Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[linux-2.6-microblaze.git] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21
22 #define DM_MSG_PREFIX "cache"
23
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25         "A percentage of time allocated for copying to and/or from cache");
26
27 /*----------------------------------------------------------------*/
28
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *            either direction
38  */
39
40 /*----------------------------------------------------------------*/
41
42 struct io_tracker {
43         spinlock_t lock;
44
45         /*
46          * Sectors of in-flight IO.
47          */
48         sector_t in_flight;
49
50         /*
51          * The time, in jiffies, when this device became idle (if it is
52          * indeed idle).
53          */
54         unsigned long idle_time;
55         unsigned long last_update_time;
56 };
57
58 static void iot_init(struct io_tracker *iot)
59 {
60         spin_lock_init(&iot->lock);
61         iot->in_flight = 0ul;
62         iot->idle_time = 0ul;
63         iot->last_update_time = jiffies;
64 }
65
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68         if (iot->in_flight)
69                 return false;
70
71         return time_after(jiffies, iot->idle_time + jifs);
72 }
73
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76         bool r;
77
78         spin_lock_irq(&iot->lock);
79         r = __iot_idle_for(iot, jifs);
80         spin_unlock_irq(&iot->lock);
81
82         return r;
83 }
84
85 static void iot_io_begin(struct io_tracker *iot, sector_t len)
86 {
87         spin_lock_irq(&iot->lock);
88         iot->in_flight += len;
89         spin_unlock_irq(&iot->lock);
90 }
91
92 static void __iot_io_end(struct io_tracker *iot, sector_t len)
93 {
94         if (!len)
95                 return;
96
97         iot->in_flight -= len;
98         if (!iot->in_flight)
99                 iot->idle_time = jiffies;
100 }
101
102 static void iot_io_end(struct io_tracker *iot, sector_t len)
103 {
104         unsigned long flags;
105
106         spin_lock_irqsave(&iot->lock, flags);
107         __iot_io_end(iot, len);
108         spin_unlock_irqrestore(&iot->lock, flags);
109 }
110
111 /*----------------------------------------------------------------*/
112
113 /*
114  * Represents a chunk of future work.  'input' allows continuations to pass
115  * values between themselves, typically error values.
116  */
117 struct continuation {
118         struct work_struct ws;
119         blk_status_t input;
120 };
121
122 static inline void init_continuation(struct continuation *k,
123                                      void (*fn)(struct work_struct *))
124 {
125         INIT_WORK(&k->ws, fn);
126         k->input = 0;
127 }
128
129 static inline void queue_continuation(struct workqueue_struct *wq,
130                                       struct continuation *k)
131 {
132         queue_work(wq, &k->ws);
133 }
134
135 /*----------------------------------------------------------------*/
136
137 /*
138  * The batcher collects together pieces of work that need a particular
139  * operation to occur before they can proceed (typically a commit).
140  */
141 struct batcher {
142         /*
143          * The operation that everyone is waiting for.
144          */
145         blk_status_t (*commit_op)(void *context);
146         void *commit_context;
147
148         /*
149          * This is how bios should be issued once the commit op is complete
150          * (accounted_request).
151          */
152         void (*issue_op)(struct bio *bio, void *context);
153         void *issue_context;
154
155         /*
156          * Queued work gets put on here after commit.
157          */
158         struct workqueue_struct *wq;
159
160         spinlock_t lock;
161         struct list_head work_items;
162         struct bio_list bios;
163         struct work_struct commit_work;
164
165         bool commit_scheduled;
166 };
167
168 static void __commit(struct work_struct *_ws)
169 {
170         struct batcher *b = container_of(_ws, struct batcher, commit_work);
171         blk_status_t r;
172         struct list_head work_items;
173         struct work_struct *ws, *tmp;
174         struct continuation *k;
175         struct bio *bio;
176         struct bio_list bios;
177
178         INIT_LIST_HEAD(&work_items);
179         bio_list_init(&bios);
180
181         /*
182          * We have to grab these before the commit_op to avoid a race
183          * condition.
184          */
185         spin_lock_irq(&b->lock);
186         list_splice_init(&b->work_items, &work_items);
187         bio_list_merge(&bios, &b->bios);
188         bio_list_init(&b->bios);
189         b->commit_scheduled = false;
190         spin_unlock_irq(&b->lock);
191
192         r = b->commit_op(b->commit_context);
193
194         list_for_each_entry_safe(ws, tmp, &work_items, entry) {
195                 k = container_of(ws, struct continuation, ws);
196                 k->input = r;
197                 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
198                 queue_work(b->wq, ws);
199         }
200
201         while ((bio = bio_list_pop(&bios))) {
202                 if (r) {
203                         bio->bi_status = r;
204                         bio_endio(bio);
205                 } else
206                         b->issue_op(bio, b->issue_context);
207         }
208 }
209
210 static void batcher_init(struct batcher *b,
211                          blk_status_t (*commit_op)(void *),
212                          void *commit_context,
213                          void (*issue_op)(struct bio *bio, void *),
214                          void *issue_context,
215                          struct workqueue_struct *wq)
216 {
217         b->commit_op = commit_op;
218         b->commit_context = commit_context;
219         b->issue_op = issue_op;
220         b->issue_context = issue_context;
221         b->wq = wq;
222
223         spin_lock_init(&b->lock);
224         INIT_LIST_HEAD(&b->work_items);
225         bio_list_init(&b->bios);
226         INIT_WORK(&b->commit_work, __commit);
227         b->commit_scheduled = false;
228 }
229
230 static void async_commit(struct batcher *b)
231 {
232         queue_work(b->wq, &b->commit_work);
233 }
234
235 static void continue_after_commit(struct batcher *b, struct continuation *k)
236 {
237         bool commit_scheduled;
238
239         spin_lock_irq(&b->lock);
240         commit_scheduled = b->commit_scheduled;
241         list_add_tail(&k->ws.entry, &b->work_items);
242         spin_unlock_irq(&b->lock);
243
244         if (commit_scheduled)
245                 async_commit(b);
246 }
247
248 /*
249  * Bios are errored if commit failed.
250  */
251 static void issue_after_commit(struct batcher *b, struct bio *bio)
252 {
253        bool commit_scheduled;
254
255        spin_lock_irq(&b->lock);
256        commit_scheduled = b->commit_scheduled;
257        bio_list_add(&b->bios, bio);
258        spin_unlock_irq(&b->lock);
259
260        if (commit_scheduled)
261                async_commit(b);
262 }
263
264 /*
265  * Call this if some urgent work is waiting for the commit to complete.
266  */
267 static void schedule_commit(struct batcher *b)
268 {
269         bool immediate;
270
271         spin_lock_irq(&b->lock);
272         immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
273         b->commit_scheduled = true;
274         spin_unlock_irq(&b->lock);
275
276         if (immediate)
277                 async_commit(b);
278 }
279
280 /*
281  * There are a couple of places where we let a bio run, but want to do some
282  * work before calling its endio function.  We do this by temporarily
283  * changing the endio fn.
284  */
285 struct dm_hook_info {
286         bio_end_io_t *bi_end_io;
287 };
288
289 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
290                         bio_end_io_t *bi_end_io, void *bi_private)
291 {
292         h->bi_end_io = bio->bi_end_io;
293
294         bio->bi_end_io = bi_end_io;
295         bio->bi_private = bi_private;
296 }
297
298 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
299 {
300         bio->bi_end_io = h->bi_end_io;
301 }
302
303 /*----------------------------------------------------------------*/
304
305 #define MIGRATION_POOL_SIZE 128
306 #define COMMIT_PERIOD HZ
307 #define MIGRATION_COUNT_WINDOW 10
308
309 /*
310  * The block size of the device holding cache data must be
311  * between 32KB and 1GB.
312  */
313 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
314 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
315
316 enum cache_metadata_mode {
317         CM_WRITE,               /* metadata may be changed */
318         CM_READ_ONLY,           /* metadata may not be changed */
319         CM_FAIL
320 };
321
322 enum cache_io_mode {
323         /*
324          * Data is written to cached blocks only.  These blocks are marked
325          * dirty.  If you lose the cache device you will lose data.
326          * Potential performance increase for both reads and writes.
327          */
328         CM_IO_WRITEBACK,
329
330         /*
331          * Data is written to both cache and origin.  Blocks are never
332          * dirty.  Potential performance benfit for reads only.
333          */
334         CM_IO_WRITETHROUGH,
335
336         /*
337          * A degraded mode useful for various cache coherency situations
338          * (eg, rolling back snapshots).  Reads and writes always go to the
339          * origin.  If a write goes to a cached oblock, then the cache
340          * block is invalidated.
341          */
342         CM_IO_PASSTHROUGH
343 };
344
345 struct cache_features {
346         enum cache_metadata_mode mode;
347         enum cache_io_mode io_mode;
348         unsigned metadata_version;
349         bool discard_passdown:1;
350 };
351
352 struct cache_stats {
353         atomic_t read_hit;
354         atomic_t read_miss;
355         atomic_t write_hit;
356         atomic_t write_miss;
357         atomic_t demotion;
358         atomic_t promotion;
359         atomic_t writeback;
360         atomic_t copies_avoided;
361         atomic_t cache_cell_clash;
362         atomic_t commit_count;
363         atomic_t discard_count;
364 };
365
366 struct cache {
367         struct dm_target *ti;
368         spinlock_t lock;
369
370         /*
371          * Fields for converting from sectors to blocks.
372          */
373         int sectors_per_block_shift;
374         sector_t sectors_per_block;
375
376         struct dm_cache_metadata *cmd;
377
378         /*
379          * Metadata is written to this device.
380          */
381         struct dm_dev *metadata_dev;
382
383         /*
384          * The slower of the two data devices.  Typically a spindle.
385          */
386         struct dm_dev *origin_dev;
387
388         /*
389          * The faster of the two data devices.  Typically an SSD.
390          */
391         struct dm_dev *cache_dev;
392
393         /*
394          * Size of the origin device in _complete_ blocks and native sectors.
395          */
396         dm_oblock_t origin_blocks;
397         sector_t origin_sectors;
398
399         /*
400          * Size of the cache device in blocks.
401          */
402         dm_cblock_t cache_size;
403
404         /*
405          * Invalidation fields.
406          */
407         spinlock_t invalidation_lock;
408         struct list_head invalidation_requests;
409
410         sector_t migration_threshold;
411         wait_queue_head_t migration_wait;
412         atomic_t nr_allocated_migrations;
413
414         /*
415          * The number of in flight migrations that are performing
416          * background io. eg, promotion, writeback.
417          */
418         atomic_t nr_io_migrations;
419
420         struct bio_list deferred_bios;
421
422         struct rw_semaphore quiesce_lock;
423
424         /*
425          * origin_blocks entries, discarded if set.
426          */
427         dm_dblock_t discard_nr_blocks;
428         unsigned long *discard_bitset;
429         uint32_t discard_block_size; /* a power of 2 times sectors per block */
430
431         /*
432          * Rather than reconstructing the table line for the status we just
433          * save it and regurgitate.
434          */
435         unsigned nr_ctr_args;
436         const char **ctr_args;
437
438         struct dm_kcopyd_client *copier;
439         struct work_struct deferred_bio_worker;
440         struct work_struct migration_worker;
441         struct workqueue_struct *wq;
442         struct delayed_work waker;
443         struct dm_bio_prison_v2 *prison;
444
445         /*
446          * cache_size entries, dirty if set
447          */
448         unsigned long *dirty_bitset;
449         atomic_t nr_dirty;
450
451         unsigned policy_nr_args;
452         struct dm_cache_policy *policy;
453
454         /*
455          * Cache features such as write-through.
456          */
457         struct cache_features features;
458
459         struct cache_stats stats;
460
461         bool need_tick_bio:1;
462         bool sized:1;
463         bool invalidate:1;
464         bool commit_requested:1;
465         bool loaded_mappings:1;
466         bool loaded_discards:1;
467
468         struct rw_semaphore background_work_lock;
469
470         struct batcher committer;
471         struct work_struct commit_ws;
472
473         struct io_tracker tracker;
474
475         mempool_t migration_pool;
476
477         struct bio_set bs;
478 };
479
480 struct per_bio_data {
481         bool tick:1;
482         unsigned req_nr:2;
483         struct dm_bio_prison_cell_v2 *cell;
484         struct dm_hook_info hook_info;
485         sector_t len;
486 };
487
488 struct dm_cache_migration {
489         struct continuation k;
490         struct cache *cache;
491
492         struct policy_work *op;
493         struct bio *overwrite_bio;
494         struct dm_bio_prison_cell_v2 *cell;
495
496         dm_cblock_t invalidate_cblock;
497         dm_oblock_t invalidate_oblock;
498 };
499
500 /*----------------------------------------------------------------*/
501
502 static bool writethrough_mode(struct cache *cache)
503 {
504         return cache->features.io_mode == CM_IO_WRITETHROUGH;
505 }
506
507 static bool writeback_mode(struct cache *cache)
508 {
509         return cache->features.io_mode == CM_IO_WRITEBACK;
510 }
511
512 static inline bool passthrough_mode(struct cache *cache)
513 {
514         return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
515 }
516
517 /*----------------------------------------------------------------*/
518
519 static void wake_deferred_bio_worker(struct cache *cache)
520 {
521         queue_work(cache->wq, &cache->deferred_bio_worker);
522 }
523
524 static void wake_migration_worker(struct cache *cache)
525 {
526         if (passthrough_mode(cache))
527                 return;
528
529         queue_work(cache->wq, &cache->migration_worker);
530 }
531
532 /*----------------------------------------------------------------*/
533
534 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
535 {
536         return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
537 }
538
539 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
540 {
541         dm_bio_prison_free_cell_v2(cache->prison, cell);
542 }
543
544 static struct dm_cache_migration *alloc_migration(struct cache *cache)
545 {
546         struct dm_cache_migration *mg;
547
548         mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
549
550         memset(mg, 0, sizeof(*mg));
551
552         mg->cache = cache;
553         atomic_inc(&cache->nr_allocated_migrations);
554
555         return mg;
556 }
557
558 static void free_migration(struct dm_cache_migration *mg)
559 {
560         struct cache *cache = mg->cache;
561
562         if (atomic_dec_and_test(&cache->nr_allocated_migrations))
563                 wake_up(&cache->migration_wait);
564
565         mempool_free(mg, &cache->migration_pool);
566 }
567
568 /*----------------------------------------------------------------*/
569
570 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
571 {
572         return to_oblock(from_oblock(b) + 1ull);
573 }
574
575 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
576 {
577         key->virtual = 0;
578         key->dev = 0;
579         key->block_begin = from_oblock(begin);
580         key->block_end = from_oblock(end);
581 }
582
583 /*
584  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
585  * level 1 which prevents *both* READs and WRITEs.
586  */
587 #define WRITE_LOCK_LEVEL 0
588 #define READ_WRITE_LOCK_LEVEL 1
589
590 static unsigned lock_level(struct bio *bio)
591 {
592         return bio_data_dir(bio) == WRITE ?
593                 WRITE_LOCK_LEVEL :
594                 READ_WRITE_LOCK_LEVEL;
595 }
596
597 /*----------------------------------------------------------------
598  * Per bio data
599  *--------------------------------------------------------------*/
600
601 static struct per_bio_data *get_per_bio_data(struct bio *bio)
602 {
603         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
604         BUG_ON(!pb);
605         return pb;
606 }
607
608 static struct per_bio_data *init_per_bio_data(struct bio *bio)
609 {
610         struct per_bio_data *pb = get_per_bio_data(bio);
611
612         pb->tick = false;
613         pb->req_nr = dm_bio_get_target_bio_nr(bio);
614         pb->cell = NULL;
615         pb->len = 0;
616
617         return pb;
618 }
619
620 /*----------------------------------------------------------------*/
621
622 static void defer_bio(struct cache *cache, struct bio *bio)
623 {
624         spin_lock_irq(&cache->lock);
625         bio_list_add(&cache->deferred_bios, bio);
626         spin_unlock_irq(&cache->lock);
627
628         wake_deferred_bio_worker(cache);
629 }
630
631 static void defer_bios(struct cache *cache, struct bio_list *bios)
632 {
633         spin_lock_irq(&cache->lock);
634         bio_list_merge(&cache->deferred_bios, bios);
635         bio_list_init(bios);
636         spin_unlock_irq(&cache->lock);
637
638         wake_deferred_bio_worker(cache);
639 }
640
641 /*----------------------------------------------------------------*/
642
643 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
644 {
645         bool r;
646         struct per_bio_data *pb;
647         struct dm_cell_key_v2 key;
648         dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
649         struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
650
651         cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
652
653         build_key(oblock, end, &key);
654         r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
655         if (!r) {
656                 /*
657                  * Failed to get the lock.
658                  */
659                 free_prison_cell(cache, cell_prealloc);
660                 return r;
661         }
662
663         if (cell != cell_prealloc)
664                 free_prison_cell(cache, cell_prealloc);
665
666         pb = get_per_bio_data(bio);
667         pb->cell = cell;
668
669         return r;
670 }
671
672 /*----------------------------------------------------------------*/
673
674 static bool is_dirty(struct cache *cache, dm_cblock_t b)
675 {
676         return test_bit(from_cblock(b), cache->dirty_bitset);
677 }
678
679 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
680 {
681         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
682                 atomic_inc(&cache->nr_dirty);
683                 policy_set_dirty(cache->policy, cblock);
684         }
685 }
686
687 /*
688  * These two are called when setting after migrations to force the policy
689  * and dirty bitset to be in sync.
690  */
691 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
692 {
693         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
694                 atomic_inc(&cache->nr_dirty);
695         policy_set_dirty(cache->policy, cblock);
696 }
697
698 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
699 {
700         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
701                 if (atomic_dec_return(&cache->nr_dirty) == 0)
702                         dm_table_event(cache->ti->table);
703         }
704
705         policy_clear_dirty(cache->policy, cblock);
706 }
707
708 /*----------------------------------------------------------------*/
709
710 static bool block_size_is_power_of_two(struct cache *cache)
711 {
712         return cache->sectors_per_block_shift >= 0;
713 }
714
715 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
716 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
717 __always_inline
718 #endif
719 static dm_block_t block_div(dm_block_t b, uint32_t n)
720 {
721         do_div(b, n);
722
723         return b;
724 }
725
726 static dm_block_t oblocks_per_dblock(struct cache *cache)
727 {
728         dm_block_t oblocks = cache->discard_block_size;
729
730         if (block_size_is_power_of_two(cache))
731                 oblocks >>= cache->sectors_per_block_shift;
732         else
733                 oblocks = block_div(oblocks, cache->sectors_per_block);
734
735         return oblocks;
736 }
737
738 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
739 {
740         return to_dblock(block_div(from_oblock(oblock),
741                                    oblocks_per_dblock(cache)));
742 }
743
744 static void set_discard(struct cache *cache, dm_dblock_t b)
745 {
746         BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
747         atomic_inc(&cache->stats.discard_count);
748
749         spin_lock_irq(&cache->lock);
750         set_bit(from_dblock(b), cache->discard_bitset);
751         spin_unlock_irq(&cache->lock);
752 }
753
754 static void clear_discard(struct cache *cache, dm_dblock_t b)
755 {
756         spin_lock_irq(&cache->lock);
757         clear_bit(from_dblock(b), cache->discard_bitset);
758         spin_unlock_irq(&cache->lock);
759 }
760
761 static bool is_discarded(struct cache *cache, dm_dblock_t b)
762 {
763         int r;
764         spin_lock_irq(&cache->lock);
765         r = test_bit(from_dblock(b), cache->discard_bitset);
766         spin_unlock_irq(&cache->lock);
767
768         return r;
769 }
770
771 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
772 {
773         int r;
774         spin_lock_irq(&cache->lock);
775         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
776                      cache->discard_bitset);
777         spin_unlock_irq(&cache->lock);
778
779         return r;
780 }
781
782 /*----------------------------------------------------------------
783  * Remapping
784  *--------------------------------------------------------------*/
785 static void remap_to_origin(struct cache *cache, struct bio *bio)
786 {
787         bio_set_dev(bio, cache->origin_dev->bdev);
788 }
789
790 static void remap_to_cache(struct cache *cache, struct bio *bio,
791                            dm_cblock_t cblock)
792 {
793         sector_t bi_sector = bio->bi_iter.bi_sector;
794         sector_t block = from_cblock(cblock);
795
796         bio_set_dev(bio, cache->cache_dev->bdev);
797         if (!block_size_is_power_of_two(cache))
798                 bio->bi_iter.bi_sector =
799                         (block * cache->sectors_per_block) +
800                         sector_div(bi_sector, cache->sectors_per_block);
801         else
802                 bio->bi_iter.bi_sector =
803                         (block << cache->sectors_per_block_shift) |
804                         (bi_sector & (cache->sectors_per_block - 1));
805 }
806
807 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
808 {
809         struct per_bio_data *pb;
810
811         spin_lock_irq(&cache->lock);
812         if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
813             bio_op(bio) != REQ_OP_DISCARD) {
814                 pb = get_per_bio_data(bio);
815                 pb->tick = true;
816                 cache->need_tick_bio = false;
817         }
818         spin_unlock_irq(&cache->lock);
819 }
820
821 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
822                                             dm_oblock_t oblock, bool bio_has_pbd)
823 {
824         if (bio_has_pbd)
825                 check_if_tick_bio_needed(cache, bio);
826         remap_to_origin(cache, bio);
827         if (bio_data_dir(bio) == WRITE)
828                 clear_discard(cache, oblock_to_dblock(cache, oblock));
829 }
830
831 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
832                                           dm_oblock_t oblock)
833 {
834         // FIXME: check_if_tick_bio_needed() is called way too much through this interface
835         __remap_to_origin_clear_discard(cache, bio, oblock, true);
836 }
837
838 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
839                                  dm_oblock_t oblock, dm_cblock_t cblock)
840 {
841         check_if_tick_bio_needed(cache, bio);
842         remap_to_cache(cache, bio, cblock);
843         if (bio_data_dir(bio) == WRITE) {
844                 set_dirty(cache, cblock);
845                 clear_discard(cache, oblock_to_dblock(cache, oblock));
846         }
847 }
848
849 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
850 {
851         sector_t block_nr = bio->bi_iter.bi_sector;
852
853         if (!block_size_is_power_of_two(cache))
854                 (void) sector_div(block_nr, cache->sectors_per_block);
855         else
856                 block_nr >>= cache->sectors_per_block_shift;
857
858         return to_oblock(block_nr);
859 }
860
861 static bool accountable_bio(struct cache *cache, struct bio *bio)
862 {
863         return bio_op(bio) != REQ_OP_DISCARD;
864 }
865
866 static void accounted_begin(struct cache *cache, struct bio *bio)
867 {
868         struct per_bio_data *pb;
869
870         if (accountable_bio(cache, bio)) {
871                 pb = get_per_bio_data(bio);
872                 pb->len = bio_sectors(bio);
873                 iot_io_begin(&cache->tracker, pb->len);
874         }
875 }
876
877 static void accounted_complete(struct cache *cache, struct bio *bio)
878 {
879         struct per_bio_data *pb = get_per_bio_data(bio);
880
881         iot_io_end(&cache->tracker, pb->len);
882 }
883
884 static void accounted_request(struct cache *cache, struct bio *bio)
885 {
886         accounted_begin(cache, bio);
887         submit_bio_noacct(bio);
888 }
889
890 static void issue_op(struct bio *bio, void *context)
891 {
892         struct cache *cache = context;
893         accounted_request(cache, bio);
894 }
895
896 /*
897  * When running in writethrough mode we need to send writes to clean blocks
898  * to both the cache and origin devices.  Clone the bio and send them in parallel.
899  */
900 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
901                                       dm_oblock_t oblock, dm_cblock_t cblock)
902 {
903         struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
904
905         BUG_ON(!origin_bio);
906
907         bio_chain(origin_bio, bio);
908         /*
909          * Passing false to __remap_to_origin_clear_discard() skips
910          * all code that might use per_bio_data (since clone doesn't have it)
911          */
912         __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
913         submit_bio(origin_bio);
914
915         remap_to_cache(cache, bio, cblock);
916 }
917
918 /*----------------------------------------------------------------
919  * Failure modes
920  *--------------------------------------------------------------*/
921 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
922 {
923         return cache->features.mode;
924 }
925
926 static const char *cache_device_name(struct cache *cache)
927 {
928         return dm_table_device_name(cache->ti->table);
929 }
930
931 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
932 {
933         const char *descs[] = {
934                 "write",
935                 "read-only",
936                 "fail"
937         };
938
939         dm_table_event(cache->ti->table);
940         DMINFO("%s: switching cache to %s mode",
941                cache_device_name(cache), descs[(int)mode]);
942 }
943
944 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
945 {
946         bool needs_check;
947         enum cache_metadata_mode old_mode = get_cache_mode(cache);
948
949         if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
950                 DMERR("%s: unable to read needs_check flag, setting failure mode.",
951                       cache_device_name(cache));
952                 new_mode = CM_FAIL;
953         }
954
955         if (new_mode == CM_WRITE && needs_check) {
956                 DMERR("%s: unable to switch cache to write mode until repaired.",
957                       cache_device_name(cache));
958                 if (old_mode != new_mode)
959                         new_mode = old_mode;
960                 else
961                         new_mode = CM_READ_ONLY;
962         }
963
964         /* Never move out of fail mode */
965         if (old_mode == CM_FAIL)
966                 new_mode = CM_FAIL;
967
968         switch (new_mode) {
969         case CM_FAIL:
970         case CM_READ_ONLY:
971                 dm_cache_metadata_set_read_only(cache->cmd);
972                 break;
973
974         case CM_WRITE:
975                 dm_cache_metadata_set_read_write(cache->cmd);
976                 break;
977         }
978
979         cache->features.mode = new_mode;
980
981         if (new_mode != old_mode)
982                 notify_mode_switch(cache, new_mode);
983 }
984
985 static void abort_transaction(struct cache *cache)
986 {
987         const char *dev_name = cache_device_name(cache);
988
989         if (get_cache_mode(cache) >= CM_READ_ONLY)
990                 return;
991
992         if (dm_cache_metadata_set_needs_check(cache->cmd)) {
993                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
994                 set_cache_mode(cache, CM_FAIL);
995         }
996
997         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
998         if (dm_cache_metadata_abort(cache->cmd)) {
999                 DMERR("%s: failed to abort metadata transaction", dev_name);
1000                 set_cache_mode(cache, CM_FAIL);
1001         }
1002 }
1003
1004 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1005 {
1006         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1007                     cache_device_name(cache), op, r);
1008         abort_transaction(cache);
1009         set_cache_mode(cache, CM_READ_ONLY);
1010 }
1011
1012 /*----------------------------------------------------------------*/
1013
1014 static void load_stats(struct cache *cache)
1015 {
1016         struct dm_cache_statistics stats;
1017
1018         dm_cache_metadata_get_stats(cache->cmd, &stats);
1019         atomic_set(&cache->stats.read_hit, stats.read_hits);
1020         atomic_set(&cache->stats.read_miss, stats.read_misses);
1021         atomic_set(&cache->stats.write_hit, stats.write_hits);
1022         atomic_set(&cache->stats.write_miss, stats.write_misses);
1023 }
1024
1025 static void save_stats(struct cache *cache)
1026 {
1027         struct dm_cache_statistics stats;
1028
1029         if (get_cache_mode(cache) >= CM_READ_ONLY)
1030                 return;
1031
1032         stats.read_hits = atomic_read(&cache->stats.read_hit);
1033         stats.read_misses = atomic_read(&cache->stats.read_miss);
1034         stats.write_hits = atomic_read(&cache->stats.write_hit);
1035         stats.write_misses = atomic_read(&cache->stats.write_miss);
1036
1037         dm_cache_metadata_set_stats(cache->cmd, &stats);
1038 }
1039
1040 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1041 {
1042         switch (op) {
1043         case POLICY_PROMOTE:
1044                 atomic_inc(&stats->promotion);
1045                 break;
1046
1047         case POLICY_DEMOTE:
1048                 atomic_inc(&stats->demotion);
1049                 break;
1050
1051         case POLICY_WRITEBACK:
1052                 atomic_inc(&stats->writeback);
1053                 break;
1054         }
1055 }
1056
1057 /*----------------------------------------------------------------
1058  * Migration processing
1059  *
1060  * Migration covers moving data from the origin device to the cache, or
1061  * vice versa.
1062  *--------------------------------------------------------------*/
1063
1064 static void inc_io_migrations(struct cache *cache)
1065 {
1066         atomic_inc(&cache->nr_io_migrations);
1067 }
1068
1069 static void dec_io_migrations(struct cache *cache)
1070 {
1071         atomic_dec(&cache->nr_io_migrations);
1072 }
1073
1074 static bool discard_or_flush(struct bio *bio)
1075 {
1076         return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1077 }
1078
1079 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1080                                      dm_dblock_t *b, dm_dblock_t *e)
1081 {
1082         sector_t sb = bio->bi_iter.bi_sector;
1083         sector_t se = bio_end_sector(bio);
1084
1085         *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1086
1087         if (se - sb < cache->discard_block_size)
1088                 *e = *b;
1089         else
1090                 *e = to_dblock(block_div(se, cache->discard_block_size));
1091 }
1092
1093 /*----------------------------------------------------------------*/
1094
1095 static void prevent_background_work(struct cache *cache)
1096 {
1097         lockdep_off();
1098         down_write(&cache->background_work_lock);
1099         lockdep_on();
1100 }
1101
1102 static void allow_background_work(struct cache *cache)
1103 {
1104         lockdep_off();
1105         up_write(&cache->background_work_lock);
1106         lockdep_on();
1107 }
1108
1109 static bool background_work_begin(struct cache *cache)
1110 {
1111         bool r;
1112
1113         lockdep_off();
1114         r = down_read_trylock(&cache->background_work_lock);
1115         lockdep_on();
1116
1117         return r;
1118 }
1119
1120 static void background_work_end(struct cache *cache)
1121 {
1122         lockdep_off();
1123         up_read(&cache->background_work_lock);
1124         lockdep_on();
1125 }
1126
1127 /*----------------------------------------------------------------*/
1128
1129 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1130 {
1131         return (bio_data_dir(bio) == WRITE) &&
1132                 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1133 }
1134
1135 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1136 {
1137         return writeback_mode(cache) &&
1138                 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1139 }
1140
1141 static void quiesce(struct dm_cache_migration *mg,
1142                     void (*continuation)(struct work_struct *))
1143 {
1144         init_continuation(&mg->k, continuation);
1145         dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1146 }
1147
1148 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1149 {
1150         struct continuation *k = container_of(ws, struct continuation, ws);
1151         return container_of(k, struct dm_cache_migration, k);
1152 }
1153
1154 static void copy_complete(int read_err, unsigned long write_err, void *context)
1155 {
1156         struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1157
1158         if (read_err || write_err)
1159                 mg->k.input = BLK_STS_IOERR;
1160
1161         queue_continuation(mg->cache->wq, &mg->k);
1162 }
1163
1164 static void copy(struct dm_cache_migration *mg, bool promote)
1165 {
1166         struct dm_io_region o_region, c_region;
1167         struct cache *cache = mg->cache;
1168
1169         o_region.bdev = cache->origin_dev->bdev;
1170         o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1171         o_region.count = cache->sectors_per_block;
1172
1173         c_region.bdev = cache->cache_dev->bdev;
1174         c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1175         c_region.count = cache->sectors_per_block;
1176
1177         if (promote)
1178                 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1179         else
1180                 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1181 }
1182
1183 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1184 {
1185         struct per_bio_data *pb = get_per_bio_data(bio);
1186
1187         if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1188                 free_prison_cell(cache, pb->cell);
1189         pb->cell = NULL;
1190 }
1191
1192 static void overwrite_endio(struct bio *bio)
1193 {
1194         struct dm_cache_migration *mg = bio->bi_private;
1195         struct cache *cache = mg->cache;
1196         struct per_bio_data *pb = get_per_bio_data(bio);
1197
1198         dm_unhook_bio(&pb->hook_info, bio);
1199
1200         if (bio->bi_status)
1201                 mg->k.input = bio->bi_status;
1202
1203         queue_continuation(cache->wq, &mg->k);
1204 }
1205
1206 static void overwrite(struct dm_cache_migration *mg,
1207                       void (*continuation)(struct work_struct *))
1208 {
1209         struct bio *bio = mg->overwrite_bio;
1210         struct per_bio_data *pb = get_per_bio_data(bio);
1211
1212         dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1213
1214         /*
1215          * The overwrite bio is part of the copy operation, as such it does
1216          * not set/clear discard or dirty flags.
1217          */
1218         if (mg->op->op == POLICY_PROMOTE)
1219                 remap_to_cache(mg->cache, bio, mg->op->cblock);
1220         else
1221                 remap_to_origin(mg->cache, bio);
1222
1223         init_continuation(&mg->k, continuation);
1224         accounted_request(mg->cache, bio);
1225 }
1226
1227 /*
1228  * Migration steps:
1229  *
1230  * 1) exclusive lock preventing WRITEs
1231  * 2) quiesce
1232  * 3) copy or issue overwrite bio
1233  * 4) upgrade to exclusive lock preventing READs and WRITEs
1234  * 5) quiesce
1235  * 6) update metadata and commit
1236  * 7) unlock
1237  */
1238 static void mg_complete(struct dm_cache_migration *mg, bool success)
1239 {
1240         struct bio_list bios;
1241         struct cache *cache = mg->cache;
1242         struct policy_work *op = mg->op;
1243         dm_cblock_t cblock = op->cblock;
1244
1245         if (success)
1246                 update_stats(&cache->stats, op->op);
1247
1248         switch (op->op) {
1249         case POLICY_PROMOTE:
1250                 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1251                 policy_complete_background_work(cache->policy, op, success);
1252
1253                 if (mg->overwrite_bio) {
1254                         if (success)
1255                                 force_set_dirty(cache, cblock);
1256                         else if (mg->k.input)
1257                                 mg->overwrite_bio->bi_status = mg->k.input;
1258                         else
1259                                 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1260                         bio_endio(mg->overwrite_bio);
1261                 } else {
1262                         if (success)
1263                                 force_clear_dirty(cache, cblock);
1264                         dec_io_migrations(cache);
1265                 }
1266                 break;
1267
1268         case POLICY_DEMOTE:
1269                 /*
1270                  * We clear dirty here to update the nr_dirty counter.
1271                  */
1272                 if (success)
1273                         force_clear_dirty(cache, cblock);
1274                 policy_complete_background_work(cache->policy, op, success);
1275                 dec_io_migrations(cache);
1276                 break;
1277
1278         case POLICY_WRITEBACK:
1279                 if (success)
1280                         force_clear_dirty(cache, cblock);
1281                 policy_complete_background_work(cache->policy, op, success);
1282                 dec_io_migrations(cache);
1283                 break;
1284         }
1285
1286         bio_list_init(&bios);
1287         if (mg->cell) {
1288                 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1289                         free_prison_cell(cache, mg->cell);
1290         }
1291
1292         free_migration(mg);
1293         defer_bios(cache, &bios);
1294         wake_migration_worker(cache);
1295
1296         background_work_end(cache);
1297 }
1298
1299 static void mg_success(struct work_struct *ws)
1300 {
1301         struct dm_cache_migration *mg = ws_to_mg(ws);
1302         mg_complete(mg, mg->k.input == 0);
1303 }
1304
1305 static void mg_update_metadata(struct work_struct *ws)
1306 {
1307         int r;
1308         struct dm_cache_migration *mg = ws_to_mg(ws);
1309         struct cache *cache = mg->cache;
1310         struct policy_work *op = mg->op;
1311
1312         switch (op->op) {
1313         case POLICY_PROMOTE:
1314                 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1315                 if (r) {
1316                         DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1317                                     cache_device_name(cache));
1318                         metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1319
1320                         mg_complete(mg, false);
1321                         return;
1322                 }
1323                 mg_complete(mg, true);
1324                 break;
1325
1326         case POLICY_DEMOTE:
1327                 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1328                 if (r) {
1329                         DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1330                                     cache_device_name(cache));
1331                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1332
1333                         mg_complete(mg, false);
1334                         return;
1335                 }
1336
1337                 /*
1338                  * It would be nice if we only had to commit when a REQ_FLUSH
1339                  * comes through.  But there's one scenario that we have to
1340                  * look out for:
1341                  *
1342                  * - vblock x in a cache block
1343                  * - domotion occurs
1344                  * - cache block gets reallocated and over written
1345                  * - crash
1346                  *
1347                  * When we recover, because there was no commit the cache will
1348                  * rollback to having the data for vblock x in the cache block.
1349                  * But the cache block has since been overwritten, so it'll end
1350                  * up pointing to data that was never in 'x' during the history
1351                  * of the device.
1352                  *
1353                  * To avoid this issue we require a commit as part of the
1354                  * demotion operation.
1355                  */
1356                 init_continuation(&mg->k, mg_success);
1357                 continue_after_commit(&cache->committer, &mg->k);
1358                 schedule_commit(&cache->committer);
1359                 break;
1360
1361         case POLICY_WRITEBACK:
1362                 mg_complete(mg, true);
1363                 break;
1364         }
1365 }
1366
1367 static void mg_update_metadata_after_copy(struct work_struct *ws)
1368 {
1369         struct dm_cache_migration *mg = ws_to_mg(ws);
1370
1371         /*
1372          * Did the copy succeed?
1373          */
1374         if (mg->k.input)
1375                 mg_complete(mg, false);
1376         else
1377                 mg_update_metadata(ws);
1378 }
1379
1380 static void mg_upgrade_lock(struct work_struct *ws)
1381 {
1382         int r;
1383         struct dm_cache_migration *mg = ws_to_mg(ws);
1384
1385         /*
1386          * Did the copy succeed?
1387          */
1388         if (mg->k.input)
1389                 mg_complete(mg, false);
1390
1391         else {
1392                 /*
1393                  * Now we want the lock to prevent both reads and writes.
1394                  */
1395                 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1396                                             READ_WRITE_LOCK_LEVEL);
1397                 if (r < 0)
1398                         mg_complete(mg, false);
1399
1400                 else if (r)
1401                         quiesce(mg, mg_update_metadata);
1402
1403                 else
1404                         mg_update_metadata(ws);
1405         }
1406 }
1407
1408 static void mg_full_copy(struct work_struct *ws)
1409 {
1410         struct dm_cache_migration *mg = ws_to_mg(ws);
1411         struct cache *cache = mg->cache;
1412         struct policy_work *op = mg->op;
1413         bool is_policy_promote = (op->op == POLICY_PROMOTE);
1414
1415         if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1416             is_discarded_oblock(cache, op->oblock)) {
1417                 mg_upgrade_lock(ws);
1418                 return;
1419         }
1420
1421         init_continuation(&mg->k, mg_upgrade_lock);
1422         copy(mg, is_policy_promote);
1423 }
1424
1425 static void mg_copy(struct work_struct *ws)
1426 {
1427         struct dm_cache_migration *mg = ws_to_mg(ws);
1428
1429         if (mg->overwrite_bio) {
1430                 /*
1431                  * No exclusive lock was held when we last checked if the bio
1432                  * was optimisable.  So we have to check again in case things
1433                  * have changed (eg, the block may no longer be discarded).
1434                  */
1435                 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1436                         /*
1437                          * Fallback to a real full copy after doing some tidying up.
1438                          */
1439                         bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1440                         BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1441                         mg->overwrite_bio = NULL;
1442                         inc_io_migrations(mg->cache);
1443                         mg_full_copy(ws);
1444                         return;
1445                 }
1446
1447                 /*
1448                  * It's safe to do this here, even though it's new data
1449                  * because all IO has been locked out of the block.
1450                  *
1451                  * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1452                  * so _not_ using mg_upgrade_lock() as continutation.
1453                  */
1454                 overwrite(mg, mg_update_metadata_after_copy);
1455
1456         } else
1457                 mg_full_copy(ws);
1458 }
1459
1460 static int mg_lock_writes(struct dm_cache_migration *mg)
1461 {
1462         int r;
1463         struct dm_cell_key_v2 key;
1464         struct cache *cache = mg->cache;
1465         struct dm_bio_prison_cell_v2 *prealloc;
1466
1467         prealloc = alloc_prison_cell(cache);
1468
1469         /*
1470          * Prevent writes to the block, but allow reads to continue.
1471          * Unless we're using an overwrite bio, in which case we lock
1472          * everything.
1473          */
1474         build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1475         r = dm_cell_lock_v2(cache->prison, &key,
1476                             mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1477                             prealloc, &mg->cell);
1478         if (r < 0) {
1479                 free_prison_cell(cache, prealloc);
1480                 mg_complete(mg, false);
1481                 return r;
1482         }
1483
1484         if (mg->cell != prealloc)
1485                 free_prison_cell(cache, prealloc);
1486
1487         if (r == 0)
1488                 mg_copy(&mg->k.ws);
1489         else
1490                 quiesce(mg, mg_copy);
1491
1492         return 0;
1493 }
1494
1495 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1496 {
1497         struct dm_cache_migration *mg;
1498
1499         if (!background_work_begin(cache)) {
1500                 policy_complete_background_work(cache->policy, op, false);
1501                 return -EPERM;
1502         }
1503
1504         mg = alloc_migration(cache);
1505
1506         mg->op = op;
1507         mg->overwrite_bio = bio;
1508
1509         if (!bio)
1510                 inc_io_migrations(cache);
1511
1512         return mg_lock_writes(mg);
1513 }
1514
1515 /*----------------------------------------------------------------
1516  * invalidation processing
1517  *--------------------------------------------------------------*/
1518
1519 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1520 {
1521         struct bio_list bios;
1522         struct cache *cache = mg->cache;
1523
1524         bio_list_init(&bios);
1525         if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1526                 free_prison_cell(cache, mg->cell);
1527
1528         if (!success && mg->overwrite_bio)
1529                 bio_io_error(mg->overwrite_bio);
1530
1531         free_migration(mg);
1532         defer_bios(cache, &bios);
1533
1534         background_work_end(cache);
1535 }
1536
1537 static void invalidate_completed(struct work_struct *ws)
1538 {
1539         struct dm_cache_migration *mg = ws_to_mg(ws);
1540         invalidate_complete(mg, !mg->k.input);
1541 }
1542
1543 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1544 {
1545         int r = policy_invalidate_mapping(cache->policy, cblock);
1546         if (!r) {
1547                 r = dm_cache_remove_mapping(cache->cmd, cblock);
1548                 if (r) {
1549                         DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1550                                     cache_device_name(cache));
1551                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1552                 }
1553
1554         } else if (r == -ENODATA) {
1555                 /*
1556                  * Harmless, already unmapped.
1557                  */
1558                 r = 0;
1559
1560         } else
1561                 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1562
1563         return r;
1564 }
1565
1566 static void invalidate_remove(struct work_struct *ws)
1567 {
1568         int r;
1569         struct dm_cache_migration *mg = ws_to_mg(ws);
1570         struct cache *cache = mg->cache;
1571
1572         r = invalidate_cblock(cache, mg->invalidate_cblock);
1573         if (r) {
1574                 invalidate_complete(mg, false);
1575                 return;
1576         }
1577
1578         init_continuation(&mg->k, invalidate_completed);
1579         continue_after_commit(&cache->committer, &mg->k);
1580         remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1581         mg->overwrite_bio = NULL;
1582         schedule_commit(&cache->committer);
1583 }
1584
1585 static int invalidate_lock(struct dm_cache_migration *mg)
1586 {
1587         int r;
1588         struct dm_cell_key_v2 key;
1589         struct cache *cache = mg->cache;
1590         struct dm_bio_prison_cell_v2 *prealloc;
1591
1592         prealloc = alloc_prison_cell(cache);
1593
1594         build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1595         r = dm_cell_lock_v2(cache->prison, &key,
1596                             READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1597         if (r < 0) {
1598                 free_prison_cell(cache, prealloc);
1599                 invalidate_complete(mg, false);
1600                 return r;
1601         }
1602
1603         if (mg->cell != prealloc)
1604                 free_prison_cell(cache, prealloc);
1605
1606         if (r)
1607                 quiesce(mg, invalidate_remove);
1608
1609         else {
1610                 /*
1611                  * We can't call invalidate_remove() directly here because we
1612                  * might still be in request context.
1613                  */
1614                 init_continuation(&mg->k, invalidate_remove);
1615                 queue_work(cache->wq, &mg->k.ws);
1616         }
1617
1618         return 0;
1619 }
1620
1621 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1622                             dm_oblock_t oblock, struct bio *bio)
1623 {
1624         struct dm_cache_migration *mg;
1625
1626         if (!background_work_begin(cache))
1627                 return -EPERM;
1628
1629         mg = alloc_migration(cache);
1630
1631         mg->overwrite_bio = bio;
1632         mg->invalidate_cblock = cblock;
1633         mg->invalidate_oblock = oblock;
1634
1635         return invalidate_lock(mg);
1636 }
1637
1638 /*----------------------------------------------------------------
1639  * bio processing
1640  *--------------------------------------------------------------*/
1641
1642 enum busy {
1643         IDLE,
1644         BUSY
1645 };
1646
1647 static enum busy spare_migration_bandwidth(struct cache *cache)
1648 {
1649         bool idle = iot_idle_for(&cache->tracker, HZ);
1650         sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1651                 cache->sectors_per_block;
1652
1653         if (idle && current_volume <= cache->migration_threshold)
1654                 return IDLE;
1655         else
1656                 return BUSY;
1657 }
1658
1659 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1660 {
1661         atomic_inc(bio_data_dir(bio) == READ ?
1662                    &cache->stats.read_hit : &cache->stats.write_hit);
1663 }
1664
1665 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1666 {
1667         atomic_inc(bio_data_dir(bio) == READ ?
1668                    &cache->stats.read_miss : &cache->stats.write_miss);
1669 }
1670
1671 /*----------------------------------------------------------------*/
1672
1673 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1674                    bool *commit_needed)
1675 {
1676         int r, data_dir;
1677         bool rb, background_queued;
1678         dm_cblock_t cblock;
1679
1680         *commit_needed = false;
1681
1682         rb = bio_detain_shared(cache, block, bio);
1683         if (!rb) {
1684                 /*
1685                  * An exclusive lock is held for this block, so we have to
1686                  * wait.  We set the commit_needed flag so the current
1687                  * transaction will be committed asap, allowing this lock
1688                  * to be dropped.
1689                  */
1690                 *commit_needed = true;
1691                 return DM_MAPIO_SUBMITTED;
1692         }
1693
1694         data_dir = bio_data_dir(bio);
1695
1696         if (optimisable_bio(cache, bio, block)) {
1697                 struct policy_work *op = NULL;
1698
1699                 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1700                 if (unlikely(r && r != -ENOENT)) {
1701                         DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1702                                     cache_device_name(cache), r);
1703                         bio_io_error(bio);
1704                         return DM_MAPIO_SUBMITTED;
1705                 }
1706
1707                 if (r == -ENOENT && op) {
1708                         bio_drop_shared_lock(cache, bio);
1709                         BUG_ON(op->op != POLICY_PROMOTE);
1710                         mg_start(cache, op, bio);
1711                         return DM_MAPIO_SUBMITTED;
1712                 }
1713         } else {
1714                 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1715                 if (unlikely(r && r != -ENOENT)) {
1716                         DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1717                                     cache_device_name(cache), r);
1718                         bio_io_error(bio);
1719                         return DM_MAPIO_SUBMITTED;
1720                 }
1721
1722                 if (background_queued)
1723                         wake_migration_worker(cache);
1724         }
1725
1726         if (r == -ENOENT) {
1727                 struct per_bio_data *pb = get_per_bio_data(bio);
1728
1729                 /*
1730                  * Miss.
1731                  */
1732                 inc_miss_counter(cache, bio);
1733                 if (pb->req_nr == 0) {
1734                         accounted_begin(cache, bio);
1735                         remap_to_origin_clear_discard(cache, bio, block);
1736                 } else {
1737                         /*
1738                          * This is a duplicate writethrough io that is no
1739                          * longer needed because the block has been demoted.
1740                          */
1741                         bio_endio(bio);
1742                         return DM_MAPIO_SUBMITTED;
1743                 }
1744         } else {
1745                 /*
1746                  * Hit.
1747                  */
1748                 inc_hit_counter(cache, bio);
1749
1750                 /*
1751                  * Passthrough always maps to the origin, invalidating any
1752                  * cache blocks that are written to.
1753                  */
1754                 if (passthrough_mode(cache)) {
1755                         if (bio_data_dir(bio) == WRITE) {
1756                                 bio_drop_shared_lock(cache, bio);
1757                                 atomic_inc(&cache->stats.demotion);
1758                                 invalidate_start(cache, cblock, block, bio);
1759                         } else
1760                                 remap_to_origin_clear_discard(cache, bio, block);
1761                 } else {
1762                         if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1763                             !is_dirty(cache, cblock)) {
1764                                 remap_to_origin_and_cache(cache, bio, block, cblock);
1765                                 accounted_begin(cache, bio);
1766                         } else
1767                                 remap_to_cache_dirty(cache, bio, block, cblock);
1768                 }
1769         }
1770
1771         /*
1772          * dm core turns FUA requests into a separate payload and FLUSH req.
1773          */
1774         if (bio->bi_opf & REQ_FUA) {
1775                 /*
1776                  * issue_after_commit will call accounted_begin a second time.  So
1777                  * we call accounted_complete() to avoid double accounting.
1778                  */
1779                 accounted_complete(cache, bio);
1780                 issue_after_commit(&cache->committer, bio);
1781                 *commit_needed = true;
1782                 return DM_MAPIO_SUBMITTED;
1783         }
1784
1785         return DM_MAPIO_REMAPPED;
1786 }
1787
1788 static bool process_bio(struct cache *cache, struct bio *bio)
1789 {
1790         bool commit_needed;
1791
1792         if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1793                 submit_bio_noacct(bio);
1794
1795         return commit_needed;
1796 }
1797
1798 /*
1799  * A non-zero return indicates read_only or fail_io mode.
1800  */
1801 static int commit(struct cache *cache, bool clean_shutdown)
1802 {
1803         int r;
1804
1805         if (get_cache_mode(cache) >= CM_READ_ONLY)
1806                 return -EINVAL;
1807
1808         atomic_inc(&cache->stats.commit_count);
1809         r = dm_cache_commit(cache->cmd, clean_shutdown);
1810         if (r)
1811                 metadata_operation_failed(cache, "dm_cache_commit", r);
1812
1813         return r;
1814 }
1815
1816 /*
1817  * Used by the batcher.
1818  */
1819 static blk_status_t commit_op(void *context)
1820 {
1821         struct cache *cache = context;
1822
1823         if (dm_cache_changed_this_transaction(cache->cmd))
1824                 return errno_to_blk_status(commit(cache, false));
1825
1826         return 0;
1827 }
1828
1829 /*----------------------------------------------------------------*/
1830
1831 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1832 {
1833         struct per_bio_data *pb = get_per_bio_data(bio);
1834
1835         if (!pb->req_nr)
1836                 remap_to_origin(cache, bio);
1837         else
1838                 remap_to_cache(cache, bio, 0);
1839
1840         issue_after_commit(&cache->committer, bio);
1841         return true;
1842 }
1843
1844 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1845 {
1846         dm_dblock_t b, e;
1847
1848         // FIXME: do we need to lock the region?  Or can we just assume the
1849         // user wont be so foolish as to issue discard concurrently with
1850         // other IO?
1851         calc_discard_block_range(cache, bio, &b, &e);
1852         while (b != e) {
1853                 set_discard(cache, b);
1854                 b = to_dblock(from_dblock(b) + 1);
1855         }
1856
1857         if (cache->features.discard_passdown) {
1858                 remap_to_origin(cache, bio);
1859                 submit_bio_noacct(bio);
1860         } else
1861                 bio_endio(bio);
1862
1863         return false;
1864 }
1865
1866 static void process_deferred_bios(struct work_struct *ws)
1867 {
1868         struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1869
1870         bool commit_needed = false;
1871         struct bio_list bios;
1872         struct bio *bio;
1873
1874         bio_list_init(&bios);
1875
1876         spin_lock_irq(&cache->lock);
1877         bio_list_merge(&bios, &cache->deferred_bios);
1878         bio_list_init(&cache->deferred_bios);
1879         spin_unlock_irq(&cache->lock);
1880
1881         while ((bio = bio_list_pop(&bios))) {
1882                 if (bio->bi_opf & REQ_PREFLUSH)
1883                         commit_needed = process_flush_bio(cache, bio) || commit_needed;
1884
1885                 else if (bio_op(bio) == REQ_OP_DISCARD)
1886                         commit_needed = process_discard_bio(cache, bio) || commit_needed;
1887
1888                 else
1889                         commit_needed = process_bio(cache, bio) || commit_needed;
1890         }
1891
1892         if (commit_needed)
1893                 schedule_commit(&cache->committer);
1894 }
1895
1896 /*----------------------------------------------------------------
1897  * Main worker loop
1898  *--------------------------------------------------------------*/
1899
1900 static void requeue_deferred_bios(struct cache *cache)
1901 {
1902         struct bio *bio;
1903         struct bio_list bios;
1904
1905         bio_list_init(&bios);
1906         bio_list_merge(&bios, &cache->deferred_bios);
1907         bio_list_init(&cache->deferred_bios);
1908
1909         while ((bio = bio_list_pop(&bios))) {
1910                 bio->bi_status = BLK_STS_DM_REQUEUE;
1911                 bio_endio(bio);
1912         }
1913 }
1914
1915 /*
1916  * We want to commit periodically so that not too much
1917  * unwritten metadata builds up.
1918  */
1919 static void do_waker(struct work_struct *ws)
1920 {
1921         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1922
1923         policy_tick(cache->policy, true);
1924         wake_migration_worker(cache);
1925         schedule_commit(&cache->committer);
1926         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1927 }
1928
1929 static void check_migrations(struct work_struct *ws)
1930 {
1931         int r;
1932         struct policy_work *op;
1933         struct cache *cache = container_of(ws, struct cache, migration_worker);
1934         enum busy b;
1935
1936         for (;;) {
1937                 b = spare_migration_bandwidth(cache);
1938
1939                 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1940                 if (r == -ENODATA)
1941                         break;
1942
1943                 if (r) {
1944                         DMERR_LIMIT("%s: policy_background_work failed",
1945                                     cache_device_name(cache));
1946                         break;
1947                 }
1948
1949                 r = mg_start(cache, op, NULL);
1950                 if (r)
1951                         break;
1952         }
1953 }
1954
1955 /*----------------------------------------------------------------
1956  * Target methods
1957  *--------------------------------------------------------------*/
1958
1959 /*
1960  * This function gets called on the error paths of the constructor, so we
1961  * have to cope with a partially initialised struct.
1962  */
1963 static void destroy(struct cache *cache)
1964 {
1965         unsigned i;
1966
1967         mempool_exit(&cache->migration_pool);
1968
1969         if (cache->prison)
1970                 dm_bio_prison_destroy_v2(cache->prison);
1971
1972         if (cache->wq)
1973                 destroy_workqueue(cache->wq);
1974
1975         if (cache->dirty_bitset)
1976                 free_bitset(cache->dirty_bitset);
1977
1978         if (cache->discard_bitset)
1979                 free_bitset(cache->discard_bitset);
1980
1981         if (cache->copier)
1982                 dm_kcopyd_client_destroy(cache->copier);
1983
1984         if (cache->cmd)
1985                 dm_cache_metadata_close(cache->cmd);
1986
1987         if (cache->metadata_dev)
1988                 dm_put_device(cache->ti, cache->metadata_dev);
1989
1990         if (cache->origin_dev)
1991                 dm_put_device(cache->ti, cache->origin_dev);
1992
1993         if (cache->cache_dev)
1994                 dm_put_device(cache->ti, cache->cache_dev);
1995
1996         if (cache->policy)
1997                 dm_cache_policy_destroy(cache->policy);
1998
1999         for (i = 0; i < cache->nr_ctr_args ; i++)
2000                 kfree(cache->ctr_args[i]);
2001         kfree(cache->ctr_args);
2002
2003         bioset_exit(&cache->bs);
2004
2005         kfree(cache);
2006 }
2007
2008 static void cache_dtr(struct dm_target *ti)
2009 {
2010         struct cache *cache = ti->private;
2011
2012         destroy(cache);
2013 }
2014
2015 static sector_t get_dev_size(struct dm_dev *dev)
2016 {
2017         return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2018 }
2019
2020 /*----------------------------------------------------------------*/
2021
2022 /*
2023  * Construct a cache device mapping.
2024  *
2025  * cache <metadata dev> <cache dev> <origin dev> <block size>
2026  *       <#feature args> [<feature arg>]*
2027  *       <policy> <#policy args> [<policy arg>]*
2028  *
2029  * metadata dev    : fast device holding the persistent metadata
2030  * cache dev       : fast device holding cached data blocks
2031  * origin dev      : slow device holding original data blocks
2032  * block size      : cache unit size in sectors
2033  *
2034  * #feature args   : number of feature arguments passed
2035  * feature args    : writethrough.  (The default is writeback.)
2036  *
2037  * policy          : the replacement policy to use
2038  * #policy args    : an even number of policy arguments corresponding
2039  *                   to key/value pairs passed to the policy
2040  * policy args     : key/value pairs passed to the policy
2041  *                   E.g. 'sequential_threshold 1024'
2042  *                   See cache-policies.txt for details.
2043  *
2044  * Optional feature arguments are:
2045  *   writethrough  : write through caching that prohibits cache block
2046  *                   content from being different from origin block content.
2047  *                   Without this argument, the default behaviour is to write
2048  *                   back cache block contents later for performance reasons,
2049  *                   so they may differ from the corresponding origin blocks.
2050  */
2051 struct cache_args {
2052         struct dm_target *ti;
2053
2054         struct dm_dev *metadata_dev;
2055
2056         struct dm_dev *cache_dev;
2057         sector_t cache_sectors;
2058
2059         struct dm_dev *origin_dev;
2060         sector_t origin_sectors;
2061
2062         uint32_t block_size;
2063
2064         const char *policy_name;
2065         int policy_argc;
2066         const char **policy_argv;
2067
2068         struct cache_features features;
2069 };
2070
2071 static void destroy_cache_args(struct cache_args *ca)
2072 {
2073         if (ca->metadata_dev)
2074                 dm_put_device(ca->ti, ca->metadata_dev);
2075
2076         if (ca->cache_dev)
2077                 dm_put_device(ca->ti, ca->cache_dev);
2078
2079         if (ca->origin_dev)
2080                 dm_put_device(ca->ti, ca->origin_dev);
2081
2082         kfree(ca);
2083 }
2084
2085 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2086 {
2087         if (!as->argc) {
2088                 *error = "Insufficient args";
2089                 return false;
2090         }
2091
2092         return true;
2093 }
2094
2095 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2096                               char **error)
2097 {
2098         int r;
2099         sector_t metadata_dev_size;
2100         char b[BDEVNAME_SIZE];
2101
2102         if (!at_least_one_arg(as, error))
2103                 return -EINVAL;
2104
2105         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2106                           &ca->metadata_dev);
2107         if (r) {
2108                 *error = "Error opening metadata device";
2109                 return r;
2110         }
2111
2112         metadata_dev_size = get_dev_size(ca->metadata_dev);
2113         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2114                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2115                        bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2116
2117         return 0;
2118 }
2119
2120 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2121                            char **error)
2122 {
2123         int r;
2124
2125         if (!at_least_one_arg(as, error))
2126                 return -EINVAL;
2127
2128         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129                           &ca->cache_dev);
2130         if (r) {
2131                 *error = "Error opening cache device";
2132                 return r;
2133         }
2134         ca->cache_sectors = get_dev_size(ca->cache_dev);
2135
2136         return 0;
2137 }
2138
2139 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2140                             char **error)
2141 {
2142         int r;
2143
2144         if (!at_least_one_arg(as, error))
2145                 return -EINVAL;
2146
2147         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2148                           &ca->origin_dev);
2149         if (r) {
2150                 *error = "Error opening origin device";
2151                 return r;
2152         }
2153
2154         ca->origin_sectors = get_dev_size(ca->origin_dev);
2155         if (ca->ti->len > ca->origin_sectors) {
2156                 *error = "Device size larger than cached device";
2157                 return -EINVAL;
2158         }
2159
2160         return 0;
2161 }
2162
2163 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2164                             char **error)
2165 {
2166         unsigned long block_size;
2167
2168         if (!at_least_one_arg(as, error))
2169                 return -EINVAL;
2170
2171         if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2172             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2173             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2174             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2175                 *error = "Invalid data block size";
2176                 return -EINVAL;
2177         }
2178
2179         if (block_size > ca->cache_sectors) {
2180                 *error = "Data block size is larger than the cache device";
2181                 return -EINVAL;
2182         }
2183
2184         ca->block_size = block_size;
2185
2186         return 0;
2187 }
2188
2189 static void init_features(struct cache_features *cf)
2190 {
2191         cf->mode = CM_WRITE;
2192         cf->io_mode = CM_IO_WRITEBACK;
2193         cf->metadata_version = 1;
2194         cf->discard_passdown = true;
2195 }
2196
2197 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2198                           char **error)
2199 {
2200         static const struct dm_arg _args[] = {
2201                 {0, 3, "Invalid number of cache feature arguments"},
2202         };
2203
2204         int r, mode_ctr = 0;
2205         unsigned argc;
2206         const char *arg;
2207         struct cache_features *cf = &ca->features;
2208
2209         init_features(cf);
2210
2211         r = dm_read_arg_group(_args, as, &argc, error);
2212         if (r)
2213                 return -EINVAL;
2214
2215         while (argc--) {
2216                 arg = dm_shift_arg(as);
2217
2218                 if (!strcasecmp(arg, "writeback")) {
2219                         cf->io_mode = CM_IO_WRITEBACK;
2220                         mode_ctr++;
2221                 }
2222
2223                 else if (!strcasecmp(arg, "writethrough")) {
2224                         cf->io_mode = CM_IO_WRITETHROUGH;
2225                         mode_ctr++;
2226                 }
2227
2228                 else if (!strcasecmp(arg, "passthrough")) {
2229                         cf->io_mode = CM_IO_PASSTHROUGH;
2230                         mode_ctr++;
2231                 }
2232
2233                 else if (!strcasecmp(arg, "metadata2"))
2234                         cf->metadata_version = 2;
2235
2236                 else if (!strcasecmp(arg, "no_discard_passdown"))
2237                         cf->discard_passdown = false;
2238
2239                 else {
2240                         *error = "Unrecognised cache feature requested";
2241                         return -EINVAL;
2242                 }
2243         }
2244
2245         if (mode_ctr > 1) {
2246                 *error = "Duplicate cache io_mode features requested";
2247                 return -EINVAL;
2248         }
2249
2250         return 0;
2251 }
2252
2253 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2254                         char **error)
2255 {
2256         static const struct dm_arg _args[] = {
2257                 {0, 1024, "Invalid number of policy arguments"},
2258         };
2259
2260         int r;
2261
2262         if (!at_least_one_arg(as, error))
2263                 return -EINVAL;
2264
2265         ca->policy_name = dm_shift_arg(as);
2266
2267         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2268         if (r)
2269                 return -EINVAL;
2270
2271         ca->policy_argv = (const char **)as->argv;
2272         dm_consume_args(as, ca->policy_argc);
2273
2274         return 0;
2275 }
2276
2277 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2278                             char **error)
2279 {
2280         int r;
2281         struct dm_arg_set as;
2282
2283         as.argc = argc;
2284         as.argv = argv;
2285
2286         r = parse_metadata_dev(ca, &as, error);
2287         if (r)
2288                 return r;
2289
2290         r = parse_cache_dev(ca, &as, error);
2291         if (r)
2292                 return r;
2293
2294         r = parse_origin_dev(ca, &as, error);
2295         if (r)
2296                 return r;
2297
2298         r = parse_block_size(ca, &as, error);
2299         if (r)
2300                 return r;
2301
2302         r = parse_features(ca, &as, error);
2303         if (r)
2304                 return r;
2305
2306         r = parse_policy(ca, &as, error);
2307         if (r)
2308                 return r;
2309
2310         return 0;
2311 }
2312
2313 /*----------------------------------------------------------------*/
2314
2315 static struct kmem_cache *migration_cache;
2316
2317 #define NOT_CORE_OPTION 1
2318
2319 static int process_config_option(struct cache *cache, const char *key, const char *value)
2320 {
2321         unsigned long tmp;
2322
2323         if (!strcasecmp(key, "migration_threshold")) {
2324                 if (kstrtoul(value, 10, &tmp))
2325                         return -EINVAL;
2326
2327                 cache->migration_threshold = tmp;
2328                 return 0;
2329         }
2330
2331         return NOT_CORE_OPTION;
2332 }
2333
2334 static int set_config_value(struct cache *cache, const char *key, const char *value)
2335 {
2336         int r = process_config_option(cache, key, value);
2337
2338         if (r == NOT_CORE_OPTION)
2339                 r = policy_set_config_value(cache->policy, key, value);
2340
2341         if (r)
2342                 DMWARN("bad config value for %s: %s", key, value);
2343
2344         return r;
2345 }
2346
2347 static int set_config_values(struct cache *cache, int argc, const char **argv)
2348 {
2349         int r = 0;
2350
2351         if (argc & 1) {
2352                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2353                 return -EINVAL;
2354         }
2355
2356         while (argc) {
2357                 r = set_config_value(cache, argv[0], argv[1]);
2358                 if (r)
2359                         break;
2360
2361                 argc -= 2;
2362                 argv += 2;
2363         }
2364
2365         return r;
2366 }
2367
2368 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2369                                char **error)
2370 {
2371         struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2372                                                            cache->cache_size,
2373                                                            cache->origin_sectors,
2374                                                            cache->sectors_per_block);
2375         if (IS_ERR(p)) {
2376                 *error = "Error creating cache's policy";
2377                 return PTR_ERR(p);
2378         }
2379         cache->policy = p;
2380         BUG_ON(!cache->policy);
2381
2382         return 0;
2383 }
2384
2385 /*
2386  * We want the discard block size to be at least the size of the cache
2387  * block size and have no more than 2^14 discard blocks across the origin.
2388  */
2389 #define MAX_DISCARD_BLOCKS (1 << 14)
2390
2391 static bool too_many_discard_blocks(sector_t discard_block_size,
2392                                     sector_t origin_size)
2393 {
2394         (void) sector_div(origin_size, discard_block_size);
2395
2396         return origin_size > MAX_DISCARD_BLOCKS;
2397 }
2398
2399 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2400                                              sector_t origin_size)
2401 {
2402         sector_t discard_block_size = cache_block_size;
2403
2404         if (origin_size)
2405                 while (too_many_discard_blocks(discard_block_size, origin_size))
2406                         discard_block_size *= 2;
2407
2408         return discard_block_size;
2409 }
2410
2411 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2412 {
2413         dm_block_t nr_blocks = from_cblock(size);
2414
2415         if (nr_blocks > (1 << 20) && cache->cache_size != size)
2416                 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2417                              "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2418                              "Please consider increasing the cache block size to reduce the overall cache block count.",
2419                              (unsigned long long) nr_blocks);
2420
2421         cache->cache_size = size;
2422 }
2423
2424 #define DEFAULT_MIGRATION_THRESHOLD 2048
2425
2426 static int cache_create(struct cache_args *ca, struct cache **result)
2427 {
2428         int r = 0;
2429         char **error = &ca->ti->error;
2430         struct cache *cache;
2431         struct dm_target *ti = ca->ti;
2432         dm_block_t origin_blocks;
2433         struct dm_cache_metadata *cmd;
2434         bool may_format = ca->features.mode == CM_WRITE;
2435
2436         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2437         if (!cache)
2438                 return -ENOMEM;
2439
2440         cache->ti = ca->ti;
2441         ti->private = cache;
2442         ti->num_flush_bios = 2;
2443         ti->flush_supported = true;
2444
2445         ti->num_discard_bios = 1;
2446         ti->discards_supported = true;
2447
2448         ti->per_io_data_size = sizeof(struct per_bio_data);
2449
2450         cache->features = ca->features;
2451         if (writethrough_mode(cache)) {
2452                 /* Create bioset for writethrough bios issued to origin */
2453                 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2454                 if (r)
2455                         goto bad;
2456         }
2457
2458         cache->metadata_dev = ca->metadata_dev;
2459         cache->origin_dev = ca->origin_dev;
2460         cache->cache_dev = ca->cache_dev;
2461
2462         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2463
2464         origin_blocks = cache->origin_sectors = ca->origin_sectors;
2465         origin_blocks = block_div(origin_blocks, ca->block_size);
2466         cache->origin_blocks = to_oblock(origin_blocks);
2467
2468         cache->sectors_per_block = ca->block_size;
2469         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2470                 r = -EINVAL;
2471                 goto bad;
2472         }
2473
2474         if (ca->block_size & (ca->block_size - 1)) {
2475                 dm_block_t cache_size = ca->cache_sectors;
2476
2477                 cache->sectors_per_block_shift = -1;
2478                 cache_size = block_div(cache_size, ca->block_size);
2479                 set_cache_size(cache, to_cblock(cache_size));
2480         } else {
2481                 cache->sectors_per_block_shift = __ffs(ca->block_size);
2482                 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2483         }
2484
2485         r = create_cache_policy(cache, ca, error);
2486         if (r)
2487                 goto bad;
2488
2489         cache->policy_nr_args = ca->policy_argc;
2490         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2491
2492         r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2493         if (r) {
2494                 *error = "Error setting cache policy's config values";
2495                 goto bad;
2496         }
2497
2498         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2499                                      ca->block_size, may_format,
2500                                      dm_cache_policy_get_hint_size(cache->policy),
2501                                      ca->features.metadata_version);
2502         if (IS_ERR(cmd)) {
2503                 *error = "Error creating metadata object";
2504                 r = PTR_ERR(cmd);
2505                 goto bad;
2506         }
2507         cache->cmd = cmd;
2508         set_cache_mode(cache, CM_WRITE);
2509         if (get_cache_mode(cache) != CM_WRITE) {
2510                 *error = "Unable to get write access to metadata, please check/repair metadata.";
2511                 r = -EINVAL;
2512                 goto bad;
2513         }
2514
2515         if (passthrough_mode(cache)) {
2516                 bool all_clean;
2517
2518                 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2519                 if (r) {
2520                         *error = "dm_cache_metadata_all_clean() failed";
2521                         goto bad;
2522                 }
2523
2524                 if (!all_clean) {
2525                         *error = "Cannot enter passthrough mode unless all blocks are clean";
2526                         r = -EINVAL;
2527                         goto bad;
2528                 }
2529
2530                 policy_allow_migrations(cache->policy, false);
2531         }
2532
2533         spin_lock_init(&cache->lock);
2534         bio_list_init(&cache->deferred_bios);
2535         atomic_set(&cache->nr_allocated_migrations, 0);
2536         atomic_set(&cache->nr_io_migrations, 0);
2537         init_waitqueue_head(&cache->migration_wait);
2538
2539         r = -ENOMEM;
2540         atomic_set(&cache->nr_dirty, 0);
2541         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2542         if (!cache->dirty_bitset) {
2543                 *error = "could not allocate dirty bitset";
2544                 goto bad;
2545         }
2546         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2547
2548         cache->discard_block_size =
2549                 calculate_discard_block_size(cache->sectors_per_block,
2550                                              cache->origin_sectors);
2551         cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2552                                                               cache->discard_block_size));
2553         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2554         if (!cache->discard_bitset) {
2555                 *error = "could not allocate discard bitset";
2556                 goto bad;
2557         }
2558         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2559
2560         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2561         if (IS_ERR(cache->copier)) {
2562                 *error = "could not create kcopyd client";
2563                 r = PTR_ERR(cache->copier);
2564                 goto bad;
2565         }
2566
2567         cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2568         if (!cache->wq) {
2569                 *error = "could not create workqueue for metadata object";
2570                 goto bad;
2571         }
2572         INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2573         INIT_WORK(&cache->migration_worker, check_migrations);
2574         INIT_DELAYED_WORK(&cache->waker, do_waker);
2575
2576         cache->prison = dm_bio_prison_create_v2(cache->wq);
2577         if (!cache->prison) {
2578                 *error = "could not create bio prison";
2579                 goto bad;
2580         }
2581
2582         r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2583                                    migration_cache);
2584         if (r) {
2585                 *error = "Error creating cache's migration mempool";
2586                 goto bad;
2587         }
2588
2589         cache->need_tick_bio = true;
2590         cache->sized = false;
2591         cache->invalidate = false;
2592         cache->commit_requested = false;
2593         cache->loaded_mappings = false;
2594         cache->loaded_discards = false;
2595
2596         load_stats(cache);
2597
2598         atomic_set(&cache->stats.demotion, 0);
2599         atomic_set(&cache->stats.promotion, 0);
2600         atomic_set(&cache->stats.copies_avoided, 0);
2601         atomic_set(&cache->stats.cache_cell_clash, 0);
2602         atomic_set(&cache->stats.commit_count, 0);
2603         atomic_set(&cache->stats.discard_count, 0);
2604
2605         spin_lock_init(&cache->invalidation_lock);
2606         INIT_LIST_HEAD(&cache->invalidation_requests);
2607
2608         batcher_init(&cache->committer, commit_op, cache,
2609                      issue_op, cache, cache->wq);
2610         iot_init(&cache->tracker);
2611
2612         init_rwsem(&cache->background_work_lock);
2613         prevent_background_work(cache);
2614
2615         *result = cache;
2616         return 0;
2617 bad:
2618         destroy(cache);
2619         return r;
2620 }
2621
2622 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2623 {
2624         unsigned i;
2625         const char **copy;
2626
2627         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2628         if (!copy)
2629                 return -ENOMEM;
2630         for (i = 0; i < argc; i++) {
2631                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2632                 if (!copy[i]) {
2633                         while (i--)
2634                                 kfree(copy[i]);
2635                         kfree(copy);
2636                         return -ENOMEM;
2637                 }
2638         }
2639
2640         cache->nr_ctr_args = argc;
2641         cache->ctr_args = copy;
2642
2643         return 0;
2644 }
2645
2646 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2647 {
2648         int r = -EINVAL;
2649         struct cache_args *ca;
2650         struct cache *cache = NULL;
2651
2652         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2653         if (!ca) {
2654                 ti->error = "Error allocating memory for cache";
2655                 return -ENOMEM;
2656         }
2657         ca->ti = ti;
2658
2659         r = parse_cache_args(ca, argc, argv, &ti->error);
2660         if (r)
2661                 goto out;
2662
2663         r = cache_create(ca, &cache);
2664         if (r)
2665                 goto out;
2666
2667         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2668         if (r) {
2669                 destroy(cache);
2670                 goto out;
2671         }
2672
2673         ti->private = cache;
2674 out:
2675         destroy_cache_args(ca);
2676         return r;
2677 }
2678
2679 /*----------------------------------------------------------------*/
2680
2681 static int cache_map(struct dm_target *ti, struct bio *bio)
2682 {
2683         struct cache *cache = ti->private;
2684
2685         int r;
2686         bool commit_needed;
2687         dm_oblock_t block = get_bio_block(cache, bio);
2688
2689         init_per_bio_data(bio);
2690         if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2691                 /*
2692                  * This can only occur if the io goes to a partial block at
2693                  * the end of the origin device.  We don't cache these.
2694                  * Just remap to the origin and carry on.
2695                  */
2696                 remap_to_origin(cache, bio);
2697                 accounted_begin(cache, bio);
2698                 return DM_MAPIO_REMAPPED;
2699         }
2700
2701         if (discard_or_flush(bio)) {
2702                 defer_bio(cache, bio);
2703                 return DM_MAPIO_SUBMITTED;
2704         }
2705
2706         r = map_bio(cache, bio, block, &commit_needed);
2707         if (commit_needed)
2708                 schedule_commit(&cache->committer);
2709
2710         return r;
2711 }
2712
2713 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2714 {
2715         struct cache *cache = ti->private;
2716         unsigned long flags;
2717         struct per_bio_data *pb = get_per_bio_data(bio);
2718
2719         if (pb->tick) {
2720                 policy_tick(cache->policy, false);
2721
2722                 spin_lock_irqsave(&cache->lock, flags);
2723                 cache->need_tick_bio = true;
2724                 spin_unlock_irqrestore(&cache->lock, flags);
2725         }
2726
2727         bio_drop_shared_lock(cache, bio);
2728         accounted_complete(cache, bio);
2729
2730         return DM_ENDIO_DONE;
2731 }
2732
2733 static int write_dirty_bitset(struct cache *cache)
2734 {
2735         int r;
2736
2737         if (get_cache_mode(cache) >= CM_READ_ONLY)
2738                 return -EINVAL;
2739
2740         r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2741         if (r)
2742                 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2743
2744         return r;
2745 }
2746
2747 static int write_discard_bitset(struct cache *cache)
2748 {
2749         unsigned i, r;
2750
2751         if (get_cache_mode(cache) >= CM_READ_ONLY)
2752                 return -EINVAL;
2753
2754         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2755                                            cache->discard_nr_blocks);
2756         if (r) {
2757                 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2758                 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2759                 return r;
2760         }
2761
2762         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2763                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2764                                          is_discarded(cache, to_dblock(i)));
2765                 if (r) {
2766                         metadata_operation_failed(cache, "dm_cache_set_discard", r);
2767                         return r;
2768                 }
2769         }
2770
2771         return 0;
2772 }
2773
2774 static int write_hints(struct cache *cache)
2775 {
2776         int r;
2777
2778         if (get_cache_mode(cache) >= CM_READ_ONLY)
2779                 return -EINVAL;
2780
2781         r = dm_cache_write_hints(cache->cmd, cache->policy);
2782         if (r) {
2783                 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2784                 return r;
2785         }
2786
2787         return 0;
2788 }
2789
2790 /*
2791  * returns true on success
2792  */
2793 static bool sync_metadata(struct cache *cache)
2794 {
2795         int r1, r2, r3, r4;
2796
2797         r1 = write_dirty_bitset(cache);
2798         if (r1)
2799                 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2800
2801         r2 = write_discard_bitset(cache);
2802         if (r2)
2803                 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2804
2805         save_stats(cache);
2806
2807         r3 = write_hints(cache);
2808         if (r3)
2809                 DMERR("%s: could not write hints", cache_device_name(cache));
2810
2811         /*
2812          * If writing the above metadata failed, we still commit, but don't
2813          * set the clean shutdown flag.  This will effectively force every
2814          * dirty bit to be set on reload.
2815          */
2816         r4 = commit(cache, !r1 && !r2 && !r3);
2817         if (r4)
2818                 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2819
2820         return !r1 && !r2 && !r3 && !r4;
2821 }
2822
2823 static void cache_postsuspend(struct dm_target *ti)
2824 {
2825         struct cache *cache = ti->private;
2826
2827         prevent_background_work(cache);
2828         BUG_ON(atomic_read(&cache->nr_io_migrations));
2829
2830         cancel_delayed_work_sync(&cache->waker);
2831         drain_workqueue(cache->wq);
2832         WARN_ON(cache->tracker.in_flight);
2833
2834         /*
2835          * If it's a flush suspend there won't be any deferred bios, so this
2836          * call is harmless.
2837          */
2838         requeue_deferred_bios(cache);
2839
2840         if (get_cache_mode(cache) == CM_WRITE)
2841                 (void) sync_metadata(cache);
2842 }
2843
2844 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2845                         bool dirty, uint32_t hint, bool hint_valid)
2846 {
2847         int r;
2848         struct cache *cache = context;
2849
2850         if (dirty) {
2851                 set_bit(from_cblock(cblock), cache->dirty_bitset);
2852                 atomic_inc(&cache->nr_dirty);
2853         } else
2854                 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2855
2856         r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2857         if (r)
2858                 return r;
2859
2860         return 0;
2861 }
2862
2863 /*
2864  * The discard block size in the on disk metadata is not
2865  * neccessarily the same as we're currently using.  So we have to
2866  * be careful to only set the discarded attribute if we know it
2867  * covers a complete block of the new size.
2868  */
2869 struct discard_load_info {
2870         struct cache *cache;
2871
2872         /*
2873          * These blocks are sized using the on disk dblock size, rather
2874          * than the current one.
2875          */
2876         dm_block_t block_size;
2877         dm_block_t discard_begin, discard_end;
2878 };
2879
2880 static void discard_load_info_init(struct cache *cache,
2881                                    struct discard_load_info *li)
2882 {
2883         li->cache = cache;
2884         li->discard_begin = li->discard_end = 0;
2885 }
2886
2887 static void set_discard_range(struct discard_load_info *li)
2888 {
2889         sector_t b, e;
2890
2891         if (li->discard_begin == li->discard_end)
2892                 return;
2893
2894         /*
2895          * Convert to sectors.
2896          */
2897         b = li->discard_begin * li->block_size;
2898         e = li->discard_end * li->block_size;
2899
2900         /*
2901          * Then convert back to the current dblock size.
2902          */
2903         b = dm_sector_div_up(b, li->cache->discard_block_size);
2904         sector_div(e, li->cache->discard_block_size);
2905
2906         /*
2907          * The origin may have shrunk, so we need to check we're still in
2908          * bounds.
2909          */
2910         if (e > from_dblock(li->cache->discard_nr_blocks))
2911                 e = from_dblock(li->cache->discard_nr_blocks);
2912
2913         for (; b < e; b++)
2914                 set_discard(li->cache, to_dblock(b));
2915 }
2916
2917 static int load_discard(void *context, sector_t discard_block_size,
2918                         dm_dblock_t dblock, bool discard)
2919 {
2920         struct discard_load_info *li = context;
2921
2922         li->block_size = discard_block_size;
2923
2924         if (discard) {
2925                 if (from_dblock(dblock) == li->discard_end)
2926                         /*
2927                          * We're already in a discard range, just extend it.
2928                          */
2929                         li->discard_end = li->discard_end + 1ULL;
2930
2931                 else {
2932                         /*
2933                          * Emit the old range and start a new one.
2934                          */
2935                         set_discard_range(li);
2936                         li->discard_begin = from_dblock(dblock);
2937                         li->discard_end = li->discard_begin + 1ULL;
2938                 }
2939         } else {
2940                 set_discard_range(li);
2941                 li->discard_begin = li->discard_end = 0;
2942         }
2943
2944         return 0;
2945 }
2946
2947 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2948 {
2949         sector_t size = get_dev_size(cache->cache_dev);
2950         (void) sector_div(size, cache->sectors_per_block);
2951         return to_cblock(size);
2952 }
2953
2954 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2955 {
2956         if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2957                 if (cache->sized) {
2958                         DMERR("%s: unable to extend cache due to missing cache table reload",
2959                               cache_device_name(cache));
2960                         return false;
2961                 }
2962         }
2963
2964         /*
2965          * We can't drop a dirty block when shrinking the cache.
2966          */
2967         while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2968                 new_size = to_cblock(from_cblock(new_size) + 1);
2969                 if (is_dirty(cache, new_size)) {
2970                         DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2971                               cache_device_name(cache),
2972                               (unsigned long long) from_cblock(new_size));
2973                         return false;
2974                 }
2975         }
2976
2977         return true;
2978 }
2979
2980 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2981 {
2982         int r;
2983
2984         r = dm_cache_resize(cache->cmd, new_size);
2985         if (r) {
2986                 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2987                 metadata_operation_failed(cache, "dm_cache_resize", r);
2988                 return r;
2989         }
2990
2991         set_cache_size(cache, new_size);
2992
2993         return 0;
2994 }
2995
2996 static int cache_preresume(struct dm_target *ti)
2997 {
2998         int r = 0;
2999         struct cache *cache = ti->private;
3000         dm_cblock_t csize = get_cache_dev_size(cache);
3001
3002         /*
3003          * Check to see if the cache has resized.
3004          */
3005         if (!cache->sized) {
3006                 r = resize_cache_dev(cache, csize);
3007                 if (r)
3008                         return r;
3009
3010                 cache->sized = true;
3011
3012         } else if (csize != cache->cache_size) {
3013                 if (!can_resize(cache, csize))
3014                         return -EINVAL;
3015
3016                 r = resize_cache_dev(cache, csize);
3017                 if (r)
3018                         return r;
3019         }
3020
3021         if (!cache->loaded_mappings) {
3022                 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3023                                            load_mapping, cache);
3024                 if (r) {
3025                         DMERR("%s: could not load cache mappings", cache_device_name(cache));
3026                         metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3027                         return r;
3028                 }
3029
3030                 cache->loaded_mappings = true;
3031         }
3032
3033         if (!cache->loaded_discards) {
3034                 struct discard_load_info li;
3035
3036                 /*
3037                  * The discard bitset could have been resized, or the
3038                  * discard block size changed.  To be safe we start by
3039                  * setting every dblock to not discarded.
3040                  */
3041                 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3042
3043                 discard_load_info_init(cache, &li);
3044                 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3045                 if (r) {
3046                         DMERR("%s: could not load origin discards", cache_device_name(cache));
3047                         metadata_operation_failed(cache, "dm_cache_load_discards", r);
3048                         return r;
3049                 }
3050                 set_discard_range(&li);
3051
3052                 cache->loaded_discards = true;
3053         }
3054
3055         return r;
3056 }
3057
3058 static void cache_resume(struct dm_target *ti)
3059 {
3060         struct cache *cache = ti->private;
3061
3062         cache->need_tick_bio = true;
3063         allow_background_work(cache);
3064         do_waker(&cache->waker.work);
3065 }
3066
3067 static void emit_flags(struct cache *cache, char *result,
3068                        unsigned maxlen, ssize_t *sz_ptr)
3069 {
3070         ssize_t sz = *sz_ptr;
3071         struct cache_features *cf = &cache->features;
3072         unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3073
3074         DMEMIT("%u ", count);
3075
3076         if (cf->metadata_version == 2)
3077                 DMEMIT("metadata2 ");
3078
3079         if (writethrough_mode(cache))
3080                 DMEMIT("writethrough ");
3081
3082         else if (passthrough_mode(cache))
3083                 DMEMIT("passthrough ");
3084
3085         else if (writeback_mode(cache))
3086                 DMEMIT("writeback ");
3087
3088         else {
3089                 DMEMIT("unknown ");
3090                 DMERR("%s: internal error: unknown io mode: %d",
3091                       cache_device_name(cache), (int) cf->io_mode);
3092         }
3093
3094         if (!cf->discard_passdown)
3095                 DMEMIT("no_discard_passdown ");
3096
3097         *sz_ptr = sz;
3098 }
3099
3100 /*
3101  * Status format:
3102  *
3103  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3104  * <cache block size> <#used cache blocks>/<#total cache blocks>
3105  * <#read hits> <#read misses> <#write hits> <#write misses>
3106  * <#demotions> <#promotions> <#dirty>
3107  * <#features> <features>*
3108  * <#core args> <core args>
3109  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3110  */
3111 static void cache_status(struct dm_target *ti, status_type_t type,
3112                          unsigned status_flags, char *result, unsigned maxlen)
3113 {
3114         int r = 0;
3115         unsigned i;
3116         ssize_t sz = 0;
3117         dm_block_t nr_free_blocks_metadata = 0;
3118         dm_block_t nr_blocks_metadata = 0;
3119         char buf[BDEVNAME_SIZE];
3120         struct cache *cache = ti->private;
3121         dm_cblock_t residency;
3122         bool needs_check;
3123
3124         switch (type) {
3125         case STATUSTYPE_INFO:
3126                 if (get_cache_mode(cache) == CM_FAIL) {
3127                         DMEMIT("Fail");
3128                         break;
3129                 }
3130
3131                 /* Commit to ensure statistics aren't out-of-date */
3132                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3133                         (void) commit(cache, false);
3134
3135                 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3136                 if (r) {
3137                         DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3138                               cache_device_name(cache), r);
3139                         goto err;
3140                 }
3141
3142                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3143                 if (r) {
3144                         DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3145                               cache_device_name(cache), r);
3146                         goto err;
3147                 }
3148
3149                 residency = policy_residency(cache->policy);
3150
3151                 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3152                        (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3153                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3154                        (unsigned long long)nr_blocks_metadata,
3155                        (unsigned long long)cache->sectors_per_block,
3156                        (unsigned long long) from_cblock(residency),
3157                        (unsigned long long) from_cblock(cache->cache_size),
3158                        (unsigned) atomic_read(&cache->stats.read_hit),
3159                        (unsigned) atomic_read(&cache->stats.read_miss),
3160                        (unsigned) atomic_read(&cache->stats.write_hit),
3161                        (unsigned) atomic_read(&cache->stats.write_miss),
3162                        (unsigned) atomic_read(&cache->stats.demotion),
3163                        (unsigned) atomic_read(&cache->stats.promotion),
3164                        (unsigned long) atomic_read(&cache->nr_dirty));
3165
3166                 emit_flags(cache, result, maxlen, &sz);
3167
3168                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3169
3170                 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3171                 if (sz < maxlen) {
3172                         r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3173                         if (r)
3174                                 DMERR("%s: policy_emit_config_values returned %d",
3175                                       cache_device_name(cache), r);
3176                 }
3177
3178                 if (get_cache_mode(cache) == CM_READ_ONLY)
3179                         DMEMIT("ro ");
3180                 else
3181                         DMEMIT("rw ");
3182
3183                 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3184
3185                 if (r || needs_check)
3186                         DMEMIT("needs_check ");
3187                 else
3188                         DMEMIT("- ");
3189
3190                 break;
3191
3192         case STATUSTYPE_TABLE:
3193                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3194                 DMEMIT("%s ", buf);
3195                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3196                 DMEMIT("%s ", buf);
3197                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3198                 DMEMIT("%s", buf);
3199
3200                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3201                         DMEMIT(" %s", cache->ctr_args[i]);
3202                 if (cache->nr_ctr_args)
3203                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3204         }
3205
3206         return;
3207
3208 err:
3209         DMEMIT("Error");
3210 }
3211
3212 /*
3213  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3214  * the one-past-the-end value.
3215  */
3216 struct cblock_range {
3217         dm_cblock_t begin;
3218         dm_cblock_t end;
3219 };
3220
3221 /*
3222  * A cache block range can take two forms:
3223  *
3224  * i) A single cblock, eg. '3456'
3225  * ii) A begin and end cblock with a dash between, eg. 123-234
3226  */
3227 static int parse_cblock_range(struct cache *cache, const char *str,
3228                               struct cblock_range *result)
3229 {
3230         char dummy;
3231         uint64_t b, e;
3232         int r;
3233
3234         /*
3235          * Try and parse form (ii) first.
3236          */
3237         r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3238         if (r < 0)
3239                 return r;
3240
3241         if (r == 2) {
3242                 result->begin = to_cblock(b);
3243                 result->end = to_cblock(e);
3244                 return 0;
3245         }
3246
3247         /*
3248          * That didn't work, try form (i).
3249          */
3250         r = sscanf(str, "%llu%c", &b, &dummy);
3251         if (r < 0)
3252                 return r;
3253
3254         if (r == 1) {
3255                 result->begin = to_cblock(b);
3256                 result->end = to_cblock(from_cblock(result->begin) + 1u);
3257                 return 0;
3258         }
3259
3260         DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3261         return -EINVAL;
3262 }
3263
3264 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3265 {
3266         uint64_t b = from_cblock(range->begin);
3267         uint64_t e = from_cblock(range->end);
3268         uint64_t n = from_cblock(cache->cache_size);
3269
3270         if (b >= n) {
3271                 DMERR("%s: begin cblock out of range: %llu >= %llu",
3272                       cache_device_name(cache), b, n);
3273                 return -EINVAL;
3274         }
3275
3276         if (e > n) {
3277                 DMERR("%s: end cblock out of range: %llu > %llu",
3278                       cache_device_name(cache), e, n);
3279                 return -EINVAL;
3280         }
3281
3282         if (b >= e) {
3283                 DMERR("%s: invalid cblock range: %llu >= %llu",
3284                       cache_device_name(cache), b, e);
3285                 return -EINVAL;
3286         }
3287
3288         return 0;
3289 }
3290
3291 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3292 {
3293         return to_cblock(from_cblock(b) + 1);
3294 }
3295
3296 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3297 {
3298         int r = 0;
3299
3300         /*
3301          * We don't need to do any locking here because we know we're in
3302          * passthrough mode.  There's is potential for a race between an
3303          * invalidation triggered by an io and an invalidation message.  This
3304          * is harmless, we must not worry if the policy call fails.
3305          */
3306         while (range->begin != range->end) {
3307                 r = invalidate_cblock(cache, range->begin);
3308                 if (r)
3309                         return r;
3310
3311                 range->begin = cblock_succ(range->begin);
3312         }
3313
3314         cache->commit_requested = true;
3315         return r;
3316 }
3317
3318 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3319                                               const char **cblock_ranges)
3320 {
3321         int r = 0;
3322         unsigned i;
3323         struct cblock_range range;
3324
3325         if (!passthrough_mode(cache)) {
3326                 DMERR("%s: cache has to be in passthrough mode for invalidation",
3327                       cache_device_name(cache));
3328                 return -EPERM;
3329         }
3330
3331         for (i = 0; i < count; i++) {
3332                 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3333                 if (r)
3334                         break;
3335
3336                 r = validate_cblock_range(cache, &range);
3337                 if (r)
3338                         break;
3339
3340                 /*
3341                  * Pass begin and end origin blocks to the worker and wake it.
3342                  */
3343                 r = request_invalidation(cache, &range);
3344                 if (r)
3345                         break;
3346         }
3347
3348         return r;
3349 }
3350
3351 /*
3352  * Supports
3353  *      "<key> <value>"
3354  * and
3355  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3356  *
3357  * The key migration_threshold is supported by the cache target core.
3358  */
3359 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3360                          char *result, unsigned maxlen)
3361 {
3362         struct cache *cache = ti->private;
3363
3364         if (!argc)
3365                 return -EINVAL;
3366
3367         if (get_cache_mode(cache) >= CM_READ_ONLY) {
3368                 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3369                       cache_device_name(cache));
3370                 return -EOPNOTSUPP;
3371         }
3372
3373         if (!strcasecmp(argv[0], "invalidate_cblocks"))
3374                 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3375
3376         if (argc != 2)
3377                 return -EINVAL;
3378
3379         return set_config_value(cache, argv[0], argv[1]);
3380 }
3381
3382 static int cache_iterate_devices(struct dm_target *ti,
3383                                  iterate_devices_callout_fn fn, void *data)
3384 {
3385         int r = 0;
3386         struct cache *cache = ti->private;
3387
3388         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3389         if (!r)
3390                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3391
3392         return r;
3393 }
3394
3395 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3396 {
3397         struct request_queue *q = bdev_get_queue(origin_bdev);
3398
3399         return q && blk_queue_discard(q);
3400 }
3401
3402 /*
3403  * If discard_passdown was enabled verify that the origin device
3404  * supports discards.  Disable discard_passdown if not.
3405  */
3406 static void disable_passdown_if_not_supported(struct cache *cache)
3407 {
3408         struct block_device *origin_bdev = cache->origin_dev->bdev;
3409         struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3410         const char *reason = NULL;
3411         char buf[BDEVNAME_SIZE];
3412
3413         if (!cache->features.discard_passdown)
3414                 return;
3415
3416         if (!origin_dev_supports_discard(origin_bdev))
3417                 reason = "discard unsupported";
3418
3419         else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3420                 reason = "max discard sectors smaller than a block";
3421
3422         if (reason) {
3423                 DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3424                        bdevname(origin_bdev, buf), reason);
3425                 cache->features.discard_passdown = false;
3426         }
3427 }
3428
3429 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3430 {
3431         struct block_device *origin_bdev = cache->origin_dev->bdev;
3432         struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3433
3434         if (!cache->features.discard_passdown) {
3435                 /* No passdown is done so setting own virtual limits */
3436                 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3437                                                     cache->origin_sectors);
3438                 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3439                 return;
3440         }
3441
3442         /*
3443          * cache_iterate_devices() is stacking both origin and fast device limits
3444          * but discards aren't passed to fast device, so inherit origin's limits.
3445          */
3446         limits->max_discard_sectors = origin_limits->max_discard_sectors;
3447         limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3448         limits->discard_granularity = origin_limits->discard_granularity;
3449         limits->discard_alignment = origin_limits->discard_alignment;
3450         limits->discard_misaligned = origin_limits->discard_misaligned;
3451 }
3452
3453 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3454 {
3455         struct cache *cache = ti->private;
3456         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3457
3458         /*
3459          * If the system-determined stacked limits are compatible with the
3460          * cache's blocksize (io_opt is a factor) do not override them.
3461          */
3462         if (io_opt_sectors < cache->sectors_per_block ||
3463             do_div(io_opt_sectors, cache->sectors_per_block)) {
3464                 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3465                 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3466         }
3467
3468         disable_passdown_if_not_supported(cache);
3469         set_discard_limits(cache, limits);
3470 }
3471
3472 /*----------------------------------------------------------------*/
3473
3474 static struct target_type cache_target = {
3475         .name = "cache",
3476         .version = {2, 2, 0},
3477         .module = THIS_MODULE,
3478         .ctr = cache_ctr,
3479         .dtr = cache_dtr,
3480         .map = cache_map,
3481         .end_io = cache_end_io,
3482         .postsuspend = cache_postsuspend,
3483         .preresume = cache_preresume,
3484         .resume = cache_resume,
3485         .status = cache_status,
3486         .message = cache_message,
3487         .iterate_devices = cache_iterate_devices,
3488         .io_hints = cache_io_hints,
3489 };
3490
3491 static int __init dm_cache_init(void)
3492 {
3493         int r;
3494
3495         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3496         if (!migration_cache)
3497                 return -ENOMEM;
3498
3499         r = dm_register_target(&cache_target);
3500         if (r) {
3501                 DMERR("cache target registration failed: %d", r);
3502                 kmem_cache_destroy(migration_cache);
3503                 return r;
3504         }
3505
3506         return 0;
3507 }
3508
3509 static void __exit dm_cache_exit(void)
3510 {
3511         dm_unregister_target(&cache_target);
3512         kmem_cache_destroy(migration_cache);
3513 }
3514
3515 module_init(dm_cache_init);
3516 module_exit(dm_cache_exit);
3517
3518 MODULE_DESCRIPTION(DM_NAME " cache target");
3519 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3520 MODULE_LICENSE("GPL");