Merge tag 'f2fs-for-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[linux-2.6-microblaze.git] / drivers / md / dm-cache-policy-smq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-cache-background-tracker.h"
9 #include "dm-cache-policy-internal.h"
10 #include "dm-cache-policy.h"
11 #include "dm.h"
12
13 #include <linux/hash.h>
14 #include <linux/jiffies.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/vmalloc.h>
18 #include <linux/math64.h>
19
20 #define DM_MSG_PREFIX "cache-policy-smq"
21
22 /*----------------------------------------------------------------*/
23
24 /*
25  * Safe division functions that return zero on divide by zero.
26  */
27 static unsigned int safe_div(unsigned int n, unsigned int d)
28 {
29         return d ? n / d : 0u;
30 }
31
32 static unsigned int safe_mod(unsigned int n, unsigned int d)
33 {
34         return d ? n % d : 0u;
35 }
36
37 /*----------------------------------------------------------------*/
38
39 struct entry {
40         unsigned int hash_next:28;
41         unsigned int prev:28;
42         unsigned int next:28;
43         unsigned int level:6;
44         bool dirty:1;
45         bool allocated:1;
46         bool sentinel:1;
47         bool pending_work:1;
48
49         dm_oblock_t oblock;
50 };
51
52 /*----------------------------------------------------------------*/
53
54 #define INDEXER_NULL ((1u << 28u) - 1u)
55
56 /*
57  * An entry_space manages a set of entries that we use for the queues.
58  * The clean and dirty queues share entries, so this object is separate
59  * from the queue itself.
60  */
61 struct entry_space {
62         struct entry *begin;
63         struct entry *end;
64 };
65
66 static int space_init(struct entry_space *es, unsigned int nr_entries)
67 {
68         if (!nr_entries) {
69                 es->begin = es->end = NULL;
70                 return 0;
71         }
72
73         es->begin = vzalloc(array_size(nr_entries, sizeof(struct entry)));
74         if (!es->begin)
75                 return -ENOMEM;
76
77         es->end = es->begin + nr_entries;
78         return 0;
79 }
80
81 static void space_exit(struct entry_space *es)
82 {
83         vfree(es->begin);
84 }
85
86 static struct entry *__get_entry(struct entry_space *es, unsigned int block)
87 {
88         struct entry *e;
89
90         e = es->begin + block;
91         BUG_ON(e >= es->end);
92
93         return e;
94 }
95
96 static unsigned int to_index(struct entry_space *es, struct entry *e)
97 {
98         BUG_ON(e < es->begin || e >= es->end);
99         return e - es->begin;
100 }
101
102 static struct entry *to_entry(struct entry_space *es, unsigned int block)
103 {
104         if (block == INDEXER_NULL)
105                 return NULL;
106
107         return __get_entry(es, block);
108 }
109
110 /*----------------------------------------------------------------*/
111
112 struct ilist {
113         unsigned int nr_elts;   /* excluding sentinel entries */
114         unsigned int head, tail;
115 };
116
117 static void l_init(struct ilist *l)
118 {
119         l->nr_elts = 0;
120         l->head = l->tail = INDEXER_NULL;
121 }
122
123 static struct entry *l_head(struct entry_space *es, struct ilist *l)
124 {
125         return to_entry(es, l->head);
126 }
127
128 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
129 {
130         return to_entry(es, l->tail);
131 }
132
133 static struct entry *l_next(struct entry_space *es, struct entry *e)
134 {
135         return to_entry(es, e->next);
136 }
137
138 static struct entry *l_prev(struct entry_space *es, struct entry *e)
139 {
140         return to_entry(es, e->prev);
141 }
142
143 static bool l_empty(struct ilist *l)
144 {
145         return l->head == INDEXER_NULL;
146 }
147
148 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
149 {
150         struct entry *head = l_head(es, l);
151
152         e->next = l->head;
153         e->prev = INDEXER_NULL;
154
155         if (head)
156                 head->prev = l->head = to_index(es, e);
157         else
158                 l->head = l->tail = to_index(es, e);
159
160         if (!e->sentinel)
161                 l->nr_elts++;
162 }
163
164 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
165 {
166         struct entry *tail = l_tail(es, l);
167
168         e->next = INDEXER_NULL;
169         e->prev = l->tail;
170
171         if (tail)
172                 tail->next = l->tail = to_index(es, e);
173         else
174                 l->head = l->tail = to_index(es, e);
175
176         if (!e->sentinel)
177                 l->nr_elts++;
178 }
179
180 static void l_add_before(struct entry_space *es, struct ilist *l,
181                          struct entry *old, struct entry *e)
182 {
183         struct entry *prev = l_prev(es, old);
184
185         if (!prev)
186                 l_add_head(es, l, e);
187
188         else {
189                 e->prev = old->prev;
190                 e->next = to_index(es, old);
191                 prev->next = old->prev = to_index(es, e);
192
193                 if (!e->sentinel)
194                         l->nr_elts++;
195         }
196 }
197
198 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
199 {
200         struct entry *prev = l_prev(es, e);
201         struct entry *next = l_next(es, e);
202
203         if (prev)
204                 prev->next = e->next;
205         else
206                 l->head = e->next;
207
208         if (next)
209                 next->prev = e->prev;
210         else
211                 l->tail = e->prev;
212
213         if (!e->sentinel)
214                 l->nr_elts--;
215 }
216
217 static struct entry *l_pop_head(struct entry_space *es, struct ilist *l)
218 {
219         struct entry *e;
220
221         for (e = l_head(es, l); e; e = l_next(es, e))
222                 if (!e->sentinel) {
223                         l_del(es, l, e);
224                         return e;
225                 }
226
227         return NULL;
228 }
229
230 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
231 {
232         struct entry *e;
233
234         for (e = l_tail(es, l); e; e = l_prev(es, e))
235                 if (!e->sentinel) {
236                         l_del(es, l, e);
237                         return e;
238                 }
239
240         return NULL;
241 }
242
243 /*----------------------------------------------------------------*/
244
245 /*
246  * The stochastic-multi-queue is a set of lru lists stacked into levels.
247  * Entries are moved up levels when they are used, which loosely orders the
248  * most accessed entries in the top levels and least in the bottom.  This
249  * structure is *much* better than a single lru list.
250  */
251 #define MAX_LEVELS 64u
252
253 struct queue {
254         struct entry_space *es;
255
256         unsigned int nr_elts;
257         unsigned int nr_levels;
258         struct ilist qs[MAX_LEVELS];
259
260         /*
261          * We maintain a count of the number of entries we would like in each
262          * level.
263          */
264         unsigned int last_target_nr_elts;
265         unsigned int nr_top_levels;
266         unsigned int nr_in_top_levels;
267         unsigned int target_count[MAX_LEVELS];
268 };
269
270 static void q_init(struct queue *q, struct entry_space *es, unsigned int nr_levels)
271 {
272         unsigned int i;
273
274         q->es = es;
275         q->nr_elts = 0;
276         q->nr_levels = nr_levels;
277
278         for (i = 0; i < q->nr_levels; i++) {
279                 l_init(q->qs + i);
280                 q->target_count[i] = 0u;
281         }
282
283         q->last_target_nr_elts = 0u;
284         q->nr_top_levels = 0u;
285         q->nr_in_top_levels = 0u;
286 }
287
288 static unsigned int q_size(struct queue *q)
289 {
290         return q->nr_elts;
291 }
292
293 /*
294  * Insert an entry to the back of the given level.
295  */
296 static void q_push(struct queue *q, struct entry *e)
297 {
298         BUG_ON(e->pending_work);
299
300         if (!e->sentinel)
301                 q->nr_elts++;
302
303         l_add_tail(q->es, q->qs + e->level, e);
304 }
305
306 static void q_push_front(struct queue *q, struct entry *e)
307 {
308         BUG_ON(e->pending_work);
309
310         if (!e->sentinel)
311                 q->nr_elts++;
312
313         l_add_head(q->es, q->qs + e->level, e);
314 }
315
316 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
317 {
318         BUG_ON(e->pending_work);
319
320         if (!e->sentinel)
321                 q->nr_elts++;
322
323         l_add_before(q->es, q->qs + e->level, old, e);
324 }
325
326 static void q_del(struct queue *q, struct entry *e)
327 {
328         l_del(q->es, q->qs + e->level, e);
329         if (!e->sentinel)
330                 q->nr_elts--;
331 }
332
333 /*
334  * Return the oldest entry of the lowest populated level.
335  */
336 static struct entry *q_peek(struct queue *q, unsigned int max_level, bool can_cross_sentinel)
337 {
338         unsigned int level;
339         struct entry *e;
340
341         max_level = min(max_level, q->nr_levels);
342
343         for (level = 0; level < max_level; level++)
344                 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
345                         if (e->sentinel) {
346                                 if (can_cross_sentinel)
347                                         continue;
348                                 else
349                                         break;
350                         }
351
352                         return e;
353                 }
354
355         return NULL;
356 }
357
358 static struct entry *q_pop(struct queue *q)
359 {
360         struct entry *e = q_peek(q, q->nr_levels, true);
361
362         if (e)
363                 q_del(q, e);
364
365         return e;
366 }
367
368 /*
369  * This function assumes there is a non-sentinel entry to pop.  It's only
370  * used by redistribute, so we know this is true.  It also doesn't adjust
371  * the q->nr_elts count.
372  */
373 static struct entry *__redist_pop_from(struct queue *q, unsigned int level)
374 {
375         struct entry *e;
376
377         for (; level < q->nr_levels; level++)
378                 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
379                         if (!e->sentinel) {
380                                 l_del(q->es, q->qs + e->level, e);
381                                 return e;
382                         }
383
384         return NULL;
385 }
386
387 static void q_set_targets_subrange_(struct queue *q, unsigned int nr_elts,
388                                     unsigned int lbegin, unsigned int lend)
389 {
390         unsigned int level, nr_levels, entries_per_level, remainder;
391
392         BUG_ON(lbegin > lend);
393         BUG_ON(lend > q->nr_levels);
394         nr_levels = lend - lbegin;
395         entries_per_level = safe_div(nr_elts, nr_levels);
396         remainder = safe_mod(nr_elts, nr_levels);
397
398         for (level = lbegin; level < lend; level++)
399                 q->target_count[level] =
400                         (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
401 }
402
403 /*
404  * Typically we have fewer elements in the top few levels which allows us
405  * to adjust the promote threshold nicely.
406  */
407 static void q_set_targets(struct queue *q)
408 {
409         if (q->last_target_nr_elts == q->nr_elts)
410                 return;
411
412         q->last_target_nr_elts = q->nr_elts;
413
414         if (q->nr_top_levels > q->nr_levels)
415                 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
416
417         else {
418                 q_set_targets_subrange_(q, q->nr_in_top_levels,
419                                         q->nr_levels - q->nr_top_levels, q->nr_levels);
420
421                 if (q->nr_in_top_levels < q->nr_elts)
422                         q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
423                                                 0, q->nr_levels - q->nr_top_levels);
424                 else
425                         q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
426         }
427 }
428
429 static void q_redistribute(struct queue *q)
430 {
431         unsigned int target, level;
432         struct ilist *l, *l_above;
433         struct entry *e;
434
435         q_set_targets(q);
436
437         for (level = 0u; level < q->nr_levels - 1u; level++) {
438                 l = q->qs + level;
439                 target = q->target_count[level];
440
441                 /*
442                  * Pull down some entries from the level above.
443                  */
444                 while (l->nr_elts < target) {
445                         e = __redist_pop_from(q, level + 1u);
446                         if (!e) {
447                                 /* bug in nr_elts */
448                                 break;
449                         }
450
451                         e->level = level;
452                         l_add_tail(q->es, l, e);
453                 }
454
455                 /*
456                  * Push some entries up.
457                  */
458                 l_above = q->qs + level + 1u;
459                 while (l->nr_elts > target) {
460                         e = l_pop_tail(q->es, l);
461
462                         if (!e)
463                                 /* bug in nr_elts */
464                                 break;
465
466                         e->level = level + 1u;
467                         l_add_tail(q->es, l_above, e);
468                 }
469         }
470 }
471
472 static void q_requeue(struct queue *q, struct entry *e, unsigned int extra_levels,
473                       struct entry *s1, struct entry *s2)
474 {
475         struct entry *de;
476         unsigned int sentinels_passed = 0;
477         unsigned int new_level = min(q->nr_levels - 1u, e->level + extra_levels);
478
479         /* try and find an entry to swap with */
480         if (extra_levels && (e->level < q->nr_levels - 1u)) {
481                 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de))
482                         sentinels_passed++;
483
484                 if (de) {
485                         q_del(q, de);
486                         de->level = e->level;
487                         if (s1) {
488                                 switch (sentinels_passed) {
489                                 case 0:
490                                         q_push_before(q, s1, de);
491                                         break;
492
493                                 case 1:
494                                         q_push_before(q, s2, de);
495                                         break;
496
497                                 default:
498                                         q_push(q, de);
499                                 }
500                         } else
501                                 q_push(q, de);
502                 }
503         }
504
505         q_del(q, e);
506         e->level = new_level;
507         q_push(q, e);
508 }
509
510 /*----------------------------------------------------------------*/
511
512 #define FP_SHIFT 8
513 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
514 #define EIGHTH (1u << (FP_SHIFT - 3u))
515
516 struct stats {
517         unsigned int hit_threshold;
518         unsigned int hits;
519         unsigned int misses;
520 };
521
522 enum performance {
523         Q_POOR,
524         Q_FAIR,
525         Q_WELL
526 };
527
528 static void stats_init(struct stats *s, unsigned int nr_levels)
529 {
530         s->hit_threshold = (nr_levels * 3u) / 4u;
531         s->hits = 0u;
532         s->misses = 0u;
533 }
534
535 static void stats_reset(struct stats *s)
536 {
537         s->hits = s->misses = 0u;
538 }
539
540 static void stats_level_accessed(struct stats *s, unsigned int level)
541 {
542         if (level >= s->hit_threshold)
543                 s->hits++;
544         else
545                 s->misses++;
546 }
547
548 static void stats_miss(struct stats *s)
549 {
550         s->misses++;
551 }
552
553 /*
554  * There are times when we don't have any confidence in the hotspot queue.
555  * Such as when a fresh cache is created and the blocks have been spread
556  * out across the levels, or if an io load changes.  We detect this by
557  * seeing how often a lookup is in the top levels of the hotspot queue.
558  */
559 static enum performance stats_assess(struct stats *s)
560 {
561         unsigned int confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
562
563         if (confidence < SIXTEENTH)
564                 return Q_POOR;
565
566         else if (confidence < EIGHTH)
567                 return Q_FAIR;
568
569         else
570                 return Q_WELL;
571 }
572
573 /*----------------------------------------------------------------*/
574
575 struct smq_hash_table {
576         struct entry_space *es;
577         unsigned long long hash_bits;
578         unsigned int *buckets;
579 };
580
581 /*
582  * All cache entries are stored in a chained hash table.  To save space we
583  * use indexing again, and only store indexes to the next entry.
584  */
585 static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned int nr_entries)
586 {
587         unsigned int i, nr_buckets;
588
589         ht->es = es;
590         nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
591         ht->hash_bits = __ffs(nr_buckets);
592
593         ht->buckets = vmalloc(array_size(nr_buckets, sizeof(*ht->buckets)));
594         if (!ht->buckets)
595                 return -ENOMEM;
596
597         for (i = 0; i < nr_buckets; i++)
598                 ht->buckets[i] = INDEXER_NULL;
599
600         return 0;
601 }
602
603 static void h_exit(struct smq_hash_table *ht)
604 {
605         vfree(ht->buckets);
606 }
607
608 static struct entry *h_head(struct smq_hash_table *ht, unsigned int bucket)
609 {
610         return to_entry(ht->es, ht->buckets[bucket]);
611 }
612
613 static struct entry *h_next(struct smq_hash_table *ht, struct entry *e)
614 {
615         return to_entry(ht->es, e->hash_next);
616 }
617
618 static void __h_insert(struct smq_hash_table *ht, unsigned int bucket, struct entry *e)
619 {
620         e->hash_next = ht->buckets[bucket];
621         ht->buckets[bucket] = to_index(ht->es, e);
622 }
623
624 static void h_insert(struct smq_hash_table *ht, struct entry *e)
625 {
626         unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits);
627
628         __h_insert(ht, h, e);
629 }
630
631 static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned int h, dm_oblock_t oblock,
632                                 struct entry **prev)
633 {
634         struct entry *e;
635
636         *prev = NULL;
637         for (e = h_head(ht, h); e; e = h_next(ht, e)) {
638                 if (e->oblock == oblock)
639                         return e;
640
641                 *prev = e;
642         }
643
644         return NULL;
645 }
646
647 static void __h_unlink(struct smq_hash_table *ht, unsigned int h,
648                        struct entry *e, struct entry *prev)
649 {
650         if (prev)
651                 prev->hash_next = e->hash_next;
652         else
653                 ht->buckets[h] = e->hash_next;
654 }
655
656 /*
657  * Also moves each entry to the front of the bucket.
658  */
659 static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock)
660 {
661         struct entry *e, *prev;
662         unsigned int h = hash_64(from_oblock(oblock), ht->hash_bits);
663
664         e = __h_lookup(ht, h, oblock, &prev);
665         if (e && prev) {
666                 /*
667                  * Move to the front because this entry is likely
668                  * to be hit again.
669                  */
670                 __h_unlink(ht, h, e, prev);
671                 __h_insert(ht, h, e);
672         }
673
674         return e;
675 }
676
677 static void h_remove(struct smq_hash_table *ht, struct entry *e)
678 {
679         unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits);
680         struct entry *prev;
681
682         /*
683          * The down side of using a singly linked list is we have to
684          * iterate the bucket to remove an item.
685          */
686         e = __h_lookup(ht, h, e->oblock, &prev);
687         if (e)
688                 __h_unlink(ht, h, e, prev);
689 }
690
691 /*----------------------------------------------------------------*/
692
693 struct entry_alloc {
694         struct entry_space *es;
695         unsigned int begin;
696
697         unsigned int nr_allocated;
698         struct ilist free;
699 };
700
701 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
702                            unsigned int begin, unsigned int end)
703 {
704         unsigned int i;
705
706         ea->es = es;
707         ea->nr_allocated = 0u;
708         ea->begin = begin;
709
710         l_init(&ea->free);
711         for (i = begin; i != end; i++)
712                 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
713 }
714
715 static void init_entry(struct entry *e)
716 {
717         /*
718          * We can't memset because that would clear the hotspot and
719          * sentinel bits which remain constant.
720          */
721         e->hash_next = INDEXER_NULL;
722         e->next = INDEXER_NULL;
723         e->prev = INDEXER_NULL;
724         e->level = 0u;
725         e->dirty = true;        /* FIXME: audit */
726         e->allocated = true;
727         e->sentinel = false;
728         e->pending_work = false;
729 }
730
731 static struct entry *alloc_entry(struct entry_alloc *ea)
732 {
733         struct entry *e;
734
735         if (l_empty(&ea->free))
736                 return NULL;
737
738         e = l_pop_head(ea->es, &ea->free);
739         init_entry(e);
740         ea->nr_allocated++;
741
742         return e;
743 }
744
745 /*
746  * This assumes the cblock hasn't already been allocated.
747  */
748 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned int i)
749 {
750         struct entry *e = __get_entry(ea->es, ea->begin + i);
751
752         BUG_ON(e->allocated);
753
754         l_del(ea->es, &ea->free, e);
755         init_entry(e);
756         ea->nr_allocated++;
757
758         return e;
759 }
760
761 static void free_entry(struct entry_alloc *ea, struct entry *e)
762 {
763         BUG_ON(!ea->nr_allocated);
764         BUG_ON(!e->allocated);
765
766         ea->nr_allocated--;
767         e->allocated = false;
768         l_add_tail(ea->es, &ea->free, e);
769 }
770
771 static bool allocator_empty(struct entry_alloc *ea)
772 {
773         return l_empty(&ea->free);
774 }
775
776 static unsigned int get_index(struct entry_alloc *ea, struct entry *e)
777 {
778         return to_index(ea->es, e) - ea->begin;
779 }
780
781 static struct entry *get_entry(struct entry_alloc *ea, unsigned int index)
782 {
783         return __get_entry(ea->es, ea->begin + index);
784 }
785
786 /*----------------------------------------------------------------*/
787
788 #define NR_HOTSPOT_LEVELS 64u
789 #define NR_CACHE_LEVELS 64u
790
791 #define WRITEBACK_PERIOD (10ul * HZ)
792 #define DEMOTE_PERIOD (60ul * HZ)
793
794 #define HOTSPOT_UPDATE_PERIOD (HZ)
795 #define CACHE_UPDATE_PERIOD (60ul * HZ)
796
797 struct smq_policy {
798         struct dm_cache_policy policy;
799
800         /* protects everything */
801         spinlock_t lock;
802         dm_cblock_t cache_size;
803         sector_t cache_block_size;
804
805         sector_t hotspot_block_size;
806         unsigned int nr_hotspot_blocks;
807         unsigned int cache_blocks_per_hotspot_block;
808         unsigned int hotspot_level_jump;
809
810         struct entry_space es;
811         struct entry_alloc writeback_sentinel_alloc;
812         struct entry_alloc demote_sentinel_alloc;
813         struct entry_alloc hotspot_alloc;
814         struct entry_alloc cache_alloc;
815
816         unsigned long *hotspot_hit_bits;
817         unsigned long *cache_hit_bits;
818
819         /*
820          * We maintain three queues of entries.  The cache proper,
821          * consisting of a clean and dirty queue, containing the currently
822          * active mappings.  The hotspot queue uses a larger block size to
823          * track blocks that are being hit frequently and potential
824          * candidates for promotion to the cache.
825          */
826         struct queue hotspot;
827         struct queue clean;
828         struct queue dirty;
829
830         struct stats hotspot_stats;
831         struct stats cache_stats;
832
833         /*
834          * Keeps track of time, incremented by the core.  We use this to
835          * avoid attributing multiple hits within the same tick.
836          */
837         unsigned int tick;
838
839         /*
840          * The hash tables allows us to quickly find an entry by origin
841          * block.
842          */
843         struct smq_hash_table table;
844         struct smq_hash_table hotspot_table;
845
846         bool current_writeback_sentinels;
847         unsigned long next_writeback_period;
848
849         bool current_demote_sentinels;
850         unsigned long next_demote_period;
851
852         unsigned int write_promote_level;
853         unsigned int read_promote_level;
854
855         unsigned long next_hotspot_period;
856         unsigned long next_cache_period;
857
858         struct background_tracker *bg_work;
859
860         bool migrations_allowed:1;
861
862         /*
863          * If this is set the policy will try and clean the whole cache
864          * even if the device is not idle.
865          */
866         bool cleaner:1;
867 };
868
869 /*----------------------------------------------------------------*/
870
871 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned int level, bool which)
872 {
873         return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
874 }
875
876 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned int level)
877 {
878         return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
879 }
880
881 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned int level)
882 {
883         return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
884 }
885
886 static void __update_writeback_sentinels(struct smq_policy *mq)
887 {
888         unsigned int level;
889         struct queue *q = &mq->dirty;
890         struct entry *sentinel;
891
892         for (level = 0; level < q->nr_levels; level++) {
893                 sentinel = writeback_sentinel(mq, level);
894                 q_del(q, sentinel);
895                 q_push(q, sentinel);
896         }
897 }
898
899 static void __update_demote_sentinels(struct smq_policy *mq)
900 {
901         unsigned int level;
902         struct queue *q = &mq->clean;
903         struct entry *sentinel;
904
905         for (level = 0; level < q->nr_levels; level++) {
906                 sentinel = demote_sentinel(mq, level);
907                 q_del(q, sentinel);
908                 q_push(q, sentinel);
909         }
910 }
911
912 static void update_sentinels(struct smq_policy *mq)
913 {
914         if (time_after(jiffies, mq->next_writeback_period)) {
915                 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
916                 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
917                 __update_writeback_sentinels(mq);
918         }
919
920         if (time_after(jiffies, mq->next_demote_period)) {
921                 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
922                 mq->current_demote_sentinels = !mq->current_demote_sentinels;
923                 __update_demote_sentinels(mq);
924         }
925 }
926
927 static void __sentinels_init(struct smq_policy *mq)
928 {
929         unsigned int level;
930         struct entry *sentinel;
931
932         for (level = 0; level < NR_CACHE_LEVELS; level++) {
933                 sentinel = writeback_sentinel(mq, level);
934                 sentinel->level = level;
935                 q_push(&mq->dirty, sentinel);
936
937                 sentinel = demote_sentinel(mq, level);
938                 sentinel->level = level;
939                 q_push(&mq->clean, sentinel);
940         }
941 }
942
943 static void sentinels_init(struct smq_policy *mq)
944 {
945         mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
946         mq->next_demote_period = jiffies + DEMOTE_PERIOD;
947
948         mq->current_writeback_sentinels = false;
949         mq->current_demote_sentinels = false;
950         __sentinels_init(mq);
951
952         mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
953         mq->current_demote_sentinels = !mq->current_demote_sentinels;
954         __sentinels_init(mq);
955 }
956
957 /*----------------------------------------------------------------*/
958
959 static void del_queue(struct smq_policy *mq, struct entry *e)
960 {
961         q_del(e->dirty ? &mq->dirty : &mq->clean, e);
962 }
963
964 static void push_queue(struct smq_policy *mq, struct entry *e)
965 {
966         if (e->dirty)
967                 q_push(&mq->dirty, e);
968         else
969                 q_push(&mq->clean, e);
970 }
971
972 // !h, !q, a -> h, q, a
973 static void push(struct smq_policy *mq, struct entry *e)
974 {
975         h_insert(&mq->table, e);
976         if (!e->pending_work)
977                 push_queue(mq, e);
978 }
979
980 static void push_queue_front(struct smq_policy *mq, struct entry *e)
981 {
982         if (e->dirty)
983                 q_push_front(&mq->dirty, e);
984         else
985                 q_push_front(&mq->clean, e);
986 }
987
988 static void push_front(struct smq_policy *mq, struct entry *e)
989 {
990         h_insert(&mq->table, e);
991         if (!e->pending_work)
992                 push_queue_front(mq, e);
993 }
994
995 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
996 {
997         return to_cblock(get_index(&mq->cache_alloc, e));
998 }
999
1000 static void requeue(struct smq_policy *mq, struct entry *e)
1001 {
1002         /*
1003          * Pending work has temporarily been taken out of the queues.
1004          */
1005         if (e->pending_work)
1006                 return;
1007
1008         if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
1009                 if (!e->dirty) {
1010                         q_requeue(&mq->clean, e, 1u, NULL, NULL);
1011                         return;
1012                 }
1013
1014                 q_requeue(&mq->dirty, e, 1u,
1015                           get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels),
1016                           get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels));
1017         }
1018 }
1019
1020 static unsigned int default_promote_level(struct smq_policy *mq)
1021 {
1022         /*
1023          * The promote level depends on the current performance of the
1024          * cache.
1025          *
1026          * If the cache is performing badly, then we can't afford
1027          * to promote much without causing performance to drop below that
1028          * of the origin device.
1029          *
1030          * If the cache is performing well, then we don't need to promote
1031          * much.  If it isn't broken, don't fix it.
1032          *
1033          * If the cache is middling then we promote more.
1034          *
1035          * This scheme reminds me of a graph of entropy vs probability of a
1036          * binary variable.
1037          */
1038         static const unsigned int table[] = {
1039                 1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1
1040         };
1041
1042         unsigned int hits = mq->cache_stats.hits;
1043         unsigned int misses = mq->cache_stats.misses;
1044         unsigned int index = safe_div(hits << 4u, hits + misses);
1045         return table[index];
1046 }
1047
1048 static void update_promote_levels(struct smq_policy *mq)
1049 {
1050         /*
1051          * If there are unused cache entries then we want to be really
1052          * eager to promote.
1053          */
1054         unsigned int threshold_level = allocator_empty(&mq->cache_alloc) ?
1055                 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1056
1057         threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS);
1058
1059         /*
1060          * If the hotspot queue is performing badly then we have little
1061          * confidence that we know which blocks to promote.  So we cut down
1062          * the amount of promotions.
1063          */
1064         switch (stats_assess(&mq->hotspot_stats)) {
1065         case Q_POOR:
1066                 threshold_level /= 4u;
1067                 break;
1068
1069         case Q_FAIR:
1070                 threshold_level /= 2u;
1071                 break;
1072
1073         case Q_WELL:
1074                 break;
1075         }
1076
1077         mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1078         mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level);
1079 }
1080
1081 /*
1082  * If the hotspot queue is performing badly, then we try and move entries
1083  * around more quickly.
1084  */
1085 static void update_level_jump(struct smq_policy *mq)
1086 {
1087         switch (stats_assess(&mq->hotspot_stats)) {
1088         case Q_POOR:
1089                 mq->hotspot_level_jump = 4u;
1090                 break;
1091
1092         case Q_FAIR:
1093                 mq->hotspot_level_jump = 2u;
1094                 break;
1095
1096         case Q_WELL:
1097                 mq->hotspot_level_jump = 1u;
1098                 break;
1099         }
1100 }
1101
1102 static void end_hotspot_period(struct smq_policy *mq)
1103 {
1104         clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1105         update_promote_levels(mq);
1106
1107         if (time_after(jiffies, mq->next_hotspot_period)) {
1108                 update_level_jump(mq);
1109                 q_redistribute(&mq->hotspot);
1110                 stats_reset(&mq->hotspot_stats);
1111                 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1112         }
1113 }
1114
1115 static void end_cache_period(struct smq_policy *mq)
1116 {
1117         if (time_after(jiffies, mq->next_cache_period)) {
1118                 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1119
1120                 q_redistribute(&mq->dirty);
1121                 q_redistribute(&mq->clean);
1122                 stats_reset(&mq->cache_stats);
1123
1124                 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1125         }
1126 }
1127
1128 /*----------------------------------------------------------------*/
1129
1130 /*
1131  * Targets are given as a percentage.
1132  */
1133 #define CLEAN_TARGET 25u
1134 #define FREE_TARGET 25u
1135
1136 static unsigned int percent_to_target(struct smq_policy *mq, unsigned int p)
1137 {
1138         return from_cblock(mq->cache_size) * p / 100u;
1139 }
1140
1141 static bool clean_target_met(struct smq_policy *mq, bool idle)
1142 {
1143         /*
1144          * Cache entries may not be populated.  So we cannot rely on the
1145          * size of the clean queue.
1146          */
1147         if (idle || mq->cleaner) {
1148                 /*
1149                  * We'd like to clean everything.
1150                  */
1151                 return q_size(&mq->dirty) == 0u;
1152         }
1153
1154         /*
1155          * If we're busy we don't worry about cleaning at all.
1156          */
1157         return true;
1158 }
1159
1160 static bool free_target_met(struct smq_policy *mq)
1161 {
1162         unsigned int nr_free;
1163
1164         nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated;
1165         return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >=
1166                 percent_to_target(mq, FREE_TARGET);
1167 }
1168
1169 /*----------------------------------------------------------------*/
1170
1171 static void mark_pending(struct smq_policy *mq, struct entry *e)
1172 {
1173         BUG_ON(e->sentinel);
1174         BUG_ON(!e->allocated);
1175         BUG_ON(e->pending_work);
1176         e->pending_work = true;
1177 }
1178
1179 static void clear_pending(struct smq_policy *mq, struct entry *e)
1180 {
1181         BUG_ON(!e->pending_work);
1182         e->pending_work = false;
1183 }
1184
1185 static void queue_writeback(struct smq_policy *mq, bool idle)
1186 {
1187         int r;
1188         struct policy_work work;
1189         struct entry *e;
1190
1191         e = q_peek(&mq->dirty, mq->dirty.nr_levels, idle);
1192         if (e) {
1193                 mark_pending(mq, e);
1194                 q_del(&mq->dirty, e);
1195
1196                 work.op = POLICY_WRITEBACK;
1197                 work.oblock = e->oblock;
1198                 work.cblock = infer_cblock(mq, e);
1199
1200                 r = btracker_queue(mq->bg_work, &work, NULL);
1201                 if (r) {
1202                         clear_pending(mq, e);
1203                         q_push_front(&mq->dirty, e);
1204                 }
1205         }
1206 }
1207
1208 static void queue_demotion(struct smq_policy *mq)
1209 {
1210         int r;
1211         struct policy_work work;
1212         struct entry *e;
1213
1214         if (WARN_ON_ONCE(!mq->migrations_allowed))
1215                 return;
1216
1217         e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true);
1218         if (!e) {
1219                 if (!clean_target_met(mq, true))
1220                         queue_writeback(mq, false);
1221                 return;
1222         }
1223
1224         mark_pending(mq, e);
1225         q_del(&mq->clean, e);
1226
1227         work.op = POLICY_DEMOTE;
1228         work.oblock = e->oblock;
1229         work.cblock = infer_cblock(mq, e);
1230         r = btracker_queue(mq->bg_work, &work, NULL);
1231         if (r) {
1232                 clear_pending(mq, e);
1233                 q_push_front(&mq->clean, e);
1234         }
1235 }
1236
1237 static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock,
1238                             struct policy_work **workp)
1239 {
1240         int r;
1241         struct entry *e;
1242         struct policy_work work;
1243
1244         if (!mq->migrations_allowed)
1245                 return;
1246
1247         if (allocator_empty(&mq->cache_alloc)) {
1248                 /*
1249                  * We always claim to be 'idle' to ensure some demotions happen
1250                  * with continuous loads.
1251                  */
1252                 if (!free_target_met(mq))
1253                         queue_demotion(mq);
1254                 return;
1255         }
1256
1257         if (btracker_promotion_already_present(mq->bg_work, oblock))
1258                 return;
1259
1260         /*
1261          * We allocate the entry now to reserve the cblock.  If the
1262          * background work is aborted we must remember to free it.
1263          */
1264         e = alloc_entry(&mq->cache_alloc);
1265         BUG_ON(!e);
1266         e->pending_work = true;
1267         work.op = POLICY_PROMOTE;
1268         work.oblock = oblock;
1269         work.cblock = infer_cblock(mq, e);
1270         r = btracker_queue(mq->bg_work, &work, workp);
1271         if (r)
1272                 free_entry(&mq->cache_alloc, e);
1273 }
1274
1275 /*----------------------------------------------------------------*/
1276
1277 enum promote_result {
1278         PROMOTE_NOT,
1279         PROMOTE_TEMPORARY,
1280         PROMOTE_PERMANENT
1281 };
1282
1283 /*
1284  * Converts a boolean into a promote result.
1285  */
1286 static enum promote_result maybe_promote(bool promote)
1287 {
1288         return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1289 }
1290
1291 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e,
1292                                           int data_dir, bool fast_promote)
1293 {
1294         if (data_dir == WRITE) {
1295                 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1296                         return PROMOTE_TEMPORARY;
1297
1298                 return maybe_promote(hs_e->level >= mq->write_promote_level);
1299         } else
1300                 return maybe_promote(hs_e->level >= mq->read_promote_level);
1301 }
1302
1303 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1304 {
1305         sector_t r = from_oblock(b);
1306         (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1307         return to_oblock(r);
1308 }
1309
1310 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b)
1311 {
1312         unsigned int hi;
1313         dm_oblock_t hb = to_hblock(mq, b);
1314         struct entry *e = h_lookup(&mq->hotspot_table, hb);
1315
1316         if (e) {
1317                 stats_level_accessed(&mq->hotspot_stats, e->level);
1318
1319                 hi = get_index(&mq->hotspot_alloc, e);
1320                 q_requeue(&mq->hotspot, e,
1321                           test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1322                           0u : mq->hotspot_level_jump,
1323                           NULL, NULL);
1324
1325         } else {
1326                 stats_miss(&mq->hotspot_stats);
1327
1328                 e = alloc_entry(&mq->hotspot_alloc);
1329                 if (!e) {
1330                         e = q_pop(&mq->hotspot);
1331                         if (e) {
1332                                 h_remove(&mq->hotspot_table, e);
1333                                 hi = get_index(&mq->hotspot_alloc, e);
1334                                 clear_bit(hi, mq->hotspot_hit_bits);
1335                         }
1336
1337                 }
1338
1339                 if (e) {
1340                         e->oblock = hb;
1341                         q_push(&mq->hotspot, e);
1342                         h_insert(&mq->hotspot_table, e);
1343                 }
1344         }
1345
1346         return e;
1347 }
1348
1349 /*----------------------------------------------------------------*/
1350
1351 /*
1352  * Public interface, via the policy struct.  See dm-cache-policy.h for a
1353  * description of these.
1354  */
1355
1356 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1357 {
1358         return container_of(p, struct smq_policy, policy);
1359 }
1360
1361 static void smq_destroy(struct dm_cache_policy *p)
1362 {
1363         struct smq_policy *mq = to_smq_policy(p);
1364
1365         btracker_destroy(mq->bg_work);
1366         h_exit(&mq->hotspot_table);
1367         h_exit(&mq->table);
1368         free_bitset(mq->hotspot_hit_bits);
1369         free_bitset(mq->cache_hit_bits);
1370         space_exit(&mq->es);
1371         kfree(mq);
1372 }
1373
1374 /*----------------------------------------------------------------*/
1375
1376 static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock,
1377                     int data_dir, bool fast_copy,
1378                     struct policy_work **work, bool *background_work)
1379 {
1380         struct entry *e, *hs_e;
1381         enum promote_result pr;
1382
1383         *background_work = false;
1384
1385         e = h_lookup(&mq->table, oblock);
1386         if (e) {
1387                 stats_level_accessed(&mq->cache_stats, e->level);
1388
1389                 requeue(mq, e);
1390                 *cblock = infer_cblock(mq, e);
1391                 return 0;
1392
1393         } else {
1394                 stats_miss(&mq->cache_stats);
1395
1396                 /*
1397                  * The hotspot queue only gets updated with misses.
1398                  */
1399                 hs_e = update_hotspot_queue(mq, oblock);
1400
1401                 pr = should_promote(mq, hs_e, data_dir, fast_copy);
1402                 if (pr != PROMOTE_NOT) {
1403                         queue_promotion(mq, oblock, work);
1404                         *background_work = true;
1405                 }
1406
1407                 return -ENOENT;
1408         }
1409 }
1410
1411 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
1412                       int data_dir, bool fast_copy,
1413                       bool *background_work)
1414 {
1415         int r;
1416         unsigned long flags;
1417         struct smq_policy *mq = to_smq_policy(p);
1418
1419         spin_lock_irqsave(&mq->lock, flags);
1420         r = __lookup(mq, oblock, cblock,
1421                      data_dir, fast_copy,
1422                      NULL, background_work);
1423         spin_unlock_irqrestore(&mq->lock, flags);
1424
1425         return r;
1426 }
1427
1428 static int smq_lookup_with_work(struct dm_cache_policy *p,
1429                                 dm_oblock_t oblock, dm_cblock_t *cblock,
1430                                 int data_dir, bool fast_copy,
1431                                 struct policy_work **work)
1432 {
1433         int r;
1434         bool background_queued;
1435         unsigned long flags;
1436         struct smq_policy *mq = to_smq_policy(p);
1437
1438         spin_lock_irqsave(&mq->lock, flags);
1439         r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued);
1440         spin_unlock_irqrestore(&mq->lock, flags);
1441
1442         return r;
1443 }
1444
1445 static int smq_get_background_work(struct dm_cache_policy *p, bool idle,
1446                                    struct policy_work **result)
1447 {
1448         int r;
1449         unsigned long flags;
1450         struct smq_policy *mq = to_smq_policy(p);
1451
1452         spin_lock_irqsave(&mq->lock, flags);
1453         r = btracker_issue(mq->bg_work, result);
1454         if (r == -ENODATA) {
1455                 if (!clean_target_met(mq, idle)) {
1456                         queue_writeback(mq, idle);
1457                         r = btracker_issue(mq->bg_work, result);
1458                 }
1459         }
1460         spin_unlock_irqrestore(&mq->lock, flags);
1461
1462         return r;
1463 }
1464
1465 /*
1466  * We need to clear any pending work flags that have been set, and in the
1467  * case of promotion free the entry for the destination cblock.
1468  */
1469 static void __complete_background_work(struct smq_policy *mq,
1470                                        struct policy_work *work,
1471                                        bool success)
1472 {
1473         struct entry *e = get_entry(&mq->cache_alloc,
1474                                     from_cblock(work->cblock));
1475
1476         switch (work->op) {
1477         case POLICY_PROMOTE:
1478                 // !h, !q, a
1479                 clear_pending(mq, e);
1480                 if (success) {
1481                         e->oblock = work->oblock;
1482                         e->level = NR_CACHE_LEVELS - 1;
1483                         push(mq, e);
1484                         // h, q, a
1485                 } else {
1486                         free_entry(&mq->cache_alloc, e);
1487                         // !h, !q, !a
1488                 }
1489                 break;
1490
1491         case POLICY_DEMOTE:
1492                 // h, !q, a
1493                 if (success) {
1494                         h_remove(&mq->table, e);
1495                         free_entry(&mq->cache_alloc, e);
1496                         // !h, !q, !a
1497                 } else {
1498                         clear_pending(mq, e);
1499                         push_queue(mq, e);
1500                         // h, q, a
1501                 }
1502                 break;
1503
1504         case POLICY_WRITEBACK:
1505                 // h, !q, a
1506                 clear_pending(mq, e);
1507                 push_queue(mq, e);
1508                 // h, q, a
1509                 break;
1510         }
1511
1512         btracker_complete(mq->bg_work, work);
1513 }
1514
1515 static void smq_complete_background_work(struct dm_cache_policy *p,
1516                                          struct policy_work *work,
1517                                          bool success)
1518 {
1519         unsigned long flags;
1520         struct smq_policy *mq = to_smq_policy(p);
1521
1522         spin_lock_irqsave(&mq->lock, flags);
1523         __complete_background_work(mq, work, success);
1524         spin_unlock_irqrestore(&mq->lock, flags);
1525 }
1526
1527 // in_hash(oblock) -> in_hash(oblock)
1528 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set)
1529 {
1530         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1531
1532         if (e->pending_work)
1533                 e->dirty = set;
1534         else {
1535                 del_queue(mq, e);
1536                 e->dirty = set;
1537                 push_queue(mq, e);
1538         }
1539 }
1540
1541 static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1542 {
1543         unsigned long flags;
1544         struct smq_policy *mq = to_smq_policy(p);
1545
1546         spin_lock_irqsave(&mq->lock, flags);
1547         __smq_set_clear_dirty(mq, cblock, true);
1548         spin_unlock_irqrestore(&mq->lock, flags);
1549 }
1550
1551 static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1552 {
1553         struct smq_policy *mq = to_smq_policy(p);
1554         unsigned long flags;
1555
1556         spin_lock_irqsave(&mq->lock, flags);
1557         __smq_set_clear_dirty(mq, cblock, false);
1558         spin_unlock_irqrestore(&mq->lock, flags);
1559 }
1560
1561 static unsigned int random_level(dm_cblock_t cblock)
1562 {
1563         return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
1564 }
1565
1566 static int smq_load_mapping(struct dm_cache_policy *p,
1567                             dm_oblock_t oblock, dm_cblock_t cblock,
1568                             bool dirty, uint32_t hint, bool hint_valid)
1569 {
1570         struct smq_policy *mq = to_smq_policy(p);
1571         struct entry *e;
1572
1573         e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1574         e->oblock = oblock;
1575         e->dirty = dirty;
1576         e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
1577         e->pending_work = false;
1578
1579         /*
1580          * When we load mappings we push ahead of both sentinels in order to
1581          * allow demotions and cleaning to occur immediately.
1582          */
1583         push_front(mq, e);
1584
1585         return 0;
1586 }
1587
1588 static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock)
1589 {
1590         struct smq_policy *mq = to_smq_policy(p);
1591         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1592
1593         if (!e->allocated)
1594                 return -ENODATA;
1595
1596         // FIXME: what if this block has pending background work?
1597         del_queue(mq, e);
1598         h_remove(&mq->table, e);
1599         free_entry(&mq->cache_alloc, e);
1600         return 0;
1601 }
1602
1603 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
1604 {
1605         struct smq_policy *mq = to_smq_policy(p);
1606         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1607
1608         if (!e->allocated)
1609                 return 0;
1610
1611         return e->level;
1612 }
1613
1614 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1615 {
1616         dm_cblock_t r;
1617         unsigned long flags;
1618         struct smq_policy *mq = to_smq_policy(p);
1619
1620         spin_lock_irqsave(&mq->lock, flags);
1621         r = to_cblock(mq->cache_alloc.nr_allocated);
1622         spin_unlock_irqrestore(&mq->lock, flags);
1623
1624         return r;
1625 }
1626
1627 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1628 {
1629         struct smq_policy *mq = to_smq_policy(p);
1630         unsigned long flags;
1631
1632         spin_lock_irqsave(&mq->lock, flags);
1633         mq->tick++;
1634         update_sentinels(mq);
1635         end_hotspot_period(mq);
1636         end_cache_period(mq);
1637         spin_unlock_irqrestore(&mq->lock, flags);
1638 }
1639
1640 static void smq_allow_migrations(struct dm_cache_policy *p, bool allow)
1641 {
1642         struct smq_policy *mq = to_smq_policy(p);
1643
1644         mq->migrations_allowed = allow;
1645 }
1646
1647 /*
1648  * smq has no config values, but the old mq policy did.  To avoid breaking
1649  * software we continue to accept these configurables for the mq policy,
1650  * but they have no effect.
1651  */
1652 static int mq_set_config_value(struct dm_cache_policy *p,
1653                                const char *key, const char *value)
1654 {
1655         unsigned long tmp;
1656
1657         if (kstrtoul(value, 10, &tmp))
1658                 return -EINVAL;
1659
1660         if (!strcasecmp(key, "random_threshold") ||
1661             !strcasecmp(key, "sequential_threshold") ||
1662             !strcasecmp(key, "discard_promote_adjustment") ||
1663             !strcasecmp(key, "read_promote_adjustment") ||
1664             !strcasecmp(key, "write_promote_adjustment")) {
1665                 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1666                 return 0;
1667         }
1668
1669         return -EINVAL;
1670 }
1671
1672 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1673                                  unsigned int maxlen, ssize_t *sz_ptr)
1674 {
1675         ssize_t sz = *sz_ptr;
1676
1677         DMEMIT("10 random_threshold 0 "
1678                "sequential_threshold 0 "
1679                "discard_promote_adjustment 0 "
1680                "read_promote_adjustment 0 "
1681                "write_promote_adjustment 0 ");
1682
1683         *sz_ptr = sz;
1684         return 0;
1685 }
1686
1687 /* Init the policy plugin interface function pointers. */
1688 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1689 {
1690         mq->policy.destroy = smq_destroy;
1691         mq->policy.lookup = smq_lookup;
1692         mq->policy.lookup_with_work = smq_lookup_with_work;
1693         mq->policy.get_background_work = smq_get_background_work;
1694         mq->policy.complete_background_work = smq_complete_background_work;
1695         mq->policy.set_dirty = smq_set_dirty;
1696         mq->policy.clear_dirty = smq_clear_dirty;
1697         mq->policy.load_mapping = smq_load_mapping;
1698         mq->policy.invalidate_mapping = smq_invalidate_mapping;
1699         mq->policy.get_hint = smq_get_hint;
1700         mq->policy.residency = smq_residency;
1701         mq->policy.tick = smq_tick;
1702         mq->policy.allow_migrations = smq_allow_migrations;
1703
1704         if (mimic_mq) {
1705                 mq->policy.set_config_value = mq_set_config_value;
1706                 mq->policy.emit_config_values = mq_emit_config_values;
1707         }
1708 }
1709
1710 static bool too_many_hotspot_blocks(sector_t origin_size,
1711                                     sector_t hotspot_block_size,
1712                                     unsigned int nr_hotspot_blocks)
1713 {
1714         return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1715 }
1716
1717 static void calc_hotspot_params(sector_t origin_size,
1718                                 sector_t cache_block_size,
1719                                 unsigned int nr_cache_blocks,
1720                                 sector_t *hotspot_block_size,
1721                                 unsigned int *nr_hotspot_blocks)
1722 {
1723         *hotspot_block_size = cache_block_size * 16u;
1724         *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1725
1726         while ((*hotspot_block_size > cache_block_size) &&
1727                too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1728                 *hotspot_block_size /= 2u;
1729 }
1730
1731 static struct dm_cache_policy *
1732 __smq_create(dm_cblock_t cache_size, sector_t origin_size, sector_t cache_block_size,
1733              bool mimic_mq, bool migrations_allowed, bool cleaner)
1734 {
1735         unsigned int i;
1736         unsigned int nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1737         unsigned int total_sentinels = 2u * nr_sentinels_per_queue;
1738         struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1739
1740         if (!mq)
1741                 return NULL;
1742
1743         init_policy_functions(mq, mimic_mq);
1744         mq->cache_size = cache_size;
1745         mq->cache_block_size = cache_block_size;
1746
1747         calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1748                             &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1749
1750         mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1751         mq->hotspot_level_jump = 1u;
1752         if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1753                 DMERR("couldn't initialize entry space");
1754                 goto bad_pool_init;
1755         }
1756
1757         init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1758         for (i = 0; i < nr_sentinels_per_queue; i++)
1759                 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1760
1761         init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1762         for (i = 0; i < nr_sentinels_per_queue; i++)
1763                 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1764
1765         init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1766                        total_sentinels + mq->nr_hotspot_blocks);
1767
1768         init_allocator(&mq->cache_alloc, &mq->es,
1769                        total_sentinels + mq->nr_hotspot_blocks,
1770                        total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1771
1772         mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1773         if (!mq->hotspot_hit_bits) {
1774                 DMERR("couldn't allocate hotspot hit bitset");
1775                 goto bad_hotspot_hit_bits;
1776         }
1777         clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1778
1779         if (from_cblock(cache_size)) {
1780                 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1781                 if (!mq->cache_hit_bits) {
1782                         DMERR("couldn't allocate cache hit bitset");
1783                         goto bad_cache_hit_bits;
1784                 }
1785                 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1786         } else
1787                 mq->cache_hit_bits = NULL;
1788
1789         mq->tick = 0;
1790         spin_lock_init(&mq->lock);
1791
1792         q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1793         mq->hotspot.nr_top_levels = 8;
1794         mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1795                                            from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1796
1797         q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1798         q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1799
1800         stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1801         stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1802
1803         if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1804                 goto bad_alloc_table;
1805
1806         if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1807                 goto bad_alloc_hotspot_table;
1808
1809         sentinels_init(mq);
1810         mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1811
1812         mq->next_hotspot_period = jiffies;
1813         mq->next_cache_period = jiffies;
1814
1815         mq->bg_work = btracker_create(4096); /* FIXME: hard coded value */
1816         if (!mq->bg_work)
1817                 goto bad_btracker;
1818
1819         mq->migrations_allowed = migrations_allowed;
1820         mq->cleaner = cleaner;
1821
1822         return &mq->policy;
1823
1824 bad_btracker:
1825         h_exit(&mq->hotspot_table);
1826 bad_alloc_hotspot_table:
1827         h_exit(&mq->table);
1828 bad_alloc_table:
1829         free_bitset(mq->cache_hit_bits);
1830 bad_cache_hit_bits:
1831         free_bitset(mq->hotspot_hit_bits);
1832 bad_hotspot_hit_bits:
1833         space_exit(&mq->es);
1834 bad_pool_init:
1835         kfree(mq);
1836
1837         return NULL;
1838 }
1839
1840 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1841                                           sector_t origin_size,
1842                                           sector_t cache_block_size)
1843 {
1844         return __smq_create(cache_size, origin_size, cache_block_size,
1845                             false, true, false);
1846 }
1847
1848 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1849                                          sector_t origin_size,
1850                                          sector_t cache_block_size)
1851 {
1852         return __smq_create(cache_size, origin_size, cache_block_size,
1853                             true, true, false);
1854 }
1855
1856 static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size,
1857                                               sector_t origin_size,
1858                                               sector_t cache_block_size)
1859 {
1860         return __smq_create(cache_size, origin_size, cache_block_size,
1861                             false, false, true);
1862 }
1863
1864 /*----------------------------------------------------------------*/
1865
1866 static struct dm_cache_policy_type smq_policy_type = {
1867         .name = "smq",
1868         .version = {2, 0, 0},
1869         .hint_size = 4,
1870         .owner = THIS_MODULE,
1871         .create = smq_create
1872 };
1873
1874 static struct dm_cache_policy_type mq_policy_type = {
1875         .name = "mq",
1876         .version = {2, 0, 0},
1877         .hint_size = 4,
1878         .owner = THIS_MODULE,
1879         .create = mq_create,
1880 };
1881
1882 static struct dm_cache_policy_type cleaner_policy_type = {
1883         .name = "cleaner",
1884         .version = {2, 0, 0},
1885         .hint_size = 4,
1886         .owner = THIS_MODULE,
1887         .create = cleaner_create,
1888 };
1889
1890 static struct dm_cache_policy_type default_policy_type = {
1891         .name = "default",
1892         .version = {2, 0, 0},
1893         .hint_size = 4,
1894         .owner = THIS_MODULE,
1895         .create = smq_create,
1896         .real = &smq_policy_type
1897 };
1898
1899 static int __init smq_init(void)
1900 {
1901         int r;
1902
1903         r = dm_cache_policy_register(&smq_policy_type);
1904         if (r) {
1905                 DMERR("register failed %d", r);
1906                 return -ENOMEM;
1907         }
1908
1909         r = dm_cache_policy_register(&mq_policy_type);
1910         if (r) {
1911                 DMERR("register failed (as mq) %d", r);
1912                 goto out_mq;
1913         }
1914
1915         r = dm_cache_policy_register(&cleaner_policy_type);
1916         if (r) {
1917                 DMERR("register failed (as cleaner) %d", r);
1918                 goto out_cleaner;
1919         }
1920
1921         r = dm_cache_policy_register(&default_policy_type);
1922         if (r) {
1923                 DMERR("register failed (as default) %d", r);
1924                 goto out_default;
1925         }
1926
1927         return 0;
1928
1929 out_default:
1930         dm_cache_policy_unregister(&cleaner_policy_type);
1931 out_cleaner:
1932         dm_cache_policy_unregister(&mq_policy_type);
1933 out_mq:
1934         dm_cache_policy_unregister(&smq_policy_type);
1935
1936         return -ENOMEM;
1937 }
1938
1939 static void __exit smq_exit(void)
1940 {
1941         dm_cache_policy_unregister(&cleaner_policy_type);
1942         dm_cache_policy_unregister(&smq_policy_type);
1943         dm_cache_policy_unregister(&mq_policy_type);
1944         dm_cache_policy_unregister(&default_policy_type);
1945 }
1946
1947 module_init(smq_init);
1948 module_exit(smq_exit);
1949
1950 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
1951 MODULE_LICENSE("GPL");
1952 MODULE_DESCRIPTION("smq cache policy");
1953
1954 MODULE_ALIAS("dm-cache-default");
1955 MODULE_ALIAS("dm-cache-mq");
1956 MODULE_ALIAS("dm-cache-cleaner");