct notifier_block reboot_notifier;
278 };
279
280 struct dm_integrity_range {
281         sector_t logical_sector;
282         sector_t n_sectors;
283         bool waiting;
284         union {
285                 struct rb_node node;
286                 struct {
287                         struct task_struct *task;
288                         struct list_head wait_entry;
289                 };
290         };
291 };
292
293 struct dm_integrity_io {
294         struct work_struct work;
295
296         struct dm_integrity_c *ic;
297         enum req_opf op;
298         bool fua;
299
300         struct dm_integrity_range range;
301
302         sector_t metadata_block;
303         unsigned metadata_offset;
304
305         atomic_t in_flight;
306         blk_status_t bi_status;
307
308         struct completion *completion;
309
310         struct dm_bio_details bio_details;
311 };
312
313 struct journal_completion {
314         struct dm_integrity_c *ic;
315         atomic_t in_flight;
316         struct completion comp;
317 };
318
319 struct journal_io {
320         struct dm_integrity_range range;
321         struct journal_completion *comp;
322 };
323
324 struct bitmap_block_status {
325         struct work_struct work;
326         struct dm_integrity_c *ic;
327         unsigned idx;
328         unsigned long *bitmap;
329         struct bio_list bio_queue;
330         spinlock_t bio_queue_lock;
331
332 };
333
334 static struct kmem_cache *journal_io_cache;
335
336 #define JOURNAL_IO_MEMPOOL      32
337
338 #ifdef DEBUG_PRINT
339 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
340 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
341 {
342         va_list args;
343         va_start(args, msg);
344         vprintk(msg, args);
345         va_end(args);
346         if (len)
347                 pr_cont(":");
348         while (len) {
349                 pr_cont(" %02x", *bytes);
350                 bytes++;
351                 len--;
352         }
353         pr_cont("\n");
354 }
355 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
356 #else
357 #define DEBUG_print(x, ...)                     do { } while (0)
358 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
359 #endif
360
361 static void dm_integrity_prepare(struct request *rq)
362 {
363 }
364
365 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
366 {
367 }
368
369 /*
370  * DM Integrity profile, protection is performed layer above (dm-crypt)
371  */
372 static const struct blk_integrity_profile dm_integrity_profile = {
373         .name                   = "DM-DIF-EXT-TAG",
374         .generate_fn            = NULL,
375         .verify_fn              = NULL,
376         .prepare_fn             = dm_integrity_prepare,
377         .complete_fn            = dm_integrity_complete,
378 };
379
380 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
381 static void integrity_bio_wait(struct work_struct *w);
382 static void dm_integrity_dtr(struct dm_target *ti);
383
384 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
385 {
386         if (err == -EILSEQ)
387                 atomic64_inc(&ic->number_of_mismatches);
388         if (!cmpxchg(&ic->failed, 0, err))
389                 DMERR("Error on %s: %d", msg, err);
390 }
391
392 static int dm_integrity_failed(struct dm_integrity_c *ic)
393 {
394         return READ_ONCE(ic->failed);
395 }
396
397 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
398 {
399         if (ic->legacy_recalculate)
400                 return false;
401         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
402             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
403             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
404                 return true;
405         return false;
406 }
407
408 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
409                                           unsigned j, unsigned char seq)
410 {
411         /*
412          * Xor the number with section and sector, so that if a piece of
413          * journal is written at wrong place, it is detected.
414          */
415         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
416 }
417
418 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
419                                 sector_t *area, sector_t *offset)
420 {
421         if (!ic->meta_dev) {
422                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
423                 *area = data_sector >> log2_interleave_sectors;
424                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
425         } else {
426                 *area = 0;
427                 *offset = data_sector;
428         }
429 }
430
431 #define sector_to_block(ic, n)                                          \
432 do {                                                                    \
433         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
434         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
435 } while (0)
436
437 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
438                                             sector_t offset, unsigned *metadata_offset)
439 {
440         __u64 ms;
441         unsigned mo;
442
443         ms = area << ic->sb->log2_interleave_sectors;
444         if (likely(ic->log2_metadata_run >= 0))
445                 ms += area << ic->log2_metadata_run;
446         else
447                 ms += area * ic->metadata_run;
448         ms >>= ic->log2_buffer_sectors;
449
450         sector_to_block(ic, offset);
451
452         if (likely(ic->log2_tag_size >= 0)) {
453                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
454                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
455         } else {
456                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
457                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
458         }
459         *metadata_offset = mo;
460         return ms;
461 }
462
463 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
464 {
465         sector_t result;
466
467         if (ic->meta_dev)
468                 return offset;
469
470         result = area << ic->sb->log2_interleave_sectors;
471         if (likely(ic->log2_metadata_run >= 0))
472                 result += (area + 1) << ic->log2_metadata_run;
473         else
474                 result += (area + 1) * ic->metadata_run;
475
476         result += (sector_t)ic->initial_sectors + offset;
477         result += ic->start;
478
479         return result;
480 }
481
482 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
483 {
484         if (unlikely(*sec_ptr >= ic->journal_sections))
485                 *sec_ptr -= ic->journal_sections;
486 }
487
488 static void sb_set_version(struct dm_integrity_c *ic)
489 {
490         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
491                 ic->sb->version = SB_VERSION_5;
492         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
493                 ic->sb->version = SB_VERSION_4;
494         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
495                 ic->sb->version = SB_VERSION_3;
496         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
497                 ic->sb->version = SB_VERSION_2;
498         else
499                 ic->sb->version = SB_VERSION_1;
500 }
501
502 static int sb_mac(struct dm_integrity_c *ic, bool wr)
503 {
504         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
505         int r;
506         unsigned size = crypto_shash_digestsize(ic->journal_mac);
507
508         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
509                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
510                 return -EINVAL;
511         }
512
513         desc->tfm = ic->journal_mac;
514
515         r = crypto_shash_init(desc);
516         if (unlikely(r < 0)) {
517                 dm_integrity_io_error(ic, "crypto_shash_init", r);
518                 return r;
519         }
520
521         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
522         if (unlikely(r < 0)) {
523                 dm_integrity_io_error(ic, "crypto_shash_update", r);
524                 return r;
525         }
526
527         if (likely(wr)) {
528                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
529                 if (unlikely(r < 0)) {
530                         dm_integrity_io_error(ic, "crypto_shash_final", r);
531                         return r;
532                 }
533         } else {
534                 __u8 result[HASH_MAX_DIGESTSIZE];
535                 r = crypto_shash_final(desc, result);
536                 if (unlikely(r < 0)) {
537                         dm_integrity_io_error(ic, "crypto_shash_final", r);
538                         return r;
539                 }
540                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
541                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
542                         return -EILSEQ;
543                 }
544         }
545
546         return 0;
547 }
548
549 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
550 {
551         struct dm_io_request io_req;
552         struct dm_io_region io_loc;
553         int r;
554
555         io_req.bi_op = op;
556         io_req.bi_op_flags = op_flags;
557         io_req.mem.type = DM_IO_KMEM;
558         io_req.mem.ptr.addr = ic->sb;
559         io_req.notify.fn = NULL;
560         io_req.client = ic->io;
561         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
562         io_loc.sector = ic->start;
563         io_loc.count = SB_SECTORS;
564
565         if (op == REQ_OP_WRITE) {
566                 sb_set_version(ic);
567                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
568                         r = sb_mac(ic, true);
569                         if (unlikely(r))
570                                 return r;
571                 }
572         }
573
574         r = dm_io(&io_req, 1, &io_loc, NULL);
575         if (unlikely(r))
576                 return r;
577
578         if (op == REQ_OP_READ) {
579                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
580                         r = sb_mac(ic, false);
581                         if (unlikely(r))
582                                 return r;
583                 }
584         }
585
586         return 0;
587 }
588
589 #define BITMAP_OP_TEST_ALL_SET          0
590 #define BITMAP_OP_TEST_ALL_CLEAR        1
591 #define BITMAP_OP_SET                   2
592 #define BITMAP_OP_CLEAR                 3
593
594 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
595                             sector_t sector, sector_t n_sectors, int mode)
596 {
597         unsigned long bit, end_bit, this_end_bit, page, end_page;
598         unsigned long *data;
599
600         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
601                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
602                         sector,
603                         n_sectors,
604                         ic->sb->log2_sectors_per_block,
605                         ic->log2_blocks_per_bitmap_bit,
606                         mode);
607                 BUG();
608         }
609
610         if (unlikely(!n_sectors))
611                 return true;
612
613         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
614         end_bit = (sector + n_sectors - 1) >>
615                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
616
617         page = bit / (PAGE_SIZE * 8);
618         bit %= PAGE_SIZE * 8;
619
620         end_page = end_bit / (PAGE_SIZE * 8);
621         end_bit %= PAGE_SIZE * 8;
622
623 repeat:
624         if (page < end_page) {
625                 this_end_bit = PAGE_SIZE * 8 - 1;
626         } else {
627                 this_end_bit = end_bit;
628         }
629
630         data = lowmem_page_address(bitmap[page].page);
631
632         if (mode == BITMAP_OP_TEST_ALL_SET) {
633                 while (bit <= this_end_bit) {
634                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
635                                 do {
636                                         if (data[bit / BITS_PER_LONG] != -1)
637                                                 return false;
638                                         bit += BITS_PER_LONG;
639                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
640                                 continue;
641                         }
642                         if (!test_bit(bit, data))
643                                 return false;
644                         bit++;
645                 }
646         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
647                 while (bit <= this_end_bit) {
648                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
649                                 do {
650                                         if (data[bit / BITS_PER_LONG] != 0)
651                                                 return false;
652                                         bit += BITS_PER_LONG;
653                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
654                                 continue;
655                         }
656                         if (test_bit(bit, data))
657                                 return false;
658                         bit++;
659                 }
660         } else if (mode == BITMAP_OP_SET) {
661                 while (bit <= this_end_bit) {
662                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
663                                 do {
664                                         data[bit / BITS_PER_LONG] = -1;
665                                         bit += BITS_PER_LONG;
666                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
667                                 continue;
668                         }
669                         __set_bit(bit, data);
670                         bit++;
671                 }
672         } else if (mode == BITMAP_OP_CLEAR) {
673                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
674                         clear_page(data);
675                 else while (bit <= this_end_bit) {
676                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
677                                 do {
678                                         data[bit / BITS_PER_LONG] = 0;
679                                         bit += BITS_PER_LONG;
680                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
681                                 continue;
682                         }
683                         __clear_bit(bit, data);
684                         bit++;
685                 }
686         } else {
687                 BUG();
688         }
689
690         if (unlikely(page < end_page)) {
691                 bit = 0;
692                 page++;
693                 goto repeat;
694         }
695
696         return true;
697 }
698
699 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
700 {
701         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
702         unsigned i;
703
704         for (i = 0; i < n_bitmap_pages; i++) {
705                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
706                 unsigned long *src_data = lowmem_page_address(src[i].page);
707                 copy_page(dst_data, src_data);
708         }
709 }
710
711 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
712 {
713         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
714         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
715
716         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
717         return &ic->bbs[bitmap_block];
718 }
719
720 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
721                                  bool e, const char *function)
722 {
723 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
724         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
725
726         if (unlikely(section >= ic->journal_sections) ||
727             unlikely(offset >= limit)) {
728                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
729                        function, section, offset, ic->journal_sections, limit);
730                 BUG();
731         }
732 #endif
733 }
734
735 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
736                                unsigned *pl_index, unsigned *pl_offset)
737 {
738         unsigned sector;
739
740         access_journal_check(ic, section, offset, false, "page_list_location");
741
742         sector = section * ic->journal_section_sectors + offset;
743
744         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
745         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
746 }
747
748 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
749                                                unsigned section, unsigned offset, unsigned *n_sectors)
750 {
751         unsigned pl_index, pl_offset;
752         char *va;
753
754         page_list_location(ic, section, offset, &pl_index, &pl_offset);
755
756         if (n_sectors)
757                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
758
759         va = lowmem_page_address(pl[pl_index].page);
760
761         return (struct journal_sector *)(va + pl_offset);
762 }
763
764 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
765 {
766         return access_page_list(ic, ic->journal, section, offset, NULL);
767 }
768
769 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
770 {
771         unsigned rel_sector, offset;
772         struct journal_sector *js;
773
774         access_journal_check(ic, section, n, true, "access_journal_entry");
775
776         rel_sector = n % JOURNAL_BLOCK_SECTORS;
777         offset = n / JOURNAL_BLOCK_SECTORS;
778
779         js = access_journal(ic, section, rel_sector);
780         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
781 }
782
783 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
784 {
785         n <<= ic->sb->log2_sectors_per_block;
786
787         n += JOURNAL_BLOCK_SECTORS;
788
789         access_journal_check(ic, section, n, false, "access_journal_data");
790
791         return access_journal(ic, section, n);
792 }
793
794 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
795 {
796         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
797         int r;
798         unsigned j, size;
799
800         desc->tfm = ic->journal_mac;
801
802         r = crypto_shash_init(desc);
803         if (unlikely(r < 0)) {
804                 dm_integrity_io_error(ic, "crypto_shash_init", r);
805                 goto err;
806         }
807
808         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
809                 uint64_t section_le;
810
811                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
812                 if (unlikely(r < 0)) {
813                         dm_integrity_io_error(ic, "crypto_shash_update", r);
814                         goto err;
815                 }
816
817                 section_le = cpu_to_le64(section);
818                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
819                 if (unlikely(r < 0)) {
820                         dm_integrity_io_error(ic, "crypto_shash_update", r);
821                         goto err;
822                 }
823         }
824
825         for (j = 0; j < ic->journal_section_entries; j++) {
826                 struct journal_entry *je = access_journal_entry(ic, section, j);
827                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
828                 if (unlikely(r < 0)) {
829                         dm_integrity_io_error(ic, "crypto_shash_update", r);
830                         goto err;
831                 }
832         }
833
834         size = crypto_shash_digestsize(ic->journal_mac);
835
836         if (likely(size <= JOURNAL_MAC_SIZE)) {
837                 r = crypto_shash_final(desc, result);
838                 if (unlikely(r < 0)) {
839                         dm_integrity_io_error(ic, "crypto_shash_final", r);
840                         goto err;
841                 }
842                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
843         } else {
844                 __u8 digest[HASH_MAX_DIGESTSIZE];
845
846                 if (WARN_ON(size > sizeof(digest))) {
847                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
848                         goto err;
849                 }
850                 r = crypto_shash_final(desc, digest);
851                 if (unlikely(r < 0)) {
852                         dm_integrity_io_error(ic, "crypto_shash_final", r);
853                         goto err;
854                 }
855                 memcpy(result, digest, JOURNAL_MAC_SIZE);
856         }
857
858         return;
859 err:
860         memset(result, 0, JOURNAL_MAC_SIZE);
861 }
862
863 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
864 {
865         __u8 result[JOURNAL_MAC_SIZE];
866         unsigned j;
867
868         if (!ic->journal_mac)
869                 return;
870
871         section_mac(ic, section, result);
872
873         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
874                 struct journal_sector *js = access_journal(ic, section, j);
875
876                 if (likely(wr))
877                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
878                 else {
879                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
880                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
881                 }
882         }
883 }
884
885 static void complete_journal_op(void *context)
886 {
887         struct journal_completion *comp = context;
888         BUG_ON(!atomic_read(&comp->in_flight));
889         if (likely(atomic_dec_and_test(&comp->in_flight)))
890                 complete(&comp->comp);
891 }
892
893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
894                         unsigned n_sections, struct journal_completion *comp)
895 {
896         struct async_submit_ctl submit;
897         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898         unsigned pl_index, pl_offset, section_index;
899         struct page_list *source_pl, *target_pl;
900
901         if (likely(encrypt)) {
902                 source_pl = ic->journal;
903                 target_pl = ic->journal_io;
904         } else {
905                 source_pl = ic->journal_io;
906                 target_pl = ic->journal;
907         }
908
909         page_list_location(ic, section, 0, &pl_index, &pl_offset);
910
911         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912
913         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914
915         section_index = pl_index;
916
917         do {
918                 size_t this_step;
919                 struct page *src_pages[2];
920                 struct page *dst_page;
921
922                 while (unlikely(pl_index == section_index)) {
923                         unsigned dummy;
924                         if (likely(encrypt))
925                                 rw_section_mac(ic, section, true);
926                         section++;
927                         n_sections--;
928                         if (!n_sections)
929                                 break;
930                         page_list_location(ic, section, 0, &section_index, &dummy);
931                 }
932
933                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
934                 dst_page = target_pl[pl_index].page;
935                 src_pages[0] = source_pl[pl_index].page;
936                 src_pages[1] = ic->journal_xor[pl_index].page;
937
938                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
939
940                 pl_index++;
941                 pl_offset = 0;
942                 n_bytes -= this_step;
943         } while (n_bytes);
944
945         BUG_ON(n_sections);
946
947         async_tx_issue_pending_all();
948 }
949
950 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
951 {
952         struct journal_completion *comp = req->data;
953         if (unlikely(err)) {
954                 if (likely(err == -EINPROGRESS)) {
955                         complete(&comp->ic->crypto_backoff);
956                         return;
957                 }
958                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959         }
960         complete_journal_op(comp);
961 }
962
963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965         int r;
966         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
967                                       complete_journal_encrypt, comp);
968         if (likely(encrypt))
969                 r = crypto_skcipher_encrypt(req);
970         else
971                 r = crypto_skcipher_decrypt(req);
972         if (likely(!r))
973                 return false;
974         if (likely(r == -EINPROGRESS))
975                 return true;
976         if (likely(r == -EBUSY)) {
977                 wait_for_completion(&comp->ic->crypto_backoff);
978                 reinit_completion(&comp->ic->crypto_backoff);
979                 return true;
980         }
981         dm_integrity_io_error(comp->ic, "encrypt", r);
982         return false;
983 }
984
985 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
986                           unsigned n_sections, struct journal_completion *comp)
987 {
988         struct scatterlist **source_sg;
989         struct scatterlist **target_sg;
990
991         atomic_add(2, &comp->in_flight);
992
993         if (likely(encrypt)) {
994                 source_sg = ic->journal_scatterlist;
995                 target_sg = ic->journal_io_scatterlist;
996         } else {
997                 source_sg = ic->journal_io_scatterlist;
998                 target_sg = ic->journal_scatterlist;
999         }
1000
1001         do {
1002                 struct skcipher_request *req;
1003                 unsigned ivsize;
1004                 char *iv;
1005
1006                 if (likely(encrypt))
1007                         rw_section_mac(ic, section, true);
1008
1009                 req = ic->sk_requests[section];
1010                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1011                 iv = req->iv;
1012
1013                 memcpy(iv, iv + ivsize, ivsize);
1014
1015                 req->src = source_sg[section];
1016                 req->dst = target_sg[section];
1017
1018                 if (unlikely(do_crypt(encrypt, req, comp)))
1019                         atomic_inc(&comp->in_flight);
1020
1021                 section++;
1022                 n_sections--;
1023         } while (n_sections);
1024
1025         atomic_dec(&comp->in_flight);
1026         complete_journal_op(comp);
1027 }
1028
1029 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1030                             unsigned n_sections, struct journal_completion *comp)
1031 {
1032         if (ic->journal_xor)
1033                 return xor_journal(ic, encrypt, section, n_sections, comp);
1034         else
1035                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1036 }
1037
1038 static void complete_journal_io(unsigned long error, void *context)
1039 {
1040         struct journal_completion *comp = context;
1041         if (unlikely(error != 0))
1042                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1043         complete_journal_op(comp);
1044 }
1045
1046 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1047                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1048 {
1049         struct dm_io_request io_req;
1050         struct dm_io_region io_loc;
1051         unsigned pl_index, pl_offset;
1052         int r;
1053
1054         if (unlikely(dm_integrity_failed(ic))) {
1055                 if (comp)
1056                         complete_journal_io(-1UL, comp);
1057                 return;
1058         }
1059
1060         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1061         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1062
1063         io_req.bi_op = op;
1064         io_req.bi_op_flags = op_flags;
1065         io_req.mem.type = DM_IO_PAGE_LIST;
1066         if (ic->journal_io)
1067                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1068         else
1069                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1070         io_req.mem.offset = pl_offset;
1071         if (likely(comp != NULL)) {
1072                 io_req.notify.fn = complete_journal_io;
1073                 io_req.notify.context = comp;
1074         } else {
1075                 io_req.notify.fn = NULL;
1076         }
1077         io_req.client = ic->io;
1078         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1079         io_loc.sector = ic->start + SB_SECTORS + sector;
1080         io_loc.count = n_sectors;
1081
1082         r = dm_io(&io_req, 1, &io_loc, NULL);
1083         if (unlikely(r)) {
1084                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1085                 if (comp) {
1086                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1087                         complete_journal_io(-1UL, comp);
1088                 }
1089         }
1090 }
1091
1092 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1093                        unsigned n_sections, struct journal_completion *comp)
1094 {
1095         unsigned sector, n_sectors;
1096
1097         sector = section * ic->journal_section_sectors;
1098         n_sectors = n_sections * ic->journal_section_sectors;
1099
1100         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1101 }
1102
1103 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1104 {
1105         struct journal_completion io_comp;
1106         struct journal_completion crypt_comp_1;
1107         struct journal_completion crypt_comp_2;
1108         unsigned i;
1109
1110         io_comp.ic = ic;
1111         init_completion(&io_comp.comp);
1112
1113         if (commit_start + commit_sections <= ic->journal_sections) {
1114                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1115                 if (ic->journal_io) {
1116                         crypt_comp_1.ic = ic;
1117                         init_completion(&crypt_comp_1.comp);
1118                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1119                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1120                         wait_for_completion_io(&crypt_comp_1.comp);
1121                 } else {
1122                         for (i = 0; i < commit_sections; i++)
1123                                 rw_section_mac(ic, commit_start + i, true);
1124                 }
1125                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1126                            commit_sections, &io_comp);
1127         } else {
1128                 unsigned to_end;
1129                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1130                 to_end = ic->journal_sections - commit_start;
1131                 if (ic->journal_io) {
1132                         crypt_comp_1.ic = ic;
1133                         init_completion(&crypt_comp_1.comp);
1134                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1135                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1136                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1137                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1138                                 reinit_completion(&crypt_comp_1.comp);
1139                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1141                                 wait_for_completion_io(&crypt_comp_1.comp);
1142                         } else {
1143                                 crypt_comp_2.ic = ic;
1144                                 init_completion(&crypt_comp_2.comp);
1145                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1146                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1147                                 wait_for_completion_io(&crypt_comp_1.comp);
1148                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1149                                 wait_for_completion_io(&crypt_comp_2.comp);
1150                         }
1151                 } else {
1152                         for (i = 0; i < to_end; i++)
1153                                 rw_section_mac(ic, commit_start + i, true);
1154                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1155                         for (i = 0; i < commit_sections - to_end; i++)
1156                                 rw_section_mac(ic, i, true);
1157                 }
1158                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1159         }
1160
1161         wait_for_completion_io(&io_comp.comp);
1162 }
1163
1164 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1165                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1166 {
1167         struct dm_io_request io_req;
1168         struct dm_io_region io_loc;
1169         int r;
1170         unsigned sector, pl_index, pl_offset;
1171
1172         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1173
1174         if (unlikely(dm_integrity_failed(ic))) {
1175                 fn(-1UL, data);
1176                 return;
1177         }
1178
1179         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1180
1181         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1182         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1183
1184         io_req.bi_op = REQ_OP_WRITE;
1185         io_req.bi_op_flags = 0;
1186         io_req.mem.type = DM_IO_PAGE_LIST;
1187         io_req.mem.ptr.pl = &ic->journal[pl_index];
1188         io_req.mem.offset = pl_offset;
1189         io_req.notify.fn = fn;
1190         io_req.notify.context = data;
1191         io_req.client = ic->io;
1192         io_loc.bdev = ic->dev->bdev;
1193         io_loc.sector = target;
1194         io_loc.count = n_sectors;
1195
1196         r = dm_io(&io_req, 1, &io_loc, NULL);
1197         if (unlikely(r)) {
1198                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1199                 fn(-1UL, data);
1200         }
1201 }
1202
1203 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1204 {
1205         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1206                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1207 }
1208
1209 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1210 {
1211         struct rb_node **n = &ic->in_progress.rb_node;
1212         struct rb_node *parent;
1213
1214         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1215
1216         if (likely(check_waiting)) {
1217                 struct dm_integrity_range *range;
1218                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1219                         if (unlikely(ranges_overlap(range, new_range)))
1220                                 return false;
1221                 }
1222         }
1223
1224         parent = NULL;
1225
1226         while (*n) {
1227                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1228
1229                 parent = *n;
1230                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1231                         n = &range->node.rb_left;
1232                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1233                         n = &range->node.rb_right;
1234                 } else {
1235                         return false;
1236                 }
1237         }
1238
1239         rb_link_node(&new_range->node, parent, n);
1240         rb_insert_color(&new_range->node, &ic->in_progress);
1241
1242         return true;
1243 }
1244
1245 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1246 {
1247         rb_erase(&range->node, &ic->in_progress);
1248         while (unlikely(!list_empty(&ic->wait_list))) {
1249                 struct dm_integrity_range *last_range =
1250                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1251                 struct task_struct *last_range_task;
1252                 last_range_task = last_range->task;
1253                 list_del(&last_range->wait_entry);
1254                 if (!add_new_range(ic, last_range, false)) {
1255                         last_range->task = last_range_task;
1256                         list_add(&last_range->wait_entry, &ic->wait_list);
1257                         break;
1258                 }
1259                 last_range->waiting = false;
1260                 wake_up_process(last_range_task);
1261         }
1262 }
1263
1264 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1265 {
1266         unsigned long flags;
1267
1268         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1269         remove_range_unlocked(ic, range);
1270         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1271 }
1272
1273 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1274 {
1275         new_range->waiting = true;
1276         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1277         new_range->task = current;
1278         do {
1279                 __set_current_state(TASK_UNINTERRUPTIBLE);
1280                 spin_unlock_irq(&ic->endio_wait.lock);
1281                 io_schedule();
1282                 spin_lock_irq(&ic->endio_wait.lock);
1283         } while (unlikely(new_range->waiting));
1284 }
1285
1286 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1287 {
1288         if (unlikely(!add_new_range(ic, new_range, true)))
1289                 wait_and_add_new_range(ic, new_range);
1290 }
1291
1292 static void init_journal_node(struct journal_node *node)
1293 {
1294         RB_CLEAR_NODE(&node->node);
1295         node->sector = (sector_t)-1;
1296 }
1297
1298 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1299 {
1300         struct rb_node **link;
1301         struct rb_node *parent;
1302
1303         node->sector = sector;
1304         BUG_ON(!RB_EMPTY_NODE(&node->node));
1305
1306         link = &ic->journal_tree_root.rb_node;
1307         parent = NULL;
1308
1309         while (*link) {
1310                 struct journal_node *j;
1311                 parent = *link;
1312                 j = container_of(parent, struct journal_node, node);
1313                 if (sector < j->sector)
1314                         link = &j->node.rb_left;
1315                 else
1316                         link = &j->node.rb_right;
1317         }
1318
1319         rb_link_node(&node->node, parent, link);
1320         rb_insert_color(&node->node, &ic->journal_tree_root);
1321 }
1322
1323 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1324 {
1325         BUG_ON(RB_EMPTY_NODE(&node->node));
1326         rb_erase(&node->node, &ic->journal_tree_root);
1327         init_journal_node(node);
1328 }
1329
1330 #define NOT_FOUND       (-1U)
1331
1332 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1333 {
1334         struct rb_node *n = ic->journal_tree_root.rb_node;
1335         unsigned found = NOT_FOUND;
1336         *next_sector = (sector_t)-1;
1337         while (n) {
1338                 struct journal_node *j = container_of(n, struct journal_node, node);
1339                 if (sector == j->sector) {
1340                         found = j - ic->journal_tree;
1341                 }
1342                 if (sector < j->sector) {
1343                         *next_sector = j->sector;
1344                         n = j->node.rb_left;
1345                 } else {
1346                         n = j->node.rb_right;
1347                 }
1348         }
1349
1350         return found;
1351 }
1352
1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1354 {
1355         struct journal_node *node, *next_node;
1356         struct rb_node *next;
1357
1358         if (unlikely(pos >= ic->journal_entries))
1359                 return false;
1360         node = &ic->journal_tree[pos];
1361         if (unlikely(RB_EMPTY_NODE(&node->node)))
1362                 return false;
1363         if (unlikely(node->sector != sector))
1364                 return false;
1365
1366         next = rb_next(&node->node);
1367         if (unlikely(!next))
1368                 return true;
1369
1370         next_node = container_of(next, struct journal_node, node);
1371         return next_node->sector != sector;
1372 }
1373
1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375 {
1376         struct rb_node *next;
1377         struct journal_node *next_node;
1378         unsigned next_section;
1379
1380         BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382         next = rb_next(&node->node);
1383         if (unlikely(!next))
1384                 return false;
1385
1386         next_node = container_of(next, struct journal_node, node);
1387
1388         if (next_node->sector != node->sector)
1389                 return false;
1390
1391         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392         if (next_section >= ic->committed_section &&
1393             next_section < ic->committed_section + ic->n_committed_sections)
1394                 return true;
1395         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396                 return true;
1397
1398         return false;
1399 }
1400
1401 #define TAG_READ        0
1402 #define TAG_WRITE       1
1403 #define TAG_CMP         2
1404
1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406                                unsigned *metadata_offset, unsigned total_size, int op)
1407 {
1408 #define MAY_BE_FILLER           1
1409 #define MAY_BE_HASH             2
1410         unsigned hash_offset = 0;
1411         unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413         do {
1414                 unsigned char *data, *dp;
1415                 struct dm_buffer *b;
1416                 unsigned to_copy;
1417                 int r;
1418
1419                 r = dm_integrity_failed(ic);
1420                 if (unlikely(r))
1421                         return r;
1422
1423                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424                 if (IS_ERR(data))
1425                         return PTR_ERR(data);
1426
1427                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428                 dp = data + *metadata_offset;
1429                 if (op == TAG_READ) {
1430                         memcpy(tag, dp, to_copy);
1431                 } else if (op == TAG_WRITE) {
1432                         if (memcmp(dp, tag, to_copy)) {
1433                                 memcpy(dp, tag, to_copy);
1434                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435                         }
1436                 } else {
1437                         /* e.g.: op == TAG_CMP */
1438
1439                         if (likely(is_power_of_2(ic->tag_size))) {
1440                                 if (unlikely(memcmp(dp, tag, to_copy)))
1441                                         if (unlikely(!ic->discard) ||
1442                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443                                                 goto thorough_test;
1444                                 }
1445                         } else {
1446                                 unsigned i, ts;
1447 thorough_test:
1448                                 ts = total_size;
1449
1450                                 for (i = 0; i < to_copy; i++, ts--) {
1451                                         if (unlikely(dp[i] != tag[i]))
1452                                                 may_be &= ~MAY_BE_HASH;
1453                                         if (likely(dp[i] != DISCARD_FILLER))
1454                                                 may_be &= ~MAY_BE_FILLER;
1455                                         hash_offset++;
1456                                         if (unlikely(hash_offset == ic->tag_size)) {
1457                                                 if (unlikely(!may_be)) {
1458                                                         dm_bufio_release(b);
1459                                                         return ts;
1460                                                 }
1461                                                 hash_offset = 0;
1462                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463                                         }
1464                                 }
1465                         }
1466                 }
1467                 dm_bufio_release(b);
1468
1469                 tag += to_copy;
1470                 *metadata_offset += to_copy;
1471                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472                         (*metadata_block)++;
1473                         *metadata_offset = 0;
1474                 }
1475
1476                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1477                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478                 }
1479
1480                 total_size -= to_copy;
1481         } while (unlikely(total_size));
1482
1483         return 0;
1484 #undef MAY_BE_FILLER
1485 #undef MAY_BE_HASH
1486 }
1487
1488 struct flush_request {
1489         struct dm_io_request io_req;
1490         struct dm_io_region io_reg;
1491         struct dm_integrity_c *ic;
1492         struct completion comp;
1493 };
1494
1495 static void flush_notify(unsigned long error, void *fr_)
1496 {
1497         struct flush_request *fr = fr_;
1498         if (unlikely(error != 0))
1499                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500         complete(&fr->comp);
1501 }
1502
1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504 {
1505         int r;
1506
1507         struct flush_request fr;
1508
1509         if (!ic->meta_dev)
1510                 flush_data = false;
1511         if (flush_data) {
1512                 fr.io_req.bi_op = REQ_OP_WRITE,
1513                 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1514                 fr.io_req.mem.type = DM_IO_KMEM,
1515                 fr.io_req.mem.ptr.addr = NULL,
1516                 fr.io_req.notify.fn = flush_notify,
1517                 fr.io_req.notify.context = &fr;
1518                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1519                 fr.io_reg.bdev = ic->dev->bdev,
1520                 fr.io_reg.sector = 0,
1521                 fr.io_reg.count = 0,
1522                 fr.ic = ic;
1523                 init_completion(&fr.comp);
1524                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1525                 BUG_ON(r);
1526         }
1527
1528         r = dm_bufio_write_dirty_buffers(ic->bufio);
1529         if (unlikely(r))
1530                 dm_integrity_io_error(ic, "writing tags", r);
1531
1532         if (flush_data)
1533                 wait_for_completion(&fr.comp);
1534 }
1535
1536 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1537 {
1538         DECLARE_WAITQUEUE(wait, current);
1539         __add_wait_queue(&ic->endio_wait, &wait);
1540         __set_current_state(TASK_UNINTERRUPTIBLE);
1541         spin_unlock_irq(&ic->endio_wait.lock);
1542         io_schedule();
1543         spin_lock_irq(&ic->endio_wait.lock);
1544         __remove_wait_queue(&ic->endio_wait, &wait);
1545 }
1546
1547 static void autocommit_fn(struct timer_list *t)
1548 {
1549         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1550
1551         if (likely(!dm_integrity_failed(ic)))
1552                 queue_work(ic->commit_wq, &ic->commit_work);
1553 }
1554
1555 static void schedule_autocommit(struct dm_integrity_c *ic)
1556 {
1557         if (!timer_pending(&ic->autocommit_timer))
1558                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1559 }
1560
1561 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1562 {
1563         struct bio *bio;
1564         unsigned long flags;
1565
1566         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1567         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1568         bio_list_add(&ic->flush_bio_list, bio);
1569         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1570
1571         queue_work(ic->commit_wq, &ic->commit_work);
1572 }
1573
1574 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1575 {
1576         int r = dm_integrity_failed(ic);
1577         if (unlikely(r) && !bio->bi_status)
1578                 bio->bi_status = errno_to_blk_status(r);
1579         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1580                 unsigned long flags;
1581                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582                 bio_list_add(&ic->synchronous_bios, bio);
1583                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1584                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1585                 return;
1586         }
1587         bio_endio(bio);
1588 }
1589
1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1591 {
1592         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1593
1594         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595                 submit_flush_bio(ic, dio);
1596         else
1597                 do_endio(ic, bio);
1598 }
1599
1600 static void dec_in_flight(struct dm_integrity_io *dio)
1601 {
1602         if (atomic_dec_and_test(&dio->in_flight)) {
1603                 struct dm_integrity_c *ic = dio->ic;
1604                 struct bio *bio;
1605
1606                 remove_range(ic, &dio->range);
1607
1608                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609                         schedule_autocommit(ic);
1610
1611                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1612
1613                 if (unlikely(dio->bi_status) && !bio->bi_status)
1614                         bio->bi_status = dio->bi_status;
1615                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1616                         dio->range.logical_sector += dio->range.n_sectors;
1617                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1618                         INIT_WORK(&dio->work, integrity_bio_wait);
1619                         queue_work(ic->offload_wq, &dio->work);
1620                         return;
1621                 }
1622                 do_endio_flush(ic, dio);
1623         }
1624 }
1625
1626 static void integrity_end_io(struct bio *bio)
1627 {
1628         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1629
1630         dm_bio_restore(&dio->bio_details, bio);
1631         if (bio->bi_integrity)
1632                 bio->bi_opf |= REQ_INTEGRITY;
1633
1634         if (dio->completion)
1635                 complete(dio->completion);
1636
1637         dec_in_flight(dio);
1638 }
1639
1640 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1641                                       const char *data, char *result)
1642 {
1643         __u64 sector_le = cpu_to_le64(sector);
1644         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1645         int r;
1646         unsigned digest_size;
1647
1648         req->tfm = ic->internal_hash;
1649
1650         r = crypto_shash_init(req);
1651         if (unlikely(r < 0)) {
1652                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1653                 goto failed;
1654         }
1655
1656         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1657                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1658                 if (unlikely(r < 0)) {
1659                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1660                         goto failed;
1661                 }
1662         }
1663
1664         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1665         if (unlikely(r < 0)) {
1666                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1667                 goto failed;
1668         }
1669
1670         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1671         if (unlikely(r < 0)) {
1672                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1673                 goto failed;
1674         }
1675
1676         r = crypto_shash_final(req, result);
1677         if (unlikely(r < 0)) {
1678                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1679                 goto failed;
1680         }
1681
1682         digest_size = crypto_shash_digestsize(ic->internal_hash);
1683         if (unlikely(digest_size < ic->tag_size))
1684                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1685
1686         return;
1687
1688 failed:
1689         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1690         get_random_bytes(result, ic->tag_size);
1691 }
1692
1693 static void integrity_metadata(struct work_struct *w)
1694 {
1695         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1696         struct dm_integrity_c *ic = dio->ic;
1697
1698         int r;
1699
1700         if (ic->internal_hash) {
1701                 struct bvec_iter iter;
1702                 struct bio_vec bv;
1703                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1704                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1705                 char *checksums;
1706                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1707                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1708                 sector_t sector;
1709                 unsigned sectors_to_process;
1710
1711                 if (unlikely(ic->mode == 'R'))
1712                         goto skip_io;
1713
1714                 if (likely(dio->op != REQ_OP_DISCARD))
1715                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1716                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1717                 else
1718                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1719                 if (!checksums) {
1720                         checksums = checksums_onstack;
1721                         if (WARN_ON(extra_space &&
1722                                     digest_size > sizeof(checksums_onstack))) {
1723                                 r = -EINVAL;
1724                                 goto error;
1725                         }
1726                 }
1727
1728                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1729                         sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1730                         unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1731                         unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1732                         unsigned max_blocks = max_size / ic->tag_size;
1733                         memset(checksums, DISCARD_FILLER, max_size);
1734
1735                         while (bi_size) {
1736                                 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1737                                 this_step_blocks = min(this_step_blocks, max_blocks);
1738                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1739                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1740                                 if (unlikely(r)) {
1741                                         if (likely(checksums != checksums_onstack))
1742                                                 kfree(checksums);
1743                                         goto error;
1744                                 }
1745
1746                                 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1747                                         printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1748                                         printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1749                                         BUG();
1750                                 }*/
1751                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1752                                 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1753                         }
1754
1755                         if (likely(checksums != checksums_onstack))
1756                                 kfree(checksums);
1757                         goto skip_io;
1758                 }
1759
1760                 sector = dio->range.logical_sector;
1761                 sectors_to_process = dio->range.n_sectors;
1762
1763                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1764                         unsigned pos;
1765                         char *mem, *checksums_ptr;
1766
1767 again:
1768                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1769                         pos = 0;
1770                         checksums_ptr = checksums;
1771                         do {
1772                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1773                                 checksums_ptr += ic->tag_size;
1774                                 sectors_to_process -= ic->sectors_per_block;
1775                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1776                                 sector += ic->sectors_per_block;
1777                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1778                         kunmap_atomic(mem);
1779
1780                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1781                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1782                         if (unlikely(r)) {
1783                                 if (r > 0) {
1784                                         char b[BDEVNAME_SIZE];
1785                                         DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1786                                                     (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1787                                         r = -EILSEQ;
1788                                         atomic64_inc(&ic->number_of_mismatches);
1789                                 }
1790                                 if (likely(checksums != checksums_onstack))
1791                                         kfree(checksums);
1792                                 goto error;
1793                         }
1794
1795                         if (!sectors_to_process)
1796                                 break;
1797
1798                         if (unlikely(pos < bv.bv_len)) {
1799                                 bv.bv_offset += pos;
1800                                 bv.bv_len -= pos;
1801                                 goto again;
1802                         }
1803                 }
1804
1805                 if (likely(checksums != checksums_onstack))
1806                         kfree(checksums);
1807         } else {
1808                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1809
1810                 if (bip) {
1811                         struct bio_vec biv;
1812                         struct bvec_iter iter;
1813                         unsigned data_to_process = dio->range.n_sectors;
1814                         sector_to_block(ic, data_to_process);
1815                         data_to_process *= ic->tag_size;
1816
1817                         bip_for_each_vec(biv, bip, iter) {
1818                                 unsigned char *tag;
1819                                 unsigned this_len;
1820
1821                                 BUG_ON(PageHighMem(biv.bv_page));
1822                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1823                                 this_len = min(biv.bv_len, data_to_process);
1824                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1825                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1826                                 if (unlikely(r))
1827                                         goto error;
1828                                 data_to_process -= this_len;
1829                                 if (!data_to_process)
1830                                         break;
1831                         }
1832                 }
1833         }
1834 skip_io:
1835         dec_in_flight(dio);
1836         return;
1837 error:
1838         dio->bi_status = errno_to_blk_status(r);
1839         dec_in_flight(dio);
1840 }
1841
1842 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1843 {
1844         struct dm_integrity_c *ic = ti->private;
1845         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1846         struct bio_integrity_payload *bip;
1847
1848         sector_t area, offset;
1849
1850         dio->ic = ic;
1851         dio->bi_status = 0;
1852         dio->op = bio_op(bio);
1853
1854         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1855                 if (ti->max_io_len) {
1856                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1857                         unsigned log2_max_io_len = __fls(ti->max_io_len);
1858                         sector_t start_boundary = sec >> log2_max_io_len;
1859                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1860                         if (start_boundary < end_boundary) {
1861                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1862                                 dm_accept_partial_bio(bio, len);
1863                         }
1864                 }
1865         }
1866
1867         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1868                 submit_flush_bio(ic, dio);
1869                 return DM_MAPIO_SUBMITTED;
1870         }
1871
1872         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1873         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1874         if (unlikely(dio->fua)) {
1875                 /*
1876                  * Don't pass down the FUA flag because we have to flush
1877                  * disk cache anyway.
1878                  */
1879                 bio->bi_opf &= ~REQ_FUA;
1880         }
1881         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1882                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1883                       dio->range.logical_sector, bio_sectors(bio),
1884                       ic->provided_data_sectors);
1885                 return DM_MAPIO_KILL;
1886         }
1887         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1888                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1889                       ic->sectors_per_block,
1890                       dio->range.logical_sector, bio_sectors(bio));
1891                 return DM_MAPIO_KILL;
1892         }
1893
1894         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1895                 struct bvec_iter iter;
1896                 struct bio_vec bv;
1897                 bio_for_each_segment(bv, bio, iter) {
1898                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1899                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1900                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1901                                 return DM_MAPIO_KILL;
1902                         }
1903                 }
1904         }
1905
1906         bip = bio_integrity(bio);
1907         if (!ic->internal_hash) {
1908                 if (bip) {
1909                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1910                         if (ic->log2_tag_size >= 0)
1911                                 wanted_tag_size <<= ic->log2_tag_size;
1912                         else
1913                                 wanted_tag_size *= ic->tag_size;
1914                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1915                                 DMERR("Invalid integrity data size %u, expected %u",
1916                                       bip->bip_iter.bi_size, wanted_tag_size);
1917                                 return DM_MAPIO_KILL;
1918                         }
1919                 }
1920         } else {
1921                 if (unlikely(bip != NULL)) {
1922                         DMERR("Unexpected integrity data when using internal hash");
1923                         return DM_MAPIO_KILL;
1924                 }
1925         }
1926
1927         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1928                 return DM_MAPIO_KILL;
1929
1930         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1931         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1932         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1933
1934         dm_integrity_map_continue(dio, true);
1935         return DM_MAPIO_SUBMITTED;
1936 }
1937
1938 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1939                                  unsigned journal_section, unsigned journal_entry)
1940 {
1941         struct dm_integrity_c *ic = dio->ic;
1942         sector_t logical_sector;
1943         unsigned n_sectors;
1944
1945         logical_sector = dio->range.logical_sector;
1946         n_sectors = dio->range.n_sectors;
1947         do {
1948                 struct bio_vec bv = bio_iovec(bio);
1949                 char *mem;
1950
1951                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1952                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1953                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1954                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1955 retry_kmap:
1956                 mem = kmap_atomic(bv.bv_page);
1957                 if (likely(dio->op == REQ_OP_WRITE))
1958                         flush_dcache_page(bv.bv_page);
1959
1960                 do {
1961                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1962
1963                         if (unlikely(dio->op == REQ_OP_READ)) {
1964                                 struct journal_sector *js;
1965                                 char *mem_ptr;
1966                                 unsigned s;
1967
1968                                 if (unlikely(journal_entry_is_inprogress(je))) {
1969                                         flush_dcache_page(bv.bv_page);
1970                                         kunmap_atomic(mem);
1971
1972                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1973                                         goto retry_kmap;
1974                                 }
1975                                 smp_rmb();
1976                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1977                                 js = access_journal_data(ic, journal_section, journal_entry);
1978                                 mem_ptr = mem + bv.bv_offset;
1979                                 s = 0;
1980                                 do {
1981                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1982                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1983                                         js++;
1984                                         mem_ptr += 1 << SECTOR_SHIFT;
1985                                 } while (++s < ic->sectors_per_block);
1986 #ifdef INTERNAL_VERIFY
1987                                 if (ic->internal_hash) {
1988                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1989
1990                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1991                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1992                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1993                                                             logical_sector);
1994                                         }
1995                                 }
1996 #endif
1997                         }
1998
1999                         if (!ic->internal_hash) {
2000                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2001                                 unsigned tag_todo = ic->tag_size;
2002                                 char *tag_ptr = journal_entry_tag(ic, je);
2003
2004                                 if (bip) do {
2005                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2006                                         unsigned tag_now = min(biv.bv_len, tag_todo);
2007                                         char *tag_addr;
2008                                         BUG_ON(PageHighMem(biv.bv_page));
2009                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
2010                                         if (likely(dio->op == REQ_OP_WRITE))
2011                                                 memcpy(tag_ptr, tag_addr, tag_now);
2012                                         else
2013                                                 memcpy(tag_addr, tag_ptr, tag_now);
2014                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2015                                         tag_ptr += tag_now;
2016                                         tag_todo -= tag_now;
2017                                 } while (unlikely(tag_todo)); else {
2018                                         if (likely(dio->op == REQ_OP_WRITE))
2019                                                 memset(tag_ptr, 0, tag_todo);
2020                                 }
2021                         }
2022
2023                         if (likely(dio->op == REQ_OP_WRITE)) {
2024                                 struct journal_sector *js;
2025                                 unsigned s;
2026
2027                                 js = access_journal_data(ic, journal_section, journal_entry);
2028                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2029
2030                                 s = 0;
2031                                 do {
2032                                         je->last_bytes[s] = js[s].commit_id;
2033                                 } while (++s < ic->sectors_per_block);
2034
2035                                 if (ic->internal_hash) {
2036                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2037                                         if (unlikely(digest_size > ic->tag_size)) {
2038                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2039                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2040                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2041                                         } else
2042                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2043                                 }
2044
2045                                 journal_entry_set_sector(je, logical_sector);
2046                         }
2047                         logical_sector += ic->sectors_per_block;
2048
2049                         journal_entry++;
2050                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2051                                 journal_entry = 0;
2052                                 journal_section++;
2053                                 wraparound_section(ic, &journal_section);
2054                         }
2055
2056                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2057                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2058
2059                 if (unlikely(dio->op == REQ_OP_READ))
2060                         flush_dcache_page(bv.bv_page);
2061                 kunmap_atomic(mem);
2062         } while (n_sectors);
2063
2064         if (likely(dio->op == REQ_OP_WRITE)) {
2065                 smp_mb();
2066                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2067                         wake_up(&ic->copy_to_journal_wait);
2068                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2069                         queue_work(ic->commit_wq, &ic->commit_work);
2070                 } else {
2071                         schedule_autocommit(ic);
2072                 }
2073         } else {
2074                 remove_range(ic, &dio->range);
2075         }
2076
2077         if (unlikely(bio->bi_iter.bi_size)) {
2078                 sector_t area, offset;
2079
2080                 dio->range.logical_sector = logical_sector;
2081                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2082                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2083                 return true;
2084         }
2085
2086         return false;
2087 }
2088
2089 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2090 {
2091         struct dm_integrity_c *ic = dio->ic;
2092         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2093         unsigned journal_section, journal_entry;
2094         unsigned journal_read_pos;
2095         struct completion read_comp;
2096         bool discard_retried = false;
2097         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2098         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2099                 need_sync_io = true;
2100
2101         if (need_sync_io && from_map) {
2102                 INIT_WORK(&dio->work, integrity_bio_wait);
2103                 queue_work(ic->offload_wq, &dio->work);
2104                 return;
2105         }
2106
2107 lock_retry:
2108         spin_lock_irq(&ic->endio_wait.lock);
2109 retry:
2110         if (unlikely(dm_integrity_failed(ic))) {
2111                 spin_unlock_irq(&ic->endio_wait.lock);
2112                 do_endio(ic, bio);
2113                 return;
2114         }
2115         dio->range.n_sectors = bio_sectors(bio);
2116         journal_read_pos = NOT_FOUND;
2117         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2118                 if (dio->op == REQ_OP_WRITE) {
2119                         unsigned next_entry, i, pos;
2120                         unsigned ws, we, range_sectors;
2121
2122                         dio->range.n_sectors = min(dio->range.n_sectors,
2123                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2124                         if (unlikely(!dio->range.n_sectors)) {
2125                                 if (from_map)
2126                                         goto offload_to_thread;
2127                                 sleep_on_endio_wait(ic);
2128                                 goto retry;
2129                         }
2130                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2131                         ic->free_sectors -= range_sectors;
2132                         journal_section = ic->free_section;
2133                         journal_entry = ic->free_section_entry;
2134
2135                         next_entry = ic->free_section_entry + range_sectors;
2136                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2137                         ic->free_section += next_entry / ic->journal_section_entries;
2138                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2139                         wraparound_section(ic, &ic->free_section);
2140
2141                         pos = journal_section * ic->journal_section_entries + journal_entry;
2142                         ws = journal_section;
2143                         we = journal_entry;
2144                         i = 0;
2145                         do {
2146                                 struct journal_entry *je;
2147
2148                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2149                                 pos++;
2150                                 if (unlikely(pos >= ic->journal_entries))
2151                                         pos = 0;
2152
2153                                 je = access_journal_entry(ic, ws, we);
2154                                 BUG_ON(!journal_entry_is_unused(je));
2155                                 journal_entry_set_inprogress(je);
2156                                 we++;
2157                                 if (unlikely(we == ic->journal_section_entries)) {
2158                                         we = 0;
2159                                         ws++;
2160                                         wraparound_section(ic, &ws);
2161                                 }
2162                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2163
2164                         spin_unlock_irq(&ic->endio_wait.lock);
2165                         goto journal_read_write;
2166                 } else {
2167                         sector_t next_sector;
2168                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2169                         if (likely(journal_read_pos == NOT_FOUND)) {
2170                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2171                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2172                         } else {
2173                                 unsigned i;
2174                                 unsigned jp = journal_read_pos + 1;
2175                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2176                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2177                                                 break;
2178                                 }
2179                                 dio->range.n_sectors = i;
2180                         }
2181                 }
2182         }
2183         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2184                 /*
2185                  * We must not sleep in the request routine because it could
2186                  * stall bios on current->bio_list.
2187                  * So, we offload the bio to a workqueue if we have to sleep.
2188                  */
2189                 if (from_map) {
2190 offload_to_thread:
2191                         spin_unlock_irq(&ic->endio_wait.lock);
2192                         INIT_WORK(&dio->work, integrity_bio_wait);
2193                         queue_work(ic->wait_wq, &dio->work);
2194                         return;
2195                 }
2196                 if (journal_read_pos != NOT_FOUND)
2197                         dio->range.n_sectors = ic->sectors_per_block;
2198                 wait_and_add_new_range(ic, &dio->range);
2199                 /*
2200                  * wait_and_add_new_range drops the spinlock, so the journal
2201                  * may have been changed arbitrarily. We need to recheck.
2202                  * To simplify the code, we restrict I/O size to just one block.
2203                  */
2204                 if (journal_read_pos != NOT_FOUND) {
2205                         sector_t next_sector;
2206                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2207                         if (unlikely(new_pos != journal_read_pos)) {
2208                                 remove_range_unlocked(ic, &dio->range);
2209                                 goto retry;
2210                         }
2211                 }
2212         }
2213         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2214                 sector_t next_sector;
2215                 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2216                 if (unlikely(new_pos != NOT_FOUND) ||
2217                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2218                         remove_range_unlocked(ic, &dio->range);
2219                         spin_unlock_irq(&ic->endio_wait.lock);
2220                         queue_work(ic->commit_wq, &ic->commit_work);
2221                         flush_workqueue(ic->commit_wq);
2222                         queue_work(ic->writer_wq, &ic->writer_work);
2223                         flush_workqueue(ic->writer_wq);
2224                         discard_retried = true;
2225                         goto lock_retry;
2226                 }
2227         }
2228         spin_unlock_irq(&ic->endio_wait.lock);
2229
2230         if (unlikely(journal_read_pos != NOT_FOUND)) {
2231                 journal_section = journal_read_pos / ic->journal_section_entries;
2232                 journal_entry = journal_read_pos % ic->journal_section_entries;
2233                 goto journal_read_write;
2234         }
2235
2236         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2237                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2238                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2239                         struct bitmap_block_status *bbs;
2240
2241                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2242                         spin_lock(&bbs->bio_queue_lock);
2243                         bio_list_add(&bbs->bio_queue, bio);
2244                         spin_unlock(&bbs->bio_queue_lock);
2245                         queue_work(ic->writer_wq, &bbs->work);
2246                         return;
2247                 }
2248         }
2249
2250         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2251
2252         if (need_sync_io) {
2253                 init_completion(&read_comp);
2254                 dio->completion = &read_comp;
2255         } else
2256                 dio->completion = NULL;
2257
2258         dm_bio_record(&dio->bio_details, bio);
2259         bio_set_dev(bio, ic->dev->bdev);
2260         bio->bi_integrity = NULL;
2261         bio->bi_opf &= ~REQ_INTEGRITY;
2262         bio->bi_end_io = integrity_end_io;
2263         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2264
2265         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2266                 integrity_metadata(&dio->work);
2267                 dm_integrity_flush_buffers(ic, false);
2268
2269                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2270                 dio->completion = NULL;
2271
2272                 submit_bio_noacct(bio);
2273
2274                 return;
2275         }
2276
2277         submit_bio_noacct(bio);
2278
2279         if (need_sync_io) {
2280                 wait_for_completion_io(&read_comp);
2281                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2282                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2283                         goto skip_check;
2284                 if (ic->mode == 'B') {
2285                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2286                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2287                                 goto skip_check;
2288                 }
2289
2290                 if (likely(!bio->bi_status))
2291                         integrity_metadata(&dio->work);
2292                 else
2293 skip_check:
2294                         dec_in_flight(dio);
2295
2296         } else {
2297                 INIT_WORK(&dio->work, integrity_metadata);
2298                 queue_work(ic->metadata_wq, &dio->work);
2299         }
2300
2301         return;
2302
2303 journal_read_write:
2304         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2305                 goto lock_retry;
2306
2307         do_endio_flush(ic, dio);
2308 }
2309
2310
2311 static void integrity_bio_wait(struct work_struct *w)
2312 {
2313         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2314
2315         dm_integrity_map_continue(dio, false);
2316 }
2317
2318 static void pad_uncommitted(struct dm_integrity_c *ic)
2319 {
2320         if (ic->free_section_entry) {
2321                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2322                 ic->free_section_entry = 0;
2323                 ic->free_section++;
2324                 wraparound_section(ic, &ic->free_section);
2325                 ic->n_uncommitted_sections++;
2326         }
2327         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2328                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2329                     ic->journal_section_entries + ic->free_sectors)) {
2330                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2331                        "n_uncommitted_sections %u, n_committed_sections %u, "
2332                        "journal_section_entries %u, free_sectors %u",
2333                        ic->journal_sections, ic->journal_section_entries,
2334                        ic->n_uncommitted_sections, ic->n_committed_sections,
2335                        ic->journal_section_entries, ic->free_sectors);
2336         }
2337 }
2338
2339 static void integrity_commit(struct work_struct *w)
2340 {
2341         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2342         unsigned commit_start, commit_sections;
2343         unsigned i, j, n;
2344         struct bio *flushes;
2345
2346         del_timer(&ic->autocommit_timer);
2347
2348         spin_lock_irq(&ic->endio_wait.lock);
2349         flushes = bio_list_get(&ic->flush_bio_list);
2350         if (unlikely(ic->mode != 'J')) {
2351                 spin_unlock_irq(&ic->endio_wait.lock);
2352                 dm_integrity_flush_buffers(ic, true);
2353                 goto release_flush_bios;
2354         }
2355
2356         pad_uncommitted(ic);
2357         commit_start = ic->uncommitted_section;
2358         commit_sections = ic->n_uncommitted_sections;
2359         spin_unlock_irq(&ic->endio_wait.lock);
2360
2361         if (!commit_sections)
2362                 goto release_flush_bios;
2363
2364         i = commit_start;
2365         for (n = 0; n < commit_sections; n++) {
2366                 for (j = 0; j < ic->journal_section_entries; j++) {
2367                         struct journal_entry *je;
2368                         je = access_journal_entry(ic, i, j);
2369                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2370                 }
2371                 for (j = 0; j < ic->journal_section_sectors; j++) {
2372                         struct journal_sector *js;
2373                         js = access_journal(ic, i, j);
2374                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2375                 }
2376                 i++;
2377                 if (unlikely(i >= ic->journal_sections))
2378                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2379                 wraparound_section(ic, &i);
2380         }
2381         smp_rmb();
2382
2383         write_journal(ic, commit_start, commit_sections);
2384
2385         spin_lock_irq(&ic->endio_wait.lock);
2386         ic->uncommitted_section += commit_sections;
2387         wraparound_section(ic, &ic->uncommitted_section);
2388         ic->n_uncommitted_sections -= commit_sections;
2389         ic->n_committed_sections += commit_sections;
2390         spin_unlock_irq(&ic->endio_wait.lock);
2391
2392         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2393                 queue_work(ic->writer_wq, &ic->writer_work);
2394
2395 release_flush_bios:
2396         while (flushes) {
2397                 struct bio *next = flushes->bi_next;
2398                 flushes->bi_next = NULL;
2399                 do_endio(ic, flushes);
2400                 flushes = next;
2401         }
2402 }
2403
2404 static void complete_copy_from_journal(unsigned long error, void *context)
2405 {
2406         struct journal_io *io = context;
2407         struct journal_completion *comp = io->comp;
2408         struct dm_integrity_c *ic = comp->ic;
2409         remove_range(ic, &io->range);
2410         mempool_free(io, &ic->journal_io_mempool);
2411         if (unlikely(error != 0))
2412                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2413         complete_journal_op(comp);
2414 }
2415
2416 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2417                                struct journal_entry *je)
2418 {
2419         unsigned s = 0;
2420         do {
2421                 js->commit_id = je->last_bytes[s];
2422                 js++;
2423         } while (++s < ic->sectors_per_block);
2424 }
2425
2426 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2427                              unsigned write_sections, bool from_replay)
2428 {
2429         unsigned i, j, n;
2430         struct journal_completion comp;
2431         struct blk_plug plug;
2432
2433         blk_start_plug(&plug);
2434
2435         comp.ic = ic;
2436         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2437         init_completion(&comp.comp);
2438
2439         i = write_start;
2440         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2441 #ifndef INTERNAL_VERIFY
2442                 if (unlikely(from_replay))
2443 #endif
2444                         rw_section_mac(ic, i, false);
2445                 for (j = 0; j < ic->journal_section_entries; j++) {
2446                         struct journal_entry *je = access_journal_entry(ic, i, j);
2447                         sector_t sec, area, offset;
2448                         unsigned k, l, next_loop;
2449                         sector_t metadata_block;
2450                         unsigned metadata_offset;
2451                         struct journal_io *io;
2452
2453                         if (journal_entry_is_unused(je))
2454                                 continue;
2455                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2456                         sec = journal_entry_get_sector(je);
2457                         if (unlikely(from_replay)) {
2458                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2459                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2460                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2461                                 }
2462                         }
2463                         if (unlikely(sec >= ic->provided_data_sectors))
2464                                 continue;
2465                         get_area_and_offset(ic, sec, &area, &offset);
2466                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2467                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2468                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2469                                 sector_t sec2, area2, offset2;
2470                                 if (journal_entry_is_unused(je2))
2471                                         break;
2472                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2473                                 sec2 = journal_entry_get_sector(je2);
2474                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2475                                         break;
2476                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2477                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2478                                         break;
2479                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2480                         }
2481                         next_loop = k - 1;
2482
2483                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2484                         io->comp = &comp;
2485                         io->range.logical_sector = sec;
2486                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2487
2488                         spin_lock_irq(&ic->endio_wait.lock);
2489                         add_new_range_and_wait(ic, &io->range);
2490
2491                         if (likely(!from_replay)) {
2492                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2493
2494                                 /* don't write if there is newer committed sector */
2495                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2496                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2497
2498                                         journal_entry_set_unused(je2);
2499                                         remove_journal_node(ic, &section_node[j]);
2500                                         j++;
2501                                         sec += ic->sectors_per_block;
2502                                         offset += ic->sectors_per_block;
2503                                 }
2504                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2505                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2506
2507                                         journal_entry_set_unused(je2);
2508                                         remove_journal_node(ic, &section_node[k - 1]);
2509                                         k--;
2510                                 }
2511                                 if (j == k) {
2512                                         remove_range_unlocked(ic, &io->range);
2513                                         spin_unlock_irq(&ic->endio_wait.lock);
2514                                         mempool_free(io, &ic->journal_io_mempool);
2515                                         goto skip_io;
2516                                 }
2517                                 for (l = j; l < k; l++) {
2518                                         remove_journal_node(ic, &section_node[l]);
2519                                 }
2520                         }
2521                         spin_unlock_irq(&ic->endio_wait.lock);
2522
2523                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2524                         for (l = j; l < k; l++) {
2525                                 int r;
2526                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2527
2528                                 if (
2529 #ifndef INTERNAL_VERIFY
2530                                     unlikely(from_replay) &&
2531 #endif
2532                                     ic->internal_hash) {
2533                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2534
2535                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2536                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2537                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2538                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2539                                 }
2540
2541                                 journal_entry_set_unused(je2);
2542                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2543                                                         ic->tag_size, TAG_WRITE);
2544                                 if (unlikely(r)) {
2545                                         dm_integrity_io_error(ic, "reading tags", r);
2546                                 }
2547                         }
2548
2549                         atomic_inc(&comp.in_flight);
2550                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2551                                           (k - j) << ic->sb->log2_sectors_per_block,
2552                                           get_data_sector(ic, area, offset),
2553                                           complete_copy_from_journal, io);
2554 skip_io:
2555                         j = next_loop;
2556                 }
2557         }
2558
2559         dm_bufio_write_dirty_buffers_async(ic->bufio);
2560
2561         blk_finish_plug(&plug);
2562
2563         complete_journal_op(&comp);
2564         wait_for_completion_io(&comp.comp);
2565
2566         dm_integrity_flush_buffers(ic, true);
2567 }
2568
2569 static void integrity_writer(struct work_struct *w)
2570 {
2571         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2572         unsigned write_start, write_sections;
2573
2574         unsigned prev_free_sectors;
2575
2576         /* the following test is not needed, but it tests the replay code */
2577         if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2578                 return;
2579
2580         spin_lock_irq(&ic->endio_wait.lock);
2581         write_start = ic->committed_section;
2582         write_sections = ic->n_committed_sections;
2583         spin_unlock_irq(&ic->endio_wait.lock);
2584
2585         if (!write_sections)
2586                 return;
2587
2588         do_journal_write(ic, write_start, write_sections, false);
2589
2590         spin_lock_irq(&ic->endio_wait.lock);
2591
2592         ic->committed_section += write_sections;
2593         wraparound_section(ic, &ic->committed_section);
2594         ic->n_committed_sections -= write_sections;
2595
2596         prev_free_sectors = ic->free_sectors;
2597         ic->free_sectors += write_sections * ic->journal_section_entries;
2598         if (unlikely(!prev_free_sectors))
2599                 wake_up_locked(&ic->endio_wait);
2600
2601         spin_unlock_irq(&ic->endio_wait.lock);
2602 }
2603
2604 static void recalc_write_super(struct dm_integrity_c *ic)
2605 {
2606         int r;
2607
2608         dm_integrity_flush_buffers(ic, false);
2609         if (dm_integrity_failed(ic))
2610                 return;
2611
2612         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2613         if (unlikely(r))
2614                 dm_integrity_io_error(ic, "writing superblock", r);
2615 }
2616
2617 static void integrity_recalc(struct work_struct *w)
2618 {
2619         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2620         struct dm_integrity_range range;
2621         struct dm_io_request io_req;
2622         struct dm_io_region io_loc;
2623         sector_t area, offset;
2624         sector_t metadata_block;
2625         unsigned metadata_offset;
2626         sector_t logical_sector, n_sectors;
2627         __u8 *t;
2628         unsigned i;
2629         int r;
2630         unsigned super_counter = 0;
2631
2632         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2633
2634         spin_lock_irq(&ic->endio_wait.lock);
2635
2636 next_chunk:
2637
2638         if (unlikely(dm_post_suspending(ic->ti)))
2639                 goto unlock_ret;
2640
2641         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2642         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2643                 if (ic->mode == 'B') {
2644                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2645                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2646                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2647                 }
2648                 goto unlock_ret;
2649         }
2650
2651         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2652         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2653         if (!ic->meta_dev)
2654                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2655
2656         add_new_range_and_wait(ic, &range);
2657         spin_unlock_irq(&ic->endio_wait.lock);
2658         logical_sector = range.logical_sector;
2659         n_sectors = range.n_sectors;
2660
2661         if (ic->mode == 'B') {
2662                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2663                         goto advance_and_next;
2664                 }
2665                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2666                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2667                         logical_sector += ic->sectors_per_block;
2668                         n_sectors -= ic->sectors_per_block;
2669                         cond_resched();
2670                 }
2671                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2672                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2673                         n_sectors -= ic->sectors_per_block;
2674                         cond_resched();
2675                 }
2676                 get_area_and_offset(ic, logical_sector, &area, &offset);
2677         }
2678
2679         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2680
2681         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2682                 recalc_write_super(ic);
2683                 if (ic->mode == 'B') {
2684                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2685                 }
2686                 super_counter = 0;
2687         }
2688
2689         if (unlikely(dm_integrity_failed(ic)))
2690                 goto err;
2691
2692         if (!ic->discard) {
2693                 io_req.bi_op = REQ_OP_READ;
2694                 io_req.bi_op_flags = 0;
2695                 io_req.mem.type = DM_IO_VMA;
2696                 io_req.mem.ptr.addr = ic->recalc_buffer;
2697                 io_req.notify.fn = NULL;
2698                 io_req.client = ic->io;
2699                 io_loc.bdev = ic->dev->bdev;
2700                 io_loc.sector = get_data_sector(ic, area, offset);
2701                 io_loc.count = n_sectors;
2702
2703                 r = dm_io(&io_req, 1, &io_loc, NULL);
2704                 if (unlikely(r)) {
2705                         dm_integrity_io_error(ic, "reading data", r);
2706                         goto err;
2707                 }
2708
2709                 t = ic->recalc_tags;
2710                 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2711                         integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2712                         t += ic->tag_size;
2713                 }
2714         } else {
2715                 t = ic->recalc_tags + (n_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2716         }
2717
2718         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2719
2720         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2721         if (unlikely(r)) {
2722                 dm_integrity_io_error(ic, "writing tags", r);
2723                 goto err;
2724         }
2725
2726         if (ic->mode == 'B') {
2727                 sector_t start, end;
2728                 start = (range.logical_sector >>
2729                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2730                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2731                 end = ((range.logical_sector + range.n_sectors) >>
2732                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2733                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2734                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2735         }
2736
2737 advance_and_next:
2738         cond_resched();
2739
2740         spin_lock_irq(&ic->endio_wait.lock);
2741         remove_range_unlocked(ic, &range);
2742         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2743         goto next_chunk;
2744
2745 err:
2746         remove_range(ic, &range);
2747         return;
2748
2749 unlock_ret:
2750         spin_unlock_irq(&ic->endio_wait.lock);
2751
2752         recalc_write_super(ic);
2753 }
2754
2755 static void bitmap_block_work(struct work_struct *w)
2756 {
2757         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2758         struct dm_integrity_c *ic = bbs->ic;
2759         struct bio *bio;
2760         struct bio_list bio_queue;
2761         struct bio_list waiting;
2762
2763         bio_list_init(&waiting);
2764
2765         spin_lock(&bbs->bio_queue_lock);
2766         bio_queue = bbs->bio_queue;
2767         bio_list_init(&bbs->bio_queue);
2768         spin_unlock(&bbs->bio_queue_lock);
2769
2770         while ((bio = bio_list_pop(&bio_queue))) {
2771                 struct dm_integrity_io *dio;
2772
2773                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2774
2775                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2776                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2777                         remove_range(ic, &dio->range);
2778                         INIT_WORK(&dio->work, integrity_bio_wait);
2779                         queue_work(ic->offload_wq, &dio->work);
2780                 } else {
2781                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2782                                         dio->range.n_sectors, BITMAP_OP_SET);
2783                         bio_list_add(&waiting, bio);
2784                 }
2785         }
2786
2787         if (bio_list_empty(&waiting))
2788                 return;
2789
2790         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2791                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2792                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2793
2794         while ((bio = bio_list_pop(&waiting))) {
2795                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2796
2797                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2798                                 dio->range.n_sectors, BITMAP_OP_SET);
2799
2800                 remove_range(ic, &dio->range);
2801                 INIT_WORK(&dio->work, integrity_bio_wait);
2802                 queue_work(ic->offload_wq, &dio->work);
2803         }
2804
2805         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2806 }
2807
2808 static void bitmap_flush_work(struct work_struct *work)
2809 {
2810         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2811         struct dm_integrity_range range;
2812         unsigned long limit;
2813         struct bio *bio;
2814
2815         dm_integrity_flush_buffers(ic, false);
2816
2817         range.logical_sector = 0;
2818         range.n_sectors = ic->provided_data_sectors;
2819
2820         spin_lock_irq(&ic->endio_wait.lock);
2821         add_new_range_and_wait(ic, &range);
2822         spin_unlock_irq(&ic->endio_wait.lock);
2823
2824         dm_integrity_flush_buffers(ic, true);
2825
2826         limit = ic->provided_data_sectors;
2827         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2828                 limit = le64_to_cpu(ic->sb->recalc_sector)
2829                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2830                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2831         }
2832         /*DEBUG_print("zeroing journal\n");*/
2833         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2834         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2835
2836         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2837                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2838
2839         spin_lock_irq(&ic->endio_wait.lock);
2840         remove_range_unlocked(ic, &range);
2841         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2842                 bio_endio(bio);
2843                 spin_unlock_irq(&ic->endio_wait.lock);
2844                 spin_lock_irq(&ic->endio_wait.lock);
2845         }
2846         spin_unlock_irq(&ic->endio_wait.lock);
2847 }
2848
2849
2850 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2851                          unsigned n_sections, unsigned char commit_seq)
2852 {
2853         unsigned i, j, n;
2854
2855         if (!n_sections)
2856                 return;
2857
2858         for (n = 0; n < n_sections; n++) {
2859                 i = start_section + n;
2860                 wraparound_section(ic, &i);
2861                 for (j = 0; j < ic->journal_section_sectors; j++) {
2862                         struct journal_sector *js = access_journal(ic, i, j);
2863                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2864                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2865                 }
2866                 for (j = 0; j < ic->journal_section_entries; j++) {
2867                         struct journal_entry *je = access_journal_entry(ic, i, j);
2868                         journal_entry_set_unused(je);
2869                 }
2870         }
2871
2872         write_journal(ic, start_section, n_sections);
2873 }
2874
2875 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2876 {
2877         unsigned char k;
2878         for (k = 0; k < N_COMMIT_IDS; k++) {
2879                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2880                         return k;
2881         }
2882         dm_integrity_io_error(ic, "journal commit id", -EIO);
2883         return -EIO;
2884 }
2885
2886 static void replay_journal(struct dm_integrity_c *ic)
2887 {
2888         unsigned i, j;
2889         bool used_commit_ids[N_COMMIT_IDS];
2890         unsigned max_commit_id_sections[N_COMMIT_IDS];
2891         unsigned write_start, write_sections;
2892         unsigned continue_section;
2893         bool journal_empty;
2894         unsigned char unused, last_used, want_commit_seq;
2895
2896         if (ic->mode == 'R')
2897                 return;
2898
2899         if (ic->journal_uptodate)
2900                 return;
2901
2902         last_used = 0;
2903         write_start = 0;
2904
2905         if (!ic->just_formatted) {
2906                 DEBUG_print("reading journal\n");
2907                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2908                 if (ic->journal_io)
2909                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2910                 if (ic->journal_io) {
2911                         struct journal_completion crypt_comp;
2912                         crypt_comp.ic = ic;
2913                         init_completion(&crypt_comp.comp);
2914                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2915                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2916                         wait_for_completion(&crypt_comp.comp);
2917                 }
2918                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2919         }
2920
2921         if (dm_integrity_failed(ic))
2922                 goto clear_journal;
2923
2924         journal_empty = true;
2925         memset(used_commit_ids, 0, sizeof used_commit_ids);
2926         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2927         for (i = 0; i < ic->journal_sections; i++) {
2928                 for (j = 0; j < ic->journal_section_sectors; j++) {
2929                         int k;
2930                         struct journal_sector *js = access_journal(ic, i, j);
2931                         k = find_commit_seq(ic, i, j, js->commit_id);
2932                         if (k < 0)
2933                                 goto clear_journal;
2934                         used_commit_ids[k] = true;
2935                         max_commit_id_sections[k] = i;
2936                 }
2937                 if (journal_empty) {
2938                         for (j = 0; j < ic->journal_section_entries; j++) {
2939                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2940                                 if (!journal_entry_is_unused(je)) {
2941                                         journal_empty = false;
2942                                         break;
2943                                 }
2944                         }
2945                 }
2946         }
2947
2948         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2949                 unused = N_COMMIT_IDS - 1;
2950                 while (unused && !used_commit_ids[unused - 1])
2951                         unused--;
2952         } else {
2953                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2954                         if (!used_commit_ids[unused])
2955                                 break;
2956                 if (unused == N_COMMIT_IDS) {
2957                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2958                         goto clear_journal;
2959                 }
2960         }
2961         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2962                     unused, used_commit_ids[0], used_commit_ids[1],
2963                     used_commit_ids[2], used_commit_ids[3]);
2964
2965         last_used = prev_commit_seq(unused);
2966         want_commit_seq = prev_commit_seq(last_used);
2967
2968         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2969                 journal_empty = true;
2970
2971         write_start = max_commit_id_sections[last_used] + 1;
2972         if (unlikely(write_start >= ic->journal_sections))
2973                 want_commit_seq = next_commit_seq(want_commit_seq);
2974         wraparound_section(ic, &write_start);
2975
2976         i = write_start;
2977         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2978                 for (j = 0; j < ic->journal_section_sectors; j++) {
2979                         struct journal_sector *js = access_journal(ic, i, j);
2980
2981                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2982                                 /*
2983                                  * This could be caused by crash during writing.
2984                                  * We won't replay the inconsistent part of the
2985                                  * journal.
2986                                  */
2987                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2988                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2989                                 goto brk;
2990                         }
2991                 }
2992                 i++;
2993                 if (unlikely(i >= ic->journal_sections))
2994                         want_commit_seq = next_commit_seq(want_commit_seq);
2995                 wraparound_section(ic, &i);
2996         }
2997 brk:
2998
2999         if (!journal_empty) {
3000                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3001                             write_sections, write_start, want_commit_seq);
3002                 do_journal_write(ic, write_start, write_sections, true);
3003         }
3004
3005         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3006                 continue_section = write_start;
3007                 ic->commit_seq = want_commit_seq;
3008                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3009         } else {
3010                 unsigned s;
3011                 unsigned char erase_seq;
3012 clear_journal:
3013                 DEBUG_print("clearing journal\n");
3014
3015                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3016                 s = write_start;
3017                 init_journal(ic, s, 1, erase_seq);
3018                 s++;
3019                 wraparound_section(ic, &s);
3020                 if (ic->journal_sections >= 2) {
3021                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3022                         s += ic->journal_sections - 2;
3023                         wraparound_section(ic, &s);
3024                         init_journal(ic, s, 1, erase_seq);
3025                 }
3026
3027                 continue_section = 0;
3028                 ic->commit_seq = next_commit_seq(erase_seq);
3029         }
3030
3031         ic->committed_section = continue_section;
3032         ic->n_committed_sections = 0;
3033
3034         ic->uncommitted_section = continue_section;
3035         ic->n_uncommitted_sections = 0;
3036
3037         ic->free_section = continue_section;
3038         ic->free_section_entry = 0;
3039         ic->free_sectors = ic->journal_entries;
3040
3041         ic->journal_tree_root = RB_ROOT;
3042         for (i = 0; i < ic->journal_entries; i++)
3043                 init_journal_node(&ic->journal_tree[i]);
3044 }
3045
3046 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3047 {
3048         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3049
3050         if (ic->mode == 'B') {
3051                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3052                 ic->synchronous_mode = 1;
3053
3054                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3055                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3056                 flush_workqueue(ic->commit_wq);
3057         }
3058 }
3059
3060 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3061 {
3062         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3063
3064         DEBUG_print("dm_integrity_reboot\n");
3065
3066         dm_integrity_enter_synchronous_mode(ic);
3067
3068         return NOTIFY_DONE;
3069 }
3070
3071 static void dm_integrity_postsuspend(struct dm_target *ti)
3072 {
3073         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3074         int r;
3075
3076         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3077
3078         del_timer_sync(&ic->autocommit_timer);
3079
3080         if (ic->recalc_wq)
3081                 drain_workqueue(ic->recalc_wq);
3082
3083         if (ic->mode == 'B')
3084                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3085
3086         queue_work(ic->commit_wq, &ic->commit_work);
3087         drain_workqueue(ic->commit_wq);
3088
3089         if (ic->mode == 'J') {
3090                 if (ic->meta_dev)
3091                         queue_work(ic->writer_wq, &ic->writer_work);
3092                 drain_workqueue(ic->writer_wq);
3093                 dm_integrity_flush_buffers(ic, true);
3094         }
3095
3096         if (ic->mode == 'B') {
3097                 dm_integrity_flush_buffers(ic, true);
3098 #if 1
3099                 /* set to 0 to test bitmap replay code */
3100                 init_journal(ic, 0, ic->journal_sections, 0);
3101                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3102                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3103                 if (unlikely(r))
3104                         dm_integrity_io_error(ic, "writing superblock", r);
3105 #endif
3106         }
3107
3108         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3109
3110         ic->journal_uptodate = true;
3111 }
3112
3113 static void dm_integrity_resume(struct dm_target *ti)
3114 {
3115         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3116         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3117         int r;
3118
3119         DEBUG_print("resume\n");
3120
3121         if (ic->provided_data_sectors != old_provided_data_sectors) {
3122                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3123                     ic->mode == 'B' &&
3124                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3125                         rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3126                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3127                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3128                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3129                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3130                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3131                 }
3132
3133                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3134                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3135                 if (unlikely(r))
3136                         dm_integrity_io_error(ic, "writing superblock", r);
3137         }
3138
3139         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3140                 DEBUG_print("resume dirty_bitmap\n");
3141                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3142                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3143                 if (ic->mode == 'B') {
3144                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3145                             !ic->reset_recalculate_flag) {
3146                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3147                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3148                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3149                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3150                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3151                                         ic->sb->recalc_sector = cpu_to_le64(0);
3152                                 }
3153                         } else {
3154                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3155                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3156                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3157                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3158                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3159                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3160                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3161                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3162                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3163                                 ic->sb->recalc_sector = cpu_to_le64(0);
3164                         }
3165                 } else {
3166                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3167                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3168                             ic->reset_recalculate_flag) {
3169                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3170                                 ic->sb->recalc_sector = cpu_to_le64(0);
3171                         }
3172                         init_journal(ic, 0, ic->journal_sections, 0);
3173                         replay_journal(ic);
3174                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3175                 }
3176                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3177                 if (unlikely(r))
3178                         dm_integrity_io_error(ic, "writing superblock", r);
3179         } else {
3180                 replay_journal(ic);
3181                 if (ic->reset_recalculate_flag) {
3182                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3183                         ic->sb->recalc_sector = cpu_to_le64(0);
3184                 }
3185                 if (ic->mode == 'B') {
3186                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3187                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3188                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3189                         if (unlikely(r))
3190                                 dm_integrity_io_error(ic, "writing superblock", r);
3191
3192                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3193                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3194                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3195                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3196                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3197                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3198                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3199                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3200                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3201                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3202                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3203                         }
3204                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3205                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3206                 }
3207         }
3208
3209         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3210         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3211                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3212                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3213                 if (recalc_pos < ic->provided_data_sectors) {
3214                         queue_work(ic->recalc_wq, &ic->recalc_work);
3215                 } else if (recalc_pos > ic->provided_data_sectors) {
3216                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3217                         recalc_write_super(ic);
3218                 }
3219         }
3220
3221         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3222         ic->reboot_notifier.next = NULL;
3223         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3224         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3225
3226 #if 0
3227         /* set to 1 to stress test synchronous mode */
3228         dm_integrity_enter_synchronous_mode(ic);
3229 #endif
3230 }
3231
3232 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3233                                 unsigned status_flags, char *result, unsigned maxlen)
3234 {
3235         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3236         unsigned arg_count;
3237         size_t sz = 0;
3238
3239         switch (type) {
3240         case STATUSTYPE_INFO:
3241                 DMEMIT("%llu %llu",
3242                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3243                         ic->provided_data_sectors);
3244                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3245                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3246                 else
3247                         DMEMIT(" -");
3248                 break;
3249
3250         case STATUSTYPE_TABLE: {
3251                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3252                 watermark_percentage += ic->journal_entries / 2;
3253                 do_div(watermark_percentage, ic->journal_entries);
3254                 arg_count = 3;
3255                 arg_count += !!ic->meta_dev;
3256                 arg_count += ic->sectors_per_block != 1;
3257                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3258                 arg_count += ic->reset_recalculate_flag;
3259                 arg_count += ic->discard;
3260                 arg_count += ic->mode == 'J';
3261                 arg_count += ic->mode == 'J';
3262                 arg_count += ic->mode == 'B';
3263                 arg_count += ic->mode == 'B';
3264                 arg_count += !!ic->internal_hash_alg.alg_string;
3265                 arg_count += !!ic->journal_crypt_alg.alg_string;
3266                 arg_count += !!ic->journal_mac_alg.alg_string;
3267                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3268                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3269                 arg_count += ic->legacy_recalculate;
3270                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3271                        ic->tag_size, ic->mode, arg_count);
3272                 if (ic->meta_dev)
3273                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3274                 if (ic->sectors_per_block != 1)
3275                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3276                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3277                         DMEMIT(" recalculate");
3278                 if (ic->reset_recalculate_flag)
3279                         DMEMIT(" reset_recalculate");
3280                 if (ic->discard)
3281                         DMEMIT(" allow_discards");
3282                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3283                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3284                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3285                 if (ic->mode == 'J') {
3286                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3287                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3288                 }
3289                 if (ic->mode == 'B') {
3290                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3291                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3292                 }
3293                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3294                         DMEMIT(" fix_padding");
3295                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3296                         DMEMIT(" fix_hmac");
3297                 if (ic->legacy_recalculate)
3298                         DMEMIT(" legacy_recalculate");
3299
3300 #define EMIT_ALG(a, n)                                                  \
3301                 do {                                                    \
3302                         if (ic->a.alg_string) {                         \
3303                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3304                                 if (ic->a.key_string)                   \
3305                                         DMEMIT(":%s", ic->a.key_string);\
3306                         }                                               \
3307                 } while (0)
3308                 EMIT_ALG(internal_hash_alg, "internal_hash");
3309                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3310                 EMIT_ALG(journal_mac_alg, "journal_mac");
3311                 break;
3312         }
3313         }
3314 }
3315
3316 static int dm_integrity_iterate_devices(struct dm_target *ti,
3317                                         iterate_devices_callout_fn fn, void *data)
3318 {
3319         struct dm_integrity_c *ic = ti->private;
3320
3321         if (!ic->meta_dev)
3322                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3323         else
3324                 return fn(ti, ic->dev, 0, ti->len, data);
3325 }
3326
3327 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3328 {
3329         struct dm_integrity_c *ic = ti->private;
3330
3331         if (ic->sectors_per_block > 1) {
3332                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3333                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3334                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3335         }
3336 }
3337
3338 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3339 {
3340         unsigned sector_space = JOURNAL_SECTOR_DATA;
3341
3342         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3343         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3344                                          JOURNAL_ENTRY_ROUNDUP);
3345
3346         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3347                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3348         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3349         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3350         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3351         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3352 }
3353
3354 static int calculate_device_limits(struct dm_integrity_c *ic)
3355 {
3356         __u64 initial_sectors;
3357
3358         calculate_journal_section_size(ic);
3359         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3360         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3361                 return -EINVAL;
3362         ic->initial_sectors = initial_sectors;
3363
3364         if (!ic->meta_dev) {
3365                 sector_t last_sector, last_area, last_offset;
3366
3367                 /* we have to maintain excessive padding for compatibility with existing volumes */
3368                 __u64 metadata_run_padding =
3369                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3370                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3371                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3372
3373                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3374                                             metadata_run_padding) >> SECTOR_SHIFT;
3375                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3376                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3377                 else
3378                         ic->log2_metadata_run = -1;
3379
3380                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3381                 last_sector = get_data_sector(ic, last_area, last_offset);
3382                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3383                         return -EINVAL;
3384         } else {
3385                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3386                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3387                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3388                 meta_size <<= ic->log2_buffer_sectors;
3389                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3390                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3391                         return -EINVAL;
3392                 ic->metadata_run = 1;
3393                 ic->log2_metadata_run = 0;
3394         }
3395
3396         return 0;
3397 }
3398
3399 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3400 {
3401         if (!ic->meta_dev) {
3402                 int test_bit;
3403                 ic->provided_data_sectors = 0;
3404                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3405                         __u64 prev_data_sectors = ic->provided_data_sectors;
3406
3407                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3408                         if (calculate_device_limits(ic))
3409                                 ic->provided_data_sectors = prev_data_sectors;
3410                 }
3411         } else {
3412                 ic->provided_data_sectors = ic->data_device_sectors;
3413                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3414         }
3415 }
3416
3417 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3418 {
3419         unsigned journal_sections;
3420         int test_bit;
3421
3422         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3423         memcpy(ic->sb->magic, SB_MAGIC, 8);
3424         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3425         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3426         if (ic->journal_mac_alg.alg_string)
3427                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3428
3429         calculate_journal_section_size(ic);
3430         journal_sections = journal_sectors / ic->journal_section_sectors;
3431         if (!journal_sections)
3432                 journal_sections = 1;
3433
3434         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3435                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3436                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3437         }
3438
3439         if (!ic->meta_dev) {
3440                 if (ic->fix_padding)
3441                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3442                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3443                 if (!interleave_sectors)
3444                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3445                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3446                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3447                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3448
3449                 get_provided_data_sectors(ic);
3450                 if (!ic->provided_data_sectors)
3451                         return -EINVAL;
3452         } else {
3453                 ic->sb->log2_interleave_sectors = 0;
3454
3455                 get_provided_data_sectors(ic);
3456                 if (!ic->provided_data_sectors)
3457                         return -EINVAL;
3458
3459 try_smaller_buffer:
3460                 ic->sb->journal_sections = cpu_to_le32(0);
3461                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3462                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3463                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3464                         if (test_journal_sections > journal_sections)
3465                                 continue;
3466                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3467                         if (calculate_device_limits(ic))
3468                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3469
3470                 }
3471                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3472                         if (ic->log2_buffer_sectors > 3) {
3473                                 ic->log2_buffer_sectors--;
3474                                 goto try_smaller_buffer;
3475                         }
3476                         return -EINVAL;
3477                 }
3478         }
3479
3480         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3481
3482         sb_set_version(ic);
3483
3484         return 0;
3485 }
3486
3487 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3488 {
3489         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3490         struct blk_integrity bi;
3491
3492         memset(&bi, 0, sizeof(bi));
3493         bi.profile = &dm_integrity_profile;
3494         bi.tuple_size = ic->tag_size;
3495         bi.tag_size = bi.tuple_size;
3496         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3497
3498         blk_integrity_register(disk, &bi);
3499         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3500 }
3501
3502 static void dm_integrity_free_page_list(struct page_list *pl)
3503 {
3504         unsigned i;
3505
3506         if (!pl)
3507                 return;
3508         for (i = 0; pl[i].page; i++)
3509                 __free_page(pl[i].page);
3510         kvfree(pl);
3511 }
3512
3513 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3514 {
3515         struct page_list *pl;
3516         unsigned i;
3517
3518         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3519         if (!pl)
3520                 return NULL;
3521
3522         for (i = 0; i < n_pages; i++) {
3523                 pl[i].page = alloc_page(GFP_KERNEL);
3524                 if (!pl[i].page) {
3525                         dm_integrity_free_page_list(pl);
3526                         return NULL;
3527                 }
3528                 if (i)
3529                         pl[i - 1].next = &pl[i];
3530         }
3531         pl[i].page = NULL;
3532         pl[i].next = NULL;
3533
3534         return pl;
3535 }
3536
3537 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3538 {
3539         unsigned i;
3540         for (i = 0; i < ic->journal_sections; i++)
3541                 kvfree(sl[i]);
3542         kvfree(sl);
3543 }
3544
3545 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3546                                                                    struct page_list *pl)
3547 {
3548         struct scatterlist **sl;
3549         unsigned i;
3550
3551         sl = kvmalloc_array(ic->journal_sections,
3552                             sizeof(struct scatterlist *),
3553                             GFP_KERNEL | __GFP_ZERO);
3554         if (!sl)
3555                 return NULL;
3556
3557         for (i = 0; i < ic->journal_sections; i++) {
3558                 struct scatterlist *s;
3559                 unsigned start_index, start_offset;
3560                 unsigned end_index, end_offset;
3561                 unsigned n_pages;
3562                 unsigned idx;
3563
3564                 page_list_location(ic, i, 0, &start_index, &start_offset);
3565                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3566                                    &end_index, &end_offset);
3567
3568                 n_pages = (end_index - start_index + 1);
3569
3570                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3571                                    GFP_KERNEL);
3572                 if (!s) {
3573                         dm_integrity_free_journal_scatterlist(ic, sl);
3574                         return NULL;
3575                 }
3576
3577                 sg_init_table(s, n_pages);
3578                 for (idx = start_index; idx <= end_index; idx++) {
3579                         char *va = lowmem_page_address(pl[idx].page);
3580                         unsigned start = 0, end = PAGE_SIZE;
3581                         if (idx == start_index)
3582                                 start = start_offset;
3583                         if (idx == end_index)
3584                                 end = end_offset + (1 << SECTOR_SHIFT);
3585                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3586                 }
3587
3588                 sl[i] = s;
3589         }
3590
3591         return sl;
3592 }
3593
3594 static void free_alg(struct alg_spec *a)
3595 {
3596         kfree_sensitive(a->alg_string);
3597         kfree_sensitive(a->key);
3598         memset(a, 0, sizeof *a);
3599 }
3600
3601 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3602 {
3603         char *k;
3604
3605         free_alg(a);
3606
3607         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3608         if (!a->alg_string)
3609                 goto nomem;
3610
3611         k = strchr(a->alg_string, ':');
3612         if (k) {
3613                 *k = 0;
3614                 a->key_string = k + 1;
3615                 if (strlen(a->key_string) & 1)
3616                         goto inval;
3617
3618                 a->key_size = strlen(a->key_string) / 2;
3619                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3620                 if (!a->key)
3621                         goto nomem;
3622                 if (hex2bin(a->key, a->key_string, a->key_size))
3623                         goto inval;
3624         }
3625
3626         return 0;
3627 inval:
3628         *error = error_inval;
3629         return -EINVAL;
3630 nomem:
3631         *error = "Out of memory for an argument";
3632         return -ENOMEM;
3633 }
3634
3635 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3636                    char *error_alg, char *error_key)
3637 {
3638         int r;
3639
3640         if (a->alg_string) {
3641                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3642                 if (IS_ERR(*hash)) {
3643                         *error = error_alg;
3644                         r = PTR_ERR(*hash);
3645                         *hash = NULL;
3646                         return r;
3647                 }
3648
3649                 if (a->key) {
3650                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3651                         if (r) {
3652                                 *error = error_key;
3653                                 return r;
3654                         }
3655                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3656                         *error = error_key;
3657                         return -ENOKEY;
3658                 }
3659         }
3660
3661         return 0;
3662 }
3663
3664 static int create_journal(struct dm_integrity_c *ic, char **error)
3665 {
3666         int r = 0;
3667         unsigned i;
3668         __u64 journal_pages, journal_desc_size, journal_tree_size;
3669         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3670         struct skcipher_request *req = NULL;
3671
3672         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3673         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3674         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3675         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3676
3677         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3678                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3679         journal_desc_size = journal_pages * sizeof(struct page_list);
3680         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3681                 *error = "Journal doesn't fit into memory";
3682                 r = -ENOMEM;
3683                 goto bad;
3684         }
3685         ic->journal_pages = journal_pages;
3686
3687         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3688         if (!ic->journal) {
3689                 *error = "Could not allocate memory for journal";
3690                 r = -ENOMEM;
3691                 goto bad;
3692         }
3693         if (ic->journal_crypt_alg.alg_string) {
3694                 unsigned ivsize, blocksize;
3695                 struct journal_completion comp;
3696
3697                 comp.ic = ic;
3698                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3699                 if (IS_ERR(ic->journal_crypt)) {
3700                         *error = "Invalid journal cipher";
3701                         r = PTR_ERR(ic->journal_crypt);
3702                         ic->journal_crypt = NULL;
3703                         goto bad;
3704                 }
3705                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3706                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3707
3708                 if (ic->journal_crypt_alg.key) {
3709                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3710                                                    ic->journal_crypt_alg.key_size);
3711                         if (r) {
3712                                 *error = "Error setting encryption key";
3713                                 goto bad;
3714                         }
3715                 }
3716                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3717                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3718
3719                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3720                 if (!ic->journal_io) {
3721                         *error = "Could not allocate memory for journal io";
3722                         r = -ENOMEM;
3723                         goto bad;
3724                 }
3725
3726                 if (blocksize == 1) {
3727                         struct scatterlist *sg;
3728
3729                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3730                         if (!req) {
3731                                 *error = "Could not allocate crypt request";
3732                                 r = -ENOMEM;
3733                                 goto bad;
3734                         }
3735
3736                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3737                         if (!crypt_iv) {
3738                                 *error = "Could not allocate iv";
3739                                 r = -ENOMEM;
3740                                 goto bad;
3741                         }
3742
3743                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3744                         if (!ic->journal_xor) {
3745                                 *error = "Could not allocate memory for journal xor";
3746                                 r = -ENOMEM;
3747                                 goto bad;
3748                         }
3749
3750                         sg = kvmalloc_array(ic->journal_pages + 1,
3751                                             sizeof(struct scatterlist),
3752                                             GFP_KERNEL);
3753                         if (!sg) {
3754                                 *error = "Unable to allocate sg list";
3755                                 r = -ENOMEM;
3756                                 goto bad;
3757                         }
3758                         sg_init_table(sg, ic->journal_pages + 1);
3759                         for (i = 0; i < ic->journal_pages; i++) {
3760                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3761                                 clear_page(va);
3762                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3763                         }
3764                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3765
3766                         skcipher_request_set_crypt(req, sg, sg,
3767                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3768                         init_completion(&comp.comp);
3769                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3770                         if (do_crypt(true, req, &comp))
3771                                 wait_for_completion(&comp.comp);
3772                         kvfree(sg);
3773                         r = dm_integrity_failed(ic);
3774                         if (r) {
3775                                 *error = "Unable to encrypt journal";
3776                                 goto bad;
3777                         }
3778                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3779
3780                         crypto_free_skcipher(ic->journal_crypt);
3781                         ic->journal_crypt = NULL;
3782                 } else {
3783                         unsigned crypt_len = roundup(ivsize, blocksize);
3784
3785                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3786                         if (!req) {
3787                                 *error = "Could not allocate crypt request";
3788                                 r = -ENOMEM;
3789                                 goto bad;
3790                         }
3791
3792                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3793                         if (!crypt_iv) {
3794                                 *error = "Could not allocate iv";
3795                                 r = -ENOMEM;
3796                                 goto bad;
3797                         }
3798
3799                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3800                         if (!crypt_data) {
3801                                 *error = "Unable to allocate crypt data";
3802                                 r = -ENOMEM;
3803                                 goto bad;
3804                         }
3805
3806                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3807                         if (!ic->journal_scatterlist) {
3808                                 *error = "Unable to allocate sg list";
3809                                 r = -ENOMEM;
3810                                 goto bad;
3811                         }
3812                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3813                         if (!ic->journal_io_scatterlist) {
3814                                 *error = "Unable to allocate sg list";
3815                                 r = -ENOMEM;
3816                                 goto bad;
3817                         }
3818                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3819                                                          sizeof(struct skcipher_request *),
3820                                                          GFP_KERNEL | __GFP_ZERO);
3821                         if (!ic->sk_requests) {
3822                                 *error = "Unable to allocate sk requests";
3823                                 r = -ENOMEM;
3824                                 goto bad;
3825                         }
3826                         for (i = 0; i < ic->journal_sections; i++) {
3827                                 struct scatterlist sg;
3828                                 struct skcipher_request *section_req;
3829                                 __u32 section_le = cpu_to_le32(i);
3830
3831                                 memset(crypt_iv, 0x00, ivsize);
3832                                 memset(crypt_data, 0x00, crypt_len);
3833                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3834
3835                                 sg_init_one(&sg, crypt_data, crypt_len);
3836                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3837                                 init_completion(&comp.comp);
3838                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3839                                 if (do_crypt(true, req, &comp))
3840                                         wait_for_completion(&comp.comp);
3841
3842                                 r = dm_integrity_failed(ic);
3843                                 if (r) {
3844                                         *error = "Unable to generate iv";
3845                                         goto bad;
3846                                 }
3847
3848                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3849                                 if (!section_req) {
3850                                         *error = "Unable to allocate crypt request";
3851                                         r = -ENOMEM;
3852                                         goto bad;
3853                                 }
3854                                 section_req->iv = kmalloc_array(ivsize, 2,
3855                                                                 GFP_KERNEL);
3856                                 if (!section_req->iv) {
3857                                         skcipher_request_free(section_req);
3858                                         *error = "Unable to allocate iv";
3859                                         r = -ENOMEM;
3860                                         goto bad;
3861                                 }
3862                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3863                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3864                                 ic->sk_requests[i] = section_req;
3865                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3866                         }
3867                 }
3868         }
3869
3870         for (i = 0; i < N_COMMIT_IDS; i++) {
3871                 unsigned j;
3872 retest_commit_id:
3873                 for (j = 0; j < i; j++) {
3874                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3875                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3876                                 goto retest_commit_id;
3877                         }
3878                 }
3879                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3880         }
3881
3882         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3883         if (journal_tree_size > ULONG_MAX) {
3884                 *error = "Journal doesn't fit into memory";
3885                 r = -ENOMEM;
3886                 goto bad;
3887         }
3888         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3889         if (!ic->journal_tree) {
3890                 *error = "Could not allocate memory for journal tree";
3891                 r = -ENOMEM;
3892         }
3893 bad:
3894         kfree(crypt_data);
3895         kfree(crypt_iv);
3896         skcipher_request_free(req);
3897
3898         return r;
3899 }
3900
3901 /*
3902  * Construct a integrity mapping
3903  *
3904  * Arguments:
3905  *      device
3906  *      offset from the start of the device
3907  *      tag size
3908  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3909  *      number of optional arguments
3910  *      optional arguments:
3911  *              journal_sectors
3912  *              interleave_sectors
3913  *              buffer_sectors
3914  *              journal_watermark
3915  *              commit_time
3916  *              meta_device
3917  *              block_size
3918  *              sectors_per_bit
3919  *              bitmap_flush_interval
3920  *              internal_hash
3921  *              journal_crypt
3922  *              journal_mac
3923  *              recalculate
3924  */
3925 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3926 {
3927         struct dm_integrity_c *ic;
3928         char dummy;
3929         int r;
3930         unsigned extra_args;
3931         struct dm_arg_set as;
3932         static const struct dm_arg _args[] = {
3933                 {0, 18, "Invalid number of feature args"},
3934         };
3935         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3936         bool should_write_sb;
3937         __u64 threshold;
3938         unsigned long long start;
3939         __s8 log2_sectors_per_bitmap_bit = -1;
3940         __s8 log2_blocks_per_bitmap_bit;
3941         __u64 bits_in_journal;
3942         __u64 n_bitmap_bits;
3943
3944 #define DIRECT_ARGUMENTS        4
3945
3946         if (argc <= DIRECT_ARGUMENTS) {
3947                 ti->error = "Invalid argument count";
3948                 return -EINVAL;
3949         }
3950
3951         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3952         if (!ic) {
3953                 ti->error = "Cannot allocate integrity context";
3954                 return -ENOMEM;
3955         }
3956         ti->private = ic;
3957         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3958         ic->ti = ti;
3959
3960         ic->in_progress = RB_ROOT;
3961         INIT_LIST_HEAD(&ic->wait_list);
3962         init_waitqueue_head(&ic->endio_wait);
3963         bio_list_init(&ic->flush_bio_list);
3964         init_waitqueue_head(&ic->copy_to_journal_wait);
3965         init_completion(&ic->crypto_backoff);
3966         atomic64_set(&ic->number_of_mismatches, 0);
3967         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3968
3969         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3970         if (r) {
3971                 ti->error = "Device lookup failed";
3972                 goto bad;
3973         }
3974
3975         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3976                 ti->error = "Invalid starting offset";
3977                 r = -EINVAL;
3978                 goto bad;
3979         }
3980         ic->start = start;
3981
3982         if (strcmp(argv[2], "-")) {
3983                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3984                         ti->error = "Invalid tag size";
3985                         r = -EINVAL;
3986                         goto bad;
3987                 }
3988         }
3989
3990         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3991             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3992                 ic->mode = argv[3][0];
3993         } else {
3994                 ti->error = "Invalid mode (expecting J, B, D, R)";
3995                 r = -EINVAL;
3996                 goto bad;
3997         }
3998
3999         journal_sectors = 0;
4000         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4001         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4002         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4003         sync_msec = DEFAULT_SYNC_MSEC;
4004         ic->sectors_per_block = 1;
4005
4006         as.argc = argc - DIRECT_ARGUMENTS;
4007         as.argv = argv + DIRECT_ARGUMENTS;
4008         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4009         if (r)
4010                 goto bad;
4011
4012         while (extra_args--) {
4013                 const char *opt_string;
4014                 unsigned val;
4015                 unsigned long long llval;
4016                 opt_string = dm_shift_arg(&as);
4017                 if (!opt_string) {
4018                         r = -EINVAL;
4019                         ti->error = "Not enough feature arguments";
4020                         goto bad;
4021                 }
4022                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4023                         journal_sectors = val ? val : 1;
4024                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4025                         interleave_sectors = val;
4026                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4027                         buffer_sectors = val;
4028                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4029                         journal_watermark = val;
4030                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4031                         sync_msec = val;
4032                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4033                         if (ic->meta_dev) {
4034                                 dm_put_device(ti, ic->meta_dev);
4035                                 ic->meta_dev = NULL;
4036                         }
4037                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4038                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4039                         if (r) {
4040                                 ti->error = "Device lookup failed";
4041                                 goto bad;
4042                         }
4043                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4044                         if (val < 1 << SECTOR_SHIFT ||
4045                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4046                             (val & (val -1))) {
4047                                 r = -EINVAL;
4048                                 ti->error = "Invalid block_size argument";
4049                                 goto bad;
4050                         }
4051                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4052                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4053                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4054                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4055                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4056                                 r = -EINVAL;
4057                                 ti->error = "Invalid bitmap_flush_interval argument";
4058                                 goto bad;
4059                         }
4060                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4061                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4062                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4063                                             "Invalid internal_hash argument");
4064                         if (r)
4065                                 goto bad;
4066                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4067                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4068                                             "Invalid journal_crypt argument");
4069                         if (r)
4070                                 goto bad;
4071                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4072                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4073                                             "Invalid journal_mac argument");
4074                         if (r)
4075                                 goto bad;
4076                 } else if (!strcmp(opt_string, "recalculate")) {
4077                         ic->recalculate_flag = true;
4078                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4079                         ic->recalculate_flag = true;
4080                         ic->reset_recalculate_flag = true;
4081                 } else if (!strcmp(opt_string, "allow_discards")) {
4082                         ic->discard = true;
4083                 } else if (!strcmp(opt_string, "fix_padding")) {
4084                         ic->fix_padding = true;
4085                 } else if (!strcmp(opt_string, "fix_hmac")) {
4086                         ic->fix_hmac = true;
4087                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4088                         ic->legacy_recalculate = true;
4089                 } else {
4090                         r = -EINVAL;
4091                         ti->error = "Invalid argument";
4092                         goto bad;
4093                 }
4094         }
4095
4096         ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
4097         if (!ic->meta_dev)
4098                 ic->meta_device_sectors = ic->data_device_sectors;
4099         else
4100                 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
4101
4102         if (!journal_sectors) {
4103                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4104                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4105         }
4106
4107         if (!buffer_sectors)
4108                 buffer_sectors = 1;
4109         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4110
4111         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4112                     "Invalid internal hash", "Error setting internal hash key");
4113         if (r)
4114                 goto bad;
4115
4116         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4117                     "Invalid journal mac", "Error setting journal mac key");
4118         if (r)
4119                 goto bad;
4120
4121         if (!ic->tag_size) {
4122                 if (!ic->internal_hash) {
4123                         ti->error = "Unknown tag size";
4124                         r = -EINVAL;
4125                         goto bad;
4126                 }
4127                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4128         }
4129         if (ic->tag_size > MAX_TAG_SIZE) {
4130                 ti->error = "Too big tag size";
4131                 r = -EINVAL;
4132                 goto bad;
4133         }
4134         if (!(ic->tag_size & (ic->tag_size - 1)))
4135                 ic->log2_tag_size = __ffs(ic->tag_size);
4136         else
4137                 ic->log2_tag_size = -1;
4138
4139         if (ic->mode == 'B' && !ic->internal_hash) {
4140                 r = -EINVAL;
4141                 ti->error = "Bitmap mode can be only used with internal hash";
4142                 goto bad;
4143         }
4144
4145         if (ic->discard && !ic->internal_hash) {
4146                 r = -EINVAL;
4147                 ti->error = "Discard can be only used with internal hash";
4148                 goto bad;
4149         }
4150
4151         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4152         ic->autocommit_msec = sync_msec;
4153         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4154
4155         ic->io = dm_io_client_create();
4156         if (IS_ERR(ic->io)) {
4157                 r = PTR_ERR(ic->io);
4158                 ic->io = NULL;
4159                 ti->error = "Cannot allocate dm io";
4160                 goto bad;
4161         }
4162
4163         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4164         if (r) {
4165                 ti->error = "Cannot allocate mempool";
4166                 goto bad;
4167         }
4168
4169         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4170                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4171         if (!ic->metadata_wq) {
4172                 ti->error = "Cannot allocate workqueue";
4173                 r = -ENOMEM;
4174                 goto bad;
4175         }
4176
4177         /*
4178          * If this workqueue were percpu, it would cause bio reordering
4179          * and reduced performance.
4180          */
4181         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4182         if (!ic->wait_wq) {
4183                 ti->error = "Cannot allocate workqueue";
4184                 r = -ENOMEM;
4185                 goto bad;
4186         }
4187
4188         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4189                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4190         if (!ic->offload_wq) {
4191                 ti->error = "Cannot allocate workqueue";
4192                 r = -ENOMEM;
4193                 goto bad;
4194         }
4195
4196         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4197         if (!ic->commit_wq) {
4198                 ti->error = "Cannot allocate workqueue";
4199                 r = -ENOMEM;
4200                 goto bad;
4201         }
4202         INIT_WORK(&ic->commit_work, integrity_commit);
4203
4204         if (ic->mode == 'J' || ic->mode == 'B') {
4205                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4206                 if (!ic->writer_wq) {
4207                         ti->error = "Cannot allocate workqueue";
4208                         r = -ENOMEM;
4209                         goto bad;
4210                 }
4211                 INIT_WORK(&ic->writer_work, integrity_writer);
4212         }
4213
4214         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4215         if (!ic->sb) {
4216                 r = -ENOMEM;
4217                 ti->error = "Cannot allocate superblock area";
4218                 goto bad;
4219         }
4220
4221         r = sync_rw_sb(ic, REQ_OP_READ, 0);
4222         if (r) {
4223                 ti->error = "Error reading superblock";
4224                 goto bad;
4225         }
4226         should_write_sb = false;
4227         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4228                 if (ic->mode != 'R') {
4229                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4230                                 r = -EINVAL;
4231                                 ti->error = "The device is not initialized";
4232                                 goto bad;
4233                         }
4234                 }
4235
4236                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4237                 if (r) {
4238                         ti->error = "Could not initialize superblock";
4239                         goto bad;
4240                 }
4241                 if (ic->mode != 'R')
4242                         should_write_sb = true;
4243         }
4244
4245         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4246                 r = -EINVAL;
4247                 ti->error = "Unknown version";
4248                 goto bad;
4249         }
4250         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4251                 r = -EINVAL;
4252                 ti->error = "Tag size doesn't match the information in superblock";
4253                 goto bad;
4254         }
4255         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4256                 r = -EINVAL;
4257                 ti->error = "Block size doesn't match the information in superblock";
4258                 goto bad;
4259         }
4260         if (!le32_to_cpu(ic->sb->journal_sections)) {
4261                 r = -EINVAL;
4262                 ti->error = "Corrupted superblock, journal_sections is 0";
4263                 goto bad;
4264         }
4265         /* make sure that ti->max_io_len doesn't overflow */
4266         if (!ic->meta_dev) {
4267                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4268                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4269                         r = -EINVAL;
4270                         ti->error = "Invalid interleave_sectors in the superblock";
4271                         goto bad;
4272                 }
4273         } else {
4274                 if (ic->sb->log2_interleave_sectors) {
4275                         r = -EINVAL;
4276                         ti->error = "Invalid interleave_sectors in the superblock";
4277                         goto bad;
4278                 }
4279         }
4280         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4281                 r = -EINVAL;
4282                 ti->error = "Journal mac mismatch";
4283                 goto bad;
4284         }
4285
4286         get_provided_data_sectors(ic);
4287         if (!ic->provided_data_sectors) {
4288                 r = -EINVAL;
4289                 ti->error = "The device is too small";
4290                 goto bad;
4291         }
4292
4293 try_smaller_buffer:
4294         r = calculate_device_limits(ic);
4295         if (r) {
4296                 if (ic->meta_dev) {
4297                         if (ic->log2_buffer_sectors > 3) {
4298                                 ic->log2_buffer_sectors--;
4299                                 goto try_smaller_buffer;
4300                         }
4301                 }
4302                 ti->error = "The device is too small";
4303                 goto bad;
4304         }
4305
4306         if (log2_sectors_per_bitmap_bit < 0)
4307                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4308         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4309                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4310
4311         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4312         if (bits_in_journal > UINT_MAX)
4313                 bits_in_journal = UINT_MAX;
4314         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4315                 log2_sectors_per_bitmap_bit++;
4316
4317         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4318         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4319         if (should_write_sb) {
4320                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4321         }
4322         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4323                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4324         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4325
4326         if (!ic->meta_dev)
4327                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4328
4329         if (ti->len > ic->provided_data_sectors) {
4330                 r = -EINVAL;
4331                 ti->error = "Not enough provided sectors for requested mapping size";
4332                 goto bad;
4333         }
4334
4335
4336         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4337         threshold += 50;
4338         do_div(threshold, 100);
4339         ic->free_sectors_threshold = threshold;
4340
4341         DEBUG_print("initialized:\n");
4342         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4343         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4344         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4345         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4346         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4347         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4348         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4349         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4350         DEBUG_print("   data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4351         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4352         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4353         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4354         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4355         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4356         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4357
4358         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4359                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4360                 ic->sb->recalc_sector = cpu_to_le64(0);
4361         }
4362
4363         if (ic->internal_hash) {
4364                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4365                 if (!ic->recalc_wq ) {
4366                         ti->error = "Cannot allocate workqueue";
4367                         r = -ENOMEM;
4368                         goto bad;
4369                 }
4370                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4371                 if (!ic->discard) {
4372                         ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4373                         if (!ic->recalc_buffer) {
4374                                 ti->error = "Cannot allocate buffer for recalculating";
4375                                 r = -ENOMEM;
4376                                 goto bad;
4377                         }
4378                 }
4379                 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4380                                                  ic->tag_size, GFP_KERNEL);
4381                 if (!ic->recalc_tags) {
4382                         ti->error = "Cannot allocate tags for recalculating";
4383                         r = -ENOMEM;
4384                         goto bad;
4385                 }
4386                 if (ic->discard)
4387                         memset(ic->recalc_tags, DISCARD_FILLER,
4388                                (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size);
4389         } else {
4390                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4391                         ti->error = "Recalculate can only be specified with internal_hash";
4392                         r = -EINVAL;
4393                         goto bad;
4394                 }
4395         }
4396
4397         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4398             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4399             dm_integrity_disable_recalculate(ic)) {
4400                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4401                 r = -EOPNOTSUPP;
4402                 goto bad;
4403         }
4404
4405         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4406                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4407         if (IS_ERR(ic->bufio)) {
4408                 r = PTR_ERR(ic->bufio);
4409                 ti->error = "Cannot initialize dm-bufio";
4410                 ic->bufio = NULL;
4411                 goto bad;
4412         }
4413         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4414
4415         if (ic->mode != 'R') {
4416                 r = create_journal(ic, &ti->error);
4417                 if (r)
4418                         goto bad;
4419
4420         }
4421
4422         if (ic->mode == 'B') {
4423                 unsigned i;
4424                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4425
4426                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4427                 if (!ic->recalc_bitmap) {
4428                         r = -ENOMEM;
4429                         goto bad;
4430                 }
4431                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4432                 if (!ic->may_write_bitmap) {
4433                         r = -ENOMEM;
4434                         goto bad;
4435                 }
4436                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4437                 if (!ic->bbs) {
4438                         r = -ENOMEM;
4439                         goto bad;
4440                 }
4441                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4442                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4443                         struct bitmap_block_status *bbs = &ic->bbs[i];
4444                         unsigned sector, pl_index, pl_offset;
4445
4446                         INIT_WORK(&bbs->work, bitmap_block_work);
4447                         bbs->ic = ic;
4448                         bbs->idx = i;
4449                         bio_list_init(&bbs->bio_queue);
4450                         spin_lock_init(&bbs->bio_queue_lock);
4451
4452                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4453                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4454                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4455
4456                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4457                 }
4458         }
4459
4460         if (should_write_sb) {
4461                 int r;
4462
4463                 init_journal(ic, 0, ic->journal_sections, 0);
4464                 r = dm_integrity_failed(ic);
4465                 if (unlikely(r)) {
4466                         ti->error = "Error initializing journal";
4467                         goto bad;
4468                 }
4469                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4470                 if (r) {
4471                         ti->error = "Error initializing superblock";
4472                         goto bad;
4473                 }
4474                 ic->just_formatted = true;
4475         }
4476
4477         if (!ic->meta_dev) {
4478                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4479                 if (r)
4480                         goto bad;
4481         }
4482         if (ic->mode == 'B') {
4483                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4484                 if (!max_io_len)
4485                         max_io_len = 1U << 31;
4486                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4487                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4488                         r = dm_set_target_max_io_len(ti, max_io_len);
4489                         if (r)
4490                                 goto bad;
4491                 }
4492         }
4493
4494         if (!ic->internal_hash)
4495                 dm_integrity_set(ti, ic);
4496
4497         ti->num_flush_bios = 1;
4498         ti->flush_supported = true;
4499         if (ic->discard)
4500                 ti->num_discard_bios = 1;
4501
4502         return 0;
4503
4504 bad:
4505         dm_integrity_dtr(ti);
4506         return r;
4507 }
4508
4509 static void dm_integrity_dtr(struct dm_target *ti)
4510 {
4511         struct dm_integrity_c *ic = ti->private;
4512
4513         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4514         BUG_ON(!list_empty(&ic->wait_list));
4515
4516         if (ic->metadata_wq)
4517                 destroy_workqueue(ic->metadata_wq);
4518         if (ic->wait_wq)
4519                 destroy_workqueue(ic->wait_wq);
4520         if (ic->offload_wq)
4521                 destroy_workqueue(ic->offload_wq);
4522         if (ic->commit_wq)
4523                 destroy_workqueue(ic->commit_wq);
4524         if (ic->writer_wq)
4525                 destroy_workqueue(ic->writer_wq);
4526         if (ic->recalc_wq)
4527                 destroy_workqueue(ic->recalc_wq);
4528         vfree(ic->recalc_buffer);
4529         kvfree(ic->recalc_tags);
4530         kvfree(ic->bbs);
4531         if (ic->bufio)
4532                 dm_bufio_client_destroy(ic->bufio);
4533         mempool_exit(&ic->journal_io_mempool);
4534         if (ic->io)
4535                 dm_io_client_destroy(ic->io);
4536         if (ic->dev)
4537                 dm_put_device(ti, ic->dev);
4538         if (ic->meta_dev)
4539                 dm_put_device(ti, ic->meta_dev);
4540         dm_integrity_free_page_list(ic->journal);
4541         dm_integrity_free_page_list(ic->journal_io);
4542         dm_integrity_free_page_list(ic->journal_xor);
4543         dm_integrity_free_page_list(ic->recalc_bitmap);
4544         dm_integrity_free_page_list(ic->may_write_bitmap);
4545         if (ic->journal_scatterlist)
4546                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4547         if (ic->journal_io_scatterlist)
4548                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4549         if (ic->sk_requests) {
4550                 unsigned i;
4551
4552                 for (i = 0; i < ic->journal_sections; i++) {
4553                         struct skcipher_request *req = ic->sk_requests[i];
4554                         if (req) {
4555                                 kfree_sensitive(req->iv);
4556                                 skcipher_request_free(req);
4557                         }
4558                 }
4559                 kvfree(ic->sk_requests);
4560         }
4561         kvfree(ic->journal_tree);
4562         if (ic->sb)
4563                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4564
4565         if (ic->internal_hash)
4566                 crypto_free_shash(ic->internal_hash);
4567         free_alg(&ic->internal_hash_alg);
4568
4569         if (ic->journal_crypt)
4570                 crypto_free_skcipher(ic->journal_crypt);
4571         free_alg(&ic->journal_crypt_alg);
4572
4573         if (ic->journal_mac)
4574                 crypto_free_shash(ic->journal_mac);
4575         free_alg(&ic->journal_mac_alg);
4576
4577         kfree(ic);
4578 }
4579
4580 static struct target_type integrity_target = {
4581         .name                   = "integrity",
4582         .version                = {1, 9, 0},
4583         .module                 = THIS_MODULE,
4584         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4585         .ctr                    = dm_integrity_ctr,
4586         .dtr                    = dm_integrity_dtr,
4587         .map                    = dm_integrity_map,
4588         .postsuspend            = dm_integrity_postsuspend,
4589         .resume                 = dm_integrity_resume,
4590         .status                 = dm_integrity_status,
4591         .iterate_devices        = dm_integrity_iterate_devices,
4592         .io_hints               = dm_integrity_io_hints,
4593 };
4594
4595 static int __init dm_integrity_init(void)
4596 {
4597         int r;
4598
4599         journal_io_cache = kmem_cache_create("integrity_journal_io",
4600                                              sizeof(struct journal_io), 0, 0, NULL);
4601         if (!journal_io_cache) {
4602                 DMERR("can't allocate journal io cache");
4603                 return -ENOMEM;
4604         }
4605
4606         r = dm_register_target(&integrity_target);
4607
4608         if (r < 0)
4609                 DMERR("register failed %d", r);
4610
4611         return r;
4612 }
4613
4614 static void __exit dm_integrity_exit(void)
4615 {
4616         dm_unregister_target(&integrity_target);
4617         kmem_cache_destroy(journal_io_cache);
4618 }
4619
4620 module_init(dm_integrity_init);
4621 module_exit(dm_integrity_exit);
4622
4623 MODULE_AUTHOR("Milan Broz");
4624 MODULE_AUTHOR("Mikulas Patocka");
4625 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4626 MODULE_LICENSE("GPL");