Merge tag 'fuse-update-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mszered...
[linux-2.6-microblaze.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS      32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
31 #define DEFAULT_BUFFER_SECTORS          128
32 #define DEFAULT_JOURNAL_WATERMARK       50
33 #define DEFAULT_SYNC_MSEC               10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS     3
36 #define MAX_LOG2_INTERLEAVE_SECTORS     31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
38 #define RECALC_SECTORS                  8192
39 #define RECALC_WRITE_SUPER              16
40 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
42 #define DISCARD_FILLER                  0xf6
43
44 /*
45  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
46  * so it should not be enabled in the official kernel
47  */
48 //#define DEBUG_PRINT
49 //#define INTERNAL_VERIFY
50
51 /*
52  * On disk structures
53  */
54
55 #define SB_MAGIC                        "integrt"
56 #define SB_VERSION_1                    1
57 #define SB_VERSION_2                    2
58 #define SB_VERSION_3                    3
59 #define SB_VERSION_4                    4
60 #define SB_SECTORS                      8
61 #define MAX_SECTORS_PER_BLOCK           8
62
63 struct superblock {
64         __u8 magic[8];
65         __u8 version;
66         __u8 log2_interleave_sectors;
67         __u16 integrity_tag_size;
68         __u32 journal_sections;
69         __u64 provided_data_sectors;    /* userspace uses this value */
70         __u32 flags;
71         __u8 log2_sectors_per_block;
72         __u8 log2_blocks_per_bitmap_bit;
73         __u8 pad[2];
74         __u64 recalc_sector;
75 };
76
77 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
78 #define SB_FLAG_RECALCULATING           0x2
79 #define SB_FLAG_DIRTY_BITMAP            0x4
80 #define SB_FLAG_FIXED_PADDING           0x8
81
82 #define JOURNAL_ENTRY_ROUNDUP           8
83
84 typedef __u64 commit_id_t;
85 #define JOURNAL_MAC_PER_SECTOR          8
86
87 struct journal_entry {
88         union {
89                 struct {
90                         __u32 sector_lo;
91                         __u32 sector_hi;
92                 } s;
93                 __u64 sector;
94         } u;
95         commit_id_t last_bytes[];
96         /* __u8 tag[0]; */
97 };
98
99 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
100
101 #if BITS_PER_LONG == 64
102 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
103 #else
104 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
105 #endif
106 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
107 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
108 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
109 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
110 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
111
112 #define JOURNAL_BLOCK_SECTORS           8
113 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
114 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
115
116 struct journal_sector {
117         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
118         __u8 mac[JOURNAL_MAC_PER_SECTOR];
119         commit_id_t commit_id;
120 };
121
122 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
123
124 #define METADATA_PADDING_SECTORS        8
125
126 #define N_COMMIT_IDS                    4
127
128 static unsigned char prev_commit_seq(unsigned char seq)
129 {
130         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
131 }
132
133 static unsigned char next_commit_seq(unsigned char seq)
134 {
135         return (seq + 1) % N_COMMIT_IDS;
136 }
137
138 /*
139  * In-memory structures
140  */
141
142 struct journal_node {
143         struct rb_node node;
144         sector_t sector;
145 };
146
147 struct alg_spec {
148         char *alg_string;
149         char *key_string;
150         __u8 *key;
151         unsigned key_size;
152 };
153
154 struct dm_integrity_c {
155         struct dm_dev *dev;
156         struct dm_dev *meta_dev;
157         unsigned tag_size;
158         __s8 log2_tag_size;
159         sector_t start;
160         mempool_t journal_io_mempool;
161         struct dm_io_client *io;
162         struct dm_bufio_client *bufio;
163         struct workqueue_struct *metadata_wq;
164         struct superblock *sb;
165         unsigned journal_pages;
166         unsigned n_bitmap_blocks;
167
168         struct page_list *journal;
169         struct page_list *journal_io;
170         struct page_list *journal_xor;
171         struct page_list *recalc_bitmap;
172         struct page_list *may_write_bitmap;
173         struct bitmap_block_status *bbs;
174         unsigned bitmap_flush_interval;
175         int synchronous_mode;
176         struct bio_list synchronous_bios;
177         struct delayed_work bitmap_flush_work;
178
179         struct crypto_skcipher *journal_crypt;
180         struct scatterlist **journal_scatterlist;
181         struct scatterlist **journal_io_scatterlist;
182         struct skcipher_request **sk_requests;
183
184         struct crypto_shash *journal_mac;
185
186         struct journal_node *journal_tree;
187         struct rb_root journal_tree_root;
188
189         sector_t provided_data_sectors;
190
191         unsigned short journal_entry_size;
192         unsigned char journal_entries_per_sector;
193         unsigned char journal_section_entries;
194         unsigned short journal_section_sectors;
195         unsigned journal_sections;
196         unsigned journal_entries;
197         sector_t data_device_sectors;
198         sector_t meta_device_sectors;
199         unsigned initial_sectors;
200         unsigned metadata_run;
201         __s8 log2_metadata_run;
202         __u8 log2_buffer_sectors;
203         __u8 sectors_per_block;
204         __u8 log2_blocks_per_bitmap_bit;
205
206         unsigned char mode;
207
208         int failed;
209
210         struct crypto_shash *internal_hash;
211
212         struct dm_target *ti;
213
214         /* these variables are locked with endio_wait.lock */
215         struct rb_root in_progress;
216         struct list_head wait_list;
217         wait_queue_head_t endio_wait;
218         struct workqueue_struct *wait_wq;
219         struct workqueue_struct *offload_wq;
220
221         unsigned char commit_seq;
222         commit_id_t commit_ids[N_COMMIT_IDS];
223
224         unsigned committed_section;
225         unsigned n_committed_sections;
226
227         unsigned uncommitted_section;
228         unsigned n_uncommitted_sections;
229
230         unsigned free_section;
231         unsigned char free_section_entry;
232         unsigned free_sectors;
233
234         unsigned free_sectors_threshold;
235
236         struct workqueue_struct *commit_wq;
237         struct work_struct commit_work;
238
239         struct workqueue_struct *writer_wq;
240         struct work_struct writer_work;
241
242         struct workqueue_struct *recalc_wq;
243         struct work_struct recalc_work;
244         u8 *recalc_buffer;
245         u8 *recalc_tags;
246
247         struct bio_list flush_bio_list;
248
249         unsigned long autocommit_jiffies;
250         struct timer_list autocommit_timer;
251         unsigned autocommit_msec;
252
253         wait_queue_head_t copy_to_journal_wait;
254
255         struct completion crypto_backoff;
256
257         bool journal_uptodate;
258         bool just_formatted;
259         bool recalculate_flag;
260         bool fix_padding;
261         bool discard;
262
263         struct alg_spec internal_hash_alg;
264         struct alg_spec journal_crypt_alg;
265         struct alg_spec journal_mac_alg;
266
267         atomic64_t number_of_mismatches;
268
269         struct notifier_block reboot_notifier;
270 };
271
272 struct dm_integrity_range {
273         sector_t logical_sector;
274         sector_t n_sectors;
275         bool waiting;
276         union {
277                 struct rb_node node;
278                 struct {
279                         struct task_struct *task;
280                         struct list_head wait_entry;
281                 };
282         };
283 };
284
285 struct dm_integrity_io {
286         struct work_struct work;
287
288         struct dm_integrity_c *ic;
289         enum req_opf op;
290         bool fua;
291
292         struct dm_integrity_range range;
293
294         sector_t metadata_block;
295         unsigned metadata_offset;
296
297         atomic_t in_flight;
298         blk_status_t bi_status;
299
300         struct completion *completion;
301
302         struct dm_bio_details bio_details;
303 };
304
305 struct journal_completion {
306         struct dm_integrity_c *ic;
307         atomic_t in_flight;
308         struct completion comp;
309 };
310
311 struct journal_io {
312         struct dm_integrity_range range;
313         struct journal_completion *comp;
314 };
315
316 struct bitmap_block_status {
317         struct work_struct work;
318         struct dm_integrity_c *ic;
319         unsigned idx;
320         unsigned long *bitmap;
321         struct bio_list bio_queue;
322         spinlock_t bio_queue_lock;
323
324 };
325
326 static struct kmem_cache *journal_io_cache;
327
328 #define JOURNAL_IO_MEMPOOL      32
329
330 #ifdef DEBUG_PRINT
331 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
332 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
333 {
334         va_list args;
335         va_start(args, msg);
336         vprintk(msg, args);
337         va_end(args);
338         if (len)
339                 pr_cont(":");
340         while (len) {
341                 pr_cont(" %02x", *bytes);
342                 bytes++;
343                 len--;
344         }
345         pr_cont("\n");
346 }
347 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
348 #else
349 #define DEBUG_print(x, ...)                     do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
351 #endif
352
353 static void dm_integrity_prepare(struct request *rq)
354 {
355 }
356
357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 {
359 }
360
361 /*
362  * DM Integrity profile, protection is performed layer above (dm-crypt)
363  */
364 static const struct blk_integrity_profile dm_integrity_profile = {
365         .name                   = "DM-DIF-EXT-TAG",
366         .generate_fn            = NULL,
367         .verify_fn              = NULL,
368         .prepare_fn             = dm_integrity_prepare,
369         .complete_fn            = dm_integrity_complete,
370 };
371
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
375
376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 {
378         if (err == -EILSEQ)
379                 atomic64_inc(&ic->number_of_mismatches);
380         if (!cmpxchg(&ic->failed, 0, err))
381                 DMERR("Error on %s: %d", msg, err);
382 }
383
384 static int dm_integrity_failed(struct dm_integrity_c *ic)
385 {
386         return READ_ONCE(ic->failed);
387 }
388
389 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
390                                           unsigned j, unsigned char seq)
391 {
392         /*
393          * Xor the number with section and sector, so that if a piece of
394          * journal is written at wrong place, it is detected.
395          */
396         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
397 }
398
399 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
400                                 sector_t *area, sector_t *offset)
401 {
402         if (!ic->meta_dev) {
403                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
404                 *area = data_sector >> log2_interleave_sectors;
405                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
406         } else {
407                 *area = 0;
408                 *offset = data_sector;
409         }
410 }
411
412 #define sector_to_block(ic, n)                                          \
413 do {                                                                    \
414         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
415         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
416 } while (0)
417
418 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
419                                             sector_t offset, unsigned *metadata_offset)
420 {
421         __u64 ms;
422         unsigned mo;
423
424         ms = area << ic->sb->log2_interleave_sectors;
425         if (likely(ic->log2_metadata_run >= 0))
426                 ms += area << ic->log2_metadata_run;
427         else
428                 ms += area * ic->metadata_run;
429         ms >>= ic->log2_buffer_sectors;
430
431         sector_to_block(ic, offset);
432
433         if (likely(ic->log2_tag_size >= 0)) {
434                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
435                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
436         } else {
437                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
438                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
439         }
440         *metadata_offset = mo;
441         return ms;
442 }
443
444 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
445 {
446         sector_t result;
447
448         if (ic->meta_dev)
449                 return offset;
450
451         result = area << ic->sb->log2_interleave_sectors;
452         if (likely(ic->log2_metadata_run >= 0))
453                 result += (area + 1) << ic->log2_metadata_run;
454         else
455                 result += (area + 1) * ic->metadata_run;
456
457         result += (sector_t)ic->initial_sectors + offset;
458         result += ic->start;
459
460         return result;
461 }
462
463 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
464 {
465         if (unlikely(*sec_ptr >= ic->journal_sections))
466                 *sec_ptr -= ic->journal_sections;
467 }
468
469 static void sb_set_version(struct dm_integrity_c *ic)
470 {
471         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
472                 ic->sb->version = SB_VERSION_4;
473         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
474                 ic->sb->version = SB_VERSION_3;
475         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
476                 ic->sb->version = SB_VERSION_2;
477         else
478                 ic->sb->version = SB_VERSION_1;
479 }
480
481 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
482 {
483         struct dm_io_request io_req;
484         struct dm_io_region io_loc;
485
486         io_req.bi_op = op;
487         io_req.bi_op_flags = op_flags;
488         io_req.mem.type = DM_IO_KMEM;
489         io_req.mem.ptr.addr = ic->sb;
490         io_req.notify.fn = NULL;
491         io_req.client = ic->io;
492         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
493         io_loc.sector = ic->start;
494         io_loc.count = SB_SECTORS;
495
496         if (op == REQ_OP_WRITE)
497                 sb_set_version(ic);
498
499         return dm_io(&io_req, 1, &io_loc, NULL);
500 }
501
502 #define BITMAP_OP_TEST_ALL_SET          0
503 #define BITMAP_OP_TEST_ALL_CLEAR        1
504 #define BITMAP_OP_SET                   2
505 #define BITMAP_OP_CLEAR                 3
506
507 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
508                             sector_t sector, sector_t n_sectors, int mode)
509 {
510         unsigned long bit, end_bit, this_end_bit, page, end_page;
511         unsigned long *data;
512
513         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
514                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
515                         sector,
516                         n_sectors,
517                         ic->sb->log2_sectors_per_block,
518                         ic->log2_blocks_per_bitmap_bit,
519                         mode);
520                 BUG();
521         }
522
523         if (unlikely(!n_sectors))
524                 return true;
525
526         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
527         end_bit = (sector + n_sectors - 1) >>
528                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
529
530         page = bit / (PAGE_SIZE * 8);
531         bit %= PAGE_SIZE * 8;
532
533         end_page = end_bit / (PAGE_SIZE * 8);
534         end_bit %= PAGE_SIZE * 8;
535
536 repeat:
537         if (page < end_page) {
538                 this_end_bit = PAGE_SIZE * 8 - 1;
539         } else {
540                 this_end_bit = end_bit;
541         }
542
543         data = lowmem_page_address(bitmap[page].page);
544
545         if (mode == BITMAP_OP_TEST_ALL_SET) {
546                 while (bit <= this_end_bit) {
547                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
548                                 do {
549                                         if (data[bit / BITS_PER_LONG] != -1)
550                                                 return false;
551                                         bit += BITS_PER_LONG;
552                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
553                                 continue;
554                         }
555                         if (!test_bit(bit, data))
556                                 return false;
557                         bit++;
558                 }
559         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
560                 while (bit <= this_end_bit) {
561                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
562                                 do {
563                                         if (data[bit / BITS_PER_LONG] != 0)
564                                                 return false;
565                                         bit += BITS_PER_LONG;
566                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
567                                 continue;
568                         }
569                         if (test_bit(bit, data))
570                                 return false;
571                         bit++;
572                 }
573         } else if (mode == BITMAP_OP_SET) {
574                 while (bit <= this_end_bit) {
575                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
576                                 do {
577                                         data[bit / BITS_PER_LONG] = -1;
578                                         bit += BITS_PER_LONG;
579                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
580                                 continue;
581                         }
582                         __set_bit(bit, data);
583                         bit++;
584                 }
585         } else if (mode == BITMAP_OP_CLEAR) {
586                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
587                         clear_page(data);
588                 else while (bit <= this_end_bit) {
589                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
590                                 do {
591                                         data[bit / BITS_PER_LONG] = 0;
592                                         bit += BITS_PER_LONG;
593                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
594                                 continue;
595                         }
596                         __clear_bit(bit, data);
597                         bit++;
598                 }
599         } else {
600                 BUG();
601         }
602
603         if (unlikely(page < end_page)) {
604                 bit = 0;
605                 page++;
606                 goto repeat;
607         }
608
609         return true;
610 }
611
612 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
613 {
614         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
615         unsigned i;
616
617         for (i = 0; i < n_bitmap_pages; i++) {
618                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
619                 unsigned long *src_data = lowmem_page_address(src[i].page);
620                 copy_page(dst_data, src_data);
621         }
622 }
623
624 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
625 {
626         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
627         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
628
629         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
630         return &ic->bbs[bitmap_block];
631 }
632
633 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
634                                  bool e, const char *function)
635 {
636 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
637         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
638
639         if (unlikely(section >= ic->journal_sections) ||
640             unlikely(offset >= limit)) {
641                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
642                        function, section, offset, ic->journal_sections, limit);
643                 BUG();
644         }
645 #endif
646 }
647
648 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
649                                unsigned *pl_index, unsigned *pl_offset)
650 {
651         unsigned sector;
652
653         access_journal_check(ic, section, offset, false, "page_list_location");
654
655         sector = section * ic->journal_section_sectors + offset;
656
657         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
658         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
659 }
660
661 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
662                                                unsigned section, unsigned offset, unsigned *n_sectors)
663 {
664         unsigned pl_index, pl_offset;
665         char *va;
666
667         page_list_location(ic, section, offset, &pl_index, &pl_offset);
668
669         if (n_sectors)
670                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
671
672         va = lowmem_page_address(pl[pl_index].page);
673
674         return (struct journal_sector *)(va + pl_offset);
675 }
676
677 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
678 {
679         return access_page_list(ic, ic->journal, section, offset, NULL);
680 }
681
682 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
683 {
684         unsigned rel_sector, offset;
685         struct journal_sector *js;
686
687         access_journal_check(ic, section, n, true, "access_journal_entry");
688
689         rel_sector = n % JOURNAL_BLOCK_SECTORS;
690         offset = n / JOURNAL_BLOCK_SECTORS;
691
692         js = access_journal(ic, section, rel_sector);
693         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
694 }
695
696 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
697 {
698         n <<= ic->sb->log2_sectors_per_block;
699
700         n += JOURNAL_BLOCK_SECTORS;
701
702         access_journal_check(ic, section, n, false, "access_journal_data");
703
704         return access_journal(ic, section, n);
705 }
706
707 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
708 {
709         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
710         int r;
711         unsigned j, size;
712
713         desc->tfm = ic->journal_mac;
714
715         r = crypto_shash_init(desc);
716         if (unlikely(r)) {
717                 dm_integrity_io_error(ic, "crypto_shash_init", r);
718                 goto err;
719         }
720
721         for (j = 0; j < ic->journal_section_entries; j++) {
722                 struct journal_entry *je = access_journal_entry(ic, section, j);
723                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
724                 if (unlikely(r)) {
725                         dm_integrity_io_error(ic, "crypto_shash_update", r);
726                         goto err;
727                 }
728         }
729
730         size = crypto_shash_digestsize(ic->journal_mac);
731
732         if (likely(size <= JOURNAL_MAC_SIZE)) {
733                 r = crypto_shash_final(desc, result);
734                 if (unlikely(r)) {
735                         dm_integrity_io_error(ic, "crypto_shash_final", r);
736                         goto err;
737                 }
738                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
739         } else {
740                 __u8 digest[HASH_MAX_DIGESTSIZE];
741
742                 if (WARN_ON(size > sizeof(digest))) {
743                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
744                         goto err;
745                 }
746                 r = crypto_shash_final(desc, digest);
747                 if (unlikely(r)) {
748                         dm_integrity_io_error(ic, "crypto_shash_final", r);
749                         goto err;
750                 }
751                 memcpy(result, digest, JOURNAL_MAC_SIZE);
752         }
753
754         return;
755 err:
756         memset(result, 0, JOURNAL_MAC_SIZE);
757 }
758
759 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
760 {
761         __u8 result[JOURNAL_MAC_SIZE];
762         unsigned j;
763
764         if (!ic->journal_mac)
765                 return;
766
767         section_mac(ic, section, result);
768
769         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
770                 struct journal_sector *js = access_journal(ic, section, j);
771
772                 if (likely(wr))
773                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
774                 else {
775                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
776                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
777                 }
778         }
779 }
780
781 static void complete_journal_op(void *context)
782 {
783         struct journal_completion *comp = context;
784         BUG_ON(!atomic_read(&comp->in_flight));
785         if (likely(atomic_dec_and_test(&comp->in_flight)))
786                 complete(&comp->comp);
787 }
788
789 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
790                         unsigned n_sections, struct journal_completion *comp)
791 {
792         struct async_submit_ctl submit;
793         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
794         unsigned pl_index, pl_offset, section_index;
795         struct page_list *source_pl, *target_pl;
796
797         if (likely(encrypt)) {
798                 source_pl = ic->journal;
799                 target_pl = ic->journal_io;
800         } else {
801                 source_pl = ic->journal_io;
802                 target_pl = ic->journal;
803         }
804
805         page_list_location(ic, section, 0, &pl_index, &pl_offset);
806
807         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
808
809         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
810
811         section_index = pl_index;
812
813         do {
814                 size_t this_step;
815                 struct page *src_pages[2];
816                 struct page *dst_page;
817
818                 while (unlikely(pl_index == section_index)) {
819                         unsigned dummy;
820                         if (likely(encrypt))
821                                 rw_section_mac(ic, section, true);
822                         section++;
823                         n_sections--;
824                         if (!n_sections)
825                                 break;
826                         page_list_location(ic, section, 0, &section_index, &dummy);
827                 }
828
829                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
830                 dst_page = target_pl[pl_index].page;
831                 src_pages[0] = source_pl[pl_index].page;
832                 src_pages[1] = ic->journal_xor[pl_index].page;
833
834                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
835
836                 pl_index++;
837                 pl_offset = 0;
838                 n_bytes -= this_step;
839         } while (n_bytes);
840
841         BUG_ON(n_sections);
842
843         async_tx_issue_pending_all();
844 }
845
846 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
847 {
848         struct journal_completion *comp = req->data;
849         if (unlikely(err)) {
850                 if (likely(err == -EINPROGRESS)) {
851                         complete(&comp->ic->crypto_backoff);
852                         return;
853                 }
854                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
855         }
856         complete_journal_op(comp);
857 }
858
859 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
860 {
861         int r;
862         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
863                                       complete_journal_encrypt, comp);
864         if (likely(encrypt))
865                 r = crypto_skcipher_encrypt(req);
866         else
867                 r = crypto_skcipher_decrypt(req);
868         if (likely(!r))
869                 return false;
870         if (likely(r == -EINPROGRESS))
871                 return true;
872         if (likely(r == -EBUSY)) {
873                 wait_for_completion(&comp->ic->crypto_backoff);
874                 reinit_completion(&comp->ic->crypto_backoff);
875                 return true;
876         }
877         dm_integrity_io_error(comp->ic, "encrypt", r);
878         return false;
879 }
880
881 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
882                           unsigned n_sections, struct journal_completion *comp)
883 {
884         struct scatterlist **source_sg;
885         struct scatterlist **target_sg;
886
887         atomic_add(2, &comp->in_flight);
888
889         if (likely(encrypt)) {
890                 source_sg = ic->journal_scatterlist;
891                 target_sg = ic->journal_io_scatterlist;
892         } else {
893                 source_sg = ic->journal_io_scatterlist;
894                 target_sg = ic->journal_scatterlist;
895         }
896
897         do {
898                 struct skcipher_request *req;
899                 unsigned ivsize;
900                 char *iv;
901
902                 if (likely(encrypt))
903                         rw_section_mac(ic, section, true);
904
905                 req = ic->sk_requests[section];
906                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
907                 iv = req->iv;
908
909                 memcpy(iv, iv + ivsize, ivsize);
910
911                 req->src = source_sg[section];
912                 req->dst = target_sg[section];
913
914                 if (unlikely(do_crypt(encrypt, req, comp)))
915                         atomic_inc(&comp->in_flight);
916
917                 section++;
918                 n_sections--;
919         } while (n_sections);
920
921         atomic_dec(&comp->in_flight);
922         complete_journal_op(comp);
923 }
924
925 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
926                             unsigned n_sections, struct journal_completion *comp)
927 {
928         if (ic->journal_xor)
929                 return xor_journal(ic, encrypt, section, n_sections, comp);
930         else
931                 return crypt_journal(ic, encrypt, section, n_sections, comp);
932 }
933
934 static void complete_journal_io(unsigned long error, void *context)
935 {
936         struct journal_completion *comp = context;
937         if (unlikely(error != 0))
938                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
939         complete_journal_op(comp);
940 }
941
942 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
943                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
944 {
945         struct dm_io_request io_req;
946         struct dm_io_region io_loc;
947         unsigned pl_index, pl_offset;
948         int r;
949
950         if (unlikely(dm_integrity_failed(ic))) {
951                 if (comp)
952                         complete_journal_io(-1UL, comp);
953                 return;
954         }
955
956         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
957         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
958
959         io_req.bi_op = op;
960         io_req.bi_op_flags = op_flags;
961         io_req.mem.type = DM_IO_PAGE_LIST;
962         if (ic->journal_io)
963                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
964         else
965                 io_req.mem.ptr.pl = &ic->journal[pl_index];
966         io_req.mem.offset = pl_offset;
967         if (likely(comp != NULL)) {
968                 io_req.notify.fn = complete_journal_io;
969                 io_req.notify.context = comp;
970         } else {
971                 io_req.notify.fn = NULL;
972         }
973         io_req.client = ic->io;
974         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
975         io_loc.sector = ic->start + SB_SECTORS + sector;
976         io_loc.count = n_sectors;
977
978         r = dm_io(&io_req, 1, &io_loc, NULL);
979         if (unlikely(r)) {
980                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
981                 if (comp) {
982                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
983                         complete_journal_io(-1UL, comp);
984                 }
985         }
986 }
987
988 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
989                        unsigned n_sections, struct journal_completion *comp)
990 {
991         unsigned sector, n_sectors;
992
993         sector = section * ic->journal_section_sectors;
994         n_sectors = n_sections * ic->journal_section_sectors;
995
996         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
997 }
998
999 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1000 {
1001         struct journal_completion io_comp;
1002         struct journal_completion crypt_comp_1;
1003         struct journal_completion crypt_comp_2;
1004         unsigned i;
1005
1006         io_comp.ic = ic;
1007         init_completion(&io_comp.comp);
1008
1009         if (commit_start + commit_sections <= ic->journal_sections) {
1010                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1011                 if (ic->journal_io) {
1012                         crypt_comp_1.ic = ic;
1013                         init_completion(&crypt_comp_1.comp);
1014                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1015                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1016                         wait_for_completion_io(&crypt_comp_1.comp);
1017                 } else {
1018                         for (i = 0; i < commit_sections; i++)
1019                                 rw_section_mac(ic, commit_start + i, true);
1020                 }
1021                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1022                            commit_sections, &io_comp);
1023         } else {
1024                 unsigned to_end;
1025                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1026                 to_end = ic->journal_sections - commit_start;
1027                 if (ic->journal_io) {
1028                         crypt_comp_1.ic = ic;
1029                         init_completion(&crypt_comp_1.comp);
1030                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1031                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1032                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1033                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1034                                 reinit_completion(&crypt_comp_1.comp);
1035                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1036                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1037                                 wait_for_completion_io(&crypt_comp_1.comp);
1038                         } else {
1039                                 crypt_comp_2.ic = ic;
1040                                 init_completion(&crypt_comp_2.comp);
1041                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1042                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1043                                 wait_for_completion_io(&crypt_comp_1.comp);
1044                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1045                                 wait_for_completion_io(&crypt_comp_2.comp);
1046                         }
1047                 } else {
1048                         for (i = 0; i < to_end; i++)
1049                                 rw_section_mac(ic, commit_start + i, true);
1050                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1051                         for (i = 0; i < commit_sections - to_end; i++)
1052                                 rw_section_mac(ic, i, true);
1053                 }
1054                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1055         }
1056
1057         wait_for_completion_io(&io_comp.comp);
1058 }
1059
1060 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1061                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1062 {
1063         struct dm_io_request io_req;
1064         struct dm_io_region io_loc;
1065         int r;
1066         unsigned sector, pl_index, pl_offset;
1067
1068         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1069
1070         if (unlikely(dm_integrity_failed(ic))) {
1071                 fn(-1UL, data);
1072                 return;
1073         }
1074
1075         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1076
1077         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1078         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1079
1080         io_req.bi_op = REQ_OP_WRITE;
1081         io_req.bi_op_flags = 0;
1082         io_req.mem.type = DM_IO_PAGE_LIST;
1083         io_req.mem.ptr.pl = &ic->journal[pl_index];
1084         io_req.mem.offset = pl_offset;
1085         io_req.notify.fn = fn;
1086         io_req.notify.context = data;
1087         io_req.client = ic->io;
1088         io_loc.bdev = ic->dev->bdev;
1089         io_loc.sector = target;
1090         io_loc.count = n_sectors;
1091
1092         r = dm_io(&io_req, 1, &io_loc, NULL);
1093         if (unlikely(r)) {
1094                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1095                 fn(-1UL, data);
1096         }
1097 }
1098
1099 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1100 {
1101         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1102                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1103 }
1104
1105 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1106 {
1107         struct rb_node **n = &ic->in_progress.rb_node;
1108         struct rb_node *parent;
1109
1110         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1111
1112         if (likely(check_waiting)) {
1113                 struct dm_integrity_range *range;
1114                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1115                         if (unlikely(ranges_overlap(range, new_range)))
1116                                 return false;
1117                 }
1118         }
1119
1120         parent = NULL;
1121
1122         while (*n) {
1123                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1124
1125                 parent = *n;
1126                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1127                         n = &range->node.rb_left;
1128                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1129                         n = &range->node.rb_right;
1130                 } else {
1131                         return false;
1132                 }
1133         }
1134
1135         rb_link_node(&new_range->node, parent, n);
1136         rb_insert_color(&new_range->node, &ic->in_progress);
1137
1138         return true;
1139 }
1140
1141 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1142 {
1143         rb_erase(&range->node, &ic->in_progress);
1144         while (unlikely(!list_empty(&ic->wait_list))) {
1145                 struct dm_integrity_range *last_range =
1146                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1147                 struct task_struct *last_range_task;
1148                 last_range_task = last_range->task;
1149                 list_del(&last_range->wait_entry);
1150                 if (!add_new_range(ic, last_range, false)) {
1151                         last_range->task = last_range_task;
1152                         list_add(&last_range->wait_entry, &ic->wait_list);
1153                         break;
1154                 }
1155                 last_range->waiting = false;
1156                 wake_up_process(last_range_task);
1157         }
1158 }
1159
1160 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1161 {
1162         unsigned long flags;
1163
1164         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1165         remove_range_unlocked(ic, range);
1166         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1167 }
1168
1169 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1170 {
1171         new_range->waiting = true;
1172         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1173         new_range->task = current;
1174         do {
1175                 __set_current_state(TASK_UNINTERRUPTIBLE);
1176                 spin_unlock_irq(&ic->endio_wait.lock);
1177                 io_schedule();
1178                 spin_lock_irq(&ic->endio_wait.lock);
1179         } while (unlikely(new_range->waiting));
1180 }
1181
1182 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1183 {
1184         if (unlikely(!add_new_range(ic, new_range, true)))
1185                 wait_and_add_new_range(ic, new_range);
1186 }
1187
1188 static void init_journal_node(struct journal_node *node)
1189 {
1190         RB_CLEAR_NODE(&node->node);
1191         node->sector = (sector_t)-1;
1192 }
1193
1194 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1195 {
1196         struct rb_node **link;
1197         struct rb_node *parent;
1198
1199         node->sector = sector;
1200         BUG_ON(!RB_EMPTY_NODE(&node->node));
1201
1202         link = &ic->journal_tree_root.rb_node;
1203         parent = NULL;
1204
1205         while (*link) {
1206                 struct journal_node *j;
1207                 parent = *link;
1208                 j = container_of(parent, struct journal_node, node);
1209                 if (sector < j->sector)
1210                         link = &j->node.rb_left;
1211                 else
1212                         link = &j->node.rb_right;
1213         }
1214
1215         rb_link_node(&node->node, parent, link);
1216         rb_insert_color(&node->node, &ic->journal_tree_root);
1217 }
1218
1219 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1220 {
1221         BUG_ON(RB_EMPTY_NODE(&node->node));
1222         rb_erase(&node->node, &ic->journal_tree_root);
1223         init_journal_node(node);
1224 }
1225
1226 #define NOT_FOUND       (-1U)
1227
1228 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1229 {
1230         struct rb_node *n = ic->journal_tree_root.rb_node;
1231         unsigned found = NOT_FOUND;
1232         *next_sector = (sector_t)-1;
1233         while (n) {
1234                 struct journal_node *j = container_of(n, struct journal_node, node);
1235                 if (sector == j->sector) {
1236                         found = j - ic->journal_tree;
1237                 }
1238                 if (sector < j->sector) {
1239                         *next_sector = j->sector;
1240                         n = j->node.rb_left;
1241                 } else {
1242                         n = j->node.rb_right;
1243                 }
1244         }
1245
1246         return found;
1247 }
1248
1249 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1250 {
1251         struct journal_node *node, *next_node;
1252         struct rb_node *next;
1253
1254         if (unlikely(pos >= ic->journal_entries))
1255                 return false;
1256         node = &ic->journal_tree[pos];
1257         if (unlikely(RB_EMPTY_NODE(&node->node)))
1258                 return false;
1259         if (unlikely(node->sector != sector))
1260                 return false;
1261
1262         next = rb_next(&node->node);
1263         if (unlikely(!next))
1264                 return true;
1265
1266         next_node = container_of(next, struct journal_node, node);
1267         return next_node->sector != sector;
1268 }
1269
1270 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1271 {
1272         struct rb_node *next;
1273         struct journal_node *next_node;
1274         unsigned next_section;
1275
1276         BUG_ON(RB_EMPTY_NODE(&node->node));
1277
1278         next = rb_next(&node->node);
1279         if (unlikely(!next))
1280                 return false;
1281
1282         next_node = container_of(next, struct journal_node, node);
1283
1284         if (next_node->sector != node->sector)
1285                 return false;
1286
1287         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1288         if (next_section >= ic->committed_section &&
1289             next_section < ic->committed_section + ic->n_committed_sections)
1290                 return true;
1291         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1292                 return true;
1293
1294         return false;
1295 }
1296
1297 #define TAG_READ        0
1298 #define TAG_WRITE       1
1299 #define TAG_CMP         2
1300
1301 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1302                                unsigned *metadata_offset, unsigned total_size, int op)
1303 {
1304 #define MAY_BE_FILLER           1
1305 #define MAY_BE_HASH             2
1306         unsigned hash_offset = 0;
1307         unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1308
1309         do {
1310                 unsigned char *data, *dp;
1311                 struct dm_buffer *b;
1312                 unsigned to_copy;
1313                 int r;
1314
1315                 r = dm_integrity_failed(ic);
1316                 if (unlikely(r))
1317                         return r;
1318
1319                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1320                 if (IS_ERR(data))
1321                         return PTR_ERR(data);
1322
1323                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1324                 dp = data + *metadata_offset;
1325                 if (op == TAG_READ) {
1326                         memcpy(tag, dp, to_copy);
1327                 } else if (op == TAG_WRITE) {
1328                         memcpy(dp, tag, to_copy);
1329                         dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1330                 } else {
1331                         /* e.g.: op == TAG_CMP */
1332
1333                         if (likely(is_power_of_2(ic->tag_size))) {
1334                                 if (unlikely(memcmp(dp, tag, to_copy)))
1335                                         if (unlikely(!ic->discard) ||
1336                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1337                                                 goto thorough_test;
1338                                 }
1339                         } else {
1340                                 unsigned i, ts;
1341 thorough_test:
1342                                 ts = total_size;
1343
1344                                 for (i = 0; i < to_copy; i++, ts--) {
1345                                         if (unlikely(dp[i] != tag[i]))
1346                                                 may_be &= ~MAY_BE_HASH;
1347                                         if (likely(dp[i] != DISCARD_FILLER))
1348                                                 may_be &= ~MAY_BE_FILLER;
1349                                         hash_offset++;
1350                                         if (unlikely(hash_offset == ic->tag_size)) {
1351                                                 if (unlikely(!may_be)) {
1352                                                         dm_bufio_release(b);
1353                                                         return ts;
1354                                                 }
1355                                                 hash_offset = 0;
1356                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1357                                         }
1358                                 }
1359                         }
1360                 }
1361                 dm_bufio_release(b);
1362
1363                 tag += to_copy;
1364                 *metadata_offset += to_copy;
1365                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1366                         (*metadata_block)++;
1367                         *metadata_offset = 0;
1368                 }
1369
1370                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1371                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1372                 }
1373
1374                 total_size -= to_copy;
1375         } while (unlikely(total_size));
1376
1377         return 0;
1378 #undef MAY_BE_FILLER
1379 #undef MAY_BE_HASH
1380 }
1381
1382 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1383 {
1384         int r;
1385         r = dm_bufio_write_dirty_buffers(ic->bufio);
1386         if (unlikely(r))
1387                 dm_integrity_io_error(ic, "writing tags", r);
1388 }
1389
1390 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1391 {
1392         DECLARE_WAITQUEUE(wait, current);
1393         __add_wait_queue(&ic->endio_wait, &wait);
1394         __set_current_state(TASK_UNINTERRUPTIBLE);
1395         spin_unlock_irq(&ic->endio_wait.lock);
1396         io_schedule();
1397         spin_lock_irq(&ic->endio_wait.lock);
1398         __remove_wait_queue(&ic->endio_wait, &wait);
1399 }
1400
1401 static void autocommit_fn(struct timer_list *t)
1402 {
1403         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1404
1405         if (likely(!dm_integrity_failed(ic)))
1406                 queue_work(ic->commit_wq, &ic->commit_work);
1407 }
1408
1409 static void schedule_autocommit(struct dm_integrity_c *ic)
1410 {
1411         if (!timer_pending(&ic->autocommit_timer))
1412                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1413 }
1414
1415 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1416 {
1417         struct bio *bio;
1418         unsigned long flags;
1419
1420         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1421         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1422         bio_list_add(&ic->flush_bio_list, bio);
1423         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1424
1425         queue_work(ic->commit_wq, &ic->commit_work);
1426 }
1427
1428 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1429 {
1430         int r = dm_integrity_failed(ic);
1431         if (unlikely(r) && !bio->bi_status)
1432                 bio->bi_status = errno_to_blk_status(r);
1433         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1434                 unsigned long flags;
1435                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1436                 bio_list_add(&ic->synchronous_bios, bio);
1437                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1438                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1439                 return;
1440         }
1441         bio_endio(bio);
1442 }
1443
1444 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1445 {
1446         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1447
1448         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1449                 submit_flush_bio(ic, dio);
1450         else
1451                 do_endio(ic, bio);
1452 }
1453
1454 static void dec_in_flight(struct dm_integrity_io *dio)
1455 {
1456         if (atomic_dec_and_test(&dio->in_flight)) {
1457                 struct dm_integrity_c *ic = dio->ic;
1458                 struct bio *bio;
1459
1460                 remove_range(ic, &dio->range);
1461
1462                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1463                         schedule_autocommit(ic);
1464
1465                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1466
1467                 if (unlikely(dio->bi_status) && !bio->bi_status)
1468                         bio->bi_status = dio->bi_status;
1469                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1470                         dio->range.logical_sector += dio->range.n_sectors;
1471                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1472                         INIT_WORK(&dio->work, integrity_bio_wait);
1473                         queue_work(ic->offload_wq, &dio->work);
1474                         return;
1475                 }
1476                 do_endio_flush(ic, dio);
1477         }
1478 }
1479
1480 static void integrity_end_io(struct bio *bio)
1481 {
1482         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1483
1484         dm_bio_restore(&dio->bio_details, bio);
1485         if (bio->bi_integrity)
1486                 bio->bi_opf |= REQ_INTEGRITY;
1487
1488         if (dio->completion)
1489                 complete(dio->completion);
1490
1491         dec_in_flight(dio);
1492 }
1493
1494 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1495                                       const char *data, char *result)
1496 {
1497         __u64 sector_le = cpu_to_le64(sector);
1498         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1499         int r;
1500         unsigned digest_size;
1501
1502         req->tfm = ic->internal_hash;
1503
1504         r = crypto_shash_init(req);
1505         if (unlikely(r < 0)) {
1506                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1507                 goto failed;
1508         }
1509
1510         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1511         if (unlikely(r < 0)) {
1512                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1513                 goto failed;
1514         }
1515
1516         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1517         if (unlikely(r < 0)) {
1518                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1519                 goto failed;
1520         }
1521
1522         r = crypto_shash_final(req, result);
1523         if (unlikely(r < 0)) {
1524                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1525                 goto failed;
1526         }
1527
1528         digest_size = crypto_shash_digestsize(ic->internal_hash);
1529         if (unlikely(digest_size < ic->tag_size))
1530                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1531
1532         return;
1533
1534 failed:
1535         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1536         get_random_bytes(result, ic->tag_size);
1537 }
1538
1539 static void integrity_metadata(struct work_struct *w)
1540 {
1541         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1542         struct dm_integrity_c *ic = dio->ic;
1543
1544         int r;
1545
1546         if (ic->internal_hash) {
1547                 struct bvec_iter iter;
1548                 struct bio_vec bv;
1549                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1550                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1551                 char *checksums;
1552                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1553                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1554                 sector_t sector;
1555                 unsigned sectors_to_process;
1556
1557                 if (unlikely(ic->mode == 'R'))
1558                         goto skip_io;
1559
1560                 if (likely(dio->op != REQ_OP_DISCARD))
1561                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1562                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1563                 else
1564                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1565                 if (!checksums) {
1566                         checksums = checksums_onstack;
1567                         if (WARN_ON(extra_space &&
1568                                     digest_size > sizeof(checksums_onstack))) {
1569                                 r = -EINVAL;
1570                                 goto error;
1571                         }
1572                 }
1573
1574                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1575                         sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1576                         unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1577                         unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1578                         unsigned max_blocks = max_size / ic->tag_size;
1579                         memset(checksums, DISCARD_FILLER, max_size);
1580
1581                         while (bi_size) {
1582                                 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1583                                 this_step_blocks = min(this_step_blocks, max_blocks);
1584                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1585                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1586                                 if (unlikely(r)) {
1587                                         if (likely(checksums != checksums_onstack))
1588                                                 kfree(checksums);
1589                                         goto error;
1590                                 }
1591
1592                                 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1593                                         printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1594                                         printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1595                                         BUG();
1596                                 }*/
1597                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1598                                 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1599                         }
1600
1601                         if (likely(checksums != checksums_onstack))
1602                                 kfree(checksums);
1603                         goto skip_io;
1604                 }
1605
1606                 sector = dio->range.logical_sector;
1607                 sectors_to_process = dio->range.n_sectors;
1608
1609                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1610                         unsigned pos;
1611                         char *mem, *checksums_ptr;
1612
1613 again:
1614                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1615                         pos = 0;
1616                         checksums_ptr = checksums;
1617                         do {
1618                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1619                                 checksums_ptr += ic->tag_size;
1620                                 sectors_to_process -= ic->sectors_per_block;
1621                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1622                                 sector += ic->sectors_per_block;
1623                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1624                         kunmap_atomic(mem);
1625
1626                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1627                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1628                         if (unlikely(r)) {
1629                                 if (r > 0) {
1630                                         char b[BDEVNAME_SIZE];
1631                                         DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1632                                                     (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1633                                         r = -EILSEQ;
1634                                         atomic64_inc(&ic->number_of_mismatches);
1635                                 }
1636                                 if (likely(checksums != checksums_onstack))
1637                                         kfree(checksums);
1638                                 goto error;
1639                         }
1640
1641                         if (!sectors_to_process)
1642                                 break;
1643
1644                         if (unlikely(pos < bv.bv_len)) {
1645                                 bv.bv_offset += pos;
1646                                 bv.bv_len -= pos;
1647                                 goto again;
1648                         }
1649                 }
1650
1651                 if (likely(checksums != checksums_onstack))
1652                         kfree(checksums);
1653         } else {
1654                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1655
1656                 if (bip) {
1657                         struct bio_vec biv;
1658                         struct bvec_iter iter;
1659                         unsigned data_to_process = dio->range.n_sectors;
1660                         sector_to_block(ic, data_to_process);
1661                         data_to_process *= ic->tag_size;
1662
1663                         bip_for_each_vec(biv, bip, iter) {
1664                                 unsigned char *tag;
1665                                 unsigned this_len;
1666
1667                                 BUG_ON(PageHighMem(biv.bv_page));
1668                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1669                                 this_len = min(biv.bv_len, data_to_process);
1670                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1671                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1672                                 if (unlikely(r))
1673                                         goto error;
1674                                 data_to_process -= this_len;
1675                                 if (!data_to_process)
1676                                         break;
1677                         }
1678                 }
1679         }
1680 skip_io:
1681         dec_in_flight(dio);
1682         return;
1683 error:
1684         dio->bi_status = errno_to_blk_status(r);
1685         dec_in_flight(dio);
1686 }
1687
1688 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1689 {
1690         struct dm_integrity_c *ic = ti->private;
1691         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1692         struct bio_integrity_payload *bip;
1693
1694         sector_t area, offset;
1695
1696         dio->ic = ic;
1697         dio->bi_status = 0;
1698         dio->op = bio_op(bio);
1699
1700         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1701                 if (ti->max_io_len) {
1702                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1703                         unsigned log2_max_io_len = __fls(ti->max_io_len);
1704                         sector_t start_boundary = sec >> log2_max_io_len;
1705                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1706                         if (start_boundary < end_boundary) {
1707                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1708                                 dm_accept_partial_bio(bio, len);
1709                         }
1710                 }
1711         }
1712
1713         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1714                 submit_flush_bio(ic, dio);
1715                 return DM_MAPIO_SUBMITTED;
1716         }
1717
1718         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1719         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1720         if (unlikely(dio->fua)) {
1721                 /*
1722                  * Don't pass down the FUA flag because we have to flush
1723                  * disk cache anyway.
1724                  */
1725                 bio->bi_opf &= ~REQ_FUA;
1726         }
1727         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1728                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1729                       dio->range.logical_sector, bio_sectors(bio),
1730                       ic->provided_data_sectors);
1731                 return DM_MAPIO_KILL;
1732         }
1733         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1734                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1735                       ic->sectors_per_block,
1736                       dio->range.logical_sector, bio_sectors(bio));
1737                 return DM_MAPIO_KILL;
1738         }
1739
1740         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1741                 struct bvec_iter iter;
1742                 struct bio_vec bv;
1743                 bio_for_each_segment(bv, bio, iter) {
1744                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1745                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1746                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1747                                 return DM_MAPIO_KILL;
1748                         }
1749                 }
1750         }
1751
1752         bip = bio_integrity(bio);
1753         if (!ic->internal_hash) {
1754                 if (bip) {
1755                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1756                         if (ic->log2_tag_size >= 0)
1757                                 wanted_tag_size <<= ic->log2_tag_size;
1758                         else
1759                                 wanted_tag_size *= ic->tag_size;
1760                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1761                                 DMERR("Invalid integrity data size %u, expected %u",
1762                                       bip->bip_iter.bi_size, wanted_tag_size);
1763                                 return DM_MAPIO_KILL;
1764                         }
1765                 }
1766         } else {
1767                 if (unlikely(bip != NULL)) {
1768                         DMERR("Unexpected integrity data when using internal hash");
1769                         return DM_MAPIO_KILL;
1770                 }
1771         }
1772
1773         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1774                 return DM_MAPIO_KILL;
1775
1776         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1777         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1778         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1779
1780         dm_integrity_map_continue(dio, true);
1781         return DM_MAPIO_SUBMITTED;
1782 }
1783
1784 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1785                                  unsigned journal_section, unsigned journal_entry)
1786 {
1787         struct dm_integrity_c *ic = dio->ic;
1788         sector_t logical_sector;
1789         unsigned n_sectors;
1790
1791         logical_sector = dio->range.logical_sector;
1792         n_sectors = dio->range.n_sectors;
1793         do {
1794                 struct bio_vec bv = bio_iovec(bio);
1795                 char *mem;
1796
1797                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1798                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1799                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1800                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1801 retry_kmap:
1802                 mem = kmap_atomic(bv.bv_page);
1803                 if (likely(dio->op == REQ_OP_WRITE))
1804                         flush_dcache_page(bv.bv_page);
1805
1806                 do {
1807                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1808
1809                         if (unlikely(dio->op == REQ_OP_READ)) {
1810                                 struct journal_sector *js;
1811                                 char *mem_ptr;
1812                                 unsigned s;
1813
1814                                 if (unlikely(journal_entry_is_inprogress(je))) {
1815                                         flush_dcache_page(bv.bv_page);
1816                                         kunmap_atomic(mem);
1817
1818                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1819                                         goto retry_kmap;
1820                                 }
1821                                 smp_rmb();
1822                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1823                                 js = access_journal_data(ic, journal_section, journal_entry);
1824                                 mem_ptr = mem + bv.bv_offset;
1825                                 s = 0;
1826                                 do {
1827                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1828                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1829                                         js++;
1830                                         mem_ptr += 1 << SECTOR_SHIFT;
1831                                 } while (++s < ic->sectors_per_block);
1832 #ifdef INTERNAL_VERIFY
1833                                 if (ic->internal_hash) {
1834                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1835
1836                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1837                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1838                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1839                                                             logical_sector);
1840                                         }
1841                                 }
1842 #endif
1843                         }
1844
1845                         if (!ic->internal_hash) {
1846                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1847                                 unsigned tag_todo = ic->tag_size;
1848                                 char *tag_ptr = journal_entry_tag(ic, je);
1849
1850                                 if (bip) do {
1851                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1852                                         unsigned tag_now = min(biv.bv_len, tag_todo);
1853                                         char *tag_addr;
1854                                         BUG_ON(PageHighMem(biv.bv_page));
1855                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1856                                         if (likely(dio->op == REQ_OP_WRITE))
1857                                                 memcpy(tag_ptr, tag_addr, tag_now);
1858                                         else
1859                                                 memcpy(tag_addr, tag_ptr, tag_now);
1860                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1861                                         tag_ptr += tag_now;
1862                                         tag_todo -= tag_now;
1863                                 } while (unlikely(tag_todo)); else {
1864                                         if (likely(dio->op == REQ_OP_WRITE))
1865                                                 memset(tag_ptr, 0, tag_todo);
1866                                 }
1867                         }
1868
1869                         if (likely(dio->op == REQ_OP_WRITE)) {
1870                                 struct journal_sector *js;
1871                                 unsigned s;
1872
1873                                 js = access_journal_data(ic, journal_section, journal_entry);
1874                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1875
1876                                 s = 0;
1877                                 do {
1878                                         je->last_bytes[s] = js[s].commit_id;
1879                                 } while (++s < ic->sectors_per_block);
1880
1881                                 if (ic->internal_hash) {
1882                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1883                                         if (unlikely(digest_size > ic->tag_size)) {
1884                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1885                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1886                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1887                                         } else
1888                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1889                                 }
1890
1891                                 journal_entry_set_sector(je, logical_sector);
1892                         }
1893                         logical_sector += ic->sectors_per_block;
1894
1895                         journal_entry++;
1896                         if (unlikely(journal_entry == ic->journal_section_entries)) {
1897                                 journal_entry = 0;
1898                                 journal_section++;
1899                                 wraparound_section(ic, &journal_section);
1900                         }
1901
1902                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1903                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1904
1905                 if (unlikely(dio->op == REQ_OP_READ))
1906                         flush_dcache_page(bv.bv_page);
1907                 kunmap_atomic(mem);
1908         } while (n_sectors);
1909
1910         if (likely(dio->op == REQ_OP_WRITE)) {
1911                 smp_mb();
1912                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1913                         wake_up(&ic->copy_to_journal_wait);
1914                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1915                         queue_work(ic->commit_wq, &ic->commit_work);
1916                 } else {
1917                         schedule_autocommit(ic);
1918                 }
1919         } else {
1920                 remove_range(ic, &dio->range);
1921         }
1922
1923         if (unlikely(bio->bi_iter.bi_size)) {
1924                 sector_t area, offset;
1925
1926                 dio->range.logical_sector = logical_sector;
1927                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1928                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1929                 return true;
1930         }
1931
1932         return false;
1933 }
1934
1935 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1936 {
1937         struct dm_integrity_c *ic = dio->ic;
1938         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1939         unsigned journal_section, journal_entry;
1940         unsigned journal_read_pos;
1941         struct completion read_comp;
1942         bool discard_retried = false;
1943         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
1944         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
1945                 need_sync_io = true;
1946
1947         if (need_sync_io && from_map) {
1948                 INIT_WORK(&dio->work, integrity_bio_wait);
1949                 queue_work(ic->offload_wq, &dio->work);
1950                 return;
1951         }
1952
1953 lock_retry:
1954         spin_lock_irq(&ic->endio_wait.lock);
1955 retry:
1956         if (unlikely(dm_integrity_failed(ic))) {
1957                 spin_unlock_irq(&ic->endio_wait.lock);
1958                 do_endio(ic, bio);
1959                 return;
1960         }
1961         dio->range.n_sectors = bio_sectors(bio);
1962         journal_read_pos = NOT_FOUND;
1963         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
1964                 if (dio->op == REQ_OP_WRITE) {
1965                         unsigned next_entry, i, pos;
1966                         unsigned ws, we, range_sectors;
1967
1968                         dio->range.n_sectors = min(dio->range.n_sectors,
1969                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1970                         if (unlikely(!dio->range.n_sectors)) {
1971                                 if (from_map)
1972                                         goto offload_to_thread;
1973                                 sleep_on_endio_wait(ic);
1974                                 goto retry;
1975                         }
1976                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1977                         ic->free_sectors -= range_sectors;
1978                         journal_section = ic->free_section;
1979                         journal_entry = ic->free_section_entry;
1980
1981                         next_entry = ic->free_section_entry + range_sectors;
1982                         ic->free_section_entry = next_entry % ic->journal_section_entries;
1983                         ic->free_section += next_entry / ic->journal_section_entries;
1984                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1985                         wraparound_section(ic, &ic->free_section);
1986
1987                         pos = journal_section * ic->journal_section_entries + journal_entry;
1988                         ws = journal_section;
1989                         we = journal_entry;
1990                         i = 0;
1991                         do {
1992                                 struct journal_entry *je;
1993
1994                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1995                                 pos++;
1996                                 if (unlikely(pos >= ic->journal_entries))
1997                                         pos = 0;
1998
1999                                 je = access_journal_entry(ic, ws, we);
2000                                 BUG_ON(!journal_entry_is_unused(je));
2001                                 journal_entry_set_inprogress(je);
2002                                 we++;
2003                                 if (unlikely(we == ic->journal_section_entries)) {
2004                                         we = 0;
2005                                         ws++;
2006                                         wraparound_section(ic, &ws);
2007                                 }
2008                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2009
2010                         spin_unlock_irq(&ic->endio_wait.lock);
2011                         goto journal_read_write;
2012                 } else {
2013                         sector_t next_sector;
2014                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2015                         if (likely(journal_read_pos == NOT_FOUND)) {
2016                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2017                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2018                         } else {
2019                                 unsigned i;
2020                                 unsigned jp = journal_read_pos + 1;
2021                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2022                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2023                                                 break;
2024                                 }
2025                                 dio->range.n_sectors = i;
2026                         }
2027                 }
2028         }
2029         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2030                 /*
2031                  * We must not sleep in the request routine because it could
2032                  * stall bios on current->bio_list.
2033                  * So, we offload the bio to a workqueue if we have to sleep.
2034                  */
2035                 if (from_map) {
2036 offload_to_thread:
2037                         spin_unlock_irq(&ic->endio_wait.lock);
2038                         INIT_WORK(&dio->work, integrity_bio_wait);
2039                         queue_work(ic->wait_wq, &dio->work);
2040                         return;
2041                 }
2042                 if (journal_read_pos != NOT_FOUND)
2043                         dio->range.n_sectors = ic->sectors_per_block;
2044                 wait_and_add_new_range(ic, &dio->range);
2045                 /*
2046                  * wait_and_add_new_range drops the spinlock, so the journal
2047                  * may have been changed arbitrarily. We need to recheck.
2048                  * To simplify the code, we restrict I/O size to just one block.
2049                  */
2050                 if (journal_read_pos != NOT_FOUND) {
2051                         sector_t next_sector;
2052                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2053                         if (unlikely(new_pos != journal_read_pos)) {
2054                                 remove_range_unlocked(ic, &dio->range);
2055                                 goto retry;
2056                         }
2057                 }
2058         }
2059         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2060                 sector_t next_sector;
2061                 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2062                 if (unlikely(new_pos != NOT_FOUND) ||
2063                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2064                         remove_range_unlocked(ic, &dio->range);
2065                         spin_unlock_irq(&ic->endio_wait.lock);
2066                         queue_work(ic->commit_wq, &ic->commit_work);
2067                         flush_workqueue(ic->commit_wq);
2068                         queue_work(ic->writer_wq, &ic->writer_work);
2069                         flush_workqueue(ic->writer_wq);
2070                         discard_retried = true;
2071                         goto lock_retry;
2072                 }
2073         }
2074         spin_unlock_irq(&ic->endio_wait.lock);
2075
2076         if (unlikely(journal_read_pos != NOT_FOUND)) {
2077                 journal_section = journal_read_pos / ic->journal_section_entries;
2078                 journal_entry = journal_read_pos % ic->journal_section_entries;
2079                 goto journal_read_write;
2080         }
2081
2082         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2083                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2084                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2085                         struct bitmap_block_status *bbs;
2086
2087                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2088                         spin_lock(&bbs->bio_queue_lock);
2089                         bio_list_add(&bbs->bio_queue, bio);
2090                         spin_unlock(&bbs->bio_queue_lock);
2091                         queue_work(ic->writer_wq, &bbs->work);
2092                         return;
2093                 }
2094         }
2095
2096         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2097
2098         if (need_sync_io) {
2099                 init_completion(&read_comp);
2100                 dio->completion = &read_comp;
2101         } else
2102                 dio->completion = NULL;
2103
2104         dm_bio_record(&dio->bio_details, bio);
2105         bio_set_dev(bio, ic->dev->bdev);
2106         bio->bi_integrity = NULL;
2107         bio->bi_opf &= ~REQ_INTEGRITY;
2108         bio->bi_end_io = integrity_end_io;
2109         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2110
2111         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2112                 integrity_metadata(&dio->work);
2113                 dm_integrity_flush_buffers(ic);
2114
2115                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2116                 dio->completion = NULL;
2117
2118                 submit_bio_noacct(bio);
2119
2120                 return;
2121         }
2122
2123         submit_bio_noacct(bio);
2124
2125         if (need_sync_io) {
2126                 wait_for_completion_io(&read_comp);
2127                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2128                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2129                         goto skip_check;
2130                 if (ic->mode == 'B') {
2131                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2132                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2133                                 goto skip_check;
2134                 }
2135
2136                 if (likely(!bio->bi_status))
2137                         integrity_metadata(&dio->work);
2138                 else
2139 skip_check:
2140                         dec_in_flight(dio);
2141
2142         } else {
2143                 INIT_WORK(&dio->work, integrity_metadata);
2144                 queue_work(ic->metadata_wq, &dio->work);
2145         }
2146
2147         return;
2148
2149 journal_read_write:
2150         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2151                 goto lock_retry;
2152
2153         do_endio_flush(ic, dio);
2154 }
2155
2156
2157 static void integrity_bio_wait(struct work_struct *w)
2158 {
2159         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2160
2161         dm_integrity_map_continue(dio, false);
2162 }
2163
2164 static void pad_uncommitted(struct dm_integrity_c *ic)
2165 {
2166         if (ic->free_section_entry) {
2167                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2168                 ic->free_section_entry = 0;
2169                 ic->free_section++;
2170                 wraparound_section(ic, &ic->free_section);
2171                 ic->n_uncommitted_sections++;
2172         }
2173         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2174                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2175                     ic->journal_section_entries + ic->free_sectors)) {
2176                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2177                        "n_uncommitted_sections %u, n_committed_sections %u, "
2178                        "journal_section_entries %u, free_sectors %u",
2179                        ic->journal_sections, ic->journal_section_entries,
2180                        ic->n_uncommitted_sections, ic->n_committed_sections,
2181                        ic->journal_section_entries, ic->free_sectors);
2182         }
2183 }
2184
2185 static void integrity_commit(struct work_struct *w)
2186 {
2187         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2188         unsigned commit_start, commit_sections;
2189         unsigned i, j, n;
2190         struct bio *flushes;
2191
2192         del_timer(&ic->autocommit_timer);
2193
2194         spin_lock_irq(&ic->endio_wait.lock);
2195         flushes = bio_list_get(&ic->flush_bio_list);
2196         if (unlikely(ic->mode != 'J')) {
2197                 spin_unlock_irq(&ic->endio_wait.lock);
2198                 dm_integrity_flush_buffers(ic);
2199                 goto release_flush_bios;
2200         }
2201
2202         pad_uncommitted(ic);
2203         commit_start = ic->uncommitted_section;
2204         commit_sections = ic->n_uncommitted_sections;
2205         spin_unlock_irq(&ic->endio_wait.lock);
2206
2207         if (!commit_sections)
2208                 goto release_flush_bios;
2209
2210         i = commit_start;
2211         for (n = 0; n < commit_sections; n++) {
2212                 for (j = 0; j < ic->journal_section_entries; j++) {
2213                         struct journal_entry *je;
2214                         je = access_journal_entry(ic, i, j);
2215                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2216                 }
2217                 for (j = 0; j < ic->journal_section_sectors; j++) {
2218                         struct journal_sector *js;
2219                         js = access_journal(ic, i, j);
2220                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2221                 }
2222                 i++;
2223                 if (unlikely(i >= ic->journal_sections))
2224                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2225                 wraparound_section(ic, &i);
2226         }
2227         smp_rmb();
2228
2229         write_journal(ic, commit_start, commit_sections);
2230
2231         spin_lock_irq(&ic->endio_wait.lock);
2232         ic->uncommitted_section += commit_sections;
2233         wraparound_section(ic, &ic->uncommitted_section);
2234         ic->n_uncommitted_sections -= commit_sections;
2235         ic->n_committed_sections += commit_sections;
2236         spin_unlock_irq(&ic->endio_wait.lock);
2237
2238         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2239                 queue_work(ic->writer_wq, &ic->writer_work);
2240
2241 release_flush_bios:
2242         while (flushes) {
2243                 struct bio *next = flushes->bi_next;
2244                 flushes->bi_next = NULL;
2245                 do_endio(ic, flushes);
2246                 flushes = next;
2247         }
2248 }
2249
2250 static void complete_copy_from_journal(unsigned long error, void *context)
2251 {
2252         struct journal_io *io = context;
2253         struct journal_completion *comp = io->comp;
2254         struct dm_integrity_c *ic = comp->ic;
2255         remove_range(ic, &io->range);
2256         mempool_free(io, &ic->journal_io_mempool);
2257         if (unlikely(error != 0))
2258                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2259         complete_journal_op(comp);
2260 }
2261
2262 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2263                                struct journal_entry *je)
2264 {
2265         unsigned s = 0;
2266         do {
2267                 js->commit_id = je->last_bytes[s];
2268                 js++;
2269         } while (++s < ic->sectors_per_block);
2270 }
2271
2272 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2273                              unsigned write_sections, bool from_replay)
2274 {
2275         unsigned i, j, n;
2276         struct journal_completion comp;
2277         struct blk_plug plug;
2278
2279         blk_start_plug(&plug);
2280
2281         comp.ic = ic;
2282         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2283         init_completion(&comp.comp);
2284
2285         i = write_start;
2286         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2287 #ifndef INTERNAL_VERIFY
2288                 if (unlikely(from_replay))
2289 #endif
2290                         rw_section_mac(ic, i, false);
2291                 for (j = 0; j < ic->journal_section_entries; j++) {
2292                         struct journal_entry *je = access_journal_entry(ic, i, j);
2293                         sector_t sec, area, offset;
2294                         unsigned k, l, next_loop;
2295                         sector_t metadata_block;
2296                         unsigned metadata_offset;
2297                         struct journal_io *io;
2298
2299                         if (journal_entry_is_unused(je))
2300                                 continue;
2301                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2302                         sec = journal_entry_get_sector(je);
2303                         if (unlikely(from_replay)) {
2304                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2305                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2306                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2307                                 }
2308                         }
2309                         if (unlikely(sec >= ic->provided_data_sectors))
2310                                 continue;
2311                         get_area_and_offset(ic, sec, &area, &offset);
2312                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2313                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2314                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2315                                 sector_t sec2, area2, offset2;
2316                                 if (journal_entry_is_unused(je2))
2317                                         break;
2318                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2319                                 sec2 = journal_entry_get_sector(je2);
2320                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2321                                         break;
2322                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2323                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2324                                         break;
2325                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2326                         }
2327                         next_loop = k - 1;
2328
2329                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2330                         io->comp = &comp;
2331                         io->range.logical_sector = sec;
2332                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2333
2334                         spin_lock_irq(&ic->endio_wait.lock);
2335                         add_new_range_and_wait(ic, &io->range);
2336
2337                         if (likely(!from_replay)) {
2338                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2339
2340                                 /* don't write if there is newer committed sector */
2341                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2342                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2343
2344                                         journal_entry_set_unused(je2);
2345                                         remove_journal_node(ic, &section_node[j]);
2346                                         j++;
2347                                         sec += ic->sectors_per_block;
2348                                         offset += ic->sectors_per_block;
2349                                 }
2350                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2351                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2352
2353                                         journal_entry_set_unused(je2);
2354                                         remove_journal_node(ic, &section_node[k - 1]);
2355                                         k--;
2356                                 }
2357                                 if (j == k) {
2358                                         remove_range_unlocked(ic, &io->range);
2359                                         spin_unlock_irq(&ic->endio_wait.lock);
2360                                         mempool_free(io, &ic->journal_io_mempool);
2361                                         goto skip_io;
2362                                 }
2363                                 for (l = j; l < k; l++) {
2364                                         remove_journal_node(ic, &section_node[l]);
2365                                 }
2366                         }
2367                         spin_unlock_irq(&ic->endio_wait.lock);
2368
2369                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2370                         for (l = j; l < k; l++) {
2371                                 int r;
2372                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2373
2374                                 if (
2375 #ifndef INTERNAL_VERIFY
2376                                     unlikely(from_replay) &&
2377 #endif
2378                                     ic->internal_hash) {
2379                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2380
2381                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2382                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2383                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2384                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2385                                 }
2386
2387                                 journal_entry_set_unused(je2);
2388                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2389                                                         ic->tag_size, TAG_WRITE);
2390                                 if (unlikely(r)) {
2391                                         dm_integrity_io_error(ic, "reading tags", r);
2392                                 }
2393                         }
2394
2395                         atomic_inc(&comp.in_flight);
2396                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2397                                           (k - j) << ic->sb->log2_sectors_per_block,
2398                                           get_data_sector(ic, area, offset),
2399                                           complete_copy_from_journal, io);
2400 skip_io:
2401                         j = next_loop;
2402                 }
2403         }
2404
2405         dm_bufio_write_dirty_buffers_async(ic->bufio);
2406
2407         blk_finish_plug(&plug);
2408
2409         complete_journal_op(&comp);
2410         wait_for_completion_io(&comp.comp);
2411
2412         dm_integrity_flush_buffers(ic);
2413 }
2414
2415 static void integrity_writer(struct work_struct *w)
2416 {
2417         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2418         unsigned write_start, write_sections;
2419
2420         unsigned prev_free_sectors;
2421
2422         /* the following test is not needed, but it tests the replay code */
2423         if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2424                 return;
2425
2426         spin_lock_irq(&ic->endio_wait.lock);
2427         write_start = ic->committed_section;
2428         write_sections = ic->n_committed_sections;
2429         spin_unlock_irq(&ic->endio_wait.lock);
2430
2431         if (!write_sections)
2432                 return;
2433
2434         do_journal_write(ic, write_start, write_sections, false);
2435
2436         spin_lock_irq(&ic->endio_wait.lock);
2437
2438         ic->committed_section += write_sections;
2439         wraparound_section(ic, &ic->committed_section);
2440         ic->n_committed_sections -= write_sections;
2441
2442         prev_free_sectors = ic->free_sectors;
2443         ic->free_sectors += write_sections * ic->journal_section_entries;
2444         if (unlikely(!prev_free_sectors))
2445                 wake_up_locked(&ic->endio_wait);
2446
2447         spin_unlock_irq(&ic->endio_wait.lock);
2448 }
2449
2450 static void recalc_write_super(struct dm_integrity_c *ic)
2451 {
2452         int r;
2453
2454         dm_integrity_flush_buffers(ic);
2455         if (dm_integrity_failed(ic))
2456                 return;
2457
2458         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2459         if (unlikely(r))
2460                 dm_integrity_io_error(ic, "writing superblock", r);
2461 }
2462
2463 static void integrity_recalc(struct work_struct *w)
2464 {
2465         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2466         struct dm_integrity_range range;
2467         struct dm_io_request io_req;
2468         struct dm_io_region io_loc;
2469         sector_t area, offset;
2470         sector_t metadata_block;
2471         unsigned metadata_offset;
2472         sector_t logical_sector, n_sectors;
2473         __u8 *t;
2474         unsigned i;
2475         int r;
2476         unsigned super_counter = 0;
2477
2478         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2479
2480         spin_lock_irq(&ic->endio_wait.lock);
2481
2482 next_chunk:
2483
2484         if (unlikely(dm_post_suspending(ic->ti)))
2485                 goto unlock_ret;
2486
2487         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2488         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2489                 if (ic->mode == 'B') {
2490                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2491                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2492                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2493                 }
2494                 goto unlock_ret;
2495         }
2496
2497         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2498         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2499         if (!ic->meta_dev)
2500                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2501
2502         add_new_range_and_wait(ic, &range);
2503         spin_unlock_irq(&ic->endio_wait.lock);
2504         logical_sector = range.logical_sector;
2505         n_sectors = range.n_sectors;
2506
2507         if (ic->mode == 'B') {
2508                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2509                         goto advance_and_next;
2510                 }
2511                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2512                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2513                         logical_sector += ic->sectors_per_block;
2514                         n_sectors -= ic->sectors_per_block;
2515                         cond_resched();
2516                 }
2517                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2518                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2519                         n_sectors -= ic->sectors_per_block;
2520                         cond_resched();
2521                 }
2522                 get_area_and_offset(ic, logical_sector, &area, &offset);
2523         }
2524
2525         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2526
2527         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2528                 recalc_write_super(ic);
2529                 if (ic->mode == 'B') {
2530                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2531                 }
2532                 super_counter = 0;
2533         }
2534
2535         if (unlikely(dm_integrity_failed(ic)))
2536                 goto err;
2537
2538         io_req.bi_op = REQ_OP_READ;
2539         io_req.bi_op_flags = 0;
2540         io_req.mem.type = DM_IO_VMA;
2541         io_req.mem.ptr.addr = ic->recalc_buffer;
2542         io_req.notify.fn = NULL;
2543         io_req.client = ic->io;
2544         io_loc.bdev = ic->dev->bdev;
2545         io_loc.sector = get_data_sector(ic, area, offset);
2546         io_loc.count = n_sectors;
2547
2548         r = dm_io(&io_req, 1, &io_loc, NULL);
2549         if (unlikely(r)) {
2550                 dm_integrity_io_error(ic, "reading data", r);
2551                 goto err;
2552         }
2553
2554         t = ic->recalc_tags;
2555         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2556                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2557                 t += ic->tag_size;
2558         }
2559
2560         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2561
2562         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2563         if (unlikely(r)) {
2564                 dm_integrity_io_error(ic, "writing tags", r);
2565                 goto err;
2566         }
2567
2568         if (ic->mode == 'B') {
2569                 sector_t start, end;
2570                 start = (range.logical_sector >>
2571                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2572                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2573                 end = ((range.logical_sector + range.n_sectors) >>
2574                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2575                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2576                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2577         }
2578
2579 advance_and_next:
2580         cond_resched();
2581
2582         spin_lock_irq(&ic->endio_wait.lock);
2583         remove_range_unlocked(ic, &range);
2584         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2585         goto next_chunk;
2586
2587 err:
2588         remove_range(ic, &range);
2589         return;
2590
2591 unlock_ret:
2592         spin_unlock_irq(&ic->endio_wait.lock);
2593
2594         recalc_write_super(ic);
2595 }
2596
2597 static void bitmap_block_work(struct work_struct *w)
2598 {
2599         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2600         struct dm_integrity_c *ic = bbs->ic;
2601         struct bio *bio;
2602         struct bio_list bio_queue;
2603         struct bio_list waiting;
2604
2605         bio_list_init(&waiting);
2606
2607         spin_lock(&bbs->bio_queue_lock);
2608         bio_queue = bbs->bio_queue;
2609         bio_list_init(&bbs->bio_queue);
2610         spin_unlock(&bbs->bio_queue_lock);
2611
2612         while ((bio = bio_list_pop(&bio_queue))) {
2613                 struct dm_integrity_io *dio;
2614
2615                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2616
2617                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2618                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2619                         remove_range(ic, &dio->range);
2620                         INIT_WORK(&dio->work, integrity_bio_wait);
2621                         queue_work(ic->offload_wq, &dio->work);
2622                 } else {
2623                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2624                                         dio->range.n_sectors, BITMAP_OP_SET);
2625                         bio_list_add(&waiting, bio);
2626                 }
2627         }
2628
2629         if (bio_list_empty(&waiting))
2630                 return;
2631
2632         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2633                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2634                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2635
2636         while ((bio = bio_list_pop(&waiting))) {
2637                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2638
2639                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2640                                 dio->range.n_sectors, BITMAP_OP_SET);
2641
2642                 remove_range(ic, &dio->range);
2643                 INIT_WORK(&dio->work, integrity_bio_wait);
2644                 queue_work(ic->offload_wq, &dio->work);
2645         }
2646
2647         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2648 }
2649
2650 static void bitmap_flush_work(struct work_struct *work)
2651 {
2652         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2653         struct dm_integrity_range range;
2654         unsigned long limit;
2655         struct bio *bio;
2656
2657         dm_integrity_flush_buffers(ic);
2658
2659         range.logical_sector = 0;
2660         range.n_sectors = ic->provided_data_sectors;
2661
2662         spin_lock_irq(&ic->endio_wait.lock);
2663         add_new_range_and_wait(ic, &range);
2664         spin_unlock_irq(&ic->endio_wait.lock);
2665
2666         dm_integrity_flush_buffers(ic);
2667         if (ic->meta_dev)
2668                 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO);
2669
2670         limit = ic->provided_data_sectors;
2671         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2672                 limit = le64_to_cpu(ic->sb->recalc_sector)
2673                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2674                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2675         }
2676         /*DEBUG_print("zeroing journal\n");*/
2677         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2678         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2679
2680         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2681                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2682
2683         spin_lock_irq(&ic->endio_wait.lock);
2684         remove_range_unlocked(ic, &range);
2685         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2686                 bio_endio(bio);
2687                 spin_unlock_irq(&ic->endio_wait.lock);
2688                 spin_lock_irq(&ic->endio_wait.lock);
2689         }
2690         spin_unlock_irq(&ic->endio_wait.lock);
2691 }
2692
2693
2694 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2695                          unsigned n_sections, unsigned char commit_seq)
2696 {
2697         unsigned i, j, n;
2698
2699         if (!n_sections)
2700                 return;
2701
2702         for (n = 0; n < n_sections; n++) {
2703                 i = start_section + n;
2704                 wraparound_section(ic, &i);
2705                 for (j = 0; j < ic->journal_section_sectors; j++) {
2706                         struct journal_sector *js = access_journal(ic, i, j);
2707                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2708                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2709                 }
2710                 for (j = 0; j < ic->journal_section_entries; j++) {
2711                         struct journal_entry *je = access_journal_entry(ic, i, j);
2712                         journal_entry_set_unused(je);
2713                 }
2714         }
2715
2716         write_journal(ic, start_section, n_sections);
2717 }
2718
2719 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2720 {
2721         unsigned char k;
2722         for (k = 0; k < N_COMMIT_IDS; k++) {
2723                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2724                         return k;
2725         }
2726         dm_integrity_io_error(ic, "journal commit id", -EIO);
2727         return -EIO;
2728 }
2729
2730 static void replay_journal(struct dm_integrity_c *ic)
2731 {
2732         unsigned i, j;
2733         bool used_commit_ids[N_COMMIT_IDS];
2734         unsigned max_commit_id_sections[N_COMMIT_IDS];
2735         unsigned write_start, write_sections;
2736         unsigned continue_section;
2737         bool journal_empty;
2738         unsigned char unused, last_used, want_commit_seq;
2739
2740         if (ic->mode == 'R')
2741                 return;
2742
2743         if (ic->journal_uptodate)
2744                 return;
2745
2746         last_used = 0;
2747         write_start = 0;
2748
2749         if (!ic->just_formatted) {
2750                 DEBUG_print("reading journal\n");
2751                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2752                 if (ic->journal_io)
2753                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2754                 if (ic->journal_io) {
2755                         struct journal_completion crypt_comp;
2756                         crypt_comp.ic = ic;
2757                         init_completion(&crypt_comp.comp);
2758                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2759                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2760                         wait_for_completion(&crypt_comp.comp);
2761                 }
2762                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2763         }
2764
2765         if (dm_integrity_failed(ic))
2766                 goto clear_journal;
2767
2768         journal_empty = true;
2769         memset(used_commit_ids, 0, sizeof used_commit_ids);
2770         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2771         for (i = 0; i < ic->journal_sections; i++) {
2772                 for (j = 0; j < ic->journal_section_sectors; j++) {
2773                         int k;
2774                         struct journal_sector *js = access_journal(ic, i, j);
2775                         k = find_commit_seq(ic, i, j, js->commit_id);
2776                         if (k < 0)
2777                                 goto clear_journal;
2778                         used_commit_ids[k] = true;
2779                         max_commit_id_sections[k] = i;
2780                 }
2781                 if (journal_empty) {
2782                         for (j = 0; j < ic->journal_section_entries; j++) {
2783                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2784                                 if (!journal_entry_is_unused(je)) {
2785                                         journal_empty = false;
2786                                         break;
2787                                 }
2788                         }
2789                 }
2790         }
2791
2792         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2793                 unused = N_COMMIT_IDS - 1;
2794                 while (unused && !used_commit_ids[unused - 1])
2795                         unused--;
2796         } else {
2797                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2798                         if (!used_commit_ids[unused])
2799                                 break;
2800                 if (unused == N_COMMIT_IDS) {
2801                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2802                         goto clear_journal;
2803                 }
2804         }
2805         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2806                     unused, used_commit_ids[0], used_commit_ids[1],
2807                     used_commit_ids[2], used_commit_ids[3]);
2808
2809         last_used = prev_commit_seq(unused);
2810         want_commit_seq = prev_commit_seq(last_used);
2811
2812         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2813                 journal_empty = true;
2814
2815         write_start = max_commit_id_sections[last_used] + 1;
2816         if (unlikely(write_start >= ic->journal_sections))
2817                 want_commit_seq = next_commit_seq(want_commit_seq);
2818         wraparound_section(ic, &write_start);
2819
2820         i = write_start;
2821         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2822                 for (j = 0; j < ic->journal_section_sectors; j++) {
2823                         struct journal_sector *js = access_journal(ic, i, j);
2824
2825                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2826                                 /*
2827                                  * This could be caused by crash during writing.
2828                                  * We won't replay the inconsistent part of the
2829                                  * journal.
2830                                  */
2831                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2832                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2833                                 goto brk;
2834                         }
2835                 }
2836                 i++;
2837                 if (unlikely(i >= ic->journal_sections))
2838                         want_commit_seq = next_commit_seq(want_commit_seq);
2839                 wraparound_section(ic, &i);
2840         }
2841 brk:
2842
2843         if (!journal_empty) {
2844                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2845                             write_sections, write_start, want_commit_seq);
2846                 do_journal_write(ic, write_start, write_sections, true);
2847         }
2848
2849         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2850                 continue_section = write_start;
2851                 ic->commit_seq = want_commit_seq;
2852                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2853         } else {
2854                 unsigned s;
2855                 unsigned char erase_seq;
2856 clear_journal:
2857                 DEBUG_print("clearing journal\n");
2858
2859                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2860                 s = write_start;
2861                 init_journal(ic, s, 1, erase_seq);
2862                 s++;
2863                 wraparound_section(ic, &s);
2864                 if (ic->journal_sections >= 2) {
2865                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2866                         s += ic->journal_sections - 2;
2867                         wraparound_section(ic, &s);
2868                         init_journal(ic, s, 1, erase_seq);
2869                 }
2870
2871                 continue_section = 0;
2872                 ic->commit_seq = next_commit_seq(erase_seq);
2873         }
2874
2875         ic->committed_section = continue_section;
2876         ic->n_committed_sections = 0;
2877
2878         ic->uncommitted_section = continue_section;
2879         ic->n_uncommitted_sections = 0;
2880
2881         ic->free_section = continue_section;
2882         ic->free_section_entry = 0;
2883         ic->free_sectors = ic->journal_entries;
2884
2885         ic->journal_tree_root = RB_ROOT;
2886         for (i = 0; i < ic->journal_entries; i++)
2887                 init_journal_node(&ic->journal_tree[i]);
2888 }
2889
2890 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2891 {
2892         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2893
2894         if (ic->mode == 'B') {
2895                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2896                 ic->synchronous_mode = 1;
2897
2898                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2899                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2900                 flush_workqueue(ic->commit_wq);
2901         }
2902 }
2903
2904 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2905 {
2906         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2907
2908         DEBUG_print("dm_integrity_reboot\n");
2909
2910         dm_integrity_enter_synchronous_mode(ic);
2911
2912         return NOTIFY_DONE;
2913 }
2914
2915 static void dm_integrity_postsuspend(struct dm_target *ti)
2916 {
2917         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2918         int r;
2919
2920         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2921
2922         del_timer_sync(&ic->autocommit_timer);
2923
2924         if (ic->recalc_wq)
2925                 drain_workqueue(ic->recalc_wq);
2926
2927         if (ic->mode == 'B')
2928                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2929
2930         queue_work(ic->commit_wq, &ic->commit_work);
2931         drain_workqueue(ic->commit_wq);
2932
2933         if (ic->mode == 'J') {
2934                 if (ic->meta_dev)
2935                         queue_work(ic->writer_wq, &ic->writer_work);
2936                 drain_workqueue(ic->writer_wq);
2937                 dm_integrity_flush_buffers(ic);
2938         }
2939
2940         if (ic->mode == 'B') {
2941                 dm_integrity_flush_buffers(ic);
2942 #if 1
2943                 /* set to 0 to test bitmap replay code */
2944                 init_journal(ic, 0, ic->journal_sections, 0);
2945                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2946                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2947                 if (unlikely(r))
2948                         dm_integrity_io_error(ic, "writing superblock", r);
2949 #endif
2950         }
2951
2952         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2953
2954         ic->journal_uptodate = true;
2955 }
2956
2957 static void dm_integrity_resume(struct dm_target *ti)
2958 {
2959         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2960         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
2961         int r;
2962
2963         DEBUG_print("resume\n");
2964
2965         if (ic->provided_data_sectors != old_provided_data_sectors) {
2966                 if (ic->provided_data_sectors > old_provided_data_sectors &&
2967                     ic->mode == 'B' &&
2968                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2969                         rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2970                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2971                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
2972                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
2973                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2974                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2975                 }
2976
2977                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2978                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2979                 if (unlikely(r))
2980                         dm_integrity_io_error(ic, "writing superblock", r);
2981         }
2982
2983         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2984                 DEBUG_print("resume dirty_bitmap\n");
2985                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2986                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2987                 if (ic->mode == 'B') {
2988                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2989                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2990                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2991                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2992                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
2993                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2994                                         ic->sb->recalc_sector = cpu_to_le64(0);
2995                                 }
2996                         } else {
2997                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2998                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2999                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3000                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3001                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3002                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3003                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3004                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3005                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3006                                 ic->sb->recalc_sector = cpu_to_le64(0);
3007                         }
3008                 } else {
3009                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3010                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
3011                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3012                                 ic->sb->recalc_sector = cpu_to_le64(0);
3013                         }
3014                         init_journal(ic, 0, ic->journal_sections, 0);
3015                         replay_journal(ic);
3016                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3017                 }
3018                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3019                 if (unlikely(r))
3020                         dm_integrity_io_error(ic, "writing superblock", r);
3021         } else {
3022                 replay_journal(ic);
3023                 if (ic->mode == 'B') {
3024                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3025                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3026                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3027                         if (unlikely(r))
3028                                 dm_integrity_io_error(ic, "writing superblock", r);
3029
3030                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3031                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3032                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3033                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3034                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3035                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3036                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3037                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3038                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3039                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3040                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3041                         }
3042                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3043                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3044                 }
3045         }
3046
3047         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3048         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3049                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3050                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3051                 if (recalc_pos < ic->provided_data_sectors) {
3052                         queue_work(ic->recalc_wq, &ic->recalc_work);
3053                 } else if (recalc_pos > ic->provided_data_sectors) {
3054                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3055                         recalc_write_super(ic);
3056                 }
3057         }
3058
3059         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3060         ic->reboot_notifier.next = NULL;
3061         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3062         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3063
3064 #if 0
3065         /* set to 1 to stress test synchronous mode */
3066         dm_integrity_enter_synchronous_mode(ic);
3067 #endif
3068 }
3069
3070 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3071                                 unsigned status_flags, char *result, unsigned maxlen)
3072 {
3073         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3074         unsigned arg_count;
3075         size_t sz = 0;
3076
3077         switch (type) {
3078         case STATUSTYPE_INFO:
3079                 DMEMIT("%llu %llu",
3080                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3081                         ic->provided_data_sectors);
3082                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3083                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3084                 else
3085                         DMEMIT(" -");
3086                 break;
3087
3088         case STATUSTYPE_TABLE: {
3089                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3090                 watermark_percentage += ic->journal_entries / 2;
3091                 do_div(watermark_percentage, ic->journal_entries);
3092                 arg_count = 3;
3093                 arg_count += !!ic->meta_dev;
3094                 arg_count += ic->sectors_per_block != 1;
3095                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3096                 arg_count += ic->discard;
3097                 arg_count += ic->mode == 'J';
3098                 arg_count += ic->mode == 'J';
3099                 arg_count += ic->mode == 'B';
3100                 arg_count += ic->mode == 'B';
3101                 arg_count += !!ic->internal_hash_alg.alg_string;
3102                 arg_count += !!ic->journal_crypt_alg.alg_string;
3103                 arg_count += !!ic->journal_mac_alg.alg_string;
3104                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3105                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3106                        ic->tag_size, ic->mode, arg_count);
3107                 if (ic->meta_dev)
3108                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3109                 if (ic->sectors_per_block != 1)
3110                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3111                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3112                         DMEMIT(" recalculate");
3113                 if (ic->discard)
3114                         DMEMIT(" allow_discards");
3115                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3116                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3117                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3118                 if (ic->mode == 'J') {
3119                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3120                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3121                 }
3122                 if (ic->mode == 'B') {
3123                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3124                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3125                 }
3126                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3127                         DMEMIT(" fix_padding");
3128
3129 #define EMIT_ALG(a, n)                                                  \
3130                 do {                                                    \
3131                         if (ic->a.alg_string) {                         \
3132                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3133                                 if (ic->a.key_string)                   \
3134                                         DMEMIT(":%s", ic->a.key_string);\
3135                         }                                               \
3136                 } while (0)
3137                 EMIT_ALG(internal_hash_alg, "internal_hash");
3138                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3139                 EMIT_ALG(journal_mac_alg, "journal_mac");
3140                 break;
3141         }
3142         }
3143 }
3144
3145 static int dm_integrity_iterate_devices(struct dm_target *ti,
3146                                         iterate_devices_callout_fn fn, void *data)
3147 {
3148         struct dm_integrity_c *ic = ti->private;
3149
3150         if (!ic->meta_dev)
3151                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3152         else
3153                 return fn(ti, ic->dev, 0, ti->len, data);
3154 }
3155
3156 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3157 {
3158         struct dm_integrity_c *ic = ti->private;
3159
3160         if (ic->sectors_per_block > 1) {
3161                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3162                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3163                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3164         }
3165 }
3166
3167 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3168 {
3169         unsigned sector_space = JOURNAL_SECTOR_DATA;
3170
3171         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3172         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3173                                          JOURNAL_ENTRY_ROUNDUP);
3174
3175         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3176                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3177         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3178         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3179         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3180         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3181 }
3182
3183 static int calculate_device_limits(struct dm_integrity_c *ic)
3184 {
3185         __u64 initial_sectors;
3186
3187         calculate_journal_section_size(ic);
3188         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3189         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3190                 return -EINVAL;
3191         ic->initial_sectors = initial_sectors;
3192
3193         if (!ic->meta_dev) {
3194                 sector_t last_sector, last_area, last_offset;
3195
3196                 /* we have to maintain excessive padding for compatibility with existing volumes */
3197                 __u64 metadata_run_padding =
3198                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3199                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3200                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3201
3202                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3203                                             metadata_run_padding) >> SECTOR_SHIFT;
3204                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3205                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3206                 else
3207                         ic->log2_metadata_run = -1;
3208
3209                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3210                 last_sector = get_data_sector(ic, last_area, last_offset);
3211                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3212                         return -EINVAL;
3213         } else {
3214                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3215                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3216                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3217                 meta_size <<= ic->log2_buffer_sectors;
3218                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3219                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3220                         return -EINVAL;
3221                 ic->metadata_run = 1;
3222                 ic->log2_metadata_run = 0;
3223         }
3224
3225         return 0;
3226 }
3227
3228 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3229 {
3230         if (!ic->meta_dev) {
3231                 int test_bit;
3232                 ic->provided_data_sectors = 0;
3233                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3234                         __u64 prev_data_sectors = ic->provided_data_sectors;
3235
3236                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3237                         if (calculate_device_limits(ic))
3238                                 ic->provided_data_sectors = prev_data_sectors;
3239                 }
3240         } else {
3241                 ic->provided_data_sectors = ic->data_device_sectors;
3242                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3243         }
3244 }
3245
3246 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3247 {
3248         unsigned journal_sections;
3249         int test_bit;
3250
3251         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3252         memcpy(ic->sb->magic, SB_MAGIC, 8);
3253         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3254         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3255         if (ic->journal_mac_alg.alg_string)
3256                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3257
3258         calculate_journal_section_size(ic);
3259         journal_sections = journal_sectors / ic->journal_section_sectors;
3260         if (!journal_sections)
3261                 journal_sections = 1;
3262
3263         if (!ic->meta_dev) {
3264                 if (ic->fix_padding)
3265                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3266                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3267                 if (!interleave_sectors)
3268                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3269                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3270                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3271                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3272
3273                 get_provided_data_sectors(ic);
3274                 if (!ic->provided_data_sectors)
3275                         return -EINVAL;
3276         } else {
3277                 ic->sb->log2_interleave_sectors = 0;
3278
3279                 get_provided_data_sectors(ic);
3280                 if (!ic->provided_data_sectors)
3281                         return -EINVAL;
3282
3283 try_smaller_buffer:
3284                 ic->sb->journal_sections = cpu_to_le32(0);
3285                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3286                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3287                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3288                         if (test_journal_sections > journal_sections)
3289                                 continue;
3290                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3291                         if (calculate_device_limits(ic))
3292                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3293
3294                 }
3295                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3296                         if (ic->log2_buffer_sectors > 3) {
3297                                 ic->log2_buffer_sectors--;
3298                                 goto try_smaller_buffer;
3299                         }
3300                         return -EINVAL;
3301                 }
3302         }
3303
3304         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3305
3306         sb_set_version(ic);
3307
3308         return 0;
3309 }
3310
3311 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3312 {
3313         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3314         struct blk_integrity bi;
3315
3316         memset(&bi, 0, sizeof(bi));
3317         bi.profile = &dm_integrity_profile;
3318         bi.tuple_size = ic->tag_size;
3319         bi.tag_size = bi.tuple_size;
3320         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3321
3322         blk_integrity_register(disk, &bi);
3323         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3324 }
3325
3326 static void dm_integrity_free_page_list(struct page_list *pl)
3327 {
3328         unsigned i;
3329
3330         if (!pl)
3331                 return;
3332         for (i = 0; pl[i].page; i++)
3333                 __free_page(pl[i].page);
3334         kvfree(pl);
3335 }
3336
3337 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3338 {
3339         struct page_list *pl;
3340         unsigned i;
3341
3342         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3343         if (!pl)
3344                 return NULL;
3345
3346         for (i = 0; i < n_pages; i++) {
3347                 pl[i].page = alloc_page(GFP_KERNEL);
3348                 if (!pl[i].page) {
3349                         dm_integrity_free_page_list(pl);
3350                         return NULL;
3351                 }
3352                 if (i)
3353                         pl[i - 1].next = &pl[i];
3354         }
3355         pl[i].page = NULL;
3356         pl[i].next = NULL;
3357
3358         return pl;
3359 }
3360
3361 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3362 {
3363         unsigned i;
3364         for (i = 0; i < ic->journal_sections; i++)
3365                 kvfree(sl[i]);
3366         kvfree(sl);
3367 }
3368
3369 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3370                                                                    struct page_list *pl)
3371 {
3372         struct scatterlist **sl;
3373         unsigned i;
3374
3375         sl = kvmalloc_array(ic->journal_sections,
3376                             sizeof(struct scatterlist *),
3377                             GFP_KERNEL | __GFP_ZERO);
3378         if (!sl)
3379                 return NULL;
3380
3381         for (i = 0; i < ic->journal_sections; i++) {
3382                 struct scatterlist *s;
3383                 unsigned start_index, start_offset;
3384                 unsigned end_index, end_offset;
3385                 unsigned n_pages;
3386                 unsigned idx;
3387
3388                 page_list_location(ic, i, 0, &start_index, &start_offset);
3389                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3390                                    &end_index, &end_offset);
3391
3392                 n_pages = (end_index - start_index + 1);
3393
3394                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3395                                    GFP_KERNEL);
3396                 if (!s) {
3397                         dm_integrity_free_journal_scatterlist(ic, sl);
3398                         return NULL;
3399                 }
3400
3401                 sg_init_table(s, n_pages);
3402                 for (idx = start_index; idx <= end_index; idx++) {
3403                         char *va = lowmem_page_address(pl[idx].page);
3404                         unsigned start = 0, end = PAGE_SIZE;
3405                         if (idx == start_index)
3406                                 start = start_offset;
3407                         if (idx == end_index)
3408                                 end = end_offset + (1 << SECTOR_SHIFT);
3409                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3410                 }
3411
3412                 sl[i] = s;
3413         }
3414
3415         return sl;
3416 }
3417
3418 static void free_alg(struct alg_spec *a)
3419 {
3420         kfree_sensitive(a->alg_string);
3421         kfree_sensitive(a->key);
3422         memset(a, 0, sizeof *a);
3423 }
3424
3425 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3426 {
3427         char *k;
3428
3429         free_alg(a);
3430
3431         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3432         if (!a->alg_string)
3433                 goto nomem;
3434
3435         k = strchr(a->alg_string, ':');
3436         if (k) {
3437                 *k = 0;
3438                 a->key_string = k + 1;
3439                 if (strlen(a->key_string) & 1)
3440                         goto inval;
3441
3442                 a->key_size = strlen(a->key_string) / 2;
3443                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3444                 if (!a->key)
3445                         goto nomem;
3446                 if (hex2bin(a->key, a->key_string, a->key_size))
3447                         goto inval;
3448         }
3449
3450         return 0;
3451 inval:
3452         *error = error_inval;
3453         return -EINVAL;
3454 nomem:
3455         *error = "Out of memory for an argument";
3456         return -ENOMEM;
3457 }
3458
3459 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3460                    char *error_alg, char *error_key)
3461 {
3462         int r;
3463
3464         if (a->alg_string) {
3465                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3466                 if (IS_ERR(*hash)) {
3467                         *error = error_alg;
3468                         r = PTR_ERR(*hash);
3469                         *hash = NULL;
3470                         return r;
3471                 }
3472
3473                 if (a->key) {
3474                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3475                         if (r) {
3476                                 *error = error_key;
3477                                 return r;
3478                         }
3479                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3480                         *error = error_key;
3481                         return -ENOKEY;
3482                 }
3483         }
3484
3485         return 0;
3486 }
3487
3488 static int create_journal(struct dm_integrity_c *ic, char **error)
3489 {
3490         int r = 0;
3491         unsigned i;
3492         __u64 journal_pages, journal_desc_size, journal_tree_size;
3493         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3494         struct skcipher_request *req = NULL;
3495
3496         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3497         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3498         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3499         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3500
3501         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3502                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3503         journal_desc_size = journal_pages * sizeof(struct page_list);
3504         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3505                 *error = "Journal doesn't fit into memory";
3506                 r = -ENOMEM;
3507                 goto bad;
3508         }
3509         ic->journal_pages = journal_pages;
3510
3511         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3512         if (!ic->journal) {
3513                 *error = "Could not allocate memory for journal";
3514                 r = -ENOMEM;
3515                 goto bad;
3516         }
3517         if (ic->journal_crypt_alg.alg_string) {
3518                 unsigned ivsize, blocksize;
3519                 struct journal_completion comp;
3520
3521                 comp.ic = ic;
3522                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3523                 if (IS_ERR(ic->journal_crypt)) {
3524                         *error = "Invalid journal cipher";
3525                         r = PTR_ERR(ic->journal_crypt);
3526                         ic->journal_crypt = NULL;
3527                         goto bad;
3528                 }
3529                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3530                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3531
3532                 if (ic->journal_crypt_alg.key) {
3533                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3534                                                    ic->journal_crypt_alg.key_size);
3535                         if (r) {
3536                                 *error = "Error setting encryption key";
3537                                 goto bad;
3538                         }
3539                 }
3540                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3541                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3542
3543                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3544                 if (!ic->journal_io) {
3545                         *error = "Could not allocate memory for journal io";
3546                         r = -ENOMEM;
3547                         goto bad;
3548                 }
3549
3550                 if (blocksize == 1) {
3551                         struct scatterlist *sg;
3552
3553                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3554                         if (!req) {
3555                                 *error = "Could not allocate crypt request";
3556                                 r = -ENOMEM;
3557                                 goto bad;
3558                         }
3559
3560                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3561                         if (!crypt_iv) {
3562                                 *error = "Could not allocate iv";
3563                                 r = -ENOMEM;
3564                                 goto bad;
3565                         }
3566
3567                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3568                         if (!ic->journal_xor) {
3569                                 *error = "Could not allocate memory for journal xor";
3570                                 r = -ENOMEM;
3571                                 goto bad;
3572                         }
3573
3574                         sg = kvmalloc_array(ic->journal_pages + 1,
3575                                             sizeof(struct scatterlist),
3576                                             GFP_KERNEL);
3577                         if (!sg) {
3578                                 *error = "Unable to allocate sg list";
3579                                 r = -ENOMEM;
3580                                 goto bad;
3581                         }
3582                         sg_init_table(sg, ic->journal_pages + 1);
3583                         for (i = 0; i < ic->journal_pages; i++) {
3584                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3585                                 clear_page(va);
3586                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3587                         }
3588                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3589
3590                         skcipher_request_set_crypt(req, sg, sg,
3591                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3592                         init_completion(&comp.comp);
3593                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3594                         if (do_crypt(true, req, &comp))
3595                                 wait_for_completion(&comp.comp);
3596                         kvfree(sg);
3597                         r = dm_integrity_failed(ic);
3598                         if (r) {
3599                                 *error = "Unable to encrypt journal";
3600                                 goto bad;
3601                         }
3602                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3603
3604                         crypto_free_skcipher(ic->journal_crypt);
3605                         ic->journal_crypt = NULL;
3606                 } else {
3607                         unsigned crypt_len = roundup(ivsize, blocksize);
3608
3609                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3610                         if (!req) {
3611                                 *error = "Could not allocate crypt request";
3612                                 r = -ENOMEM;
3613                                 goto bad;
3614                         }
3615
3616                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3617                         if (!crypt_iv) {
3618                                 *error = "Could not allocate iv";
3619                                 r = -ENOMEM;
3620                                 goto bad;
3621                         }
3622
3623                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3624                         if (!crypt_data) {
3625                                 *error = "Unable to allocate crypt data";
3626                                 r = -ENOMEM;
3627                                 goto bad;
3628                         }
3629
3630                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3631                         if (!ic->journal_scatterlist) {
3632                                 *error = "Unable to allocate sg list";
3633                                 r = -ENOMEM;
3634                                 goto bad;
3635                         }
3636                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3637                         if (!ic->journal_io_scatterlist) {
3638                                 *error = "Unable to allocate sg list";
3639                                 r = -ENOMEM;
3640                                 goto bad;
3641                         }
3642                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3643                                                          sizeof(struct skcipher_request *),
3644                                                          GFP_KERNEL | __GFP_ZERO);
3645                         if (!ic->sk_requests) {
3646                                 *error = "Unable to allocate sk requests";
3647                                 r = -ENOMEM;
3648                                 goto bad;
3649                         }
3650                         for (i = 0; i < ic->journal_sections; i++) {
3651                                 struct scatterlist sg;
3652                                 struct skcipher_request *section_req;
3653                                 __u32 section_le = cpu_to_le32(i);
3654
3655                                 memset(crypt_iv, 0x00, ivsize);
3656                                 memset(crypt_data, 0x00, crypt_len);
3657                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3658
3659                                 sg_init_one(&sg, crypt_data, crypt_len);
3660                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3661                                 init_completion(&comp.comp);
3662                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3663                                 if (do_crypt(true, req, &comp))
3664                                         wait_for_completion(&comp.comp);
3665
3666                                 r = dm_integrity_failed(ic);
3667                                 if (r) {
3668                                         *error = "Unable to generate iv";
3669                                         goto bad;
3670                                 }
3671
3672                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3673                                 if (!section_req) {
3674                                         *error = "Unable to allocate crypt request";
3675                                         r = -ENOMEM;
3676                                         goto bad;
3677                                 }
3678                                 section_req->iv = kmalloc_array(ivsize, 2,
3679                                                                 GFP_KERNEL);
3680                                 if (!section_req->iv) {
3681                                         skcipher_request_free(section_req);
3682                                         *error = "Unable to allocate iv";
3683                                         r = -ENOMEM;
3684                                         goto bad;
3685                                 }
3686                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3687                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3688                                 ic->sk_requests[i] = section_req;
3689                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3690                         }
3691                 }
3692         }
3693
3694         for (i = 0; i < N_COMMIT_IDS; i++) {
3695                 unsigned j;
3696 retest_commit_id:
3697                 for (j = 0; j < i; j++) {
3698                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3699                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3700                                 goto retest_commit_id;
3701                         }
3702                 }
3703                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3704         }
3705
3706         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3707         if (journal_tree_size > ULONG_MAX) {
3708                 *error = "Journal doesn't fit into memory";
3709                 r = -ENOMEM;
3710                 goto bad;
3711         }
3712         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3713         if (!ic->journal_tree) {
3714                 *error = "Could not allocate memory for journal tree";
3715                 r = -ENOMEM;
3716         }
3717 bad:
3718         kfree(crypt_data);
3719         kfree(crypt_iv);
3720         skcipher_request_free(req);
3721
3722         return r;
3723 }
3724
3725 /*
3726  * Construct a integrity mapping
3727  *
3728  * Arguments:
3729  *      device
3730  *      offset from the start of the device
3731  *      tag size
3732  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3733  *      number of optional arguments
3734  *      optional arguments:
3735  *              journal_sectors
3736  *              interleave_sectors
3737  *              buffer_sectors
3738  *              journal_watermark
3739  *              commit_time
3740  *              meta_device
3741  *              block_size
3742  *              sectors_per_bit
3743  *              bitmap_flush_interval
3744  *              internal_hash
3745  *              journal_crypt
3746  *              journal_mac
3747  *              recalculate
3748  */
3749 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3750 {
3751         struct dm_integrity_c *ic;
3752         char dummy;
3753         int r;
3754         unsigned extra_args;
3755         struct dm_arg_set as;
3756         static const struct dm_arg _args[] = {
3757                 {0, 9, "Invalid number of feature args"},
3758         };
3759         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3760         bool should_write_sb;
3761         __u64 threshold;
3762         unsigned long long start;
3763         __s8 log2_sectors_per_bitmap_bit = -1;
3764         __s8 log2_blocks_per_bitmap_bit;
3765         __u64 bits_in_journal;
3766         __u64 n_bitmap_bits;
3767
3768 #define DIRECT_ARGUMENTS        4
3769
3770         if (argc <= DIRECT_ARGUMENTS) {
3771                 ti->error = "Invalid argument count";
3772                 return -EINVAL;
3773         }
3774
3775         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3776         if (!ic) {
3777                 ti->error = "Cannot allocate integrity context";
3778                 return -ENOMEM;
3779         }
3780         ti->private = ic;
3781         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3782         ic->ti = ti;
3783
3784         ic->in_progress = RB_ROOT;
3785         INIT_LIST_HEAD(&ic->wait_list);
3786         init_waitqueue_head(&ic->endio_wait);
3787         bio_list_init(&ic->flush_bio_list);
3788         init_waitqueue_head(&ic->copy_to_journal_wait);
3789         init_completion(&ic->crypto_backoff);
3790         atomic64_set(&ic->number_of_mismatches, 0);
3791         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3792
3793         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3794         if (r) {
3795                 ti->error = "Device lookup failed";
3796                 goto bad;
3797         }
3798
3799         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3800                 ti->error = "Invalid starting offset";
3801                 r = -EINVAL;
3802                 goto bad;
3803         }
3804         ic->start = start;
3805
3806         if (strcmp(argv[2], "-")) {
3807                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3808                         ti->error = "Invalid tag size";
3809                         r = -EINVAL;
3810                         goto bad;
3811                 }
3812         }
3813
3814         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3815             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3816                 ic->mode = argv[3][0];
3817         } else {
3818                 ti->error = "Invalid mode (expecting J, B, D, R)";
3819                 r = -EINVAL;
3820                 goto bad;
3821         }
3822
3823         journal_sectors = 0;
3824         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3825         buffer_sectors = DEFAULT_BUFFER_SECTORS;
3826         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3827         sync_msec = DEFAULT_SYNC_MSEC;
3828         ic->sectors_per_block = 1;
3829
3830         as.argc = argc - DIRECT_ARGUMENTS;
3831         as.argv = argv + DIRECT_ARGUMENTS;
3832         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3833         if (r)
3834                 goto bad;
3835
3836         while (extra_args--) {
3837                 const char *opt_string;
3838                 unsigned val;
3839                 unsigned long long llval;
3840                 opt_string = dm_shift_arg(&as);
3841                 if (!opt_string) {
3842                         r = -EINVAL;
3843                         ti->error = "Not enough feature arguments";
3844                         goto bad;
3845                 }
3846                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3847                         journal_sectors = val ? val : 1;
3848                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3849                         interleave_sectors = val;
3850                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3851                         buffer_sectors = val;
3852                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3853                         journal_watermark = val;
3854                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3855                         sync_msec = val;
3856                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3857                         if (ic->meta_dev) {
3858                                 dm_put_device(ti, ic->meta_dev);
3859                                 ic->meta_dev = NULL;
3860                         }
3861                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3862                                           dm_table_get_mode(ti->table), &ic->meta_dev);
3863                         if (r) {
3864                                 ti->error = "Device lookup failed";
3865                                 goto bad;
3866                         }
3867                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3868                         if (val < 1 << SECTOR_SHIFT ||
3869                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3870                             (val & (val -1))) {
3871                                 r = -EINVAL;
3872                                 ti->error = "Invalid block_size argument";
3873                                 goto bad;
3874                         }
3875                         ic->sectors_per_block = val >> SECTOR_SHIFT;
3876                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3877                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3878                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3879                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3880                                 r = -EINVAL;
3881                                 ti->error = "Invalid bitmap_flush_interval argument";
3882                         }
3883                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
3884                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3885                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3886                                             "Invalid internal_hash argument");
3887                         if (r)
3888                                 goto bad;
3889                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3890                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3891                                             "Invalid journal_crypt argument");
3892                         if (r)
3893                                 goto bad;
3894                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3895                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3896                                             "Invalid journal_mac argument");
3897                         if (r)
3898                                 goto bad;
3899                 } else if (!strcmp(opt_string, "recalculate")) {
3900                         ic->recalculate_flag = true;
3901                 } else if (!strcmp(opt_string, "allow_discards")) {
3902                         ic->discard = true;
3903                 } else if (!strcmp(opt_string, "fix_padding")) {
3904                         ic->fix_padding = true;
3905                 } else {
3906                         r = -EINVAL;
3907                         ti->error = "Invalid argument";
3908                         goto bad;
3909                 }
3910         }
3911
3912         ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3913         if (!ic->meta_dev)
3914                 ic->meta_device_sectors = ic->data_device_sectors;
3915         else
3916                 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3917
3918         if (!journal_sectors) {
3919                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3920                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3921         }
3922
3923         if (!buffer_sectors)
3924                 buffer_sectors = 1;
3925         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3926
3927         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3928                     "Invalid internal hash", "Error setting internal hash key");
3929         if (r)
3930                 goto bad;
3931
3932         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3933                     "Invalid journal mac", "Error setting journal mac key");
3934         if (r)
3935                 goto bad;
3936
3937         if (!ic->tag_size) {
3938                 if (!ic->internal_hash) {
3939                         ti->error = "Unknown tag size";
3940                         r = -EINVAL;
3941                         goto bad;
3942                 }
3943                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3944         }
3945         if (ic->tag_size > MAX_TAG_SIZE) {
3946                 ti->error = "Too big tag size";
3947                 r = -EINVAL;
3948                 goto bad;
3949         }
3950         if (!(ic->tag_size & (ic->tag_size - 1)))
3951                 ic->log2_tag_size = __ffs(ic->tag_size);
3952         else
3953                 ic->log2_tag_size = -1;
3954
3955         if (ic->mode == 'B' && !ic->internal_hash) {
3956                 r = -EINVAL;
3957                 ti->error = "Bitmap mode can be only used with internal hash";
3958                 goto bad;
3959         }
3960
3961         if (ic->discard && !ic->internal_hash) {
3962                 r = -EINVAL;
3963                 ti->error = "Discard can be only used with internal hash";
3964                 goto bad;
3965         }
3966
3967         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3968         ic->autocommit_msec = sync_msec;
3969         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3970
3971         ic->io = dm_io_client_create();
3972         if (IS_ERR(ic->io)) {
3973                 r = PTR_ERR(ic->io);
3974                 ic->io = NULL;
3975                 ti->error = "Cannot allocate dm io";
3976                 goto bad;
3977         }
3978
3979         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3980         if (r) {
3981                 ti->error = "Cannot allocate mempool";
3982                 goto bad;
3983         }
3984
3985         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3986                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3987         if (!ic->metadata_wq) {
3988                 ti->error = "Cannot allocate workqueue";
3989                 r = -ENOMEM;
3990                 goto bad;
3991         }
3992
3993         /*
3994          * If this workqueue were percpu, it would cause bio reordering
3995          * and reduced performance.
3996          */
3997         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3998         if (!ic->wait_wq) {
3999                 ti->error = "Cannot allocate workqueue";
4000                 r = -ENOMEM;
4001                 goto bad;
4002         }
4003
4004         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4005                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4006         if (!ic->offload_wq) {
4007                 ti->error = "Cannot allocate workqueue";
4008                 r = -ENOMEM;
4009                 goto bad;
4010         }
4011
4012         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4013         if (!ic->commit_wq) {
4014                 ti->error = "Cannot allocate workqueue";
4015                 r = -ENOMEM;
4016                 goto bad;
4017         }
4018         INIT_WORK(&ic->commit_work, integrity_commit);
4019
4020         if (ic->mode == 'J' || ic->mode == 'B') {
4021                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4022                 if (!ic->writer_wq) {
4023                         ti->error = "Cannot allocate workqueue";
4024                         r = -ENOMEM;
4025                         goto bad;
4026                 }
4027                 INIT_WORK(&ic->writer_work, integrity_writer);
4028         }
4029
4030         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4031         if (!ic->sb) {
4032                 r = -ENOMEM;
4033                 ti->error = "Cannot allocate superblock area";
4034                 goto bad;
4035         }
4036
4037         r = sync_rw_sb(ic, REQ_OP_READ, 0);
4038         if (r) {
4039                 ti->error = "Error reading superblock";
4040                 goto bad;
4041         }
4042         should_write_sb = false;
4043         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4044                 if (ic->mode != 'R') {
4045                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4046                                 r = -EINVAL;
4047                                 ti->error = "The device is not initialized";
4048                                 goto bad;
4049                         }
4050                 }
4051
4052                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4053                 if (r) {
4054                         ti->error = "Could not initialize superblock";
4055                         goto bad;
4056                 }
4057                 if (ic->mode != 'R')
4058                         should_write_sb = true;
4059         }
4060
4061         if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
4062                 r = -EINVAL;
4063                 ti->error = "Unknown version";
4064                 goto bad;
4065         }
4066         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4067                 r = -EINVAL;
4068                 ti->error = "Tag size doesn't match the information in superblock";
4069                 goto bad;
4070         }
4071         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4072                 r = -EINVAL;
4073                 ti->error = "Block size doesn't match the information in superblock";
4074                 goto bad;
4075         }
4076         if (!le32_to_cpu(ic->sb->journal_sections)) {
4077                 r = -EINVAL;
4078                 ti->error = "Corrupted superblock, journal_sections is 0";
4079                 goto bad;
4080         }
4081         /* make sure that ti->max_io_len doesn't overflow */
4082         if (!ic->meta_dev) {
4083                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4084                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4085                         r = -EINVAL;
4086                         ti->error = "Invalid interleave_sectors in the superblock";
4087                         goto bad;
4088                 }
4089         } else {
4090                 if (ic->sb->log2_interleave_sectors) {
4091                         r = -EINVAL;
4092                         ti->error = "Invalid interleave_sectors in the superblock";
4093                         goto bad;
4094                 }
4095         }
4096         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4097                 r = -EINVAL;
4098                 ti->error = "Journal mac mismatch";
4099                 goto bad;
4100         }
4101
4102         get_provided_data_sectors(ic);
4103         if (!ic->provided_data_sectors) {
4104                 r = -EINVAL;
4105                 ti->error = "The device is too small";
4106                 goto bad;
4107         }
4108
4109 try_smaller_buffer:
4110         r = calculate_device_limits(ic);
4111         if (r) {
4112                 if (ic->meta_dev) {
4113                         if (ic->log2_buffer_sectors > 3) {
4114                                 ic->log2_buffer_sectors--;
4115                                 goto try_smaller_buffer;
4116                         }
4117                 }
4118                 ti->error = "The device is too small";
4119                 goto bad;
4120         }
4121
4122         if (log2_sectors_per_bitmap_bit < 0)
4123                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4124         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4125                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4126
4127         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4128         if (bits_in_journal > UINT_MAX)
4129                 bits_in_journal = UINT_MAX;
4130         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4131                 log2_sectors_per_bitmap_bit++;
4132
4133         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4134         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4135         if (should_write_sb) {
4136                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4137         }
4138         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4139                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4140         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4141
4142         if (!ic->meta_dev)
4143                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4144
4145         if (ti->len > ic->provided_data_sectors) {
4146                 r = -EINVAL;
4147                 ti->error = "Not enough provided sectors for requested mapping size";
4148                 goto bad;
4149         }
4150
4151
4152         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4153         threshold += 50;
4154         do_div(threshold, 100);
4155         ic->free_sectors_threshold = threshold;
4156
4157         DEBUG_print("initialized:\n");
4158         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4159         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4160         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4161         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4162         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4163         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4164         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4165         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4166         DEBUG_print("   data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4167         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4168         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4169         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4170         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4171         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4172         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4173
4174         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4175                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4176                 ic->sb->recalc_sector = cpu_to_le64(0);
4177         }
4178
4179         if (ic->internal_hash) {
4180                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4181                 if (!ic->recalc_wq ) {
4182                         ti->error = "Cannot allocate workqueue";
4183                         r = -ENOMEM;
4184                         goto bad;
4185                 }
4186                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4187                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4188                 if (!ic->recalc_buffer) {
4189                         ti->error = "Cannot allocate buffer for recalculating";
4190                         r = -ENOMEM;
4191                         goto bad;
4192                 }
4193                 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4194                                                  ic->tag_size, GFP_KERNEL);
4195                 if (!ic->recalc_tags) {
4196                         ti->error = "Cannot allocate tags for recalculating";
4197                         r = -ENOMEM;
4198                         goto bad;
4199                 }
4200         }
4201
4202         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4203                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4204         if (IS_ERR(ic->bufio)) {
4205                 r = PTR_ERR(ic->bufio);
4206                 ti->error = "Cannot initialize dm-bufio";
4207                 ic->bufio = NULL;
4208                 goto bad;
4209         }
4210         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4211
4212         if (ic->mode != 'R') {
4213                 r = create_journal(ic, &ti->error);
4214                 if (r)
4215                         goto bad;
4216
4217         }
4218
4219         if (ic->mode == 'B') {
4220                 unsigned i;
4221                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4222
4223                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4224                 if (!ic->recalc_bitmap) {
4225                         r = -ENOMEM;
4226                         goto bad;
4227                 }
4228                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4229                 if (!ic->may_write_bitmap) {
4230                         r = -ENOMEM;
4231                         goto bad;
4232                 }
4233                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4234                 if (!ic->bbs) {
4235                         r = -ENOMEM;
4236                         goto bad;
4237                 }
4238                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4239                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4240                         struct bitmap_block_status *bbs = &ic->bbs[i];
4241                         unsigned sector, pl_index, pl_offset;
4242
4243                         INIT_WORK(&bbs->work, bitmap_block_work);
4244                         bbs->ic = ic;
4245                         bbs->idx = i;
4246                         bio_list_init(&bbs->bio_queue);
4247                         spin_lock_init(&bbs->bio_queue_lock);
4248
4249                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4250                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4251                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4252
4253                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4254                 }
4255         }
4256
4257         if (should_write_sb) {
4258                 int r;
4259
4260                 init_journal(ic, 0, ic->journal_sections, 0);
4261                 r = dm_integrity_failed(ic);
4262                 if (unlikely(r)) {
4263                         ti->error = "Error initializing journal";
4264                         goto bad;
4265                 }
4266                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4267                 if (r) {
4268                         ti->error = "Error initializing superblock";
4269                         goto bad;
4270                 }
4271                 ic->just_formatted = true;
4272         }
4273
4274         if (!ic->meta_dev) {
4275                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4276                 if (r)
4277                         goto bad;
4278         }
4279         if (ic->mode == 'B') {
4280                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4281                 if (!max_io_len)
4282                         max_io_len = 1U << 31;
4283                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4284                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4285                         r = dm_set_target_max_io_len(ti, max_io_len);
4286                         if (r)
4287                                 goto bad;
4288                 }
4289         }
4290
4291         if (!ic->internal_hash)
4292                 dm_integrity_set(ti, ic);
4293
4294         ti->num_flush_bios = 1;
4295         ti->flush_supported = true;
4296         if (ic->discard)
4297                 ti->num_discard_bios = 1;
4298
4299         return 0;
4300
4301 bad:
4302         dm_integrity_dtr(ti);
4303         return r;
4304 }
4305
4306 static void dm_integrity_dtr(struct dm_target *ti)
4307 {
4308         struct dm_integrity_c *ic = ti->private;
4309
4310         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4311         BUG_ON(!list_empty(&ic->wait_list));
4312
4313         if (ic->metadata_wq)
4314                 destroy_workqueue(ic->metadata_wq);
4315         if (ic->wait_wq)
4316                 destroy_workqueue(ic->wait_wq);
4317         if (ic->offload_wq)
4318                 destroy_workqueue(ic->offload_wq);
4319         if (ic->commit_wq)
4320                 destroy_workqueue(ic->commit_wq);
4321         if (ic->writer_wq)
4322                 destroy_workqueue(ic->writer_wq);
4323         if (ic->recalc_wq)
4324                 destroy_workqueue(ic->recalc_wq);
4325         vfree(ic->recalc_buffer);
4326         kvfree(ic->recalc_tags);
4327         kvfree(ic->bbs);
4328         if (ic->bufio)
4329                 dm_bufio_client_destroy(ic->bufio);
4330         mempool_exit(&ic->journal_io_mempool);
4331         if (ic->io)
4332                 dm_io_client_destroy(ic->io);
4333         if (ic->dev)
4334                 dm_put_device(ti, ic->dev);
4335         if (ic->meta_dev)
4336                 dm_put_device(ti, ic->meta_dev);
4337         dm_integrity_free_page_list(ic->journal);
4338         dm_integrity_free_page_list(ic->journal_io);
4339         dm_integrity_free_page_list(ic->journal_xor);
4340         dm_integrity_free_page_list(ic->recalc_bitmap);
4341         dm_integrity_free_page_list(ic->may_write_bitmap);
4342         if (ic->journal_scatterlist)
4343                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4344         if (ic->journal_io_scatterlist)
4345                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4346         if (ic->sk_requests) {
4347                 unsigned i;
4348
4349                 for (i = 0; i < ic->journal_sections; i++) {
4350                         struct skcipher_request *req = ic->sk_requests[i];
4351                         if (req) {
4352                                 kfree_sensitive(req->iv);
4353                                 skcipher_request_free(req);
4354                         }
4355                 }
4356                 kvfree(ic->sk_requests);
4357         }
4358         kvfree(ic->journal_tree);
4359         if (ic->sb)
4360                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4361
4362         if (ic->internal_hash)
4363                 crypto_free_shash(ic->internal_hash);
4364         free_alg(&ic->internal_hash_alg);
4365
4366         if (ic->journal_crypt)
4367                 crypto_free_skcipher(ic->journal_crypt);
4368         free_alg(&ic->journal_crypt_alg);
4369
4370         if (ic->journal_mac)
4371                 crypto_free_shash(ic->journal_mac);
4372         free_alg(&ic->journal_mac_alg);
4373
4374         kfree(ic);
4375 }
4376
4377 static struct target_type integrity_target = {
4378         .name                   = "integrity",
4379         .version                = {1, 6, 0},
4380         .module                 = THIS_MODULE,
4381         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4382         .ctr                    = dm_integrity_ctr,
4383         .dtr                    = dm_integrity_dtr,
4384         .map                    = dm_integrity_map,
4385         .postsuspend            = dm_integrity_postsuspend,
4386         .resume                 = dm_integrity_resume,
4387         .status                 = dm_integrity_status,
4388         .iterate_devices        = dm_integrity_iterate_devices,
4389         .io_hints               = dm_integrity_io_hints,
4390 };
4391
4392 static int __init dm_integrity_init(void)
4393 {
4394         int r;
4395
4396         journal_io_cache = kmem_cache_create("integrity_journal_io",
4397                                              sizeof(struct journal_io), 0, 0, NULL);
4398         if (!journal_io_cache) {
4399                 DMERR("can't allocate journal io cache");
4400                 return -ENOMEM;
4401         }
4402
4403         r = dm_register_target(&integrity_target);
4404
4405         if (r < 0)
4406                 DMERR("register failed %d", r);
4407
4408         return r;
4409 }
4410
4411 static void __exit dm_integrity_exit(void)
4412 {
4413         dm_unregister_target(&integrity_target);
4414         kmem_cache_destroy(journal_io_cache);
4415 }
4416
4417 module_init(dm_integrity_init);
4418 module_exit(dm_integrity_exit);
4419
4420 MODULE_AUTHOR("Milan Broz");
4421 MODULE_AUTHOR("Mikulas Patocka");
4422 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4423 MODULE_LICENSE("GPL");